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Abstract

A recent and renewed interest for Moon exploration is currently fostering the
development and improvement of many technologies in the space industry. Future
lunar missions will call for precise and robust performance of guidance systems in
order to land both robots and humans safely and accurately on the Moon’s surface.
To achieve a successful landing, a rigorous and well-integrated Guidance, Navigation
and Control (GN&C) system must be employed. In particular, the landing guidance
system is required to transfer a spacecraft from an orbit to a desired target on the
planetary surface with a soft approach while meeting several constraints necessary
for safe operations. In addition, due to current launch vehicles limitations, it is
evident that minimizing the usage of propellant would make possible to carry more
payload on-board. On top of that, the landing site may change in real-time in order
to avoid previously undetected hazards, which gradually become ever more visible
while getting closer to the surface. The Apollo program relied heavily on astronauts’
eyesight and the avoidance maneuvers were performed through manual control.
However, for missions with poor lighting conditions, like in lunar polar regions, such
approach would make things more arduous; for robotic missions, this is o� the table.

This thesis studies the lunar powered descent guidance trajectory taking in-
spiration from Apollo Lunar Module concept of operations, taking into account
a fuel-optimization strategy, while constraints on the initial state, �nal state, and
bounded control variables must be considered and solidly met. An indirect optimiza-
tion method based on Pontryagin’s Maximum Principle is applied to �nd the optimal
guidance laws. Than the resulting Boundary Value Problem is numerically solved to
get the solution for a group of test cases, in which both downrange and crossrange
variations are illustrated to simulate possible diversion maneuver.
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1
Introduction to Moon

Exploration

1.1 Historical Overview

For however long humans have looked skyward, the Moon has held and fed imagina-
tion for millennia. We have been always fascinated by our cosmic partner’s mottled
and cratered, wondering about its origins and impact on the universe.

To begin with, telescopes honed our perspectives of its bumps, ridges, and
deserted lava seas. Then, at that point, we got closer, thanks to further advanced
technologies like satellites and landers. At last, during the twentieth century, humans
reached Earth’s only natural satellite for the �rst time and saw its surface up close,
marking a giant step for humankind. From that point forward, a lot of spacecrafts
have investigated our nearest celestial neighbor, dipping low over its dusty �elds and
surveying its curious unknown sides. Presently, following sixty years of exploration,
we are once again planning to send humans to the lunar surface.

1.1.1 Pioneering Forays Into Space

The earliest signs of interest for lunar exploration were born during Cold War, when
the U.S. and Soviet Union started to send unmanned spacecraft to orbit and land
on the moon. The Soviets scored a �rst success in January 1959, when Luna 1, a
small sphere loaded with antennas conceived to be an impactor, turned into the
�rst spacecraft to escape Earth’s gravity. Albeit a glitch in the ground-based control
system caused a fault in the upper stage rocket’s burn time, and the spacecraft missed
the Moon by 5900 km. At long last, in 1959, Luna 2 became the �rst spacecraft to
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1.1. Historical Overview

touch the moon’s surface. The site where it crashed was the Mare Imbrium (Sea of
Rains), an immense lava plain situated in the Imbrium Basin on the Moon, one of
the bigger craters in the Solar System. That very year, a third Luna mission caught
the �rst, even though blurry, images of the more remote side of the moon, which
made possible notice that the rough highland terrain is strongly di�erent from the
smoother basins on the side facing the Earth. Then, the U.S. got into the game
with nine NASA Ranger spacecraft that were launched between 1961 and 1965, and
gave researchers the �rst close-up perspectives of the moon’s surface. The Ranger
missions were designed with spacecraft engineered to streak toward the moon and
capture as many images as possible prior to crashing onto its surface. A series of
accidents, be that as it may, led to the failure of the �rst six �ights.

By 1964, images taken from Ranger 7 till Ranger 9, had enabled a more prominent
insight about the moon’s rough landscape and the likely di�culties of �nding a
smooth landing site for humans. In 1966, after 7 years from the �rst lunar surface
contact-impact, the Soviet spacecraft Luna 9 is considered as the �rst vehicle to land
safely on the lunar soil. Supplied with scienti�c instrumentation and com-systems,
the small spacecraft took ground-level photos of lunar panorama. Soon thereafter,
Luna 10 was launched, turning into the �rst spacecraft to e�ectively orbit the moon.

NASA likewise landed a spacecraft on the moon’s surface that year with the
�rst of its seven Surveyor spacecrafts, equipped with cameras to inspect the moon’s
surface and innovative technologies to analyze lunar soil. The Surveyor program
actually proved that manned landings on the Moon were possible thanks to the
collected results on lunar dust: if the dust was too deep, then no astronaut could land.
Over the two years that followed, NASA scheduled �ve Lunar Orbiter missions that
were planned to circle the moon and map its surface in anticipation of a de�nitive
goal: landing astronauts on the surface. These orbiters have taken images of around
99% of the moon’s surface, highlighting potential landing destinations and paving
the way for a giant leap forward in space exploration [1, 7, 11].

1.1.2 Humans on the Moon

At that point, NASA was dealing with the ful�llment of a presidential promise: In
1961, President John F. Kennedy committed the United States in landing an individual
on the moon before the decade was over. With that in mind, the Apollo space program
was planned and launched, being undoubtedly the most costly space�ight endeavor
ever. The otherwise called Project Apollo ended in 1972, with a total of nine missions
and 24 astronauts which orbited or touched the moon.

The most emblematic of those was Apollo 11, on which occasion humans had
stepped on another world for the very �rst time: on July 20, 1969, Neil Armstrong
and Edwin "Buzz" Aldrin landed in the Sea of Tranquility inside the Lunar Module
Eagle (LM-5), while astronaut Michael Collins remained orbiting over the moon
in the command module Columbia (CM-107). Armstrong, who impressed the �rst
"bootprints" on moon’s surface, famously stated: “That’s one small step for a man,
one giant leap for mankind". The pair remained on the moon’s surface for 21 hours
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1.1. Historical Overview

and 36 minutes before rendezvousing with Collins and making their way back to
the Earth [18]. Every mission after Apollo 11 set new landmarks in space travel and
lunar exploration. Four months after the �rst humans got to the moon, Apollo 12
touched down successfully once again, this time performing an even more precise
landing.

Apollo 13 barely avoided a near-catastrophe when on-board oxygen tanks ex-
ploded in April 1970, obliging the entire crew to abort the mission, missing the third
planned moon landing. All three astronauts survived. During the following mission,
which took place in January 1971 with Apollo 14, commander Alan Shepard set
another record for the farthest distance traveled on the moon surface during the two
planned walks, totalizing about 3 kilometers. He even threw and soared for miles
two golf balls with the help of the light gravity of the moon and a makeshift 6-iron
club. Apollo 15, launched in July 1971, was the �rst of the last three missions �t for
a more extended permanence on the moon. Over the span of three days spent on
the lunar surface, achievements included collecting few kilograms of lunar samples
and traveling over 27 kilometers in the �rst piloted moon buggy (Fig. 1.1). Apollo
16 and Apollo 17 in 1972 were the two latest manned missions to the moon, and
Russia’s Luna-24 crewless spacecraft in 1976 was the last to land until the next
century. The sample collection achieved during these lunar explorations led to a
remarkable amounts of knowledge about the geology and historical formation of the
Earth’s natural satellite [1, 29].

After the striking achievements of the 1960s and 1970s, the major space organi-
zations turned their focus somewhere else for quite a few years. Up until this point,
only 12 humans (all Americans and all men) have set foot on the moon.

Fig. 1.1: Lunar Roving Vehicle (LRV), also called Moon buggy, is an electric vehicle
designed to expand astronauts’ range of exploration on the low-gravity lunar surface
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1.2. Recent Missions and Future Perspectives

1.1.3 Rediscovered Interest

It was not until 1994 that the moon returned into focus for the U.S., with a joint
mission between NASA and the Strategic Defense Initiative Organization. The
Clementine spacecraft mapped the moon’s surface in wavelengths other than visible
light, from ultraviolet to infrared. These observations were meant to obtain multi-
spectral imaging of the entire lunar surface, assessing the surface mineralogy of the
Moon and collecting data on gravity properties. A bistatic radar experiment was also
performed to look for proof of lunar water at the Moon’s poles. An initial analysis
of the magnitude and polarization of the re�ected signals suggested the presence
of volatile ices, assuming then that water ice was contained. In 1999, the Lunar
Prospector orbited the moon, con�rming Clementine’s �rst evidences of ice at the
lunar poles, representing a vital asset that could be fundamental for any long-term
lunar settlement. The mission’s end was terri�c: Prospector crashed into the moon,
aiming to generate a plume that could be promptly inspected for evidence of water
ice, however none was observed. Notwithstanding, after ten years, NASA’s LCROSS
(Lunar Crater Observation and Sensing Satellite) repeated this kind of analysis and
discovered proof for water in a shadowed locale close to the moon’s south pole,
called Cabeus.

Since 2009, the Lunar Reconnaissance Orbiter (LRO) has taken high-resolution
3-D maps of the lunar surface at 100-meter resolution and 98.2% coverage (exclud-
ing polar areas in deep shadow), determining safe landing spots, �nding plausible
resources on the Moon, characterizing the radiation levels, and showing new ad-
vancements. LRO and LCROSS were launched as part of the United States’s Vision
for Space Exploration program. Afterward, Between 2011 and 2012, GRAIL (Gravity
Recovery and Interior Laboratory) mission was launched, supported by two twin
small spacecraft GRAIL A (Ebb) and GRAIL B (Flow), belonging to the wider NASA’s
Discovery Program. The two tandem spacecraft mapped the moon’s gravitational
�eld and its interior structure before intentionally crashing into a region near the
lunar north pole. The knowledge acquired helped understand the history of the
evolution of the terrestrial planets and improved computational capabilities in lunar
orbits [1, 11].

1.2 Recent Missions and Future Perspectives

Till now it can be noticed that NASA was historically the most active space agency,
especially regarding moon exploration, working and acting as a protagonist in the
industry, but these days NASA is not the lone space agency with an uncommon
surging interest in the moon. Within the most recent twenty years, lunar exploration
grew into an undeniably international and even commercial interest, with public
space agency as ESA (European Space Agency), the Japanese JAXA or the CSA
(Canadian Space Agency) and also private space sector such as the American SpaceX.
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1.2.1 European Glance

The European Space Agency is the main actor in the space industry when it comes to
the old country. Established in 1975 and headquartered in Paris, ESA is an intergov-
ernmental organization of 22 member states and has a worldwide cooperative sta�.
There are four di�erent projects where ESA is involved in lunar exploration. The
�rst and really signi�cant is a collaboration with russian space agency Roscosmos on
a mission called Lunar Resource Lander (or Luna 27). This will be the �rst european
hardware to go to the surface of the moon, and ESA is going to have a vital role by
providing the precision GNC system to avoid the wrong craters and land in the right
place on the south polar regions of the moon, with a system called PILOT (Precise
Intelligent Landing using On-board Technology). Polar regions are gaining a lot
of interest than in the past, where only equatorial regions were explored (like in
Apollo missions). The south pole region is particularly appealing because is a unique
environment where craters preserve a surprising amount of water and other volatile
substances. Such craters are called "cold traps", because their shattered interior areas
are so cold that are capable of freeze (trap) volatiles.

The spin axis of the Moon is nearly perpendicular to the ecliptic plan (i.e. the
plan in which the Moon orbits around the sun) so that the sun always appears just
at the horizon at the poles. The lunar terrain is rugged and diversi�ed, and because
of the craters and mountains of the Moon, some areas near the pole are in near-
permanent sunlight while others are constantly shadowed and dark. Consequently,
this combination of properties generate extremely cold temperatures which allow
any volatile substance, like water, to accumulate and deposit there. The lunar south
pole region is much richer of such craters than the north area, the reason why space
missions are focused on the former one. The presence of ice water would be an
essential resource for next explorers and for a future sustainable human-settled
outpost, which could take advantage of the large period of time where the mountain
peaks near the pole are illuminated to provide solar energy.

So within the Lunar Resource Lander mission, once landed on the moon’s surface
thanks to PILOT, the so-called PROSPECT package will take action. It consists of a
percussion drill (ProSEED) designed to collect permafrost regolith and ice samples and
bring them up to an on-board laboratory (ProSPA) inside the spacecraft, consisting of
�fteen instruments overall. The instrumentation won’t only analyze lunar samples
and possible existence of water, but also plasma in the exosphere, dust and seismic
activity. The second project in which ESA is deeply involved in a collaboration
with NASA colleagues is Orion (also known as Orion MPCV - Multi-Purpose Crew
Vehicle), which is a class of partially reusable space capsule for NASA’s manned
space programs. The capsule consist of a Crew Module designed by Lockheed Martin
and the European Service Module (ESM) designed by ESA and Airbus Defence and
Space, which will provide the power, the pro�le propulsion, the water, the oxygen
and all the supplies needed by the astronauts. Orion will be used for multi-purpose
missions, such as Artemis 1 or for a future Deep Space Gateway, a space station
orbiting around the moon in which Orion could be docked.
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A third project aims to extract, collect and process resources directly on the Moon
(and potentially on other astronomical objects) and convert them into usable products
and services: ISRU (In-Situ Resource Utilization). ISRU could provide materials for
propellants, general constructions, life support or energy. This practice is a possible
path for reducing the mass and cost of payloads and space architectures by minimizing
the materials from and to the Earth. A mission to explore lunar resources could be a
reality from 2025. The main and �rst goal will be drinkable water and breathable
oxygen on the Moon. The last one project is the Heracles mission, which could take
of in 2028 to gain knowledge on human-robotic interaction. The idea consists of
sending a relatively sophisticated lander or rover to the south polar regions of the
moon, with the know-how of acquiring samples of unexplored regions scienti�cally
exciting and then bring back those samples to the lander vehicle which would have
an ascent craft bolted to the top of it that would take o� and go back into the lunar
orbit performing a rendezvous with the Deep Space Gateway. So the whole mission
would be operated by the astronauts aboard the Gateway lunar station, with the
samples coming back to them and then forwarded to the home planet with the �rst
available Orion spacecraft. This mission has been already discussed with Japanese
Space Agency (JAXA) and the Canadian Space Agency (CSA), �nding a concrete
collaboration to make it possible [14].

1.2.2 A Worldwide Ambition

In 2007, Japan launched its �rst lunar orbiter SELENE which orbited the Moon for
only about two years before a planned crush set o� the end of the mission. China,
as far as concerns, launched its �rst lunar spacecraft named Chang’e-1 around the
same time window, producing a high de�nition 3D map that would constitute a
reference for future soft landings. India then followed in 2008 with the Chandrayaan
Programme. By 2013, China turned into the third nation to successfully soft-touch
the lunar surface, when its Chang’e-3 spacecraft deployed the Yutu rover. More
breakthroughs were achieved in 2019, some more e�ective than others. In January,
Chinese lander Yutu-2, marked the history by becoming the �rst rover to land on the
furthest side of the moon. In the interim, India’s second lunar orbiter, Chandrayaan-2,
tried to deploy on the lunar surface the Vikram small lander, but failed that year (a
new attempt is scheduled by 2021). In April 2019, Israel aimed for the moon with the
launch of its Beresheet spacecraft, being more a demonstrator of a small robotic lunar
lander with the objective of promoting careers in science and technology. Sadly, even
though the spacecraft achieved lunar orbit, it crashed and failed its endeavor to land.
Dissimilar to other spacecraft that preceded it, Beresheet was constructed mainly
with private subsidies, proclaiming a new period of lunar exploration wherein private
owned business are hoping to take the reins from governments. Private space�ight
is nothing new. In the United States, commercial companies played a role in the
aerospace industry from the get-go: since the 1960s, NASA has relied on private
contractors to build spacecraft for each signi�cant human space�ight program,
beginning with Project Mercury and proceeding until the present.
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Fig. 1.2: Life on Mars (concept art) - credits by NASA

Today NASA is collaborating with astounding commercial space�ight organiza-
tions to foster both robotic and manned landers for lunar and Martian exploration;
among those companies there are SpaceX, Blue Origin, and Astrobotic. Amazon CEO
Je� Bezos along with its Blue Origin company has declared the objective of setting
up a lunar base near the south pole where people could work and live. SpaceX which
determined a new worldview by making possible reusable rockets, has been running
regular cargo resupply missions to the ISS since 2012. In May 2020, the company’s
Crew Dragon spacecraft ferried NASA astronauts Doug Hurley and Bob Behnken
to the ISS, becoming the �rst crewed mission to launch from the U.S. in almost ten
years. SpaceX is additionally developing the Starship spacecraft, someday capable
of shipping astronauts to the moon and Mars (Fig. 1.2). The same company is also
planning to bring a new class of space tourists to lunar orbit, likewise several organi-
zation are concurrently planning, such as Blue Origin and Virgin Galactic, which are
now investing money into sub-orbital space travel industry. To not be overshadowed
by the commercial sector, NASA is planning its own ambitious return to the moon.
The NASA’s Artemis Program, a sister to the renowned Apollo Project, work towards
putting the �rst woman, and the next man, on the moon by 2024. NASA’s Orion
space capsule represents the pillar of Artemis Program, and it is currently being
developed. If Artemis goes well, then the not-so-distant future may likely see NASA
and partners engineering and creating a brand-new space station in lunar orbit (the
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Deep Space Gateway) that could serve as a springboard to destinations on the moon’s
surface and beyond [1, 11, 28].

1.2.3 The Futuristic Roadmap

It’s just begun what could be called the 21st-century space race, the one that could
potentially lead to 10-minute space vacations, orbiting space hotels, and settle humans
on the moon and Mars. The idea of a spacial civilization, and particularly a sustainable
lunar outpost, has long inspired humankind to imagine what daily life may be like on
our satellite or somewhere else. But what is commonly overlooked while fantasizing
about the future is the necessary path to get there. This path begins with the �rst
lunar spaceport, which will be crucial for the construction of a moon colony. The
�rst spaceport will allow humans to land and launch from the same location, unlike
the six crewed Apollo missions did. This presents a series of challenges never faced
before.

The �rst lunar spaceport will need several missions to take shape, starting with
autonomous cargo and infrastructure missions, prior to the �rst humans’ arrival,
adequate tools, supplies, and habitable areas in place will all be necessary to assure
the safety and productivity of the �rst crewed mission. Expect these autonomous
cargo missions to be one-way trips designed to withstand the lunar debris ejected by
several nearby landings, including the �rst manned mission. Without the return-trip
requirement, more of the payload can be devoted to cargo instead of return propellant.
While the �rst moon base’s exact location is not yet known, it could be assumed that
the primary habitat zone will be near an area of scienti�c interest, rich in minable
resources or other scienti�c signi�cance. Due to the variability of lunar regolith at
di�erent locations, each possible site will possess its own design characteristics and
challenges. For example, the thickness of the regolith can vary from 3 meters on mare
surfaces to around 10 meters on highland regions, so it means that more excavation
process may be required in some places than other to reach local bedrock and stability
of surrounding soils. Earlier research and space agencies’ current direction both
target the lunar south pole as a possible �rst site for a permanent lunar base. The
craters near the south pole have a certain number of permanently shadowed regions
with possible signi�cant ice deposits, providing a source for other valuable elements,
as previously stated.

On Earth, launching and landing rockets requires extensive and high-cost infras-
tructure. To engineering and build spaceports is necessary to adequate space, facili-
ties, propellants, high-pressure gasses, water, electricity, communications, telemetry,
and logistical operations to support both a launch and a base. In order to support a
lunar spaceport, several parts of a whole network of structures will be necessary to
guarantee the capabilities to routinely land and relaunch vehicles, a much di�erent
vision than the Apollo single-use design. While the thrust magnitude required for
launch is much smaller than on Earth, the pad’s material will likely be much di�erent
requiring alternative maintenance and construction timelines. Once crewed mis-
sions begin, there will be the need for various types of vehicle processing, including
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payload integration and refueling, which should be able to operate concurrently on
the lunar surface.

Initial launches and landings will have to supply their own fuel at extreme
cost, as well as provide the lunar surface with equipment and resources to support
future missions. As time goes by, subsequent launches from the lunar surface would
gradually and massively bene�t from fuel produced and stored on the moon. The
appropriate tools and resources to construct these facilities could be delivered over
multiple iterative round-trips. That’s why �rst lunar spaceport’s layout will need to
consider operational logistics more heavily. Two main factors will lead to provide
�own-in equipment meant to serve as many purposes as possible in order to reduce
operational di�culties: a not yet well organized and distributed lunar population,
and the environment itself which makes every single task harder than on Earth.

Safety in engineering processes is another aspect at the forefront, and one useful
observation could be the explosive safety on the lunar surface. Due to its atmosphere-
less characteristic, blast pressure-waves do not propagate in space, so explosive
safety distances may be much smaller on the moon. Even so, the threat from debris
ejected by an explosion or a lunch still remains, with a further-reaching capability
the moon has in contrast to the Earth. The �rst lunar spaceport will need a co-located
launch and landing pad on a �at, clean and hard surface with protective barriers. The
barriers limit the potential hazard for debris to impact equipment and structures in
the surrounding areas, avoiding possible damages and keeping the low-angle debris
from reaching orbit. From the �rst lunar spaceport’s earliest days, a reliable energy
source will be necessary for almost all operations. The easiest, safest solution for
space power generation is the solar energy, which has served well space exploration
to date. But the lunar day can keep certain areas of the moon in shadows for extended
periods of time, mostly in the polar regions, so it doesn’t represent the perfect viable
option. Lunar range temperature is furthermore wide and highly sensitive, and can
vary from around 120°C at the equator to -180°C just before sunrise. This huge swing
in temperature on the surface could lend to a sort of geothermal energy source. Since
the lunar surface is a great insulator, heat exchangers could be exposed to boiling
temperatures during the day to help generate power. However, the long days and
nights would limit the use of these systems to the 14-day in and out of operation,
which means alternative energy sources – such as a Fission Power System – may
become a more workable long-term solution. The lunar power distribution grid will
likely require a mixture of sources to create reliable, sustainable energy supply. The
baseline power requirements on a lunar spaceport could also go through changes
because of climatic di�erences if compared to those on Earth.

Human factor engineering and requirements will experience a serious evolution
and adaptation. A lunar spaceport o�ers an opportunity to build from the past
50 years of space exploration and test the best innovative theories for long-term
habitation. In this scenario, 3D printing technologies could be a game changer in
developing large-scale space-based construction systems, giving also a cutting-edge
tool to achieve in-situ building and maintenance autonomy. When constructing lunar
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Fig. 1.3: Explorers on the moon (concept art) - by David Hardy

habitats, human factor engineers will need to consider things that are afterthoughts
on Earth. For example, door sizes will need to be reassessed, as lunar circulation
between rooms may require di�erent heights. In chambers the habitat’s internal
dimensions will vary from those where inhabitants wear casual clothing to where
inhabitants wear spacesuits. The lunar voyagers’ expeditions must also be considered.
Mobility will be both a limiting factor and a driving requirement to plan and build a
future moonbase. How far an astronaut can reasonably walk will not only determine
requirements for our �rst crew but could determine what is expected in the future
missions. In addition to protecting the inhabitants physically, protecting the mental
health of long-term colonists is also a key factor. Preserving the natural landscape of
the lunar surface could be a possible solution: the human mind could �nd solace in
the undeveloped wilderness that laid before settling, just like our ancestors did on
Earth [35].

With each new data acquisition and discovery, the long-considered vision of a
lunar civilization is continuously modi�ed with no clear sight of where it will end
up. One thing is certain, however: regardless of the settlement location, the nations
involved, or how far into the future it happens, it will all start with a spaceport, that’s
why engineering autonomous soft-landing capabilities play a crucial role in this day
and age. Sooner or later, what today may seem as a simple visionary picture is going
to turn the moon into a real launchpad to the universe, establishing a new �agship
for all mankind.
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2
Powered Descent and Landing

2.1 State of Art and Trends

A wide range of key developments can currently be pointed out in Guidance, Nav-
igation and Control (GNC) systems for planetary landers, among which Hazard
Detection and Avoidance (HDA) systems and Visual Navigation stand out. In this
section these systems are shown to disclose some more details, taking into consid-
eration a general survey of the prerequisites on trajectory shaping guidance for
current and future missions. Considering recorded data, the empirical safe landing
chance was uniquely about 80% as of the last decade. Thanks to sub-meter resolution
satellite images and scans of the Moon’s surface obtained lately by NASA’s Lunar
Reconnaissance Orbiter, remarkable progresses on automated hazard detection have
been made. To some degree, hazards like slopes, boulders, craters or shadows can
be detected by the gathered orbital measurements. However, the resolution is still
not enough to identify smaller hazardous terrain features, like medium-small rocks,
that could jeopardize touchdown success. In such a scenario, employing automatic
HDA technologies would be a bene�cial solution to increase the probability of safe
landing. The system instrumentation should have real-time capabilities in order to
characterize the sensed terrain in terms of hazardous elements within the bounds of
the designated landing area at any moment. Lastly, the system must be able to decide
whether the targeted landing spot is safe, and if necessary, command a diversion to
a more secure zone (safe-site determination capability) [16].

Vision-based technologies allow for more precise landings than ever before.
Overall these navigation technologies can be split in two main categories: relative
and absolute vision-based navigation. The latter works by comparing camera images
to a on-board map database in support of the estimation of the inertial state. Given
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that HDA can dictate diversions to new landing safer sites, the relative position of
the vehicle with respect to the landing site gains in importance over the inertial state,
so the distance between the vehicle itself and the landing target needs to be known
even more precisely. As a result, relative vision-based navigation is employed in the
�nal landing phase, so the vehicle position is calculated over the features captured by
the on-board camera images of the landing target. In other words, relative navigation
is performed by comparing information from successive real-time captured images,
while absolute navigation is achieved by matching the perceived environment with a
vehicle-carried pre-installed map. Thanks to the contribution of these technologies,
the reachable increase on landing precision can be in the order of hundreds of meters.
Furthermore, if foregoing landed surface data for relative navigation were available,
the precision may be increased up to tens of meters or even single-digit meter. This
degree of precision di�ers dramatically from the kilometer-sized landing ellipses,
that represented the best feasible result for earlier autonomous lunar landings. The
combination of visual navigation and HDA systems broaden the range of mission
scenarios, including their success. Anyway, all that glitters is not gold, and the need
to keep a visual to the landing site during the entire phase of descent, coupled with
possible retargetings and diversions, pose new challenges for autonomous landers.
HDA and vision-based landing have a major role in the design of the guidance system,
like trajectory shaping, and they in�uence it in several ways. First of all, new landing
sensors place additional constraints, and a few extra details are worth mentioning:

m Pinpoint-landing Capability: guidance mode must be able to target accurately
a speci�c site on the planetary surface with the best achievable precision. Not
all algorithms are necessarily capable of it.

m Adaptivity: being that HDA system can order diversions to alternative landing
sites – in case of detecting unsafe o safer site – autonomous guidance shall be
capable of re-planning the trajectory to the new locked on target in real-time.

m Constrained Trajectory Generation: to meet the requirements of the whole
landing phase, a constrained trajectory is generated. One of the path constraint
could be that the landing site must be kept in the sensors’ �eld of view, in its
turn translated into limits on the viewing angle, and thus in considering the
glide slope component. That leads to another fundamental constraint which is
the lander attitude. In addition, thrust limitations cannot be left out, especially
when retargeting maneuvers require engines to throttle up.

m Fuel Optimality: the generated constrained-trajectory shall be fuel-optimized
in order to maximize the payload mass. This feature is signi�cantly important,
mostly when combined with HDA, because diversion maneuvers may require
extra usage of propellant.

m Computational E�ciency: powerful space-grade computers have been devel-
oped, but the on-board data processing and the computational power needed

12



2.1. State of Art and Trends

for HDA and visual navigation might put a heavy load on the CPU and memory.
For this reason, guidance workload will be limited in terms of computational
power availability, and algorithms must work seamlessly, ensuring maximum
reliability.

m Robustness: in a HDA activity scenario, robustness is a crucial property to en-
sure a high safe-landing probability. The algorithm must guarantee operational
suitability and meet the required executing performance against uncertainties,
presence of invalid inputs and stressful environmental conditions.

These questions become clearer when guidance is contextualized within the
other GNC system elements. An example of a HDA architecture is shown in Fig. 2.1.
Instruments map the surface, and subsequently assess the safety of targeted sites
by creating risk maps. Alongside, a simpli�ed guidance shapes the trajectory and
computes the reachability, called fuel map, to establish the range of feasible diversions.
Fusing both maps, the piloting algorithm either approves the current landing site or
sets a new one. If the direct interface of guidance receives the retargeting command
a new trajectory is then computed. Constraint-handling is continuously kept active
by guidance computer.

Having more clearly understood the requirements for an advanced guidance
and now that the research area has been identi�ed, the problem formulation can
be circumscribed to the mission scenario under evaluation: The powered descent
guidance problem for pinpoint landing is de�ned as �nding the fuel-optimal trajectory
that takes a lander with a given initial state (position and velocity) to a prescribed
�nal state in a uniform gravity �eld, taking into account constraints of a di�erent
kind [16, 24].

Fig. 2.1: GNC landing system architecture with HDA in-the-loop [16]
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2.2 Mission Description

The vehicle is required to gently touch down with high accuracy on the moon’s
surface, while meeting all the imposed and necessary constraints on the dynamic
system during the whole descent phase. A certain accuracy grade will probably be
required, just think of outpost kind of mission, in which assets and equipments may
be already settled on the Moon, or merely the ability to avoid unsafe landing areas.
This prompts to a signi�cant progress in capabilities over the Apollo Lunar Module,
particularly in route precision. Likewise advantageous would be the ability to detect
and avoid hazards, such as rocks and craters, provided by the HDA systems previously
mentioned. In this sense, advances in sensor capability come to the aid of sharp
detection, highlighting surface features of any kind. The trajectory guidance must
ensure dynamic tridimensional retargeting to avoid potential hazards detected by
the sensing systems. So not only downrange distance but also crossrange capability
is desireable to be implemented within this framework. Generally, the trajectory
shape must consider space and attitude constraints for allowing the sensors to see
the targeted area, as well as time and altitude margin for calibrating the trajectory
based on the real-time information acquired by the sensors [33].

Fig. 2.2: Main Phases from Circular Orbit to Landing Site
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A propellant optimized trajectory is also useful, taking into account a given cost
function for landing site selection, it can result in a better payload capability and
also in a safe estimation of the remaining translational motion of the vehicle. Some
extra considerations and features about guidance may include site authorization
and landing abort with back to orbit recovery. Guidance algorithms are usually
customized to a speci�c mission stage, this is why are not large-scale suitable. A
reference frame of a generic landing sequence is drawn up to provide a general
outline. This scenario is based on the heritage of previous missions, most notably
Apollo Missions, and the terms presented hereinafter are thus common terminologies
appropriate for typical landings on low-gravity bodies with a thin atmosphere. The
general phases are shown in Fig. 2.2. The mission is assumed to start in a generic
initial orbit, be it an interplanetary hyperbolic transfer orbit or an elliptical/circular
parking orbit around the Moon. Taking as a reference the Apollo Program, the
vehicle was �rst put into a circular lunar parking orbit before starting the descent.
Given the initial position and a targeted landing point on the surface, a landing
algorithm estimates the most convenient Time of Ignition (TIG) at which to begin
the deorbit (descent) burn. In correspondence of the Descent Orbit Insertion (DOI),
the descent is started and inserts the spacecraft into a Hohmann-transfer orbit with a
lowered periapsis above the landing area. When the vehicle is located to an altitude
of about 15 km above the lunar surface, Powered Descent Phase starts and consists
of 3 main sub-phases: Braking Phase, Approach Phase, Terminal Vertical Descent.

Most of the time, such as the Apollo Lunar Module, the main Braking Phase is
started minimum at 500 km downrange with the Powered Descent Initiation (PDI)
maneuver. It is at this point that most of the orbital velocity is removed, slowing
it down from thousands to tens meters per second. As soon as the landing site
(LS) enter into the Field of View (FOV) of the Hazard Mapping (HM) hardware,
High gate (HG) is reached. When HG is crossed, engines throttle back and the
vehicle starts evaluating the best spot to land, Approach gate (AG) is reached. The
subsequent phase is then called the Approach Phase, and may include retargetings,
i.e. diversions to safer landing areas executed only if the initial landing site would be
found to be unsafe. As soon as view on LS is lost, low gate (LG) is reached. All the
horizontal velocity should be cancelled when the vehicle is a couple of meters above
the surface. From here, the vehicle descends at constant speed to the surface, till
touchdown (TD). As soon as AG point is crossed, the vehicle starts the most crucial
landing operation: HDA is activated, the landing site is targeted, thrust and attitude
thus constantly adjusted to reach it (pinpoint landing). The main Braking Phase is
commonly performed at full thrust in the optimal direction, with minimal steering.
In this way velocity drops in the most e�cient manner possible by �ring engines
against the velocity vector, enabling the so-called retro propulsion. The terminal
Vertical Phase can be easily controlled as well. The most critical phase in terms of
safety, landing precision, and room for improvements on the propellant usage is
thus the Approach Phase. Bear in mind that lunar guidance algorithms may be also
adapted for descent phase on Mars or asteroids [2, 3, 16].
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Fig.2.3:Reference
Scenario

(notin
scale)[2]
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3
Optimal Control Problem

3.1 What is Optimization

Principles of optimality rule our regular day-to-day existence. Every system around
us, be it natural or arti�cial, that has a bearing on our lives, seeks to function optimally,
i.e. it attempts to maximize or minimize some given function under certain conditions.
This can be observed in both microscopic and macroscopic circumstances like atomic
bonds whose structure aims to minimize the total potential energy of molecules.
Neural networks in human body consider threshold limit of transferred information
to calibrate and minimize neuron wired-connections. Flower petals are placed in
order to maximize their number as a function of their size and the available area,
while birds optimize their wings’ shape in real time during �ight. In these examples,
nature is who decide, using evolutionary (trial and error mechanisms - law of the
�ttest) process. As Leonhard Euler once wrote:

“[...] nothing at all takes place in the universe in which some rule of
maximum or minimum does not appear.”

Optimization is often used to mean improvement, but mathematically it is a
much more precise concept: �nding the best possible solution by changing variables
that can be controlled, often subject to a preset of constraints. Optimization is a
widespread recourse because it is applicable in all domains and because we can all
identify with a desire to make things better. Any problem where a decision needs to
be made can be cast as an optimization problem.

Arti�cial systems, such as robotics or logistic chains, are meant by engineers
to represent mathematically the objective and constraints form of functions and
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equations. Using such mathematical model of the reality, real optimization problem
can be then solved by exploiting algorithms provided by mathematics and computer
science coding. Solution is then output by a set of discrete values of decision variables,
called optimal control variables. Once completed the process, undoubtedly nothing
better is possible to achieve for the declared form of objective function and constraints,
and for the real and concurrent state of the system.

Historically, optimization problems started dealing with static models, i.e. prob-
lems with no time horizon; in other words without any sort of dynamics. This kind of
approach was only spacial-based and gave rise to what is known as Calculus of Vari-
ations. Variational problems include �nite-dimensional and in�nite-dimensional
frameworks. While the former is about the search of maxima and minima - collec-
tively called extrema - of a given function, the latter framework opens to a wider
family of possibilities, where the domain shifts from a generic function y(x) to a
functional J (y), mathematically de�ned as a function on a space of functions. This
shifting ushers in a set of problems where a certain functional has to be minimized
or maximized over a given family of curves: this can be also seen as the choice of
a path - y∗(x) - from a given family of admissible paths y(x) so as to minimize or
maximize the value of a certain functional J (y∗), called cost or objective functional
if using optimization terminology. This approach deals with path optimization but
still not in the setting of control system. The transition from Calculus of Variations
(static model) to Optimal Control Theory (dynamic model) can be summarized as
follows: rather than considering the curves as given a priori, let’s imagine a particle
moving in the space and "drawing a trace" of its motion. The choice of the slope
y′(x) at each point on the curve can be thought of as an in�nitesimal decision, or
control. The generated curve is thus a trajectory made by a simple control system,
which can be expressed as y′ = u(t), where u(t) represents the control variable. In
order to steadily minimize or maximize the overall cost function, optimal control
decisions must be taken along the curve at each point.

Once we adopt the dynamic viewpoint, it is opportune to parameterize the
curves by time t rather than by the spatial variable x , so the approach becomes
time-based. Apart from being more intuitive, this new formulation is de�nitely more
illustrative because it allows us to distinguish between two geometrically identical
curves crossed with di�erent speeds, for instance. Even the formal and conceptual
representation of the functional changes, since we are no longer working with "a
priori" curves, it makes more sense to write J (u) instead of J (y), given that the actual
path is now determined by the choice of controls which in turn are functions of time.
For the sake of completeness it should be clari�ed that the cost depends on the initial
data, on the �nal time as well as on the control, so it would be more appropriate
to write J (t0, x0, tf , u) but we write J (u) for a better clarity while pointing out that
the cost is being minimized or maximized over the space of control functions. Note
that even if the cost function does not depend explicitly on u, the cost J depends on
the control u through x , state variables which describes the trajectory that a given
control regulates. As can be seen, the new problem formulation is more general in
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another aspect: it avoids the implicit assumption made in calculus of variations that
admissible curves are just graphs of functions of x .

Having switched to a dynamical framework, optimal problems will be generally
based on dynamical or control systems, so from this point onward terminology
changes, the time t will be used as the independent variable, x = (x1,… , xn)T for
the (dependent) state variables, ẋ = (ẋ1,… , ̇xn)T for their time derivatives, and
u = (u1,… , um)T for the controls, which will take values in some control set or
domain [10, 25, 27].

3.2 Survey of Methods

It is of remarkable interest to notice that a wide variety of problems of optimal
control con�guration emerges in distinct �elds of engineering, computer science,
economics, �nance, astronomy, physics, structural and molecular biology, medicine,
and material science. Such problems are based on �nding of optimal control strategy
which minimizes energy consumption or resource usage inside a production chain,
maximizes sales pro�t, or leads to optimal model or structure identi�cation. Remem-
ber that a minimization problem can be converted in a maximization one by simply
inverting the sign of the objective functional.

It has been clari�ed that an optimization problem consists in �nding the control
law that maximizes or minimizes a particular performance index. Considering a
space mission scenario, consumptions of propellant play a big role in in�uencing
the costs of orbital transfers and maneuvers, so minimize the quantity of propellant
necessary for the maneuver or, equivalently, maximizing the �nal mass of the vehicle
(�xed the initial one) becomes crucial. Derek Frank Lawden laid the foundations of
the optimization of space trajectories, in his pioneering work during the 1960s. In
particular he was the �rst to coin the term "primer vector" to refer to the adjoint
variables in the costate equation associated with the velocity vector, pointing out
their fundamental connection to optimal thrust: this concept will be better elucidated
in the next chapters, with a more in-depth analysis tools [10].

Finding the minimum-fuel (or max-�nal mass) trajectory with a set of path
constraints is a classical space engineering optimal control problem. Many e�orts
have been devoted to theoretically analyze this problem. Exact or approximate
analytical solutions may be derived depending on the dynamics formulation, but
such analytical solutions, when available, are of limited scope due to the high amount
of simpli�cations needed, and therefore are of scant interest. In order to solve real-
world applications a variety of numerical methods have been developed which
can be distinguished in three main categories: Direct Methods, Indirect Methods and
Evolutionary Algorithms. There also exists a fourth category which strives to combine
direct and indirect methods in order to bene�t from their respective qualities, and
for this reason they are called Hybrid Methods.
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m Direct methods transform the optimal control problem in a nonlinear pro-
gramming (NLP) problem. The trajectory is dicretized, and state and control
variables are generally approximated by a piecewise constant parameteriza-
tion for each trajectory stretch (or arc). So the whole problem turns into a
parameter optimization problem and many discretizing approaches can be
envisioned depending on the nature of the problem (Convex Optimization, Dy-
namic Programming, Quadratic Programming, Fractional Programming). The
resulting large-scale optimization problem is then solved by a nonlinear (NLP)
software. Direct methods handle easily any problem formulation (dynamics
and constraints) with reduced programming e�ort. Despite that, due to the
problem large size (the method requires a very large number of parameters for
an accurate trajectory description), they may be computationally expensive
and possibly inaccurate.

m Indirect methods transform the optimal control problem into a Boundary Value
Problem (BVP) through the application of the Optimal Control Theory. The
trajectory can be split in arcs here too, only if necessary, and especially when
the problem has to deal with discontinuities. Unlike direct methods, indirect
methods deals with continuos-form of state and control variables. The optimal
control law is determined from the Pontryagin’s Maximum Principle (PMP).
The problem unknowns are the initial costates that must be found in order to
satisfy all the imposed boundary conditions and constraints. The small problem
size makes the indirect approach attractive, indeed the method needs a small
amount of parameters to describe a trajectory and limited calculation times, it
is highly accurate but numerical issues arise due to the high sensitivity to the
initial guess, and need possibly to control discontinuities along the trajectory.

N.B.: The term direct approach comes from the fact that you directly work with
the continuous optimal control problem by discretizing the integral and
all time-dependent functions (ODE, constraints, etc.) in order to obtain a
static nonlinear program. For this nonlinear program you can construct
optimality conditions given by the KKT (Karush-Kuhn-Tucker) equations.
So �rst you discretize the problem with a set of parameters, then you
optimize the resulting nonlinear static program to obtain the (approximate)
optimal solution of the optimal control problem. In the indirect approach,
you �rst look at the optimality conditions of the continuous-time optimal
control problem which leads you to the BVP through the Euler-Lagrange
equations (which, again, only constitute a necessary condition and come
from PMP). This BVP is still continuous. So in order to solve it, you discretize
it in time to obtain an approximate numerical solution.
To recap in a few words: the direct approach is a "�rst discretize, then
optimize" method, while the indirect approach is a backward process, i.e. a
"�rst optimize, then discretize" method.
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m Evolutionary Algorithms use mechanisms inspired by biological evolution, such
as reproduction, mutation, recombination, and selection. Candidate solutions
to the optimization problem have the role of individuals in a population, while
the �tness function determines the quality of the solutions. Then the evolution
process starts, taking advantage of the large populations of solutions, and the
�nal aim is to move towards the global optimum according to speci�c rules.
There are di�erent techniques to achieve the result, and the most popular type
of EA is Genetic Algorithm (GA).

m Hybrid methods attempt to incorporate both direct and indirect methods useful
properties. A direct method is �rst used to build a good initial guess, and an
indirect method is applied to yield an accurate convergence. Amongst the nu-
merous hybrid techniques applied to trajectory optimization, can be mentioned:
Impulsive Solution Guess, Multiple shooting, Response Surface Methodology
and Dynamic Programming based on the Hamilton-Jacobi-Bellman equation.

Among all these categories, one of the most appreciated method in space engineering
�eld is the indirect approach, and it will be the method employed hereinafter. Despite
its drawbacks of being sensitive in terms of convergence (the tentative solution
typically needs to be su�ciently close to the optimal one to be quali�ed as good)
and variables discontinuities management is not trivial, it o�ers a high numerical
precision, a cost-e�ective framework and a signi�cant theoretical content [9].

As already mentioned, indirect methods are based on the Optimal Control Theory
which, in turn, has its roots in the Calculus of Variations principles. OCT will be
here presented in the form that best suits the application to the optimization of
space trajectories. The optimal di�erential equations, which will constitute the BVP,
will come from the application of the Optimal Control Theory and the Pontryagin’s
Maximum Principle (PMP) [5, 30, 36].

3.3 Optimal Control Theory

Recalling the notation before introduced1, the optimal control theory is applied to
a generic system described by a given vector of state variables x(t) and a vector of
control variables u(t), both generally continuos function of time. The di�erential
equations based on the state and control variables describe the time evolution of
x(t) and u(t) between the initial and �nal states (outer boundaries). The di�erential
equations take the generic form of:

ẋ = dx
dt = f (x, u, t) (3.1)

1To make the reading process clearer, it will be referred to vector quantities with bold text.
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Where appropriate, a good practice is to divide the trajectory into a number of
n sub-intervals, called arcs, inside of which the variables are still continuous. The
generic j-th sub-interval starts at t (j−1)+ and ends at t j− , consequently x (j−1)+ and x j−
are the values assumed by the state variables in those instants. The signs ’−’ and
’+’ denote the values assumed respectively right before and right after a speci�c
point: this framework allows to take into account possible discontinuities of the
state variables (e.g. impulsive maneuver), of the time (e.g. residence time in a �y-by)
or internal constraints, that take place among the junction points between each
contiguous arc (inner boundaries).

Boundary conditions are then de�ned, being generally non-linear and assuming
a mixed-type form, i.e. where values of the state variables and time are involved both
in the outer and inner contours. The assigned boundary conditions are gathered in a
designated vector introduced below:

�(x (j−1)+ , x j− , t (j−1)+ , t j−) = 0 j = 1,… , n (3.2)

The optimization problem is based on the research of the control law that max-
imize or minimize a given functional. Such functional represents the so-called
objective functional which expresses costs or bene�ts of a process which one wants
to either avoid or reach, and its generic form is the following:

J = ' (x (j−1)+ , x j− , t (j−1)+ , t j−) +∑
j
∫

t j−

t (j−1)+
Φ(x(t), u(t), t) dt j = 1,… , n (3.3)

The contracted form, i.e. with no sub-interval division, of the expression above
might be more immediate for the reader and it is here mentioned:

J = ' (x tf , tf ) + ∫
tf

t0
Φ(x(t), u(t), t) dt (3.4)

where x tf and tf are the �nal (or terminal) state and time, while ' is the terminal
cost and Φ is the running cost (or Lagrangian). The expression of the objective
functional Eq. (3.4) is known as Bolza form. There are two important special cases
of the Bolza form. The �rst one is the Lagrange form, in which there is no terminal
cost: ' = 0. This formulation comes from the Calculus of Variations, but here with a
dynamical adaptation. The second special case is the Mayer form, in which there is
no running cost: Φ = 0. This last formulation is here preferred and will be used to
de�ne a speci�c performance index later on.

It is necessary to consider also that optimal problems might be likely and realis-
tically subject to given constraints that narrow the operational �eld and therefore
the optimization search space, as well as state equations and boundary conditions.
Di�erent equality and inequality constraints may be considered to bound the values
of decision as well as state variables and controls to respect safety or environmental
safeguards, to state certain setpoints in control loop, and so on. These requirements
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(state equations, B.C. and constraints) can be handled by the method of Lagrange
multipliers. This method reduces the constrained problem to a new, unconstrained
optimization problem with additional variables. The additional variables are known
as Lagrange multipliers. The Lagrange multiplier is an extra scalar variable, so the
number of degrees of freedom of the problem has increased, but the plus side is that
now simple, unconstrained minimization techniques can be applied to the composite
(augmented by de�nition) functional. So let’s introduce the multipliers: adjoint
variables � associated with state equations and adjoint constants � associated with
the boundary conditions. Now it is convenient to apply them to the functional that
can be reformulated as follows:

J⋆ = ' + �T� +∑
j
∫

t j−

t (j−1)+
(Φ + �

T (f − ẋ)) dt j = 1,… , n (3.5)

equivalent to:

J⋆ = ' + �T� + ∫
tf

t0 (Φ + �
T (f − ẋ)) dt (3.6)

which it is called the augmented (cost) functional. Note the same size of adjoint
variables vector �T and states vector x: that is why adjoint variables are sometimes
also called co-state variables.

Both functional J and J⋆ are functions of: time t , state variables x and their time
derivatives ẋ (if sub-intervals division is considered, J and J⋆ depends on the values
assumed by state variables and time at the endpoints of each arc, i.e. on xj and tj ),
and �nally controls u. It is quite evident that as long as boundary conditions (� = 0)
and state equations (ẋ = f) are both satis�ed, the functional J and its augmented
form J⋆ - and therefore their respective extremal2 values - will be exactly the same
(whatever the values of � and �). To get rid of the dependence on the time derivatives
of state variables ẋ, an integration by parts is carried out in J⋆ at this stage:

J⋆ = '+�T�+∑
j
(�T(j−1)+x (j−1)+−�

T
j−x j−)+∑

j
∫

t j−

t (j−1)+
(Φ+�

T f−�̇Tx) dt j = 1,… , n

(3.7)
Let’s de�ne the Hamiltonian before proceeding:

H = Φ + �T f (3.8)

By picking up the Eq. (3.7) and di�erentiating it, the �rst variation of the aug-
mented function is obtained3:

2An extremal is a function that makes a functional an extremum. Trajectories satisfying the Euler-
Lagrange equation are called extremals (of the functional J). Since the E-L equation is only a necessary
condition for optimality, not every extremal is automatically an extremum.

3Square brackets stand for a matrix.
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3.3. Optimal Control Theory

�J⋆ = (−H (j−1)+ +
)'

)t (j−1)+
+ �T )�

)t (j−1)+)
�t (j−1)+

+(H j− +
)'
)t j−

+ �T )�)t j−)
�t j−

+(�
T
(j−1)+ +

)'
)x (j−1)+

+ �T [
)�

)x (j−1)+ ])
�x (j−1)+

+(−�
T
j− +

)'
)x j−

+ �T [
)�
)x j− ])

�x j−

+∑
j
∫

t j−

t (j−1)+
((

)H
)x + �̇T)�x +

)H
)u �u) dt j = 1,… , n (3.9)

The necessary condition for optimality requires that the di�erential of the func-
tional must be zero at optimum: �J⋆ = 0 (stationary condition). So �J⋆ must be
nulli�ed for any arbitrary and admissible variation - called also perturbation - con-
sistent with state equations, B.C. and constraints: �x , �u, �x (j−1)+ , �x j− , �t (j−1)+ , �t j− .
The introduction of multipliers (adjoint variables and constants) and their proper
selection allows to cancel out each term - or coe�cient - in brackets in Eq. (3.9) at
once, ensuring the stationary condition of the functional. Let’s start the extrapolation
process of the necessary condition for optimality:

The Euler-Lagrange equation for the adjoint variables � is obtained by
nullifying the coe�cient of the variation �x:

d�
dt = −(

)H
)x )

T
(3.10)

It can be shown to be equivalent to the Euler-Lagrange necessary condition for
optimality derived from the Calculus of Variations:

)Φ
)x −

1
dt
)Φ
)ẋ = 0

The algebraic equation for controls u is obtained by nullifying the coe�cient
of the variation �u:

(
)H
)u )

T
= 0 (3.11)

Before proceeding, it is worthwhile to make some observations with regards to the
results just achieved. First of all, the control law Eq. (3.11) is pretty much independent
from �nding the extrema (maxima or minima) of J . The same characteristic will be
also valid for B.C. as shown later on. In addition, if a control variable is subject to
constraints, the equation may not provide the optimal controls. This may be the
case when the thrust magnitude can vary between a minimum or a maximum value
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3.3. Optimal Control Theory

(cases where controls depend on time or state variables are not taken into account,
just explicit and constant expressions shall be allowed). Therefore, it would make
no sense to look for a solution that requires a thrust level outside the constraints.
An admissible control is de�ned as a control that does not violate any constraint,
and the subset of admissible controls is called admissible region. The Pontryagin’s
Maximum Principle states that the optimal control must maximize the Hamiltonian
H (if J⋆ is to be maximized). Basically two possibilities may occur:

m the optimal control is given by Eq. (3.11) if the control is in the admissible
region, thus the constraints are actually not involved (control locally not
constrained);

m the optimal control is at the boundary of the admissible region, meaning that
the control assumes its maximum or minimum value if Eq. (3.11) yields a
control outside of the admissible region (constrained control).

In particular, if the Hamiltonian H is linear with respect to a control variable, i.e.
the Eq. (3.8) doesn’t yield a well-determined and explicit expression of the control,
two other possibilities may occur:

m if the coe�cient of the control in the HamiltonianH is not null, H is maximized
either for the maximum value of the control if the coe�cient is positive or for
the minimum value of the control if the coe�cient is negative, according to
the Pontryagin’s Maximum Principle;

m if the coe�cient of the control in the Hamiltonian H is null for a �nite interval
of time, a singular arc arises and it is necessary to set all the successive time
derivatives of the coe�cient equal to zero, until one of the controls appears
speci�cally in one of them; the optimal control is determined by setting such
time derivative (the one that explicitly gives the control) equal to zero (it is
well known that the order of time derivative is always even for this purpose,
and its half value sets the order of the singular arc).

Finally, the boundary conditions for optimality are determined by nullifying
the coe�cients of the remaining variations �x j− , �x j+ , �t j− , �t j+ , leading to:

−�Tj− +
)'
)x j−

+ �T [
)�
)x j− ]

= 0 j = 1,… , n (3.12)

�Tj+ +
)'
)x j+

+ �T [
)�
)x j+ ]

= 0 j = 0,… , n − 1 (3.13)

H j− +
)'
)t j−

+ �T )�)t j−
= 0 j = 1,… , n (3.14)

−H j+ +
)'
)t j+

+ �T )�)t j+
= 0 j = 0,… , n − 1 (3.15)
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3.3. Optimal Control Theory

The above B.C. for optimality are calculated for a generic j-th arc, ranging from
the �nal extreme of (j − 1)-th sub-interval and the initial extreme of j-th sub-interval.
The subscripts j− and j+ stand respectively for the values assumed by point j just
before and just after its position. This distinction is crucial because as previously
mentioned, it allows to consider possible discontinuities in the junction points
between sub-intervals. Considering the whole trajectory, Eqs. (3.12) and (3.14) have
no meaning at the starting point, while Eqs. (3.13) and (3.15) have no meaning at the
�nal point.

If the generic state variable x is characterized by particular boundary conditions,
Eqs. (3.12) and (3.13) yield particular boundary conditions for optimality for the
corresponding adjoint variable �x :

m if the value of x is given at the starting time (� = 0 contains the equation
x0 − a = 0 with a given value for a), the corresponding adjoint variable �x0 is
free, it means that it does not appear as a boundary condition for optimality
and it can assume any value; the same happens for a given value for x at the
�nal time;

m if the initial value x0 appears in neither the function ' nor in the boundary
conditions, the corresponding adjoint variable is null at the initial time (�x0 = 0);
the same happens for the analogous situation at the �nal time;

m if the state variable is continuous and its value is not explicitly set to a value at
the inner boundary j (� = 0 contains the equation x j+ = x j− ), the corresponding
adjoint variable is continuous (�x j+ = �x j− );

m if the state variable is continuous and its value is explicitly set to a value
at the inner boundary j (� = 0 contains the equations x j+ = x j− = a), the
corresponding adjoint variable has a free discontinuity, that is the value of �x j+
is independent from that of �x j− and it has to be determined by the optimization
procedure.

Likewise, if H is not an explicit function of time t , in some cases Eqs. (3.14)
and (3.15) yield speci�c boundary conditions for optimality:

m if the initial time t0 appears explicitly in neither the boundary conditions nor
the function ', the Hamiltonian is null at the initial time (H0 = 0); analogously,
the Hamiltonian is null at the �nal time if tf appears explicitly in neither �
nor ';

m if the intermediate time tj does not explicitly appear in the function ' (it
appears only in the boundary condition for the time continuity t j+ = t j− ), the
Hamiltonian is continuous at the inner boundary j (H j+ = H j− );

m if the intermediate time tj is explicitly assigned (it appears in the boundary
conditions as t j+ = t j− = a), the Hamiltonian has a free discontinuity at the
inner boundary j.
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3.4. Boundary Value Problem

By canceling out the adjoint constants � from Eqs. (3.12) ÷ (3.15), the result-
ing boundary conditions for optimality, and the boundary conditions on the state
variables given by Eq. (3.2), can be collected altogether in the following vector:

�(x (j−1)+ , x j− ,� (j−1)+ ,� j− , t (j−1)+ , t j−) = 0 (3.16)

Hence, Eqs. (3.1), (3.10), (3.11) and (3.16) de�ne the so-called Multi-Point Boundary
Value Problem (MPBVP) [8].

3.4 Boundary Value Problem

The application of the Optimal Control Theory to the system (3.1) generally produces
a MPBVP (in the case of one interval of integration a Two-Point Boundary Value
Problem). Equations (3.1) and (3.10) are the di�erential equations of the MPBVP and
the controls are determined by Eq. (3.11). The solution to this problem is obtained by
looking for the initial values of the unknown variables such that the integration of
the di�erential equations satis�es the boundary conditions of Eq. (3.16). In particular,
the interval of integration is split in sub-intervals and di�erent sub-intervals might
be characterized by di�erent di�erential equations. Generally, the duration of each
sub-interval is unknown and the boundary conditions may be non-linear and may
involve both outer and inner boundaries. In addition, variables may be discontinuous
at the inner boundaries and their values may be unknown after a discontinuity. It
is evident that the main challenge that comes from indirect methods is actually the
search for a solution of the MPBVP that emerges from their application. It is from
here that the discretization process starts.

In order to deal with the unknown duration of the sub-intervals of integration,
a change of independent variable is applied and, for each sub-interval j, time is
replaced with:

" = j − 1 + t − tj−1
tj − tj−1

= j − 1 + t − tj−1�j
(3.17)

where �j = tj − tj−1 is the duration (generally unknown) of the sub-interval. By
doing so, the extremes of the integration of each sub-interval are �xed and correspond
to consecutive integer values of the new independent variable " at the boundaries
(inner and outer ones). The description of the shooting method for the solution of
the MPBVP is given by referring to the generic system:

dy
dt = f

∗(y, t) (3.18)

where the state variables and the adjoint variables are now directly grouped
in the vector y = (x,�) while controls u are substituted by the expression de�ned
by Eq. (3.11). Since the problem is also de�ned by constant parameters, such as
the duration �j of the sub-intervals and eventual values of the variables after a
discontinuity, it is convenient to introduce a new vector z = (y, c) that groups
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3.4. Boundary Value Problem

together the state variables, the adjoint variables and the vector c of the constant
parameters. Moreover, the replacement of time with the new independent variable "
yields:

dz
d" = f(z, ") (3.19)

which can be made explicit by writing:

dz
d" = (

dy
d" ,

dc
d") (3.20)

where

dy
d" = �j

dy
dt (3.21)

dc
d" = 0 (3.22)

The boundary conditions are generally expressed by grouping together imposed
B.C. and B.C. for optimality in the following vector:

	(s) = 0 (3.23)

where s is a vector that contains the values that the (state and adjoint) variables
assume at the inner and outer boundaries (" = 0,1,… , n), as well as the unknown
parameters:

s = (y0, y1,… , yn, c) (3.24)

Some of the initial values of the variables are unknown. As already stated, the
solution to the MPBVP is obtained with an iterative numerical method that looks
for the initial values such that the integration of the di�erential equations satis�es
Eq. (3.23). The method is here described by assuming none of the initial values is
known. The r-th iteration is started by integrating Eq. (3.19) with the initial values
pr derived from the previous iteration. It is set:

z(0) = pr (3.25)

The integration is carried out for the entire trajectory (if r is the �rst iteration,
tentative values for pr are chosen). The values of the state variables are determined
at each boundary and the errors on the boundary conditions 	r are calculated at
each r-th iteration every time the integration process ends.

A variation Δp results in a variation of the errors on the boundary conditions
equal to:

Δ	 = [
)	
)p ]Δp (3.26)
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3.4. Boundary Value Problem

where higher than �rst order terms are neglected. Since the objective is reducing
the errors on boundary conditions to zero, the goal for each next iteration is achieving
Δ	 = −	r . In virtue of this observation, the initial values are progressively corrected
by a quantity equal to:

Δp = pr+1 − pr = −[
)	
)p ]

−1
	r (3.27)

where iteration r + 1 is started by integrating the di�erential equations with
initial values, indeed pr+1 = pr +Δp. The iterations are performed until the boundary
conditions are satis�ed with the wanted precision. The matrix from Eq. (3.26) can be
calculated as the product of two other matrices:

[
)	
)p ] = [

)	
)s ][

)s
)p] (3.28)

The gradient of boundary conditions with respect to vector s is easily obtained
by analytical derivation. On the other hand, the derivative of vector s with respect
to vector of initial values p is equivalent to the matrix which contains the derivative
of vector z calculated at (inner and outer) boundaries " = (0,1,… , n):

[g(")] = [
)z
)p] (3.29)

obtained by taking the derivative of the system in Eq. (3.19) with respect to the
vector of initial values p leads to:

[ġ(")] = d
d" [

)z
)p] = [

)
)p(

dz
d")] = [

)f
)p] (3.30)

De�ning the Jacobian matrix from Eq. (3.19), i.e. [)f/)z], the above Eq. (3.30) can
be further developed:

[ġ(")] = [
)f
)z][

)z
)p] = [

)f
)z][g(")] (3.31)

The initial values for the homogeneous system (3.31) are easily obtained by
taking the derivative of Eq. (3.25) with respect to vector p, and thus obtaining the
identity matrix:

[g(0)] = [
)z(0)
)p ] = [I] (3.32)

This method allows to deal with discontinuities of variables. Indeed, if a discon-
tinuity occurs at generic boundary j, vector z and matrix [g] can be updated through
the below relation of h that relates the values of the variables before and after the
discontinuity:
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3.4. Boundary Value Problem

zj+ = h(zj−) (3.33)

[gj+] = [
)h
)z ][gj−] (3.34)

That is the reason why when vector s has been de�ned, the distinction between
vectors yj+ and yj− has been neglected: one is a known function of the other thanks to
h and vector c. If some of the initial values of the variables are known, the problem
is simpli�ed, the vector p just contains the estimation of unknown initial values of
the variables z(0), while vector 	 only contains the boundary conditions that are not
explicit at the initial time (hence the term implicit conditions).

Since the procedure described above for the determination of the error gradient
matrix [)	/)p] takes a heavy analytical e�ort and the computational time may be
quite long, another alternative method can be easily adopted. It is about evaluating
numerically the error gradient matrix: row i of the matrix is obtained by perturbing
the i-th component of p by a small variation Δp and subsequently by integrating the
Eq. (3.19). By doing so for each component of p it is possible to evaluate the variation
of the errors Δ	(Δp) and the corresponding i-th row as Δ	T /Δp by a linearization
procedure. Empirical values for Δp are in the order of 10−6÷10−7. Although this other
method is rather faster than the one described earlier, it may not ensure numerical
convergence. Its implementation is therefore dependent on the complexity and
sensitivity of the problem.

Such numerical procedure might be also used to calculate the Jacobian matrix
[)f/)z] and the matrix [)	/)s]: however analytical procedure is here preferred and
a comparison between analytical and numerical results of both matrices is anyway
implemented and performed to verify accuracy and precision [8, 9].
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4
Model De�nition

Consider a spacecraft, be it a lander or a rover, close to a planetary object. To de�ne
a proper descent trajectory, it is demanded to move the vehicle from a known initial
position and velocity state through a given constraint frame, which will bring to the
speci�ed �nal position and velocity state. The goal is to end the whole maneuver in
an optimal manner, for which the objective function is yet to be de�ned. Being the
purpose the development of a guidance model, a series of assumptions will be made.

4.1 Assumptions

Assumption 1: Atmosphere-related forces can be neglected.

For celestial objects without atmosphere such as the moon or minor planets
known as asteroids, this assumption is very solid and plausible. For this reason,
relevant aerodynamic forces cannot be generated and will not be considered.

Assumption 2:: Planetary object assumed to be �at.

During the approaching and landing phases, the position of the space vehicle
along the trajectory is so close to the moon surface that it is possible to neglect its
curvature.

Assumption 3: Gravitational acceleration is constant.

Due to the fact that the radial distance from the center of the planetary object
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4.1. Assumptions

during the descent changes marginally, the gravitational acceleration can be reason-
ably assumed constant. It will be demonstrated that the resulting classic bilinear
tangent steering law is based on the same simpli�cation of a uniform gravitational
�eld. In other words, in the case of a planetary landing, distances like downrange and
altitude, are quite small in relation to the planet’s radius. Therefore, the assumption
of a constant gravity �eld with �at ground is pretty reasonable.

Assumption 4: The rotational motion of the celestial body can
be neglected.

Alongside the constant gravitational acceleration assumption, neglecting rotation
makes feasible modelling the planetary object as �at.

Assumption 5: A perfectly expanded chemical rocket engine
is carried by the vehicle to generate a proper
thrust force.

The vehicle is able to generate a thrust force by expelling propellant through the
usage of a chemical rocket engine. The thrust force is directly proportional to the
rate of propellant �ow, the exit speed of the propellant from the rocket engine, the
di�erence between the exterior atmospheric pressure and the pressure at the rocket
engine nozzle exit, and the area of the nozzle exit, described mathematically by:

T = −ṁVexit + (p∞ − pexit)Aexit (4.1)

where:

T = thrust magnitude
ṁ = mass �ow rate
Vexit = nozzle exit velocity
p∞ = atmospheric pressure
pexit = nozzle exit pressure
Aexit = nozzle exit area

Under the assumption that the rocket nozzle is perfectly expanded (i.e. pexit = p∞),
the thrust magnitude and the mass �ow rate are linked by:

T = −ṁVexit = −ṁgoIsp (4.2)

where:

go = gravity at the Earth’s surface
Isp = speci�c impulse of rocket

Rearranging Eq. (4.2) results in:

ṁ = − T
goIsp

= −Tc (4.3)

32



4.2. Objective Function

Assumption 6: The thrust magnitude is bounded.

The maximum rate at which propellant mass can be expelled from the chemical
rocket engine correspond to the thrust upper limit, while the absolute minimum rate
should be zero. Nonetheless, there might be operating status where the minimum
rate is nonzero, just to guarantee safety in power supply the propulsion system by
not shutting down the engines. So limits on propellant mass �ow rate are directly
converted into limits on thrust magnitude.

0 ≤ Tmin ≤ T ≤ Tmax (4.4)

Assumption 7: The thrust direction has no limits and can be
changed instantaneously.

With the aim of developing a guidance algorithm, authentic control system
limitations on attitude rates, piloting functions and accelerations are ignored. In
any case, it is notable that these properties cannot be disregarded when testing an
integrated GN&C system. These kind of assumptions are pretty common in the early
stages of a guidance study as shown by J.R. Rea in his work [31].

4.2 Objective Function

Since this is an optimization problem, it is necessary to de�ne the objective function
or functional (i.e. a real-valued function on a space of functions). Indeed, among all
the successful or admissible control variables which could satisfy a given landing
problem with its boundary conditions and constraints, from an engineering point
of view, optimization gives a truly useful design principle, so it is appropriate and
convenient to �nd the set of control variables which, not only match the whole
problem dynamics and conditions, but also minimize or maximize a given objective
function J . In this case, it is desired to �nd the descent and landing trajectory to
minimize the fuel consumption through the employment of retro�red velocity as
soon as the powered descent phase starts. Therefore, the minimum fuel problem is
equal to the maximum �nal landing mass problem. With that in mind, the optimal
trajectory to maximize the �nal landing mass is designed, and the objective function
for this problem is de�ned as follows:

J = mf (4.5)

with the aim to

maximize J
where:

mf = �nal landing mass
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The form chosen to de�ne J corresponds to the Mayer form J = '(x(tf ), tf ),
here preferred, and it represents the so-called terminal cost. This form allows for
optimization of some �nal condition criterion and can be used for many optimal
control tasks. Remember that Mayer form is derived by putting the Lagrangian term
or running cost equal to zero. The sum of both cost terms is known as Bolza form.
The functional J can be thought of as the pro�t to be maximized by the related and
desired set of optimal controls.

4.3 Equations of Motion

A cartesian coordinate system will be used. Let the Z-axis be along the vertical direc-
tion with the origin at an altitude of zero. The X-axis and Y-axis form the horizontal
plane, and represent the downrange and the crossrange respectively (Fig. 4.1). The
only forces acting on the vehicle are the force due to gravity and its own thrust force.

F = mg + T û = mv̇ = mr̈ (4.6)

where:

r = Rx {̂ + Ry |̂ + Rz k̂ radius vector

v = Vx {̂ + Vy |̂ + Vz k̂ velocity vector

g = −gk̂ gravity acceleration

û = ux + uy + uz unit thrust direction vector

Fig. 4.1: Downrange and Crossrange
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4.4. Controls

Keep in mind that a planetary landing is characterized by fast dynamics. The
expected time of �ight is in the order of magnitude of minutes, and the mass is
supposed to signi�cantly change during the maneuver. A three-dimensional frame
is chosen to shape the dynamics.

Dynamics are described by the following set of equations:

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = dr
dt = v

v̇ = dv
dt = g + Tm = g + aT

ṁ = dm
dt = − T

goIsp
= −Tc

(4.7)

4.4 Controls

It is necessary to �nd the thrust vector time history or control pro�le T(t) throughout
the entire trajectory path (from the initial to the target �nal states) that achieves
the desired fuel optimal maneuver, integrating all with the constraints dictated by
the chosen system architecture. In the dynamic system, the thrust vector T acts as a
control variable. The main thruster is supposed to be tightly docked to the spacecraft
lower part. Hence, the direction of the thrust vector is instantly determined by
the spacecraft attitude. The spacecraft attitude is described by an supplemental
reference system, called Flight Reference System (FRS), constituted by the unit vector
û = [ux , uy , uz]T , centered in the center of mass of the spacecraft. The ux axis points
toward the downrange direction, the uz axis points upwards, an the uy axis forms a
right-handed triad. It is through all these last, along the previous, assumptions that
it can be stated that û is another control variable and corresponds to the unit thrust
direction vector.

Fig. 4.2: Flight Reference System
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4.5. Boundary Conditions and Constraints

4.5 Boundary Conditions and Constraints

It is a reasonable requirement to bound the problem with speci�c initial and �nal
conditions, in addition to physic and engineering constraints. Uppercase letters
symbolize vector components.

Fig. 4.3: Ground Reference System

Let’s de�ne the initial conditions:

� 0 = �T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Rx0 − Rx0s) = 0
(Ry0 − Ry0s) = 0
(Rz0 − Rz0s) = 0
(Vx0 − Vx0s) = 0
(Vy0 − Vy0s) = 0
(Vz0 − Vz0s) = 0
(m0 −m0s) = 0

(4.8)

followed by the �nal conditions:

� f = �T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Rxf − Rxfs) = 0
Rxfs=0−−−−−→ (Rxf = 0)

(Ryf − Ryfs) = 0
Ryfs=0−−−−−→ (Ryf= 0)

(Rzf − Rzfs) = 0
Rzfs=0−−−−−→ (Rzf = 0)

(Vxf − Vxfs) = 0
Vxfs=0−−−−−→ (Vxf= 0)

(Vyf − Vyfs) = 0
Vyfs=0−−−−−→ (Vyf= 0)

(Vzf − Vzfs) = 0
Vzfs=0−−−−−→ (Vzf= 0)

mf free

(4.9)

36



4.5. Boundary Conditions and Constraints

where:

�T = adjoint constants associated with B.C.
r0 = initial position vector
rf = �nal position vector
v0 = initial velocity vector
vf = �nal velocity vector
�s = speci�ed value

The system of Eqs. (4.9) represents the case with no crossrange component,
indeed Vyfs is set to zero, but it must be taken into account that it can be a non-zero
value in case of crossrange diversion maneuver. The trajectory might be divided up
into three arcs, associated with the Breaking Phase, Approach Phase and Terminal
Vertical Descent respectively. It could be useful or even necessary if some internal
conditions must be introduced at certain points, some of which may concern attitude
feedback. Another fundamental variable to be de�ned is the time. In this case the
initial time t0 is �xed, while the �nal time tf is set free.

A constraint, already described in the assumptions, involves the thrust magnitude
T . The domain has already been depicted by the Eq. (4.4) and the thrust magnitude
limits are reported again:

0 ≤ Tmin ≤ T ≤ Tmax
To de�nitely complete the whole picture is necessary to point out a feature

related to the unit thrust direction vector û. By de�nition it must be a unit vector, so
mathematically we can express this condition through its components by imposing:

u2x + u2y + u2z = 1 (4.10)

Now the problem can be solved with the techniques of the optimal control theory
previously introduced in Chapter 3.
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5
Application of Optimal Control

The problem can be now stated mathematically as an optimal control problem. Two
angles � and  1 are introduced to properly project the direction of the thrust vector
T along its three components: Tx = Tux , Ty = Tuy and Tz = Tuz .

Fig. 5.1: Thrust Reference Frame

Remind that the main objective of an optimal control problem is to �nd the set
of control variables (T , û) capable of

maximizing J = mf

1Note that angle  is not equal to B.C. vector 	 de�ned in Chapter 3.
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subjected to the dynamic Eqs. (4.7), hereinafter expressed in their scalar form
with explicit components:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṙx = Vx
Ṙy = Vy
Ṙz = Vz

V̇x =
T
mux +��>

0gx = T
m cos cos �

V̇y =
T
muy +���

0
gy = T

m cos sin �

V̇z =
T
muz + gz = T

m sin − g

ṁ = −Tc

(5.1)

The �rst function to be de�ned is the Hamiltonian, given by:

H = �rv + �v(
T
mû + g) + �m(−

T
c ) (5.2)

that can be rewritten as follows to highlight each component:

H = �RxVx + �RyVy + �RzVz

+ �Vx(
T
m cos cos �)

+ �Vy(
T
m cos sin �)

+ �Vz(
T
m sin − g)

+ �m(−
T
c ) (5.3)

The next step is about the calculus of the Lagrange multipliers �, speci�cally
those de�ned as adjoint or costate variables. Their explicit expressions are given by
the Eulero-Lagrange di�erential equations, here adapted to the model and derived
below:

d�
dt = −(

)H
)x )

T

where:

x = [r, v, m]T state variable vector
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1° State Variable: x = r

d�
dt = −(

)H
)r )

T
⟶

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

̇�Rx = 0
̇�Ry = 0
̇�Rz = 0

(5.4)

2° State Variable: x = v

d�
dt = −(

)H
)v )

T
⟶

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

̇�Vx = −�Rx
̇�Vy = −�Ry
̇�Vz = −�Rz

(5.5)

3° State Variable: x = m

d�
dt = −(

)H
)m)

T
⟶

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

̇�m = �Vx(
T
m2 cos cos �)

+ �Vy(
T
m2 cos sin �)

+ �Vz(
T
m2 sin )

(5.6)

First of all, it is noticeable that Eulero-Lagrange di�erential equations do not
depend on the objective function J . In addition, it is possible to reshu�e the equations
by introducing what has been de�ned primer vector2 p(t) by D.F. Lawden [23]. Since
Pontryagin’s Maximum Principle is applied, it is well-known that the main goal is
the calculus of those control variables that maximize H , as functional J is what it
has to be maximized. The control variables of the current problem are [T , û], that
is to say, thrust magnitude and thrust direction. By inspection, the Hamiltonian H
of equation Eq. (5.2) is maximized over the choice of thrust direction by aligning
the unit thrust direction vector û parallel to the adjoint variable �v . Mathematically
describable as:

p(t) = �v(t) (5.7)

The optimal unit thrust direction vector is then in the direction of the primer
vector, so:

2For impulsive trajectories, the primer vector determines the times and positions of the thrust
impulses that maximize the �nal mass. For continuous thrust trajectories, both the optimal thrust
direction and the optimal thrust magnitude as functions of time are established by the primer vector.
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û = p(t)
‖p(t)‖ =

�v(t)
‖�v(t)‖

(5.8)

Now let’s consider each component of the thrust vector T = T û, bearing in mind
what has been just stated in Eq. (5.8), it brings about:

ux =
Tx
‖T ‖ =

T cos cos �
T = �Vx

‖�v‖

uy =
Ty
‖T ‖ =

T cos sin �
T =

�Vy
‖�v‖

uz =
Tz
‖T ‖ =

T sin 
T = �Vz

‖�v‖

(5.9)

Recalling also that:

‖�v‖2 = �2Vx + �2Vy + �2Vz
It is now possible to rede�ne Eq. (5.6) as follows:

d�
dt = −(

)H
)m)

T
⟶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

̇�m =
�2Vx
‖�v‖(

T
m2)

+
�2Vy
‖�v‖(

T
m2)

+
�2Vz
‖�v‖(

T
m2)

= ‖�v‖(
T
m2)

(5.10)

Fig. 5.2: Lander 3D-Model
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5.1 Two-Dimensional Motion Case

Let’s imagine that the vehicle motion is temporarily con�ned to the X-Z plane. In
other words, the crossrange parameter is neglected and not considered at the moment.
Due to the fact that crossrange, i.e. Y-axis, is not an active direction of motion:

� = 0°
� = 0°

By imposing these two stricter requirements, all the equations seen so far can be
further simpli�ed. It means that neither the Y-component of the position vector Ry
nor the Y-direction of thrust vector Ty are allowed, just as Vy . By doing so, all the
vectors are deprived of their Y-component, and therefore their size is reduced from
three components to two components.

Fig. 5.3: X-Z plane of Motion

The dynamic model is reduced and becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṙx = Vx
Ṙz = Vz

V̇x =
T
mux =

T
m cos 

V̇z =
T
muz + gz =

T
m sin − g

ṁ = −Tc

(5.11)

The Hamiltonian is rearranged as follows:
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H = �RxVx + �RzVz

+ �Vx(
T
m cos )

+ �Vz(
T
m sin − g)

+ �m(−
T
c ) (5.12)

Considerations made about primer vector are still valid, in a nutshell:

ux =
Tx
‖T ‖ =

T cos 
T = �Vx

‖�v‖

uz =
Tz
‖T ‖ =

T sin 
T = �Vz

‖�v‖

(5.13)

Paying also attention to the costate variable �v , which is also reduced in size:

‖�v‖2 = �2Vx + �2Vz
It is now possible to go ahead with the calculus of adjoint variables �, in the same

manner it has been done in the previous section, but this time the Euler-Lagrange
equation leads to a slightly di�erent and shorter representation:

1° State Variable: x = r

d�
dt = −(

)H
)r )

T
⟶

{ ̇�Rx = 0
̇�Rz = 0

(5.14)

2° State Variable: x = v

d�
dt = −(

)H
)v )

T
⟶

{ ̇�Vx = −�Rx
̇�Vz = −�Rz

(5.15)

3° State Variable: x = m

d�
dt = −(

)H
)m)

T
⟶

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

̇�m = �Vx(
T
m2 cos )

+ �Vz(
T
m2 sin )

(5.16)

According to Optimal Control Theory, not only Euler-Lagrange equations must
be satis�ed, but also the algebraic equation of controls, displayed just below:
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(
)H
)u )

T
= 0

where:

u = [ , T ]T control variables vector

Indeed it is absolutely legit assuming that the thrust direction û = [ux , uz]T can
be controlled by  angle, which in turn controls the lander motion on the X-Z plane.
Taking as a reference the Hamiltonian in the Eq. (5.12), it yields to:

1° Control Variable: u =  

(
)H
) )

T
= 0⟶

{
− Tm(�Vx sin − �Vz cos ) = 0 (5.17)

Solving the above equation leads to the sought control law, formulated as follows:

tan ∗ = �Vz
�Vx

(5.18)

It has been achieved the so-called Bilinear Tangent Steering Law, in short, the
law that represents the optimal value�∗ of the control variable  , in case of two-
dimensional motion, throughout the whole trajectory for each instant of time.

2° Control Variable: u = T

Along with  , the other control variable is the thrust magnitude T , which is
bounded by its own admissible region. Now looking at the Hamiltonian, it is clear
that its derivative is linear with respect to T , hence when the algebraic equation
of controls is used, the control itself does not appear explicitly and it cannot be
calculated directly. Let’s rearrange the Hamiltonian for a moment, applying also the
de�nitions from the Eqs. (5.13), which brings to:

H = �RxVx + �RzVz

+ [
�2Vx + �2Vz

‖�v‖ ](
T
m)

+ �m(−
T
c ) − �Vzg (5.19)

And �nally, collecting properly T as a common factor:
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H = �RxVx + �RzVz

+(
�v
m − �mc )T

− �Vzg (5.20)

Giving that the coe�cient associated with the control variable T is not null, then
the control T falls under the category of what are de�ned bang-bang controls. Based
on what Pontryagin’s Maximum Principle states, it can be claimed that:

H is maximized by ⟶
{
T = Tmax if SF > 0
T = Tmin if SF < 0

(5.21)

where:

SF = (
�v
m − �mc ) (5.22)

and it constitutes the so-called Switching Function. It is meant as the optimal
time balance between how much thrust must be used, thus when ignite and shut-o�
engines, and consequently how much mass is convenient to consume or save along
the whole trajectory according to the entire set of necessary conditions for optimality.
Regarding the Three-Dimensional Motion Case, at the beginning of the chapter it
has been proved that all the steps are basically the same. Algebraic control variable
equations have been calculated just for 2-D case for convenience, but with a proper
transposition formulas maintain the same expression and meaning even for 3-D
case. The analytical solution has been omitted due to its high complexity. Numerical
methods are de�nitely preferred and convenient to solve all the di�erential equations
that comes from OCT application. Just remind that in a 3-D framework, beyond
thrust magnitude T and  , the other control variable will be �, given that crossrange
is now an active direction of motion. So all the y-component are restored, and thrust
angles can be written as follows3 (see Fig. 5.1):

tan ∗ = �Vz√
�2Vx + �2Vy

tan �∗ =
�Vy
�Vx

(5.23)

The new control variables vector will be u = [ , �, T ]T . As generally applies
with 2-D case, even for 3-D case the related algebraic equations of controls derived
from OCT will provide the optimal control values for each instant of time.

3Note that if �Ry = 0 and �Vy = 0, then 2-D case is re-established.
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6
Results

The current chapter presents the results for a case study regarding a mid-size lander
designed to deliver payloads of up to 300 kg. The mission concept starts in an initial
100 km circular low lunar orbit: since we are dealing with the Powered Descent
Phase, i.e. the �nal phase of �ight leading to touchdown, it is necessary to know the
velocity at which the lander approaches the moon surface. Therefore a Hohmann-
transfer orbit with a lowered periapsis (perilune since it is the Moon) of around 15
km has been considered as the nominal value for the PDI altitude, at which the
expected velocity is equal to 1.685 km/s, with the lander still horizontally oriented.
The Braking Phase is generally started at around 500 km downrange from the landing
site with the Powered Descent Initiation (PDI), during which the early introduced
initial speed is then gradually reduced down to zero for a safe touchdown. At the
beginning of the descent, it is assumed that the mass of the lander is equal to 1500
kg, while the propulsion system is supposed to be able to deliver up to 5000 N of
thrust with a speci�c impulse of almost 290 s. Mass, thrust and altitude values draw
inspiration directly from Apollo’s Lunar Module, besides reducing its weight and
thrust availability by a factor of ten, leading to 1:10 scale mission concept, which still
remain a full-�edged reasonable scenario. Indeed, the LM-5 weighed about 15000 kg
and its engines were able to deliver about 45000 N of thrust power, starting the PDI
from an altitude of 15 km above the lunar surface.

The numerical results are obtained by following the procedure described in
Section 3.4 and by integrating the di�erential equations with a variable-step variable
order method based on the Adams-Moulton method [6]. Variables normalization
has been adopted, given that a faster and easier convergence can be obtained when
values have similar orders of magnitude. The desired precision for the B.C. is set to
10−7: thereby the maximum error Emax = maxi	i must be kept below such value. In
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accordance with the procedure described in Eq. (3.27) the initial tentative solution is
corrected by a quantity Δp computed by neglecting higher than �rst order terms.
Such linearization procedure may lead to values for Δp that would make the error
increase instead of decreasing it. In order to avoid to move away from the wanted
solution, a relaxation empiric factor K1 is used, so that:

pr+1 = pr + K1Δp (6.1)

where K1 ranges from 0.1 to 0 depending on whether the initial tentative solution
is closer or farther from the desired one. By so doing, such relaxation factor reduces
the standard correction Δp and the integration is thus more controlled: since the
boundary conditions error can grow after the �rst iterations, the introduction of this
factor allows this behavior but stops the procedure if the error is growing too much.
Subsequently, if the maximum error Er+1max of the iteration r +1 is lower than a multiple
of the maximum error Ermax of the iteration r , the code proceeds with a new iteration.
Basically, a new iteration is started if Er+1max < K2Ermax with K2 = 2 ÷ 3. On the other
hand, if the error is too big with respect to the previous iteration (Er+1max > K2Ermax) a
bisection of the correction is performed:

pr+1 = pr + K1
Δp
2 (6.2)

The iteration is then repeated and the new maximum error is compared to the one
of the previous iteration. If necessary, the iteration and thus the bisection strategy is
repeated up to a maximum of �ve times, so if and once reached, then the procedure
is stopped due to the no convergence.

6.1 Cases with Reference Values

First of all, let’s introduce the scaling factors that have been used to properly set up
variables to the integration process:

Table 6.1: Scaling Factors

Variables Units Values

mref [kg] 1500
rref [km] 15
vref [km/s] 1
aref [km/s2] v2ref /rref = 1/15 ≃ 0.067
tref [s] rref /vref = 15
Tref [N] mref ⋅ aref ⋅ 1000 = 105

As already mentioned, all the outputs provided by the code algorithms are scaled
by those factors shown in (Table 6.1) because of variables normalization, which makes
the integration calculus more robust and reliable, rearranging quantities around the
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same order of magnitude. It means that to get the actual variable’s values, above
factors must be multiplied by the related quantities once the integration is over and
the solutions printed. Taking a look at the units of measure chosen, the gravity
acceleration of the moon must be converted to g$ = 0.001623 [km/s2] to ensure unit
consistency. The Boundary Value Problem under study consists of one parameter
KP = 1 and fourteen variables NY = 14, where KP ≡ tf stands for the duration of
the whole trajectory arc, while NY variables have been already illustrated in the
previous chapters. Therefore, the total size of the BVP is equal to N = KP + NY = 15.
To solve the problem, same number - 15 - of B.C. are needed, be them explicit-initial
or implicit-�nal ones (Table 6.3). On the other hand, variables are declared and
implemented through the di�erential equations derived from OCT application.

Table 6.2: Parameter and Variables of the BVP

Parameter: KP Variables: NY

Rx , Ry , Rz
Vx , Vy , Vz

tf m
�Rx , �Ry , �Rz
�Vx , �Vy , �Vz

�m

Once de�ned B.C. and di�erential equations, i.e. Eqs. (3.1), (3.10), (3.11) and (3.16),

Table 6.3: B.C. and Initial Tentative Variables

Explicit
Boundary
Conditions

Implicit
Boundary
Conditions

Unknown
Initial Values

m0, �m0
1 Hf tf

Rx0 Rxf �Rx0
Ry0 Ryf �Ry0
Rz0 Rzf �Rz0
Vx0 Vxf �Vx0
Vy0 Vyf �Vy0
Vz0 Vzf �Vz0

1It actually substitutes �mf = 1, derived from the �rst transversality condition �xf = )'/)xf where
the state variable xf = mf . This interchange is possible thanks to the arbitrary scaling of the problem,
where a generic � parameter will guarantee problem consistency allowing for �m0 = 1 for any actual
value of �m0 , while �mf = 1 ⋅ � . This trick allows to increase the known initial values at the beginning,
removing one extra tentative value. The second transversality condition Hf = −)'/)tf leads to Hf = 0.
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one of the major challenge in a BVP is �nding the �ttest initial tentative solution
to start the integration, due to the high sensitivity of the shooting methods. So
the unknown initial values are those for which a tentative guess is required to run
the code (Table 6.3). To get started, it was decided to modify the �nal code, called
bound x-range: n1, changing in it a speci�c condition: instead of requiring the
state variable Rxf to be null, the associated co-state variable �Rxf has been the one
put equal to zero, giving rise to what has been called free x-range: n2. By doing
so, �Rxf is zero, and the �nal value of downrange Rxf is thus set free. An additional -
preliminary - simpli�cation was made also on n2, where not only Rxf = 0 has been
replaced with �Rxf = 0, but also Vxf = 0, putting �Vxf = 0 instead. These further edit
generates a free-fall test case, called n3, from which it is easier to guess time duration
tf and verify earlier control pro�les. In this way all the convergent solutions of n3
may be used as initial guesses for n2, and the same procedure can consequently be
done between n2 and n1, setting up a backward strategy. Thanks to this knack, the
probability to �nd sub-optimal solution is signi�cantly reduced.

Anyway, n3 case has been omitted, while n2 has been plotted and used as a
benchmark to verify the accuracy of n1. When dealing with n2, if we want to
calculate the initial state variable Rxi that ensures convergence to Rxf = 0 (being it
free), what needs just to be done is computing the di�erence between initial and
�nal position at the �rst n2 run, getting k = Rxi − Rxf . Then, if k is used as the new
initial position, convergence to zero is ensured, and xf − x0 is the optimal downrange:
having said that, it is legit to expect that n1(k) ≅ n2(k). Once explained the meaning
of n1, n2 and the k parameter, let’s introduce the chosen test cases, summarized in
Table 6.4. The �rst three tests, named NoCross#1/#2/#3, do not consider any crossrange
motion, while test cases Cross#1/#2 do. Variations on thrust, altitude, downrange and
crossrange have been performed to highlight behavior pro�les of Vx , Vy , Vz , mass,
thrust angles  , � and trajectory shapes, carrying out in the next sections a detailed
comparison to shed light on di�erences, similarities, pros and cons.

Table 6.4: Test Cases

Parameters NoCross#1 NoCross#2 NoCross#3 Cross#1 Cross#2

mass [kg] 1500 1500 1500 1500 1500
thrust [N] 5000 5000 10000 5000 10000

altitude [km] 15 10 15 15 15
n2(k): xf − x0 ... 373.00 375.00 210.56 373.01 210.56

209.49
207.14

n1(k): xf − x0 ... 373.00 375.00 210.56 373.01 /
n1(k-2): xf − x0 + 30 ... 403.00 405.00 240.56 403.01 /
n1(k-4): xf − x0 + 60 ... 433.00 435.00 / 433.01 /

n1(k+1.5): xf − x0 − 22.5 ... / / 188.06 / /
diversion j [km] / / / ±1.5 ±1.5/3/4.5
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6.1.1 No Crossrange Cases - Comparison

The present section contains the trend-plots of the variables involved with regard to
NoCross cases, wherein Y -components of the dynamic model are missing, therefore
it is examined a temporarily bounded 2-D motion case on X-Z plane. Bear in mind
that Z -positive direction is assumed for increasing altitude values, while X -positive
direction is assumed to be from negative toward positive downrange values. For
each group, the �rst graph of third stands for the nominal case NoCross#1, while a
couple of data edits were applied to plot the remaining two NoCross#2/#3, in order to
investigate pro�les tendencies and variations.

The �rst evident and foreseeable element regards trajectory time duration: no
matter what, largest downrange starting point values (k-2, k-4, ...) correspond to
longest time-path, as long as �nal landing site point Rxf is �xed. The �rst group of
plots (Fig. 6.1) represents the time evolution of the Z -component velocity during
the descent arc. One element that stands out when looking at Vz(t) is the di�erent
pattern among the curves. Firstly let’s consider the �rst two cases, #1 and #2, which
di�ers only on altitude starting point (which in turn in�uences a bit the k parameter,
for which lower altitude needs slightly larger downrange values to converge): with
initial high downrange-distance values from the landing site, such as (k-2, k-4) trials,
curves follow a more linear development. On the contrary, if the trajectory has
at its disposal less downrange distance to brake, descent and landing, e.g. k trial,
Vz(t) curve turns into a parabolic trend. This means that (k-2, k-4) test cases, having
more room to perform, hold a �rst trajectory stretch with engines shut-o� [SF < 0]:
that is why at the very beginning Vz increases linearly, being uniquely under the
action of lunar gravity acceleration, heading toward negative values (velocity vector
is indeed oriented in the opposite direction in respect to Z -axis positive direction,
because lander is going down in any case). Note that when lander starts PDI stage
(t0 time), it is horizontally oriented, so the only velocity component initially present
is the X -component non-zero value, equal to Vx = 1.685 km/s as anticipated, while
Vz0 = 0. Observe that [SF < 0] condition, i.e. T = Tmin = 0, lasts longer accordingly
to downrange starting point position: k-2 starts engines [SF > 0] before k-4 case.
Indeed, looking at NoCross#1/#2/#3, regardless of di�erences on altitude values or
thrust power, the Switching Function works in the same manner: the further lander
starts PDI, the longer engines are kept o�. That is also re�ected onVx (t), where higher
downrange starting point records higher velocity at a given and equal time instant.
In fact, the guidance algorithm try to save propellant as much as possible, igniting
engines when strictly necessary. If downrange starting point is barely su�cient to
land the vehicle safely, engines are kept on throughout the entire trajectory, as with
k case. Whereas there is not enough space to properly carry out landing, algorithm
do not converge to the designated point because of thrust power limits (reason why
#1/#2 do not have any k+�, being k their upper limit).

Things quite change when #3 case is executed: having available twice the thrust
power (from 5000 N to 10000 N), curves behave slightly di�erent. First of all, trajec-
tory time duration drops drastically, be almost halved, and k parameter is dramatically
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reduced. So dynamics are much faster and curves’ graphic scale in�uenced by them.
Vz(t) curves appears parabolic even though the �rst part of the trajectory is crossed
with engines shut down [SF < 0].

The fact that this time a �rst linear drop of Vz is not recorded in #3, may be
attributable to those rapid evolution which "stretch out" curves, in addition to a
di�erent thrust angle direction  , which represents trust-angle on X-Z plane, as
shown in Fig. 6.6: this time, #3 thrust direction ranges from  = 92◦ to  = 69◦,
meaning that the algorithm tends to �rstly slow down Vx component and then Vz ,
given that #3 has a much lower braking distance, while #1 and #2 cases behave
inversely. Actually, looking at Fig. 6.6 and Fig. 6.7, it is possible to notice that #1 case:
 = 59◦ to  = 72◦ while #2 case:  = 56◦ to  = 74◦, which results in higher values
of Vz in #1 case other than #2. In other words, if thrust engines are throttled up,
angle-thrust direction play a fundamental role in deciding where and how to focus
thrust-power availability. Lower values of  in #2 at the beginning, basically result
in a more vertical thrust direction than #1 case, which in turn results in a powerful
braking along Z -axis: that is obvious having #2 less vertical space to brake. However,
it must be paid always attention to SF , although  ranges di�er, it must always
be checked if engines are either on or o�: so the thrust pointing direction must
be always taken into consideration along with SF ’s sign. Moreover Vz magnitude
in #3 is lower on average, so the descent phase takes less time and it is performed
with a more slowly fall than #1/#2 cases, thanks to the higher net thrust #3 has
got. Just a little note: NoCross cases develop their motion on X-Z plane, so if we
consider � angle (i.e. thrust direction along X-Y plane), it will be constantly oriented
to −90◦. It means that thrust direction permanently lies in X-Z plane, pointing toward
X-negative values, i.e. thrust angle � is exactly opposite to Vx direction and that is
right if braking is what we are looking for. Furthermore, the guidance algorithm
provides a bang-bang control of the kind: Tmax or Tmin-Tmax for nearly all cases,
while NoCross#3 (k+1.5) is the only one to record a Tmax-Tmin-Tmax control pro�le,
although its Tmin phase2 occurs for a short stretch. Remarkable is the fact that k
case in #1/#2 is a Tmax constant pro�le only, while in #3 it records a Tmin-Tmax
control framework, justi�ed by the fact that the higher net thrust availability enables
a powerful braking, allowing for an unpowered initial stretch.

All these features can be further and clearer veri�ed through mass time-evolution
plots (Fig. 6.5), where engines shut-o� is equal to none propellant usage, so m(t)
curves appears constant right there. The same consideration can be done for Vx
(Fig. 6.2), being not directly a�ected by the e�ect of gravity, unlike Vz , since Vx
keeps its value constant till SF < 0. Given that a soft-landing is required, both Vx
and Vz must be zero at the landing point, so at a certain stage of descent trajectory
the braking is triggered and SF < 0 condition switches to SF > 0, which stands for
T = Tmax , proving a bang-bang control framework. This turnaround can be seen in

2Tmin phase stands for coasting phase in the jargon of space trajectories.
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Fig. 6.1: Vz as a function of time - NoCross Comparison
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(Fig. 6.1), when the negative peak of k-2, k-4 is reached and slope changes abruptly
from negative to positive. Less immediate are k trial and the whole NoCross#3 set,
where the changing in slope sign is not indicative of the moment when SF switches, in
the former case because there is no SF switch at all and  angle is kept approximately
constant, in the latter case because time, thrust and angles management is radically
di�erent as already pointed out. Anyway, additional indicators to �gure out when
SF > 0, is always through m(t) and Vx (t), when curves simply start going downward.
Talking about mass (Fig. 6.5), and considering #1 and #2 cases, di�erences recorded
in m(t) are minimal, #2 shows a bit higher propellant consumption, likely because
linked to a superior k parameter and a lower altitude than #1 case, indeed net thrust
power is the same and variables’ pro�le quite similar among them. With regards to
#3, the double net thrust available improves mass saving, being the braking more
e�cient, signi�cantly reducing space and time. Nevertheless, a doubling of thrust
power without any variation on vehicle weight �ts into an ideal scenario, given that
generally speaking, an increase in power corresponds to an increase in weight.

Last but not least, trajectory shapes have been drawn to highlight some path
features and to provide a clear vision on how space vehicle stirs around space (Fig. 6.3,
6.4). It is possible to notice that, more negative is the value of k parameter, more the
downrange starting point moves backward as expected. Moreover, landing point
site Rx = Rz = 0 is guaranteed. Cases #1 and #2 have got same amount of thrust,
but di�erent altitude values, so #2 trajectory starts in a lower altitude point than #1,
appearing more �attened. On the other hand, #3 test case follows a more arched
trajectory with a higher radius of curvature, thanks to powerful engines and to a
di�erent management of thrust direction, preferring slowing down X -component
of velocity �rst, and then its Z -component, while #1 and #2 cases follow a reverse
tendency as already pointed out.
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z
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−�

x

y
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Fig. 6.7: Thrust angle  and � and their respective R.S.
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6.1. Cases with Reference Values

6.1.2 Crossrange Cases - Comparison

Basically, the same algorithm guidance principles and pattern illustrated in the
previous section are still valid for the Cross cases. So where switching function
changes sign, the same variations of NoCross are experienced. However, given that
Y -axis is now an operative direction of motion, two new active variables are added to
the plot set: Vy (t) and �(t), where the former represents the Y -component of velocity
vector v, considered positive when westbound with regard to the FRS (Fig. 4.2), while
the latter represents the thrust-angle on X-Y plane, see Fig. 5.1 and Fig. 6.7. To begin
with, the Cross#1 case di�ers from the NoCross#1 case only by one speci�c initial data
input: a �nal crossrange value of Ryf = j = 1.5 km was entered to simulate a diversion
maneuver and see how the guidance algorithm reacts. Basically, all the trends of the
variables that come into play remain almost identical to the NoCross#1 case, in fact it
is su�cient to manage the direction of the thrust in a proper way to arrive at the
designated deviation point without a�ecting the propellant consumption, landing
essentially with a mass equal to the case without crossrange.

It is also true that a deviation equal to j = 1.5 km is not excessively demanding,
but it could certainly be decisive if a hazard is seen or an unforeseen situation arises.
As can be seen from Fig. 6.9, the lateral velocities to which the vehicle is subjected are
pondered and relatively low, indeed a parabolic trend is achieved, so no maneuver is
carried out brusquely by the guidance algorithm. This characteristic can be further
con�rmed by the graph showing the �(t) trend, where the variations of the thrust
angle on the X-Y plane are contained in a narrow range: it starts from about −89◦
to reach almost −91◦ with a smooth slope. Looking at Fig. 6.15 we can therefore
deduce that the values assumed by � initially correspond to a �rst phase in which
the deviation towards the Y -positive is searched and performed. Subsequently we
gradually move towards slightly lower values, exceeding −90◦ and thus ensuring
braking. In fact, lower values of −90◦ place thrust on the X-Y plane with opposite
direction to Vxy , so that it counteracts velocity and ultimately cancels its modulus.
With regard to Cross#1, crossrange values higher than j = 1.5 km have been tested,
but without succeeding in converging due to a limited thrust power.

Therefore, it was decided to develop a second test case, i.e. Cross#2, where the
dynamic model was provided with an available thrust equal to twice the nominal
case, in a manner similar to what was done in the previous section with NoCross#3. It
has been assumed in fact that, as it occurred for the NoCross#3 cases, it is possible to
ensure a higher trajectory control with a higher thrust, leaving initial mass unvaried,
meanwhile keeping ensuring convergence. Once done, it was found that the guidance
algorithm is capable of appropriately landing the spacecraft for crossrange values
well above those guaranteed by case Cross#1. Moreover, as it happened for the
NoCross cases, if the thrust is doubled, time and covered distances are halved, that is
why also the k values must be updated with respect to case Cross#1: double thrust
allows to start the braking phase closer to the landing site. To evaluate the e�ects
on crossrange variations, the following tests have been considered: j, j + 1.5, j + 3,
for which there is a slight alteration of the k parameter, i.e. the initial downrange
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6.1. Cases with Reference Values

parameter, which can be considered almost constant, but we will explain later why
these small variations occur.

Starting from the graph Vz(t) - Cross#2 - (Fig. 6.8), the rate of descent with
respect to the NoCross#3 case has remained unchanged, the descent is carried out
with around the same speed, and even for higher values of crossrange, there is no
particular in�uence on Vz(t). However, if we start considering Vy (t), variations
caused by j parameter are much more signi�cant. When referring to (Fig. 6.9), it is
possible to notice that lower crossrange values correspond to lower speeds, and vice
versa: likewise, increasing j parameter leads to higher peaks. On the other hand,
when dealing with Vx (t) (Fig. 6.10), apart from initial variations due to the e�ect
of the switching function, the values become equal and merge from a certain point
onwards. Moreover, Vy and Vx , lying on the X-Y plane, are a�ected by the variations
caused by the switching function without any type of conditioning, while Vz is not
always representative of SF variations, due to the action of gravity acceleration,
which still in�uences the trend, even when SF < 0. Hence, for both Vx (t) and Vy (t),
when engines are o� (SF < 0) the speed is kept constant and a straight line is
displayed in the graphs. Control pro�les also change, according to the amount of
deviation: for j test case a Tmin-Tmax pro�le is recorded, while for j + 1.5 and j + 3 a
Tmax-Tmin-Tmax control pro�le regulates trajectory. Control pro�les can be further
veri�ed through m(t),  (t) and �(t) plots.

As mentioned, variations on mass are quite indicative of how guidance algorithm
is managing dynamics, and as might be expected, the less extensive the crossrange
deviation is, the higher the �nal mass at touchdown will be. However, the values do
not di�er much between j,… , j + 3. On the other hand, the di�erences in Cross#2 are
more pronounced than in case Cross#1 (Fig. 6.13), and we have found the same reason
in the NoCross cases: more net thrust, in addition to shortening times and spaces,
provides more e�ective braking, ensuring higher propellant savings. As for the
trajectory, the higher the crossrange value j, the more the trajectory is reduced, both
in duration and in downrange: this is a direct consequence of the fact that, assuming
everything else being kept unchanged, if thrust and mass are limited and limiting
elements, the energy balance dictates that the higher the gain is in crossrange, the less
it can be in downrange. This is why the trajectory, as the crossrange value increases,
curves shift slightly forward as can be seen from the enlargement in Fig. 6.11. If
we did not have the end point �xed (Rxf free), and the curves all started from the
same position (k �xed), then the curves would move backwards, respecting the same
principle.

Finally, let’s consider the thrust angles of case Cross#2 (having already said that
case Cross#1 trends are pretty similar to the NoCross #1/#2 cases): the same basic
principles as for case Cross#1 apply. As far as  angle in Cross#2 is considered, i.e. the
direction of the thrust in the X-Z plane, the trend is similar to what we have already
seen for the NoCross cases. The high available thrust and a reduced downrange space
drive the guidance algorithm to initially execute and concentrate most of the braking
on the X -component of the speed, which is the most relevant component of velocity
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at the staring point for every single test case3. As proof of fact,  values are around
90◦ at the very beginning, and then reach about 70◦: it means that an increasing
portion of thrust is shifted along X -axis toward Z-axis to ensure a proper braking as
we approach touchdown. Noteworthy (see magni�cation frame in Fig. 6.14) is the
perfect correspondence of the times when the motors are switched on or o� with
the previously mentioned control pro�les. The slope of the  (t) curve is constant
and roughly the same if compared to the three cases j, j + 1.5, j + 3, so only smooth
changes of thrust direction occur along the X-Z plane.
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Fig. 6.14: Thrust angle  as a function of time - Cross Comparison

Similarly, thrust angle � in Cross#2, which lies on the X-Y plane, shows an
analogous trend to Cross#1 regardless of the variation operated on j and thrust: i.e. it

3Note that Vx is the only velocity component generally in�uenced by both  and �.
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starts from a certain value and goes down towards more and more negative values,
even if unlike Cross#1, Cross#2 is characterized by less gradual and more intense
maneuvers on X-Y, motivated by the greater slope of the curves, in turn in�uenced
by greater crossrange values. Taking j + 3 into consideration, it records the greatest
excursion, starting from −84◦ and arriving at almost −94◦. The greater the excursion,
the greater the deviation commanded along Y. Moreover, it is possible to notice a
certain symmetry of � values with respect to the value of −90◦. This means that the
crossrange deviation towards Y generally starts at the beginning of the trajectory
with � > −90◦, and gradually moves towards � < −90◦ in order to place thrust in
the opposite direction of Vxy , with the goal of slowing Vy down and bringing it to
zero. Through �(t) plot, as well as  (t), it is possible to visualize the moments of
the trajectory in which the engines switch on or o� (SF ≷ 0), making it possible to
deduce the control pro�le of each scenario.
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Fig. 6.15: Thrust angle � as a function of time - Cross Comparison
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Table 6.5: Final Mass - Comparison

Final Mass [kg]

Downrange [km] NoCross#1 NoCross#2 NoCross#3 Cross#1 Cross#2

n2: xf − x0 794.7 794.5 817.3 794.7 817.23
817.05
816.76

n1: xf − x0 794.7 794.5 817.3 794.7 /
n1: xf − x0 + 30 791.7 791.2 816.9 791.7 /
n1: xf − x0 + 60 788.1 787.3 / 788.1 /
n1: xf − x0 - 22.5 / / 817.1 / /

Note: Cross#2 top-down values refer to j, j+1.5, j+3 crossrange diversion [km] respectively.

Table 6.6: Propellant Consumption - Comparison

Propellant Consumption [kg]

Downrange [km] NoCross#1 NoCross#2 NoCross#3 Cross#1 Cross#2

n2: xf − x0 705.3 705.5 682.7 705.3 682.77
682.95
683.24

n1: xf − x0 705.3 705.5 682.7 705.3 /
n1: xf − x0 + 30 708.3 708.8 683.1 708.3 /
n1: xf − x0 + 60 711.9 712.7 / 711.9 /
n1: xf − x0 - 22.5 / / 682.9 / /

Note: Cross#2 top-down values refer to j, j+1.5, j+3 crossrange diversion [km] respectively.
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7
Conclusions

The Moon has awakened the interest of the scienti�c community in recent times,
both for latest discoveries on ice reserves present in its poles, and for its great
potential as a stepping stone for a spaceport capable of supporting future missions of
interplanetary nature. In this context, the retro�red descent trajectory on the lunar
soil thus represents a signi�cant technological challenge, due to the complexity of
physics behind it and the high safety standards required by the maneuver.

In addition, if fuel saving is fundamental for the maximization of the on-board
payload, optimization techniques play a primary role, always in the respect of mission
constraints and requirements. After illustrating the preliminary assumptions and
presenting the resulting approximate mathematical model, an indirect optimization
method was applied, yielding to a boundary value problem, �nally solved through
shooting techniques. Measurements on the impact of mass, thrust and altitude
variations were conducted to understand the response of the optimal guidance
algorithm, once de�ned the landing target. Results showed the high incidence of
thrust power on control pro�les, revealing for higher thrust levels longer coasting
phases. The latter are often useful and necessary for the identi�cation of a safe
landing site during the approach phase, even though variations on path times may
a�ect mass expenditure. Cross-range diversion maneuvers were also performed to
highlight how the guidance system reacts in the event that the autonomous and
integrated GN&C system detects hazards, commanding a change of direction.

Again, thrust levels bound and regulate times and distances that space vehicles
can cover. By supplying twice the thrust level of the nominal case under study, further
targets can be reached. Mass consumption ranges around acceptable values, since
the increase in mass �ow consumed and exhausted is balanced by a shortening of the
descent times and a higher braking e�ciency (the more thrust available spacecraft
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has at its disposal, the longer the braking phase can be delayed).
Although the physical model used in this work is not particularly accurate,

due to a couple of simpli�cation, this study is still a solid starting point for future
developments, since the method used is particularly suitable for integrating more
sophisticated features and constraints: it is possible to imagine the implementation
of 6 DOF (Degrees of Freedom), providing spacecraft attitude controls by introducing
rotations around spacecraft’s center of gravity (roll, pitch and yaw). In this way
it would be feasible to constrain the vehicle orientation to certain points or arcs
of the trajectory, in order to correctly manage the glideslope visibility, taking into
account possible pilot windows or tracking cameras. Other additions on the guidance
algorithm could include: constraints on deceleration levels for possible manned
missions where astronauts welfare is relevant, and variations on orbital parameters.
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