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Abstract 

One of the main challenges that humanity as a whole is facing, even if 

still without dramatic success, is the fight against climate change, caused by 

the progressive increase in the average temperature of the planet that is 

occurring in the recent decades, and which is expected to continue throughout 

the next decades, if anything will be done. The scientific community is now 

unanimous in believing that the main cause of the increase in temperature is 

the increase in the average concentration of greenhouse gases in the 

atmosphere, in turn mainly caused by the consumption of fossil fuels to satisfy 

human activities. 

In this context, the energy strategies that will be applied in the coming 

years play a crucial role. In recent years, institutions have increasingly 

engaged in taking initiatives aimed at fighting the causes of climate change, 

implementing energy transition strategies to adopt abate climate-altering 

emissions into the atmosphere. 

Scientific research on energy system modeling plays a key role in 

supporting policy makers, providing accurate scenario analyses, and 

investigating possible solutions aimed at the development of an increasingly 

sustainable energy mix. The models currently used in that research field are 

typically commercial software that aim at satisfying given final energy service 

demands using different technologies, to be selected on the basis of an 

optimization criterion identified in the minimization of the total cost of the 

energy system. The use of such software involves some issues: being 

commercial software, they are not freely available but only by purchasing 

them, limiting the audience of users to those who have the necessary economic 

resources; moreover, access to the source code is allowed under conditions, 

and finally a third-party verification of the results, their reproducibility, thus 

scientific reliability and free access to input data and assumptions is not 

ensured. 

In that framework, the purpose of this thesis activity is then to develop 

an open-source model for the Italian energy system. The model has been 

developed taking as a reference the TIMES-Italia model, an energy model 

developed by ENEA in the last years and belonging to the TIMES family. 
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The work first reviews and updates the TIMES-Italia database, 

subsequently implemented in an energy system modeling framework 

developed in Python language, the so-called Tools for Energy Modeling 

Optimization and Analysis, or Temoa, in brief. Finally, a comparison between 

the results obtained by the tools is performed, demonstrating that any 

discrepancies are within a tolerance threshold and that they can be considered 

equivalent for the purpose of scenario analysis. 

At the end of the thesis activity, an open-source and validated model 

for the Italian energy system is available to the community of modelers, model 

for which it is possible to implement modifications and add-ons, also 

regarding the optimization criteria and the algorithm. In particular, possible 

future developments include the introduction of a sustainability criterion in 

the optimization paradigm, to overcome simple cost minimization and offer 

policy makers a detailed and useful analysis of the effect of any legislative 

interventions that are being taken into consideration.
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Chapter 1 

1. Introduction 

1.1. Climate change and Italian energy strategy 

Climate change is probably the main challenge that humanity as a 

whole is facing, still without dramatic successes, and that it will undoubtedly 

have to face in the coming years and decades. The average increase in the 

planet's temperature has direct consequences on the climate, in particular by 

increasing the frequency and intensity of extreme weather phenomena (and 

related damage to exposed populations), melting of glaciers and rising 

average sea levels, endangering the delicate balance of ecosystems. The cause 

of the increase in average temperature is now unanimously recognized in the 

increase in the average concentration of greenhouse gases in the atmosphere, 

due to the exploitation of fossil fuels to satisfy human activities. In recent 

decades there has been an increase in annual emissions, driven by the growth 

of the world population, by economic development and by an increasingly 

widespread access to energy, even in developing countries. [1] 

Figure 1 shows the relationship between different observed 

phenomena, namely: positive and increasing atmospheric temperature 

anomaly characterizing the last decades, with respect to the beginning of the 

1850-1900 levels (Figure 1 (a)); positive and increasing sea level change (Figure 

1 (b)); the increasing greenhouse gases average concentration in the 

atmosphere, shown for CO2, CH4 and N2O (Figure 1 (c)); global anthropogenic 

CO2 emissions (Figure 1 (d)). 
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Figure 1. Relationship between the observed phenomena. (a) Annually and globally averaged 

temperature anomalies relative to the average over the period 1986 to 2005. (b) Annually and globally 

averaged sea level change relative to the average over the period 1986 to 2005. (c) Atmospheric 

concentration of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). (d) Global 

anthropogenic CO2 emissions [1]. 
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Governments in recent years have devoted much attention to the issue 

of climate change, at least in proclamations, with the milestones of the Kyoto 

Protocol of 1998 [2] and the Paris Agreement of 2015 [3]. In this context, the 

Italian government has established qualitative objectives and quantitative 

targets to achieve the energy transition relying more and more on energy 

resources that do not involve greenhouse gas emissions. 

First, the “Strategia Energetica Nazionale 2017” [4] aims to make the 

national energy system more competitive (reducing the energy price gap with 

respect to the rest of the Europe), sustainable (reaching the objectives of 

decarbonization established by the Paris Agreement) and secure (improving 

procurement security and infrastructures flexibility). 

The quantitative targets established by the national energy strategy are: 

a. Reducing final consumption to 108 Mtoe in 2030. 

b. 28% of renewable energy resources on the total consumption in 

2030 (with sector-specific targets). 

c. Cessation of coal-fired electricity generation in 2025. 

d. Emissions reduction of 39% in 2030 and 63% in 2050 with respect 

to 1990 levels. 

e. Doubling of investments in research and development to 444 

million euros in 2021. 

f. Energy dependence reduction to 64% in 2030. 

The energy strategy has been included in 2020 in the “Piano Nazionale 

Integrato per l’Energia e il Clima” (PNIEC) [5], aiming to reach to 30% of 

renewable energy sources on the total consumption in 2030 and 55% on 

consumption for electricity generation, with an estimation of 180 billion euros 

of additional investments in the period 2017-2030 with respect to the current 

policy scenario. 

Having the objective of reducing the exploitation of fossil fuels 

(increasing the share of consumption of renewable energy sources for all 

energy sectors) requires the ability to evaluate the future energy policies taken 

into consideration, providing an assessment of their effectiveness in achieving 

the established objectives, also considering with an independent analysis the 

energy measures’ efficiency in terms of achieved results per unit of public 

economic resources consumed.
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1.2. Bottom-up energy system modeling 

Energy system modeling and scenario analysis have a key role in the 

investigation of future energy systems, particularly concerning the expected 

evolution of the energy mix in the during large time scales. Studies developed 

on these themes should be more and more are increasingly becoming a 

reference for policy makers, in other to guarantee that energy policies are 

supported by robust, independent, and verifiable evaluations on their 

effectiveness achieving the desired effects. [6] 

In this context, several tools are used to perform scenario analyzes, 

including the bottom-up energy models [7]. This kind of models are 

characterized by a detailed description of the energy technologies involved in 

the energy system, working with a high disaggregation level, and thus 

needing extensive database of empirical data to support the description of 

each component.  

The main peculiarities of bottom-up models are [7]: 

a. Exogenous assumption on the development of the economy. 

b. Use of physical or engineering relationship between energy and 

energy utilization processes. 

c. Demand driven by socio-economic variables, often derived by 

econometric models. 

d. Usually, they do not account pricing effect on demand (which is 

very critical when demand for a fuel is highly elastic). 

Bottom-up models can be classified according to several criteria [7]: 

a. Time horizon: short-term and long-term approach. Short-term 

(or static) models usually analyze the energy system 

configuration in a target year, while long-term models inspect 

the energy system along the entire time horizon (usually longer) 

until the target year. 

b. Optimization approach: perfect-foresight approach (with the 

formulation of a unique optimization problem analyzing all the 

time-periods simultaneously and having fully information on 

cost trends, consumption variation, decay of performance of 

certain technologies) or myopic approach (realized subdividing 
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the time horizon in a sequence of optimization problems, to 

simulate real decisions, taken without a complete information 

about the future). 

c. Analyzed energy sectors: models of the entire energy system and 

models limited to some of the sectors included. The advantage 

of using a model which includes all the sectors is to have the 

possibility to study sector-coupling, to assess the benefits 

coming from interactions and synergies among different sectors, 

to maximize the efficiency of the whole system. 

d. Geographical scale: models at the macroscale (single- or multi-

regional), mesoscale, or microscale. 

e. Time resolution: related to the number of time-slices in which 

the simulation year is subdivided. Time-slices are stylized 

temporal representations mainly used to describe the seasonal 

and daily differences of energy consumption and production. 

The time resolution of the models is becoming an important 

aspect since renewable energy sources are strongly variable in 

the time (being dependent on weather conditions). 

f. Methodology: accounting models (simply working on the 

present configuration of the energy system), simulation models 

(allowing to test a certain configuration of the energy system and 

derive useful indicators related to the total cost, the GHG 

emissions etc.), optimization models (deriving the energy 

system configuration correspondent to the optimization of a 

certain objective function, typically the total cost of the system). 
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1.3. TIMES-family models 

Models belonging to the TIMES framework [8] are bottom-up energy 

models, sharing the following common features: 

a. Technology-explicit formulation: each technology in all energy 

sectors is explicitly described with technical and economic 

parameters. 

b. Possibility to implement a multi-regional network (models at the 

macroscale). 

c. Equilibrium in competitive markets with perfect foresight 

(optimization models). 

In its current formulation, the model operates with a linear 

programming algorithm, and its objective function is the maximization of total 

economic surplus, that is equivalent to the minimization of the total cost of the 

energy system during the model time horizon [8]. 

The maximization of the total surplus is reached at the equilibrium 

point of the demand curve and the supply curve, as shown in Figure 2, for 

each energy service involved in the modelled energy system. Different 

technologies, in economic competition inside the same sector, are 

characterized by different investment and production-related (operation and 

maintenance, energy) costs. The demand curve determines the quantity of 

energy service that the market is willing to purchase when the purchase price 

increases; the supply curve for each one of them determines the quantity of 

energy service that is offered by the production system at the correspondent 

production cost. As the quantity produced increases, one or more resources 

are exhausted, and therefore the system must start using a different and more 

expensive technology or set of technologies in order to produce additional 

units of the required commodity, even if at higher unit cost. For each 

commodity, the demand-supply equilibrium is found at the intersection 

between the demand and supply curves, corresponding to a certain quantity-

price equilibrium couple. When the equilibrium is reached, the total surplus is 

maximized, and it corresponds to the sum of the consumer’s (the difference 

between what the consumer would be willing to pay and what he actually 
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pays) and the producer’s (the difference between the producer income and the 

production cost) surpluses [8]. 

 

Figure 2. Market equilibrium mechanism representation for the electricity commodity [8]. 
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1.4. The need for open science 

A growing awareness is spreading in the scientific community about 

open science. Open science means having the possibility to freely diffuse data 

and results of scientific research, increasing responsiveness and spreading 

knowledge without economic limitations [9]. 

The importance of this issue is such that it falls within the priority 

policies of the European Commission [10], focusing on 8 ambitions of the EU’s 

open science policy: 

a. Open data: open data sharing by default for EU-funded scientific 

research. 

b. European Open Science Cloud to store, share, process, and reuse 

research digital objects. 

c. Development of alternative metric to evaluate the impact of 

research outcomes. 

d. All peer-reviewed scientific publications should be freely 

accessible. 

e. Research career evaluation systems should fully acknowledge 

open science activities. 

f. Reproducibility of scientific results. 

g. All scientists should have the necessary skills to apply open 

science practices. 

h. Possibility for the general public to make significant 

contributions to the scientific research. 

In the energy system modeling context, particularly, the data and 

results free sharing and the results reproducibility are crucial to guarantee that 

results presented in publications are solid and based on the scientific method, 

avoiding any external pressure on researchers, especially when it is necessary 

to evaluate possible legislative interventions, particularly subject to political 

evaluations [11]. 

The openness should regard both the data collected in research 

activities and the tools used to elaborate input data and derive results. From 

the perspective of software, open-source software allows the source code to be 

examined, modified, and integrated. The utilization of open-source tools is 
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also fundamental to ensure transparency of the algorithms included in the 

models [7]. 

With respect to the energy system modeling, several open models have 

been developed in recent years, with different characteristics. Some focused 

on the optimization of the electricity system alone, while others refer to the 

overall energy system. Some developed on a municipal or local scale, others 

on a national or international scale. Focusing on models developed for 

national-scale energy system optimization, two main tools ca be considered, 

namely Open Source Energy Modelling System (OSeMOSYS [12]) and Tools 

for Energy Model Optimization and Analysis (Temoa [13]). 

Table 1 compares OSeMOSYS and Temoa features with TIMES. Both 

the two cited tools allow to perform energy system optimization analyses at 

the macro-scale, with increasing database complexity with the complexity of 

the energy system. The two open models are also similar in terms of possibility 

to set future evolution of parameters (being possible to set any kind of trend: 

linear, exponential, etc.), programming language, formulation of the problem, 

possibility to modify and improve the code and current impossibility to 

perform multi-objective optimization (but could be implemented). 

The two main differences between OSeMOSYS and Temoa regard the 

optimization software and, subsequently, the complexity of the energy system 

that can be optimized by the model. Indeed, using freely available software 

with OSeMOSYS, only relatively simple energy systems can be optimized with 

acceptable computational cost. On the contrary, with Temoa there is the 

possibility to use also solvers allowing to solve the optimization problem for 

large-size energy systems (anyway GLPK can be used for simpler study cases). 
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Table 1. Comparison of available tools for macro-scale energy system optimization. 

Model 

Feature 
OSeMOSYS TEMOA TIMES 

Features of the input data 

entering tool 

Several steps are required for the definition 

of the time-scale, space-scale and 

technological characterizations, but allows 

a prompt visualization of the RES network. 

Complexity increases with the complexity 

of the energy system, but the code 

formulation makes it straightforward. 

Complexity increases with the complexity 

of the energy system (especially with the 

number of regions), due to the large 

number of Excel files to be managed. 

Future evolution of parameters 

The required values must be declared at 

each desired time-step, with the possibility 

of assigning different evolution trends 

between two points in time (linear, 

exponential, …). 

The required values must be declared at 

each desired time-step, with the possibility 

of assigning different evolution trends 

between two points in time (linear, 

exponential, …). 

The required values must be declared at 

each desired time-step, with the possibility 

of assigning different evolution trends 

between two points in time (linear, 

exponential, …). 

Programming language(s) 
GNU open-source / Python open-source / 

GAMS commercial 
Python open-source GAMS commercial 

Type of programming language High-level High-level High-level 

Optimization software (solver) 
GLPK for GNU open-source / GLPK for Python 
open-source / GAMS commercial 

GLPK for Python open-source / CPLEX for 

Python commercial (but can be run on an external server) / 

Gurobi for Python commercial (but available with free 

academic license) 

CPLEX for GAMS commercial 

Features of the optimization 

software 

Suitable for simple energy systems if 

using-open-source solvers. 
Suitable for large-scale energy systems. Suitable for large-scale energy systems. 

Formulation of the problem 

Scenario-based, long-term, multi-regional, 

minimum cost optimization linear problem 

considering competitive markets with 

perfect foresight. 

Scenario-based, long-term, multi-regional, 

minimum cost optimization linear problem 

considering competitive markets with 

perfect foresight. 

Scenario-based, long-term, multi-regional, 

minimum cost optimization linear problem 

considering competitive markets with 

perfect foresight. 

Possibility to modify/improve 

the code 
Possible. Possible. Impossible. 

Possibility to perform stochastic 

optimization 

Impossible at present state, but an 

extension can be formulated. 

Possible with an already implemented 

Python module. 

Possible, but time-consuming and complex 

due to the difficult data handling. 

Possibility to perform multi-

objective optimization 

Impossible at present state, but could be 

implemented. 

Impossible at present state, but could be 

implemented. 
Impossible. 
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1.5. Aim of the thesis 

Basing on the premises about open science made in Section 1.1, the aim 

of this thesis activity is to develop an open-source model on the Italian energy 

system. The selected reference model for the open-source implementation is 

TIMES-Italia [14], belonging to the TIMES family and developed by ENEA [15] 

during the last years. The features of TIMES-Italia and its database will be 

discussed in detailed in Section 0. 

The motivations for having this purpose are strictly correlated with the 

European Commission’s objectives in terms of open science. The common 

belief is that relying on an open-source energy model would allow to perform 

scenario analyses and evaluations of the possible future energy policies 

characterized by independence and reliability on the results, being them 

transparent, inspectable and reproducible. 

Another consideration is relevant, concerning the openness of the tool 

use for energy system modeling. As it was already mentioned in Section 1.1 

and Section 1.1, the currently used commercial software are based on a single 

optimization paradigm, such as the minimization of the total cost of the energy 

system. Of course, the cost is important, and it is true that energy system 

evolves aiming to satisfy the energy-related needs of the society possibly 

minimizing the efforts required to achieve this goal. Considering only the 

economic point of view, it appears quite obvious that the expenditures related 

to new investments for energy plants and operation and maintenance of 

existing ones should be as limited as possible. 

However, especially in recent years, an increasing awareness has grown 

in the population and in institutions (governmental and non-governmental) 

regarding the objectives of environmental sustainability. In this regard, two 

important statements by the international community can be cited. 

First, the 2015 Paris Agreement [3] aims to keep the average global 

temperature rise well below 2 ℃ above pre-industrial levels, with the aim of 

limiting it to 1.5 ℃. In this perspective, it is intended to reach the peak of global 

greenhouse gas emissions as soon as possible, to then reduce them 

significantly and quickly and reach climate neutrality by the second half of the 

century. Secondly, the United Nations has set itself 17 Sustainable 
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Development Goals [16], with the aim of ending poverty, focusing on 

education, inequalities reduction and economic growth but, at the same time, 

fighting climate change and preserving natural ecosystems. 

With those purposes, it seems realistic that the focus, concerning the 

next energy policies, will be not only on the expected expenditures, but firstly 

on their effectiveness in reaching those objectives, also accepting higher 

expenditures. 

For that reason, it become crucial to have a simulation and optimization 

tool capable to account for several optimization criteria, related in particular 

to the sustainability of the energy system. To realize that it is needed to go 

beyond the optimization algorithms and paradigms currently present in 

commercial software, and it can be achieved only through open-source 

models, having the access to the source code and the possibility to investigate, 

modify and integrate it taking into account a sort of sustainability 

optimization, additional to the economic one. 

Finally, this thesis work is structured as follows: 

a. Review and update of the TIMES-Italia energy model (Section 0). 

b. Open-source implementation of the model (Section 0). 

c. Comparison of results obtained by the commercial and open-

source tools (Section 0), to validate the new model. 
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Chapter 2 

2. The TIMES-Italia model 

In the context just introduced of energy system modeling, a model 

concerning the Italian energy system has been developed, within the TIMES 

framework, by ENEA during the last years: the so-called TIMES-Italia [14]. It 

is a single-region model and the relationship between Italy and other 

economically and energy trade-connected countries is defined via import-

export parameters. 

The time scale is subdivided in several time periods, namely the time-

steps in which the model optimizes commodity quantities and prices. The first 

time-step, i.e., the base year, is 2006. In the base year, energy balances are 

analyzed to define the composition of the RES and initial service demands in 

each demand sector. After 2006, several time-steps are included in the current 

TIMES-Italia [14] up to the final year, 2050: 2007, 2008, 2010, 2012, 2014, 2016, 

2018, 2020, 2022, 2025, 2030, 2040 and 2050. To each of those milestone years, 

driver and demand elasticity projections are associated, in order to derive 

future service demands. The TIMES-Italia time resolution consists of 

subdividing the simulation year in four seasons (spring, summer, fall and 

winter) each of which was assigned 1/4 of the total time of the year, and 

further subdividing each season in three times of the day (day, night and peak, 

correspondent to the hour of peak consumption), with different shares 

dependent on the correspondent season. In this way, the model time 

resolution is set to twelve time-slices per year, as shown in Table 2.
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Table 2. Time-slice subdivision of the model year. 

Seasons 

Times of day 
Spring Summer Fall Winter 

Day 
1

4
∗

11

24
= 11.5% 

1

4
∗

12

24
= 12.5% 

1

4
∗

11

24
= 11.5% 

1

4
∗

10

24
= 10.5% 

Night 
1

4
∗

12

24
= 12.5% 

1

4
∗

11

24
= 11.5% 

1

4
∗

12

24
= 12.5% 

1

4
∗

13

24
= 13.5% 

Peak 
1

4
∗

1

24
= 1.0% 

1

4
∗

1

24
= 1.0% 

1

4
∗

1

24
= 1.0% 

1

4
∗

1

24
= 1.0% 

This is done to achieve a detailed characterization of energy production 

and consumption during time. Indeed, both seasonal and daily subdivisions 

of time periods allow to consider variations in energy production (e.g., 

availability of hydroelectric electricity is strongly dependent on the season, or 

photovoltaic production does not occur during night) as well as for 

consumptions (e.g., heating is only necessary during cold months and cooling 

during hot months, and lighting only during night). Also, one hour of peak-

demand per day is considered, as the model does not only consider the balance 

between production and consumption in terms of energy, but also in terms of 

power; for this reason, it is important to consider peak-demand periods, in 

order not to underestimate the value of power instantaneously required to 

satisfy the demand. 
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2.1. Reference energy system 

The reference energy system (RES) in energy models is a network 

representation of all the processes involved in the transformation from energy 

supply to final demands, consisting of a techno-economic characterization of 

both supply-side and demand-side energy sectors. 

The TIMES-Italia [14] RES is composed by five technology sectors, 

distinguished in three demand-side sectors and two supply-side sectors. The 

demand-side sectors are buildings (further divided in agriculture, commercial 

and residential sector), transport and industry. The supply-side sectors are the 

power sector and the upstream sector. Each sector includes a set of several 

technologies, characterized by proper tecno-economic parameters, used to 

produce the intermediate and final commodities necessary to guarantee the 

production of the requested energy service demands. 

The techno-economic description of the sectors is performed 

distinguishing the base year of the time horizon from its future years. The base 

year is a time period for which energy consumption, final service demands, 

and the efficiency of the installed technologies are known or, at least, can be 

estimated from energy balances or different statistics. The scope of the base 

year description is to represent the existing reference energy system, from the 

supply of energy to the service demands. Differently, future years are the time 

periods for which the optimization of the energy system must be performed 

by the model, depending on the assumptions made on socio-economic 

development and on available new technologies. To drive the progressive 

disposal of the base year technologies during the time, constraints on the 

residual capacity of these technologies are used, usually starting from the base 

year value and following a linear trend up to 0 after a certain time interval. 

Figure 3 represents the generic structure of the TIMES-Italia [14] RES. 

In the upper section of the diagram (in orange), the upstream sector is 

represented, divided in fossil fuel technologies and renewable energy source 

technologies, producing upstream output commodities. Power sector is 

represented in yellow, and it consumes upstream commodities to produce 

electricity (distinguished in centralized and distributed) and heat, which are 

the input for the demand-side sectors (together with the upstream output 
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commodities). In the bottom section of the diagrams, demand-side sectors are 

synthetically represented, listing the final service demand categories to be 

satisfied. 

Figure 3. Generic structure of the TIMES-Italia reference energy system, and connections between the 

different sectors. 
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A relevant comment on the structure of the RES can be done, concerning 

the different role of base year modeling with respect to new technologies 

modeling. 

New technologies included in the model database are represented by a 

detailed techno-economic characterization of all the energy-related processes 

that are expected to enter the market during the considered time horizon and 

are used to substitute the base year technologies, which progressively phase 

out. The main intent of base year is, instead, to quantify the final service 

demands, especially for those that are not derived by statistics but simply 

estimated knowing the energy consumption of the subsector and evaluating 

the efficiency of the base year technologies. 

Being the service demands evaluation directly dependent on those 

assumptions and parameters characterization, a precise modeling of the base 

year is a crucial point to obtain reliable and arguable results. For that reason, 

in Section 1.1 the TIMES-Italia [14] base year is described in detail, to clarify 

how energy consumptions (known from IEA statistics) are converted into final 

service demands and based on which assumptions. 



30 

 

2.2. Demand-side sectors 

2.2.1. Base year 

The energy consumption at base year (2006 for TIMES-Italia [14]), is 

known from IEA World Energy Balances [17], that provide energy 

consumption by energy sector and split by fuels. For what concerns transport 

and industry sectors, IEA data are already split by subsectors. The unit of 

measure is PJ. 

Two procedures can be followed to model the base year structure and 

quantify final service demands: 

a. If the total service demand is known from external national 

statistics, the efficiency of base year technologies can be 

estimated (consistently with efficiency of installed technologies) 

as ratio between energy consumptions and demand production. 

b. If the service demand is unknown and must be estimated, the 

estimation is performed assuming efficiency values for base year 

technologies (based on their tecno-economic characterization) 

and deriving the demand as product between energy 

consumption and efficiency. 

In the TIMES framework, also the evaluation of sector-specific 

commodity-based emission factors is performed within the base year files. The 

emission factors are necessary to evaluate the atmospheric emissions of each 

technology and, consequently, of the entire energy system. Those factors are 

sector-specific and commodity-based in the sense that they are specified for 

each sector-specific commodity (fuel consumed by the technology) and the 

absolute values of the emissions is evaluated by the model on the basis of each 

commodity consumption. The sector-specific emission factors are indicated as 

“dynamic” (EFD) in contrast with the “static” one (EFS,i) which are emission 

factors for the upstream commodities required to produce the sector-specific 

commodities. 

Upstream commodities Ci,j [PJ] of the model are connected to the sector-

specific commodities Cj [PJ] with appropriate share factors fi [%], used to 

describe the mix correctly (as shown by Equation 1). Share factors are fixed for 
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the base year, and constraints on them are imposed for the projection years, 

typically upper constraints (to set a maximum boundary to the percentage of 

some generic commodity). 

fi [%] =
Ci,j [PJ]

Cj [PJ]
 (1) 

 Since sector-specific commodities are produced from upstream ones, 

the evaluation of dynamic emission factor is simply performed multiplying 

each static factor by the share factor associated to the correspondent 

commodity, as shown in Equation 2. They are “dynamic” being dependent on 

the share of upstream commodities involved. 

EFD [
kt

PJ
] = ∑ EFS,i [

kt

PJ
] ∗ fi

i

[%] (2) 

The considered emission commodities are CO2, CH4, N2O and SOx (the 

latter for the industrial sector only). In the following sections, at the end of 

each section, the evaluation of sector-specific commodity-based emission 

factors is also reported. In Table 3 static emission factors for the most 

representative upstream commodities are reported, for the sake of 

completeness. 

Table 3. Static emission factors. 

Commodity 
Emission commodity [𝐤𝐭/𝐏𝐉] 

CO2 CH4 N2O 

Hard coal 98.30 5.00 1.40 

Brown coal 101.20 5.00 1.40 

Crude oil 73.30 2.00 0.60 

Gasoline 69.30 2.00 0.60 

Gas oil 74.10 2.00 0.60 

Natural gas 56.10 5.00 0.10 

Liquified petroleum gas 63.10 5.00 0.10 

Waste 85.85 300.00 4.00 
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2.2.1.1. Agriculture 

The first subsector considered is agriculture, having a very simple data 

structure. Energy balances for the sector are reported, stating energy 

consumption for several fuels. Subsequently, they are aggregated into a 

reduced number of modelled fuels, as in Equation 3, where Eaf is the energy 

consumption attributed to the aggregated fuel, and Ef,i is the energy 

consumption of the ith fuel contributing to the aggregated one. 

Eaf [PJ] = ∑ Ef,i [PJ]

i

 (3) 

The result is reported in Table 4, showing that most of the energy 

consumption for the agriculture sector is due to diesel consumption, as it 

might be expected. 

Table 4. IEA statistics, aggregated fuels for the agriculture. 

IEA Fuels Aggregated Fuels 𝐄𝐚𝐟 [𝐏𝐉] 

Natural gas 

Gas works gas 

Coke oven gas 

Natural Gas 6.22 

Diesel 

Other non-specified 
Distillate 104.45 

Motor gasoline Gasoline 0.66 

LPG LPG 3.08 

Solid biomass 

Charcoal 

Gas biomass, Other liquid biofuels 

Municipal waste (non-renewable), municipal 

waste (renewable) 

Industrial waste 

Biomass 8.20 

Electricity Electricity 19.82 

Geothermal Geothermal 5.35 
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Made that first aggregation the service demand is very simply assumed 

to be equal to the total energy consumption of the subsector, assuming unitary 

efficiency for the base year technology producing the service demand. The 

sum gives a service demand DAGR of 147.79 PJ for agriculture, as shown in 

Equation 4. 

DAGR[PJ] = ∑ Eaf,j[PJ]

j

= 147.79 PJ (4) 

Figure 4 summarizes data organization and interactions, from IEA 

statistics to the calculation of service demand.  

 

Figure 4. Flow-chart for the evaluation of service demand in agriculture. Associated to each step are 

specified the involved equations, as listed in this report. 

Eventually, the computation of emission factors for agriculture sector 

leads to the values that follow in Table 5. It should be noted for instance that 

the highest value of CO2 emission factors is related to coal, reasonably being 

the fuel with the highest carbon content. Also, a high CH4 emission is 

associated to biomass.

Eq.3  

Eq. 4  
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Table 5. Emission factors for agriculture sector-specific fuels. 

Commodity 

Emission factors [𝐤𝐭/𝐏𝐉] 

Natural gas Diesel Gasoline 
Heavy 

fuel oil 
Kerosene Coal LPG Biomass 

CO2 56.10 74.07 69.30 77.37 71.87 98.27 63.07 0.00 

CH4 5.00 5.00 20.00 5.00 1.00 50.00 5.00 300.00 

N2O 0.10 0.60 0.60 0.60 0.60 1.40 0.10 4.00 
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2.2.1.2. Commercial 

In this section, the commercial sector is investigated. Energy service 

demands for the commercial sector are listed in Table 6. 

Table 6. Commercial service demands. 

Commercial service demands 

Space heating 

Space cooling 

Water heating 

Lighting 

Cooking 

Refrigeration 

Electric office equipment 

As already seen for agriculture sector, an aggregation of energy 

consumption by similar fuels is needed to reduce their number in a more easily 

treatable form. This operation is done accordingly to Equation 3, where Eaf
f  is 

the final energy consumption attributed to the aggregated fuel and Ef,i is the 

energy consumption of the ith fuel that contributes to the aggregated one. 

Table 7 is the output of the aggregation. In this sector, the energy consumption 

is mainly subdivided among natural gas and electricity consumption. 

Table 7. IEA statistics, aggregated fuels for the commercial sector. 

IEA Fuels Aggregated Fuels 𝐄𝐚𝐟
𝐟  [𝐏𝐉] 

Natural gas 

Gas works gas 

Coke oven gas 

Natural Gas 318.50 

Diesel 

Motor gasoline 

Other non-specified 

Distillate 19.29 

LPG LPG 0.09 

Electricity Electricity 281.06 

Heat Heat 6.30 

Geothermal Geothermal 1.78 
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The next step, as for residential sector, is the splitting of energy 

consumptions into the different end-uses of the sectors. To do this, fractional 

shares of end-use are assigned by assumption [14] (Table 8) and they are 

multiplied by the relative consumption of fuel to obtain absolute values of 

energy consumption for every fuel and every end-use, as Equation 5 shows. 

Table 9 reports the results of that operation and, focusing on natural gas and 

electricity (representing the most relevant consumption), showing that 

according to the assumed fractional share natural gas is mainly allocated for 

space heating, while electricity is more evenly divided among all end uses. 

Table 8. Fractional end-uses share for the commercial end-uses. 

Fuel 

Fractional end-uses shares 𝐟𝐞𝐮 [%] 
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E
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eq
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Natural Gas 0.88 0.05 0.03   0.04     

Distillate 0.82 0.08 0.1         

LPG 0.67   0.25   0.08     

Electricity 0.08 0.13 0.05 0.30 0.01 0.07 0.38 

Heat 0.7   0.3         

Geothermal 1             

Table 9. End-use energy consumptions for commercial services. 

Fuel 

End-uses energy consumptions 𝐄𝐞𝐮, 𝐚𝐟
𝐟 [𝐏𝐉] 
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Natural Gas 280.28 15.92 9.55  12.74   

Distillate 15.82 1.54 1.93     

LPG 0.06  0.02  0.01   

Electricity 21.08 35.41 12.65 84.32 2.25 19.67 105.68 

Heat 4.41  1.89     

Geothermal 1.78       
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Eeu, af
f  [PJ] = feu [%] ∗ Eaf

f  [PJ] (5) 

In Table 10 all the technologies modelled to satisfy each energy service 

are listed, with specifications about input commodity, share of input 

commodity consumption (i.e., the fraction of input commodity energy 

consumption that is due to the technologies, it is less than 100 if more than one 

technology use the same fuel), final energy, efficiency and useful energy. The 

disaggregation performed to consider the possibility that more than one 

technology is associated to the consumption of a single fuel in certain end uses 

is shown in Equation 6, where Etech,eu, af
f  is the final energy consumption 

associated to each technology. 

Etech,eu, af
f [PJ] = ftech[%] ∗ Eeu,af

f [PJ] (6) 

In Table 10, also the useful energy is derived for each technology, 

simply multiplying the final energy consumption Etech,eu, af
f  by the technology 

efficiency eff, according to Equation 7. 

Eu[PJ] = eff[%] ∗ Etech,eu, af
f [PJ] (7) 
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Table 10. Demand-side technologies by commercial energy services. 
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𝐄
𝐭𝐞

𝐜𝐡
,𝐞

𝐮
, 𝐚

𝐟
𝐟
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 𝐞
𝐟𝐟

[%
] 

U
se
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𝐄
𝐮

[ P
J]  

Space heating 

Natural gas boiler 99.99 
Natural Gas  

280.25 70 196.17 

Natural gas heat pump 0.01 0.03 190 0.05 

Distillate boiler 100 Distillate 15.82 70 11.07 

LPG boiler 100 LPG 0.06 60 0.04 

Resistance 25 
Electricity 

5.27 90 4.74 

Electricity heat pump 75 15.81 200 31.62 

District heating 100 Heat 4.41 90 3.97 

Geothermal heat pump 100 Geothermal 1.78 90 1.61 

Space cooling 

Natural gas absorption chiller 100 Natural Gas 15.92 120 19.11 

Distillate chiller 100 Distillate 1.54 84 1.30 

Centralized heat pump 54.4 Electricity 19.27 360 69.36 

Electricity heat pump 0. 3 Electricity 0.12 372 0.43 

Room heat pump 11.3 Electricity 3.99 360 14.37 

Electric chiller rooftop 34 Electricity 12.04 372 44.78 

Water heating 

Natural gas boiler 100 Natural Gas 9.55 65 6.21 

Distillate boiler 100 Distillate 1.93 65 1.25 

LPG boiler 100 LPG 0.02 60 0.01 

Electric heater 100 Electricity 12.65 91 11.51 

District heating 100 Heat 1.89 100 1.89 

Refrigeration Refrigerator 100 Electricity 19.67 100 19.67 

Cooking 

Natural gas cooker 100 Natural Gas 12.74 501 6.37 

LPG cooker 100 LPG 0.01 501 0.00 

Electricity cooker 100 Electricity 2.25 701 1.57 

Electric office equipment Electric Equipment 100 Electricity 105.68 100 105.68 

Lighting 

Incandescent big 3 

Electricity 

2.53 117 2.96 

Halogen small (12 V) 1 0.84 160 1.35 

Halogen IRC (12 V) 1 0.84 209 1.76 

Fluorescent small 37.5 31.62 563 178.08 

Fluorescent large 37.5 31.62 698 220.74 

Fluorescent compact 9 7.59 593 44.98 

Mercury 10 8.43 320 26.98 

Sodium low pressure 1 0.84 800 6.75 

 

 

1 Efficiency of cooking appliances are differentiated for different cooking technologies. [18] 
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 The results shown in Table 10 consist of an estimation of the useful 

energy of each commercial technology, based on its energy consumption and 

efficiency. Focusing in particular on the efficiencies of technologies, it can be 

underlined that the efficiencies of heat pumps (both for space heating and 

space cooling) are higher than 100%, representing the coefficient of 

performance (COP) of the technologies. The only heat pump having an 

efficiency lower than 100% is the geothermal heat pump for space heating, 

since in this case the final energy consumption is not the electricity required 

by the compressor, but the inlet heat at the heat pump evaporator. 

Furthermore, the efficiencies of cooking technologies have been updated ( [18] 

both for existing and new technologies in the model) knowing that different 

types of cookers are characterized by different cooking efficiency and notably 

LPG or natural gas burners are less efficient than induction electric plates, for 

instance. 

The service demands for commercial sector are assumed to be equal to 

the total useful energy associated to each energy service therefore, to derive 

the value of jth service demand DCOM,j[PJ], it is sufficient to sum the useful 

energy values Ej
u[PJ] of all the technologies included in the jth energy service, 

as explained in Equation 8. The results are listed in Table 11; being all the 

service demands quantified in useful energy terms, the unit of measure for all 

the commercial service demands is PJ. 

Table 11. Service demands for commercial sector energy services. 

End use 𝐃𝐂𝐎𝐌 

Space heating 249.27 PJ 

Space cooling 149.35 PJ 

Water heating 20.88 PJ 

Lighting 483.59 PJ 

Cooking 7.95 PJ 

Refrigeration 19.67 PJ 

Electric office equipment 105.68 PJ 

DCOM,j[PJ] = ∑ Ej
u[PJ]

j

 (8) 
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Figure 5 is a summary of how data are organized and how they interact, 

from IEA statistics to service demand. 

Figure 5. Flow-chart for the evaluation of service demand in the commercial sector. Associated to each 

step are specified the involved equations, as listed in this report. 

Eventually, the computation of emission factors for commercial sector 

leads to the values that follow in Table 12, obtained according to Equation 2. 

It should be noted for instance that the highest value of CO2 emission factors 

is related to coal, reasonably being the fuel with the highest carbon content. 

Also, a high CH4 emission is associated to biomass. 

Table 12. Emission factors for commercial sector-specific fuels. 

Commodity 
Emission factors [𝐤𝐭/𝐏𝐉] 

Natural gas Diesel Heavy fuel oil Kerosene Coal LPG Biomass 

CO2 56.10 73.78 77.37 71.87 98.27 63.07 0.00 

CH4 5.00 5.89 5.00 1.00 50.00 5.00 300.00 

N2O 0.10 0.60 0.60 0.60 1.40 0.10 4.00 

Eq. 3 

Eq. 5  

Eq. 6 

Eq. 7 
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2.2.1.3. Residential 

Concerning residential sector, the included service demands are listed 

in Table 13. 

Table 13. Residential service demands. 

Residential service demands 

Space heating 

Space cooling 

Water heating 

Refrigeration 

Clothes drying 

Cooking 

Clothes washing 

Dishwashing 

Miscellaneous electric energy 

Lighting 

Energy balances, stating the energy consumption for several fuels, are 

aggregated according to Equation 3. The output of this first aggregation is 

reported in Table 14, where the correspondence between IEA and aggregated 

TIMES-Italia [14] modelled fuels is shown, along with the resulting energy 

consumption. The results of the aggregation show that, similarly to what 

observed for the commercial sector, the most consumed commodities by 

residential are natural gas and electricity, with not negligible consumption of 

distillate fuels (diesel), LPG and biomass.
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Table 14. IEA statistics, aggregated fuels for the residential sector. 

IEA Fuels Aggregated Fuel Energy consumption 𝐄𝐚𝐟
𝐟  [𝐏𝐉] 

Natural gas 

Gas works gas 

Coke oven gas 

Natural Gas 713.73 

Diesel 

Motor gasoline 

Other non-specified oil products 

Distillate 131.21 

Fuel oil 

Crude oil 
Heavy fuel oil 6.40 

Other kerosene Kerosene 0.77 

Hard coal, Patent fuel, Anthracite, Other 

bituminous coal 

Peat, brown coal briquettes, Brown coal, 

Sub-bituminous coal, Lignite 

Coke oven coke 

Coal 0.29 

LPG LPG 85.28 

Solid biomass 

Charcoal 

Gas biomass, Other liquid biofuels 

Municipal waste (non-renewable), 

Municipal waste (renewable) 

Industrial waste 

Biomass 67.88 

Electricity Electricity 243.53 

Heat Heat 27.63 

Geothermal Geothermal 1.78 

Solar thermal Solar thermal 1.47 

 

The data are now ready to be split into end-uses of residential sector. 

This is done assigning by assumption fractional shares [14], as in Table 15, to 

each end-use for each fuel, and then using Equation 5 to obtain energy 

consumption of each fuel for all residential end-uses, for which results are 

shown in Table 16, showing that the subsector consuming the most relevant 

fraction of energy is space heating, while electricity is quite evenly divided 

among the different end-uses (similarly to the commercial sector).
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Table 15. Fractional end-use shares for the residential sector. 

Fuel 

Fractional end-uses shares 𝐟𝐞𝐮 [%] 
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Natural Gas 0.895   0.075     0.03         

Distillate 0.94   0.06               

Heavy fuel oil 0.95   0.045     0.005         

Kerosene 1                   

Coal 1                   

LPG 0.78   0.07     0.15         

Biomass 0.97   0.03               

Electricity 0.01 0.06 0.115 0.18 0.005 0.045 0.095 0.065 0.281 0.144 

Heat 0.7   0.3               

Geothermal 1                   

Solar 0.15   0.85               

Table 16. End-use energy consumption for residential services. 

Fuel 

End-use energy consumption 𝐄𝐞𝐮, 𝐚𝐟
𝐟  [𝐏𝐉] 
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Natural Gas 638.79  53.53   21.41     

Distillate 123.34  7.87        

Heavy fuel oil 6.08  0.29   0.03     

Kerosene 0.77          

Coal 0.29          

LPG 66.52  5.97   12.79     

Biomass 65.84  2.04        

Electricity 2.44 14.61 28.01 43.84 1.22 10.96 23.14 15.83 68.43 35.07 

Heat 19.34  8.29        

Geothermal 1.78          

Solar 0.22  1.25        
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Another step is required for data splitting, for space heating demand 

only. Indeed, that is different according to different types of buildings, and 

specifically: 

a. SF-Old: single-family house (old). 

b. SF-New: single-family house (new). 

c. MF-Old: multi-family house (old). 

d. MF-New: multi-family house (new). 

The difference between “old” and “new buildings is in the efficiency 

terms (from final energy to useful energy), being higher for new buildings 

with respect to old buildings. Regarding the differentiation in “SF” buildings 

and “MF” buildings, this is performed considering different conversion factors 

from useful energy to service demands, that are equal to 1.94 Mm2/PJ for SF 

buildings and to 2.66 Mm2/PJ for MF buildings (these values are derived from 

[19] and [20]). Natural gas is allocated for the 94.3% to SF-Old buildings, while 

the remaining 4.2% is allocated to MF-Old buildings, the 1.4% to SF-New, and 

the 0.1% to MF-New buildings. All other fuels (distillate, heavy fuel oil, 

kerosene, coal, LPG, biomass, electricity, heat, geothermal and solar thermal 

energy) are allocated for the 94% to SF-Old buildings, for the 0.5% to MF-Old 

buildings, and for the remaining 0.01% to SF-New buildings. 

Equation 9 explains how space heating energy consumption, split by 

building type, Ebt,eu,af is calculated, with the proper share factors fbt [%] for 

the allocation to the different building types. 

Ebt,eu,af
f  [PJ] = fbt [%] ∗ Eeu,af

f  [PJ] (9) 

In Table 17 the technologies modelled to satisfy each energy service are 

listed, with specifications about input commodity. It is possible now to convert 

energy consumptions in final service demands. This is done with appropriate 

conversion factors [14], specific for every single end-use and differentiated for 

each technology. To do so, one last needed step is to consider that, for some 

end-uses and fuels, there is more than one technology used to meet the final 

service demand. Just as an example, electricity consumption for lightning can 

be considered: that can be satisfied via several technologies, each one with 

different efficiencies: fluorescent lamp, halogen lamp, incandescent lamp, 

LED, etc. For this reason, share factors ftech should be applied to assign to 
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every technology the corresponding amount of consumed energy, as from 

Equation 10, where Etech,bt,eu, af
f  is the final energy consumption associated to 

each technology. Eventually, the useful energy Eu for each technology is 

derived (as already done in commercial sector), knowing the efficiency eff of 

each technology (Equation 11). 

Etech,bt,eu,af
f  [PJ] = ftech [%] ∗ Ebt,eu,af

f  [PJ] (10) 

Eu[PJ] = eff[%] ∗ Etech,bt,eu,af
f  [PJ] (11) 
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Table 17. Demand-side technologies by residential energy services. 
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𝐄
𝐮

[ 𝐏
𝐉]  

Space heating 

(SF-Old) 

Natural gas boiler 99 
Natural Gas  

596.36 73 434.15 

Natural gas heat pump 1 6.02 110 6.63 

Distillate boiler 100 Distillate 115.93 73 84.40 

Heavy fuel oil boiler 100 Heavy fuel oil 5.72 73 4.16 

Kerosene boiler 100 Kerosene 0.73 6 0.05 

Coal boiler 100 Coal 0.27 55 0.15 

LPG boiler 100 LPG 62.53 68 42.68 

Biomass boiler 100 Biomass 61.89 25 15.47 

Resistance 84 
Electricity 

1.92 90 1.73 

Electricity heat pump 16 0.37 200 0.73 

District heating 100 Heat 18.18 90 16.36 

Geothermal heat pump 100 Geothermal 1.68 380 6.37 

Space heating 

(MF-Old) 

Natural gas boiler 99 
Natural Gas 

26.56 73 19.34 

Natural gas heat pump 1 0.27 110 0.30 

Distillate boiler 100 Distillate 6.17 73 4.49 

Heavy fuel oil boiler 100 Heavy fuel oil 0.30 73 0.22 

Kerosene boiler 100 Kerosene 0.04 06 0.00 

Coal boiler 100 Coal 0.01 55 0.01 

LPG boiler 100 LPG 3.33 68 2.27 

Biomass boiler 100 Biomass 3.29 25 0.82 

Resistance 84 
Electricity 

0.10 90 0.09 

Electricity heat pump 16 0.02 200 0.04 

District heating 100 Heat 0.97 90 0.87 

Geothermal heat pump 100 Geothermal 0.09 380 0.34 

Space heating 

(SF-New) 

Natural gas boiler 99 
Natural Gas 

8.85 76 6.77 

Natural gas heat pump 1 0.09 116 0.10 

Distillate boiler 100 Distillate 1.23 76 0.94 

Heavy fuel oil boiler 100 Heavy fuel oil 0.06 76 0.05 

Kerosene boiler 100 Kerosene 0.01 07 0.00 

Coal boiler 100 Coal 0.00 57 0.00 

LPG boiler 100 LPG 0.67 72 0.48 

Biomass boiler 100 Biomass 0.66 26 0.17 

Resistance 84 
Electricity 

0.02 95 0.02 

Electricity heat pump 16 0.00 210 0.01 

District heating 100 Heat 0.19 95 0.18 

Geothermal heat pump 100 Geothermal 0.02 399 0.07 

Continued on page 47 
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Continued from page 46 

Space heating 

(MF-New) 

Natural gas boiler 99 
Natural Gas 

0.63 76 0.48 

Natural gas heat pump 1 0.01 116 0.01 

Space cooling 

Centralized heat pump 54 

Electricity 

7.85 240 18.85 

Electricity heat pump 4 0.61 280 1.71 

Room heat pump 42 6.15 240 14.76 

Water heating 

Natural gas boiler 100 Natural Gas 53.53 65 34.79 

Distillate boiler 100 Distillate 7.87 58 4.57 

Heavy fuel oil boiler 100 Heavy fuel oil 0.29 58 0.17 

LPG boiler 100 LPG 5.97 54 3.22 

Biomass boiler 100 Biomass 2.04 25 0.51 

Electric heater 100 Electricity 28.01 90 25.21 

District heating 100 Heat 8.29 85 7.05 

Solar heater 100 Solar 1.25 100 1.25 

Refrigeration 
Refrigerator 78 

Electricity 
34.19   

Freezer 22 9.64   

Clothes washing Clothes washer 100 Electricity 23.14   

Clothes drying Electric clothes drier 100 Electricity 1.22   

Dishwashing Dishwasher 100 Electricity 15.83   

Cooking 

Natural gas cooker 100 Natural Gas 21.41 50 10.71 

LPG cooker 100 LPG 12.79 50 6.40 

Electricity cooker 100 Electricity 10.96 80 8.77 

Miscellaneous 

electric energy 
Electric Appliances 100 Electricity 68.43   

Lighting 

Fluorescent large 7 

Electricity 

2.45   

Fluorescent small 9 3.16   

Halogen large (220 V) 1 0.35   

Halogen small IRC (12 V) 1 0.35   

Halogen small (12 V) 2 0.70   

Incandescent medium 40 14.03   

Incandescent small 40 14.03   

 

The results shown in Table 17 consist of an estimation of the useful 

energy of each residential technology, based on its energy consumption and 

efficiency. Focusing in particular on the efficiencies of technologies, it can be 

underlined that the efficiencies of heat pumps (both for space heating and 

space cooling) are higher than 100%, representing the coefficient of 

performance (COP) of the technologies. Furthermore, the efficiencies of 

cooking technologies have been updated [18] (both for existing and new 

technologies in the model) knowing that different types of cookers are 

characterized by different cooking efficiency and notably LPG or natural gas 

burners are less efficient than induction electric plates, for instance. 
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The residential service demands, differently from the commercial ones, 

are expressed also with non-energy units of measure. For this reason, a last 

step is required for their evaluations. Proper conversion factors [14] effconv are 

used to derive from the useful energy Eu of each technology the correspondent 

energy service demand DRES (Equation 12). This is done, of course, only for the 

service demands that are not expressed in energy terms, for which instead the 

conversion factor is assumed to be unitary, and the service demand 

corresponds to the useful energy. 

DRES = effconv ∗ Eu[PJ] (12) 

The conversion factors used, and the resulting service demands are 

shown in Table 9, with the total service demand amount for each residential 

end-use energy service. According to the reported conversion factors, it should 

be highlighted that multi-family buildings are more efficient in terms of 

energy required for space heating. That is reasonable and due to the lower 

surface exposed to the external environment per unit of heated volume 

characterizing multi-apartment buildings. Secondly, for water heating, 

refrigeration, cooking, and “miscellaneous electric energy” no conversion 

factors are reported, since the final service demand is in terms of useful energy 

and measured in PJ.
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Table 18. Service demands for the residential sector. 

End-use service 𝐞𝐟𝐟𝐜𝐨𝐧𝐯 𝐃𝐑𝐄𝐒 

Space heating (SF-Old) 1.94 Mm2/PJ 1188.71 Mm2 

Space heating (SF-New) 1.94 Mm2/PJ 76.58 Mm2 

Space heating (MF-Old) 2.66 Mm2/PJ 17.06 Mm2 

Space heating (MF-New) 2.66 Mm2/PJ 1.31 Mm2 

Space cooling 14.73 Mm2/PJ 520.00 Mm2 

Water heating   76.76 PJ 

Refrigeration   9.01 Gl 

Clothes drying 0.07 Glav/PJ 0.08 Glav 

Cooking   25.87 PJ 

Clothes washing 0.26 Glav/PJ 6.02 Glav 

Dishwashing 0.18 Glav/PJ 2.77 Glav 

Miscellaneous electric energy   68.43 PJ 

Lighting 12.30 2 Glm/PJ 431.24 Glm 

 

Figure 6 is a summary of how data are organized and how they interact 

in residential sectors, from IEA statistics to service demand. 

 

 

2 Different values for the conversion factor of lighting service demand are applied to each 

technology. The value reported in the table is an average value obtained dividing the lighting 

service demand by the total useful energy of the subsector. 
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Figure 6. Flow-chart for the evaluation of service demand in the residential sector. Associated to each 

step are specified the involved equations, as listed in this report. 

Eventually, the computation of emission factors for residential sector-

specific fuels leads to the values reported in Table 19. It should be noted for 

instance that the highest value of CO2 emission factors is related to coal, 

reasonably being the fuel with the highest carbon content. Also, a high CH4 

emission is associated to biomass. 

Table 19. Emission factors for residential sector-specific fuels. 

Commodity 
Emission factors [𝐤𝐭/𝐏𝐉] 

Natural gas Diesel Heavy fuel oil Kerosene Coal LPG Biomass 

CO2 56.10 74.07 77.37 71.87 98.27 63.07 0.00 

CH4 5.00 5.00 5.00 1.00 50.00 5.00 300.00 

N2O 0.10 0.60 0.60 0.60 1.40 0.10 4.00 

 Eq.3  

Eq. 5 

Eq. 9  

Eq. 10 

Eq. 12  
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2.2.1.4. Transport 

In the transport sector, several energy services are satisfied, according 

to the type of considered transport category. Transport categories considered 

in the TIMES-Italia [14] are reported in Table 20. 

Table 20. Transport categories. 

Transport categories 

International aviation 

Domestic aviation 

Road 

Rail 

Domestic navigation 

Non-specified transports 

Bunkers 

Again, the first operation involves the aggregation of similar fuels to 

reach a simpler classification of consumption (Equation 3). Results for the first 

step are reported in Table 21. In the table header, the IEA fuels (according to 

the classification adopted in [17]) are listed in the second row and they are 

associated to the corresponding aggregated fuel reported in the third row. For 

each aggregated fuel, the energy consumption spit by transport category is 

then reported in the table. The three largest values of consumption are diesel 

for road transport (1018.65 PJ), motor gasoline for road transport (555.76 PJ), 

and kerosene for international aviation (134.47 PJ). 
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Table 21. IEA statistics, aggregated fuels for transports sector. 

 IEA statistics by aggregated fuels 𝐄𝐚𝐟 [𝐏𝐉] 
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International aviation     0.01 134.47  

 

0.25 

Domestic aviation    0.70 31.51  0.08 

Road 6.73 17.31 45.40 555.76 

  

1018.65  

Rail 

 

   4.77 15.75 

Domestic navigation    10.05 0.12 

Non-specified transports     20.59 

Bunkers    25.96 117.76  
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A higher level of detailed will be now performed concerning “Road” 

and “Rail” categories. Indeed, different transportation modes are present in 

those categories, with different techno-economic features. For this reason, a 

further splitting is done, as usual with share factors [14] (reported in Table 22) 

and the subsequent multiplication (Equation 13) to obtain split energy values 

for every transportation mode, collected in Table 23. 

Etm, af [PJ] = ftm [%] ∗ Eaf [PJ] (13) 

Table 22. Share factors for transportation modes. 

 Share factors for transportation modes 𝐟𝐭𝐦 [%] 

Transport modes 
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Light Duty Vehicles Share 29.20 90.00 100.00 97.00   29.20  0.00 

Cars 100.00 100.00 100.00 87.75   100.00  100.00 

Two Wheels    12.25      

Other Road Vehicles 70.80 10.00 0.00 3.00   70.80  100.00 

Bus 0.83 100.00     9.32  100.00 

Heavy Trucks 1.08      37.00   

Medium Trucks 15.24      15.50   

Commercial Trucks 82.85   100.00   38.18   

R
ai

l Freight       67.00  67.00 

Passengers       33.00  33.00 
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Table 23. Splitting by transportation mode. 

Transportation modes 

Splitting by transportation modes 𝐄𝐭𝐦, 𝐚𝐟 [𝐏𝐉] 
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 International aviation     0.01 134.47    

Domestic aviation     0.70 31.51    
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Cars 1.97 15.58 45.40 473.04   297.45   

Two wheels    66.05      

Bus 0.04 1.73     67.23   

Heavy trucks 0.05      266.85   

Medium trucks 0.73      111.79   

Commercial trucks 3.95   16.67   275.34   

R
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l Freight       3.20  10.56 

Passengers       1.57  5.20 

N
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Domestic navigation       10.05   

Bunkers       25.96 117.76  

 

In Table 24 all the technologies modelled to satisfy each energy service 

are listed, with specifications about input commodity, share of input 

commodity consumption (i.e., the fraction of input commodity energy 

consumption that is due to the technologies, it is less than 100 if more than one 

technology use the same fuel) and final energy.
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Table 24. Demand-side transports technologies by transportation modes. 
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𝐟[ 𝐏
𝐉]  

Air 

International 

aviation 

International aircraft 100 Kerosene 134.47 

International aircraft 100 Aviation Gasoline 0.01 

Domestic 

aviation 

Domestic aircraft 100 Kerosene 31.51 

Domestic aircraft 100 Aviation Gasoline 0.70 

Road 

Cars 

Gasoline car 100 Gasoline 473.04 

Diesel car 100 Diesel 297.45 

LPG car 100 LPG 45.40 

Natural gas car 100 Natural gas 15.58 

Biodiesel car 100 Biodiesel 1.97 

Three 

wheels 
Other electric transports 100 Electricity 20.59 

Two wheels 
Moped 32 

Gasoline 
21.14 

Motorcycle 68 44.91 

Bus 

Diesel bus 100 Diesel 67.23 

Natural gas bus 100 Natural gas 1.73 

Biodiesel bus 100 Biodiesel 0.04 

Heavy 

trucks 

Diesel heavy trucks 100 Diesel 266.85 

Biodiesel heavy trucks 100 Biodiesel 0.05 

Medium 

trucks 

Diesel medium truck 100 Diesel 111.79 

Biodiesel medium truck 100 Biodiesel 0.73 

Commercial 

trucks 

Gasoline commercial trucks 100 Gasoline 16.67 

Diesel commercial trucks 100 Diesel 275.34 

Biodiesel commercial trucks 100 Biodiesel 3.95 

Rail 

Freight 
Freight diesel train 100 Diesel 3.20 

Freight electric train 100 Electricity 10.56 

Passengers 
Passengers diesel train 100 Diesel 1.57 

Passengers electric train 100 Electricity 5.20 

Navigation 

Domestic 

navigation 
Domestic navigation ship 100 Diesel 10.05 

Bunkers 

International navigation ship 100 Diesel 25.96 

International navigation 

HFO ship 
100 Heavy Fuel Oil 117.76 
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Appropriate conversion factors [14] are required to evaluate the 

transport service demands from final energy for each technology (derived 

according to Equation 14). The factors are unitary and dimensionless for 

service demands assumed equal to the relating energy consumption, while 

they represent an efficiency of conversion for the service demands quantified 

in Bv ∗ km (billion vehicles kilometer). Those factors are listed for each 

technology in Table 25, with the correspondent calculated service demand 

(according to Equation 15). 

Etech,tm,af[PJ] = ftech[%] ∗ Etm,af[PJ] (14) 

DTRA = effconv ∗ Etech,tm,af[PJ] (15) 
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Table 25. Conversion factors and service demands for transport technologies. 

Transportation mode Technology 
Conversion 

factor 𝐞𝐟𝐟𝐜𝐨𝐧𝐯 

Service 

demand 𝐃𝐓𝐑𝐀 

Air 

International 

aviation 

International aircraft 1.000 134.47 PJ 

International aircraft 1.000 0.01 PJ 

Domestic 

aviation 

Domestic aircraft 1.000 31.51 PJ 

Domestic aircraft 1.000 0.70 PJ 

Road 

Cars 

Gasoline car 0.299 Bvkm/PJ 141.35 Bvkm 

Diesel car 0.362 Bvkm/PJ 107.81 Bvkm 

LPG car 0.247 Bvkm/PJ 11.19 Bvkm 

Natural gas car 0.274 Bvkm/PJ 4.26 Bvkm 

Biodiesel car 0.442 Bvkm/PJ 0.87 Bvkm 

Three wheels Other electric transports 1.000 21.03 PJ 

Two wheels 
Moped 1.315 Bvkm/PJ 27.79 Bvkm 

Motorcycle 1.026 Bvkm/PJ 46.09 Bvkm 

Bus 

Diesel bus 0.052 Bvkm/PJ 3.53 Bvkm 

Natural gas bus 0.038 Bvkm/PJ 0.07 Bvkm 

Biodiesel bus 0.056 Bvkm/PJ 0.00 Bvkm 

Heavy trucks 
Diesel heavy trucks 0.045 Bvkm/PJ 11.97 Bvkm 

Biodiesel heavy trucks 0.027 Bvkm/PJ 0.00 Bvkm 

Medium trucks 
Diesel medium truck 0.090 Bvkm/PJ 10.09 Bvkm 

Biodiesel medium truck 0.090 Bvkm/PJ 0.07 Bvkm 

Commercial 

trucks 

Gasoline commercial trucks 0.241 Bvkm/PJ 4.02 Bvkm 

Diesel commercial trucks 0.276 Bvkm/PJ 76.10 Bvkm 

Biodiesel commercial 

trucks 
0.276 Bvkm/PJ 1.09 Bvkm 

Rail 

Freight 
Freight diesel train 1.000 3.20 PJ 

Freight electric train 1.000 10.56 PJ 

Passengers 
Passengers diesel train 1.000 1.57 PJ 

Passengers electric train 1.000 5.20 PJ 

Navigation 

Domestic 

navigation 
Domestic navigation ship 1.000 10.05 PJ 

Bunkers 

International navigation 

ship 
1.000 25.96 PJ 

International navigation 

HFO ship 
1.000 117.76 PJ 



58 

 

The total service demand for each end-use is given by the sum of final 

services produce by all the technologies related to the same end-use. Results 

are reported in Table 26. It is clear for the results that, for instance, the higher 

energy consumption for aviation is related to international flights, cars 

represent the highest final demand in road category in terms of Bv ∗ km and 

about two thirds of rail energy consumption is due to freight transport. 

Table 26. Service demands for transports sector. 

End-use 𝐃𝐬𝐞𝐫𝐯 

International aviation 134.48 PJ 

Domestic aviation 32.21 PJ 

Cars 344.24 Bv ∗ km 

Two wheels 55.67 Bv ∗ km 

Bus 6.29 Bv ∗ km 

Heavy trucks 29.80 Bv ∗ km 

Medium trucks 18.94 Bv ∗ km 

Commercial trucks 84.57 Bv ∗ km 

Freight 13.75 PJ 

Passengers 6.77 PJ 

Domestic navigation 10.05 PJ 

Bunkers 143.72 PJ 

Others 21.03 PJ 

Figure 7 summarizes data organization and interactions, from IEA 

statistics to the calculation of service demand. 
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Figure 7. Flow-chart for the evaluation of service demand in the transport sector. Associated to each 

step are specified the involved equations, as listed in this report. 

Eventually, the computation of emission factors from residential sector 

leads to the values that follow in Table 27. In this case, the highest CO2 emission 

factor is associate to diesel and heavy fuel oil, even higher than gasoline one. 

It is known that, for example, gasoline cars emit more CO2 per unit of kilometer 

traveled than diesel cars and it could seem to be contradictory with these 

results, but it should be noted that that is not due to the fuel chemical 

composition (associated to the computed emission factors) but to the higher 

efficiency of the diesel engine with respect to the gasoline one. 

Table 27. Emission factors for transports sector-specific fuels. 

Commodity 

Emission factors [𝐤𝐭/𝐏𝐉] 

Natural gas LPG Gasoline 
Aviation 

Gasoline 
Kerosene Diesel 

Heavy 

fuel oil 
Methanol Ethanol 

CO2 56.10 63.07 69.30 69.30 71.50 74.07 74.07 0.00 0.00 

CH4 1.10 1.18 6.92 60.00 5.53 1.32 1.32 0.02 0.02 

N2O 1.00 9.00 6.60 6.86 6.10 3.36 3.36 0.00 0.00 

Eq. 3  

Eq. 13  

Eq. 14  

Eq. 15  
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2.2.1.5. Industry 

Base year energy consumptions for the industrial sector are collected 

from IEA energy statistics, as for the other sectors. In order to assess industrial 

energy use, 10 subsectors are identified, as listed in Table 28. 

Table 28. Industry subsectors. 

Industry subsectors 

Chemicals 

Iron and steel 

Non-ferrous metals 

Non-metallic minerals 

Pulp and paper 

Other industries 

Non-specified industry 

Chemical feedstocks 

Non-energy uses 

Non-energy others 

The first operation is to aggregate fuel consumptions to obtain data 

with a lower number of fuels for a simpler elaboration. This is done, as for 

other sectors, accordingly to Equation 3 and results are contained in Table 29. 

In the table header, the IEA fuels (according to the classification adopted in 

[17]) are listed in the second row and they are associated to the corresponding 

aggregated fuel reported in the third row.
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Table 29. Energy consumption from IEA statistics by aggregated fuels of industrial energy-intensive subsectors. 

Subsectors 

Energy consumption by aggregated fuels 𝐄𝐚𝐟 [𝐏𝐉] 
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Iron and steel 78.09 78.98 1.10 13.80 69.34 0.18 3.48 0.38   0.13  0.24 

Non-ferrous metals 20.71 16.67 0.87 0.05 0.46  2.00 0.34     0.02 

Chemicals 67.83 109.03 1.20 0.08 0.17  15.84 11.63 6.19  0.32  43.45 

Pulp and paper 39.17 36.78 0.41    8.08 0.94     30.92 

Non-metallic minerals 53.80 146.99 6.62 24.97 0.17  17.16 2.17   106.21 8.30 4.74 

Other industries 207.44 196.47 6.76    55.44 13.63    0.65 18.75 

Non-specified industry 63.54 32.08 1.10  0.41  14.76 1.58    2.60 22.70 

Chemical feedstocks  39.61 0.64    18.48 42.20 19.40 124.52    

Non-energy uses       153.44       

Non-energy others    7.03   14.84       
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A higher level of detail is used for the representation of the industrial 

sector. Particularly, a breakout in different energy services is performed for 

the following subsectors: iron and steel, non-ferrous metals, chemicals, pulp 

and paper, non-metallic minerals, other industries. The energy services chosen 

for the breakout are steam, process heat, machine drive, electro-chemical 

processes, feedstocks, and others. Each of those energy services consumes 

fuels as inputs and produces its correspondent energy-service output industry 

specific-commodity. The energy service output is then the input for the 

subsector-specific technologies, that produce the required industrial products. 

For this reason, before applying the technology-specific efficiency, a splitting 

by energy service is necessary to differentiate energy consumption not only by 

fuels and industrial energy-intensive subsectors, but also by different energy 

services of the same subsector. 

An exception to the mechanism just explained, for which fuels are used 

to produce the energy services (representing the inputs for the technologies 

that satisfy final industrial demand), is constituted by the process heat energy 

service. Indeed, no intermediate commodities are defined for that service, but 

fuels are connected directly and separately to the industrial technologies to 

produce final products. However, for pulp and paper and other industries 

sectors and intermediate commodity is used collecting the process heat energy 

service and consumed by the production technologies. 

The breakout by energy services is done, as usual, adopting share 

factors [14] for the splitting of consumptions in every subsector by each single 

energy service. The share factors assumed for this operation are shown in 

Table 30. Th splitting is governed by Equation 16, where fes [%] is the energy 

service share factor, and Ces, af [PJ] is the resulting consumption for the 

correspondent energy service. The resulting values are reported in Table 31. 

Ees, af [PJ] = fes [%] ∗ Eaf [PJ] (16) 
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Before applying the subsector-specific technological parameter, another 

step is necessary. Indeed, the “steam” and “machine drive” energy services 

are not described in a separate way for each subsector, but in two sheets 

dedicated to total industrial energy consumption for such services, so it is 

necessary to know the total energy consumption assigned to each energy 

service (not differentiated by subsector). Results are obtained from Equation 

17 and shown in Table 32, where energy consumption is reported split by fuel, 

energy service and industrial subsector. The energy service labeled as “other” 

is used to collect the energy consumption non-associated to the five specified 

energy services (steam, process heat, machine drive, electro-chemical process 

and feedstocks). 

Etot,es[PJ] = ∑ Ees,af [PJ]

i

 (17) 
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Table 30. Fractional shares for industrial energy services. 

Energy-intensive subsector Energy services 

Fractional shares for industrial energy services 𝐟𝐞𝐬 [%] 
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Chemicals 

Steam  45  100  100 30     100 

Process Heat  20     15 7     

Machine Drive 65       3     

Electro-Chemical Process 25            

Feedstocks             

Other 10 35 100 0 100 0 55 90 100 100 100 0 

Iron and steel 

Steam  15 15    15 15    100 

Process Heat 40 85 85 100  100 85 85     

Machine Drive 47            

Electro-Chemical Process             

Feedstocks     100    100 100   

Other 13 0 0 0 0 0 0 0 0 0 100 0 

Continued on page 65 
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Continued from page 64 

Non-ferrous metals 

Steam  10  25  100 25 25   100 100 

Process Heat  85 100 75 70  75 75     

Machine Drive 10            

Electro-Chemical Process 85            

Feedstocks     10        

Other 5 5 0 0 20 0 0 0 100 100 0 0 

Non-metallic minerals 

Steam  10    100 20 35    100 

Process Heat 20 85 90 100   80 47  100 100  

Machine Drive 70       8     

Electro-Chemical Process             

Feedstocks             

Other 10 5 10 0 100 0 0 10 100 0 0 0 

Pulp and paper 

Steam  93 85 100  100 95 90   100 100 

Process Heat 3 7     5 5     

Machine Drive 94            

Electro-Chemical Process             

Feedstocks             

Other 3 0 15 0 100 0 0 5 100 100 0 0 

Other industries 

Steam  10 10 35   30 30   100 100 

Process Heat  90 90 65  100 70 70     

Machine Drive 85            

Electro-Chemical Process             

Feedstocks             

Other 15 0 0 0 100 0 0 0 100 100 0 0 
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Table 31. Breakout by energy services for industrial sector. 

Energy-intensive subsector Energy service 

Breakout by energy services 𝐄𝐞𝐬, 𝐚𝐟 [𝐏𝐉] 
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Chemicals 

Steam  49.06  0.08  0.00 4.75     43.45 

Process Heat  21.81     2.38 0.81     

Machine Drive 44.09       0.35     

Electro-Chemical Process 16.96            

Feedstocks             

Other 6.78 38.16 1.20 0.00 0.17 0.00 8.71 10.46 6.19 0.32 0.00 0.00 

Iron and steel 

Steam  11.85 0.17    0.52 0.06    0.24 

Process Heat 31.46 67.14 0.94 13.80  0.18 2.96 0.33     

Machine Drive 36.56            

Electro-Chemical Process             

Feedstocks     69.34    0.00 0.13   

Other 10.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Continued on page 67 
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Continued from page 66 

Non-ferrous metals 

Steam  1.67  0.01  0.00 0.50 0.09   0.00 0.02 

Process Heat  14.17 0.87 0.04 0.32  1.50 0.26     

Machine Drive 2.07            

Electro-Chemical Process 17.61            

Feedstocks     0.05        

Other 1.04 0.83 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Non-metallic minerals 

Steam  14.70    0.00 3.43 0.76    4.74 

Process Heat 10.76 124.94 5.96 24.97   13.73 1.02  106.21 8.30  

Machine Drive 37.66       0.17     

Electro-Chemical Process             

Feedstocks             

Other 5.38 7.35 0.66 0.00 0.17 0.00 0.00 0.22 0.00 0.00 0.00 0.00 

Pulp and paper 

Steam  34.20 0.35 0.00 0.00 0.00 7.68 0.84   0.00 30.92 

Process Heat 1.13 2.57     0.40 0.05     

Machine Drive 36.91            

Electro-Chemical Process             

Feedstocks             

Other 1.13 0.00 0.06 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 

Other industries 

Steam  19.65 0.68 0.00   16.63 4.09   0.65 18.75 

Process Heat  176.82 6.09 0.00  0.00 38.81 9.54     

Machine Drive 176.33            

Electro-Chemical Process             

Feedstocks             

Other 31.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 32. Total industrial energy consumption by energy services for chemicals, iron and steel, non-ferrous metals, non-metallic minerals, pulp and paper and other 

industries. 

Energy services 

Total energy consumption by energy services 𝐄𝐭𝐨𝐭,𝐞𝐬 [𝐏𝐉] 

E
le

ct
ri

ci
ty

 

N
at

u
ra

l 
G

as
 

L
P

G
 

C
o

al
 

C
o

k
e 

B
la

st
 f

u
rn

ac
e 

g
as

 

H
ea

v
y

 f
u

el
 o

il
 

O
il

 

E
th

an
e 

P
et

ro
le

u
m

 c
o

k
e 

B
io

m
as

s 

H
ea

t 

Steam  131.13 1.19 0.09   33.51 5.83   0.65 98.12 

Process Heat 43.35 407.45 13.86 38.81 0.32 0.18 59.77 12.00  106.21 8.30  

Machine Drive 333.62       0.52     

Electro-Chemical Process 34.56            

Feedstocks     69.39     0.13   

Other 55.52 46.34 1.92  0.44  8.71 10.73 6.19 0.32   
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In Figure 8, the main operations regarding the industrial sector are 

summarized. 

  

Figure 8. Flow-chart for the evaluation of energy service demand in the industrial sector. Associated 

to each step are specified the involved equations, as listed in this report. 

For what concerns the industry sector-specific emission factors, they are 

evaluated as for other sectors, according to Equation 2. As anticipated, for the 

industrial sector also the emission of SOX is considered, and the correspondent 

emission factors are calculated for LPG, coal, coke, heavy fuel oil, oil, ethane 

and petroleum coke. The results are reported in Table 33, where high values 

Eq. 3 

Eq. 16  

Eq. 17 

Eq. 18 

Eq. 20 

Eq. 23 
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of CO2 emission are associated to coal and petroleum coke, while it is zero for 

biomass. As already seen for commercial and residential sector, biomass is 

characterized by a high CH4 emission factor. 

Table 33. Emission factors for industry sector-specific fuels. 

Commodity 

Emission factors [𝐤𝐭/𝐏𝐉] 

Natural 

gas 
LPG Coal Coke 

Blast 

furnace gas 

Heavy 

fuel oil 
Oil Ethane 

Petroleum 

coke 
Biomass 

CO2 56.10 63.10 98.30 94.60 0.00 77.40 72.00 54.10 100.50 0.00 

CH4 5.00 5.00 5.00 5.00 5.00 2.00 2.00 5.00 5.00 300.00 

N2O 0.10 0.10 1.40 1.40 1.40 0.60 0.60 0.10 1.40 4.00 

SOX  0.57 1.20 1.20  0.57 0.57 0.57 0.57  

As anticipated, the next steps of the conversion towards the evaluation 

of service demands are slightly different for “steam” and “machine drive”, 

and again different computations are done for the different industrial energy-

intensive subsectors. For that reason, it is useful to examine separately for each 

subsector which are the required operations. 

  

2.2.1.5.1. Steam 

From Table 32 it is possible to read the total final energy consumed by 

fuel for steam production  Es,fe. From those values, the values of useful energy 

Es,ue are derived, simply multiplying by the correspondent boiler efficiency 

efftech,s (Equation 18). The results of this first step are reported in Table 34. The 

results are then added together (Equation 19) to obtain the total service 

demand for the “steam” energy service  Ds  which amounts to 234.83 PJ. The 

total demand is split (Equation 20) assigning a fraction of it to the ith subsector 

Ds,i, according to the consumption share fs,cons, in terms of final energy 

consumed. The derived service demands for each subsector are shown in 

Table 35, highlighting that the major steam consumption are related to 

“chemicals” and “pulp and paper” subsectors. 

Es,ue [PJ] = efftech,s [%] ∗ Es,fe [PJ] (18) 
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Ds [PJ] = ∑ Es,ue [PJ] (19) 

Ds,i [PJ] = fs,cons [%] ∗ Ds [PJ] (20) 

Table 34. Final energy, efficiencies, and useful energy for "steam" energy-service. 

Fuel 𝐄𝐬,𝐟𝐞[𝐏𝐉] 𝐞𝐟𝐟𝐭𝐞𝐜𝐡,𝐬[%] 𝐄𝐬,𝐮𝐞[𝐏𝐉] 

Natural gas 131.13 82 107.52 

LPG 1.19 82 0.98 

Coal 0.09 82 0.08 

Heavy fuel oil 33.51 82 27.48 

Oil 5.83 82 4.78 

Biomass 0.65 82 0.53 

Heat 98.12 100 98.12 

Table 35. Splitting by different subsectors of “steam” service demand. 

Subsector 𝐃𝐬,𝐢 [𝐏𝐉] 

Chemicals 86.18 

Iron and steel 11.36 

Non-ferrous materials 2.02 

Non-metallic minerals 20.92 

Pulp and paper 65.51 

Other industries 53.51 
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2.2.1.5.2. Machine drive 

For what concerns the “machine drive” service, the operations to be 

performed are very similar to what just seen for steam production. From Table 

32 it is possible to read the total final energy consumed from “machine drive” 

technologies differentiated by fuel Emd,fe. Starting from those values, useful 

energy Emd,ue are derived, simply multiplying by the correspondent efficiency 

efftech,md[%] (Equation 18). This first step is reported in Table 36. The results 

are then added together (Equation 19) to obtain the total service demand for 

“machine drive”  Dmd, that amounts to 287.09 PJ. The total demand is split 

(Equation 20) assigning a fraction of it to the ith subsector Dmd,i, according to 

the share of consumption fmd,cons in terms of final energy consumed. The 

derived service demands for every subsector are shown in Table 37, 

highlighting that the major steam consumption are related to “other 

industries” and “chemicals” subsectors. 

Table 36. Final energy, efficiencies, and useful energy for "machine drive". 

Fuel 𝐄𝐦𝐝,𝐟𝐞[𝐏𝐉] 𝐞𝐟𝐟𝐭𝐞𝐜𝐡,𝐦𝐝[%] 𝐄𝐦𝐝,𝐮𝐞[𝐏𝐉] 

Electricity 333.62 86% 286.91 

Oil 0.52 35% 0.18 

Table 37. Splitting by different subsectors of “machine drive” service demand. 

Subsector 𝐃𝐦𝐝,𝐢 [𝐏𝐉] 

Chemicals 38.18 

Iron and steel 31.41 

Non-ferrous materials 1.78 

Non-metallic minerals 32.51 

Pulp and paper 31.71 

Other industries 151.50 
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2.2.1.5.3. Chemicals 

In TIMES-Italia [14], the chemical sector is very simply described, with 

only one fictitious production technology consuming all the fuels related to 

the sector and producing the chemical service demand (assumed to be equal 

to the total energy consumption of the sector, in other words with unitary 

efficiency for the production technology). 

A more detailed techno-economic modeling of the sector was desired, 

in order to have a precise distinction between the several chemical products 

produced and the related technologies producing them, characterized 

properly and independently one each other. To achieve this goal, a new 

calibration of the base year for the chemical sector has been performed, taking 

as a reference for the techno-economic technologies characterization the 

EUROfusion TIMES Model (ETM) [21], an international energy system model 

developed by EUROfusion consortium [22]. 

Five main chemical products are considered for the calibration: olefins, 

aromatics (BTX), ammonia, methanol, and chlorine. A sixth commodity is 

produced by a dedicated base year technology, namely “other chemicals”, 

collecting the residual energy consumption between the resulting from energy 

balances and the base year technologies consumption. 

First of all, the amount of chemical products produced at base year has 

to be quantified.  

Table 38. Chemical production statistics (from [23] and [24]). 

Chemical 

product 

Production 2006 production 
𝐂𝐩𝐫𝐨𝐝 [𝐌𝐭] [Mt] Year Reference 

Olefins 2.98 2017 [23] 2.94 

Aromatics (BTX) 0.81 2017 [23] 0.80 

Ammonia 0.60 2010 [24] 0.64 

Methanol 0.05 2017 [23] 0.05 

Chlorine 0.20 2010 [24] 0.21 
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Once the production Cprod of chemical products is known, assuming 

appropriate conversion factors it is possible to estimate the energy 

consumption required to produce each product. The calibration has been 

performed assuming the same conversion factors effconv of ETM [21], 

evaluating consequently the energy services Ees (according to Equation 22) 

and assigning to the sixth chemical subsector (other chemical) the residual 

energy consumption. 

Table 39 summarizes the main results of the calibration. It should be 

noted that the higher total energy consumption within “chemicals” id due to 

olefins production (220.68 PJ). Also, the efficiencies of olefins and aromatics 

production are very similar (75.18 PJ/Mt and 73.21 PJ/Mt), being the aromatics 

byproducts of the olefins production. 

Ees [PJ] = effconv [PJ/Mt] ∗ Cprod[Mt] (21) 



75 

 

Table 39. Calibration and techno-economic characterization of chemical sector base year. 

Chemical 

product 
Energy service Fuel 

Share factors for 

energy services 

𝐟𝐭𝐞𝐜𝐡 [%] 

Energy service 

𝐄𝐞𝐬 [𝐏𝐉] 

Conversion 

factors 

𝐞𝐟𝐟𝐜𝐨𝐧𝐯 [𝐏𝐉/𝐌𝐭] 

Olefins 

Electro-chemical  12.7 2.15 0.73 

Process heat 

Natural Gas 27.2 16.29 5.55 

LPG 87.8 1.05 0.36 

Heavy fuel oil 57.5 6.37 2.17 

Oil 46.3 5.22 1.78 

Ethane 48.9 3.02 1.03 

Feedstocks  63.2 154.61 52.67 

Steam  37.0 31.86 10.85 

Machine drive  0.3 0.11 0.04 

Total  220.68 75.18 

Aromatics 

(BTX) 

Electro-chemical  2.7 0.46 0.57 

Process heat 

Natural Gas 4.3 2.60 3.26 

LPG 18.7 0.22 0.28 

Heavy fuel oil 12.3 1.36 1.70 

Oil 9.9 1.11 1.39 

Ethane 20.8 1.29 1.62 

Feedstocks  17.2 42.16 52.85 

Steam  10.6 9.11 11.42 

Machine drive  0.3 0.10 0.12 

Total  58.41 73.21 

Ammonia 

Electro-chemical  3.4 0.58 0.91 

Process heat Natural Gas 33.0 19.81 31.04 

Feedstocks  3.5 8.65 13.56 

Steam  14.2 12.25 19.19 

Machine drive  1.5 0.56 0.88 

Total  41.86 65.57 

Methanol 

Electro-chemical  0.2 0.03 0.69 

Process heat Natural Gas 1.4 0.81 16.39 

Feedstocks  0.3 0.76 15.38 

Steam  0.9 0.73 14.92 

Machine drive  0.2 0.07 1.47 

Total  2.41 48.86 

Chlorine 

Electro-chemical  13.4 2.26 10.64 

Steam  0.5 0.41 1.93 

Machine drive  0.2 0.06 0.28 

Total  2.73 12.85 

Other 

chemicals 

Electro-chemical  67.6 11.47 0.71 

Feedstock  15.8 38.67 2.41 

Steam  36.9 31.82 1.98 

Steam  97.6 37.28 2.32 

Machine drive  100.0 41.30 2.57 

Total  160.53 10.00 
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For each energy service, service-specific technologies are used to 

convert fuel consumption into energy service demands (that are the inputs for 

technologies that produce final industrial products). In Table 40 all those 

technologies are listed – organized by energy service – with their input 

commodity and final energy consumption. 

Table 40. Demand-side chemical technologies by energy services. 

Energy 

service 
Technology description Input commodity Final energy [𝐏𝐉] 

Electro-

chemical 
Chemical – Electro-chemical – Electricity Electricity 16.96 

Feedstock 

Chemical – Feedstock – Natural gas Natural gas 39.61 

Chemical – Feedstock – LPG LPG 0.64 

Chemical – Feedstock – Kerosene Kerosene 8.69 

Chemical – Feedstock – Heavy fuel oil Heavy fuel oil 17.32 

Chemical – Feedstock – Distillate Distillate 27.26 

Chemical – Feedstock – Oil Oil 1.16 

Chemical – Feedstock – Gasoline Gasoline 6.25 

Chemical – Feedstock – Naphtha Naphtha 124.52 

Chemical – Feedstock – Refinery gas Refinery gas 19.40 

Other 

Chemical – Others – Heavy fuel oil Heavy fuel oil 3.36 

Chemical – Others – Oil Oil 4.95 

Chemical – Others – Natural gas Natural gas 20.45 

Chemical – Others – Coke Coke 0.17 

Chemical – Others – Ethane Ethane 1.87 

Chemical – Others – Electricity Electricity 10.17 

Chemical – Others – Petroleum coke Petroleum coke 0.32 
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2.2.1.5.4. Iron and steel 

The “iron and steel” subsectors produces steel as end-use demand 

commodity. Steel production values are known from industrial production 

statistics. Two technologies are present at the base year: basic oxygen furnace 

(BOF), producing 11.82 Mt, and electric arc furnace (EAF), producing 

19.80 Mt. Final energy consumptions Ees,af  are reported in Table 31 and they 

are used to derive (Equation 22) the energy service demands Eserv [PJ], 

assuming appropriate share factors ftech to split by technology; the final step 

involves the calculation of conversion factors between energy service 

demands and industrial products (Equation 23). 

The main results are reported in Table 41, where values are 

differentiated by technology, energy service demand and consumed fuel (the 

specification of fuel is necessary for the process heat service demand, since a 

dedicated technology is not defined for process heat in iron and steel, but the 

fuel consumption are reported directly from statistics, separately).Concerning 

the share factors for service demands, it should be noted that some of the listed 

fuels (for the process heat service) are present only for one of the two 

technologies. In these cases, the factor is unitary for the other technology, and 

the sum of correspondent factors for BOF and EAF is equal to 100%. An 

exception in the previous reasoning is the splitting of natural gas energy 

consumption, that is fixed equal to 6.56 PJ for the EAF, and consequently its 

consumption for BOF is the difference between the total consumption of 

natural gas for “process heat” in “iron and steel” (from Table 31) and this 

value. 

Ees [PJ] = ftech [%] ∗ Ees,af [PJ] (22) 

effconv [Mt/PJ] = P [Mt]/Ees [PJ] (23) 
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Table 41. Calibration and techno-economic characterization of “iron and steel” sector base year. 

Technology Energy service Fuel 

Share factors for 

energy service 

demands 𝐟𝐭𝐞𝐜𝐡 [%] 

Energy 

service 

𝐄𝐞𝐬 [𝐏𝐉] 

Conversion 

factors 

𝐞𝐟𝐟𝐜𝐨𝐧𝐯 [𝐌𝐭/𝐏𝐉] 

Basic oxygen 

furnace 

Steam  46 5.18 0.44 

Process heat 

Natural Gas  60.57 5.12 

Coal 50 6.90 0.58 

Blast Furnace 

Gas 
100 0.18 0.02 

Heavy Fuel Oil 100 2.96 0.25 

LPG 100 0.94 0.08 

Machine drive  30 9.50 0.80 

Feedstocks  90 62.83 5.31 

Others  37 3.77 0.32 

Total  152.83 0.08 

Electric arc 

furnace 

Steam  54 6.18 0.31 

Process heat 

Natural Gas  6.56 0.33 

Coal 50 6.90 0.35 

Electricity 100 31.46 1.59 

Oil 100 0.33 0.02 

Machine drive  70 21.91 1.11 

Feedstocks  10 6.63 0.33 

Others  63 6.31 0.32 

Total  86.28 0.23 

For each energy service, service-specific technologies are used to 

convert fuel consumption into energy service demands (that are the inputs for 

technologies that produce final industrial products). In Table 42 all those 

technologies are listed, along with their input commodity and final energy 

consumption. Obviously, the total production of “feedstocks” and “other” 

energy services equals their consumption by production technologies listed in 

Table 41. 

Table 42. Demand-side iron and steel technologies by energy services. 

Energy service Technology description Input commodity Final energy [𝐏𝐉] 

Feedstocks 
Iron and steel – Feedstocks – Coke Coke 69.34 

Iron and steel – Feedstocks – Petroleum coke Petroleum coke 0.13 

Other Iron and steel – Others – Electricity Electricity 10.08 



79 

 

2.2.1.5.5. Non-ferrous metals 

The “non-ferrous metals” subsector produces a single end-use demand 

commodity (“non-ferrous metals production”, measured in Mt) representing 

the production of aluminum, copper, zinc and “other non-ferrous metals”. 

Table 43 lists the numeric parameters involved in the techno-economic 

characterization of “non-ferrous metals” industrial subsector [21]. Conversion 

factors effconv are used to describe the efficiency of existing technologies to 

produce non-ferrous metals (aluminum, copper, zinc and “other non-ferrous 

metals”), while share factors ftech are used to match the energy services 

required by each technology with the energy consumptions derived by IEA 

statistics. 

Table 43. Calibration and techno-economic characterization of "non-ferrous metals" sector base year. 

Non-ferrous 

metal 
Energy service Fuel 

Share factors for 

energy services 

𝐟𝐭𝐞𝐜𝐡 [%] 

Energy 

service 

𝐄𝐞𝐬 [𝐏𝐉] 

Conversion 

factors 

𝐞𝐟𝐟𝐜𝐨𝐧𝐯 [𝐏𝐉/𝐌𝐭] 

Aluminum 

Electro-chemical  10.69 1.06 0.51 

Process heat 
Natural Gas 56.92 8.54 4.07 

Heavy fuel oil 0.31 0.31 0.15 

Total  9.91 4.72 

Copper 

Electro-chemical  47.3 4.70 11.90 

Process heat 

Natural Gas 17.3 2.59 6.55 

Coal 100.0 0.04 0.10 

Coke 100.0 0.46 1.17 

Heavy fuel oil 47.0 0.71 1.79 

Steam  71.7 1.45 3.67 

Total  9.95 25.18 

Zinc 

Electro-chemical  42.0 4.17 11.06 

Process heat 
Natural Gas 6.0 0.89 2.37 

Heavy fuel oil 32.5 0.49 1.29 

Steam  28.4 0.57 1.52 

Machine drive  28.6 0.51 1.35 

Total  6.63 17.59 

Other non-

ferrous metals 

Machine drive  71.4 1.27 0.90 

Other  100.0 12.82 9.10 

Total  14.09 10.0 
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For each energy service, service-specific technologies are used to 

convert fuel consumption into energy service demands (that are the inputs for 

technologies producing final industrial products). In Table 44 all those 

technologies are listed – organized by energy service – with their input 

commodity and final energy consumption. Obviously, the total production of 

“electro-chemical” and “other” energy services equals their consumption by 

production technologies listed in Table 43. 

Table 44. Demand-side non-ferrous metals technologies by energy services. 

Energy service Technology description 
Input 

commodity 

Final energy 

[𝐏𝐉] 

Electro-chemical Non-ferrous metals – Electro-chemical – Electricity Electricity 9.93 

Other 

Non-ferrous metals – Others – Electricity Electricity 8.71 

Non-ferrous metals – Others – Oil Oil 0.26 

Non-ferrous metals – Others – Natural gas Natural gas 2.98 

Non-ferrous metals – Others – LPG LPG 0.87 
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2.2.1.5.6. Non-metallic minerals 

The “non-metallic minerals” subsector is based on dedicated statistics 

for what concerns splitting of energy consumption in the five technologies that 

are part of it producing: cement, lime, glass, and bricks. For this reason, only 

a summary of the results is here reported, in Table 45, where technologies, 

total production, energy consumed by energy service and consequent 

conversion factors (the specification of fuel is necessary for the process heat 

service demand, since a dedicated technology is not defined for process heat 

in iron and steel, but the fuel consumption are reported directly from statistics, 

separately) are shown. 

Table 45. Production, service demands and conversion factors for "non-metallic minerals”. 

Technology 
Production 

[Mt] 
Energy service Fuel 

Energy service 

𝐄𝐞𝐬 [𝐏𝐉] 

Conversion factors 

𝐞𝐟𝐟𝐜𝐨𝐧𝐯 [𝐏𝐉/𝐌𝐭] 

Wet cement 

kilns 
13.65 

Steam  0.34 0.03 

Process heat 

Natural Gas 0.80 0.06 

Coal 6.67 0.49 

Heavy Fuel Oil 3.50 0.26 

Petroleum coke 43.11 3.16 

Electricity 1.56 0.11 

Oil 0.76 0.06 

LPG 0.50 0.04 

Machine drive  5.54 0.41 

Others  0.40 0.03 

Dry cement 

kilns 
34.23 

Steam  0.13 0.00 

Process heat 

Natural Gas 0.20 0.01 

Coal 1.50 0.04 

Heavy Fuel Oil 0.30 0.01 

Petroleum coke 63.09 1.84 

Electricity 8.30 0.24 

Oil 3.01 0.09 

LPG 0.10 0.00 

Machine drive  10.69 0.31 

Others  0.77 0.02 

Continued on page 82 



82 

 

Continued from page 81 

Lime 6.13 

Steam  4.07 0.78 

Process heat 

Natural Gas 6.70 1.29 

Coal 10.70 2.06 

Heavy Fuel Oil 2.10 0.40 

Electricity 0.40 0.08 

LPG 5.37 1.03 

Machine drive  1.73 0.33 

Others  4.73 0.91 

Glass 6.54 

Steam  3.88 1.07 

Process heat 

Natural Gas 30.37 8.34 

Heavy Fuel Oil 1.91 0.53 

Electricity 0.82 0.22 

Machine drive  3.18 0.87 

Others  4.84 1.33 

Bricks 20.60 

Steam  12.50 2.06 

Process heat 

Natural Gas 86.87 14.29 

Coal 6.10 1.00 

Heavy Fuel Oil 5.92 0.97 

Electricity 0.27 0.04 

Oil 2.92 0.48 

Machine drive  11.37 1.87 

Others  3.05 0.50 

For each energy service, service-specific technologies are used to 

convert fuel consumption into energy service demands (that are the inputs for 

technologies that produce final industrial products). In Table 46 all those 

technologies are listed – organized by energy service – with their input 

commodity and final energy consumption. The only intermediate energy 

service produced for the non-metallic minerals subsector is "other". 

Table 46. Demand-side non-metallic minerals technologies by energy services. 

Energy service Technology description Input commodity Final energy [𝐏𝐉] 

Other 

Other – Non-metallic minerals – Oil Oil 0.22 

Other – Non-metallic minerals – Natural gas Natural gas 7.35 

Other – Non-metallic minerals – Coke Coke 0.17 

Other – Non-metallic minerals – Electricity Electricity 5.38 

Other – Non-metallic minerals – LPG LPG 0.66 
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2.2.1.5.7. Pulp and paper 

The “pulp and paper” subsector consists in three different technologies 

for pulp production, and one technology representing the “paper mill”, for 

production of paper (the end-use demand commodity) from pulp, which is 

then just an intermediate commodity used to generate the final production of 

paper of this subsector. The list of technologies and their production capacity 

at the base year are shown in Table 47. For this subsector, the splitting of 

energy service amounts to different technologies is done according to factor 

shares ftech [%] that are taken from statistics specific to the paper production 

[14], as Table 48 shows. 

Table 47. Base year technologies and production demands for "pulp and paper”. 

Technology Final product Production [𝐌𝐭] 

Chemical pulp Pulp 0.15 

Mechanical pulp Pulp 0.35 

Recycled pulp Pulp 5.58 

Paper mill Paper 10.01 

As previously operated for “iron and steel”, Ees [PJ] and effconv [Mt/PJ] 

are derived according to Equation 22 and Equation 23.
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Table 48. Share factors for service demands, service demands and conversion factors for "pulp and 

paper”. 

Technology Energy service 

Share factors for 

service demands 

𝐟𝐭𝐞𝐜𝐡 [%] 

Energy 

service 

𝐄𝐞𝐬 [𝐏𝐉] 

Conversion 

factors 

𝐞𝐟𝐟𝐜𝐨𝐧𝐯 [𝐏𝐉/𝐌𝐭] 

Chemical pulp 

Steam 2.41 1.58 10.22 

Process heat 5.87 0.24 1.58 

Machine drive 0.97 0.31 2.00 

Mechanical pulp 
Steam -1.36 3 -0.89 3 -2.56 3 

Machine drive 7.22 2.29 6.59 

Recycled pulp 

Steam 1.74 1.14 0.20 

Process heat 6.62 0.28 0.05 

Machine drive 20.38 6.46 1.16 

Other 23.94 0.30 0.05 

Paper mill 

Steam 97.20 63.68 6.36 

Process heat 87.50 3.64 0.36 

Machine drive 71.42 22.65 2.26 

Other 76.06 0.94 0.09 

For each energy service, service-specific technologies are used to 

convert fuel consumption into energy service demands (that are the inputs for 

technologies that produce final industrial products). In Table 49 those 

technologies are listed (organized by energy services) with the final energy 

consumption. 

Table 49. Demand-side pulp and paper technologies by energy services. 

Energy service Technology description 
Input 

commodity 

Final energy 

[𝐏𝐉] 

Process heat 

Pulp and paper – Process heat – Heavy fuel oil Heavy fuel oil 0.40 

Pulp and paper – Process heat – Oil Oil 0.05 

Pulp and paper – Process heat – Natural gas Natural gas 2.57 

Pulp and paper – Process heat – Electricity Electricity 1.13 

Other 

Pulp and paper – Others – Oil Oil 0.05 

Pulp and paper – Others – Electricity Electricity 1.13 

Pulp and paper – Others – LPG LPG 0.06 

 

 

3 Consumption of steam for mechanical pulp is negative since steam is produced by the 

technology. 
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2.2.1.5.8. Other industries 

The “other industries” subsector collects the industrial energy 

consumptions of all other non-specified minor industrial subsectors (the end-

use demand commodity is named “other industries” and measured in PJ). All 

the values of service demands are simply assumed to be equal to the sum of 

energy consumption of all the fuels for the correspondent industrial energy 

services, written in Table 31. The resulting values of service demands for 

“other industries” subsectors are shown in Table 50. 

Table 50. Service demands and conversion factors for "other industries". 

Energy service Service demands 𝐃𝐬𝐞𝐫𝐯 [𝐏𝐉] 

Steam 53.51 

Process heat 231.26 

Machine drive 151.50 

Other 31.12 

TOTAL 467.38 
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2.2.2. New technologies 

In this section, an overview on the new technologies included in the 

current version of TIMES-Italia [14] is presented. In TIMES models, 

technologies characterized in “new technologies” templates are available to be 

installed after the base year and over the considered time horizon. The choice 

of which technologies are installed and introduced in the energy mix, is made 

from the algorithm on the basis of the economic optimization and under a set 

of technical constraints. 

To ensure that the base year technologies are progressively disposed of, 

usually other constraints are used, in particular the installed capacity is often 

constrained as maximum value to the 100% of the base year value at the 

beginning of the time horizon, and to 0 after a certain period of time (often in 

2020 or 2030), with the other values of maximum capacity obtained by 

interpolation. To produce the requested amounts of final service demands, 

additional capacity of new technologies is progressively installed from the 

new technology dataset. 

The main parameters characterizing the new technologies included in 

the model are: 

a. Efficiency (ratio between total output and total input 

commodities, possibly it is varying increasing over time). 

b. Investment cost. 

c. Fixed O&M cost. 

d. Variable O&M cost. 

e. Availability factor. 

f. First year of availability. 

g. Lifetime. 

For what concerns, for instance, agriculture sector, non-road transports 

and “other industries” industrial subsector, there are no new technologies 

available for the installation, since the evolution of the energy mix in the time 

is simply obtained assuming increasing efficiency for the corresponding base 

year technologies (as shown in Table 51). 

 



87 

 

Table 51. Efficiency improvement for minor demand-side subsectors. 

Sector/subsector 
Efficiency [-] 

2006 2010 2015 2020 2030 2050 

Agriculture 1.00 1.00  1.15  1.25 

Domestic aviation 1.00  1.05   1.25 

International aviation 1.00  1.05   1.25 

Domestic navigation 1.00 1.02    1.25 

Bunkers 1.00 1.04    1.50 

Other industries 1.00 1.05   1.11 1.18 

For the other sectors, a synthetic overview of the new technologies are 

provided in Table 52 (buildings) and Table 54 (transport). Concerning the 

industry, the new technologies has been totally reviewed with respect to the 

original version of TIMES-Italia [14], according to the modeling performed in 

ETM [21]. Provides a very synthetic overview of the number of new 

technologies available for each industrial product.  
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Table 52. Overview of new technologies for buildings [14]. 

Sector End-use Number of new technologies 

Residential 

Refrigeration 11 

Water heating 11 

Clothes washing 5 

Clothes drying 3 

Dish washing 5 

Cooking 5 

Lighting 12 

Space heating 

77 

(21 for SF-Old buildings, 21 for MF-Old 

buildings, 19 for SF-New buildings and 12 

for MF-New buildings) 

Space cooling 12 

Miscellaneous electric 

equipment 
1 

Commercial 

Refrigeration 3 

Water heating 11 

Lighting 9 

Space heating 20 

Space cooling 18 

Electric office equipment 3 

 

Table 53. Overview of new technologies for industry [21]. 

Subsector Industrial product 
Number of new 

technologies 

Chemicals 

Highly volatile compounds (HVC: olefins 

and aromatics) 
8 

Ammonia 6 

Methanol 6 

Chlorine 3 

Iron and steel Iron and steel 14 

Non-ferrous 

metals 

Aluminum 6 

Copper 1 

Zinc 1 

Non-metallic 

minerals 

Cement 7 

Lime 1 

Glass 2 

Bricks 1 

Pulp and paper 
Pulp 5 

Paper 1 
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Table 54. Overview of new technologies for transport [21]. 

Transportation mode New technologies’ categories 

Cars 

 

(small, medium, large) 

Gasoline cars (fueled by a mixture of gasoline and ethanol) 

Diesel cars 

LPG cars 

Natural gas cars 

Hybrid cars 

Plug-in hybrid cars 

Electric cars 

Hydrogen (hydrogen internal combustion engine, liquid hydrogen, 

fuel cell, liquid hydrogen hybrid) cars (stored in a different 

spreadsheet, dedicated to hydrogen technologies). 

Three Wheels 
Gasoline three-wheelers 

Diesel three-wheelers 

Two Wheels 
Gasoline mopeds 

Gasoline motorcycles 

Buses 

Gasoline buses 

Diesel buses 

Natural gas buses 

LPG buses 

Electric buses 

Fuel cell buses (stored in a different spreadsheet, dedicated to 

hydrogen technologies) 

Heavy Trucks 

Standard diesel trucks 

Advanced diesel trucks 

Improved diesel trucks 

Natural gas trucks 

Fuel cell trucks (stored in a different spreadsheet, dedicated to 

hydrogen technologies) 

Medium Trucks 

 

(standard, advanced, 

improved) 

Gasoline commercial trucks 

Diesel commercial trucks 

LPG commercial trucks 

Natural gas commercial trucks 

Commercial Trucks 

 

(standard, advanced, 

improved) 

Gasoline commercial trucks 

Diesel commercial trucks 

LPG commercial trucks 

Natural gas commercial trucks 
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2.3. Supply-side sectors: base year and new 

technologies 

The power sector and the upstream sector belong to the supply-side of 

the energy system, converting primary energy sources into energy vectors that 

are the inputs for the demand-side sectors. 

2.3.1. Power sector 

For what concerns the electric sector, the produced commodities are 

electricity (centralized or distributed) and heat, while the production systems 

are differentiated in three main categories: plants producing only electricity, 

combined heat and power (CHP) plants, plants producing only heat. For each 

technology, several characteristic parameters are collected: 

a. Input commodities (fossil fuels, biofuels or renewable energy 

sources). 

b. Input fuel shares (for multi-fuel technologies, to assign a fraction 

of the input energy to the relative fuels) 

c. Output commodities (centralized electricity, distributed 

electricity or heat). 

d. Efficiency and its expected evolution over projection years. 

e. Heat-to-power ratio (CHPR), only for CHP plants. 

f. Base year installed capacity. 

g. Residuals of base year installed power at different projection 

years. 

h. Fixed operation and maintenance cost. 

i. Variable operation and maintenance cost. 

j. Availability factor (ratio between the maximum equivalent 

hours of the plant and 8760 h, equivalent to one year; in other 

words, it is related to the maximum energy producible in one 

year, assuming that the plant operates constantly at the nominal 

power, or it does not work), that for renewable energy sources is 

not unique for the entire year but differentiated by time-slices). 

k. Lower boundaries (for different projection years) to the energy 

production from the base year already installed plants. 
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Lower activity boundaries Alow[PJ] are calculated according to Equation 

24, starting from the installed capacity P [GW] at the base year and the 

availability factor AF of each ith technology. The factor Rf is different for 

different technologies and is used to express the fraction of the base year 

potential energy production that is imposed as boundary for the projection 

year at which the boundary is applied (for example Rf is usually equal to 0.5 

or 0.7 for boundaries referring to 2007, one year later the base year). 

Alow[PJ] = P [GW] ∗ AF ∗ 31.536 [
PJ

GW
] ∗ Rf (24) 

In Table 55, the parameters concerning the base year of electricity 

production technology are reported. In terms of installed power at the base 

year, the technologies most used in the base year (higher than 5 GW) are, in 

order as follows: natural gas combined cycle, reservoir hydroelectric plant, 

natural gas cogenerative combined cycle, pumping hydroelectric plant, oil 

condensation steam cycle and coal condensation steam cycle. Focusing on 

renewable resources electric plants, it should be observed that in 2006 Italy 

relied almost exclusively on hydroelectricity (with about 21.38 GW of installed 

power, including flowing hydroelectric), with quite negligible installed power 

of wind, geothermal, solar (only 0.02 GW, before the 2005-2013 state subsidies 

for photovoltaics [25]) and biogas plants.   
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Table 55. Base year relative descriptive parameters of electricity production technologies. 

Technology description 
Input 

commodity 

Output 

commodity 
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Coal condensation steam cycle Coal Centralized Electricity 0.34  5.09 32.32 0.58 0.65 

Multi-fuel coal and oil plants 
Coal 

Centralized Electricity 0.27  2.64 30.42 0.34 0.50 
Oil 

Natural gas and derived gas combined cycle Derived Gas Centralized Electricity 0.36  0.79 37.89 0.49 0.38 

Natural gas combined cycle Natural Gas Centralized Electricity 0.50  16.45 13.50 0.41 0.55 

Multi-fuel oil and gas plants 
Natural Gas 

Centralized Electricity 0.39  4.31 17.86 0.35 0.16 
Oil 

Steam cycle with natural gas repowered gas turbines Natural Gas Centralized Electricity 0.42  3.64 15.40 0.33 0.35 

Natural gas turbines Natural Gas Centralized Electricity 0.42  1.99 26.24 0.50 0.03 

Natural gas thermoelectric plant Natural Gas Centralized Electricity 0.35  1.63 17.98 0.85 0.11 

Diesel turbine Oil Centralized Electricity 0.27  0.75 22.19 0.48 0.03 

Oil condensation steam cycle Oil Centralized Electricity 0.36  7.74 42.61 0.45 0.30 

Biogas plant Biogas Distributed Electricity 0.35  0.27 12.50 0.36 0.51 

Biomass centralized plant Biomass Centralized Electricity 0.23  0.23 12.50 0.36 0.70 

Biomass distributed plant Biomass Distributed Electricity 0.23  0.26 12.50 0.36 0.70 

Geothermal plant Geothermal Centralized Electricity 0.10  0.79 94.03 3.48 0.80 

Solar plant Solar Distributed Electricity 1.00  0.02 30.80 13.89 0.24 

Wind plant Wind Centralized Electricity 1.00  2.12 34.00 0.00 0.16 

Continued on page 93 
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Continued from page 92 

Flowing water hydroelectric plant Hydroelectric Centralized Electricity 1.00  2.69 33.65 0.08 0.37 

Flowing water hydroelectric plant<10MW Hydroelectric Distributed Electricity 1.00  2.05 33.65 0.08 0.37 

Reservoir hydroelectric plant Hydroelectric Centralized Electricity 1.00  9.55 13.29 0.08 0.26 

Pumping hydroelectric plant 
Centralized 

Electricity 
Centralized Electricity 1.00  7.09 

20.76 0.08 0.11 

Natural gas and derived gas cogenerative combined cycle Natural Gas 
Centralized Electricity 

0.52 0.64 1.40 22.42 0.64 0.69 
Heat 

Heavy HCs gasification cogenerative combined cycle Heavy HCs 
Centralized Electricity 

0.50 0.62 1.83 29.14 0.45 0.84 
Heat 

Natural gas cogenerative combined cycle Natural Gas 
Centralized Electricity 

0.51 0.39 9.67 20.11 0.79 0.65 
Heat 

Centralized natural gas cogenerative gas turbine Natural Gas 
Centralized Electricity 

0.37 0.92 1.48 32.85 0.57 0.61 
Heat 

Distributed natural gas cogenerative gas turbine Natural Gas 
Distributed Electricity 

0.37 0.92 1.48 32.85 0.57 0.60 
Heat 

Natural gas condensation cogenerative steam cycle Natural Gas 
Centralized Electricity 

0.37 1.00 0.79 34.27 0.48 0.55 
Heat 

Centralized oil condensation cogenerative steam cycle Oil 
Centralized Electricity 

0.35 0.59 0.37 23.71 0.49 0.70 
Heat 

Distributed oil condensation cogenerative steam cycle Oil 
Distributed Electricity 

0.35 0.59 1.03 43.60 0.47 0.60 
Heat 

Municipal waste plant Municipal Waste 
Centralized Electricity 

0.22 1.25 0.58 220.50 0.83 0.44 
Heat 

Biogas cogenerative plant Biogas 
Centralized Electricity 

0.30 1.23 0.07 220.50 0.83 0.45 
Heat 

Coal gasification cogenerative combined cycle Coal 
Centralized Electricity 

0.37 0.27 0.91 220.50 0.83 0.65 
Heat 

Biomass cogenerative plant Biomass 
Centralized Electricity 

0.23 1.13 0.17 220.50 0.83 0.61 
Heat 
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As for the demand-side sectors, also for the power sector specific 

emission factors are evaluated, according to Equation 2. Results are reported 

in Table 56. 

Table 56. Emission factors for electricity sector-specific fuels. 

Commodity 

Emission factors [𝐤𝐭/𝐏𝐉] 

Natural 

gas 
Coal Oil 

Solid 

biomass 

residual 

Solid 

biomass 

virgin 

Municipal 

waste 
Biogas 

CO2 56.05 101.16 79.55 0.00 0.00 85.85 0.00 

CH4 0.13 1.06 5.15 30.00 30.00 0.02 300.00 

N2O 0.54 1.48 0.62 4.00 4.00 4.00 4.00 

 

The TIMES-Italia database includes several new technologies, as Table 

57 shows. 

Table 57. New technologies for electricity and heat production. 

Plant category Energy source Number of new technologies 

Electricity 

Natural gas 3 

Coal 1 

Oil 1 

Wind 6 (out of which 2 offshore plants) 

Hydroelectric 2 

Geothermal 2 

Solar PV 12 

Biogas 2 

CSP 4 

Heat 

Natural gas 1 

Oil 1 

Bioliquid 1 

Coal 1 

Geothermal 2 

CHP 
Natural gas 4 

Municipal waste 1 
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New power plants are characterized by the following parameters: 

a. Starting year for the availability. 

b. Plant lifetime. 

c. Economic lifetime. 

d. Investment cost. 

e. Fixed O&M cost. 

f. Variable O&M cost. 

g. Discount rate. 

h. Efficiency. 

i. Capacity to activity factor. 

j. Availability factor (differentiated according to the time of day 

and season for variable renewable energy sources). 

k. Peak reserve margin. 

CHP technologies are also characterized by the following parameters: 

a. Heat-to-power ratio/maximum CHPR. 

b. Electricity-to-heat coefficient CEH. 

Micro-CHP plants are specifically dedicated to the production of 

residential, commercial, and industrial heat/electricity. The database includes 

12 technologies for micro-CHP plants (4 for residential sector, 4 for commercial 

sector and 4 for industry). In [20], micro-CHP plants receive a more detailed 

characterization, which has been further updated in the latest ETM update, 

thus that will be used for the TIMES-Italia, too. 
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2.3.2. Upstream sector 

The upstream sector is part (together with the power sector) of the 

supply-side of the TIMES-Italia reference energy system. The main purpose of 

this sector is the extraction is the production of fuels usable by other sectors to 

satisfy energy consumptions: it encompasses the steps from raw fuels 

materials extraction to the upstream transformation into usable fuels. 

Technologies and commodities are listed in several spreadsheets, 

according to their role in the conversion chain of this sector. They contain 

information about the following steps of the supply chain: 

a. Extraction of row fossil fuels (definition of extraction variable 

O&M costs and imposition of lower and upper boundaries, to 

constrain the base year extraction consistently with statistics). 

b. Fuel primary production (list of different production 

technologies with the expected lifetime, fixed O&M cost and 

lower and upper boundaries, based on the base year statistics). 

c. Fuel secondary transformation (list of different transformation, 

such as refineries, technologies with the expected lifetime, fixed 

O&M cost, and lower and upper boundaries, based on the base 

year statistics). 

d. Natural potentials of renewable energy sources (definition of 

extraction variable O&M costs and imposition of lower and 

upper boundaries, to constrain the base year utilization 

consistently with statistics). 

The main parameters describing the different technologies of the 

upstream sector are listed in Table 58.
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Table 58. Descriptive parameters of upstream sector technologies. 

Technology category Parameters 

Extraction of row fossil fuels 

(heavy oil, natural gas, hard coal) 

Extraction cost 

Lower and upper boundaries to the 

extraction (based on known fossil 

reserves) 

Primary production of fuels 

Input commodities 

Output commodities 

Lifetime 

Fixed operation and maintenance cost 

Variable operation and maintenance 

cost 

Lower and upper boundaries to the 

production (based on 2000 statistics) 

Secondary transformation of fuels 

Input commodities 

Output commodities 

Lifetime 

Fixed operation and maintenance cost 

Variable operation and maintenance 

cost 

Lower and upper boundaries to the 

production (based on 2000 statistics) 

Natural potentials of renewable 

energy sources 

Extraction cost 

Lower and upper boundaries to the 

exploitation 

Concerning the connections between technologies of different steps of 

the supply chain, they are clarified in Figure 9. 
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Figure 9. Connection between different technologies of upstream sector. 

Also, for the upstream sector, specific emission factors are evaluated for 

several fuels according to Equation 2. Results are reported in Table 59. 

Table 59. Emission factors for upstream sector-specific fuels. 

Commodity 

Emission factors [𝐤𝐭/𝐏𝐉] 

Natural 

gas 
Coal 

Crude 

oil 

Refined 

petroleum 

products (liquid) 

Refined 

petroleum 

products (gas) 

Biofuels 

CO2 50.50 102.59 73.33 84.99 56.23 85.85 

CH4 0.13 1.00 3.00 3.73 1.00 30.00 

N2O 0.54 1.40 0.60 0.86 0.10 4.00 
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2.4. Fuel import 

Since the TIMES-Italia [14] only includes a single region (as already 

mentioned in Section 0), commercial exchanges with other regions are 

modelled with cost parameters associated with imported commodities. Such 

costs are imposed for coal, solid biomass, biofuels, oil products, natural gas, 

and electricity, and can vary with time, with different values assigned to 

several time steps, and namely 2006, 2008, 2010, 2013, 2015, 2020, 2030, 2040 

and 2050. To perform different scenario analyzes, three set of importation 

prices are included, with high, medium, and low prices. Table 60 reports the 

medium prices for commodity importation. 

Table 60. Fuels and electricity medium importation prices. 

Fuel 

category 
Fuel 

Importation price [𝐌€/𝐏𝐉] 

2006 2008 2010 2013 2015 2020 2030 2040 2050 

Biomass 

and coal 

Solid biomass 3.0 4.4 4.5 4.6 4.7 5.0 5.4 5.9 6.4 

Biodiesel 34.0 38.2 34.6 53.8 37.8 43.8 37.5 41.2 45.4 

Coal 27.2 30.5 27.7 43.0 30.2 35.0 30.0 33.0 36.3 

Coke 34.0 38.2 34.6 53.8 37.8 43.8 37.5 41.2 45.4 

Oil 

products 

Asphalt 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7 

Aviation gasoline 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7 

Crude oil feedstock 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7 

Diesel 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7 

Gasoline 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7 

Heavy fuel oil 12.7 14.3 13.0 20.2 14.2 16.4 14.1 15.5 17.0 

Jet kerosene 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7 

Kerosene 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7 

Liquified natural gas 10.2 11.4 10.4 16.1 11.3 13.1 11.2 12.4 13.6 

Liquified petroleum gas 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7 

Lubricant 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7 

Naphtha 10.2 11.4 10.4 16.1 11.3 13.1 11.2 12.4 13.6 

Oil 8.5 9.5 8.7 13.5 9.5 10.9 9.4 10.3 11.3 

Oil additive 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7 

Other non-specified oil 

products 
22.7 25.5 23.2 36.0 25.3 29.3 25.1 27.6 30.3 

Petroleum coke 2.3 3.4 3.1 4.8 3.3 3.9 3.3 3.6 4.0 

Wax 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7 

White spirit 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7 

Natural gas 
Natural gas 5.0 6.5 6.0 8.2 6.0 6.3 6.9 7.6 8.3 

Liquified natural gas 5.0 6.5 6.0 8.2 6.0 6.3 6.9 7.6 8.3 

Electricity Electricity 5.6 7.8 7.8 7.2 6.8 6.9 7.3 7.6 7.8 
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Chapter 3 

3. Development of the new Temoa-Italia 

model 

3.1. The Temoa framework 

Tools for Energy Model Optimization and Analysis (Temoa [13] [26]) is 

an open-source modeling framework for conducting energy system analyzes. 

Temoa is formulated as a linear programming problem and is implemented in 

Python using Pyomo, a Python-based open-source software package (Figure 

10). Temoa is intended to address two critical deficiencies: the impossibility to 

verify results by third parties based on published models and the difficulty of 

performing a rigorous analysis of the uncertainty with models. 

 

Figure 10. Temoa framework developed within Python-based Pyomo collection. 
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Figure 11. Main components constituents the Temoa structure. 

Figure 11 shows schematically the structure of Temoa framework, 

highlighting the main blocks involved in the optimization. The Pyomo 

framework is based on five classes: sets, parameters, variables, objective, and 

constraint, necessary in every optimization problem. It supports a wide range 

of problem types: linear programming, non-linear programming, mixed-

integer linear programming, etc. Temoa is the Python correspondent of the 

TIMES model generator [8] (thus implemented as a linear programming 

problem), in which different model instances with different energy system 

structures can be represented. 

As Figure 11 shows, the Temoa model also includes the possibility to 

perform stochastic optimization [27], taking into account future uncertainties 

in the model, and modeling to generate alternative [28], exploring the near-

optimal decision space to investigate alternative future energy system 

configurations. 
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Temoa has been selected as reference framework for the open-source 

implementation of the TIMES-Italia. A literature review has been performed 

to identify the most suitable framework. Notably, an alternative tool has also 

been considered (as already mentioned in Section 1.1), before opting for 

Temoa: OSeMOSYS [29]. Temoa has been chosen for its features: 

a. Competitive energy markets with perfect foresight (as for 

TIMES). 

b. High-level programming language. 

c. Both commercial and open-source solvers can be used for the 

optimization. 

d. Suitable for large-scale energy systems. 

e. Possibility to modify and integrate the code (also to perform 

multi-objective optimization). 

f. Possibility to perform stochastic optimization. 

Concerning the solvers performing the solution of the optimization 

problem, any software including a Python interface can be used with Temoa. 

The reference solver for the Temoa framework is GNU Linear Programming 

Kit (GLPK [30]), being an open-source software package for both linear 

programming and mixed integer programming. Other options are, for 

instance, to solve the optimization problem with CPLEX [31], that is a 

commercial software but freely available to run on an external server (NEOS 

[32] [33] [34]), or with Gurobi [35], again commercial but freely available with 

academic licenses. 

Being the framework already existing and freely available, the main 

activity required to develop the open version of TIMES-Italia, is the translation 

of technological dataset from TIMES formulation (Excel files containing 

parameters in the TIMES format) to the Temoa one (namely, a “.sql” database), 

relying on parameters included in the Temoa model to translate the TIMES-

Italia reference energy system. 

Already included elements for the description of RES in the Temoa 

database are listed in Table 61. 
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Table 61. Elements included in the Temoa database. 

Group Element 

Labels used for internal 

database processing 

commodity_labels 

technology_labels 

time_periods_labels 

Sets used within Temoa 

commodities 

technologies 

time_periods 

time_season 

time_of_day 

Parameters used to define 

processes within Temoa 

GlobalDiscountRate 

Demand 

DemandSpecificDistribution 

Efficiency 

ExistingCapacity 

CapacityFactor 

CapacityFactorProcess 

Capacity2Activity 

CostFixed 

CostInvest 

CostVariable 

EmissionActivity 

LifetimeLoanTech 

LifetimeProcess 

LifetimeTech 

Parameters used to define 

constraints within Temoa 

GrowthRateSeed 

GrowthRateMax 

MinCapacity 

MaxCapacity 

MinActivity 

MaxActivity 

RampUp 

RampDown 

TechOutputSplit 

TechInputSplit 
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Temoa formulation presents some differences and limitations with 

respect to the TIMES structure of parameters. These differences concern 

definition of parameters and their elaboration, particularly: 

a. Emission factors computation. 

b. Service demands projection. 

c. Data interpolation and extrapolation. 

d. Results postprocessing. 

3.2. Add-ons to the Temoa framework 

To perform the required add-ons to the Temoa framework, two 

dedicated Python scripts have been developed to process the “.sqlite” 

database: one for the preprocessing (Appendix A) and the other for the 

postprocessing (Appendix D). Some tables have been added to the database to 

insert the required input data for the preprocessing. In the following sections, 

the functions implemented with the scripts and the required additional tables 

of the database are presented. 

3.2.1. Emission factors computation 

Emission factors are implemented in Temoa through a dedicated 

parameter called “Emission Activity”, that is an emission factor expressed per 

unit of output commodity produced by the technology (its activity). As it has 

been already explained in Section 8, in TIMES the emission factors are 

evaluated per unit of sector-specific commodity consumed by the computed 

energy mix. For that reason, it necessary to derive from commodity-based 

emission factors implemented in TIMES, the technology-based emission 

factors to implement in Temoa. 

To do that, a new table has been created within the Temoa “.sql” 

database (“CommodityEmissionFactor” table, Appendix B), containing the 

commodity-based emission factors included in TIMES templates. In the table 

the emission commodity (CO2, CH4, N2O or SOx) must be specified, with the 

sector-specific commodity to which the emission is associated and the 

commodity-based emission factor numerical value EFcomm. To obtain the 

technology-based emission factor EFtech, the commodity-based factor must be 
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divided by the efficiency of the technology efftech having as input commodity 

the correspondent commodity, as shown in Equation 25. 

EFtech [
kt

PJout
] =

1

efftech
∗ EFin [

kt

PJin
] (25) 

The resulting technology-based emission factor represents the specific 

emission of the selected emission commodity per unit of output commodity 

produced by the technology. The results must be inserted in the 

“EmissionActivity” table of the Temoa database.  

3.2.2. Service demand projections 

Concerning the service demand projection along the considered time 

horizon (in the TIMES-Italia case up to 2050), this is operated in TIMES taking 

as inputs the base year demand level D2006, a selected driver d for the service 

demand and appropriate elasticity values e (Equation 26, where Dt= “service 

demand at year t”, Dt−1= “service demand at year t-1”, dt= “allocated driver at 

year t”,  dt−1= “allocated driver at year t - 1”, et= “associated elasticity at year 

t”). The elasticities are required to connect the driver trend to the allocated 

demand trend. Indeed, it is not required the demand trend to be, strictly 

speaking, proportional to the correspondent driver trend, but only dependent 

on it. This dependency is exactly driven by the elasticity values.  

However, Temoa directly takes as input the service demand specified 

for each time-step of the considered time-period. Because of this, an automated 

operation is required to evaluate the service demands absolute values 

providing drivers and elasticities. 

Dt = Dt−1 ∙ (1 + (
dt

dt−1
− 1) ∙ et) (26) 

With this objective, the addition of three further tables to the database 

is required to provide the required input data. Namely drivers and elasticities 

must be provided for each final service demand, and a table associating the 
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service demands to the correspondent drivers and elasticities is required. The 

structure of those tables is reported in Appendix C. Table “Driver” should 

express the time evolution of the selected drivers for the demand projection, 

while table “Allocation” associates each demand commodity to the 

correspondent driver and table “Elasticity” provide elasticity values for each 

demand-driver couple. 

In the preprocessing script (Appendix A), data from those three tables 

are elaborated to compute the absolute values for each final service demand 

and to fill with the resulting values the table “Demand” of the database. 

3.2.3. Data interpolation and extrapolation 

Another relevant difference between the two frameworks is that TIMES 

automatically interpolates and extrapolates parameters for milestone years for 

which they are not explicitly specified by the modelers (according to different 

interpolation and extrapolation rules). Differently, Temoa requires the 

specification of all parameters for all milestone years included in the database. 

The preprocessing script has been developed to perform the 

interpolation and the extrapolation forward for all the parameters for which 

Temoa allows to specify different values for different time-periods. Notably, 

the involved parameters in this operation are: 

a. Lifetime 

b. Efficiency 

c. TechInputSplit (used to imposed minimum consumption 

percentage of an input commodity for technologies with more 

than one input commodity) 

d. TechOutputSplit (used to imposed minimum production 

percentage of an output commodity for technologies with more 

than one output commodity) 

e. Emission factors 

f. Investment cost 

g. Fixed O&M cost 

h. Variable O&M cost 

i. Minimum capacity constraint 
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j. Minimum activity constraint 

k. Maximum capacity constraint 

l. Maximum activity constraint 

m. Availability factor 

n. Capacity factor 

o. Capacity credit 

For what concerns interpolation, the script performs a linear 

interpolation for each parameters presenting more than one value specified 

along the entire time horizon (Equation 27, where 𝑥𝑛 is the generic parameter 

to be interpolated at 𝑖𝑡ℎ time-period 𝑡𝑖). Therefore, for the time interval 

included between the time periods correspondent to the first specified value 

and the last one, the interpolation curve is piecewise linear. 

xi = x1 +
ti − t1

t2 − t1
∗ (x2 − x1) (27) 

For parameters that are specified only for one time-period, the same 

value is repeated for all the future time periods starting from it. Similarly, an 

extrapolation repeating the last available value for all the future time periods 

is performed for those parameters presenting a piecewise linear interpolation 

that does not end at the last year of the time horizon (in the TIMES-Italia case, 

2050). 

Figure 12 report three examples concerning the possible trends 

obtained by the parameters’ interpolation and extrapolation. In particular, in 

Figure 12 (a) a piecewise linear efficiency trend is shown, while in Figure 12 

(b) a constant efficiency is represented, extrapolated starting from the first 

availability year of the technology (in the represented case, from 2020). 

An exception to the piecewise linear interpolation of parameters for 

which more than one value is provided in the database is shown in Figure 12 

(c). This is the case of a technology lifetime variable during the time. In this 

case, to maintain integer values of the parameter, it is kept equal to the last 

available for time periods included between two different values. 
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Figure 12. Example of data interpolation and extrapolation for (a) piecewise lineare trend, (b) 

constant trend and (c) piecewise constant trend (technology lifetime variable in the time). 

3.2.4. Results postprocessing 

The last required function to be implemented in Temoa framework 

concerns the reading of the results. In TIMES, results are collected in MDB 

databases and a commercial software (namely, VEDA-BE [36]) is employed to 

select data and read the results having the possibility to select among several 

technology and commodity set those to visualize. 

Temoa output data are collected in dedicated tables within the same 

“.sqlite” database used to provide input data. The two most relevant tables to 

analyze the evolution of the energy mix are named “Output_VFlow_In” and 

“Output_VFlow_Out” containing, respectively, the consumption and 

production of each commodity by technology and time slice. The 

differentiation by time slices of results is made specifying the time period (the 
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milestone year), the season of the year (spring, summer, fall or winter) and the 

time of the day (day, night or peak). It is useful to perform analyzes with an 

high degree of detail and especially for technologies characterized not only 

with annual parameters, but also with variable parameters during the year (for 

example, some kind of renewable energy sources that are strongly dependent 

on the season of the year or the hour of the day); however, an annual resolution 

to view the results is sufficient to assess the evolution of energy mix along the 

time. 

Made those premises, the purpose of the postprocessing developed 

Python script is to extract data from the “.sqlite” output database and visualize 

year by year the annual total consumption and production for selected 

technologies and commodities. 

The script allows to: 

a. List the technologies for which to view the results. 

b. List the commodities to include in the exported data (avoiding 

including intermediate commodities in the results that would 

lead to double counting). 

c. Chose to view results split both by technology and commodity, 

only by technology, only by commodity or to view only the total 

consumption/production for the selected technologies and 

commodities. 

The output of the script is an Excel file containing a sheet with 

consumption values and another sheet reporting production values for each 

optimization year.
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Chapter 4 

4. Comparison between TIMES-Italia and 

Temoa-Italia 

In this section, the results obtained from TIMES-Italia and Temoa-Italia 

optimization are compared, to ensure that the two tools lead to the same 

results starting from the same input data. This kind of validation should prove 

the reliability of Temoa framework to use it as the reference open-source tool 

for future integrations and modifications of the optimization paradigms, 

starting from a model reproducing the same results obtained with well-

established software such as the TIMES models.  

4.1. Scenario 

The considered scenario for the comparison (which is, of course, the 

same considered both in TIMES-Italia and Temoa-Italia) has the following 

features: 

a. Medium level cost for import of primary resources. 

b. No CO2 emission limits. 

c. No carbon tax applied. 

d. No carbon capture and storage (CCS) technologies. 

Gurobi [35] has been used as optimization solver, being a commercial 

software with a Python interface freely available with academic license (al 

already mentioned in Section 3.1). Gurobi is suitable to solve locally the 

Temoa-Italia, that having a large database cannot be solved by GLPK with a 

sufficiently low computational cost (short execution times) and overcomes the 

maximum size limit for output files (16 MB) solving it with CPLEX on NEOS 

server. 
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4.2. Drivers 

Concerning the drivers for demands projection, the correspondent 

drivers and elasticities to the moderate growth scenario have been selected.  

Table 62 reports the associated driver to each final service demand. 

Service demands projection is performed according to Equation 26. 

A dedicated comment should be done concerning the residential space 

heating demands. Indeed, as it has been already reported in Section 1.1.1.1, the 

residential space heating service is split in four final service demands in the 

TIMES-Italia model, corresponding to two different building types (single-

family and multi-family) each of them is further split in “old” and “new” 

buildings. “Old” buildings represent the existing buildings, while new 

constructions are labeled as “New”. According to that, the final service 

demands of “SF-Old” and “MF-Old” residential space heating are assumed to 

be constant for the entire time horizon, while “SF-New” and “MF-New” are 

projected with dedicated exogenous drivers, so that the sum between “SF-

Old” and “SF-New” buildings reproduce the expected single-family buildings 

demand for the future and that the sum between “MF-Old” and “MF-New” 

the expected multi-family one. The residential space heating subsector as a 

whole evolves with a 2006-normalized trend that is quite similar to the 

population driver, as could reasonably be expected. 
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Table 62. Allocation and numeric values of moderate drivers for service demand projection [14]. 

Sector Service demands Driver 
Years [-] 

2006 2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050 

Agriculture Agriculture Agriculture value added 1.00 1.00 0.88 0.88 0.86 0.86 0.87 0.89 0.90 0.91 0.94 0.97 1.05 1.14 

Commercial 

Space heating 

Commercial value added 1.00 1.02 1.01 0.99 0.99 0.98 1.01 1.04 1.07 1.10 1.14 1.22 1.37 1.54 

Space cooling 

Water heating 

Lighting 

Cooking 

Refrigeration 

Electric office 

equipment 

Residential 

Space heating 

Population 1.00 1.01 1.01 1.02 1.02 1.05 1.04 1.04 1.07 1.08 1.09 1.11 1.13 1.16 

Space cooling 

Water heating 

Refrigeration 

Clothes drying 

Cooking 

Clothes washing 

Dishwashing 

Miscellaneous electric 

energy 

Lighting 

Continued on page 113 
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Continued from page 112  

Transport 

International aviation 

GDP 1.00 1.01 1.01 0.97 0.95 0.93 0.95 0.97 1.00 1.02 1.06 1.12 1.25 1.39 

Domestic aviation 

Road 

Rail 

Domestic navigation 

Non-specified 

transports 

Bunkers 

Industry 

 

Chemicals Chemical production 1.00 1.00 0.94 0.93 0.90 0.92 0.97 1.02 1.03 1.06 1.10 1.17 1.32 1.48 

Iron and steel Iron and steel production 1.00 1.04 0.84 0.80 0.75 0.73 0.75 0.78 0.76 0.77 0.78 0.79 0.80 0.82 

Non-ferrous metals 
Non-ferrous metals 

production 
1.00 0.99 0.81 0.81 0.70 0.72 0.76 0.78 0.79 0.80 0.81 0.83 0.87 0.91 

Non-metallic minerals 
Non-metallic minerals 

production 
1.00 1.02 0.86 0.78 0.69 0.69 0.73 0.73 0.74 0.78 0.82 0.89 1.02 1.14 

Pulp and paper 
Pulp and paper 

production 
1.00 1.03 0.92 0.92 0.88 0.91 0.94 0.92 0.95 0.97 1.00 1.05 1.17 1.29 

Other industries 
Other industries 

production 
1.00 1.03 0.90 0.86 0.80 0.79 0.82 0.85 0.85 0.87 0.89 0.94 1.00 1.06 

Non-specified industry 

GDP 1.00 1.01 1.01 0.97 0.95 0.93 0.95 0.97 1.00 1.02 1.06 1.12 1.25 1.39 
Chemical feedstocks 

Non-energy uses 

Non-energy others 
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Figure 13. Driver 2006-normalized trend. 

Figure 13 shows the trend for all the considered drivers in the model, 

normalized with respect to the value for the year 2006. Concerning the period 

2006-2018, the adopted drivers are intended to follow historical data. In 

particular, the drastic drop of industrial production (more or less pronounced 

for all the industrial sectors) and GDP consequent to the 2008 financial crisis, 

and the period of economic stagnation for the immediately following years, 

should be noted, highlighting the updating and the reliability of such socio-

economic projections. For the future period of the time horizon, drivers are 

evaluated according to the PNIEC 2020 forecasts [5]. Being the PNIEC 

forecasts developed on the basis of historical data up to 2019, a relevant 

comment is that they do not still take into account the effects of the COVID-19 

pandemic of 2020. 



115 

 

 

 

Figure 14. Driver 2006-normalized trend for population, “single-family” and “multi-family” 

buildings residential space heating and weighted average for total residential space heating demand. 

Figure 14 shows in detail the trend of final serviced demand for “single-

family” and “multi-family" residential space heating (both “Old” and “New” 

buildings). The blue curve is the derived 2006-normalized trend for the total 

residential space heating final demand, obtained from the two curves (“single-

family” and “multi-family”) weighting on the correspondent service 

demands, compared to the expected trend for population. An interesting 

comment is that an higher growth is expected for “multi-family” buildings 

with respect to “single-family”, coherently with the urbanization trends of the 

population, which therefore is moving more and more into city buildings, 

usually consisting of several family units per building. 
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4.3. Constraints 

Energy system models usually consider for the optimization a large 

dataset of constraints, in terms of minimum or maximum exploitation of 

natural resources, development of specific technologies, or input/output 

minimum or maximum shares of specific commodities for specific 

technologies or groups of technologies. In the context of this thesis activity, 

only a fraction of the constraints included into the TIMES-Italia dataset have 

been implemented in the Temoa-Italia. 

The first constraint category that has been implemented in Temoa-

Italia, is related to the base year technologies constraints. Those constraints are 

usually both minimum and maximum on the capacity or on the activity of 

those technologies. Minimum constraints are used to ensure that, even if 

hypothetically the new technologies dataset contained much cheaper or much 

more efficient new technologies with respect to the base year processes, those 

last are not immediately substituted by new technologies, but they are 

progressively disposed of during the time. The maximum constraints, on the 

other hand, are used to impose the progressive decrease in the use of the 

technologies of the base year, up to zero in a certain year, to be progressively 

replaced by the new processes. 

Going into the details only for constraints related to industrial 

technologies, for the sake of conciseness, maximum constraints are usually 

imposed on the technologies’ activity, with an upper boundary equal to 100% 

of the base year activity in 2007 (the first year categorized as “future” year, for 

which the optimization is performed in Temoa) and a lower boundary equal 

to 90% of the base year activity in 2007. 

Some industrial subsectors present an exception concerning the lower 

boundary. Indeed, it is possible that the selected driver for the projection of 

certain service demands leads to compute a service demand value less than 

the lower boundary imposed to the base year technology producing the 

commodity associated to that service demand. This is likely for TIMES-Italia, 

having as base year 2006, just before the 2008 financial crisis, associated to 

relevant drop of industrial production (as it has been already stated in Section 
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1.1). If that problem occurs (and it occurs, specifically, for “Iron and steel” and 

“Non-ferrous metals” subsectors) it would entail wrong results in the TIMES 

framework (simply forcing the model to produce more demand than the 

required) while execution errors would stop the optimization without 

achieving results in the Temoa framework. For that reason, for those 

subsectors presenting this issue, lower activity boundaries must be lower that 

the “standard” values (90% of the base year activity imposed in 2007). 

Figure 15 shows, for the “Non-metallic minerals” industrial subsector 

the constraints imposed to base year technologies activity.  

 

Figure 15. Comparison of minimum and maximum constraints imposed to "Non-metallic minerals" 

base year technologies in TIMES-Italia and Temoa-Italia. 

The last constraints category, implemented both in TIMES and Temoa 

framework, concerns the fuel import. Indeed, upper boundaries are applied to 

the amounts of fuels imported from abroad, set equal to the 2006 value in 2007 

and obtained multiplying the base year importations by assumed multiplying 

factors for 2050. Table 63 lists the numerical upper boundary values for each 

imported fuel.
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Table 63. Imported fuels from abroad in 2006 and upper boundaries imposed in 2007 and 2050. 

Fuel 

category 
Fuel 

2006 

importation 

[PJ] 

Upper boundaries 
[𝐏𝐉] 

2007 2050 

Biomass 

and coal 

Solid biomass 39.68 39.68 138.89 

Biodiesel 8.10 8.10 17.21 

Coal 681.30 681.30 1635.10 

Coke 20.73 20.73 41.47 

Oil products 

Crude oil feedstock 265.18 265.18 530.37 

Diesel 68.24 68.24 136.49 

Gasoline 8.49 8.49 16.98 

Heavy fuel oil 161.16 161.16 209.51 

Jet kerosene 5.10 5.10 10.21 

Kerosene 21.16 21.16 42.31 

Liquified petroleum gas 75.62 75.62 151.25 

Naphtha 79.42 79.42 103.25 

Oil 3642.77 3642.77 4735.60 

Oil additive 6.20 6.20 12.41 

Other non-specified oil 

products 
33.16 33.16 66.32 

Petroleum coke 107.78 107.78 215.55 

Natural gas 
Natural gas 2533.01 2533.01 5066.03 

Liquified natural gas 121.00 121.00 605.00 
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4.4. Benchmark results 

In this section, the comparison between results obtained with TIMES-

Italia and those obtained with Temoa-Italia is performed. The aim is to verify 

that, with the same input data, the two alternative tools (TIMES and Temoa) 

provide the same results, within a certain tolerance. 

Generally, a relative error will be calculated between the Temoa results 

and the TIMES ones, taking as a reference the TIMES values. The error err will 

be evaluated according to Equation 28 (where 𝑥 is a generic result for which 

the error should be evaluated), and the tolerance interval for the errors is 

chosen equal to ±1%. Errors included in the tolerance interval, will be ignored, 

and considered as approximation errors in the definition of parameters within 

the database. Any errors that exceed the tolerance interval below or above will 

be highlighted and appropriately commented. 

err[%] =
xTemoa − xTIMES

xTIMES
 (28) 

For the sake of brevity, only results from “Non-metallic minerals” 

industrial subsectors will be analyzed in detailed. 
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4.4.1. Non-metallic minerals 

The results review for “Non-metallic minerals” subsector is reported in 

this section. First of all, only to have a first qualitative comparison of the results 

for the subsector, Figure 16 shows the time trend of the total demand of non-

metallic minerals and the associated total energy input required to produce it 

in the time. At first glance, the two demand curves seem to be superimposed, 

while little differences are visible between the two energy curves (notably in 

2007, 2030 and 2050). 

 

Figure 16. Comparison of "non-metallic minerals" total demand and total energy consumption, 

evaluated with TIMES-Italia and Temoa-Italia. 

Obviously, a deeper analysis is required to ensure that the two tools are 

achieving the same results (within a certain tolerance), going more in the 

details with respect to observe only qualitatively those curves. With this 

objective, more detailed data will be presented below for which relative error 

values will be calculated between the two models. It will be analyzed, in 

particular: 

a. The breakout of non-metallic minerals demand into the different 

non-metallic products of which it is composed. 

b. The technology mix manufacturing that products. 

c. The energy mix of the entire subsector in terms of consumed 

fuels. 
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Table 64. Comparison of “Non-metallic minerals” production evaluated with TIMES-Italia and Temoa-Italia and relative errors. 

Non-metallic 

product 
Parameter 

Year [-] 

2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050 

Total non-metallic 

minerals 

TIMES-Italia production [Mt] 64.15 54.01 48.67 43.37 43.13 45.58 45.64 46.70 48.70 51.74 55.93 64.02 71.70 

Temoa-Italia production [Mt] 64.17 54.00 48.66 43.39 43.14 45.59 45.65 46.72 48.73 51.74 55.95 64.05 71.71 

Relative error [%] 0.04 -0.02 -0.01 0.05 0.03 0.02 0.02 0.05 0.06 0.00 0.04 0.05 0.01 

Bricks 

TIMES-Italia production [Mt] 6.21 5.23 4.71 4.20 4.18 4.41 4.42 4.52 4.72 5.01 5.42 6.20 6.94 

Temoa-Italia production [Mt] 6.24 5.23 4.71 4.20 4.18 4.44 4.44 4.55 4.74 5.03 5.44 6.23 6.98 

Relative error [%] 0.52 -0.05 -0.05 0.02 0.00 0.50 0.50 0.53 0.54 0.48 0.52 0.53 0.49 

Cement 

TIMES-Italia production [Mt] 48.91 41.19 37.11 33.07 32.89 34.76 34.80 35.61 37.14 39.46 42.65 48.82 54.68 

Temoa-Italia production [Mt] 48.90 41.18 37.10 33.08 32.89 34.74 34.79 35.60 37.13 39.43 42.63 48.81 54.64 

Relative error [%] -0.03 -0.03 -0.02 0.05 0.03 -0.05 -0.05 -0.02 -0.01 -0.07 -0.04 -0.02 -0.06 

Glass 

TIMES-Italia production [Mt] 3.72 3.13 2.82 2.51 2.50 2.64 2.65 2.71 2.82 3.00 3.24 3.71 4.16 

Temoa-Italia production [Mt] 3.72 3.13 2.82 2.52 2.50 2.64 2.65 2.71 2.83 3.00 3.25 3.71 4.16 

Relative error [%] 0.09 0.03 0.04 0.10 0.08 0.07 0.07 0.10 0.11 0.05 0.09 0.10 0.06 

Lime 

TIMES-Italia production [Mt] 5.30 4.46 4.02 3.58 3.56 3.77 3.77 3.86 4.03 4.28 4.62 5.29 5.93 

Temoa-Italia production [Mt] 5.31 4.47 4.02 3.59 3.57 3.77 3.78 3.86 4.03 4.28 4.63 5.30 5.93 

Relative error [%] 0.09 0.03 0.04 0.11 0.08 0.07 0.07 0.10 0.11 0.05 0.09 0.10 0.06 
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Table 65.Comparison of TIMES-Italia and Temoa-Italia results of “Non-metallic minerals” production split by production technologies, with relative errors for each 

technology and average errors for each non-metallic product.  

Non-metallic minerals 

technology 
Parameter 

Year [-] 

2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050 

Bricks (existing) 

TIMES 5.47 5.17 4.56 3.95 3.34 2.74 2.13 1.52 0.91     

Temoa 5.48 5.17 4.56 3.95 3.34 2.73 2.13 1.52 0.91     

Relative error [%] 0.15 0.04 0.00 -0.05 -0.12 -0.22 0.09 0.00 0.00     

Production share[%] 88.10 98.82 96.77 94.11 80.08 61.99 48.15 33.62 19.34     

Bricks (new) 

TIMES 0.74 0.06 0.15 0.25 0.83 1.68 2.29 3.00 3.80 5.01 5.42 6.20 6.94 

Temoa 0.76 0.06 0.15 0.25 0.84 1.71 2.31 3.03 3.83 5.03 5.44 6.23 6.98 

Relative error [%] 2.79 -7.56 -1.41 1.19 0.48 1.68 0.88 0.80 0.67 0.48 0.52 0.53 0.49 

Production share [%] 11.90 1.18 3.23 5.89 19.92 38.01 51.85 66.38 80.66 100.00 100.00 100.00 100.00 

Bricks technologies average error [%] 0.46 0.13 0.05 0.12 0.19 0.77 0.50 0.53 0.54 0.48 0.52 0.53 0.49 

Dry cement kilns (existing) 

TIMES 34.23 29.10 25.84 23.16 23.82 20.84 17.86 14.88 11.91 7.44    

Temoa 34.20 29.10 26.00 23.21 23.80 20.80 17.80 14.90 11.90 7.43    

Relative error [%] -0.10 0.00 0.61 0.18 -0.06 -0.18 -0.34 0.10 -0.06 -0.16    

Production share [%] 69.99 70.65 69.63 70.05 72.42 59.95 51.32 41.80 32.06 18.86    

Wet cement kilns (existing) 

TIMES 13.65 11.60 10.23 8.87 8.04 8.31 7.12 5.93 4.75 2.97    

Temoa 13.70 11.60 10.20 8.88 8.10 8.34 7.15 5.96 4.77 2.98    

Relative error [%] 0.40 0.01 -0.34 0.12 0.75 0.41 0.43 0.46 0.50 0.46    

Production share [%] 27.90 28.16 27.58 26.82 24.44 23.90 20.46 16.66 12.78 7.52    

Dry cement kilns (new) 

TIMES 1.03 0.49 1.03 1.03 1.03 5.61 9.82 14.79 20.48 29.05 42.65 48.82 54.68 

Temoa 1.00 0.48 0.90 1.00 1.00 5.60 9.84 14.74 20.46 29.02 42.63 48.81 54.64 

Relative error [%] -3.56 -2.53 -12.99 -3.56 -3.56 -0.26 0.13 -0.34 -0.11 -0.11 -0.04 -0.02 -0.06 

Production share [%] 2.11 1.18 2.79 3.13 3.15 16.15 28.22 41.54 55.16 73.62 100.00 100.00 100.00 

Cement technologies average error [%] 0.26 0.03 0.88 0.27 0.34 0.25 0.30 0.26 0.14 0.14 0.04 0.02 0.06 

Continued on page 123 
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Continued from page 122 

Glass (existing) 

TIMES 3.64 3.13 2.82 2.51 2.50 2.22 1.90 1.58 1.27 0.79    

Temoa 3.64 3.13 2.82 2.52 2.50 2.22 1.90 1.58 1.27 0.79    

Relative error [%] 0.00 0.03 0.04 0.10 0.08 0.20 0.05 -0.16 0.31 -0.04    

Production share [%] 97.89 100.00 100.00 100.00 100.00 83.85 71.78 58.46 44.84 26.38    

Glass (new) 

TIMES 0.08 0.00 0.00 0.00 0.00 0.43 0.75 1.12 1.56 2.21 3.24 3.71 4.16 

Temoa 0.08 0.00 0.00 0.00 0.00 0.42 0.75 1.13 1.56 2.21 3.25 3.71 4.16 

Relative error [%] 4.09 NaN4 NaN4 NaN4 NaN4 -0.61 0.12 0.47 -0.06 0.08 0.09 0.10 0.06 

Production share [%] 2.11 0.00 0.00 0.00 0.00 16.15 28.22 41.54 55.16 73.62 100.00 100.00 100.00 

Glass technologies average error [%] 0.09 0.03 0.04 0.10 0.08 0.26 0.07 0.29 0.17 0.07 0.09 0.10 0.06 

Lime (existing) 

TIMES 5.19 4.41 3.91 3.47 3.45 3.16 2.71 2.26 1.81 1.13    

Temoa 5.19 4.41 3.91 3.47 3.45 3.16 2.71 2.26 1.81 1.13    

Relative error [%] 0.00 -0.03 -0.08 -0.03 -0.05 0.03 0.08 0.15 0.26 0.15    

Production share [%] 97.89 98.82 97.21 96.87 96.85 83.85 71.78 58.46 44.84 26.38    

Lime (new) 

TIMES 0.11 0.05 0.11 0.11 0.11 0.61 1.06 1.60 2.22 3.15 4.62 5.29 5.93 

Temoa 0.12 0.06 0.12 0.12 0.12 0.61 1.07 1.60 2.22 3.15 4.63 5.30 5.93 

Relative error [%] 4.22 5.64 4.22 4.22 4.22 0.29 0.05 0.03 -0.02 0.01 0.09 0.10 0.06 

Production share [%] 2.11 1.18 2.79 3.13 3.15 16.15 28.22 41.54 55.16 73.62 100.00 100.00 100.00 

Lime technologies average error [%] 0.09 0.10 0.20 0.16 0.18 0.07 0.07 0.10 0.13 0.05 0.09 0.10 0.06 

 

 

4 It is not possible to derive the relative error, since the production is equal to 0. 
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Table 66. Breakout by fuel of energy consumption for "Non-metallic minerals" subsector and relative error evaluation between TIMES-Italia and Temoa-Italia results. 

Fuel Parameter 
Year [-] 

2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050 

Total 

TIMES-Italia consumption [PJ] 350.64 306.22 273.75 241.19 227.34 225.29 211.78 201.43 194.02 182.30 186.00 212.90 238.46 

Temoa-Italia consumption [PJ] 362.06 305.77 273.16 241.29 227.66 225.64 212.47 202.39 195.40 184.32 189.56 214.34 236.55 

Relative error [%] 3.26 -0.15 -0.22 0.04 0.14 0.15 0.33 0.48 0.71 1.11 1.91 0.67 -0.80 

Fuel share [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Machine 

drive 

TIMES-Italia consumption [PJ] 31.37 27.67 24.52 21.58 20.29 17.98 15.01 12.03 9.06 4.60    

Temoa-Italia consumption [PJ] 32.53 27.68 24.85 21.60 20.31 17.99 15.01 12.05 9.07 4.60    

Relative error [%] 3.70 0.06 1.33 0.11 0.09 0.00 0.02 0.15 0.16 0.05    

Fuel share [%] 8.99 9.05 9.10 8.95 8.92 7.97 7.07 5.96 4.64 2.50    

Steam 

TIMES-Italia consumption [PJ] 15.69 14.21 12.60 11.04 10.00 8.57 6.99 5.41 3.83 1.46    

Temoa-Italia consumption [PJ] 16.68 14.22 12.60 11.18 10.15 8.70 7.00 5.41 3.83 1.46    

Relative error [%] 6.34 0.01 -0.01 1.33 1.45 1.45 0.02 -0.07 0.07 -0.21    

Fuel share [%] 4.61 4.65 4.61 4.63 4.46 3.86 3.29 2.67 1.96 0.79    

Biomass 

TIMES-Italia consumption [PJ] 8.56 7.18 6.53 5.87 6.03 6.44 6.74 7.21 7.83 8.74 10.00 11.45 12.82 

Temoa-Italia consumption [PJ] 8.53 7.16 6.65 5.87 6.02 6.42 6.73 7.22 7.87 8.82 10.17 11.50 12.69 

Relative error [%] -0.39 -0.28 1.96 -0.02 -0.23 -0.20 -0.09 0.25 0.46 0.87 1.67 0.51 -0.99 

Fuel share [%] 2.36 2.34 2.44 2.43 2.64 2.85 3.17 3.57 4.03 4.78 5.36 5.37 5.37 

Coal 

TIMES-Italia consumption [PJ] 26.81 22.38 21.20 18.89 18.26 27.56 34.83 43.69 54.01 69.21 93.25 106.74 119.56 

Temoa-Italia consumption [PJ] 27.49 22.42 19.53 18.97 17.96 27.44 34.95 43.94 54.63 70.39 95.96 108.70 119.80 

Relative error [%] 2.53 0.20 -7.89 0.43 -1.64 -0.46 0.33 0.58 1.14 1.71 2.90 1.84 0.20 

Fuel share [%] 7.59 7.33 7.15 7.86 7.89 12.16 16.45 21.71 27.96 38.19 50.62 50.72 50.64 

Coke 

TIMES-Italia consumption [PJ] 0.16 0.16 0.14 0.12 0.12 0.10 0.09 0.07 0.06 0.04    

Temoa-Italia consumption [PJ] 0.16 0.38 0.43 0.41 0.40 0.08 0.06 0.04 0.03 0.00    

Relative error [%] -4.76 141.20 210.94 246.17 238.96 -23.43 -30.47 -40.46 -55.27 -100.00    

Fuel share [%] 0.04 0.12 0.16 0.17 0.17 0.03 0.03 0.02 0.01 0.00    

Continued on page 125 
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Continued from page 124 

Electricity 

TIMES-Italia consumption [PJ] 14.32 12.39 11.16 9.83 9.12 10.85 11.84 13.21 14.95 17.48 22.80 26.09 29.22 

Temoa-Italia consumption [PJ] 14.07 12.08 10.70 9.58 9.89 12.09 13.21 14.53 16.19 18.63 21.20 23.95 26.45 

Relative error [%] -1.71 -2.48 -4.07 -2.55 8.54 11.43 11.56 9.94 8.33 6.60 -6.99 -8.22 -9.48 

Fuel share [%] 3.89 3.95 3.92 3.97 4.35 5.36 6.22 7.18 8.29 10.11 11.19 11.17 11.18 

Heavy fuel 

oil 

TIMES-Italia consumption [PJ] 13.59 11.90 10.80 9.50 8.68 9.81 10.31 11.09 12.15 13.69 17.29 19.79 22.17 

Temoa-Italia consumption [PJ] 14.38 11.87 10.33 9.48 8.68 9.90 10.50 11.37 12.57 14.32 18.29 20.75 22.83 

Relative error [%] 5.82 -0.23 -4.40 -0.12 0.00 0.90 1.92 2.47 3.45 4.56 5.78 4.87 3.00 

Fuel share [%] 3.97 3.88 3.78 3.93 3.81 4.39 4.94 5.62 6.43 7.77 9.65 9.68 9.65 

LPG 

TIMES-Italia consumption [PJ] 6.60 5.66 5.01 4.43 4.31 3.94 3.35 2.77 2.18 1.38    

Temoa-Italia consumption [PJ] 6.56 5.63 4.98 4.41 4.29 3.93 3.34 2.76 2.18 1.30    

Relative error [%] -0.70 -0.59 -0.60 -0.58 -0.51 -0.39 -0.31 -0.18 -0.02 -5.74    

Fuel share [%] 1.81 1.84 1.82 1.83 1.89 1.74 1.57 1.36 1.11 0.70    

Natural gas 

TIMES-Italia consumption [PJ] 125.54 113.34 100.88 88.40 80.53 71.67 61.38 51.45 41.84 27.28 20.77 23.78 26.63 

Temoa-Italia consumption [PJ] 132.94 113.05 100.39 88.18 79.85 70.71 60.40 50.33 40.72 26.11 21.61 24.27 26.91 

Relative error [%] 5.89 -0.26 -0.49 -0.25 -0.85 -1.33 -1.60 -2.17 -2.67 -4.27 4.04 2.07 1.05 

Fuel share [%] 36.72 36.97 36.75 36.55 35.08 31.34 28.43 24.87 20.84 14.17 11.40 11.32 11.38 

Oil 

products 

TIMES-Italia consumption [PJ] 1.78 1.06 0.94 0.81 0.72 3.71 5.83 8.32 11.16 15.35 21.89 25.05 28.06 

Temoa-Italia consumption [PJ] 2.44 1.04 0.92 0.80 0.71 3.73 5.90 8.46 11.31 15.61 22.33 25.15 27.86 

Relative error [%] 37.09 -1.69 -1.93 -1.58 -1.13 0.40 1.20 1.70 1.37 1.71 2.02 0.41 -0.70 

Fuel share [%] 0.67 0.34 0.34 0.33 0.31 1.65 2.78 4.18 5.79 8.47 11.78 11.74 11.78 

Petroleum 

coke 

TIMES-Italia consumption [PJ] 106.21 90.28 79.96 70.72 69.28 64.65 55.41 46.18 36.94 23.09    

Temoa-Italia consumption [PJ] 106.27 90.24 81.77 70.79 69.41 64.66 55.37 46.27 36.99 23.10    

Relative error [%] 0.06 -0.04 2.26 0.11 0.18 0.01 -0.07 0.20 0.12 0.04    

Fuel share [%] 29.35 29.51 29.94 29.34 30.49 28.66 26.06 22.86 18.93 12.53    

 



126 

 

 

Table 64 reports the absolute values of the produced non-metallic 

minerals both evaluated with TIMES-Italia and Temoa-Italia, and the relative 

error between them. It is relevant that for each product and year, the error is 

within the tolerance interval to guarantee (±1%). Table 65 lists the annual 

contribution of each non-metallic minerals technology to the production of the 

correspondent non-metallic product while Table 66 shows the detail of fuels 

consumed by “Non-metallic minerals” subsector, with the absolute values of 

energy consumption evaluated both with TIMES and Temoa, the relative error 

between the two models and fuel share (evaluated on the basis of Temoa 

values) for each optimization year. Both for Table 65 and Table 66, focusing on 

the relative errors, a large variance should be highlighted in the numeric 

values evaluated for each technology and fuel consumption. This is mainly 

due to the fact that for some technologies and fuels, characterized by a low 

share with respect to the total production or energy consumption, also errors 

due to parameters approximation (normally negligible) become relevant. This 

means that a way to give different importance to the relative errors is needed, 

also considering the production or fuel consumption share on the total. 

This is achieved deriving an average relative error (weighted on the 

correspondent share, according to Equation 29) between Temoa and TIMES 

results for each optimization year. It is possible to draw an error curve, with 

the average relative error evolution in the time, for the entire time horizon. 

erravg[%] = ∑|erri[%]| ∗ f i[%]

i

 (29) 

Concerning the production by technologies, Figure 17 shows the 

average relative error evaluated for each non-metallic product, as already 

reported in Table 65. From the shape of the curves, it should be highlighted 

that the errors associated to the technologies’ development are below the 

tolerance value along the entire time horizon. In the first years, higher error 

values can be noted, probably due to the fact that the base year (2006) is treated 

in a different way by the two tools. Indeed, in TIMES it is included in the 

optimization and in the results, while Temoa only evaluates results for the 

time periods labeled as “future” (in the Temoa-Italia case starting from 2007). 
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This difference could have an impact on the first years’ results accuracy, being 

the production in those year largely due to the base year technologies.  

 

Figure 17. Average relative error (weighted on production shares) for "Non-metallic minerals" 

subsector technologies. Black line is used to represent the +1% tolerance value. 

Figure 18 shows the computed relative error trend for fuel consumption 

(derived by data in Table 66, according to Equation 29).  

 

Figure 18. Average relative error (weighted on fuel shares) for "Non-metallic minerals" subsector fuel 

consumption. Black line is used to represent the +1% tolerance value. 
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In this case, the average error overcome the 1% tolerance almost for the 

entire time horizon (with the exceptions of 2008 and 2012). The first comment 

that can be done, is that error is higher in correspondence of the first 

simulation years (notably for 2007) and for 2030. Two reasons can explain this 

behavior. Concerning the first years, as already said before commenting 

Figure 17, this is probably due to the difference modeling of the base year 

between the two tools. For 2030, it should be remembered that this is the year 

at which the disposal of base-year technologies is forced (maximum activity 

imposed equal to 0). Probably the 2030, completing the shift from base year 

technologies to the new ones, is a critical year from the point of view of results 

accuracy. Anyway, it is of course true that, comparing results for the single 

fuel consumption, errors become higher with respect to simply analyze the 

total non-metallic minerals production and technologies’ utilization, not only 

for 2007 and 2030 but generally. Energy consumption for single fuel is derived 

by the model taking into account several parameters: technologies’ efficiency, 

constraints on fuel input share, constraints on commodity output share etc. 

For that reason, it was predictable that the total accuracy would be lower, at 

this degree of detail for the analyses. A reassuring comment consists in noting 

that, in any case, the average error remains on relatively low values (in any 

case less than 4%). 

Energy consumption results evaluated by the two tools, split by fuel, 

are also presented in Figure 19 and Figure 20. These figures allow to appreciate 

the qualitative similarity of the results, in addition to the numerical evaluation 

of errors already provided. 

It is important to remember again that these results are not significant 

from the point of view of the energy mix evolution, both for the period for 

which historical data of real fuel consumption are available (2006-2018) and 

for the future period for which the model provides forecasts (2020-2050). This 

is due to the fact that some important constraints (present in TIMES-Italia) are 

still not implemented in Temoa-Italia, as already said in Section 1.1 (and of 

course for that reason relative files have been also deselected for the TIMES 

optimization). For this reason, for example, the important increasing of the 

coal consumption shown in the figures is not realistic. In other words, the 
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current results are useful only to prove that models provide the same results, 

independently on their significance for energy forecast. 

Figure 19. Energy consumption split by fuel for "non-metallic minerals" industrial subsector, 

obtained from TIMES-Italia and Temoa-Italia. 

Figure 20. Comparison of TIMES-Italia and Temoa-Italia results split by fuel, detail for 2020, 2030, 

2040 and 2050 results.
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Chapter 5 

5. Conclusions and perspective 

Temoa-Italia constitutes a valid open-source alternative as an 

optimization model of the Italian energy system. Certainly, the model needs 

to be completed with the missing sets of constraints, which allow not only to 

obtain the same results as TIMES-Italia, but also that these results make sense 

and are consistent, both with the real historical evolution of the energy mix 

and the expectations on its future evolution. 

However, already at the current stage of development of the model, the 

objectives of the thesis have been achieved: 

a. The TIMES-Italia model has been completely reviewed and 

updated, particularly with new technologies transport and 

industry modules, also performing updates on the calibration at 

the base year. 

b. The new Temoa-Italia model database has been developed, 

translating in open-source format the same information 

contained in the TIMES-Italia dataset and developing 

integration to the Temoa framework, expanding its capabilities, 

and simplifying the data preprocessing. It is an important point 

having the perspective to perform further studies and works 

analyzes with Temoa. 

c. The results obtained both with TIMES-Italia and Temoa-Italia 

have been compared in detail (as part of the thesis treatment, 

only for one industrial subsector) and it has been demonstrated 

that differences are contained in a certain acceptable tolerance 

interval or, where not, motivations for this have been provided. 

This has been done to validate the results reliability of Temoa 

with respect to a well-established commercial tool such as the 

TIMES model generator. 

Having demonstrated that Temoa framework can be a valid alternative 

in the context of energy system modeling, it can be now used as a reference 

tool on which modifications or integrations on the optimization paradigms can 
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be executed. This would be a more significant contribution to the transparency 

of scientific research in the context of scenario analysis, guaranteeing also 

third-part verification and the accessibility of data and tools exploited by 

modelers to a more and more large audience, without any commercial 

restriction. 

Starting from the Temoa framework and, in this case, from Temoa-

Italia, also future studies and developments are possible. First, a sustainability 

analysis could be integrated into the model; it is possible to do it, at least at the 

beginning, as a postprocessing of the results, in other to derive a set of 

indicators to evaluate the energy mix (evaluated on the classic economic 

optimization) from the sustainability point of view. However, as soon as those 

indicators will prove to be adequate and consistent with the purpose to assess 

the technologies environmental and social sustainability, they should be 

integrated in the tecno-economic characterization of the technologies included 

in the model database.  This is fundamental to take into account the 

sustainability levels during the optimization process, for example with a 

multi-objective function, considering of course the total cost as optimization 

criterion, but also the sustainability level of the energy mix and any other 

indicators of interest. 

Subsequently, it would certainly be desirable and necessary to apply 

the same concepts of open-source and extended optimization paradigm no 

longer only to a model limited to the Italian case, but to an international model. 
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Appendix 

A. Database preprocessing 

import pandas as pd 
import numpy as np 
import sqlite3 
 
database_name = "Industry.sqlite" 
lifetime_default = 40 
 
print_set = {'LifetimeProcess':         False, 
             'Efficiency':              False, 
             'TechInputSplit':          False, 
             'TechOutputSplit':         False, 
             'EmissionActivity':        False, 
             'CostInvest':              False, 
             'CostFixed':               False, 
             'CostVariable':            False, 
             'MinCapacity':             False, 
             'MinActivity':             False, 
             'MaxCapacity':             False, 
             'MaxActivity':             False, 
             'AvailabilityFactor':      False, 
             'Demand':                  False, 
             'CapacityFactorProcess':   False, 
             'CapacityCredit':          False} 
 
tosql_set = {'LifetimeProcess':         True, 
             'Efficiency':              True, 
             'TechInputSplit':          True, 
             'TechOutputSplit':         True, 
             'EmissionActivity':        True, 
             'CostInvest':              True, 
             'CostFixed':               True, 
             'CostVariable':            True, 
             'MinCapacity':             True, 
             'MinActivity':             True, 
             'MaxCapacity':             True, 
             'MaxActivity':             True, 
             'AvailabilityFactor':      True, 
             'Demand':                  True, 
             'CapacityFactorProcess':   True, 
             'CapacityCredit':          True} 
 
 
 
# LifetimeProcess 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
LifetimeProcess = pd.read_sql("select * from LifetimeProcess", conn) 
 
regions = list() 
tech = list() 
vintage = list() 
life_process = list() 
life_process_notes = list() 
 
tech_already_considered=list() 
for i_tech in range(0, len(LifetimeProcess.tech)): 
    tech_i = LifetimeProcess.tech[i_tech] 
 
    flag_check = 0 
    for check in range(0, len(tech_already_considered)): 



141 

 

 

        if tech_i == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(LifetimeProcess.tech)): 
            if LifetimeProcess.tech[j_tech] == tech_i: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i) 
 
        if flag == 0:  # No other values 
 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= LifetimeProcess.vintage[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                    regions.append(LifetimeProcess.regions[i_tech]) 
                    tech.append(LifetimeProcess.tech[i_tech]) 
                    vintage.append(int(time_periods.t_periods[i_year])) 
                    life_process.append(int(LifetimeProcess.life_process[i_tech])) 
                    life_process_notes.append(LifetimeProcess.life_process_notes[i_tech]) 
 
        else: 
            for i_location in range(0, len(location)-1): 
                year1 = LifetimeProcess.vintage[location[i_location]] 
                year2 = LifetimeProcess.vintage[location[i_location+1]] 
                life1 = LifetimeProcess.life_process[location[i_location]] 
                life2 = LifetimeProcess.life_process[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        regions.append(LifetimeProcess.regions[i_tech]) 
                        tech.append(LifetimeProcess.tech[i_tech]) 
                        vintage.append(int(year)) 
                        life_process.append(life1) #int(life1 + (year-year1)/(year2-
year1)*(life2-life1)) 
                        
life_process_notes.append(LifetimeProcess.life_process_notes[i_tech]) 
 
            year_last = LifetimeProcess.vintage[location[i_location+1]] 
            cost = LifetimeProcess.life_process[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        regions.append(LifetimeProcess.regions[i_tech]) 
                        tech.append(LifetimeProcess.tech[i_tech]) 
                        vintage.append(int(year)) 
                        
life_process.append(int(LifetimeProcess.life_process[location[i_location + 1]])) 
                        
life_process_notes.append(LifetimeProcess.life_process_notes[i_tech]) 
            else: 
                regions.append(LifetimeProcess.regions[i_tech]) 
                vintage.append(int(year_last)) 
                tech.append(LifetimeProcess.tech[i_tech]) 
                life_process.append(int(LifetimeProcess.life_process[location[i_location + 
1]])) 
                life_process_notes.append(LifetimeProcess.life_process_notes[i_tech]) 
 
LifetimeProcess_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "tech": pd.Series(tech, dtype='str'), 
        "vintage": pd.Series(vintage, dtype='int'), 
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        "life_process": pd.Series(life_process, dtype='int'), 
        "life_process_notes": pd.Series(life_process_notes, dtype='str') 
    } 
) 
 
if tosql_set['LifetimeProcess']: 
    LifetimeProcess_DF.to_sql("LifetimeProcess", conn, index=False, if_exists='replace') 
 
if print_set['LifetimeProcess']: 
    pd.set_option('display.max_rows', len(LifetimeProcess_DF)) 
    pd.set_option('display.max_columns', len(LifetimeProcess_DF)) 
    print("\nLifetimeProcess DataFrame\n\n", LifetimeProcess_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = 1 
print('[',print_i,'/',len(print_set),']     LifetimeProcess updated...') 
 
 
# Efficiency 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
Efficiency = pd.read_sql("select * from Efficiency", conn) 
 
regions = list() 
input_comm = list() 
tech = list() 
vintage = list() 
output_comm = list() 
efficiency = list() 
eff_notes = list() 
 
tech_already_considered=list() 
for i_tech in range(0, len(Efficiency.tech)): 
    tech_i = Efficiency.tech[i_tech] 
 
    flag_check = 0 
    tech_i_check = Efficiency.input_comm[i_tech] + tech_i + Efficiency.output_comm[i_tech] 
    for check in range(0, len(tech_already_considered)): 
        if tech_i_check == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(Efficiency.tech)): 
            tech_j_check = Efficiency.input_comm[j_tech] + Efficiency.tech[j_tech] + 
Efficiency.output_comm[j_tech] 
            if tech_j_check == tech_i_check: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i_check) 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= Efficiency.vintage[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                    regions.append(Efficiency.regions[i_tech]) 
                    input_comm.append(Efficiency.input_comm[i_tech]) 
                    tech.append(Efficiency.tech[i_tech]) 
                    vintage.append(int(time_periods.t_periods[i_year])) 
                    output_comm.append(Efficiency.output_comm[i_tech]) 
                    
efficiency.append(float(np.format_float_scientific(Efficiency.efficiency[i_tech], 2))) 
                    eff_notes.append(Efficiency.eff_notes[i_tech]) 
 
        else: 
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            for i_location in range(0, len(location)-1): 
                year1 = Efficiency.vintage[location[i_location]] 
                year2 = Efficiency.vintage[location[i_location+1]] 
                eff1 = Efficiency.efficiency[location[i_location]] 
                eff2 = Efficiency.efficiency[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        regions.append(Efficiency.regions[i_tech]) 
                        input_comm.append(Efficiency.input_comm[i_tech]) 
                        tech.append(Efficiency.tech[i_tech]) 
                        vintage.append(int(year)) 
                        output_comm.append(Efficiency.output_comm[i_tech]) 
                        efficiency.append(float(np.format_float_scientific(eff1 + (year-
year1)/(year2-year1)*(eff2-eff1), 2))) 
                        eff_notes.append(Efficiency.eff_notes[i_tech]) 
 
            year_last = Efficiency.vintage[location[i_location+1]] 
            eff = Efficiency.efficiency[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        regions.append(Efficiency.regions[i_tech]) 
                        input_comm.append(Efficiency.input_comm[i_tech]) 
                        tech.append(Efficiency.tech[i_tech]) 
                        vintage.append(int(year)) 
                        output_comm.append(Efficiency.output_comm[i_tech]) 
                        
efficiency.append(float(np.format_float_scientific(Efficiency.efficiency[location[i_locati
on + 1]], 2))) 
                        eff_notes.append(Efficiency.eff_notes[i_tech]) 
            else: 
                regions.append(Efficiency.regions[i_tech]) 
                input_comm.append(Efficiency.input_comm[i_tech]) 
                tech.append(Efficiency.tech[i_tech]) 
                vintage.append(int(year_last)) 
                output_comm.append(Efficiency.output_comm[i_tech]) 
                
efficiency.append(float(np.format_float_scientific(Efficiency.efficiency[location[i_locati
on + 1]], 2))) 
                eff_notes.append(Efficiency.eff_notes[i_tech]) 
 
Efficiency_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "input_comm": pd.Series(input_comm, dtype='str'), 
        "tech": pd.Series(tech, dtype='str'), 
        "vintage": pd.Series(vintage, dtype='int'), 
        "output_comm": pd.Series(output_comm, dtype='str'), 
        "efficiency": pd.Series(efficiency, dtype='float'), 
        "eff_notes": pd.Series(eff_notes, dtype='str') 
    } 
) 
 
if tosql_set['Efficiency']: 
    Efficiency_DF.to_sql("Efficiency", conn, index=False, if_exists='replace') 
 
if print_set['Efficiency']: 
    pd.set_option('display.max_rows', len(Efficiency_DF)) 
    pd.set_option('display.max_columns', len(Efficiency_DF)) 
    print("\nEfficiency DataFrame\n\n", Efficiency_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     Efficiency updated...') 
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# TechInputSplit 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
TechInputSplit = pd.read_sql("select * from TechInputSplit", conn) 
 
regions = list() 
periods = list() 
input_comm = list() 
tech = list() 
ti_split = list() 
ti_split_notes = list() 
 
tech_already_considered=list() 
for i_tech in range(0, len(TechInputSplit.tech)): 
    tech_i = TechInputSplit.tech[i_tech] 
 
    flag_check = 0 
    tech_i_check = TechInputSplit.input_comm[i_tech] + tech_i 
    for check in range(0, len(tech_already_considered)): 
        if tech_i_check == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(TechInputSplit.tech)): 
            tech_j_check = TechInputSplit.input_comm[j_tech] + TechInputSplit.tech[j_tech] 
            if tech_j_check == tech_i_check: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i_check) 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= TechInputSplit.periods[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                    regions.append(TechInputSplit.regions[i_tech]) 
                    periods.append(int(time_periods.t_periods[i_year])) 
                    input_comm.append(TechInputSplit.input_comm[i_tech]) 
                    tech.append(TechInputSplit.tech[i_tech]) 
                    
ti_split.append(float(np.format_float_scientific(TechInputSplit.ti_split[i_tech], 2))) 
                    ti_split_notes.append(TechInputSplit.ti_split_notes[i_tech]) 
 
        else: 
            for i_location in range(0, len(location)-1): 
                year1 = TechInputSplit.periods[location[i_location]] 
                year2 = TechInputSplit.periods[location[i_location+1]] 
                eff1 = TechInputSplit.ti_split[location[i_location]] 
                eff2 = TechInputSplit.ti_split[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        regions.append(TechInputSplit.regions[i_tech]) 
                        periods.append(int(year)) 
                        input_comm.append(TechInputSplit.input_comm[i_tech]) 
                        tech.append(TechInputSplit.tech[i_tech]) 
                        ti_split.append(float(np.format_float_scientific(eff1 + (year-
year1)/(year2-year1)*(eff2-eff1), 2))) 
                        ti_split_notes.append(TechInputSplit.ti_split_notes[i_tech]) 
 
            year_last = TechInputSplit.periods[location[i_location+1]] 
            eff = TechInputSplit.ti_split[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]: 
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                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        regions.append(TechInputSplit.regions[i_tech]) 
                        periods.append(int(year)) 
                        input_comm.append(TechInputSplit.input_comm[i_tech]) 
                        tech.append(TechInputSplit.tech[i_tech]) 
                        
ti_split.append(float(np.format_float_scientific(TechInputSplit.ti_split[location[i_locati
on + 1]], 2))) 
                        ti_split_notes.append(TechInputSplit.ti_split_notes[i_tech]) 
            else: 
                regions.append(TechInputSplit.regions[i_tech]) 
                periods.append(int(year_last)) 
                input_comm.append(TechInputSplit.input_comm[i_tech]) 
                tech.append(TechInputSplit.tech[i_tech]) 
                
ti_split.append(float(np.format_float_scientific(TechInputSplit.ti_split[location[i_locati
on + 1]], 2))) 
                ti_split_notes.append(TechInputSplit.ti_split_notes[i_tech]) 
 
TechInputSplit_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "periods": pd.Series(periods, dtype='int'), 
        "input_comm": pd.Series(input_comm, dtype='str'), 
        "tech": pd.Series(tech, dtype='str'), 
        "ti_split": pd.Series(ti_split, dtype='float'), 
        "ti_split_notes": pd.Series(ti_split_notes, dtype='str') 
    } 
) 
 
if tosql_set['TechInputSplit']: 
    TechInputSplit_DF.to_sql("TechInputSplit", conn, index=False, if_exists='replace') 
 
if print_set['TechInputSplit']: 
    pd.set_option('display.max_rows', len(TechInputSplit_DF)) 
    pd.set_option('display.max_columns', len(TechInputSplit_DF)) 
    print("\nTechInputSplit DataFrame\n\n", TechInputSplit_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     TechInputSplit updated...') 
 
 
 
# TechOutputSplit 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
TechOutputSplit = pd.read_sql("select * from TechOutputSplit", conn) 
 
regions = list() 
periods = list() 
output_comm = list() 
tech = list() 
to_split = list() 
to_split_notes = list() 
 
tech_already_considered=list() 
for i_tech in range(0, len(TechOutputSplit.tech)): 
    tech_i = TechOutputSplit.tech[i_tech] 
 
    flag_check = 0 
    tech_i_check = tech_i + TechOutputSplit.output_comm[i_tech] 
    for check in range(0, len(tech_already_considered)): 
        if tech_i_check == tech_already_considered[check]: 
            flag_check = 1 
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    if flag_check == 0: 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(TechOutputSplit.tech)): 
            tech_j_check = TechOutputSplit.tech[j_tech] + 
TechOutputSplit.output_comm[j_tech] 
            if tech_j_check == tech_i_check: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i_check) 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= TechOutputSplit.periods[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                    regions.append(TechOutputSplit.regions[i_tech]) 
                    periods.append(int(time_periods.t_periods[i_year])) 
                    tech.append(TechOutputSplit.tech[i_tech]) 
                    output_comm.append(TechOutputSplit.output_comm[i_tech]) 
                    
to_split.append(float(np.format_float_scientific(TechOutputSplit.to_split[i_tech], 2))) 
                    to_split_notes.append(TechOutputSplit.to_split_notes[i_tech]) 
 
        else: 
            for i_location in range(0, len(location)-1): 
                year1 = TechOutputSplit.periods[location[i_location]] 
                year2 = TechOutputSplit.periods[location[i_location+1]] 
                eff1 = TechOutputSplit.to_split[location[i_location]] 
                eff2 = TechOutputSplit.to_split[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        regions.append(TechOutputSplit.regions[i_tech]) 
                        periods.append(int(year)) 
                        tech.append(TechOutputSplit.tech[i_tech]) 
                        output_comm.append(TechOutputSplit.output_comm[i_tech]) 
                        to_split.append(float(np.format_float_scientific(eff1 + (year-
year1)/(year2-year1)*(eff2-eff1), 2))) 
                        to_split_notes.append(TechOutputSplit.to_split_notes[i_tech]) 
 
            year_last = TechOutputSplit.periods[location[i_location+1]] 
            eff = TechOutputSplit.to_split[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        regions.append(TechOutputSplit.regions[i_tech]) 
                        periods.append(int(year)) 
                        tech.append(TechOutputSplit.tech[i_tech]) 
                        output_comm.append(TechOutputSplit.output_comm[i_tech]) 
                        
to_split.append(float(np.format_float_scientific(TechOutputSplit.to_split[location[i_locat
ion + 1]], 2))) 
                        to_split_notes.append(TechOutputSplit.to_split_notes[i_tech]) 
            else: 
                regions.append(TechOutputSplit.regions[i_tech]) 
                periods.append(int(year_last)) 
                tech.append(TechOutputSplit.tech[i_tech]) 
                output_comm.append(TechOutputSplit.output_comm[i_tech]) 
                
to_split.append(float(np.format_float_scientific(TechOutputSplit.to_split[location[i_locat
ion + 1]], 2))) 
                to_split_notes.append(TechOutputSplit.to_split_notes[i_tech]) 
 
TechOutputSplit_DF = pd.DataFrame( 
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    { 
        "regions": pd.Series(regions, dtype='str'), 
        "periods": pd.Series(periods, dtype='int'), 
        "tech": pd.Series(tech, dtype='str'), 
        "output_comm": pd.Series(output_comm, dtype='str'), 
        "to_split": pd.Series(to_split, dtype='float'), 
        "to_split_notes": pd.Series(to_split_notes, dtype='str') 
    } 
) 
 
if tosql_set['TechOutputSplit']: 
    TechOutputSplit_DF.to_sql("TechOutputSplit", conn, index=False, if_exists='replace') 
 
if print_set['TechOutputSplit']: 
    pd.set_option('display.max_rows', len(TechOutputSplit_DF)) 
    pd.set_option('display.max_columns', len(TechOutputSplit_DF)) 
    print("\nTechOutputSplit DataFrame\n\n", TechOutputSplit_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     TechOutputSplit updated...') 
 
 
 
# EmissionActivity 
 
conn = sqlite3.connect(database_name) 
Efficiency = pd.read_sql("select * from Efficiency", conn) 
CommodityEmissionFactor = pd.read_sql("select * from CommodityEmissionFactor", conn) 
 
regions=list() 
emis_comm=list() 
input_comm=list() 
tech=list() 
vintage=list() 
output_comm=list() 
emis_act=list() 
emis_act_units=list() 
emis_act_notes=list() 
 
for i_tech in range(0, len(Efficiency.tech)): 
    for i_comm in range(0, len(CommodityEmissionFactor.input_comm)): 
        if Efficiency.input_comm[i_tech] == CommodityEmissionFactor.input_comm[i_comm]: 
            regions.append(Efficiency.regions[i_tech]) 
            emis_comm.append(CommodityEmissionFactor.emis_comm[i_comm]) 
            input_comm.append(CommodityEmissionFactor.input_comm[i_comm]) 
            tech.append(Efficiency.tech[i_tech]) 
            vintage.append(Efficiency.vintage[i_tech]) 
            output_comm.append(Efficiency.output_comm[i_tech]) 
            
emis_act.append(float(np.format_float_scientific(CommodityEmissionFactor.ef[i_comm] / 
Efficiency.efficiency[i_tech], 2))) 
            emis_act_units.append(CommodityEmissionFactor.emis_unit[i_comm]) 
            emis_act_notes.append('') 
 
EmissionActivity_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "emis_comm": pd.Series(emis_comm, dtype='str'), 
        "input_comm": pd.Series(input_comm, dtype='str'), 
        "tech": pd.Series(tech, dtype='str'), 
        "vintage": pd.Series(vintage, dtype='int'), 
        "output_comm": pd.Series(output_comm, dtype='str'), 
        "emis_act": pd.Series(emis_act, dtype='float'), 
        "emis_act_units": pd.Series(emis_act_units, dtype='str'), 
        "emis_act_notes": pd.Series(emis_act_notes, dtype='str') 
    } 
) 
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if tosql_set['EmissionActivity']: 
    EmissionActivity_DF.to_sql("EmissionActivity", conn, index=False, if_exists='replace') 
 
if print_set['EmissionActivity']: 
    pd.set_option('display.max_rows', len(EmissionActivity_DF)) 
    pd.set_option('display.max_columns', len(EmissionActivity_DF)) 
    print("\nEmissionActivity DataFrame\n\n", EmissionActivity_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     EmissionActivity updated...') 
 
 
 
# CostInvest 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
CostInvest = pd.read_sql("select * from CostInvest", conn) 
 
regions = list() 
tech = list() 
vintage = list() 
cost_invest = list() 
cost_invest_units = list() 
cost_invest_notes = list() 
 
tech_already_considered=list() 
for i_tech in range(0, len(CostInvest.tech)): 
    tech_i = CostInvest.tech[i_tech] 
 
    flag_check = 0 
    for check in range(0, len(tech_already_considered)): 
        if tech_i == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(CostInvest.tech)): 
            if CostInvest.tech[j_tech] == tech_i: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i) 
 
        if flag == 0:  # No other values 
 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= CostInvest.vintage[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                    regions.append(CostInvest.regions[i_tech]) 
                    tech.append(CostInvest.tech[i_tech]) 
                    vintage.append(int(time_periods.t_periods[i_year])) 
                    
cost_invest.append(float(np.format_float_scientific(CostInvest.cost_invest[i_tech], 2))) 
                    cost_invest_units.append(CostInvest.cost_invest_units[i_tech]) 
                    cost_invest_notes.append(CostInvest.cost_invest_notes[i_tech]) 
 
        else: 
            for i_location in range(0, len(location)-1): 
                year1 = CostInvest.vintage[location[i_location]] 
                year2 = CostInvest.vintage[location[i_location+1]] 
                cost1 = CostInvest.cost_invest[location[i_location]] 
                cost2 = CostInvest.cost_invest[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
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                    if year1 <= year < year2: 
                        regions.append(CostInvest.regions[i_tech]) 
                        tech.append(CostInvest.tech[i_tech]) 
                        vintage.append(int(year)) 
                        cost_invest.append(float(np.format_float_scientific(cost1 + (year-
year1)/(year2-year1)*(cost2-cost1), 2))) 
                        cost_invest_units.append(CostInvest.cost_invest_units[i_tech]) 
                        cost_invest_notes.append(CostInvest.cost_invest_notes[i_tech]) 
 
            year_last = CostInvest.vintage[location[i_location+1]] 
            cost = CostInvest.cost_invest[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        regions.append(CostInvest.regions[i_tech]) 
                        tech.append(CostInvest.tech[i_tech]) 
                        vintage.append(int(year)) 
                        
cost_invest.append(float(np.format_float_scientific(CostInvest.cost_invest[location[i_loca
tion + 1]], 2))) 
                        cost_invest_units.append(CostInvest.cost_invest_units[i_tech]) 
                        cost_invest_notes.append(CostInvest.cost_invest_notes[i_tech]) 
            else: 
                regions.append(CostInvest.regions[i_tech]) 
                tech.append(CostInvest.tech[i_tech]) 
                vintage.append(int(year_last)) 
                
cost_invest.append(float(np.format_float_scientific(CostInvest.cost_invest[location[i_loca
tion + 1]], 2))) 
                cost_invest_units.append(CostInvest.cost_invest_units[i_tech]) 
                cost_invest_notes.append(CostInvest.cost_invest_notes[i_tech]) 
 
CostInvest_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "tech": pd.Series(tech, dtype='str'), 
        "vintage": pd.Series(vintage, dtype='int'), 
        "cost_invest": pd.Series(cost_invest, dtype='float'), 
        "cost_invest_units": pd.Series(cost_invest_units, dtype='str'), 
        "cost_invest_notes": pd.Series(cost_invest_notes, dtype='str') 
    } 
) 
 
if tosql_set['CostInvest']: 
    CostInvest_DF.to_sql("CostInvest", conn, index=False, if_exists='replace') 
 
if print_set['CostInvest']: 
    pd.set_option('display.max_rows', len(CostInvest_DF)) 
    pd.set_option('display.max_columns', len(CostInvest_DF)) 
    print("\nCostInvest DataFrame\n\n", CostInvest_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     CostInvest updated...') 
 
 
 
# CostFixed 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
LifetimeTech = pd.read_sql("select * from LifetimeTech", conn) 
LifetimeProcess = pd.read_sql("select * from LifetimeProcess", conn) 
CostFixed = pd.read_sql("select * from CostFixed", conn) 
 
regions = list() 
periods = list() 
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tech = list() 
vintage = list() 
cost_fixed = list() 
cost_fixed_units = list() 
cost_fixed_notes = list() 
 
tech_already_considered = list() 
for i_tech in range(0, len(CostFixed.tech)): 
    tech_i = CostFixed.tech[i_tech] 
 
    flag_check = 0 
    for check in range(0, len(tech_already_considered)): 
        if tech_i == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        lifetime = 0 
        year_lifetime = list() 
        lifetime_process = list() 
        for i_life in range(0, len(LifetimeTech.life)): 
            if LifetimeTech.tech[i_life] == tech_i: 
                lifetime = LifetimeTech.life[i_life] 
        if lifetime == 0: 
            for i_life in range(0, len(LifetimeProcess.life_process)): 
                if LifetimeProcess.tech[i_life] == tech_i: 
                    year_lifetime.append(LifetimeProcess.vintage[i_life]) 
                    lifetime_process.append(LifetimeProcess.life_process[i_life]) 
                else: 
                    lifetime = lifetime_default 
 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(CostFixed.tech)): 
            if CostFixed.tech[j_tech] == tech_i: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i) 
 
        #lifetime_save = lifetime 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= CostFixed.vintage[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
 
                    #lifetime = lifetime_save 
                    year_vintage = time_periods.t_periods[i_year] 
                    for i in range(0, len(year_lifetime)): 
                        if year_vintage == year_lifetime[i]: 
                            lifetime = lifetime_process[i] 
                    start = year_vintage 
                    stop = year_vintage + lifetime 
 
                    for j_year in range(0, len(time_periods)): 
                        year_periods = time_periods.t_periods[j_year] 
                        if start <= year_periods < stop and year_periods != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                            regions.append(CostFixed.regions[i_tech]) 
                            periods.append(int(year_periods)) 
                            tech.append(CostFixed.tech[i_tech]) 
                            vintage.append(int(year_vintage)) 
                            
cost_fixed.append(float(np.format_float_scientific(CostFixed.cost_fixed[i_tech], 2))) 
                            cost_fixed_units.append(CostFixed.cost_fixed_units[i_tech]) 
                            cost_fixed_notes.append(CostFixed.cost_fixed_notes[i_tech]) 
 
        else: 
            year_list = list() 
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            cost_list = list() 
            for i_location in range(0, len(location)-1): 
                year1 = CostFixed.periods[location[i_location]] 
                year2 = CostFixed.periods[location[i_location+1]] 
                cost1 = CostFixed.cost_fixed[location[i_location]] 
                cost2 = CostFixed.cost_fixed[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        year_list.append(year) 
                        cost_list.append(cost1 + (year-year1)/(year2-year1)*(cost2-cost1)) 
 
            year_last = CostFixed.vintage[location[i_location+1]] 
            cost_last = CostFixed.cost_fixed[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-2]: 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        year_list.append(year) 
                        cost_list.append(cost_last) 
            else: 
                year_list.append(year_last) 
                cost_list.append(cost_last) 
 
            for i_year in range(0, len(year_list)): 
                if year_list[i_year] >= CostFixed.vintage[i_tech]: 
 
                    #lifetime = lifetime_save 
                    year_vintage = year_list[i_year] 
                    for i in range(0, len(year_lifetime)): 
                        if year_vintage == year_lifetime[i]: 
                            lifetime = lifetime_process[i] 
                    start = year_vintage 
                    stop = year_vintage + lifetime 
 
                    for j_year in range(0, len(year_list)): 
                        year_periods = year_list[j_year] 
                        if start <= year_periods < stop and year_periods != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                            regions.append(CostFixed.regions[i_tech]) 
                            periods.append(int(year_periods)) 
                            tech.append(CostFixed.tech[i_tech]) 
                            vintage.append(int(year_vintage)) 
                            
cost_fixed.append(float(np.format_float_scientific(cost_list[j_year], 2))) 
                            cost_fixed_units.append(CostFixed.cost_fixed_units[i_tech]) 
                            cost_fixed_notes.append(CostFixed.cost_fixed_notes[i_tech]) 
 
CostFixed_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "periods": pd.Series(periods, dtype='int'), 
        "tech": pd.Series(tech, dtype='str'), 
        "vintage": pd.Series(vintage, dtype='int'), 
        "cost_fixed": pd.Series(cost_fixed, dtype='float'), 
        "cost_fixed_units": pd.Series(cost_fixed_units, dtype='str'), 
        "cost_fixed_notes": pd.Series(cost_fixed_notes, dtype='str') 
    } 
) 
 
if tosql_set['CostFixed']: 
    CostFixed_DF.to_sql("CostFixed", conn, index=False, if_exists='replace') 
 
if print_set['CostFixed']: 
    pd.set_option('display.max_rows', len(CostFixed_DF)) 
    pd.set_option('display.max_columns', len(CostFixed_DF)) 
    print("\nCostFixed DataFrame\n\n", CostFixed_DF) 
    pd.reset_option('display.max_rows') 
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conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     CostFixed updated...') 
 
 
 
# CostVariable 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
LifetimeTech = pd.read_sql("select * from LifetimeTech", conn) 
LifetimeProcess = pd.read_sql("select * from LifetimeProcess", conn) 
CostVariable = pd.read_sql("select * from CostVariable", conn) 
 
regions = list() 
periods = list() 
tech = list() 
vintage = list() 
cost_variable = list() 
cost_variable_units = list() 
cost_variable_notes = list() 
 
tech_already_considered = list() 
for i_tech in range(0, len(CostVariable.tech)): 
    tech_i = CostVariable.tech[i_tech] 
 
    flag_check = 0 
    for check in range(0, len(tech_already_considered)): 
        if tech_i == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        lifetime = 0 
        year_lifetime = list() 
        lifetime_process = list() 
        for i_life in range(0, len(LifetimeTech.life)): 
            if LifetimeTech.tech[i_life] == tech_i: 
                lifetime = float(LifetimeTech.life[i_life]) 
        if lifetime == 0: 
            for i_life in range(0, len(LifetimeProcess.life_process)): 
                if LifetimeProcess.tech[i_life] == tech_i: 
                    year_lifetime.append(float(LifetimeProcess.vintage[i_life])) 
                    lifetime_process.append(float(LifetimeProcess.life_process[i_life])) 
                else: 
                    lifetime = lifetime_default 
 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(CostVariable.tech)): 
            if CostVariable.tech[j_tech] == tech_i: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i) 
 
        #lifetime_save = lifetime 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= CostVariable.vintage[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
 
                    #lifetime = lifetime_save 
                    year_vintage = float(time_periods.t_periods[i_year]) 
                    for i in range(0, len(year_lifetime)): 
                        if year_vintage == year_lifetime[i]: 
                            lifetime = float(lifetime_process[i]) 
                    start = float(year_vintage) 
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                    stop = float(year_vintage) + lifetime 
 
                    for j_year in range(0, len(time_periods)): 
                        year_periods = time_periods.t_periods[j_year] 
                        if start <= year_periods < stop and year_periods != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                            regions.append(CostVariable.regions[i_tech]) 
                            periods.append(int(year_periods)) 
                            tech.append(CostVariable.tech[i_tech]) 
                            vintage.append(int(year_vintage)) 
                            
cost_variable.append(float(np.format_float_scientific(CostVariable.cost_variable[i_tech], 
2))) 
                            
cost_variable_units.append(CostVariable.cost_variable_units[i_tech]) 
                            
cost_variable_notes.append(CostVariable.cost_variable_notes[i_tech]) 
 
        else: 
            year_list = list() 
            cost_list = list() 
            for i_location in range(0, len(location)-1): 
                year1 = float(CostVariable.periods[location[i_location]]) 
                year2 = float(CostVariable.periods[location[i_location+1]]) 
                cost1 = float(CostVariable.cost_variable[location[i_location]]) 
                cost2 = float(CostVariable.cost_variable[location[i_location+1]]) 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        year_list.append(year) 
                        cost_list.append(cost1 + (year-year1)/(year2-year1)*(cost2-cost1)) 
 
            year_last = float(CostVariable.vintage[location[i_location+1]]) 
            cost_last = float(CostVariable.cost_variable[location[i_location+1]]) 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-2]: 
#different by 2050 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        year_list.append(year) 
                        cost_list.append(cost_last) 
            else: # if year_last=2050 
                year_list.append(year_last) 
                cost_list.append(cost_last) 
 
            for i_year in range(0, len(year_list)): 
                if float(year_list[i_year]) >= float(CostVariable.vintage[i_tech]): 
 
                    #lifetime = lifetime_save 
                    year_vintage = year_list[i_year] 
                    for i in range(0, len(year_lifetime)): 
                        if year_vintage == year_lifetime[i]: 
                            lifetime = float(lifetime_process[i]) 
                    start = float(year_vintage) 
                    stop = float(year_vintage) + lifetime 
                    for j_year in range(0, len(year_list)): 
                        year_periods = year_list[j_year] 
                        if start <= year_periods < stop and year_periods != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                            regions.append(CostVariable.regions[i_tech]) 
                            periods.append(int(year_periods)) 
                            tech.append(CostVariable.tech[i_tech]) 
                            vintage.append(int(year_vintage)) 
                            
cost_variable.append(float(np.format_float_scientific(cost_list[j_year], 2))) 
                            
cost_variable_units.append(CostVariable.cost_variable_units[i_tech]) 



154 

 

 

                            
cost_variable_notes.append(CostVariable.cost_variable_notes[i_tech]) 
 
CostVariable_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "periods": pd.Series(periods, dtype='int'), 
        "tech": pd.Series(tech, dtype='str'), 
        "vintage": pd.Series(vintage, dtype='int'), 
        "cost_variable": pd.Series(cost_variable, dtype='float'), 
        "cost_variable_units": pd.Series(cost_variable_units, dtype='str'), 
        "cost_variable_notes": pd.Series(cost_variable_notes, dtype='str') 
    } 
) 
 
if tosql_set['CostVariable']: 
    CostVariable_DF.to_sql("CostVariable", conn, index=False, if_exists='replace') 
 
if print_set['CostVariable']: 
    pd.set_option('display.max_rows', len(CostVariable_DF)) 
    pd.set_option('display.max_columns', len(CostVariable_DF)) 
    print("\nCostVariable DataFrame\n\n", CostVariable_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     CostVariable updated...') 
 
 
 
# MinCapacity 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
MinCapacity = pd.read_sql("select * from MinCapacity", conn) 
 
regions = list() 
periods = list() 
tech = list() 
mincap = list() 
mincap_units = list() 
mincap_notes = list() 
 
tech_already_considered=list() 
for i_tech in range(0, len(MinCapacity.tech)): 
    tech_i = MinCapacity.tech[i_tech] 
 
    flag_check = 0 
    tech_i_check = tech_i 
    for check in range(0, len(tech_already_considered)): 
        if tech_i_check == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(MinCapacity.tech)): 
            tech_j_check = MinCapacity.tech[j_tech] 
            if tech_j_check == tech_i_check: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i_check) 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= MinCapacity.periods[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                    regions.append(MinCapacity.regions[i_tech]) 
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                    periods.append(int(time_periods.t_periods[i_year])) 
                    tech.append(MinCapacity.tech[i_tech]) 
                    
mincap.append(float(np.format_float_scientific(MinCapacity.mincap[i_tech], 2))) 
                    mincap_units.append(MinCapacity.mincap_units[i_tech]) 
                    mincap_notes.append(MinCapacity.mincap_notes[i_tech]) 
 
        else: 
            for i_location in range(0, len(location)-1): 
                year1 = MinCapacity.periods[location[i_location]] 
                year2 = MinCapacity.periods[location[i_location+1]] 
                min_cap1 = MinCapacity.mincap[location[i_location]] 
                min_cap2 = MinCapacity.mincap[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        regions.append(MinCapacity.regions[i_tech]) 
                        periods.append(int(year)) 
                        tech.append(MinCapacity.tech[i_tech]) 
                        mincap.append(float(np.format_float_scientific(min_cap1 + (year-
year1)/(year2-year1)*(min_cap2-min_cap1), 2))) 
                        mincap_units.append(MinCapacity.mincap_units[i_tech]) 
                        mincap_notes.append(MinCapacity.mincap_notes[i_tech]) 
 
            year_last = MinCapacity.periods[location[i_location+1]] 
            min_cap = MinCapacity.mincap[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        regions.append(MinCapacity.regions[i_tech]) 
                        periods.append(int(year)) 
                        tech.append(MinCapacity.tech[i_tech]) 
                        
mincap.append(float(np.format_float_scientific(MinCapacity.mincap[location[i_location + 
1]], 2))) 
                        mincap_units.append(MinCapacity.mincap_units[i_tech]) 
                        mincap_notes.append(MinCapacity.mincap_notes[i_tech]) 
#            else: 
#                regions.append(MinCapacity.regions[i_tech]) 
#                periods.append(int(year_last)) 
#                tech.append(MinCapacity.tech[i_tech]) 
#                
mincap.append(float(np.format_float_scientific(MinCapacity.mincap[location[i_location + 
1]], 2))) 
#                mincap_units.append(MinCapacity.mincap_units[i_tech]) 
#                mincap_notes.append(MinCapacity.mincap_notes[i_tech]) 
 
MinCapacity_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "periods": pd.Series(periods, dtype='int'), 
        "tech": pd.Series(tech, dtype='str'), 
        "mincap": pd.Series(mincap, dtype='float'), 
        "mincap_units": pd.Series(mincap_units, dtype='str'), 
        "mincap_notes": pd.Series(mincap_notes, dtype='str') 
    } 
) 
 
if tosql_set['MinCapacity']: 
    MinCapacity_DF.to_sql("MinCapacity", conn, index=False, if_exists='replace') 
 
if print_set['MinCapacity']: 
    pd.set_option('display.max_rows', len(MinCapacity_DF)) 
    pd.set_option('display.max_columns', len(MinCapacity_DF)) 
    print("\nMinCapacity DataFrame\n\n", MinCapacity_DF) 
    pd.reset_option('display.max_rows') 
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conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     MinCapacity updated...') 
 
 
 
# MinActivity 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
MinActivity = pd.read_sql("select * from MinActivity", conn) 
 
regions = list() 
periods = list() 
tech = list() 
minact = list() 
minact_units = list() 
minact_notes = list() 
 
tech_already_considered=list() 
for i_tech in range(0, len(MinActivity.tech)): 
    tech_i = MinActivity.tech[i_tech] 
 
    flag_check = 0 
    tech_i_check = tech_i 
    for check in range(0, len(tech_already_considered)): 
        if tech_i_check == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(MinActivity.tech)): 
            tech_j_check = MinActivity.tech[j_tech] 
            if tech_j_check == tech_i_check: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i_check) 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= MinActivity.periods[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                    regions.append(MinActivity.regions[i_tech]) 
                    periods.append(int(time_periods.t_periods[i_year])) 
                    tech.append(MinActivity.tech[i_tech]) 
                    
minact.append(float(np.format_float_scientific(MinActivity.minact[i_tech], 2))) 
                    minact_units.append(MinActivity.minact_units[i_tech]) 
                    minact_notes.append(MinActivity.minact_notes[i_tech]) 
 
        else: 
            for i_location in range(0, len(location)-1): 
                year1 = MinActivity.periods[location[i_location]] 
                year2 = MinActivity.periods[location[i_location+1]] 
                min_act1 = MinActivity.minact[location[i_location]] 
                min_act2 = MinActivity.minact[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        regions.append(MinActivity.regions[i_tech]) 
                        periods.append(int(year)) 
                        tech.append(MinActivity.tech[i_tech]) 
                        minact.append(float(np.format_float_scientific(min_act1 + (year-
year1)/(year2-year1)*(min_act2-min_act1), 2))) 
                        minact_units.append(MinActivity.minact_units[i_tech]) 
                        minact_notes.append(MinActivity.minact_notes[i_tech]) 
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            year_last = MinActivity.periods[location[i_location+1]] 
            min_act = MinActivity.minact[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        regions.append(MinActivity.regions[i_tech]) 
                        periods.append(year) 
                        tech.append(MinActivity.tech[i_tech]) 
                        
minact.append(float(np.format_float_scientific(MinActivity.minact[location[i_location + 
1]], 2))) 
                        minact_units.append(MinActivity.minact_units[i_tech]) 
                        minact_notes.append(MinActivity.minact_notes[i_tech]) 
#            else: 
#                regions.append(MinActivity.regions[i_tech]) 
#                periods.append(int(year_last)) 
#                tech.append(MinActivity.tech[i_tech]) 
#                
minact.append(float(np.format_float_scientific(MinActivity.minact[location[i_location + 
1]], 2))) 
#                minact_units.append(MinActivity.minact_units[i_tech]) 
#                minact_notes.append(MinActivity.minact_notes[i_tech]) 
 
MinActivity_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "periods": pd.Series(periods, dtype='int'), 
        "tech": pd.Series(tech, dtype='str'), 
        "minact": pd.Series(minact, dtype='float'), 
        "minact_units": pd.Series(minact_units, dtype='str'), 
        "minact_notes": pd.Series(minact_notes, dtype='str') 
    } 
) 
 
if tosql_set['MinActivity']: 
    MinActivity_DF.to_sql("MinActivity", conn, index=False, if_exists='replace') 
 
if print_set['MinActivity']: 
    pd.set_option('display.max_rows', len(MinActivity_DF)) 
    pd.set_option('display.max_columns', len(MinActivity_DF)) 
    print("\nMinActivity DataFrame\n\n", MinActivity_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     MinActivity updated...') 
 
 
 
# MaxCapacity 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
MaxCapacity = pd.read_sql("select * from MaxCapacity", conn) 
 
regions = list() 
periods = list() 
tech = list() 
maxcap = list() 
maxcap_units = list() 
maxcap_notes = list() 
 
tech_already_considered=list() 
for i_tech in range(0, len(MaxCapacity.tech)): 
    tech_i = MaxCapacity.tech[i_tech] 
 
    flag_check = 0 
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    tech_i_check = tech_i 
    for check in range(0, len(tech_already_considered)): 
        if tech_i_check == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(MaxCapacity.tech)): 
            tech_j_check = MaxCapacity.tech[j_tech] 
            if tech_j_check == tech_i_check: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i_check) 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= MaxCapacity.periods[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                    regions.append(MaxCapacity.regions[i_tech]) 
                    periods.append(int(time_periods.t_periods[i_year])) 
                    tech.append(MaxCapacity.tech[i_tech]) 
                    
maxcap.append(float(np.format_float_scientific(MaxCapacity.maxcap[i_tech], 2))) 
                    maxcap_units.append(MaxCapacity.maxcap_units[i_tech]) 
                    maxcap_notes.append(MaxCapacity.maxcap_notes[i_tech]) 
 
        else: 
            for i_location in range(0, len(location)-1): 
                year1 = MaxCapacity.periods[location[i_location]] 
                year2 = MaxCapacity.periods[location[i_location+1]] 
                max_cap1 = MaxCapacity.maxcap[location[i_location]] 
                max_cap2 = MaxCapacity.maxcap[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        regions.append(MaxCapacity.regions[i_tech]) 
                        periods.append(int(year)) 
                        tech.append(MaxCapacity.tech[i_tech]) 
                        maxcap.append(float(np.format_float_scientific(max_cap1 + (year-
year1)/(year2-year1)*(max_cap2-max_cap1), 2))) 
                        maxcap_units.append(MaxCapacity.maxcap_units[i_tech]) 
                        maxcap_notes.append(MaxCapacity.maxcap_notes[i_tech]) 
 
            year_last = MaxCapacity.periods[location[i_location+1]] 
            max_cap = MaxCapacity.maxcap[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        regions.append(MaxCapacity.regions[i_tech]) 
                        periods.append(int(year)) 
                        tech.append(MaxCapacity.tech[i_tech]) 
                        
maxcap.append(float(np.format_float_scientific(MaxCapacity.maxcap[location[i_location + 
1]], 2))) 
                        maxcap_units.append(MaxCapacity.maxcap_units[i_tech]) 
                        maxcap_notes.append(MaxCapacity.maxcap_notes[i_tech]) 
#            else: 
#                regions.append(MaxCapacity.regions[i_tech]) 
#                periods.append(int(year_last)) 
#                tech.append(MaxCapacity.tech[i_tech]) 
#                
maxcap.append(float(np.format_float_scientific(MaxCapacity.maxcap[location[i_location + 
1]], 2))) 
#                maxcap_units.append(MaxCapacity.maxcap_units[i_tech]) 
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#                maxcap_notes.append(MaxCapacity.maxcap_notes[i_tech]) 
 
MaxCapacity_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "periods": pd.Series(periods, dtype='int'), 
        "tech": pd.Series(tech, dtype='str'), 
        "maxcap": pd.Series(maxcap, dtype='float'), 
        "maxcap_units": pd.Series(maxcap_units, dtype='str'), 
        "maxcap_notes": pd.Series(maxcap_notes, dtype='str') 
    } 
) 
 
if tosql_set['MaxCapacity']: 
    MaxCapacity_DF.to_sql("MaxCapacity", conn, index=False, if_exists='replace') 
 
if print_set['MaxCapacity']: 
    pd.set_option('display.max_rows', len(MaxCapacity_DF)) 
    pd.set_option('display.max_columns', len(MaxCapacity_DF)) 
    print("\nMaxCapacity DataFrame\n\n", MaxCapacity_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     MaxCapacity updated...') 
 
 
 
# MaxActivity 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
MaxActivity = pd.read_sql("select * from MaxActivity", conn) 
 
regions = list() 
periods = list() 
tech = list() 
maxact = list() 
maxact_units = list() 
maxact_notes = list() 
 
tech_already_considered=list() 
for i_tech in range(0, len(MaxActivity.tech)): 
    tech_i = MaxActivity.tech[i_tech] 
 
    flag_check = 0 
    tech_i_check = tech_i 
    for check in range(0, len(tech_already_considered)): 
        if tech_i_check == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(MaxActivity.tech)): 
            tech_j_check = MaxActivity.tech[j_tech] 
            if tech_j_check == tech_i_check: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i_check) 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= MaxActivity.periods[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                    regions.append(MaxActivity.regions[i_tech]) 
                    periods.append(int(time_periods.t_periods[i_year])) 
                    tech.append(MaxActivity.tech[i_tech]) 
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maxact.append(float(np.format_float_scientific(MaxActivity.maxact[i_tech], 2))) 
                    maxact_units.append(MaxActivity.maxact_units[i_tech]) 
                    maxact_notes.append(MaxActivity.maxact_notes[i_tech]) 
 
        else: 
            for i_location in range(0, len(location)-1): 
                year1 = MaxActivity.periods[location[i_location]] 
                year2 = MaxActivity.periods[location[i_location+1]] 
                max_act1 = MaxActivity.maxact[location[i_location]] 
                max_act2 = MaxActivity.maxact[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        regions.append(MaxActivity.regions[i_tech]) 
                        periods.append(int(year)) 
                        tech.append(MaxActivity.tech[i_tech]) 
                        maxact.append(float(np.format_float_scientific(max_act1 + (year-
year1)/(year2-year1)*(max_act2-max_act1), 2))) 
                        maxact_units.append(MaxActivity.maxact_units[i_tech]) 
                        maxact_notes.append(MaxActivity.maxact_notes[i_tech]) 
 
            year_last = MaxActivity.periods[location[i_location+1]] 
            max_act = MaxActivity.maxact[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        regions.append(MaxActivity.regions[i_tech]) 
                        periods.append(int(year)) 
                        tech.append(MaxActivity.tech[i_tech]) 
                        
maxact.append(float(np.format_float_scientific(MaxActivity.maxact[location[i_location + 
1]], 2))) 
                        maxact_units.append(MaxActivity.maxact_units[i_tech]) 
                        maxact_notes.append(MaxActivity.maxact_notes[i_tech]) 
#            else: 
#                regions.append(MaxActivity.regions[i_tech]) 
#                periods.append(int(year_last)) 
#                tech.append(MaxActivity.tech[i_tech]) 
#                
maxact.append(float(np.format_float_scientific(MaxActivity.maxact[location[i_location + 
1]], 2))) 
#                maxact_units.append(MaxActivity.maxact_units[i_tech]) 
#                maxact_notes.append(MaxActivity.maxact_notes[i_tech]) 
 
MaxActivity_DF = pd.DataFrame(np.transpose([regions, periods, tech, maxact, maxact_units, 
maxact_notes]), 
                             columns=["regions", "periods", "tech", "maxact", 
"maxact_units", "maxact_notes"]); 
 
MaxActivity_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "periods": pd.Series(periods, dtype='int'), 
        "tech": pd.Series(tech, dtype='str'), 
        "maxact": pd.Series(maxact, dtype='float'), 
        "maxact_units": pd.Series(maxact_units, dtype='str'), 
        "maxact_notes": pd.Series(maxact_notes, dtype='str') 
    } 
) 
 
if tosql_set['MaxActivity']: 
    MaxActivity_DF.to_sql("MaxActivity", conn, index=False, if_exists='replace') 
 
if print_set['MaxActivity']: 
    pd.set_option('display.max_rows', len(MaxActivity_DF)) 
    pd.set_option('display.max_columns', len(MaxActivity_DF)) 
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    print("\nMaxActivity DataFrame\n\n", MaxActivity_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     MaxActivity updated...') 
 
 
 
# AvailabilityFactor 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
AvailabilityFactor = pd.read_sql("select * from AvailabilityFactor", conn) 
 
regions = list() 
tech = list() 
vintage = list() 
af = list() 
af_notes = list() 
 
tech_already_considered=list() 
for i_tech in range(0, len(AvailabilityFactor.tech)): 
    tech_i = AvailabilityFactor.tech[i_tech] 
 
    flag_check = 0 
    tech_i_check = tech_i 
    for check in range(0, len(tech_already_considered)): 
        if tech_i_check == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(AvailabilityFactor.tech)): 
            tech_j_check = AvailabilityFactor.tech[j_tech] 
            if tech_j_check == tech_i_check: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i_check) 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= AvailabilityFactor.vintage[i_tech] 
and time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-
1]: 
                    regions.append(AvailabilityFactor.regions[i_tech]) 
                    tech.append(AvailabilityFactor.tech[i_tech]) 
                    vintage.append(int(time_periods.t_periods[i_year])) 
                    
af.append(float(np.format_float_scientific(AvailabilityFactor.af[i_tech], 2))) 
                    af_notes.append(AvailabilityFactor.af_notes[i_tech]) 
 
        else: 
            for i_location in range(0, len(location)-1): 
                year1 = AvailabilityFactor.vintage[location[i_location]] 
                year2 = AvailabilityFactor.vintage[location[i_location+1]] 
                af1 = AvailabilityFactor.af[location[i_location]] 
                af2 = AvailabilityFactor.af[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        regions.append(AvailabilityFactor.regions[i_tech]) 
                        tech.append(AvailabilityFactor.tech[i_tech]) 
                        vintage.append(int(year)) 
                        af.append(float(np.format_float_scientific(af1 + (year-
year1)/(year2-year1)*(af2-af1), 2))) 
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                        af_notes.append(AvailabilityFactor.af_notes[i_tech]) 
 
            year_last = AvailabilityFactor.vintage[location[i_location+1]] 
            eff = AvailabilityFactor.af[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        regions.append(AvailabilityFactor.regions[i_tech]) 
                        tech.append(AvailabilityFactor.tech[i_tech]) 
                        vintage.append(int(year)) 
                        
af.append(float(np.format_float_scientific(AvailabilityFactor.af[location[i_location + 
1]], 2))) 
                        af_notes.append(AvailabilityFactor.af_notes[i_tech]) 
            else: 
                regions.append(AvailabilityFactor.regions[i_tech]) 
                tech.append(AvailabilityFactor.tech[i_tech]) 
                vintage.append(int(year_last)) 
                
af.append(float(np.format_float_scientific(AvailabilityFactor.af[location[i_location + 
1]], 2))) 
                af_notes.append(AvailabilityFactor.af_notes[i_tech]) 
 
AvailabilityFactor_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "tech": pd.Series(tech, dtype='str'), 
        "vintage": pd.Series(vintage, dtype='int'), 
        "af": pd.Series(af, dtype='float'), 
        "af_notes": pd.Series(af_notes, dtype='str') 
    } 
) 
 
if tosql_set['AvailabilityFactor']: 
    AvailabilityFactor_DF.to_sql("AvailabilityFactor", conn, index=False, 
if_exists='replace') 
 
if print_set['AvailabilityFactor']: 
    pd.set_option('display.max_rows', len(AvailabilityFactor_DF)) 
    pd.set_option('display.max_columns', len(AvailabilityFactor_DF)) 
    print("\nAvailabilityFactor DataFrame\n\n", AvailabilityFactor_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     AvailabilityFactor updated...') 
 
 
 
# Demand 
 
conn = sqlite3.connect(database_name) 
Allocation = pd.read_sql("select * from Allocation", conn) 
Demand = pd.read_sql("select * from Demand", conn) 
Driver = pd.read_sql("select * from Driver", conn) 
Elasticity = pd.read_sql("select * from Elasticity", conn) 
regions=list() 
periods=list() 
demand_comm=list() 
demand=list() 
demand_units=list() 
demand_notes=list() 
 
for i in range(0, len(Demand.demand_comm)): 
    regions.append(Demand.regions[i]) 
    periods.append(int(Demand.periods[i])) 
    demand_comm.append(Demand.demand_comm[i]) 
    demand.append(Demand.demand[i]) 
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    demand_units.append(Demand.demand_units[i]) 
    demand_notes.append(Demand.demand_notes[i]) 
    for j in range(0, len(Allocation.demand_comm)): 
        if Allocation.demand_comm[j] == Demand.demand_comm[i]: 
            for k in range(0, len(Driver.periods)): 
                for l in range(0, len(Elasticity.periods)): 
                    if Driver.driver_name[k] == Allocation.driver_name[j] and 
Elasticity.demand_comm[l] == Demand.demand_comm[i] and Driver.periods[k] == 
Elasticity.periods[l]: 
                        regions.append(Elasticity.regions[l]) 
                        periods.append(int(Elasticity.periods[l])) 
                        demand_comm.append(Elasticity.demand_comm[l]) 
                        if not Driver.periods[k] == 2006: 
                            
demand.append(float(np.format_float_scientific(demand[len(demand)-
1]*(1+(Driver.driver[k]/Driver.driver[k-1]-1)*Elasticity.elasticity[l]), 2))) 
                            demand_units.append(demand_units[len(demand_units)-1]) 
                        demand_notes.append('') 
 
Demand_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "periods": pd.Series(periods, dtype='int'), 
        "demand_comm": pd.Series(demand_comm, dtype='str'), 
        "demand": pd.Series(demand, dtype='float'), 
        "demand_units": pd.Series(demand_units, dtype='str'), 
        "demand_notes": pd.Series(demand_notes, dtype='str') 
    } 
) 
 
for i in range(0, len(Demand_DF)): 
    if Demand_DF.loc[i, lambda df: "periods"] == 2006: 
        Demand_DF = Demand_DF.drop(index = [i]) 
 
if tosql_set['Demand']: 
    Demand_DF.to_sql("Demand", conn, index=False, if_exists='replace') 
 
if print_set['Demand']: 
    pd.set_option('display.max_rows', len(Demand_DF)) 
    pd.set_option('display.max_columns', len(Demand_DF)) 
    print("\nDemand DataFrame\n\n", Demand_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     Demand updated...') 
 
 
 
# CapacityFactorProcess 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
CapacityFactorProcess = pd.read_sql("select * from CapacityFactorProcess", conn) 
 
regions = list() 
season_name = list() 
tech = list() 
vintage = list() 
time_of_day_name = list() 
cf_process = list() 
cf_process_notes = list() 
 
tech_already_considered=list() 
for i_tech in range(0, len(CapacityFactorProcess.tech)): 
    tech_i = CapacityFactorProcess.tech[i_tech] 
 
    flag_check = 0 
    tech_i_check = CapacityFactorProcess.season_name[i_tech] + tech_i + 
CapacityFactorProcess.time_of_day_name[i_tech] 
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    for check in range(0, len(tech_already_considered)): 
        if tech_i_check == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(CapacityFactorProcess.tech)): 
            tech_j_check = CapacityFactorProcess.season_name[j_tech] + 
CapacityFactorProcess.tech[j_tech] + CapacityFactorProcess.time_of_day_name[j_tech] 
            if tech_j_check == tech_i_check: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i_check) 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= CapacityFactorProcess.vintage[i_tech] 
and time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-
1]: 
                    regions.append(CapacityFactorProcess.regions[i_tech]) 
                    season_name.append(CapacityFactorProcess.season_name[i_tech]) 
                    
time_of_day_name.append(CapacityFactorProcess.time_of_day_name[i_tech]) 
                    tech.append(CapacityFactorProcess.tech[i_tech]) 
                    vintage.append(int(time_periods.t_periods[i_year])) 
                    
cf_process.append(float(np.format_float_scientific(CapacityFactorProcess.cf_process[i_tech
], 2))) 
                    
cf_process_notes.append(CapacityFactorProcess.cf_process_notes[i_tech]) 
 
        else: 
            for i_location in range(0, len(location)-1): 
                year1 = CapacityFactorProcess.vintage[location[i_location]] 
                year2 = CapacityFactorProcess.vintage[location[i_location+1]] 
                cf1 = CapacityFactorProcess.cf_process[location[i_location]] 
                cf2 = CapacityFactorProcess.cf_process[location[i_location+1]] 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        regions.append(CapacityFactorProcess.regions[i_tech]) 
                        season_name.append(CapacityFactorProcess.season_name[i_tech]) 
                        
time_of_day_name.append(CapacityFactorProcess.time_of_day_name[i_tech]) 
                        tech.append(CapacityFactorProcess.tech[i_tech]) 
                        vintage.append(int(year)) 
                        cf_process.append(float(np.format_float_scientific(cf1 + (year-
year1)/(year2-year1)*(cf2-cf1), 2))) 
                        
cf_process_notes.append(CapacityFactorProcess.cf_process_notes[i_tech]) 
 
            year_last = CapacityFactorProcess.vintage[location[i_location+1]] 
            eff = CapacityFactorProcess.cf_process[location[i_location+1]] 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]: 
                for i_year in range(0, len(time_periods.t_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        regions.append(CapacityFactorProcess.regions[i_tech]) 
                        season_name.append(CapacityFactorProcess.season_name[i_tech]) 
                        
time_of_day_name.append(CapacityFactorProcess.time_of_day_name[i_tech]) 
                        tech.append(CapacityFactorProcess.tech[i_tech]) 
                        vintage.append(int(year)) 
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cf_process.append(float(np.format_float_scientific(CapacityFactorProcess.cf_process[locati
on[i_location + 1]], 2))) 
                        
cf_process_notes.append(CapacityFactorProcess.cf_process_notes[i_tech]) 
            else: 
                regions.append(CapacityFactorProcess.regions[i_tech]) 
                season_name.append(CapacityFactorProcess.season_name[i_tech]) 
                time_of_day_name.append(CapacityFactorProcess.time_of_day_name[i_tech]) 
                tech.append(CapacityFactorProcess.tech[i_tech]) 
                vintage.append(int(year_last)) 
                
cf_process.append(float(np.format_float_scientific(CapacityFactorProcess.cf_process[locati
on[i_location + 1]], 2))) 
                cf_process_notes.append(CapacityFactorProcess.cf_process_notes[i_tech]) 
 
CapacityFactorProcess_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "season_name": pd.Series(season_name, dtype='str'), 
        "time_of_day_name": pd.Series(time_of_day_name, dtype='str'), 
        "tech": pd.Series(tech, dtype='str'), 
        "vintage": pd.Series(vintage, dtype='int'), 
        "cf_process": pd.Series(cf_process, dtype='float'), 
        "cf_process_notes": pd.Series(cf_process_notes, dtype='str') 
    } 
) 
 
if tosql_set['CapacityFactorProcess']: 
    CapacityFactorProcess_DF.to_sql("CapacityFactorProcess", conn, index=False, 
if_exists='replace') 
 
if print_set['CapacityFactorProcess']: 
    pd.set_option('display.max_rows', len(CapacityFactorProcess_DF)) 
    pd.set_option('display.max_columns', len(CapacityFactorProcess_DF)) 
    print("\nCapacityFactorProcess DataFrame\n\n", CapacityFactorProcess_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     CapacityFactorProcess updated...') 
 
 
 
# CapacityCredit 
 
conn = sqlite3.connect(database_name) 
time_periods = pd.read_sql("select * from time_periods", conn) 
LifetimeTech = pd.read_sql("select * from LifetimeTech", conn) 
LifetimeProcess = pd.read_sql("select * from LifetimeProcess", conn) 
CapacityCredit = pd.read_sql("select * from CapacityCredit", conn) 
 
regions = list() 
periods = list() 
tech = list() 
vintage = list() 
cf_tech = list() 
cf_tech_notes = list() 
 
tech_already_considered = list() 
for i_tech in range(0, len(CapacityCredit.tech)): 
    tech_i = CapacityCredit.tech[i_tech] 
 
    flag_check = 0 
    for check in range(0, len(tech_already_considered)): 
        if tech_i == tech_already_considered[check]: 
            flag_check = 1 
 
    if flag_check == 0: 
        lifetime = 0 
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        year_lifetime = list() 
        lifetime_process = list() 
        for i_life in range(0, len(LifetimeTech.life)): 
            if LifetimeTech.tech[i_life] == tech_i: 
                lifetime = float(LifetimeTech.life[i_life]) 
        if lifetime == 0: 
            for i_life in range(0, len(LifetimeProcess.life_process)): 
                if LifetimeProcess.tech[i_life] == tech_i: 
                    year_lifetime.append(float(LifetimeProcess.vintage[i_life])) 
                    lifetime_process.append(float(LifetimeProcess.life_process[i_life])) 
                else: 
                    lifetime = lifetime_default 
 
        # Checking if other values are present for the technology 
        flag = 0 
        location = list() 
        location.append(i_tech) 
        for j_tech in range(i_tech + 1, len(CapacityCredit.tech)): 
            if CapacityCredit.tech[j_tech] == tech_i: 
                flag = 1 
                location.append(j_tech) 
                tech_already_considered.append(tech_i) 
 
        #lifetime_save = lifetime 
 
        if flag == 0:  # No other values 
            for i_year in range(0, len(time_periods)): 
                if time_periods.t_periods[i_year] >= CapacityCredit.vintage[i_tech] and 
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]: 
 
                    #lifetime = lifetime_save 
                    year_vintage = float(time_periods.t_periods[i_year]) 
                    for i in range(0, len(year_lifetime)): 
                        if year_vintage == year_lifetime[i]: 
                            lifetime = float(lifetime_process[i]) 
                    start = float(year_vintage) 
                    stop = float(year_vintage) + lifetime 
 
                    for j_year in range(0, len(time_periods)): 
                        year_periods = time_periods.t_periods[j_year] 
                        if start <= year_periods < stop and year_periods != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                            regions.append(CapacityCredit.regions[i_tech]) 
                            periods.append(int(year_periods)) 
                            tech.append(CapacityCredit.tech[i_tech]) 
                            vintage.append(int(year_vintage)) 
                            
cf_tech.append(float(np.format_float_scientific(CapacityCredit.cf_tech[i_tech], 2))) 
                            cf_tech_notes.append(CapacityCredit.cf_tech_notes[i_tech]) 
 
        else: 
            year_list = list() 
            cost_list = list() 
            for i_location in range(0, len(location)-1): 
                year1 = float(CapacityCredit.periods[location[i_location]]) 
                year2 = float(CapacityCredit.periods[location[i_location+1]]) 
                cost1 = float(CapacityCredit.cf_tech[location[i_location]]) 
                cost2 = float(CapacityCredit.cf_tech[location[i_location+1]]) 
 
                for i_year in range(0, len(time_periods)): 
                    year = time_periods.t_periods[i_year] 
                    if year1 <= year < year2: 
                        year_list.append(year) 
                        cost_list.append(cost1 + (year-year1)/(year2-year1)*(cost2-cost1)) 
 
            year_last = float(CapacityCredit.vintage[location[i_location+1]]) 
            cost_last = float(CapacityCredit.cf_tech[location[i_location+1]]) 
            if year_last != time_periods.t_periods[len(time_periods.t_periods)-2]: 
#different by 2050 
                for i_year in range(0, len(time_periods.t_periods)): 
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                    year = time_periods.t_periods[i_year] 
                    if year >= year_last and year != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                        year_list.append(year) 
                        cost_list.append(cost_last) 
            else: # if year_last=2050 
                year_list.append(year_last) 
                cost_list.append(cost_last) 
 
            for i_year in range(0, len(year_list)): 
                if float(year_list[i_year]) >= float(CapacityCredit.vintage[i_tech]): 
 
                    #lifetime = lifetime_save 
                    year_vintage = year_list[i_year] 
                    for i in range(0, len(year_lifetime)): 
                        if year_vintage == year_lifetime[i]: 
                            lifetime = float(lifetime_process[i]) 
                    start = float(year_vintage) 
                    stop = float(year_vintage) + lifetime 
                    for j_year in range(0, len(year_list)): 
                        year_periods = year_list[j_year] 
                        if start <= year_periods < stop and year_periods != 
time_periods.t_periods[len(time_periods.t_periods)-1]: 
                            regions.append(CapacityCredit.regions[i_tech]) 
                            periods.append(int(year_periods)) 
                            tech.append(CapacityCredit.tech[i_tech]) 
                            vintage.append(int(year_vintage)) 
                            
cf_tech.append(float(np.format_float_scientific(cost_list[j_year], 2))) 
                            cf_tech_notes.append(CapacityCredit.cf_tech_notes[i_tech]) 
 
CapacityCredit_DF = pd.DataFrame( 
    { 
        "regions": pd.Series(regions, dtype='str'), 
        "periods": pd.Series(periods, dtype='int'), 
        "tech": pd.Series(tech, dtype='str'), 
        "vintage": pd.Series(vintage, dtype='int'), 
        "cf_tech": pd.Series(cf_tech, dtype='float'), 
        "cf_tech_notes": pd.Series(cf_tech_notes, dtype='str') 
    } 
) 
 
if tosql_set['CapacityCredit']: 
    CapacityCredit_DF.to_sql("CapacityCredit", conn, index=False, if_exists='replace') 
 
if print_set['CapacityCredit']: 
    pd.set_option('display.max_rows', len(CapacityCredit_DF)) 
    pd.set_option('display.max_columns', len(CapacityCredit_DF)) 
    print("\nCapacityCredit DataFrame\n\n", CapacityCredit_DF) 
    pd.reset_option('display.max_rows') 
 
conn.close() 
print_i = print_i + 1 
print('[',print_i,'/',len(print_set),']     CapacityCredit updated.') 

B. Commodity-based emission factors table 

CREATE TABLE "CommodityEmissionFactor" ( 
 "input_comm"    text, 
 "emis_comm"     text, 
 "ef"            real, 
 "emis_unit"     text, 
 "ef_notes"      text, 
 PRIMARY KEY("input_comm","ef","emis_comm"), 
 FOREIGN KEY("input_comm") REFERENCES "commodities"("comm_name"), 
 FOREIGN KEY("emis_comm") REFERENCES "commodities"("comm_name") 
); 
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C. Tables for service demands projection 

CREATE TABLE "Driver" ( 
    "regions"       text, 
    "periods"    integer, 
 "driver_name" text, 
 "driver"        real, 
 "driver_notes"  text, 
 PRIMARY KEY("regions", "periods", "driver_name"), 
 FOREIGN KEY("regions") REFERENCES "regions"("regions"), 
 FOREIGN KEY("periods") REFERENCES "time_periods"("t_periods") 
); 
 
CREATE TABLE "Allocation" ( 
    "regions"       text, 
 "demand_comm" text, 
 "driver_name" text, 
 "allocation_notes"  text, 
 PRIMARY KEY("regions", "demand_comm", "driver_name"), 
 FOREIGN KEY("regions") REFERENCES "regions"("regions"), 
 FOREIGN KEY("demand_comm") REFERENCES "commodities"("comm_name"), 
 FOREIGN KEY("driver_name") REFERENCES "Driver"("driver_name"), 
); 
 
CREATE TABLE "Elasticity" ( 
    "regions"       text, 
    "periods"    integer, 
 "demand_comm" text, 
 "elasticity"    real, 
 "elaticity_notes"  text, 
 PRIMARY KEY("regions", "periods", "demand_comm"), 
 FOREIGN KEY("regions") REFERENCES "regions"("regions"), 
 FOREIGN KEY("periods") REFERENCES "time_periods"("t_periods"), 
 FOREIGN KEY("demand_comm") REFERENCES "commodities"("comm_name") 
); 

D. Database postprocessing 

import pandas as pd 
import numpy as np 
import sqlite3 
 
database_name = "Temoa_Italia.sqlite" 
years = np.array([2007, 2008, 2010, 2012, 2014, 2016, 2018, 2020, 2022, 2025, 2030, 2040, 
2050]) 
 
# Following 4 lines should be used to set the export results. 
# Set the flags to 1 to split by technologies/commodities, to 0 to not split. 
# Set to_excel_flag to 1 to export data into a Excel file 
# The arrays are used to select the technologies/commodities that should be considered. 
 
to_excel_flag = 0 
technologies_flag = 0 
commodities_flag = 1 
 
technologies = [''] 
commodities = [''] 
 
 
# Input 
 
comm = list() 
tech = list() 
vflow_in_2007 = list() 
vflow_in_2008 = list() 
vflow_in_2010 = list() 
vflow_in_2012 = list() 
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vflow_in_2014 = list() 
vflow_in_2016 = list() 
vflow_in_2018 = list() 
vflow_in_2020 = list() 
vflow_in_2022 = list() 
vflow_in_2025 = list() 
vflow_in_2030 = list() 
vflow_in_2040 = list() 
vflow_in_2050 = list() 
 
# To classify by technologies, commodities or both 
if technologies_flag == 1 and commodities_flag == 1: 
    for i_tech in range(0, len(technologies)): 
        for i_comm in range(0, len(commodities)): 
            conn = sqlite3.connect(database_name) 
            Output_VFlow_In = pd.read_sql("select * from Output_VFlow_In where input_comm 
= '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'", conn) 
            conn.close() 
            vflow_in = np.zeros_like(years, dtype=float) 
            for i_year in range(0, len(years)): 
                for i in range(0, len(Output_VFlow_In.t_periods)): 
                    if years[i_year] == Output_VFlow_In.t_periods[i]: 
                        vflow_in[i_year] = vflow_in[i_year] + Output_VFlow_In.vflow_in[i] 
            comm.append(commodities[i_comm]) 
            tech.append(technologies[i_tech]) 
            vflow_in_2007.append(vflow_in[0]) 
            vflow_in_2008.append(vflow_in[1]) 
            vflow_in_2010.append(vflow_in[2]) 
            vflow_in_2012.append(vflow_in[3]) 
            vflow_in_2014.append(vflow_in[4]) 
            vflow_in_2016.append(vflow_in[5]) 
            vflow_in_2018.append(vflow_in[6]) 
            vflow_in_2020.append(vflow_in[7]) 
            vflow_in_2022.append(vflow_in[8]) 
            vflow_in_2025.append(vflow_in[9]) 
            vflow_in_2030.append(vflow_in[10]) 
            vflow_in_2040.append(vflow_in[11]) 
            vflow_in_2050.append(vflow_in[12]) 
 
elif technologies_flag == 0 and commodities_flag == 1: 
    for i_comm in range(0, len(commodities)): 
        vflow_in = np.zeros_like(years, dtype=float) 
        for i_tech in range(0, len(technologies)): 
            conn = sqlite3.connect(database_name) 
            Output_VFlow_In = pd.read_sql("select * from Output_VFlow_In where input_comm 
= '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'", conn) 
            conn.close() 
            for i_year in range(0, len(years)): 
                for i in range(0, len(Output_VFlow_In.t_periods)): 
                    if years[i_year] == Output_VFlow_In.t_periods[i]: 
                        vflow_in[i_year] = vflow_in[i_year] + Output_VFlow_In.vflow_in[i] 
        comm.append(commodities[i_comm]) 
        tech.append('#') 
        vflow_in_2007.append(vflow_in[0]) 
        vflow_in_2008.append(vflow_in[1]) 
        vflow_in_2010.append(vflow_in[2]) 
        vflow_in_2012.append(vflow_in[3]) 
        vflow_in_2014.append(vflow_in[4]) 
        vflow_in_2016.append(vflow_in[5]) 
        vflow_in_2018.append(vflow_in[6]) 
        vflow_in_2020.append(vflow_in[7]) 
        vflow_in_2022.append(vflow_in[8]) 
        vflow_in_2025.append(vflow_in[9]) 
        vflow_in_2030.append(vflow_in[10]) 
        vflow_in_2040.append(vflow_in[11]) 
        vflow_in_2050.append(vflow_in[12]) 
 
elif technologies_flag == 1 and commodities_flag == 0: 
    for i_tech in range(0, len(technologies)): 
        vflow_in = np.zeros_like(years, dtype=float) 
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        for i_comm in range(0, len(commodities)): 
            conn = sqlite3.connect(database_name) 
            Output_VFlow_In = pd.read_sql("select * from Output_VFlow_In where input_comm 
= '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'", conn) 
            conn.close() 
            for i_year in range(0, len(years)): 
                for i in range(0, len(Output_VFlow_In.t_periods)): 
                    if years[i_year] == Output_VFlow_In.t_periods[i]: 
                        vflow_in[i_year] = vflow_in[i_year] + Output_VFlow_In.vflow_in[i] 
        comm.append('#') 
        tech.append(technologies[i_tech]) 
        vflow_in_2007.append(vflow_in[0]) 
        vflow_in_2008.append(vflow_in[1]) 
        vflow_in_2010.append(vflow_in[2]) 
        vflow_in_2012.append(vflow_in[3]) 
        vflow_in_2014.append(vflow_in[4]) 
        vflow_in_2016.append(vflow_in[5]) 
        vflow_in_2018.append(vflow_in[6]) 
        vflow_in_2020.append(vflow_in[7]) 
        vflow_in_2022.append(vflow_in[8]) 
        vflow_in_2025.append(vflow_in[9]) 
        vflow_in_2030.append(vflow_in[10]) 
        vflow_in_2040.append(vflow_in[11]) 
        vflow_in_2050.append(vflow_in[12]) 
 
# To find rows with only zero elements 
delete_index = list() 
for i_comm in range(0, len(comm)): 
    flag_zero = 0 
    if vflow_in_2007[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2008[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2010[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2012[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2014[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2016[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2018[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2020[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2022[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2025[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2030[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2040[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_in_2050[i_comm] != 0: 
        flag_zero = 1 
 
    if flag_zero == 0: 
        delete_index.append(i_comm) 
 
# To remove rows with only zeros elements 
for i_delete in range(0, len(delete_index)): 
    comm.pop(delete_index[i_delete]) 
    tech.pop(delete_index[i_delete]) 
    vflow_in_2007.pop(delete_index[i_delete]) 
    vflow_in_2008.pop(delete_index[i_delete]) 
    vflow_in_2010.pop(delete_index[i_delete]) 
    vflow_in_2012.pop(delete_index[i_delete]) 
    vflow_in_2014.pop(delete_index[i_delete]) 
    vflow_in_2016.pop(delete_index[i_delete]) 
    vflow_in_2018.pop(delete_index[i_delete]) 
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    vflow_in_2020.pop(delete_index[i_delete]) 
    vflow_in_2022.pop(delete_index[i_delete]) 
    vflow_in_2025.pop(delete_index[i_delete]) 
    vflow_in_2030.pop(delete_index[i_delete]) 
    vflow_in_2040.pop(delete_index[i_delete]) 
    vflow_in_2050.pop(delete_index[i_delete]) 
 
    for j_delete in range(0, len(delete_index)): 
        delete_index[j_delete] = delete_index[j_delete] - 1 
 
# Building and printing the table 
vflow_in_DF = pd.DataFrame( 
    { 
        "input_comm": pd.Series(comm, dtype='str'), 
        "tech": pd.Series(tech, dtype='str'), 
        "2007": pd.Series(vflow_in_2007, dtype='float'), 
        "2008": pd.Series(vflow_in_2008, dtype='float'), 
        "2010": pd.Series(vflow_in_2010, dtype='float'), 
        "2012": pd.Series(vflow_in_2012, dtype='float'), 
        "2014": pd.Series(vflow_in_2014, dtype='float'), 
        "2016": pd.Series(vflow_in_2016, dtype='float'), 
        "2018": pd.Series(vflow_in_2018, dtype='float'), 
        "2020": pd.Series(vflow_in_2020, dtype='float'), 
        "2022": pd.Series(vflow_in_2022, dtype='float'), 
        "2025": pd.Series(vflow_in_2025, dtype='float'), 
        "2030": pd.Series(vflow_in_2030, dtype='float'), 
        "2040": pd.Series(vflow_in_2040, dtype='float'), 
        "2050": pd.Series(vflow_in_2050, dtype='float'), 
    } 
) 
 
pd.set_option('display.max_rows', len(vflow_in_DF)) 
pd.set_option('display.max_columns', 16) 
pd.set_option('display.precision', 2) 
print(vflow_in_DF) 
print("\n") 
pd.reset_option('display.max_rows') 
 
# Output 
 
comm = list() 
tech = list() 
vflow_out_2007 = list() 
vflow_out_2008 = list() 
vflow_out_2010 = list() 
vflow_out_2012 = list() 
vflow_out_2014 = list() 
vflow_out_2016 = list() 
vflow_out_2018 = list() 
vflow_out_2020 = list() 
vflow_out_2022 = list() 
vflow_out_2025 = list() 
vflow_out_2030 = list() 
vflow_out_2040 = list() 
vflow_out_2050 = list() 
 
# To classify by technologies, commodities or both 
if technologies_flag == 1 and commodities_flag == 1: 
    for i_tech in range(0, len(technologies)): 
        for i_comm in range(0, len(commodities)): 
            conn = sqlite3.connect(database_name) 
            Output_VFlow_Out = pd.read_sql("select * from Output_VFlow_Out where 
output_comm = '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'", 
conn) 
            conn.close() 
            vflow_out = np.zeros_like(years, dtype=float) 
            for i_year in range(0, len(years)): 
                for i in range(0, len(Output_VFlow_Out.t_periods)): 
                    if years[i_year] == Output_VFlow_Out.t_periods[i]: 
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                        vflow_out[i_year] = vflow_out[i_year] + 
Output_VFlow_Out.vflow_out[i] 
            comm.append(commodities[i_comm]) 
            tech.append(technologies[i_tech]) 
            vflow_out_2007.append(vflow_out[0]) 
            vflow_out_2008.append(vflow_out[1]) 
            vflow_out_2010.append(vflow_out[2]) 
            vflow_out_2012.append(vflow_out[3]) 
            vflow_out_2014.append(vflow_out[4]) 
            vflow_out_2016.append(vflow_out[5]) 
            vflow_out_2018.append(vflow_out[6]) 
            vflow_out_2020.append(vflow_out[7]) 
            vflow_out_2022.append(vflow_out[8]) 
            vflow_out_2025.append(vflow_out[9]) 
            vflow_out_2030.append(vflow_out[10]) 
            vflow_out_2040.append(vflow_out[11]) 
            vflow_out_2050.append(vflow_out[12]) 
 
elif technologies_flag == 0 and commodities_flag == 1: 
    for i_comm in range(0, len(commodities)): 
        vflow_out = np.zeros_like(years, dtype=float) 
        for i_tech in range(0, len(technologies)): 
            conn = sqlite3.connect(database_name) 
            Output_VFlow_Out = pd.read_sql("select * from Output_VFlow_Out where 
output_comm = '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'", 
conn) 
            conn.close() 
            for i_year in range(0, len(years)): 
                for i in range(0, len(Output_VFlow_Out.t_periods)): 
                    if years[i_year] == Output_VFlow_Out.t_periods[i]: 
                        vflow_out[i_year] = vflow_out[i_year] + 
Output_VFlow_Out.vflow_out[i] 
        comm.append(commodities[i_comm]) 
        tech.append('#') 
        vflow_out_2007.append(vflow_out[0]) 
        vflow_out_2008.append(vflow_out[1]) 
        vflow_out_2010.append(vflow_out[2]) 
        vflow_out_2012.append(vflow_out[3]) 
        vflow_out_2014.append(vflow_out[4]) 
        vflow_out_2016.append(vflow_out[5]) 
        vflow_out_2018.append(vflow_out[6]) 
        vflow_out_2020.append(vflow_out[7]) 
        vflow_out_2022.append(vflow_out[8]) 
        vflow_out_2025.append(vflow_out[9]) 
        vflow_out_2030.append(vflow_out[10]) 
        vflow_out_2040.append(vflow_out[11]) 
        vflow_out_2050.append(vflow_out[12]) 
 
elif technologies_flag == 1 and commodities_flag == 0: 
    for i_tech in range(0, len(technologies)): 
        vflow_out = np.zeros_like(years, dtype=float) 
        for i_comm in range(0, len(commodities)): 
            conn = sqlite3.connect(database_name) 
            Output_VFlow_Out = pd.read_sql("select * from Output_VFlow_Out where 
output_comm = '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'", 
conn) 
            conn.close() 
            for i_year in range(0, len(years)): 
                for i in range(0, len(Output_VFlow_Out.t_periods)): 
                    if years[i_year] == Output_VFlow_Out.t_periods[i]: 
                        vflow_out[i_year] = vflow_out[i_year] + 
Output_VFlow_Out.vflow_out[i] 
        comm.append('#') 
        tech.append(technologies[i_tech]) 
        vflow_out_2007.append(vflow_out[0]) 
        vflow_out_2008.append(vflow_out[1]) 
        vflow_out_2010.append(vflow_out[2]) 
        vflow_out_2012.append(vflow_out[3]) 
        vflow_out_2014.append(vflow_out[4]) 
        vflow_out_2016.append(vflow_out[5]) 
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        vflow_out_2018.append(vflow_out[6]) 
        vflow_out_2020.append(vflow_out[7]) 
        vflow_out_2022.append(vflow_out[8]) 
        vflow_out_2025.append(vflow_out[9]) 
        vflow_out_2030.append(vflow_out[10]) 
        vflow_out_2040.append(vflow_out[11]) 
        vflow_out_2050.append(vflow_out[12]) 
 
# To find rows with only zero elements 
delete_index = list() 
for i_comm in range(0, len(comm)): 
    flag_zero = 0 
    if vflow_out_2007[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2008[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2010[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2012[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2014[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2016[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2018[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2020[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2022[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2025[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2030[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2040[i_comm] != 0: 
        flag_zero = 1 
    elif vflow_out_2050[i_comm] != 0: 
        flag_zero = 1 
 
    if flag_zero == 0: 
        delete_index.append(i_comm) 
 
# To remove rows with only zeros elements 
for i_delete in range(0, len(delete_index)): 
    comm.pop(delete_index[i_delete]) 
    tech.pop(delete_index[i_delete]) 
    vflow_out_2007.pop(delete_index[i_delete]) 
    vflow_out_2008.pop(delete_index[i_delete]) 
    vflow_out_2010.pop(delete_index[i_delete]) 
    vflow_out_2012.pop(delete_index[i_delete]) 
    vflow_out_2014.pop(delete_index[i_delete]) 
    vflow_out_2016.pop(delete_index[i_delete]) 
    vflow_out_2018.pop(delete_index[i_delete]) 
    vflow_out_2020.pop(delete_index[i_delete]) 
    vflow_out_2022.pop(delete_index[i_delete]) 
    vflow_out_2025.pop(delete_index[i_delete]) 
    vflow_out_2030.pop(delete_index[i_delete]) 
    vflow_out_2040.pop(delete_index[i_delete]) 
    vflow_out_2050.pop(delete_index[i_delete]) 
 
    for j_delete in range(0, len(delete_index)): 
        delete_index[j_delete] = delete_index[j_delete] - 1 
 
# Building and printing the table 
vflow_out_DF = pd.DataFrame( 
    { 
        "output_comm": pd.Series(comm, dtype='str'), 
        "tech": pd.Series(tech, dtype='str'), 
        "2007": pd.Series(vflow_out_2007, dtype='float'), 
        "2008": pd.Series(vflow_out_2008, dtype='float'), 
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        "2010": pd.Series(vflow_out_2010, dtype='float'), 
        "2012": pd.Series(vflow_out_2012, dtype='float'), 
        "2014": pd.Series(vflow_out_2014, dtype='float'), 
        "2016": pd.Series(vflow_out_2016, dtype='float'), 
        "2018": pd.Series(vflow_out_2018, dtype='float'), 
        "2020": pd.Series(vflow_out_2020, dtype='float'), 
        "2022": pd.Series(vflow_out_2022, dtype='float'), 
        "2025": pd.Series(vflow_out_2025, dtype='float'), 
        "2030": pd.Series(vflow_out_2030, dtype='float'), 
        "2040": pd.Series(vflow_out_2040, dtype='float'), 
        "2050": pd.Series(vflow_out_2050, dtype='float'), 
    } 
) 
pd.set_option('display.max_rows', len(vflow_out_DF)) 
pd.set_option('display.max_columns', 16) 
pd.set_option('display.precision', 2) 
print(vflow_out_DF) 
print("\n") 
pd.reset_option('display.max_rows') 
 
if to_excel_flag == 1: 
    vflow_in_DF.to_excel("Export_Input.xlsx", sheet_name='Inputs') 
    vflow_out_DF.to_excel("Export_Output.xlsx", sheet_name='Outputs') 

 


