

Master's degree in Energy and Nuclear Engineering

Master's degree Thesis

A TIMES-like open-source model

for the Italian energy system

Supervisor

Prof. Laura Savoldi

Co-supervisor Candidate

Daniele Lerede Matteo Nicoli

Academic Year 2020 - 21

“Mentre vivete la vostra vita terrena, cercate di fare qualche cosa di

buono che possa rimanere dopo di voi. […] E ricordate che essere buoni è

qualche cosa, ma che fare il bene è molto di più.”

Scouting for Boys, B.P.

1

Summary

Summary .. 1

Abstract ... 3

List of acronyms .. 5

List of symbols ... 6

List of figures ... 7

List of tables ... 9

1. Introduction ... 13

1.1. Climate change and Italian energy strategy.. 13

1.2. Bottom-up energy system modeling .. 16

1.3. TIMES-family models ... 18

1.4. The need for open science .. 20

1.5. Aim of the thesis .. 23

2. The TIMES-Italia model ... 25

2.1. Reference energy system .. 27

2.2. Demand-side sectors... 30

2.2.1. Base year ... 30

2.2.1.1. Agriculture .. 32

2.2.1.2. Commercial ... 35

2.2.1.3. Residential ... 41

2.2.1.4. Transport ... 51

2.2.1.5. Industry ... 60

2.2.1.5.1. Steam .. 70

2.2.1.5.2. Machine drive ... 72

2.2.1.5.3. Chemicals .. 73

2.2.1.5.4. Iron and steel .. 77

2.2.1.5.5. Non-ferrous metals .. 79

2

2.2.1.5.6. Non-metallic minerals ... 81

2.2.1.5.7. Pulp and paper ... 83

2.2.1.5.8. Other industries ... 85

2.2.2. New technologies .. 86

2.3. Supply-side sectors: base year and new technologies 90

2.3.1. Power sector ... 90

2.3.2. Upstream sector ... 96

2.4. Fuel import ... 99

3. Development of the new Temoa-Italia model 100

3.1. The Temoa framework ... 100

3.2. Add-ons to the Temoa framework ... 104

3.2.1. Emission factors computation ... 104

3.2.2. Service demand projections ... 105

3.2.3. Data interpolation and extrapolation ... 106

3.2.4. Results postprocessing ... 108

4. Comparison between TIMES-Italia and Temoa-Italia 110

4.1. Scenario .. 110

4.2. Drivers .. 111

4.3. Constraints ... 116

4.4. Benchmark results ... 119

4.4.1. Non-metallic minerals .. 120

5. Conclusions and perspective ... 130

Acknowledgements .. 132

References ... 135

Appendix .. 140

A. Database preprocessing ... 140

B. Commodity-based emission factors table ... 167

C. Tables for service demands projection ... 168

D. Database postprocessing .. 168

3

Abstract

One of the main challenges that humanity as a whole is facing, even if

still without dramatic success, is the fight against climate change, caused by

the progressive increase in the average temperature of the planet that is

occurring in the recent decades, and which is expected to continue throughout

the next decades, if anything will be done. The scientific community is now

unanimous in believing that the main cause of the increase in temperature is

the increase in the average concentration of greenhouse gases in the

atmosphere, in turn mainly caused by the consumption of fossil fuels to satisfy

human activities.

In this context, the energy strategies that will be applied in the coming

years play a crucial role. In recent years, institutions have increasingly

engaged in taking initiatives aimed at fighting the causes of climate change,

implementing energy transition strategies to adopt abate climate-altering

emissions into the atmosphere.

Scientific research on energy system modeling plays a key role in

supporting policy makers, providing accurate scenario analyses, and

investigating possible solutions aimed at the development of an increasingly

sustainable energy mix. The models currently used in that research field are

typically commercial software that aim at satisfying given final energy service

demands using different technologies, to be selected on the basis of an

optimization criterion identified in the minimization of the total cost of the

energy system. The use of such software involves some issues: being

commercial software, they are not freely available but only by purchasing

them, limiting the audience of users to those who have the necessary economic

resources; moreover, access to the source code is allowed under conditions,

and finally a third-party verification of the results, their reproducibility, thus

scientific reliability and free access to input data and assumptions is not

ensured.

In that framework, the purpose of this thesis activity is then to develop

an open-source model for the Italian energy system. The model has been

developed taking as a reference the TIMES-Italia model, an energy model

developed by ENEA in the last years and belonging to the TIMES family.

4

The work first reviews and updates the TIMES-Italia database,

subsequently implemented in an energy system modeling framework

developed in Python language, the so-called Tools for Energy Modeling

Optimization and Analysis, or Temoa, in brief. Finally, a comparison between

the results obtained by the tools is performed, demonstrating that any

discrepancies are within a tolerance threshold and that they can be considered

equivalent for the purpose of scenario analysis.

At the end of the thesis activity, an open-source and validated model

for the Italian energy system is available to the community of modelers, model

for which it is possible to implement modifications and add-ons, also

regarding the optimization criteria and the algorithm. In particular, possible

future developments include the introduction of a sustainability criterion in

the optimization paradigm, to overcome simple cost minimization and offer

policy makers a detailed and useful analysis of the effect of any legislative

interventions that are being taken into consideration.

5

List of acronyms

BOF Basic oxygen furnace

CCS Carbon capture and storage

CEH Electricity-to-heat coefficient

CHP Cogeneration of heat and power

CHPR Heat-to-power ratio

CPLEX IBM ILOG CPLEX Optimization Studio

EAF Electric arc furnace

ETM EUROfusion TIMES Model

EU European Union

GAMS General Algebraic Modeling System

GDP Gross domestic product

GHG Greenhouse gases

GLPK GNU Linear Programming Kit

IEA International Energy Agency

MF Multi-family

NEOS Network-Enabled Optimization System

O&M Operation and maintenance

OSeMOSYS Open Source Energy Modelling System

PNIEC Piano Nazionale Integrato per l’Energia e il Clima

RES Reference energy system

SF Single-family

Temoa Tools for Energy Modeling Optimization and Analysis

TIMES The Integrated MARKAL-EFOM System

VEDA VErsatile Data Analyst

6

List of symbols

Alow Lower activity boundary

AF Availability factor

CH4 Methane

CO2 Carbon dioxide

d Driver

D Final service demand

e Elasticity

eff Efficiency

err Relative error

E Energy consumption

EF Emission factor

f Share factor

N2O Nitrous oxide

Rf Relaxation factor

SOx Sulfur oxide

P Power

t Time period

Subscripts

af Aggregated fuel

avg Average

bt Building type

conv Conversion

es Energy service

eu End use

f Fuel

md Machine drive

s Steam

tech Technology

tm Transportation mode

Superscripts
f Final

u Useful

7

List of figures

Figure 1 Relationship between the observed phenomena. (a)

Annually and globally averaged temperature anomalies

relative to the average over the period 1986 to 2005. (b)

Annually and globally averaged sea level change relative

to the average over the period 1986 to 2005. (c)

Atmospheric concentration of carbon dioxide (CO2),

methane (CH4) and nitrous oxide (N2O). (d) Global

anthropogenic CO2 emissions [1].…………..……………... 14

Figure 2 Market equilibrium mechanism representation for the

electricity commodity [8]. ………………………………….. 19

Figure 3 Generic structure of the TIMES-Italia reference energy

system, and connections between the different sectors. …. 28

Figure 4 Flow-chart for the evaluation of service demand in

agriculture. Associated to each step are specified the

involved equations, as listed in this report. ………………. 33

Figure 5 Flow-chart for the evaluation of service demand in the

commercial sector. Associated to each step are specified

the involved equations, as listed in this report. …………... 40

Figure 6 Flow-chart for the evaluation of service demand in the

residential sector. Associated to each step are specified

the involved equations, as listed in this report.…………… 50

Figure 7 Flow-chart for the evaluation of service demand in the

transport sector. Associated to each step are specified the

involved equations, as listed in this report. ………………. 59

Figure 8 Flow-chart for the evaluation of energy service demand

in the industrial sector. Associated to each step are

specified the involved equations, as listed in this report.... 69

Figure 9 Connection between different technologies of upstream

sector. …………………………...……………………………. 98

Figure 10 Temoa framework developed within Python-based

Pyomo collection. …………………………………………… 100

Figure 11 Main components constituents the Temoa structure. …… 101

8

Figure 12 Example of data interpolation and extrapolation for (a)

piecewise lineare trend, (b) constant trend and (c)

piecewise constant trend (technology lifetime variable in

the time). …………….……………………………………….. 108

Figure 13 Driver 2006-normalized trend. …………………………….. 114

Figure 14 Driver 2006-normalized trend for population, “single-

family” and “multi-family” buildings residential space

heating and weighted average for total residential space

heating demand. ……………………………………………. 115

Figure 15 Comparison of minimum and maximum constraints

imposed to "Non-metallic minerals" base year

technologies in TIMES-Italia and Temoa-Italia. ………….. 117

Figure 16 Comparison of "non-metallic minerals" total demand and

total energy consumption, evaluated with TIMES-Italia

and Temoa-Italia. …………………………………………… 120

Figure 17 Average relative error (weighted on production shares)

for "Non-metallic minerals" subsector technologies. Black

line is used to represent the +1% tolerance value. ………... 127

Figure 18 Average relative error (weighted on fuel shares) for

"Non-metallic minerals" subsector fuel consumption.

Black line is used to represent the +1% tolerance value..... 127

Figure 19 Energy consumption split by fuel for "non-metallic

minerals" industrial subsector, obtained from TIMES-

Italia and Temoa-Italia. …………………………………….. 129

Figure 20 Comparison of TIMES-Italia and Temoa-Italia results

split by fuel, detail for 2020, 2030, 2040 and 2050 results..... 129

9

List of tables

Table 1 Comparison of available tools for macro-scale energy

system optimization. …………………...…………………... 22

Table 2 Time-slice subdivision of the model year. ……...………… 26

Table 3 Static emission factors. …………..…………….…………… 31

Table 4 IEA statistics, aggregated fuels for the agriculture. …...…. 32

Table 5 Emission factors for agriculture sector-specific fuels. ...…. 34

Table 6 Commercial service demands. ……………………..……… 35

Table 7 IEA statistics, aggregated fuels for the commercial sector.. 35

Table 8 Fractional end-uses share for the commercial end-uses. … 36

Table 9 End-use energy consumptions for commercial services. ... 36

Table 10 Demand-side technologies by commercial energy

services. ……………………………………………………… 38

Table 11 Service demands for commercial sector energy services. .. 39

Table 12 Emission factors for commercial sector-specific fuels. …... 40

Table 13 Residential service demands. ……………………………… 41

Table 14 IEA statistics, aggregated fuels for the residential sector... 42

Table 15 Fractional end-use shares for the residential sector. ……... 43

Table 16 End-use energy consumption for residential services. …. 43

Table 17 Demand-side technologies by residential energy services. 46

Table 18 Service demands for the residential sector. ………………. 49

Table 19 Emission factors for residential sector-specific fuels..……. 50

Table 20 Transport categories. ……………………………………….. 51

Table 21 IEA statistics, aggregated fuels for transports sector. ……. 52

Table 22 Share factors for transportation modes. ………………….. 53

Table 23 Splitting by transportation mode. …………………………. 54

10

Table 24 Demand-side transports technologies by transportation

modes. ……………………………………………………….. 55

Table 25 Conversion factors and service demands for transport

technologies. ………………………………………………… 57

Table 26 Service demands for transports sector. …………………… 58

Table 27 Emission factors for transports sector-specific fuels..……. 59

Table 28 Industry subsectors..……………...………………………… 60

Table 29 Energy consumption from IEA statistics by aggregated

fuels of industrial energy-intensive subsectors. ………….. 61

Table 30 Fractional shares for industrial energy services. …………. 64

Table 31 Breakout by energy services for industrial sector. ……….. 66

Table 32 Total industrial energy consumption by energy services

for chemicals, iron and steel, non-ferrous metals, non-

metallic minerals, pulp and paper and other industries. ... 68

Table 33 Emission factors for industry sector-specific fuels. ……… 70

Table 34 Final energy, efficiencies, and useful energy for "steam"

energy-service. ……………………………………………… 71

Table 35 Splitting by different subsectors of “steam” service

demand. ……………………………………………………... 71

Table 36 Final energy, efficiencies, and useful energy for "machine

drive". ………………………………………………………... 72

Table 37 Splitting by different subsectors of “machine drive”

service demand. …………………………………………….. 72

Table 38 Chemical production statistics (from [23] and [24]). ……... 73

Table 39 Calibration and techno-economic characterization of

chemical sector base year. ………………………………….. 75

Table 40 Demand-side chemical technologies by energy services. .. 76

Table 41 Calibration and techno-economic characterization of

“iron and steel” sector base year. ………………………….. 78

Table 42 Demand-side iron and steel technologies by energy

services. ……………………………………………………… 78

11

Table 43 Calibration and techno-economic characterization of

"non-ferrous metals" sector base year. …………………….. 79

Table 44 Demand-side non-ferrous metals technologies by energy

services. ……………………………………………………… 80

Table 45 Production, service demands and conversion factors for

"non-metallic minerals”. …………………………………… 81

Table 46 Demand-side non-metallic minerals technologies by

energy services. ……………………………………………... 82

Table 47 Base year technologies and production demands for

"pulp and paper”. …………………………………………… 83

Table 48 Share factors for service demands, service demands and

conversion factors for "pulp and paper”. …………………. 84

Table 49 Demand-side pulp and paper technologies by energy

services. ……………………………………………………… 84

Table 50 Service demands and conversion factors for "other

industries". …………………………………………………... 85

Table 51 Efficiency improvement for minor demand-side

subsectors. …………………………………………………… 87

Table 52 Overview of new technologies for buildings [14].………... 88

Table 53 Overview of new technologies for industry [21]..………… 88

Table 54 Overview of new technologies for transport [21].………... 88

Table 55 Base year relative descriptive parameters of electricity

production technologies. …………………………………... 92

Table 56 Emission factors for electricity sector-specific fuels. …….. 94

Table 57 New technologies for electricity and heat production. ….. 94

Table 58 Descriptive parameters of upstream sector technologies... 97

Table 59 Emission factors for upstream sector-specific fuels. ……... 98

Table 60 Fuels and electricity medium importation prices. ……… 99

Table 61 Elements included in the Temoa database. ……………….. 103

Table 62 Allocation and numeric values of moderate drivers for

service demand projection [14]. …………………………… 112

12

Table 63 Imported fuels from abroad in 2006 and upper

boundaries imposed in 2007 and 2050. ……………………. 118

Table 64 Comparison of “Non-metallic minerals” production

evaluated with TIMES-Italia and Temoa-Italia and

relative errors. ………………………………………………. 121

Table 65 Comparison of TIMES-Italia and Temoa-Italia results of

“Non-metallic minerals” production split by production

technologies, with relative errors for each technology and

average errors for each non-metallic product. …………… 122

Table 66 Breakout by fuel of energy consumption for "Non-

metallic minerals" subsector and relative error evaluation

between TIMES-Italia and Temoa-Italia results. …………. 124

13

Chapter 1

1. Introduction

1.1. Climate change and Italian energy strategy

Climate change is probably the main challenge that humanity as a

whole is facing, still without dramatic successes, and that it will undoubtedly

have to face in the coming years and decades. The average increase in the

planet's temperature has direct consequences on the climate, in particular by

increasing the frequency and intensity of extreme weather phenomena (and

related damage to exposed populations), melting of glaciers and rising

average sea levels, endangering the delicate balance of ecosystems. The cause

of the increase in average temperature is now unanimously recognized in the

increase in the average concentration of greenhouse gases in the atmosphere,

due to the exploitation of fossil fuels to satisfy human activities. In recent

decades there has been an increase in annual emissions, driven by the growth

of the world population, by economic development and by an increasingly

widespread access to energy, even in developing countries. [1]

Figure 1 shows the relationship between different observed

phenomena, namely: positive and increasing atmospheric temperature

anomaly characterizing the last decades, with respect to the beginning of the

1850-1900 levels (Figure 1 (a)); positive and increasing sea level change (Figure

1 (b)); the increasing greenhouse gases average concentration in the

atmosphere, shown for CO2, CH4 and N2O (Figure 1 (c)); global anthropogenic

CO2 emissions (Figure 1 (d)).

14

Figure 1. Relationship between the observed phenomena. (a) Annually and globally averaged

temperature anomalies relative to the average over the period 1986 to 2005. (b) Annually and globally

averaged sea level change relative to the average over the period 1986 to 2005. (c) Atmospheric

concentration of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). (d) Global

anthropogenic CO2 emissions [1].

15

Governments in recent years have devoted much attention to the issue

of climate change, at least in proclamations, with the milestones of the Kyoto

Protocol of 1998 [2] and the Paris Agreement of 2015 [3]. In this context, the

Italian government has established qualitative objectives and quantitative

targets to achieve the energy transition relying more and more on energy

resources that do not involve greenhouse gas emissions.

First, the “Strategia Energetica Nazionale 2017” [4] aims to make the

national energy system more competitive (reducing the energy price gap with

respect to the rest of the Europe), sustainable (reaching the objectives of

decarbonization established by the Paris Agreement) and secure (improving

procurement security and infrastructures flexibility).

The quantitative targets established by the national energy strategy are:

a. Reducing final consumption to 108 Mtoe in 2030.

b. 28% of renewable energy resources on the total consumption in

2030 (with sector-specific targets).

c. Cessation of coal-fired electricity generation in 2025.

d. Emissions reduction of 39% in 2030 and 63% in 2050 with respect

to 1990 levels.

e. Doubling of investments in research and development to 444

million euros in 2021.

f. Energy dependence reduction to 64% in 2030.

The energy strategy has been included in 2020 in the “Piano Nazionale

Integrato per l’Energia e il Clima” (PNIEC) [5], aiming to reach to 30% of

renewable energy sources on the total consumption in 2030 and 55% on

consumption for electricity generation, with an estimation of 180 billion euros

of additional investments in the period 2017-2030 with respect to the current

policy scenario.

Having the objective of reducing the exploitation of fossil fuels

(increasing the share of consumption of renewable energy sources for all

energy sectors) requires the ability to evaluate the future energy policies taken

into consideration, providing an assessment of their effectiveness in achieving

the established objectives, also considering with an independent analysis the

energy measures’ efficiency in terms of achieved results per unit of public

economic resources consumed.

16

1.2. Bottom-up energy system modeling

Energy system modeling and scenario analysis have a key role in the

investigation of future energy systems, particularly concerning the expected

evolution of the energy mix in the during large time scales. Studies developed

on these themes should be more and more are increasingly becoming a

reference for policy makers, in other to guarantee that energy policies are

supported by robust, independent, and verifiable evaluations on their

effectiveness achieving the desired effects. [6]

In this context, several tools are used to perform scenario analyzes,

including the bottom-up energy models [7]. This kind of models are

characterized by a detailed description of the energy technologies involved in

the energy system, working with a high disaggregation level, and thus

needing extensive database of empirical data to support the description of

each component.

The main peculiarities of bottom-up models are [7]:

a. Exogenous assumption on the development of the economy.

b. Use of physical or engineering relationship between energy and

energy utilization processes.

c. Demand driven by socio-economic variables, often derived by

econometric models.

d. Usually, they do not account pricing effect on demand (which is

very critical when demand for a fuel is highly elastic).

Bottom-up models can be classified according to several criteria [7]:

a. Time horizon: short-term and long-term approach. Short-term

(or static) models usually analyze the energy system

configuration in a target year, while long-term models inspect

the energy system along the entire time horizon (usually longer)

until the target year.

b. Optimization approach: perfect-foresight approach (with the

formulation of a unique optimization problem analyzing all the

time-periods simultaneously and having fully information on

cost trends, consumption variation, decay of performance of

certain technologies) or myopic approach (realized subdividing

17

the time horizon in a sequence of optimization problems, to

simulate real decisions, taken without a complete information

about the future).

c. Analyzed energy sectors: models of the entire energy system and

models limited to some of the sectors included. The advantage

of using a model which includes all the sectors is to have the

possibility to study sector-coupling, to assess the benefits

coming from interactions and synergies among different sectors,

to maximize the efficiency of the whole system.

d. Geographical scale: models at the macroscale (single- or multi-

regional), mesoscale, or microscale.

e. Time resolution: related to the number of time-slices in which

the simulation year is subdivided. Time-slices are stylized

temporal representations mainly used to describe the seasonal

and daily differences of energy consumption and production.

The time resolution of the models is becoming an important

aspect since renewable energy sources are strongly variable in

the time (being dependent on weather conditions).

f. Methodology: accounting models (simply working on the

present configuration of the energy system), simulation models

(allowing to test a certain configuration of the energy system and

derive useful indicators related to the total cost, the GHG

emissions etc.), optimization models (deriving the energy

system configuration correspondent to the optimization of a

certain objective function, typically the total cost of the system).

18

1.3. TIMES-family models

Models belonging to the TIMES framework [8] are bottom-up energy

models, sharing the following common features:

a. Technology-explicit formulation: each technology in all energy

sectors is explicitly described with technical and economic

parameters.

b. Possibility to implement a multi-regional network (models at the

macroscale).

c. Equilibrium in competitive markets with perfect foresight

(optimization models).

In its current formulation, the model operates with a linear

programming algorithm, and its objective function is the maximization of total

economic surplus, that is equivalent to the minimization of the total cost of the

energy system during the model time horizon [8].

The maximization of the total surplus is reached at the equilibrium

point of the demand curve and the supply curve, as shown in Figure 2, for

each energy service involved in the modelled energy system. Different

technologies, in economic competition inside the same sector, are

characterized by different investment and production-related (operation and

maintenance, energy) costs. The demand curve determines the quantity of

energy service that the market is willing to purchase when the purchase price

increases; the supply curve for each one of them determines the quantity of

energy service that is offered by the production system at the correspondent

production cost. As the quantity produced increases, one or more resources

are exhausted, and therefore the system must start using a different and more

expensive technology or set of technologies in order to produce additional

units of the required commodity, even if at higher unit cost. For each

commodity, the demand-supply equilibrium is found at the intersection

between the demand and supply curves, corresponding to a certain quantity-

price equilibrium couple. When the equilibrium is reached, the total surplus is

maximized, and it corresponds to the sum of the consumer’s (the difference

between what the consumer would be willing to pay and what he actually

19

pays) and the producer’s (the difference between the producer income and the

production cost) surpluses [8].

Figure 2. Market equilibrium mechanism representation for the electricity commodity [8].

20

1.4. The need for open science

A growing awareness is spreading in the scientific community about

open science. Open science means having the possibility to freely diffuse data

and results of scientific research, increasing responsiveness and spreading

knowledge without economic limitations [9].

The importance of this issue is such that it falls within the priority

policies of the European Commission [10], focusing on 8 ambitions of the EU’s

open science policy:

a. Open data: open data sharing by default for EU-funded scientific

research.

b. European Open Science Cloud to store, share, process, and reuse

research digital objects.

c. Development of alternative metric to evaluate the impact of

research outcomes.

d. All peer-reviewed scientific publications should be freely

accessible.

e. Research career evaluation systems should fully acknowledge

open science activities.

f. Reproducibility of scientific results.

g. All scientists should have the necessary skills to apply open

science practices.

h. Possibility for the general public to make significant

contributions to the scientific research.

In the energy system modeling context, particularly, the data and

results free sharing and the results reproducibility are crucial to guarantee that

results presented in publications are solid and based on the scientific method,

avoiding any external pressure on researchers, especially when it is necessary

to evaluate possible legislative interventions, particularly subject to political

evaluations [11].

The openness should regard both the data collected in research

activities and the tools used to elaborate input data and derive results. From

the perspective of software, open-source software allows the source code to be

examined, modified, and integrated. The utilization of open-source tools is

21

also fundamental to ensure transparency of the algorithms included in the

models [7].

With respect to the energy system modeling, several open models have

been developed in recent years, with different characteristics. Some focused

on the optimization of the electricity system alone, while others refer to the

overall energy system. Some developed on a municipal or local scale, others

on a national or international scale. Focusing on models developed for

national-scale energy system optimization, two main tools ca be considered,

namely Open Source Energy Modelling System (OSeMOSYS [12]) and Tools

for Energy Model Optimization and Analysis (Temoa [13]).

Table 1 compares OSeMOSYS and Temoa features with TIMES. Both

the two cited tools allow to perform energy system optimization analyses at

the macro-scale, with increasing database complexity with the complexity of

the energy system. The two open models are also similar in terms of possibility

to set future evolution of parameters (being possible to set any kind of trend:

linear, exponential, etc.), programming language, formulation of the problem,

possibility to modify and improve the code and current impossibility to

perform multi-objective optimization (but could be implemented).

The two main differences between OSeMOSYS and Temoa regard the

optimization software and, subsequently, the complexity of the energy system

that can be optimized by the model. Indeed, using freely available software

with OSeMOSYS, only relatively simple energy systems can be optimized with

acceptable computational cost. On the contrary, with Temoa there is the

possibility to use also solvers allowing to solve the optimization problem for

large-size energy systems (anyway GLPK can be used for simpler study cases).

22

Table 1. Comparison of available tools for macro-scale energy system optimization.

Model

Feature
OSeMOSYS TEMOA TIMES

Features of the input data

entering tool

Several steps are required for the definition

of the time-scale, space-scale and

technological characterizations, but allows

a prompt visualization of the RES network.

Complexity increases with the complexity

of the energy system, but the code

formulation makes it straightforward.

Complexity increases with the complexity

of the energy system (especially with the

number of regions), due to the large

number of Excel files to be managed.

Future evolution of parameters

The required values must be declared at

each desired time-step, with the possibility

of assigning different evolution trends

between two points in time (linear,

exponential, …).

The required values must be declared at

each desired time-step, with the possibility

of assigning different evolution trends

between two points in time (linear,

exponential, …).

The required values must be declared at

each desired time-step, with the possibility

of assigning different evolution trends

between two points in time (linear,

exponential, …).

Programming language(s)
GNU open-source / Python open-source /

GAMS commercial
Python open-source GAMS commercial

Type of programming language High-level High-level High-level

Optimization software (solver)
GLPK for GNU open-source / GLPK for Python
open-source / GAMS commercial

GLPK for Python open-source / CPLEX for

Python commercial (but can be run on an external server) /

Gurobi for Python commercial (but available with free

academic license)

CPLEX for GAMS commercial

Features of the optimization

software

Suitable for simple energy systems if

using-open-source solvers.
Suitable for large-scale energy systems. Suitable for large-scale energy systems.

Formulation of the problem

Scenario-based, long-term, multi-regional,

minimum cost optimization linear problem

considering competitive markets with

perfect foresight.

Scenario-based, long-term, multi-regional,

minimum cost optimization linear problem

considering competitive markets with

perfect foresight.

Scenario-based, long-term, multi-regional,

minimum cost optimization linear problem

considering competitive markets with

perfect foresight.

Possibility to modify/improve

the code
Possible. Possible. Impossible.

Possibility to perform stochastic

optimization

Impossible at present state, but an

extension can be formulated.

Possible with an already implemented

Python module.

Possible, but time-consuming and complex

due to the difficult data handling.

Possibility to perform multi-

objective optimization

Impossible at present state, but could be

implemented.

Impossible at present state, but could be

implemented.
Impossible.

23

1.5. Aim of the thesis

Basing on the premises about open science made in Section 1.1, the aim

of this thesis activity is to develop an open-source model on the Italian energy

system. The selected reference model for the open-source implementation is

TIMES-Italia [14], belonging to the TIMES family and developed by ENEA [15]

during the last years. The features of TIMES-Italia and its database will be

discussed in detailed in Section 0.

The motivations for having this purpose are strictly correlated with the

European Commission’s objectives in terms of open science. The common

belief is that relying on an open-source energy model would allow to perform

scenario analyses and evaluations of the possible future energy policies

characterized by independence and reliability on the results, being them

transparent, inspectable and reproducible.

Another consideration is relevant, concerning the openness of the tool

use for energy system modeling. As it was already mentioned in Section 1.1

and Section 1.1, the currently used commercial software are based on a single

optimization paradigm, such as the minimization of the total cost of the energy

system. Of course, the cost is important, and it is true that energy system

evolves aiming to satisfy the energy-related needs of the society possibly

minimizing the efforts required to achieve this goal. Considering only the

economic point of view, it appears quite obvious that the expenditures related

to new investments for energy plants and operation and maintenance of

existing ones should be as limited as possible.

However, especially in recent years, an increasing awareness has grown

in the population and in institutions (governmental and non-governmental)

regarding the objectives of environmental sustainability. In this regard, two

important statements by the international community can be cited.

First, the 2015 Paris Agreement [3] aims to keep the average global

temperature rise well below 2 ℃ above pre-industrial levels, with the aim of

limiting it to 1.5 ℃. In this perspective, it is intended to reach the peak of global

greenhouse gas emissions as soon as possible, to then reduce them

significantly and quickly and reach climate neutrality by the second half of the

century. Secondly, the United Nations has set itself 17 Sustainable

24

Development Goals [16], with the aim of ending poverty, focusing on

education, inequalities reduction and economic growth but, at the same time,

fighting climate change and preserving natural ecosystems.

With those purposes, it seems realistic that the focus, concerning the

next energy policies, will be not only on the expected expenditures, but firstly

on their effectiveness in reaching those objectives, also accepting higher

expenditures.

For that reason, it become crucial to have a simulation and optimization

tool capable to account for several optimization criteria, related in particular

to the sustainability of the energy system. To realize that it is needed to go

beyond the optimization algorithms and paradigms currently present in

commercial software, and it can be achieved only through open-source

models, having the access to the source code and the possibility to investigate,

modify and integrate it taking into account a sort of sustainability

optimization, additional to the economic one.

Finally, this thesis work is structured as follows:

a. Review and update of the TIMES-Italia energy model (Section 0).

b. Open-source implementation of the model (Section 0).

c. Comparison of results obtained by the commercial and open-

source tools (Section 0), to validate the new model.

25

Chapter 2

2. The TIMES-Italia model

In the context just introduced of energy system modeling, a model

concerning the Italian energy system has been developed, within the TIMES

framework, by ENEA during the last years: the so-called TIMES-Italia [14]. It

is a single-region model and the relationship between Italy and other

economically and energy trade-connected countries is defined via import-

export parameters.

The time scale is subdivided in several time periods, namely the time-

steps in which the model optimizes commodity quantities and prices. The first

time-step, i.e., the base year, is 2006. In the base year, energy balances are

analyzed to define the composition of the RES and initial service demands in

each demand sector. After 2006, several time-steps are included in the current

TIMES-Italia [14] up to the final year, 2050: 2007, 2008, 2010, 2012, 2014, 2016,

2018, 2020, 2022, 2025, 2030, 2040 and 2050. To each of those milestone years,

driver and demand elasticity projections are associated, in order to derive

future service demands. The TIMES-Italia time resolution consists of

subdividing the simulation year in four seasons (spring, summer, fall and

winter) each of which was assigned 1/4 of the total time of the year, and

further subdividing each season in three times of the day (day, night and peak,

correspondent to the hour of peak consumption), with different shares

dependent on the correspondent season. In this way, the model time

resolution is set to twelve time-slices per year, as shown in Table 2.

26

Table 2. Time-slice subdivision of the model year.

Seasons

Times of day
Spring Summer Fall Winter

Day
1

4
∗

11

24
= 11.5%

1

4
∗

12

24
= 12.5%

1

4
∗

11

24
= 11.5%

1

4
∗

10

24
= 10.5%

Night
1

4
∗

12

24
= 12.5%

1

4
∗

11

24
= 11.5%

1

4
∗

12

24
= 12.5%

1

4
∗

13

24
= 13.5%

Peak
1

4
∗

1

24
= 1.0%

1

4
∗

1

24
= 1.0%

1

4
∗

1

24
= 1.0%

1

4
∗

1

24
= 1.0%

This is done to achieve a detailed characterization of energy production

and consumption during time. Indeed, both seasonal and daily subdivisions

of time periods allow to consider variations in energy production (e.g.,

availability of hydroelectric electricity is strongly dependent on the season, or

photovoltaic production does not occur during night) as well as for

consumptions (e.g., heating is only necessary during cold months and cooling

during hot months, and lighting only during night). Also, one hour of peak-

demand per day is considered, as the model does not only consider the balance

between production and consumption in terms of energy, but also in terms of

power; for this reason, it is important to consider peak-demand periods, in

order not to underestimate the value of power instantaneously required to

satisfy the demand.

27

2.1. Reference energy system

The reference energy system (RES) in energy models is a network

representation of all the processes involved in the transformation from energy

supply to final demands, consisting of a techno-economic characterization of

both supply-side and demand-side energy sectors.

The TIMES-Italia [14] RES is composed by five technology sectors,

distinguished in three demand-side sectors and two supply-side sectors. The

demand-side sectors are buildings (further divided in agriculture, commercial

and residential sector), transport and industry. The supply-side sectors are the

power sector and the upstream sector. Each sector includes a set of several

technologies, characterized by proper tecno-economic parameters, used to

produce the intermediate and final commodities necessary to guarantee the

production of the requested energy service demands.

The techno-economic description of the sectors is performed

distinguishing the base year of the time horizon from its future years. The base

year is a time period for which energy consumption, final service demands,

and the efficiency of the installed technologies are known or, at least, can be

estimated from energy balances or different statistics. The scope of the base

year description is to represent the existing reference energy system, from the

supply of energy to the service demands. Differently, future years are the time

periods for which the optimization of the energy system must be performed

by the model, depending on the assumptions made on socio-economic

development and on available new technologies. To drive the progressive

disposal of the base year technologies during the time, constraints on the

residual capacity of these technologies are used, usually starting from the base

year value and following a linear trend up to 0 after a certain time interval.

Figure 3 represents the generic structure of the TIMES-Italia [14] RES.

In the upper section of the diagram (in orange), the upstream sector is

represented, divided in fossil fuel technologies and renewable energy source

technologies, producing upstream output commodities. Power sector is

represented in yellow, and it consumes upstream commodities to produce

electricity (distinguished in centralized and distributed) and heat, which are

the input for the demand-side sectors (together with the upstream output

28

commodities). In the bottom section of the diagrams, demand-side sectors are

synthetically represented, listing the final service demand categories to be

satisfied.

Figure 3. Generic structure of the TIMES-Italia reference energy system, and connections between the

different sectors.

29

A relevant comment on the structure of the RES can be done, concerning

the different role of base year modeling with respect to new technologies

modeling.

New technologies included in the model database are represented by a

detailed techno-economic characterization of all the energy-related processes

that are expected to enter the market during the considered time horizon and

are used to substitute the base year technologies, which progressively phase

out. The main intent of base year is, instead, to quantify the final service

demands, especially for those that are not derived by statistics but simply

estimated knowing the energy consumption of the subsector and evaluating

the efficiency of the base year technologies.

Being the service demands evaluation directly dependent on those

assumptions and parameters characterization, a precise modeling of the base

year is a crucial point to obtain reliable and arguable results. For that reason,

in Section 1.1 the TIMES-Italia [14] base year is described in detail, to clarify

how energy consumptions (known from IEA statistics) are converted into final

service demands and based on which assumptions.

30

2.2. Demand-side sectors

2.2.1. Base year

The energy consumption at base year (2006 for TIMES-Italia [14]), is

known from IEA World Energy Balances [17], that provide energy

consumption by energy sector and split by fuels. For what concerns transport

and industry sectors, IEA data are already split by subsectors. The unit of

measure is PJ.

Two procedures can be followed to model the base year structure and

quantify final service demands:

a. If the total service demand is known from external national

statistics, the efficiency of base year technologies can be

estimated (consistently with efficiency of installed technologies)

as ratio between energy consumptions and demand production.

b. If the service demand is unknown and must be estimated, the

estimation is performed assuming efficiency values for base year

technologies (based on their tecno-economic characterization)

and deriving the demand as product between energy

consumption and efficiency.

In the TIMES framework, also the evaluation of sector-specific

commodity-based emission factors is performed within the base year files. The

emission factors are necessary to evaluate the atmospheric emissions of each

technology and, consequently, of the entire energy system. Those factors are

sector-specific and commodity-based in the sense that they are specified for

each sector-specific commodity (fuel consumed by the technology) and the

absolute values of the emissions is evaluated by the model on the basis of each

commodity consumption. The sector-specific emission factors are indicated as

“dynamic” (EFD) in contrast with the “static” one (EFS,i) which are emission

factors for the upstream commodities required to produce the sector-specific

commodities.

Upstream commodities Ci,j [PJ] of the model are connected to the sector-

specific commodities Cj [PJ] with appropriate share factors fi [%], used to

describe the mix correctly (as shown by Equation 1). Share factors are fixed for

31

the base year, and constraints on them are imposed for the projection years,

typically upper constraints (to set a maximum boundary to the percentage of

some generic commodity).

fi [%] =
Ci,j [PJ]

Cj [PJ]
 (1)

 Since sector-specific commodities are produced from upstream ones,

the evaluation of dynamic emission factor is simply performed multiplying

each static factor by the share factor associated to the correspondent

commodity, as shown in Equation 2. They are “dynamic” being dependent on

the share of upstream commodities involved.

EFD [
kt

PJ
] = ∑ EFS,i [

kt

PJ
] ∗ fi

i

[%] (2)

The considered emission commodities are CO2, CH4, N2O and SOx (the

latter for the industrial sector only). In the following sections, at the end of

each section, the evaluation of sector-specific commodity-based emission

factors is also reported. In Table 3 static emission factors for the most

representative upstream commodities are reported, for the sake of

completeness.

Table 3. Static emission factors.

Commodity
Emission commodity [𝐤𝐭/𝐏𝐉]

CO2 CH4 N2O

Hard coal 98.30 5.00 1.40

Brown coal 101.20 5.00 1.40

Crude oil 73.30 2.00 0.60

Gasoline 69.30 2.00 0.60

Gas oil 74.10 2.00 0.60

Natural gas 56.10 5.00 0.10

Liquified petroleum gas 63.10 5.00 0.10

Waste 85.85 300.00 4.00

32

2.2.1.1. Agriculture

The first subsector considered is agriculture, having a very simple data

structure. Energy balances for the sector are reported, stating energy

consumption for several fuels. Subsequently, they are aggregated into a

reduced number of modelled fuels, as in Equation 3, where Eaf is the energy

consumption attributed to the aggregated fuel, and Ef,i is the energy

consumption of the ith fuel contributing to the aggregated one.

Eaf [PJ] = ∑ Ef,i [PJ]

i

 (3)

The result is reported in Table 4, showing that most of the energy

consumption for the agriculture sector is due to diesel consumption, as it

might be expected.

Table 4. IEA statistics, aggregated fuels for the agriculture.

IEA Fuels Aggregated Fuels 𝐄𝐚𝐟 [𝐏𝐉]

Natural gas

Gas works gas

Coke oven gas

Natural Gas 6.22

Diesel

Other non-specified
Distillate 104.45

Motor gasoline Gasoline 0.66

LPG LPG 3.08

Solid biomass

Charcoal

Gas biomass, Other liquid biofuels

Municipal waste (non-renewable), municipal

waste (renewable)

Industrial waste

Biomass 8.20

Electricity Electricity 19.82

Geothermal Geothermal 5.35

33

Made that first aggregation the service demand is very simply assumed

to be equal to the total energy consumption of the subsector, assuming unitary

efficiency for the base year technology producing the service demand. The

sum gives a service demand DAGR of 147.79 PJ for agriculture, as shown in

Equation 4.

DAGR[PJ] = ∑ Eaf,j[PJ]

j

= 147.79 PJ (4)

Figure 4 summarizes data organization and interactions, from IEA

statistics to the calculation of service demand.

Figure 4. Flow-chart for the evaluation of service demand in agriculture. Associated to each step are

specified the involved equations, as listed in this report.

Eventually, the computation of emission factors for agriculture sector

leads to the values that follow in Table 5. It should be noted for instance that

the highest value of CO2 emission factors is related to coal, reasonably being

the fuel with the highest carbon content. Also, a high CH4 emission is

associated to biomass.

Eq.3

Eq. 4

34

Table 5. Emission factors for agriculture sector-specific fuels.

Commodity

Emission factors [𝐤𝐭/𝐏𝐉]

Natural gas Diesel Gasoline
Heavy

fuel oil
Kerosene Coal LPG Biomass

CO2 56.10 74.07 69.30 77.37 71.87 98.27 63.07 0.00

CH4 5.00 5.00 20.00 5.00 1.00 50.00 5.00 300.00

N2O 0.10 0.60 0.60 0.60 0.60 1.40 0.10 4.00

35

2.2.1.2. Commercial

In this section, the commercial sector is investigated. Energy service

demands for the commercial sector are listed in Table 6.

Table 6. Commercial service demands.

Commercial service demands

Space heating

Space cooling

Water heating

Lighting

Cooking

Refrigeration

Electric office equipment

As already seen for agriculture sector, an aggregation of energy

consumption by similar fuels is needed to reduce their number in a more easily

treatable form. This operation is done accordingly to Equation 3, where Eaf
f is

the final energy consumption attributed to the aggregated fuel and Ef,i is the

energy consumption of the ith fuel that contributes to the aggregated one.

Table 7 is the output of the aggregation. In this sector, the energy consumption

is mainly subdivided among natural gas and electricity consumption.

Table 7. IEA statistics, aggregated fuels for the commercial sector.

IEA Fuels Aggregated Fuels 𝐄𝐚𝐟
𝐟 [𝐏𝐉]

Natural gas

Gas works gas

Coke oven gas

Natural Gas 318.50

Diesel

Motor gasoline

Other non-specified

Distillate 19.29

LPG LPG 0.09

Electricity Electricity 281.06

Heat Heat 6.30

Geothermal Geothermal 1.78

36

The next step, as for residential sector, is the splitting of energy

consumptions into the different end-uses of the sectors. To do this, fractional

shares of end-use are assigned by assumption [14] (Table 8) and they are

multiplied by the relative consumption of fuel to obtain absolute values of

energy consumption for every fuel and every end-use, as Equation 5 shows.

Table 9 reports the results of that operation and, focusing on natural gas and

electricity (representing the most relevant consumption), showing that

according to the assumed fractional share natural gas is mainly allocated for

space heating, while electricity is more evenly divided among all end uses.

Table 8. Fractional end-uses share for the commercial end-uses.

Fuel

Fractional end-uses shares 𝐟𝐞𝐮 [%]

S
p

ac
e

h
ea

ti
n

g

S
p

ac
e

co
o

li
n

g

W
at

er
 h

ea
ti

n
g

L
ig

h
ti

n
g

C
o

o
k

in
g

R
ef

ri
g

er
at

io
n

E
le

ct
ri

c
o

ff
ic

e

eq
u

ip
m

en
t

Natural Gas 0.88 0.05 0.03 0.04

Distillate 0.82 0.08 0.1

LPG 0.67 0.25 0.08

Electricity 0.08 0.13 0.05 0.30 0.01 0.07 0.38

Heat 0.7 0.3

Geothermal 1

Table 9. End-use energy consumptions for commercial services.

Fuel

End-uses energy consumptions 𝐄𝐞𝐮, 𝐚𝐟
𝐟 [𝐏𝐉]

S
p

ac
e

h
ea

ti
n

g

S
p

ac
e

co
o

li
n

g

W
at

er
 h

ea
ti

n
g

L
ig

h
ti

n
g

C
o

o
k

in
g

R
ef

ri
g

er
at

io
n

E
le

ct
ri

c
o

ff
ic

e

eq
u

ip
m

en
t

Natural Gas 280.28 15.92 9.55 12.74

Distillate 15.82 1.54 1.93

LPG 0.06 0.02 0.01

Electricity 21.08 35.41 12.65 84.32 2.25 19.67 105.68

Heat 4.41 1.89

Geothermal 1.78

37

Eeu, af
f [PJ] = feu [%] ∗ Eaf

f [PJ] (5)

In Table 10 all the technologies modelled to satisfy each energy service

are listed, with specifications about input commodity, share of input

commodity consumption (i.e., the fraction of input commodity energy

consumption that is due to the technologies, it is less than 100 if more than one

technology use the same fuel), final energy, efficiency and useful energy. The

disaggregation performed to consider the possibility that more than one

technology is associated to the consumption of a single fuel in certain end uses

is shown in Equation 6, where Etech,eu, af
f is the final energy consumption

associated to each technology.

Etech,eu, af
f [PJ] = ftech[%] ∗ Eeu,af

f [PJ] (6)

In Table 10, also the useful energy is derived for each technology,

simply multiplying the final energy consumption Etech,eu, af
f by the technology

efficiency eff, according to Equation 7.

Eu[PJ] = eff[%] ∗ Etech,eu, af
f [PJ] (7)

38

Table 10. Demand-side technologies by commercial energy services.

E
n

er
g

y
 s

er
v

ic
e

T
ec

h
n

o
lo

g
y

In
p

u
t

co
m

m
o

d
it

y

sh
ar

e
𝐟 𝐭

𝐞
𝐜𝐡

[%
]

In
p

u
t

co
m

m
o

d
it

y

F
in

al
 e

n
er

g
y

𝐄
𝐭𝐞

𝐜𝐡
,𝐞

𝐮
, 𝐚

𝐟
𝐟

[P
J]

E
ff

ic
ie

n
cy

 𝐞
𝐟𝐟

[%
]

U
se

fu
l

en
er

g
y

𝐄
𝐮

[P
J]

Space heating

Natural gas boiler 99.99
Natural Gas

280.25 70 196.17

Natural gas heat pump 0.01 0.03 190 0.05

Distillate boiler 100 Distillate 15.82 70 11.07

LPG boiler 100 LPG 0.06 60 0.04

Resistance 25
Electricity

5.27 90 4.74

Electricity heat pump 75 15.81 200 31.62

District heating 100 Heat 4.41 90 3.97

Geothermal heat pump 100 Geothermal 1.78 90 1.61

Space cooling

Natural gas absorption chiller 100 Natural Gas 15.92 120 19.11

Distillate chiller 100 Distillate 1.54 84 1.30

Centralized heat pump 54.4 Electricity 19.27 360 69.36

Electricity heat pump 0. 3 Electricity 0.12 372 0.43

Room heat pump 11.3 Electricity 3.99 360 14.37

Electric chiller rooftop 34 Electricity 12.04 372 44.78

Water heating

Natural gas boiler 100 Natural Gas 9.55 65 6.21

Distillate boiler 100 Distillate 1.93 65 1.25

LPG boiler 100 LPG 0.02 60 0.01

Electric heater 100 Electricity 12.65 91 11.51

District heating 100 Heat 1.89 100 1.89

Refrigeration Refrigerator 100 Electricity 19.67 100 19.67

Cooking

Natural gas cooker 100 Natural Gas 12.74 501 6.37

LPG cooker 100 LPG 0.01 501 0.00

Electricity cooker 100 Electricity 2.25 701 1.57

Electric office equipment Electric Equipment 100 Electricity 105.68 100 105.68

Lighting

Incandescent big 3

Electricity

2.53 117 2.96

Halogen small (12 V) 1 0.84 160 1.35

Halogen IRC (12 V) 1 0.84 209 1.76

Fluorescent small 37.5 31.62 563 178.08

Fluorescent large 37.5 31.62 698 220.74

Fluorescent compact 9 7.59 593 44.98

Mercury 10 8.43 320 26.98

Sodium low pressure 1 0.84 800 6.75

1 Efficiency of cooking appliances are differentiated for different cooking technologies. [18]

39

 The results shown in Table 10 consist of an estimation of the useful

energy of each commercial technology, based on its energy consumption and

efficiency. Focusing in particular on the efficiencies of technologies, it can be

underlined that the efficiencies of heat pumps (both for space heating and

space cooling) are higher than 100%, representing the coefficient of

performance (COP) of the technologies. The only heat pump having an

efficiency lower than 100% is the geothermal heat pump for space heating,

since in this case the final energy consumption is not the electricity required

by the compressor, but the inlet heat at the heat pump evaporator.

Furthermore, the efficiencies of cooking technologies have been updated ([18]

both for existing and new technologies in the model) knowing that different

types of cookers are characterized by different cooking efficiency and notably

LPG or natural gas burners are less efficient than induction electric plates, for

instance.

The service demands for commercial sector are assumed to be equal to

the total useful energy associated to each energy service therefore, to derive

the value of jth service demand DCOM,j[PJ], it is sufficient to sum the useful

energy values Ej
u[PJ] of all the technologies included in the jth energy service,

as explained in Equation 8. The results are listed in Table 11; being all the

service demands quantified in useful energy terms, the unit of measure for all

the commercial service demands is PJ.

Table 11. Service demands for commercial sector energy services.

End use 𝐃𝐂𝐎𝐌

Space heating 249.27 PJ

Space cooling 149.35 PJ

Water heating 20.88 PJ

Lighting 483.59 PJ

Cooking 7.95 PJ

Refrigeration 19.67 PJ

Electric office equipment 105.68 PJ

DCOM,j[PJ] = ∑ Ej
u[PJ]

j

 (8)

40

Figure 5 is a summary of how data are organized and how they interact,

from IEA statistics to service demand.

Figure 5. Flow-chart for the evaluation of service demand in the commercial sector. Associated to each

step are specified the involved equations, as listed in this report.

Eventually, the computation of emission factors for commercial sector

leads to the values that follow in Table 12, obtained according to Equation 2.

It should be noted for instance that the highest value of CO2 emission factors

is related to coal, reasonably being the fuel with the highest carbon content.

Also, a high CH4 emission is associated to biomass.

Table 12. Emission factors for commercial sector-specific fuels.

Commodity
Emission factors [𝐤𝐭/𝐏𝐉]

Natural gas Diesel Heavy fuel oil Kerosene Coal LPG Biomass

CO2 56.10 73.78 77.37 71.87 98.27 63.07 0.00

CH4 5.00 5.89 5.00 1.00 50.00 5.00 300.00

N2O 0.10 0.60 0.60 0.60 1.40 0.10 4.00

Eq. 3

Eq. 5

Eq. 6

Eq. 7

41

2.2.1.3. Residential

Concerning residential sector, the included service demands are listed

in Table 13.

Table 13. Residential service demands.

Residential service demands

Space heating

Space cooling

Water heating

Refrigeration

Clothes drying

Cooking

Clothes washing

Dishwashing

Miscellaneous electric energy

Lighting

Energy balances, stating the energy consumption for several fuels, are

aggregated according to Equation 3. The output of this first aggregation is

reported in Table 14, where the correspondence between IEA and aggregated

TIMES-Italia [14] modelled fuels is shown, along with the resulting energy

consumption. The results of the aggregation show that, similarly to what

observed for the commercial sector, the most consumed commodities by

residential are natural gas and electricity, with not negligible consumption of

distillate fuels (diesel), LPG and biomass.

42

Table 14. IEA statistics, aggregated fuels for the residential sector.

IEA Fuels Aggregated Fuel Energy consumption 𝐄𝐚𝐟
𝐟 [𝐏𝐉]

Natural gas

Gas works gas

Coke oven gas

Natural Gas 713.73

Diesel

Motor gasoline

Other non-specified oil products

Distillate 131.21

Fuel oil

Crude oil
Heavy fuel oil 6.40

Other kerosene Kerosene 0.77

Hard coal, Patent fuel, Anthracite, Other

bituminous coal

Peat, brown coal briquettes, Brown coal,

Sub-bituminous coal, Lignite

Coke oven coke

Coal 0.29

LPG LPG 85.28

Solid biomass

Charcoal

Gas biomass, Other liquid biofuels

Municipal waste (non-renewable),

Municipal waste (renewable)

Industrial waste

Biomass 67.88

Electricity Electricity 243.53

Heat Heat 27.63

Geothermal Geothermal 1.78

Solar thermal Solar thermal 1.47

The data are now ready to be split into end-uses of residential sector.

This is done assigning by assumption fractional shares [14], as in Table 15, to

each end-use for each fuel, and then using Equation 5 to obtain energy

consumption of each fuel for all residential end-uses, for which results are

shown in Table 16, showing that the subsector consuming the most relevant

fraction of energy is space heating, while electricity is quite evenly divided

among the different end-uses (similarly to the commercial sector).

43

Table 15. Fractional end-use shares for the residential sector.

Fuel

Fractional end-uses shares 𝐟𝐞𝐮 [%]

S
p

ac
e

h
ea

ti
n

g

S
p

ac
e

co
o

li
n

g

W
at

er
 h

ea
ti

n
g

R
ef

ri
g

er
at

io
n

C
lo

th
es

 d
ry

in
g

C
o

o
k

in
g

C
lo

th
es

w
as

h
in

g

 D
is

h
w

as
h

in
g

M
is

ce
ll

an
eo

u
s

el
ec

tr
ic

 e
n

er
g

y

L
ig

h
ti

n
g

Natural Gas 0.895 0.075 0.03

Distillate 0.94 0.06

Heavy fuel oil 0.95 0.045 0.005

Kerosene 1

Coal 1

LPG 0.78 0.07 0.15

Biomass 0.97 0.03

Electricity 0.01 0.06 0.115 0.18 0.005 0.045 0.095 0.065 0.281 0.144

Heat 0.7 0.3

Geothermal 1

Solar 0.15 0.85

Table 16. End-use energy consumption for residential services.

Fuel

End-use energy consumption 𝐄𝐞𝐮, 𝐚𝐟
𝐟 [𝐏𝐉]

S
p

ac
e

h
ea

ti
n

g

S
p

ac
e

co
o

li
n

g

W
at

er
 h

ea
ti

n
g

R
ef

ri
g

er
at

io
n

C
lo

th
es

 d
ry

in
g

C
o

o
k

in
g

C
lo

th
es

w
as

h
in

g

 D
is

h
w

as
h

in
g

M
is

ce
ll

an
eo

u
s

el
ec

tr
ic

 e
n

er
g

y

L
ig

h
ti

n
g

Natural Gas 638.79 53.53 21.41

Distillate 123.34 7.87

Heavy fuel oil 6.08 0.29 0.03

Kerosene 0.77

Coal 0.29

LPG 66.52 5.97 12.79

Biomass 65.84 2.04

Electricity 2.44 14.61 28.01 43.84 1.22 10.96 23.14 15.83 68.43 35.07

Heat 19.34 8.29

Geothermal 1.78

Solar 0.22 1.25

44

Another step is required for data splitting, for space heating demand

only. Indeed, that is different according to different types of buildings, and

specifically:

a. SF-Old: single-family house (old).

b. SF-New: single-family house (new).

c. MF-Old: multi-family house (old).

d. MF-New: multi-family house (new).

The difference between “old” and “new buildings is in the efficiency

terms (from final energy to useful energy), being higher for new buildings

with respect to old buildings. Regarding the differentiation in “SF” buildings

and “MF” buildings, this is performed considering different conversion factors

from useful energy to service demands, that are equal to 1.94 Mm2/PJ for SF

buildings and to 2.66 Mm2/PJ for MF buildings (these values are derived from

[19] and [20]). Natural gas is allocated for the 94.3% to SF-Old buildings, while

the remaining 4.2% is allocated to MF-Old buildings, the 1.4% to SF-New, and

the 0.1% to MF-New buildings. All other fuels (distillate, heavy fuel oil,

kerosene, coal, LPG, biomass, electricity, heat, geothermal and solar thermal

energy) are allocated for the 94% to SF-Old buildings, for the 0.5% to MF-Old

buildings, and for the remaining 0.01% to SF-New buildings.

Equation 9 explains how space heating energy consumption, split by

building type, Ebt,eu,af is calculated, with the proper share factors fbt [%] for

the allocation to the different building types.

Ebt,eu,af
f [PJ] = fbt [%] ∗ Eeu,af

f [PJ] (9)

In Table 17 the technologies modelled to satisfy each energy service are

listed, with specifications about input commodity. It is possible now to convert

energy consumptions in final service demands. This is done with appropriate

conversion factors [14], specific for every single end-use and differentiated for

each technology. To do so, one last needed step is to consider that, for some

end-uses and fuels, there is more than one technology used to meet the final

service demand. Just as an example, electricity consumption for lightning can

be considered: that can be satisfied via several technologies, each one with

different efficiencies: fluorescent lamp, halogen lamp, incandescent lamp,

LED, etc. For this reason, share factors ftech should be applied to assign to

45

every technology the corresponding amount of consumed energy, as from

Equation 10, where Etech,bt,eu, af
f is the final energy consumption associated to

each technology. Eventually, the useful energy Eu for each technology is

derived (as already done in commercial sector), knowing the efficiency eff of

each technology (Equation 11).

Etech,bt,eu,af
f [PJ] = ftech [%] ∗ Ebt,eu,af

f [PJ] (10)

Eu[PJ] = eff[%] ∗ Etech,bt,eu,af
f [PJ] (11)

46

Table 17. Demand-side technologies by residential energy services.

E
n

er
g

y
 s

er
v

ic
e

T
ec

h
n

o
lo

g
y

In
p

u
t

co
m

m
o

d
it

y

sh
ar

e
 𝐟

𝐭𝐞
𝐜𝐡

[%
]

In
p

u
t

co
m

m
o

d
it

y

F
in

al
 e

n
er

g
y

𝐄
𝐭𝐞

𝐜𝐡
,𝐞

𝐮
, 𝐚

𝐟
𝐟

[𝐏
𝐉]

E
ff

ic
ie

n
cy

𝐞
𝐟𝐟

[%
]

U
se

fu
l

en
er

g
y

𝐄
𝐮

[𝐏
𝐉]

Space heating

(SF-Old)

Natural gas boiler 99
Natural Gas

596.36 73 434.15

Natural gas heat pump 1 6.02 110 6.63

Distillate boiler 100 Distillate 115.93 73 84.40

Heavy fuel oil boiler 100 Heavy fuel oil 5.72 73 4.16

Kerosene boiler 100 Kerosene 0.73 6 0.05

Coal boiler 100 Coal 0.27 55 0.15

LPG boiler 100 LPG 62.53 68 42.68

Biomass boiler 100 Biomass 61.89 25 15.47

Resistance 84
Electricity

1.92 90 1.73

Electricity heat pump 16 0.37 200 0.73

District heating 100 Heat 18.18 90 16.36

Geothermal heat pump 100 Geothermal 1.68 380 6.37

Space heating

(MF-Old)

Natural gas boiler 99
Natural Gas

26.56 73 19.34

Natural gas heat pump 1 0.27 110 0.30

Distillate boiler 100 Distillate 6.17 73 4.49

Heavy fuel oil boiler 100 Heavy fuel oil 0.30 73 0.22

Kerosene boiler 100 Kerosene 0.04 06 0.00

Coal boiler 100 Coal 0.01 55 0.01

LPG boiler 100 LPG 3.33 68 2.27

Biomass boiler 100 Biomass 3.29 25 0.82

Resistance 84
Electricity

0.10 90 0.09

Electricity heat pump 16 0.02 200 0.04

District heating 100 Heat 0.97 90 0.87

Geothermal heat pump 100 Geothermal 0.09 380 0.34

Space heating

(SF-New)

Natural gas boiler 99
Natural Gas

8.85 76 6.77

Natural gas heat pump 1 0.09 116 0.10

Distillate boiler 100 Distillate 1.23 76 0.94

Heavy fuel oil boiler 100 Heavy fuel oil 0.06 76 0.05

Kerosene boiler 100 Kerosene 0.01 07 0.00

Coal boiler 100 Coal 0.00 57 0.00

LPG boiler 100 LPG 0.67 72 0.48

Biomass boiler 100 Biomass 0.66 26 0.17

Resistance 84
Electricity

0.02 95 0.02

Electricity heat pump 16 0.00 210 0.01

District heating 100 Heat 0.19 95 0.18

Geothermal heat pump 100 Geothermal 0.02 399 0.07

Continued on page 47

47

Continued from page 46

Space heating

(MF-New)

Natural gas boiler 99
Natural Gas

0.63 76 0.48

Natural gas heat pump 1 0.01 116 0.01

Space cooling

Centralized heat pump 54

Electricity

7.85 240 18.85

Electricity heat pump 4 0.61 280 1.71

Room heat pump 42 6.15 240 14.76

Water heating

Natural gas boiler 100 Natural Gas 53.53 65 34.79

Distillate boiler 100 Distillate 7.87 58 4.57

Heavy fuel oil boiler 100 Heavy fuel oil 0.29 58 0.17

LPG boiler 100 LPG 5.97 54 3.22

Biomass boiler 100 Biomass 2.04 25 0.51

Electric heater 100 Electricity 28.01 90 25.21

District heating 100 Heat 8.29 85 7.05

Solar heater 100 Solar 1.25 100 1.25

Refrigeration
Refrigerator 78

Electricity
34.19

Freezer 22 9.64

Clothes washing Clothes washer 100 Electricity 23.14

Clothes drying Electric clothes drier 100 Electricity 1.22

Dishwashing Dishwasher 100 Electricity 15.83

Cooking

Natural gas cooker 100 Natural Gas 21.41 50 10.71

LPG cooker 100 LPG 12.79 50 6.40

Electricity cooker 100 Electricity 10.96 80 8.77

Miscellaneous

electric energy
Electric Appliances 100 Electricity 68.43

Lighting

Fluorescent large 7

Electricity

2.45

Fluorescent small 9 3.16

Halogen large (220 V) 1 0.35

Halogen small IRC (12 V) 1 0.35

Halogen small (12 V) 2 0.70

Incandescent medium 40 14.03

Incandescent small 40 14.03

The results shown in Table 17 consist of an estimation of the useful

energy of each residential technology, based on its energy consumption and

efficiency. Focusing in particular on the efficiencies of technologies, it can be

underlined that the efficiencies of heat pumps (both for space heating and

space cooling) are higher than 100%, representing the coefficient of

performance (COP) of the technologies. Furthermore, the efficiencies of

cooking technologies have been updated [18] (both for existing and new

technologies in the model) knowing that different types of cookers are

characterized by different cooking efficiency and notably LPG or natural gas

burners are less efficient than induction electric plates, for instance.

48

The residential service demands, differently from the commercial ones,

are expressed also with non-energy units of measure. For this reason, a last

step is required for their evaluations. Proper conversion factors [14] effconv are

used to derive from the useful energy Eu of each technology the correspondent

energy service demand DRES (Equation 12). This is done, of course, only for the

service demands that are not expressed in energy terms, for which instead the

conversion factor is assumed to be unitary, and the service demand

corresponds to the useful energy.

DRES = effconv ∗ Eu[PJ] (12)

The conversion factors used, and the resulting service demands are

shown in Table 9, with the total service demand amount for each residential

end-use energy service. According to the reported conversion factors, it should

be highlighted that multi-family buildings are more efficient in terms of

energy required for space heating. That is reasonable and due to the lower

surface exposed to the external environment per unit of heated volume

characterizing multi-apartment buildings. Secondly, for water heating,

refrigeration, cooking, and “miscellaneous electric energy” no conversion

factors are reported, since the final service demand is in terms of useful energy

and measured in PJ.

49

Table 18. Service demands for the residential sector.

End-use service 𝐞𝐟𝐟𝐜𝐨𝐧𝐯 𝐃𝐑𝐄𝐒

Space heating (SF-Old) 1.94 Mm2/PJ 1188.71 Mm2

Space heating (SF-New) 1.94 Mm2/PJ 76.58 Mm2

Space heating (MF-Old) 2.66 Mm2/PJ 17.06 Mm2

Space heating (MF-New) 2.66 Mm2/PJ 1.31 Mm2

Space cooling 14.73 Mm2/PJ 520.00 Mm2

Water heating 76.76 PJ

Refrigeration 9.01 Gl

Clothes drying 0.07 Glav/PJ 0.08 Glav

Cooking 25.87 PJ

Clothes washing 0.26 Glav/PJ 6.02 Glav

Dishwashing 0.18 Glav/PJ 2.77 Glav

Miscellaneous electric energy 68.43 PJ

Lighting 12.30 2 Glm/PJ 431.24 Glm

Figure 6 is a summary of how data are organized and how they interact

in residential sectors, from IEA statistics to service demand.

2 Different values for the conversion factor of lighting service demand are applied to each

technology. The value reported in the table is an average value obtained dividing the lighting

service demand by the total useful energy of the subsector.

50

Figure 6. Flow-chart for the evaluation of service demand in the residential sector. Associated to each

step are specified the involved equations, as listed in this report.

Eventually, the computation of emission factors for residential sector-

specific fuels leads to the values reported in Table 19. It should be noted for

instance that the highest value of CO2 emission factors is related to coal,

reasonably being the fuel with the highest carbon content. Also, a high CH4

emission is associated to biomass.

Table 19. Emission factors for residential sector-specific fuels.

Commodity
Emission factors [𝐤𝐭/𝐏𝐉]

Natural gas Diesel Heavy fuel oil Kerosene Coal LPG Biomass

CO2 56.10 74.07 77.37 71.87 98.27 63.07 0.00

CH4 5.00 5.00 5.00 1.00 50.00 5.00 300.00

N2O 0.10 0.60 0.60 0.60 1.40 0.10 4.00

 Eq.3

Eq. 5

Eq. 9

Eq. 10

Eq. 12

51

2.2.1.4. Transport

In the transport sector, several energy services are satisfied, according

to the type of considered transport category. Transport categories considered

in the TIMES-Italia [14] are reported in Table 20.

Table 20. Transport categories.

Transport categories

International aviation

Domestic aviation

Road

Rail

Domestic navigation

Non-specified transports

Bunkers

Again, the first operation involves the aggregation of similar fuels to

reach a simpler classification of consumption (Equation 3). Results for the first

step are reported in Table 21. In the table header, the IEA fuels (according to

the classification adopted in [17]) are listed in the second row and they are

associated to the corresponding aggregated fuel reported in the third row. For

each aggregated fuel, the energy consumption spit by transport category is

then reported in the table. The three largest values of consumption are diesel

for road transport (1018.65 PJ), motor gasoline for road transport (555.76 PJ),

and kerosene for international aviation (134.47 PJ).

52

Table 21. IEA statistics, aggregated fuels for transports sector.

 IEA statistics by aggregated fuels 𝐄𝐚𝐟 [𝐏𝐉]

Transport category S
o

li
d

 b
io

m
as

s

C
h

ar
co

al

G
as

 b
io

m
as

s,
 O

th
er

 l
iq

u
id

b
io

fu
el

s

M
u

n
ic

ip
al

 w
as

te
 (

n
o

n
-

re
n

ew
ab

le
),

M
u

n
ic

ip
al

 w
as

te
 (

re
n

ew
ab

le
)

In
d

u
st

ri
al

 w
as

te

N
at

u
ra

l
g

as

L
P

G

M
o

to
r

g
as

o
li

n
e

A
v

ia
ti

o
n

 g
as

o
li

n
e

G
as

o
li

n
e

ty
p

e
je

t
fu

el

Je
t

k
er

o
se

n
e

O
th

er
 k

er
o

se
n

e

D
ie

se
l

F
u

el
 o

il

O
th

er
 n

o
n

-s
p

ec
if

ie
d

E
le

ct
ri

ci
ty

B
io

d
ie

se
l

N
at

u
ra

l
g

as

L
P

G

M
o

to
r

G
as

o
li

n
e

A
v

ia
ti

o
n

G
as

o
li

n
e

K
er

o
se

n
e

D
ie

se
l

H
ea

v
y

 f
u

el

o
il

E
le

ct
ri

ci
ty

International aviation 0.01 134.47

0.25

Domestic aviation 0.70 31.51 0.08

Road 6.73 17.31 45.40 555.76

1018.65

Rail

 4.77 15.75

Domestic navigation 10.05 0.12

Non-specified transports 20.59

Bunkers 25.96 117.76

53

A higher level of detailed will be now performed concerning “Road”

and “Rail” categories. Indeed, different transportation modes are present in

those categories, with different techno-economic features. For this reason, a

further splitting is done, as usual with share factors [14] (reported in Table 22)

and the subsequent multiplication (Equation 13) to obtain split energy values

for every transportation mode, collected in Table 23.

Etm, af [PJ] = ftm [%] ∗ Eaf [PJ] (13)

Table 22. Share factors for transportation modes.

 Share factors for transportation modes 𝐟𝐭𝐦 [%]

Transport modes

B
io

d
ie

se
l

N
at

u
ra

l
G

as

L
P

G

M
o

to
r

G
as

o
li

n
e

A
v

ia
ti

o
n

 G
as

o
li

n
e

K
er

o
se

n
e

D
ie

se
l

H
ea

v
y

 F
u

el
 O

il

E
le

ct
ri

ci
ty

R
o

ad

Light Duty Vehicles Share 29.20 90.00 100.00 97.00 29.20 0.00

Cars 100.00 100.00 100.00 87.75 100.00 100.00

Two Wheels 12.25

Other Road Vehicles 70.80 10.00 0.00 3.00 70.80 100.00

Bus 0.83 100.00 9.32 100.00

Heavy Trucks 1.08 37.00

Medium Trucks 15.24 15.50

Commercial Trucks 82.85 100.00 38.18

R
ai

l Freight 67.00 67.00

Passengers 33.00 33.00

54

Table 23. Splitting by transportation mode.

Transportation modes

Splitting by transportation modes 𝐄𝐭𝐦, 𝐚𝐟 [𝐏𝐉]

B
io

d
ie

se
l

N
at

u
ra

l
G

as

L
P

G

M
o

to
r

G
as

o
li

n
e

A
v

ia
ti

o
n

G
as

o
li

n
e

K
er

o
se

n
e

D
ie

se
l

H
ea

v
y

 F
u

el
 O

il

E
le

ct
ri

ci
ty

A
ir

 International aviation 0.01 134.47

Domestic aviation 0.70 31.51

R
o

ad

Cars 1.97 15.58 45.40 473.04 297.45

Two wheels 66.05

Bus 0.04 1.73 67.23

Heavy trucks 0.05 266.85

Medium trucks 0.73 111.79

Commercial trucks 3.95 16.67 275.34

R
ai

l Freight 3.20 10.56

Passengers 1.57 5.20

N
av

ig
at

io

n

Domestic navigation 10.05

Bunkers 25.96 117.76

In Table 24 all the technologies modelled to satisfy each energy service

are listed, with specifications about input commodity, share of input

commodity consumption (i.e., the fraction of input commodity energy

consumption that is due to the technologies, it is less than 100 if more than one

technology use the same fuel) and final energy.

55

Table 24. Demand-side transports technologies by transportation modes.

T
ra

n
sp

o
rt

at
io

n

m
o

d
e

T
ec

h
n

o
lo

g
y

In
p

u
t

co
m

m
o

d
it

y

sh
ar

e
𝐟 𝐭

𝐞
𝐜𝐡

[%
]

In
p

u
t

co
m

m
o

d
it

y

F
in

al
 e

n
er

g
y

𝐄
𝐭𝐞

𝐜𝐡
,𝐭

𝐦
,𝐚

𝐟[𝐏
𝐉]

Air

International

aviation

International aircraft 100 Kerosene 134.47

International aircraft 100 Aviation Gasoline 0.01

Domestic

aviation

Domestic aircraft 100 Kerosene 31.51

Domestic aircraft 100 Aviation Gasoline 0.70

Road

Cars

Gasoline car 100 Gasoline 473.04

Diesel car 100 Diesel 297.45

LPG car 100 LPG 45.40

Natural gas car 100 Natural gas 15.58

Biodiesel car 100 Biodiesel 1.97

Three

wheels
Other electric transports 100 Electricity 20.59

Two wheels
Moped 32

Gasoline
21.14

Motorcycle 68 44.91

Bus

Diesel bus 100 Diesel 67.23

Natural gas bus 100 Natural gas 1.73

Biodiesel bus 100 Biodiesel 0.04

Heavy

trucks

Diesel heavy trucks 100 Diesel 266.85

Biodiesel heavy trucks 100 Biodiesel 0.05

Medium

trucks

Diesel medium truck 100 Diesel 111.79

Biodiesel medium truck 100 Biodiesel 0.73

Commercial

trucks

Gasoline commercial trucks 100 Gasoline 16.67

Diesel commercial trucks 100 Diesel 275.34

Biodiesel commercial trucks 100 Biodiesel 3.95

Rail

Freight
Freight diesel train 100 Diesel 3.20

Freight electric train 100 Electricity 10.56

Passengers
Passengers diesel train 100 Diesel 1.57

Passengers electric train 100 Electricity 5.20

Navigation

Domestic

navigation
Domestic navigation ship 100 Diesel 10.05

Bunkers

International navigation ship 100 Diesel 25.96

International navigation

HFO ship
100 Heavy Fuel Oil 117.76

56

Appropriate conversion factors [14] are required to evaluate the

transport service demands from final energy for each technology (derived

according to Equation 14). The factors are unitary and dimensionless for

service demands assumed equal to the relating energy consumption, while

they represent an efficiency of conversion for the service demands quantified

in Bv ∗ km (billion vehicles kilometer). Those factors are listed for each

technology in Table 25, with the correspondent calculated service demand

(according to Equation 15).

Etech,tm,af[PJ] = ftech[%] ∗ Etm,af[PJ] (14)

DTRA = effconv ∗ Etech,tm,af[PJ] (15)

57

Table 25. Conversion factors and service demands for transport technologies.

Transportation mode Technology
Conversion

factor 𝐞𝐟𝐟𝐜𝐨𝐧𝐯

Service

demand 𝐃𝐓𝐑𝐀

Air

International

aviation

International aircraft 1.000 134.47 PJ

International aircraft 1.000 0.01 PJ

Domestic

aviation

Domestic aircraft 1.000 31.51 PJ

Domestic aircraft 1.000 0.70 PJ

Road

Cars

Gasoline car 0.299 Bvkm/PJ 141.35 Bvkm

Diesel car 0.362 Bvkm/PJ 107.81 Bvkm

LPG car 0.247 Bvkm/PJ 11.19 Bvkm

Natural gas car 0.274 Bvkm/PJ 4.26 Bvkm

Biodiesel car 0.442 Bvkm/PJ 0.87 Bvkm

Three wheels Other electric transports 1.000 21.03 PJ

Two wheels
Moped 1.315 Bvkm/PJ 27.79 Bvkm

Motorcycle 1.026 Bvkm/PJ 46.09 Bvkm

Bus

Diesel bus 0.052 Bvkm/PJ 3.53 Bvkm

Natural gas bus 0.038 Bvkm/PJ 0.07 Bvkm

Biodiesel bus 0.056 Bvkm/PJ 0.00 Bvkm

Heavy trucks
Diesel heavy trucks 0.045 Bvkm/PJ 11.97 Bvkm

Biodiesel heavy trucks 0.027 Bvkm/PJ 0.00 Bvkm

Medium trucks
Diesel medium truck 0.090 Bvkm/PJ 10.09 Bvkm

Biodiesel medium truck 0.090 Bvkm/PJ 0.07 Bvkm

Commercial

trucks

Gasoline commercial trucks 0.241 Bvkm/PJ 4.02 Bvkm

Diesel commercial trucks 0.276 Bvkm/PJ 76.10 Bvkm

Biodiesel commercial

trucks
0.276 Bvkm/PJ 1.09 Bvkm

Rail

Freight
Freight diesel train 1.000 3.20 PJ

Freight electric train 1.000 10.56 PJ

Passengers
Passengers diesel train 1.000 1.57 PJ

Passengers electric train 1.000 5.20 PJ

Navigation

Domestic

navigation
Domestic navigation ship 1.000 10.05 PJ

Bunkers

International navigation

ship
1.000 25.96 PJ

International navigation

HFO ship
1.000 117.76 PJ

58

The total service demand for each end-use is given by the sum of final

services produce by all the technologies related to the same end-use. Results

are reported in Table 26. It is clear for the results that, for instance, the higher

energy consumption for aviation is related to international flights, cars

represent the highest final demand in road category in terms of Bv ∗ km and

about two thirds of rail energy consumption is due to freight transport.

Table 26. Service demands for transports sector.

End-use 𝐃𝐬𝐞𝐫𝐯

International aviation 134.48 PJ

Domestic aviation 32.21 PJ

Cars 344.24 Bv ∗ km

Two wheels 55.67 Bv ∗ km

Bus 6.29 Bv ∗ km

Heavy trucks 29.80 Bv ∗ km

Medium trucks 18.94 Bv ∗ km

Commercial trucks 84.57 Bv ∗ km

Freight 13.75 PJ

Passengers 6.77 PJ

Domestic navigation 10.05 PJ

Bunkers 143.72 PJ

Others 21.03 PJ

Figure 7 summarizes data organization and interactions, from IEA

statistics to the calculation of service demand.

59

Figure 7. Flow-chart for the evaluation of service demand in the transport sector. Associated to each

step are specified the involved equations, as listed in this report.

Eventually, the computation of emission factors from residential sector

leads to the values that follow in Table 27. In this case, the highest CO2 emission

factor is associate to diesel and heavy fuel oil, even higher than gasoline one.

It is known that, for example, gasoline cars emit more CO2 per unit of kilometer

traveled than diesel cars and it could seem to be contradictory with these

results, but it should be noted that that is not due to the fuel chemical

composition (associated to the computed emission factors) but to the higher

efficiency of the diesel engine with respect to the gasoline one.

Table 27. Emission factors for transports sector-specific fuels.

Commodity

Emission factors [𝐤𝐭/𝐏𝐉]

Natural gas LPG Gasoline
Aviation

Gasoline
Kerosene Diesel

Heavy

fuel oil
Methanol Ethanol

CO2 56.10 63.07 69.30 69.30 71.50 74.07 74.07 0.00 0.00

CH4 1.10 1.18 6.92 60.00 5.53 1.32 1.32 0.02 0.02

N2O 1.00 9.00 6.60 6.86 6.10 3.36 3.36 0.00 0.00

Eq. 3

Eq. 13

Eq. 14

Eq. 15

60

2.2.1.5. Industry

Base year energy consumptions for the industrial sector are collected

from IEA energy statistics, as for the other sectors. In order to assess industrial

energy use, 10 subsectors are identified, as listed in Table 28.

Table 28. Industry subsectors.

Industry subsectors

Chemicals

Iron and steel

Non-ferrous metals

Non-metallic minerals

Pulp and paper

Other industries

Non-specified industry

Chemical feedstocks

Non-energy uses

Non-energy others

The first operation is to aggregate fuel consumptions to obtain data

with a lower number of fuels for a simpler elaboration. This is done, as for

other sectors, accordingly to Equation 3 and results are contained in Table 29.

In the table header, the IEA fuels (according to the classification adopted in

[17]) are listed in the second row and they are associated to the corresponding

aggregated fuel reported in the third row.

61

Table 29. Energy consumption from IEA statistics by aggregated fuels of industrial energy-intensive subsectors.

Subsectors

Energy consumption by aggregated fuels 𝐄𝐚𝐟 [𝐏𝐉]

E
le

ct
ri

ci
ty

N
at

u
ra

l
g

as

G
as

 w
o

rk
 g

as

L
P

G

H
ar

d
 c

o
al

, P
at

en
t

fu
el

, A
n

th
ra

ci
te

,

O
th

er
 b

it
u

m
in

o
u

s
co

al

P
ea

t,
 B

ro
w

n
 c

o
al

 b
ri

q
u

et
te

s,
 B

ro
w

n

co
al

, S
u

b
-b

it
u

m
in

o
u

s
co

al
, L

ig
n

it
e

C
o

k
e

o
v

en
 c

o
k

e

G
as

 c
o

k
e

B
la

st
 f

u
rn

ac
e

g
as

C
ru

d
e

o
il

F
u

el
 o

il

O
th

er
 n

o
n

-s
p

ec
if

ie
d

N
o

n
 c

ru
d

e
o

il

D
ie

se
l

O
th

er
 k

er
o

se
n

e

M
o

to
r

g
as

o
li

n
e,

 A
v

ia
ti

o
n

 g
as

o
li

n
e

Je
t

k
er

o
se

n
e

R
ef

in
er

y
 g

as

E
th

an
e

N
ap

h
th

a

P
et

ro
le

u
m

 c
o

k
e

S
o

li
d

 b
io

m
as

s

C
h

ar
co

al

G
as

 b
io

m
as

s,
 O

th
er

 l
iq

u
id

 b
io

fu
el

s

M
u

n
ic

ip
al

 w
as

te
 (

n
o

n
-r

en
ew

ab
le

),

M
u

n
ic

ip
al

 w
as

te
 (

re
n

ew
ab

le
)

In
d

u
st

ri
al

 w
as

te

H
ea

t

E
le

ct
ri

ci
ty

N
at

u
ra

l
G

as

L
P

G

C
o

al

C
o

k
e

B
la

st
 f

u
rn

ac
e

g
as

H
ea

v
y

 f
u

el
 o

il

O
il

E
th

an
e

N
ap

h
th

a

P
et

ro
le

u
m

 c
o

k
e

B
io

m
as

s

H
ea

t

Iron and steel 78.09 78.98 1.10 13.80 69.34 0.18 3.48 0.38 0.13 0.24

Non-ferrous metals 20.71 16.67 0.87 0.05 0.46 2.00 0.34 0.02

Chemicals 67.83 109.03 1.20 0.08 0.17 15.84 11.63 6.19 0.32 43.45

Pulp and paper 39.17 36.78 0.41 8.08 0.94 30.92

Non-metallic minerals 53.80 146.99 6.62 24.97 0.17 17.16 2.17 106.21 8.30 4.74

Other industries 207.44 196.47 6.76 55.44 13.63 0.65 18.75

Non-specified industry 63.54 32.08 1.10 0.41 14.76 1.58 2.60 22.70

Chemical feedstocks 39.61 0.64 18.48 42.20 19.40 124.52

Non-energy uses 153.44

Non-energy others 7.03 14.84

62

A higher level of detail is used for the representation of the industrial

sector. Particularly, a breakout in different energy services is performed for

the following subsectors: iron and steel, non-ferrous metals, chemicals, pulp

and paper, non-metallic minerals, other industries. The energy services chosen

for the breakout are steam, process heat, machine drive, electro-chemical

processes, feedstocks, and others. Each of those energy services consumes

fuels as inputs and produces its correspondent energy-service output industry

specific-commodity. The energy service output is then the input for the

subsector-specific technologies, that produce the required industrial products.

For this reason, before applying the technology-specific efficiency, a splitting

by energy service is necessary to differentiate energy consumption not only by

fuels and industrial energy-intensive subsectors, but also by different energy

services of the same subsector.

An exception to the mechanism just explained, for which fuels are used

to produce the energy services (representing the inputs for the technologies

that satisfy final industrial demand), is constituted by the process heat energy

service. Indeed, no intermediate commodities are defined for that service, but

fuels are connected directly and separately to the industrial technologies to

produce final products. However, for pulp and paper and other industries

sectors and intermediate commodity is used collecting the process heat energy

service and consumed by the production technologies.

The breakout by energy services is done, as usual, adopting share

factors [14] for the splitting of consumptions in every subsector by each single

energy service. The share factors assumed for this operation are shown in

Table 30. Th splitting is governed by Equation 16, where fes [%] is the energy

service share factor, and Ces, af [PJ] is the resulting consumption for the

correspondent energy service. The resulting values are reported in Table 31.

Ees, af [PJ] = fes [%] ∗ Eaf [PJ] (16)

63

Before applying the subsector-specific technological parameter, another

step is necessary. Indeed, the “steam” and “machine drive” energy services

are not described in a separate way for each subsector, but in two sheets

dedicated to total industrial energy consumption for such services, so it is

necessary to know the total energy consumption assigned to each energy

service (not differentiated by subsector). Results are obtained from Equation

17 and shown in Table 32, where energy consumption is reported split by fuel,

energy service and industrial subsector. The energy service labeled as “other”

is used to collect the energy consumption non-associated to the five specified

energy services (steam, process heat, machine drive, electro-chemical process

and feedstocks).

Etot,es[PJ] = ∑ Ees,af [PJ]

i

 (17)

64

Table 30. Fractional shares for industrial energy services.

Energy-intensive subsector Energy services

Fractional shares for industrial energy services 𝐟𝐞𝐬 [%]

E
le

ct
ri

ci
ty

N
at

u
ra

l
g

as

L
P

G

C
o

al

C
o

k
e

B
la

st
 f

u
rn

ac
e

g
as

H
ea

v
y

 f
u

el
 o

il

O
il

E
th

an
e

P
et

ro
le

u
m

 c
o

k
e

B
io

m
as

s

H
ea

t

Chemicals

Steam 45 100 100 30 100

Process Heat 20 15 7

Machine Drive 65 3

Electro-Chemical Process 25

Feedstocks

Other 10 35 100 0 100 0 55 90 100 100 100 0

Iron and steel

Steam 15 15 15 15 100

Process Heat 40 85 85 100 100 85 85

Machine Drive 47

Electro-Chemical Process

Feedstocks 100 100 100

Other 13 0 0 0 0 0 0 0 0 0 100 0

Continued on page 65

65

Continued from page 64

Non-ferrous metals

Steam 10 25 100 25 25 100 100

Process Heat 85 100 75 70 75 75

Machine Drive 10

Electro-Chemical Process 85

Feedstocks 10

Other 5 5 0 0 20 0 0 0 100 100 0 0

Non-metallic minerals

Steam 10 100 20 35 100

Process Heat 20 85 90 100 80 47 100 100

Machine Drive 70 8

Electro-Chemical Process

Feedstocks

Other 10 5 10 0 100 0 0 10 100 0 0 0

Pulp and paper

Steam 93 85 100 100 95 90 100 100

Process Heat 3 7 5 5

Machine Drive 94

Electro-Chemical Process

Feedstocks

Other 3 0 15 0 100 0 0 5 100 100 0 0

Other industries

Steam 10 10 35 30 30 100 100

Process Heat 90 90 65 100 70 70

Machine Drive 85

Electro-Chemical Process

Feedstocks

Other 15 0 0 0 100 0 0 0 100 100 0 0

66

Table 31. Breakout by energy services for industrial sector.

Energy-intensive subsector Energy service

Breakout by energy services 𝐄𝐞𝐬, 𝐚𝐟 [𝐏𝐉]

E
le

ct
ri

ci
ty

N
at

u
ra

l
G

as

L
P

G

C
o

al

C
o

k
e

B
la

st
 f

u
rn

ac
e

g
as

H
ea

v
y

 f
u

el
 o

il

O
il

E
th

an
e

P
et

ro
le

u
m

 c
o

k
e

B
io

m
as

s

H
ea

t

Chemicals

Steam 49.06 0.08 0.00 4.75 43.45

Process Heat 21.81 2.38 0.81

Machine Drive 44.09 0.35

Electro-Chemical Process 16.96

Feedstocks

Other 6.78 38.16 1.20 0.00 0.17 0.00 8.71 10.46 6.19 0.32 0.00 0.00

Iron and steel

Steam 11.85 0.17 0.52 0.06 0.24

Process Heat 31.46 67.14 0.94 13.80 0.18 2.96 0.33

Machine Drive 36.56

Electro-Chemical Process

Feedstocks 69.34 0.00 0.13

Other 10.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Continued on page 67

67

Continued from page 66

Non-ferrous metals

Steam 1.67 0.01 0.00 0.50 0.09 0.00 0.02

Process Heat 14.17 0.87 0.04 0.32 1.50 0.26

Machine Drive 2.07

Electro-Chemical Process 17.61

Feedstocks 0.05

Other 1.04 0.83 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Non-metallic minerals

Steam 14.70 0.00 3.43 0.76 4.74

Process Heat 10.76 124.94 5.96 24.97 13.73 1.02 106.21 8.30

Machine Drive 37.66 0.17

Electro-Chemical Process

Feedstocks

Other 5.38 7.35 0.66 0.00 0.17 0.00 0.00 0.22 0.00 0.00 0.00 0.00

Pulp and paper

Steam 34.20 0.35 0.00 0.00 0.00 7.68 0.84 0.00 30.92

Process Heat 1.13 2.57 0.40 0.05

Machine Drive 36.91

Electro-Chemical Process

Feedstocks

Other 1.13 0.00 0.06 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00

Other industries

Steam 19.65 0.68 0.00 16.63 4.09 0.65 18.75

Process Heat 176.82 6.09 0.00 0.00 38.81 9.54

Machine Drive 176.33

Electro-Chemical Process

Feedstocks

Other 31.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

68

Table 32. Total industrial energy consumption by energy services for chemicals, iron and steel, non-ferrous metals, non-metallic minerals, pulp and paper and other

industries.

Energy services

Total energy consumption by energy services 𝐄𝐭𝐨𝐭,𝐞𝐬 [𝐏𝐉]

E
le

ct
ri

ci
ty

N
at

u
ra

l
G

as

L
P

G

C
o

al

C
o

k
e

B
la

st
 f

u
rn

ac
e

g
as

H
ea

v
y

 f
u

el
 o

il

O
il

E
th

an
e

P
et

ro
le

u
m

 c
o

k
e

B
io

m
as

s

H
ea

t

Steam 131.13 1.19 0.09 33.51 5.83 0.65 98.12

Process Heat 43.35 407.45 13.86 38.81 0.32 0.18 59.77 12.00 106.21 8.30

Machine Drive 333.62 0.52

Electro-Chemical Process 34.56

Feedstocks 69.39 0.13

Other 55.52 46.34 1.92 0.44 8.71 10.73 6.19 0.32

69

In Figure 8, the main operations regarding the industrial sector are

summarized.

Figure 8. Flow-chart for the evaluation of energy service demand in the industrial sector. Associated

to each step are specified the involved equations, as listed in this report.

For what concerns the industry sector-specific emission factors, they are

evaluated as for other sectors, according to Equation 2. As anticipated, for the

industrial sector also the emission of SOX is considered, and the correspondent

emission factors are calculated for LPG, coal, coke, heavy fuel oil, oil, ethane

and petroleum coke. The results are reported in Table 33, where high values

Eq. 3

Eq. 16

Eq. 17

Eq. 18

Eq. 20

Eq. 23

70

of CO2 emission are associated to coal and petroleum coke, while it is zero for

biomass. As already seen for commercial and residential sector, biomass is

characterized by a high CH4 emission factor.

Table 33. Emission factors for industry sector-specific fuels.

Commodity

Emission factors [𝐤𝐭/𝐏𝐉]

Natural

gas
LPG Coal Coke

Blast

furnace gas

Heavy

fuel oil
Oil Ethane

Petroleum

coke
Biomass

CO2 56.10 63.10 98.30 94.60 0.00 77.40 72.00 54.10 100.50 0.00

CH4 5.00 5.00 5.00 5.00 5.00 2.00 2.00 5.00 5.00 300.00

N2O 0.10 0.10 1.40 1.40 1.40 0.60 0.60 0.10 1.40 4.00

SOX 0.57 1.20 1.20 0.57 0.57 0.57 0.57

As anticipated, the next steps of the conversion towards the evaluation

of service demands are slightly different for “steam” and “machine drive”,

and again different computations are done for the different industrial energy-

intensive subsectors. For that reason, it is useful to examine separately for each

subsector which are the required operations.

2.2.1.5.1. Steam

From Table 32 it is possible to read the total final energy consumed by

fuel for steam production Es,fe. From those values, the values of useful energy

Es,ue are derived, simply multiplying by the correspondent boiler efficiency

efftech,s (Equation 18). The results of this first step are reported in Table 34. The

results are then added together (Equation 19) to obtain the total service

demand for the “steam” energy service Ds which amounts to 234.83 PJ. The

total demand is split (Equation 20) assigning a fraction of it to the ith subsector

Ds,i, according to the consumption share fs,cons, in terms of final energy

consumed. The derived service demands for each subsector are shown in

Table 35, highlighting that the major steam consumption are related to

“chemicals” and “pulp and paper” subsectors.

Es,ue [PJ] = efftech,s [%] ∗ Es,fe [PJ] (18)

71

Ds [PJ] = ∑ Es,ue [PJ] (19)

Ds,i [PJ] = fs,cons [%] ∗ Ds [PJ] (20)

Table 34. Final energy, efficiencies, and useful energy for "steam" energy-service.

Fuel 𝐄𝐬,𝐟𝐞[𝐏𝐉] 𝐞𝐟𝐟𝐭𝐞𝐜𝐡,𝐬[%] 𝐄𝐬,𝐮𝐞[𝐏𝐉]

Natural gas 131.13 82 107.52

LPG 1.19 82 0.98

Coal 0.09 82 0.08

Heavy fuel oil 33.51 82 27.48

Oil 5.83 82 4.78

Biomass 0.65 82 0.53

Heat 98.12 100 98.12

Table 35. Splitting by different subsectors of “steam” service demand.

Subsector 𝐃𝐬,𝐢 [𝐏𝐉]

Chemicals 86.18

Iron and steel 11.36

Non-ferrous materials 2.02

Non-metallic minerals 20.92

Pulp and paper 65.51

Other industries 53.51

72

2.2.1.5.2. Machine drive

For what concerns the “machine drive” service, the operations to be

performed are very similar to what just seen for steam production. From Table

32 it is possible to read the total final energy consumed from “machine drive”

technologies differentiated by fuel Emd,fe. Starting from those values, useful

energy Emd,ue are derived, simply multiplying by the correspondent efficiency

efftech,md[%] (Equation 18). This first step is reported in Table 36. The results

are then added together (Equation 19) to obtain the total service demand for

“machine drive” Dmd, that amounts to 287.09 PJ. The total demand is split

(Equation 20) assigning a fraction of it to the ith subsector Dmd,i, according to

the share of consumption fmd,cons in terms of final energy consumed. The

derived service demands for every subsector are shown in Table 37,

highlighting that the major steam consumption are related to “other

industries” and “chemicals” subsectors.

Table 36. Final energy, efficiencies, and useful energy for "machine drive".

Fuel 𝐄𝐦𝐝,𝐟𝐞[𝐏𝐉] 𝐞𝐟𝐟𝐭𝐞𝐜𝐡,𝐦𝐝[%] 𝐄𝐦𝐝,𝐮𝐞[𝐏𝐉]

Electricity 333.62 86% 286.91

Oil 0.52 35% 0.18

Table 37. Splitting by different subsectors of “machine drive” service demand.

Subsector 𝐃𝐦𝐝,𝐢 [𝐏𝐉]

Chemicals 38.18

Iron and steel 31.41

Non-ferrous materials 1.78

Non-metallic minerals 32.51

Pulp and paper 31.71

Other industries 151.50

73

2.2.1.5.3. Chemicals

In TIMES-Italia [14], the chemical sector is very simply described, with

only one fictitious production technology consuming all the fuels related to

the sector and producing the chemical service demand (assumed to be equal

to the total energy consumption of the sector, in other words with unitary

efficiency for the production technology).

A more detailed techno-economic modeling of the sector was desired,

in order to have a precise distinction between the several chemical products

produced and the related technologies producing them, characterized

properly and independently one each other. To achieve this goal, a new

calibration of the base year for the chemical sector has been performed, taking

as a reference for the techno-economic technologies characterization the

EUROfusion TIMES Model (ETM) [21], an international energy system model

developed by EUROfusion consortium [22].

Five main chemical products are considered for the calibration: olefins,

aromatics (BTX), ammonia, methanol, and chlorine. A sixth commodity is

produced by a dedicated base year technology, namely “other chemicals”,

collecting the residual energy consumption between the resulting from energy

balances and the base year technologies consumption.

First of all, the amount of chemical products produced at base year has

to be quantified.

Table 38. Chemical production statistics (from [23] and [24]).

Chemical

product

Production 2006 production
𝐂𝐩𝐫𝐨𝐝 [𝐌𝐭] [Mt] Year Reference

Olefins 2.98 2017 [23] 2.94

Aromatics (BTX) 0.81 2017 [23] 0.80

Ammonia 0.60 2010 [24] 0.64

Methanol 0.05 2017 [23] 0.05

Chlorine 0.20 2010 [24] 0.21

74

Once the production Cprod of chemical products is known, assuming

appropriate conversion factors it is possible to estimate the energy

consumption required to produce each product. The calibration has been

performed assuming the same conversion factors effconv of ETM [21],

evaluating consequently the energy services Ees (according to Equation 22)

and assigning to the sixth chemical subsector (other chemical) the residual

energy consumption.

Table 39 summarizes the main results of the calibration. It should be

noted that the higher total energy consumption within “chemicals” id due to

olefins production (220.68 PJ). Also, the efficiencies of olefins and aromatics

production are very similar (75.18 PJ/Mt and 73.21 PJ/Mt), being the aromatics

byproducts of the olefins production.

Ees [PJ] = effconv [PJ/Mt] ∗ Cprod[Mt] (21)

75

Table 39. Calibration and techno-economic characterization of chemical sector base year.

Chemical

product
Energy service Fuel

Share factors for

energy services

𝐟𝐭𝐞𝐜𝐡 [%]

Energy service

𝐄𝐞𝐬 [𝐏𝐉]

Conversion

factors

𝐞𝐟𝐟𝐜𝐨𝐧𝐯 [𝐏𝐉/𝐌𝐭]

Olefins

Electro-chemical 12.7 2.15 0.73

Process heat

Natural Gas 27.2 16.29 5.55

LPG 87.8 1.05 0.36

Heavy fuel oil 57.5 6.37 2.17

Oil 46.3 5.22 1.78

Ethane 48.9 3.02 1.03

Feedstocks 63.2 154.61 52.67

Steam 37.0 31.86 10.85

Machine drive 0.3 0.11 0.04

Total 220.68 75.18

Aromatics

(BTX)

Electro-chemical 2.7 0.46 0.57

Process heat

Natural Gas 4.3 2.60 3.26

LPG 18.7 0.22 0.28

Heavy fuel oil 12.3 1.36 1.70

Oil 9.9 1.11 1.39

Ethane 20.8 1.29 1.62

Feedstocks 17.2 42.16 52.85

Steam 10.6 9.11 11.42

Machine drive 0.3 0.10 0.12

Total 58.41 73.21

Ammonia

Electro-chemical 3.4 0.58 0.91

Process heat Natural Gas 33.0 19.81 31.04

Feedstocks 3.5 8.65 13.56

Steam 14.2 12.25 19.19

Machine drive 1.5 0.56 0.88

Total 41.86 65.57

Methanol

Electro-chemical 0.2 0.03 0.69

Process heat Natural Gas 1.4 0.81 16.39

Feedstocks 0.3 0.76 15.38

Steam 0.9 0.73 14.92

Machine drive 0.2 0.07 1.47

Total 2.41 48.86

Chlorine

Electro-chemical 13.4 2.26 10.64

Steam 0.5 0.41 1.93

Machine drive 0.2 0.06 0.28

Total 2.73 12.85

Other

chemicals

Electro-chemical 67.6 11.47 0.71

Feedstock 15.8 38.67 2.41

Steam 36.9 31.82 1.98

Steam 97.6 37.28 2.32

Machine drive 100.0 41.30 2.57

Total 160.53 10.00

76

For each energy service, service-specific technologies are used to

convert fuel consumption into energy service demands (that are the inputs for

technologies that produce final industrial products). In Table 40 all those

technologies are listed – organized by energy service – with their input

commodity and final energy consumption.

Table 40. Demand-side chemical technologies by energy services.

Energy

service
Technology description Input commodity Final energy [𝐏𝐉]

Electro-

chemical
Chemical – Electro-chemical – Electricity Electricity 16.96

Feedstock

Chemical – Feedstock – Natural gas Natural gas 39.61

Chemical – Feedstock – LPG LPG 0.64

Chemical – Feedstock – Kerosene Kerosene 8.69

Chemical – Feedstock – Heavy fuel oil Heavy fuel oil 17.32

Chemical – Feedstock – Distillate Distillate 27.26

Chemical – Feedstock – Oil Oil 1.16

Chemical – Feedstock – Gasoline Gasoline 6.25

Chemical – Feedstock – Naphtha Naphtha 124.52

Chemical – Feedstock – Refinery gas Refinery gas 19.40

Other

Chemical – Others – Heavy fuel oil Heavy fuel oil 3.36

Chemical – Others – Oil Oil 4.95

Chemical – Others – Natural gas Natural gas 20.45

Chemical – Others – Coke Coke 0.17

Chemical – Others – Ethane Ethane 1.87

Chemical – Others – Electricity Electricity 10.17

Chemical – Others – Petroleum coke Petroleum coke 0.32

77

2.2.1.5.4. Iron and steel

The “iron and steel” subsectors produces steel as end-use demand

commodity. Steel production values are known from industrial production

statistics. Two technologies are present at the base year: basic oxygen furnace

(BOF), producing 11.82 Mt, and electric arc furnace (EAF), producing

19.80 Mt. Final energy consumptions Ees,af are reported in Table 31 and they

are used to derive (Equation 22) the energy service demands Eserv [PJ],

assuming appropriate share factors ftech to split by technology; the final step

involves the calculation of conversion factors between energy service

demands and industrial products (Equation 23).

The main results are reported in Table 41, where values are

differentiated by technology, energy service demand and consumed fuel (the

specification of fuel is necessary for the process heat service demand, since a

dedicated technology is not defined for process heat in iron and steel, but the

fuel consumption are reported directly from statistics, separately).Concerning

the share factors for service demands, it should be noted that some of the listed

fuels (for the process heat service) are present only for one of the two

technologies. In these cases, the factor is unitary for the other technology, and

the sum of correspondent factors for BOF and EAF is equal to 100%. An

exception in the previous reasoning is the splitting of natural gas energy

consumption, that is fixed equal to 6.56 PJ for the EAF, and consequently its

consumption for BOF is the difference between the total consumption of

natural gas for “process heat” in “iron and steel” (from Table 31) and this

value.

Ees [PJ] = ftech [%] ∗ Ees,af [PJ] (22)

effconv [Mt/PJ] = P [Mt]/Ees [PJ] (23)

78

Table 41. Calibration and techno-economic characterization of “iron and steel” sector base year.

Technology Energy service Fuel

Share factors for

energy service

demands 𝐟𝐭𝐞𝐜𝐡 [%]

Energy

service

𝐄𝐞𝐬 [𝐏𝐉]

Conversion

factors

𝐞𝐟𝐟𝐜𝐨𝐧𝐯 [𝐌𝐭/𝐏𝐉]

Basic oxygen

furnace

Steam 46 5.18 0.44

Process heat

Natural Gas 60.57 5.12

Coal 50 6.90 0.58

Blast Furnace

Gas
100 0.18 0.02

Heavy Fuel Oil 100 2.96 0.25

LPG 100 0.94 0.08

Machine drive 30 9.50 0.80

Feedstocks 90 62.83 5.31

Others 37 3.77 0.32

Total 152.83 0.08

Electric arc

furnace

Steam 54 6.18 0.31

Process heat

Natural Gas 6.56 0.33

Coal 50 6.90 0.35

Electricity 100 31.46 1.59

Oil 100 0.33 0.02

Machine drive 70 21.91 1.11

Feedstocks 10 6.63 0.33

Others 63 6.31 0.32

Total 86.28 0.23

For each energy service, service-specific technologies are used to

convert fuel consumption into energy service demands (that are the inputs for

technologies that produce final industrial products). In Table 42 all those

technologies are listed, along with their input commodity and final energy

consumption. Obviously, the total production of “feedstocks” and “other”

energy services equals their consumption by production technologies listed in

Table 41.

Table 42. Demand-side iron and steel technologies by energy services.

Energy service Technology description Input commodity Final energy [𝐏𝐉]

Feedstocks
Iron and steel – Feedstocks – Coke Coke 69.34

Iron and steel – Feedstocks – Petroleum coke Petroleum coke 0.13

Other Iron and steel – Others – Electricity Electricity 10.08

79

2.2.1.5.5. Non-ferrous metals

The “non-ferrous metals” subsector produces a single end-use demand

commodity (“non-ferrous metals production”, measured in Mt) representing

the production of aluminum, copper, zinc and “other non-ferrous metals”.

Table 43 lists the numeric parameters involved in the techno-economic

characterization of “non-ferrous metals” industrial subsector [21]. Conversion

factors effconv are used to describe the efficiency of existing technologies to

produce non-ferrous metals (aluminum, copper, zinc and “other non-ferrous

metals”), while share factors ftech are used to match the energy services

required by each technology with the energy consumptions derived by IEA

statistics.

Table 43. Calibration and techno-economic characterization of "non-ferrous metals" sector base year.

Non-ferrous

metal
Energy service Fuel

Share factors for

energy services

𝐟𝐭𝐞𝐜𝐡 [%]

Energy

service

𝐄𝐞𝐬 [𝐏𝐉]

Conversion

factors

𝐞𝐟𝐟𝐜𝐨𝐧𝐯 [𝐏𝐉/𝐌𝐭]

Aluminum

Electro-chemical 10.69 1.06 0.51

Process heat
Natural Gas 56.92 8.54 4.07

Heavy fuel oil 0.31 0.31 0.15

Total 9.91 4.72

Copper

Electro-chemical 47.3 4.70 11.90

Process heat

Natural Gas 17.3 2.59 6.55

Coal 100.0 0.04 0.10

Coke 100.0 0.46 1.17

Heavy fuel oil 47.0 0.71 1.79

Steam 71.7 1.45 3.67

Total 9.95 25.18

Zinc

Electro-chemical 42.0 4.17 11.06

Process heat
Natural Gas 6.0 0.89 2.37

Heavy fuel oil 32.5 0.49 1.29

Steam 28.4 0.57 1.52

Machine drive 28.6 0.51 1.35

Total 6.63 17.59

Other non-

ferrous metals

Machine drive 71.4 1.27 0.90

Other 100.0 12.82 9.10

Total 14.09 10.0

80

For each energy service, service-specific technologies are used to

convert fuel consumption into energy service demands (that are the inputs for

technologies producing final industrial products). In Table 44 all those

technologies are listed – organized by energy service – with their input

commodity and final energy consumption. Obviously, the total production of

“electro-chemical” and “other” energy services equals their consumption by

production technologies listed in Table 43.

Table 44. Demand-side non-ferrous metals technologies by energy services.

Energy service Technology description
Input

commodity

Final energy

[𝐏𝐉]

Electro-chemical Non-ferrous metals – Electro-chemical – Electricity Electricity 9.93

Other

Non-ferrous metals – Others – Electricity Electricity 8.71

Non-ferrous metals – Others – Oil Oil 0.26

Non-ferrous metals – Others – Natural gas Natural gas 2.98

Non-ferrous metals – Others – LPG LPG 0.87

81

2.2.1.5.6. Non-metallic minerals

The “non-metallic minerals” subsector is based on dedicated statistics

for what concerns splitting of energy consumption in the five technologies that

are part of it producing: cement, lime, glass, and bricks. For this reason, only

a summary of the results is here reported, in Table 45, where technologies,

total production, energy consumed by energy service and consequent

conversion factors (the specification of fuel is necessary for the process heat

service demand, since a dedicated technology is not defined for process heat

in iron and steel, but the fuel consumption are reported directly from statistics,

separately) are shown.

Table 45. Production, service demands and conversion factors for "non-metallic minerals”.

Technology
Production

[Mt]
Energy service Fuel

Energy service

𝐄𝐞𝐬 [𝐏𝐉]

Conversion factors

𝐞𝐟𝐟𝐜𝐨𝐧𝐯 [𝐏𝐉/𝐌𝐭]

Wet cement

kilns
13.65

Steam 0.34 0.03

Process heat

Natural Gas 0.80 0.06

Coal 6.67 0.49

Heavy Fuel Oil 3.50 0.26

Petroleum coke 43.11 3.16

Electricity 1.56 0.11

Oil 0.76 0.06

LPG 0.50 0.04

Machine drive 5.54 0.41

Others 0.40 0.03

Dry cement

kilns
34.23

Steam 0.13 0.00

Process heat

Natural Gas 0.20 0.01

Coal 1.50 0.04

Heavy Fuel Oil 0.30 0.01

Petroleum coke 63.09 1.84

Electricity 8.30 0.24

Oil 3.01 0.09

LPG 0.10 0.00

Machine drive 10.69 0.31

Others 0.77 0.02

Continued on page 82

82

Continued from page 81

Lime 6.13

Steam 4.07 0.78

Process heat

Natural Gas 6.70 1.29

Coal 10.70 2.06

Heavy Fuel Oil 2.10 0.40

Electricity 0.40 0.08

LPG 5.37 1.03

Machine drive 1.73 0.33

Others 4.73 0.91

Glass 6.54

Steam 3.88 1.07

Process heat

Natural Gas 30.37 8.34

Heavy Fuel Oil 1.91 0.53

Electricity 0.82 0.22

Machine drive 3.18 0.87

Others 4.84 1.33

Bricks 20.60

Steam 12.50 2.06

Process heat

Natural Gas 86.87 14.29

Coal 6.10 1.00

Heavy Fuel Oil 5.92 0.97

Electricity 0.27 0.04

Oil 2.92 0.48

Machine drive 11.37 1.87

Others 3.05 0.50

For each energy service, service-specific technologies are used to

convert fuel consumption into energy service demands (that are the inputs for

technologies that produce final industrial products). In Table 46 all those

technologies are listed – organized by energy service – with their input

commodity and final energy consumption. The only intermediate energy

service produced for the non-metallic minerals subsector is "other".

Table 46. Demand-side non-metallic minerals technologies by energy services.

Energy service Technology description Input commodity Final energy [𝐏𝐉]

Other

Other – Non-metallic minerals – Oil Oil 0.22

Other – Non-metallic minerals – Natural gas Natural gas 7.35

Other – Non-metallic minerals – Coke Coke 0.17

Other – Non-metallic minerals – Electricity Electricity 5.38

Other – Non-metallic minerals – LPG LPG 0.66

83

2.2.1.5.7. Pulp and paper

The “pulp and paper” subsector consists in three different technologies

for pulp production, and one technology representing the “paper mill”, for

production of paper (the end-use demand commodity) from pulp, which is

then just an intermediate commodity used to generate the final production of

paper of this subsector. The list of technologies and their production capacity

at the base year are shown in Table 47. For this subsector, the splitting of

energy service amounts to different technologies is done according to factor

shares ftech [%] that are taken from statistics specific to the paper production

[14], as Table 48 shows.

Table 47. Base year technologies and production demands for "pulp and paper”.

Technology Final product Production [𝐌𝐭]

Chemical pulp Pulp 0.15

Mechanical pulp Pulp 0.35

Recycled pulp Pulp 5.58

Paper mill Paper 10.01

As previously operated for “iron and steel”, Ees [PJ] and effconv [Mt/PJ]

are derived according to Equation 22 and Equation 23.

84

Table 48. Share factors for service demands, service demands and conversion factors for "pulp and

paper”.

Technology Energy service

Share factors for

service demands

𝐟𝐭𝐞𝐜𝐡 [%]

Energy

service

𝐄𝐞𝐬 [𝐏𝐉]

Conversion

factors

𝐞𝐟𝐟𝐜𝐨𝐧𝐯 [𝐏𝐉/𝐌𝐭]

Chemical pulp

Steam 2.41 1.58 10.22

Process heat 5.87 0.24 1.58

Machine drive 0.97 0.31 2.00

Mechanical pulp
Steam -1.36 3 -0.89 3 -2.56 3

Machine drive 7.22 2.29 6.59

Recycled pulp

Steam 1.74 1.14 0.20

Process heat 6.62 0.28 0.05

Machine drive 20.38 6.46 1.16

Other 23.94 0.30 0.05

Paper mill

Steam 97.20 63.68 6.36

Process heat 87.50 3.64 0.36

Machine drive 71.42 22.65 2.26

Other 76.06 0.94 0.09

For each energy service, service-specific technologies are used to

convert fuel consumption into energy service demands (that are the inputs for

technologies that produce final industrial products). In Table 49 those

technologies are listed (organized by energy services) with the final energy

consumption.

Table 49. Demand-side pulp and paper technologies by energy services.

Energy service Technology description
Input

commodity

Final energy

[𝐏𝐉]

Process heat

Pulp and paper – Process heat – Heavy fuel oil Heavy fuel oil 0.40

Pulp and paper – Process heat – Oil Oil 0.05

Pulp and paper – Process heat – Natural gas Natural gas 2.57

Pulp and paper – Process heat – Electricity Electricity 1.13

Other

Pulp and paper – Others – Oil Oil 0.05

Pulp and paper – Others – Electricity Electricity 1.13

Pulp and paper – Others – LPG LPG 0.06

3 Consumption of steam for mechanical pulp is negative since steam is produced by the

technology.

85

2.2.1.5.8. Other industries

The “other industries” subsector collects the industrial energy

consumptions of all other non-specified minor industrial subsectors (the end-

use demand commodity is named “other industries” and measured in PJ). All

the values of service demands are simply assumed to be equal to the sum of

energy consumption of all the fuels for the correspondent industrial energy

services, written in Table 31. The resulting values of service demands for

“other industries” subsectors are shown in Table 50.

Table 50. Service demands and conversion factors for "other industries".

Energy service Service demands 𝐃𝐬𝐞𝐫𝐯 [𝐏𝐉]

Steam 53.51

Process heat 231.26

Machine drive 151.50

Other 31.12

TOTAL 467.38

86

2.2.2. New technologies

In this section, an overview on the new technologies included in the

current version of TIMES-Italia [14] is presented. In TIMES models,

technologies characterized in “new technologies” templates are available to be

installed after the base year and over the considered time horizon. The choice

of which technologies are installed and introduced in the energy mix, is made

from the algorithm on the basis of the economic optimization and under a set

of technical constraints.

To ensure that the base year technologies are progressively disposed of,

usually other constraints are used, in particular the installed capacity is often

constrained as maximum value to the 100% of the base year value at the

beginning of the time horizon, and to 0 after a certain period of time (often in

2020 or 2030), with the other values of maximum capacity obtained by

interpolation. To produce the requested amounts of final service demands,

additional capacity of new technologies is progressively installed from the

new technology dataset.

The main parameters characterizing the new technologies included in

the model are:

a. Efficiency (ratio between total output and total input

commodities, possibly it is varying increasing over time).

b. Investment cost.

c. Fixed O&M cost.

d. Variable O&M cost.

e. Availability factor.

f. First year of availability.

g. Lifetime.

For what concerns, for instance, agriculture sector, non-road transports

and “other industries” industrial subsector, there are no new technologies

available for the installation, since the evolution of the energy mix in the time

is simply obtained assuming increasing efficiency for the corresponding base

year technologies (as shown in Table 51).

87

Table 51. Efficiency improvement for minor demand-side subsectors.

Sector/subsector
Efficiency [-]

2006 2010 2015 2020 2030 2050

Agriculture 1.00 1.00 1.15 1.25

Domestic aviation 1.00 1.05 1.25

International aviation 1.00 1.05 1.25

Domestic navigation 1.00 1.02 1.25

Bunkers 1.00 1.04 1.50

Other industries 1.00 1.05 1.11 1.18

For the other sectors, a synthetic overview of the new technologies are

provided in Table 52 (buildings) and Table 54 (transport). Concerning the

industry, the new technologies has been totally reviewed with respect to the

original version of TIMES-Italia [14], according to the modeling performed in

ETM [21]. Provides a very synthetic overview of the number of new

technologies available for each industrial product.

88

Table 52. Overview of new technologies for buildings [14].

Sector End-use Number of new technologies

Residential

Refrigeration 11

Water heating 11

Clothes washing 5

Clothes drying 3

Dish washing 5

Cooking 5

Lighting 12

Space heating

77

(21 for SF-Old buildings, 21 for MF-Old

buildings, 19 for SF-New buildings and 12

for MF-New buildings)

Space cooling 12

Miscellaneous electric

equipment
1

Commercial

Refrigeration 3

Water heating 11

Lighting 9

Space heating 20

Space cooling 18

Electric office equipment 3

Table 53. Overview of new technologies for industry [21].

Subsector Industrial product
Number of new

technologies

Chemicals

Highly volatile compounds (HVC: olefins

and aromatics)
8

Ammonia 6

Methanol 6

Chlorine 3

Iron and steel Iron and steel 14

Non-ferrous

metals

Aluminum 6

Copper 1

Zinc 1

Non-metallic

minerals

Cement 7

Lime 1

Glass 2

Bricks 1

Pulp and paper
Pulp 5

Paper 1

89

Table 54. Overview of new technologies for transport [21].

Transportation mode New technologies’ categories

Cars

(small, medium, large)

Gasoline cars (fueled by a mixture of gasoline and ethanol)

Diesel cars

LPG cars

Natural gas cars

Hybrid cars

Plug-in hybrid cars

Electric cars

Hydrogen (hydrogen internal combustion engine, liquid hydrogen,

fuel cell, liquid hydrogen hybrid) cars (stored in a different

spreadsheet, dedicated to hydrogen technologies).

Three Wheels
Gasoline three-wheelers

Diesel three-wheelers

Two Wheels
Gasoline mopeds

Gasoline motorcycles

Buses

Gasoline buses

Diesel buses

Natural gas buses

LPG buses

Electric buses

Fuel cell buses (stored in a different spreadsheet, dedicated to

hydrogen technologies)

Heavy Trucks

Standard diesel trucks

Advanced diesel trucks

Improved diesel trucks

Natural gas trucks

Fuel cell trucks (stored in a different spreadsheet, dedicated to

hydrogen technologies)

Medium Trucks

(standard, advanced,

improved)

Gasoline commercial trucks

Diesel commercial trucks

LPG commercial trucks

Natural gas commercial trucks

Commercial Trucks

(standard, advanced,

improved)

Gasoline commercial trucks

Diesel commercial trucks

LPG commercial trucks

Natural gas commercial trucks

90

2.3. Supply-side sectors: base year and new

technologies

The power sector and the upstream sector belong to the supply-side of

the energy system, converting primary energy sources into energy vectors that

are the inputs for the demand-side sectors.

2.3.1. Power sector

For what concerns the electric sector, the produced commodities are

electricity (centralized or distributed) and heat, while the production systems

are differentiated in three main categories: plants producing only electricity,

combined heat and power (CHP) plants, plants producing only heat. For each

technology, several characteristic parameters are collected:

a. Input commodities (fossil fuels, biofuels or renewable energy

sources).

b. Input fuel shares (for multi-fuel technologies, to assign a fraction

of the input energy to the relative fuels)

c. Output commodities (centralized electricity, distributed

electricity or heat).

d. Efficiency and its expected evolution over projection years.

e. Heat-to-power ratio (CHPR), only for CHP plants.

f. Base year installed capacity.

g. Residuals of base year installed power at different projection

years.

h. Fixed operation and maintenance cost.

i. Variable operation and maintenance cost.

j. Availability factor (ratio between the maximum equivalent

hours of the plant and 8760 h, equivalent to one year; in other

words, it is related to the maximum energy producible in one

year, assuming that the plant operates constantly at the nominal

power, or it does not work), that for renewable energy sources is

not unique for the entire year but differentiated by time-slices).

k. Lower boundaries (for different projection years) to the energy

production from the base year already installed plants.

91

Lower activity boundaries Alow[PJ] are calculated according to Equation

24, starting from the installed capacity P [GW] at the base year and the

availability factor AF of each ith technology. The factor Rf is different for

different technologies and is used to express the fraction of the base year

potential energy production that is imposed as boundary for the projection

year at which the boundary is applied (for example Rf is usually equal to 0.5

or 0.7 for boundaries referring to 2007, one year later the base year).

Alow[PJ] = P [GW] ∗ AF ∗ 31.536 [
PJ

GW
] ∗ Rf (24)

In Table 55, the parameters concerning the base year of electricity

production technology are reported. In terms of installed power at the base

year, the technologies most used in the base year (higher than 5 GW) are, in

order as follows: natural gas combined cycle, reservoir hydroelectric plant,

natural gas cogenerative combined cycle, pumping hydroelectric plant, oil

condensation steam cycle and coal condensation steam cycle. Focusing on

renewable resources electric plants, it should be observed that in 2006 Italy

relied almost exclusively on hydroelectricity (with about 21.38 GW of installed

power, including flowing hydroelectric), with quite negligible installed power

of wind, geothermal, solar (only 0.02 GW, before the 2005-2013 state subsidies

for photovoltaics [25]) and biogas plants.

92

Table 55. Base year relative descriptive parameters of electricity production technologies.

Technology description
Input

commodity

Output

commodity

E
ff

ic
ie

n
cy

C
H

P
R

In
st

al
le

d
 p

o
w

er
 [

G
W

]

F
ix

ed
 o

p
er

at
io

n
 a

n
d

m
a

in
te

n
an

ce
 c

o
st

[M
€/

G
W

]

V
ar

ia
b

le
 o

p
er

at
io

n
 a

n
d

m
a

in
te

n
an

ce
 c

o
st

 [
M

€/
P

J]

A
v

ai
la

b
il

it
y

 f
ac

to
r

Coal condensation steam cycle Coal Centralized Electricity 0.34 5.09 32.32 0.58 0.65

Multi-fuel coal and oil plants
Coal

Centralized Electricity 0.27 2.64 30.42 0.34 0.50
Oil

Natural gas and derived gas combined cycle Derived Gas Centralized Electricity 0.36 0.79 37.89 0.49 0.38

Natural gas combined cycle Natural Gas Centralized Electricity 0.50 16.45 13.50 0.41 0.55

Multi-fuel oil and gas plants
Natural Gas

Centralized Electricity 0.39 4.31 17.86 0.35 0.16
Oil

Steam cycle with natural gas repowered gas turbines Natural Gas Centralized Electricity 0.42 3.64 15.40 0.33 0.35

Natural gas turbines Natural Gas Centralized Electricity 0.42 1.99 26.24 0.50 0.03

Natural gas thermoelectric plant Natural Gas Centralized Electricity 0.35 1.63 17.98 0.85 0.11

Diesel turbine Oil Centralized Electricity 0.27 0.75 22.19 0.48 0.03

Oil condensation steam cycle Oil Centralized Electricity 0.36 7.74 42.61 0.45 0.30

Biogas plant Biogas Distributed Electricity 0.35 0.27 12.50 0.36 0.51

Biomass centralized plant Biomass Centralized Electricity 0.23 0.23 12.50 0.36 0.70

Biomass distributed plant Biomass Distributed Electricity 0.23 0.26 12.50 0.36 0.70

Geothermal plant Geothermal Centralized Electricity 0.10 0.79 94.03 3.48 0.80

Solar plant Solar Distributed Electricity 1.00 0.02 30.80 13.89 0.24

Wind plant Wind Centralized Electricity 1.00 2.12 34.00 0.00 0.16

Continued on page 93

93

Continued from page 92

Flowing water hydroelectric plant Hydroelectric Centralized Electricity 1.00 2.69 33.65 0.08 0.37

Flowing water hydroelectric plant<10MW Hydroelectric Distributed Electricity 1.00 2.05 33.65 0.08 0.37

Reservoir hydroelectric plant Hydroelectric Centralized Electricity 1.00 9.55 13.29 0.08 0.26

Pumping hydroelectric plant
Centralized

Electricity
Centralized Electricity 1.00 7.09

20.76 0.08 0.11

Natural gas and derived gas cogenerative combined cycle Natural Gas
Centralized Electricity

0.52 0.64 1.40 22.42 0.64 0.69
Heat

Heavy HCs gasification cogenerative combined cycle Heavy HCs
Centralized Electricity

0.50 0.62 1.83 29.14 0.45 0.84
Heat

Natural gas cogenerative combined cycle Natural Gas
Centralized Electricity

0.51 0.39 9.67 20.11 0.79 0.65
Heat

Centralized natural gas cogenerative gas turbine Natural Gas
Centralized Electricity

0.37 0.92 1.48 32.85 0.57 0.61
Heat

Distributed natural gas cogenerative gas turbine Natural Gas
Distributed Electricity

0.37 0.92 1.48 32.85 0.57 0.60
Heat

Natural gas condensation cogenerative steam cycle Natural Gas
Centralized Electricity

0.37 1.00 0.79 34.27 0.48 0.55
Heat

Centralized oil condensation cogenerative steam cycle Oil
Centralized Electricity

0.35 0.59 0.37 23.71 0.49 0.70
Heat

Distributed oil condensation cogenerative steam cycle Oil
Distributed Electricity

0.35 0.59 1.03 43.60 0.47 0.60
Heat

Municipal waste plant Municipal Waste
Centralized Electricity

0.22 1.25 0.58 220.50 0.83 0.44
Heat

Biogas cogenerative plant Biogas
Centralized Electricity

0.30 1.23 0.07 220.50 0.83 0.45
Heat

Coal gasification cogenerative combined cycle Coal
Centralized Electricity

0.37 0.27 0.91 220.50 0.83 0.65
Heat

Biomass cogenerative plant Biomass
Centralized Electricity

0.23 1.13 0.17 220.50 0.83 0.61
Heat

94

As for the demand-side sectors, also for the power sector specific

emission factors are evaluated, according to Equation 2. Results are reported

in Table 56.

Table 56. Emission factors for electricity sector-specific fuels.

Commodity

Emission factors [𝐤𝐭/𝐏𝐉]

Natural

gas
Coal Oil

Solid

biomass

residual

Solid

biomass

virgin

Municipal

waste
Biogas

CO2 56.05 101.16 79.55 0.00 0.00 85.85 0.00

CH4 0.13 1.06 5.15 30.00 30.00 0.02 300.00

N2O 0.54 1.48 0.62 4.00 4.00 4.00 4.00

The TIMES-Italia database includes several new technologies, as Table

57 shows.

Table 57. New technologies for electricity and heat production.

Plant category Energy source Number of new technologies

Electricity

Natural gas 3

Coal 1

Oil 1

Wind 6 (out of which 2 offshore plants)

Hydroelectric 2

Geothermal 2

Solar PV 12

Biogas 2

CSP 4

Heat

Natural gas 1

Oil 1

Bioliquid 1

Coal 1

Geothermal 2

CHP
Natural gas 4

Municipal waste 1

95

New power plants are characterized by the following parameters:

a. Starting year for the availability.

b. Plant lifetime.

c. Economic lifetime.

d. Investment cost.

e. Fixed O&M cost.

f. Variable O&M cost.

g. Discount rate.

h. Efficiency.

i. Capacity to activity factor.

j. Availability factor (differentiated according to the time of day

and season for variable renewable energy sources).

k. Peak reserve margin.

CHP technologies are also characterized by the following parameters:

a. Heat-to-power ratio/maximum CHPR.

b. Electricity-to-heat coefficient CEH.

Micro-CHP plants are specifically dedicated to the production of

residential, commercial, and industrial heat/electricity. The database includes

12 technologies for micro-CHP plants (4 for residential sector, 4 for commercial

sector and 4 for industry). In [20], micro-CHP plants receive a more detailed

characterization, which has been further updated in the latest ETM update,

thus that will be used for the TIMES-Italia, too.

96

2.3.2. Upstream sector

The upstream sector is part (together with the power sector) of the

supply-side of the TIMES-Italia reference energy system. The main purpose of

this sector is the extraction is the production of fuels usable by other sectors to

satisfy energy consumptions: it encompasses the steps from raw fuels

materials extraction to the upstream transformation into usable fuels.

Technologies and commodities are listed in several spreadsheets,

according to their role in the conversion chain of this sector. They contain

information about the following steps of the supply chain:

a. Extraction of row fossil fuels (definition of extraction variable

O&M costs and imposition of lower and upper boundaries, to

constrain the base year extraction consistently with statistics).

b. Fuel primary production (list of different production

technologies with the expected lifetime, fixed O&M cost and

lower and upper boundaries, based on the base year statistics).

c. Fuel secondary transformation (list of different transformation,

such as refineries, technologies with the expected lifetime, fixed

O&M cost, and lower and upper boundaries, based on the base

year statistics).

d. Natural potentials of renewable energy sources (definition of

extraction variable O&M costs and imposition of lower and

upper boundaries, to constrain the base year utilization

consistently with statistics).

The main parameters describing the different technologies of the

upstream sector are listed in Table 58.

97

Table 58. Descriptive parameters of upstream sector technologies.

Technology category Parameters

Extraction of row fossil fuels

(heavy oil, natural gas, hard coal)

Extraction cost

Lower and upper boundaries to the

extraction (based on known fossil

reserves)

Primary production of fuels

Input commodities

Output commodities

Lifetime

Fixed operation and maintenance cost

Variable operation and maintenance

cost

Lower and upper boundaries to the

production (based on 2000 statistics)

Secondary transformation of fuels

Input commodities

Output commodities

Lifetime

Fixed operation and maintenance cost

Variable operation and maintenance

cost

Lower and upper boundaries to the

production (based on 2000 statistics)

Natural potentials of renewable

energy sources

Extraction cost

Lower and upper boundaries to the

exploitation

Concerning the connections between technologies of different steps of

the supply chain, they are clarified in Figure 9.

98

Figure 9. Connection between different technologies of upstream sector.

Also, for the upstream sector, specific emission factors are evaluated for

several fuels according to Equation 2. Results are reported in Table 59.

Table 59. Emission factors for upstream sector-specific fuels.

Commodity

Emission factors [𝐤𝐭/𝐏𝐉]

Natural

gas
Coal

Crude

oil

Refined

petroleum

products (liquid)

Refined

petroleum

products (gas)

Biofuels

CO2 50.50 102.59 73.33 84.99 56.23 85.85

CH4 0.13 1.00 3.00 3.73 1.00 30.00

N2O 0.54 1.40 0.60 0.86 0.10 4.00

99

2.4. Fuel import

Since the TIMES-Italia [14] only includes a single region (as already

mentioned in Section 0), commercial exchanges with other regions are

modelled with cost parameters associated with imported commodities. Such

costs are imposed for coal, solid biomass, biofuels, oil products, natural gas,

and electricity, and can vary with time, with different values assigned to

several time steps, and namely 2006, 2008, 2010, 2013, 2015, 2020, 2030, 2040

and 2050. To perform different scenario analyzes, three set of importation

prices are included, with high, medium, and low prices. Table 60 reports the

medium prices for commodity importation.

Table 60. Fuels and electricity medium importation prices.

Fuel

category
Fuel

Importation price [𝐌€/𝐏𝐉]

2006 2008 2010 2013 2015 2020 2030 2040 2050

Biomass

and coal

Solid biomass 3.0 4.4 4.5 4.6 4.7 5.0 5.4 5.9 6.4

Biodiesel 34.0 38.2 34.6 53.8 37.8 43.8 37.5 41.2 45.4

Coal 27.2 30.5 27.7 43.0 30.2 35.0 30.0 33.0 36.3

Coke 34.0 38.2 34.6 53.8 37.8 43.8 37.5 41.2 45.4

Oil

products

Asphalt 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7

Aviation gasoline 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7

Crude oil feedstock 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7

Diesel 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7

Gasoline 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7

Heavy fuel oil 12.7 14.3 13.0 20.2 14.2 16.4 14.1 15.5 17.0

Jet kerosene 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7

Kerosene 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7

Liquified natural gas 10.2 11.4 10.4 16.1 11.3 13.1 11.2 12.4 13.6

Liquified petroleum gas 17.0 19.1 17.3 26.9 18.9 21.9 18.7 20.6 22.7

Lubricant 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7

Naphtha 10.2 11.4 10.4 16.1 11.3 13.1 11.2 12.4 13.6

Oil 8.5 9.5 8.7 13.5 9.5 10.9 9.4 10.3 11.3

Oil additive 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7

Other non-specified oil

products
22.7 25.5 23.2 36.0 25.3 29.3 25.1 27.6 30.3

Petroleum coke 2.3 3.4 3.1 4.8 3.3 3.9 3.3 3.6 4.0

Wax 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7

White spirit 50.0 56.1 50.9 79.2 55.6 64.4 55.1 60.7 66.7

Natural gas
Natural gas 5.0 6.5 6.0 8.2 6.0 6.3 6.9 7.6 8.3

Liquified natural gas 5.0 6.5 6.0 8.2 6.0 6.3 6.9 7.6 8.3

Electricity Electricity 5.6 7.8 7.8 7.2 6.8 6.9 7.3 7.6 7.8

100

Chapter 3

3. Development of the new Temoa-Italia

model

3.1. The Temoa framework

Tools for Energy Model Optimization and Analysis (Temoa [13] [26]) is

an open-source modeling framework for conducting energy system analyzes.

Temoa is formulated as a linear programming problem and is implemented in

Python using Pyomo, a Python-based open-source software package (Figure

10). Temoa is intended to address two critical deficiencies: the impossibility to

verify results by third parties based on published models and the difficulty of

performing a rigorous analysis of the uncertainty with models.

Figure 10. Temoa framework developed within Python-based Pyomo collection.

101

Figure 11. Main components constituents the Temoa structure.

Figure 11 shows schematically the structure of Temoa framework,

highlighting the main blocks involved in the optimization. The Pyomo

framework is based on five classes: sets, parameters, variables, objective, and

constraint, necessary in every optimization problem. It supports a wide range

of problem types: linear programming, non-linear programming, mixed-

integer linear programming, etc. Temoa is the Python correspondent of the

TIMES model generator [8] (thus implemented as a linear programming

problem), in which different model instances with different energy system

structures can be represented.

As Figure 11 shows, the Temoa model also includes the possibility to

perform stochastic optimization [27], taking into account future uncertainties

in the model, and modeling to generate alternative [28], exploring the near-

optimal decision space to investigate alternative future energy system

configurations.

102

Temoa has been selected as reference framework for the open-source

implementation of the TIMES-Italia. A literature review has been performed

to identify the most suitable framework. Notably, an alternative tool has also

been considered (as already mentioned in Section 1.1), before opting for

Temoa: OSeMOSYS [29]. Temoa has been chosen for its features:

a. Competitive energy markets with perfect foresight (as for

TIMES).

b. High-level programming language.

c. Both commercial and open-source solvers can be used for the

optimization.

d. Suitable for large-scale energy systems.

e. Possibility to modify and integrate the code (also to perform

multi-objective optimization).

f. Possibility to perform stochastic optimization.

Concerning the solvers performing the solution of the optimization

problem, any software including a Python interface can be used with Temoa.

The reference solver for the Temoa framework is GNU Linear Programming

Kit (GLPK [30]), being an open-source software package for both linear

programming and mixed integer programming. Other options are, for

instance, to solve the optimization problem with CPLEX [31], that is a

commercial software but freely available to run on an external server (NEOS

[32] [33] [34]), or with Gurobi [35], again commercial but freely available with

academic licenses.

Being the framework already existing and freely available, the main

activity required to develop the open version of TIMES-Italia, is the translation

of technological dataset from TIMES formulation (Excel files containing

parameters in the TIMES format) to the Temoa one (namely, a “.sql” database),

relying on parameters included in the Temoa model to translate the TIMES-

Italia reference energy system.

Already included elements for the description of RES in the Temoa

database are listed in Table 61.

103

Table 61. Elements included in the Temoa database.

Group Element

Labels used for internal

database processing

commodity_labels

technology_labels

time_periods_labels

Sets used within Temoa

commodities

technologies

time_periods

time_season

time_of_day

Parameters used to define

processes within Temoa

GlobalDiscountRate

Demand

DemandSpecificDistribution

Efficiency

ExistingCapacity

CapacityFactor

CapacityFactorProcess

Capacity2Activity

CostFixed

CostInvest

CostVariable

EmissionActivity

LifetimeLoanTech

LifetimeProcess

LifetimeTech

Parameters used to define

constraints within Temoa

GrowthRateSeed

GrowthRateMax

MinCapacity

MaxCapacity

MinActivity

MaxActivity

RampUp

RampDown

TechOutputSplit

TechInputSplit

104

Temoa formulation presents some differences and limitations with

respect to the TIMES structure of parameters. These differences concern

definition of parameters and their elaboration, particularly:

a. Emission factors computation.

b. Service demands projection.

c. Data interpolation and extrapolation.

d. Results postprocessing.

3.2. Add-ons to the Temoa framework

To perform the required add-ons to the Temoa framework, two

dedicated Python scripts have been developed to process the “.sqlite”

database: one for the preprocessing (Appendix A) and the other for the

postprocessing (Appendix D). Some tables have been added to the database to

insert the required input data for the preprocessing. In the following sections,

the functions implemented with the scripts and the required additional tables

of the database are presented.

3.2.1. Emission factors computation

Emission factors are implemented in Temoa through a dedicated

parameter called “Emission Activity”, that is an emission factor expressed per

unit of output commodity produced by the technology (its activity). As it has

been already explained in Section 8, in TIMES the emission factors are

evaluated per unit of sector-specific commodity consumed by the computed

energy mix. For that reason, it necessary to derive from commodity-based

emission factors implemented in TIMES, the technology-based emission

factors to implement in Temoa.

To do that, a new table has been created within the Temoa “.sql”

database (“CommodityEmissionFactor” table, Appendix B), containing the

commodity-based emission factors included in TIMES templates. In the table

the emission commodity (CO2, CH4, N2O or SOx) must be specified, with the

sector-specific commodity to which the emission is associated and the

commodity-based emission factor numerical value EFcomm. To obtain the

technology-based emission factor EFtech, the commodity-based factor must be

105

divided by the efficiency of the technology efftech having as input commodity

the correspondent commodity, as shown in Equation 25.

EFtech [
kt

PJout
] =

1

efftech
∗ EFin [

kt

PJin
] (25)

The resulting technology-based emission factor represents the specific

emission of the selected emission commodity per unit of output commodity

produced by the technology. The results must be inserted in the

“EmissionActivity” table of the Temoa database.

3.2.2. Service demand projections

Concerning the service demand projection along the considered time

horizon (in the TIMES-Italia case up to 2050), this is operated in TIMES taking

as inputs the base year demand level D2006, a selected driver d for the service

demand and appropriate elasticity values e (Equation 26, where Dt= “service

demand at year t”, Dt−1= “service demand at year t-1”, dt= “allocated driver at

year t”, dt−1= “allocated driver at year t - 1”, et= “associated elasticity at year

t”). The elasticities are required to connect the driver trend to the allocated

demand trend. Indeed, it is not required the demand trend to be, strictly

speaking, proportional to the correspondent driver trend, but only dependent

on it. This dependency is exactly driven by the elasticity values.

However, Temoa directly takes as input the service demand specified

for each time-step of the considered time-period. Because of this, an automated

operation is required to evaluate the service demands absolute values

providing drivers and elasticities.

Dt = Dt−1 ∙ (1 + (
dt

dt−1
− 1) ∙ et) (26)

With this objective, the addition of three further tables to the database

is required to provide the required input data. Namely drivers and elasticities

must be provided for each final service demand, and a table associating the

106

service demands to the correspondent drivers and elasticities is required. The

structure of those tables is reported in Appendix C. Table “Driver” should

express the time evolution of the selected drivers for the demand projection,

while table “Allocation” associates each demand commodity to the

correspondent driver and table “Elasticity” provide elasticity values for each

demand-driver couple.

In the preprocessing script (Appendix A), data from those three tables

are elaborated to compute the absolute values for each final service demand

and to fill with the resulting values the table “Demand” of the database.

3.2.3. Data interpolation and extrapolation

Another relevant difference between the two frameworks is that TIMES

automatically interpolates and extrapolates parameters for milestone years for

which they are not explicitly specified by the modelers (according to different

interpolation and extrapolation rules). Differently, Temoa requires the

specification of all parameters for all milestone years included in the database.

The preprocessing script has been developed to perform the

interpolation and the extrapolation forward for all the parameters for which

Temoa allows to specify different values for different time-periods. Notably,

the involved parameters in this operation are:

a. Lifetime

b. Efficiency

c. TechInputSplit (used to imposed minimum consumption

percentage of an input commodity for technologies with more

than one input commodity)

d. TechOutputSplit (used to imposed minimum production

percentage of an output commodity for technologies with more

than one output commodity)

e. Emission factors

f. Investment cost

g. Fixed O&M cost

h. Variable O&M cost

i. Minimum capacity constraint

107

j. Minimum activity constraint

k. Maximum capacity constraint

l. Maximum activity constraint

m. Availability factor

n. Capacity factor

o. Capacity credit

For what concerns interpolation, the script performs a linear

interpolation for each parameters presenting more than one value specified

along the entire time horizon (Equation 27, where 𝑥𝑛 is the generic parameter

to be interpolated at 𝑖𝑡ℎ time-period 𝑡𝑖). Therefore, for the time interval

included between the time periods correspondent to the first specified value

and the last one, the interpolation curve is piecewise linear.

xi = x1 +
ti − t1

t2 − t1
∗ (x2 − x1) (27)

For parameters that are specified only for one time-period, the same

value is repeated for all the future time periods starting from it. Similarly, an

extrapolation repeating the last available value for all the future time periods

is performed for those parameters presenting a piecewise linear interpolation

that does not end at the last year of the time horizon (in the TIMES-Italia case,

2050).

Figure 12 report three examples concerning the possible trends

obtained by the parameters’ interpolation and extrapolation. In particular, in

Figure 12 (a) a piecewise linear efficiency trend is shown, while in Figure 12

(b) a constant efficiency is represented, extrapolated starting from the first

availability year of the technology (in the represented case, from 2020).

An exception to the piecewise linear interpolation of parameters for

which more than one value is provided in the database is shown in Figure 12

(c). This is the case of a technology lifetime variable during the time. In this

case, to maintain integer values of the parameter, it is kept equal to the last

available for time periods included between two different values.

108

Figure 12. Example of data interpolation and extrapolation for (a) piecewise lineare trend, (b)

constant trend and (c) piecewise constant trend (technology lifetime variable in the time).

3.2.4. Results postprocessing

The last required function to be implemented in Temoa framework

concerns the reading of the results. In TIMES, results are collected in MDB

databases and a commercial software (namely, VEDA-BE [36]) is employed to

select data and read the results having the possibility to select among several

technology and commodity set those to visualize.

Temoa output data are collected in dedicated tables within the same

“.sqlite” database used to provide input data. The two most relevant tables to

analyze the evolution of the energy mix are named “Output_VFlow_In” and

“Output_VFlow_Out” containing, respectively, the consumption and

production of each commodity by technology and time slice. The

differentiation by time slices of results is made specifying the time period (the

109

milestone year), the season of the year (spring, summer, fall or winter) and the

time of the day (day, night or peak). It is useful to perform analyzes with an

high degree of detail and especially for technologies characterized not only

with annual parameters, but also with variable parameters during the year (for

example, some kind of renewable energy sources that are strongly dependent

on the season of the year or the hour of the day); however, an annual resolution

to view the results is sufficient to assess the evolution of energy mix along the

time.

Made those premises, the purpose of the postprocessing developed

Python script is to extract data from the “.sqlite” output database and visualize

year by year the annual total consumption and production for selected

technologies and commodities.

The script allows to:

a. List the technologies for which to view the results.

b. List the commodities to include in the exported data (avoiding

including intermediate commodities in the results that would

lead to double counting).

c. Chose to view results split both by technology and commodity,

only by technology, only by commodity or to view only the total

consumption/production for the selected technologies and

commodities.

The output of the script is an Excel file containing a sheet with

consumption values and another sheet reporting production values for each

optimization year.

110

Chapter 4

4. Comparison between TIMES-Italia and

Temoa-Italia

In this section, the results obtained from TIMES-Italia and Temoa-Italia

optimization are compared, to ensure that the two tools lead to the same

results starting from the same input data. This kind of validation should prove

the reliability of Temoa framework to use it as the reference open-source tool

for future integrations and modifications of the optimization paradigms,

starting from a model reproducing the same results obtained with well-

established software such as the TIMES models.

4.1. Scenario

The considered scenario for the comparison (which is, of course, the

same considered both in TIMES-Italia and Temoa-Italia) has the following

features:

a. Medium level cost for import of primary resources.

b. No CO2 emission limits.

c. No carbon tax applied.

d. No carbon capture and storage (CCS) technologies.

Gurobi [35] has been used as optimization solver, being a commercial

software with a Python interface freely available with academic license (al

already mentioned in Section 3.1). Gurobi is suitable to solve locally the

Temoa-Italia, that having a large database cannot be solved by GLPK with a

sufficiently low computational cost (short execution times) and overcomes the

maximum size limit for output files (16 MB) solving it with CPLEX on NEOS

server.

111

4.2. Drivers

Concerning the drivers for demands projection, the correspondent

drivers and elasticities to the moderate growth scenario have been selected.

Table 62 reports the associated driver to each final service demand.

Service demands projection is performed according to Equation 26.

A dedicated comment should be done concerning the residential space

heating demands. Indeed, as it has been already reported in Section 1.1.1.1, the

residential space heating service is split in four final service demands in the

TIMES-Italia model, corresponding to two different building types (single-

family and multi-family) each of them is further split in “old” and “new”

buildings. “Old” buildings represent the existing buildings, while new

constructions are labeled as “New”. According to that, the final service

demands of “SF-Old” and “MF-Old” residential space heating are assumed to

be constant for the entire time horizon, while “SF-New” and “MF-New” are

projected with dedicated exogenous drivers, so that the sum between “SF-

Old” and “SF-New” buildings reproduce the expected single-family buildings

demand for the future and that the sum between “MF-Old” and “MF-New”

the expected multi-family one. The residential space heating subsector as a

whole evolves with a 2006-normalized trend that is quite similar to the

population driver, as could reasonably be expected.

112

Table 62. Allocation and numeric values of moderate drivers for service demand projection [14].

Sector Service demands Driver
Years [-]

2006 2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050

Agriculture Agriculture Agriculture value added 1.00 1.00 0.88 0.88 0.86 0.86 0.87 0.89 0.90 0.91 0.94 0.97 1.05 1.14

Commercial

Space heating

Commercial value added 1.00 1.02 1.01 0.99 0.99 0.98 1.01 1.04 1.07 1.10 1.14 1.22 1.37 1.54

Space cooling

Water heating

Lighting

Cooking

Refrigeration

Electric office

equipment

Residential

Space heating

Population 1.00 1.01 1.01 1.02 1.02 1.05 1.04 1.04 1.07 1.08 1.09 1.11 1.13 1.16

Space cooling

Water heating

Refrigeration

Clothes drying

Cooking

Clothes washing

Dishwashing

Miscellaneous electric

energy

Lighting

Continued on page 113

113

Continued from page 112

Transport

International aviation

GDP 1.00 1.01 1.01 0.97 0.95 0.93 0.95 0.97 1.00 1.02 1.06 1.12 1.25 1.39

Domestic aviation

Road

Rail

Domestic navigation

Non-specified

transports

Bunkers

Industry

Chemicals Chemical production 1.00 1.00 0.94 0.93 0.90 0.92 0.97 1.02 1.03 1.06 1.10 1.17 1.32 1.48

Iron and steel Iron and steel production 1.00 1.04 0.84 0.80 0.75 0.73 0.75 0.78 0.76 0.77 0.78 0.79 0.80 0.82

Non-ferrous metals
Non-ferrous metals

production
1.00 0.99 0.81 0.81 0.70 0.72 0.76 0.78 0.79 0.80 0.81 0.83 0.87 0.91

Non-metallic minerals
Non-metallic minerals

production
1.00 1.02 0.86 0.78 0.69 0.69 0.73 0.73 0.74 0.78 0.82 0.89 1.02 1.14

Pulp and paper
Pulp and paper

production
1.00 1.03 0.92 0.92 0.88 0.91 0.94 0.92 0.95 0.97 1.00 1.05 1.17 1.29

Other industries
Other industries

production
1.00 1.03 0.90 0.86 0.80 0.79 0.82 0.85 0.85 0.87 0.89 0.94 1.00 1.06

Non-specified industry

GDP 1.00 1.01 1.01 0.97 0.95 0.93 0.95 0.97 1.00 1.02 1.06 1.12 1.25 1.39
Chemical feedstocks

Non-energy uses

Non-energy others

114

Figure 13. Driver 2006-normalized trend.

Figure 13 shows the trend for all the considered drivers in the model,

normalized with respect to the value for the year 2006. Concerning the period

2006-2018, the adopted drivers are intended to follow historical data. In

particular, the drastic drop of industrial production (more or less pronounced

for all the industrial sectors) and GDP consequent to the 2008 financial crisis,

and the period of economic stagnation for the immediately following years,

should be noted, highlighting the updating and the reliability of such socio-

economic projections. For the future period of the time horizon, drivers are

evaluated according to the PNIEC 2020 forecasts [5]. Being the PNIEC

forecasts developed on the basis of historical data up to 2019, a relevant

comment is that they do not still take into account the effects of the COVID-19

pandemic of 2020.

115

Figure 14. Driver 2006-normalized trend for population, “single-family” and “multi-family”

buildings residential space heating and weighted average for total residential space heating demand.

Figure 14 shows in detail the trend of final serviced demand for “single-

family” and “multi-family" residential space heating (both “Old” and “New”

buildings). The blue curve is the derived 2006-normalized trend for the total

residential space heating final demand, obtained from the two curves (“single-

family” and “multi-family”) weighting on the correspondent service

demands, compared to the expected trend for population. An interesting

comment is that an higher growth is expected for “multi-family” buildings

with respect to “single-family”, coherently with the urbanization trends of the

population, which therefore is moving more and more into city buildings,

usually consisting of several family units per building.

116

4.3. Constraints

Energy system models usually consider for the optimization a large

dataset of constraints, in terms of minimum or maximum exploitation of

natural resources, development of specific technologies, or input/output

minimum or maximum shares of specific commodities for specific

technologies or groups of technologies. In the context of this thesis activity,

only a fraction of the constraints included into the TIMES-Italia dataset have

been implemented in the Temoa-Italia.

The first constraint category that has been implemented in Temoa-

Italia, is related to the base year technologies constraints. Those constraints are

usually both minimum and maximum on the capacity or on the activity of

those technologies. Minimum constraints are used to ensure that, even if

hypothetically the new technologies dataset contained much cheaper or much

more efficient new technologies with respect to the base year processes, those

last are not immediately substituted by new technologies, but they are

progressively disposed of during the time. The maximum constraints, on the

other hand, are used to impose the progressive decrease in the use of the

technologies of the base year, up to zero in a certain year, to be progressively

replaced by the new processes.

Going into the details only for constraints related to industrial

technologies, for the sake of conciseness, maximum constraints are usually

imposed on the technologies’ activity, with an upper boundary equal to 100%

of the base year activity in 2007 (the first year categorized as “future” year, for

which the optimization is performed in Temoa) and a lower boundary equal

to 90% of the base year activity in 2007.

Some industrial subsectors present an exception concerning the lower

boundary. Indeed, it is possible that the selected driver for the projection of

certain service demands leads to compute a service demand value less than

the lower boundary imposed to the base year technology producing the

commodity associated to that service demand. This is likely for TIMES-Italia,

having as base year 2006, just before the 2008 financial crisis, associated to

relevant drop of industrial production (as it has been already stated in Section

117

1.1). If that problem occurs (and it occurs, specifically, for “Iron and steel” and

“Non-ferrous metals” subsectors) it would entail wrong results in the TIMES

framework (simply forcing the model to produce more demand than the

required) while execution errors would stop the optimization without

achieving results in the Temoa framework. For that reason, for those

subsectors presenting this issue, lower activity boundaries must be lower that

the “standard” values (90% of the base year activity imposed in 2007).

Figure 15 shows, for the “Non-metallic minerals” industrial subsector

the constraints imposed to base year technologies activity.

Figure 15. Comparison of minimum and maximum constraints imposed to "Non-metallic minerals"

base year technologies in TIMES-Italia and Temoa-Italia.

The last constraints category, implemented both in TIMES and Temoa

framework, concerns the fuel import. Indeed, upper boundaries are applied to

the amounts of fuels imported from abroad, set equal to the 2006 value in 2007

and obtained multiplying the base year importations by assumed multiplying

factors for 2050. Table 63 lists the numerical upper boundary values for each

imported fuel.

118

Table 63. Imported fuels from abroad in 2006 and upper boundaries imposed in 2007 and 2050.

Fuel

category
Fuel

2006

importation

[PJ]

Upper boundaries
[𝐏𝐉]

2007 2050

Biomass

and coal

Solid biomass 39.68 39.68 138.89

Biodiesel 8.10 8.10 17.21

Coal 681.30 681.30 1635.10

Coke 20.73 20.73 41.47

Oil products

Crude oil feedstock 265.18 265.18 530.37

Diesel 68.24 68.24 136.49

Gasoline 8.49 8.49 16.98

Heavy fuel oil 161.16 161.16 209.51

Jet kerosene 5.10 5.10 10.21

Kerosene 21.16 21.16 42.31

Liquified petroleum gas 75.62 75.62 151.25

Naphtha 79.42 79.42 103.25

Oil 3642.77 3642.77 4735.60

Oil additive 6.20 6.20 12.41

Other non-specified oil

products
33.16 33.16 66.32

Petroleum coke 107.78 107.78 215.55

Natural gas
Natural gas 2533.01 2533.01 5066.03

Liquified natural gas 121.00 121.00 605.00

119

4.4. Benchmark results

In this section, the comparison between results obtained with TIMES-

Italia and those obtained with Temoa-Italia is performed. The aim is to verify

that, with the same input data, the two alternative tools (TIMES and Temoa)

provide the same results, within a certain tolerance.

Generally, a relative error will be calculated between the Temoa results

and the TIMES ones, taking as a reference the TIMES values. The error err will

be evaluated according to Equation 28 (where 𝑥 is a generic result for which

the error should be evaluated), and the tolerance interval for the errors is

chosen equal to ±1%. Errors included in the tolerance interval, will be ignored,

and considered as approximation errors in the definition of parameters within

the database. Any errors that exceed the tolerance interval below or above will

be highlighted and appropriately commented.

err[%] =
xTemoa − xTIMES

xTIMES
 (28)

For the sake of brevity, only results from “Non-metallic minerals”

industrial subsectors will be analyzed in detailed.

120

4.4.1. Non-metallic minerals

The results review for “Non-metallic minerals” subsector is reported in

this section. First of all, only to have a first qualitative comparison of the results

for the subsector, Figure 16 shows the time trend of the total demand of non-

metallic minerals and the associated total energy input required to produce it

in the time. At first glance, the two demand curves seem to be superimposed,

while little differences are visible between the two energy curves (notably in

2007, 2030 and 2050).

Figure 16. Comparison of "non-metallic minerals" total demand and total energy consumption,

evaluated with TIMES-Italia and Temoa-Italia.

Obviously, a deeper analysis is required to ensure that the two tools are

achieving the same results (within a certain tolerance), going more in the

details with respect to observe only qualitatively those curves. With this

objective, more detailed data will be presented below for which relative error

values will be calculated between the two models. It will be analyzed, in

particular:

a. The breakout of non-metallic minerals demand into the different

non-metallic products of which it is composed.

b. The technology mix manufacturing that products.

c. The energy mix of the entire subsector in terms of consumed

fuels.

121

Table 64. Comparison of “Non-metallic minerals” production evaluated with TIMES-Italia and Temoa-Italia and relative errors.

Non-metallic

product
Parameter

Year [-]

2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050

Total non-metallic

minerals

TIMES-Italia production [Mt] 64.15 54.01 48.67 43.37 43.13 45.58 45.64 46.70 48.70 51.74 55.93 64.02 71.70

Temoa-Italia production [Mt] 64.17 54.00 48.66 43.39 43.14 45.59 45.65 46.72 48.73 51.74 55.95 64.05 71.71

Relative error [%] 0.04 -0.02 -0.01 0.05 0.03 0.02 0.02 0.05 0.06 0.00 0.04 0.05 0.01

Bricks

TIMES-Italia production [Mt] 6.21 5.23 4.71 4.20 4.18 4.41 4.42 4.52 4.72 5.01 5.42 6.20 6.94

Temoa-Italia production [Mt] 6.24 5.23 4.71 4.20 4.18 4.44 4.44 4.55 4.74 5.03 5.44 6.23 6.98

Relative error [%] 0.52 -0.05 -0.05 0.02 0.00 0.50 0.50 0.53 0.54 0.48 0.52 0.53 0.49

Cement

TIMES-Italia production [Mt] 48.91 41.19 37.11 33.07 32.89 34.76 34.80 35.61 37.14 39.46 42.65 48.82 54.68

Temoa-Italia production [Mt] 48.90 41.18 37.10 33.08 32.89 34.74 34.79 35.60 37.13 39.43 42.63 48.81 54.64

Relative error [%] -0.03 -0.03 -0.02 0.05 0.03 -0.05 -0.05 -0.02 -0.01 -0.07 -0.04 -0.02 -0.06

Glass

TIMES-Italia production [Mt] 3.72 3.13 2.82 2.51 2.50 2.64 2.65 2.71 2.82 3.00 3.24 3.71 4.16

Temoa-Italia production [Mt] 3.72 3.13 2.82 2.52 2.50 2.64 2.65 2.71 2.83 3.00 3.25 3.71 4.16

Relative error [%] 0.09 0.03 0.04 0.10 0.08 0.07 0.07 0.10 0.11 0.05 0.09 0.10 0.06

Lime

TIMES-Italia production [Mt] 5.30 4.46 4.02 3.58 3.56 3.77 3.77 3.86 4.03 4.28 4.62 5.29 5.93

Temoa-Italia production [Mt] 5.31 4.47 4.02 3.59 3.57 3.77 3.78 3.86 4.03 4.28 4.63 5.30 5.93

Relative error [%] 0.09 0.03 0.04 0.11 0.08 0.07 0.07 0.10 0.11 0.05 0.09 0.10 0.06

122

Table 65.Comparison of TIMES-Italia and Temoa-Italia results of “Non-metallic minerals” production split by production technologies, with relative errors for each

technology and average errors for each non-metallic product.

Non-metallic minerals

technology
Parameter

Year [-]

2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050

Bricks (existing)

TIMES 5.47 5.17 4.56 3.95 3.34 2.74 2.13 1.52 0.91

Temoa 5.48 5.17 4.56 3.95 3.34 2.73 2.13 1.52 0.91

Relative error [%] 0.15 0.04 0.00 -0.05 -0.12 -0.22 0.09 0.00 0.00

Production share[%] 88.10 98.82 96.77 94.11 80.08 61.99 48.15 33.62 19.34

Bricks (new)

TIMES 0.74 0.06 0.15 0.25 0.83 1.68 2.29 3.00 3.80 5.01 5.42 6.20 6.94

Temoa 0.76 0.06 0.15 0.25 0.84 1.71 2.31 3.03 3.83 5.03 5.44 6.23 6.98

Relative error [%] 2.79 -7.56 -1.41 1.19 0.48 1.68 0.88 0.80 0.67 0.48 0.52 0.53 0.49

Production share [%] 11.90 1.18 3.23 5.89 19.92 38.01 51.85 66.38 80.66 100.00 100.00 100.00 100.00

Bricks technologies average error [%] 0.46 0.13 0.05 0.12 0.19 0.77 0.50 0.53 0.54 0.48 0.52 0.53 0.49

Dry cement kilns (existing)

TIMES 34.23 29.10 25.84 23.16 23.82 20.84 17.86 14.88 11.91 7.44

Temoa 34.20 29.10 26.00 23.21 23.80 20.80 17.80 14.90 11.90 7.43

Relative error [%] -0.10 0.00 0.61 0.18 -0.06 -0.18 -0.34 0.10 -0.06 -0.16

Production share [%] 69.99 70.65 69.63 70.05 72.42 59.95 51.32 41.80 32.06 18.86

Wet cement kilns (existing)

TIMES 13.65 11.60 10.23 8.87 8.04 8.31 7.12 5.93 4.75 2.97

Temoa 13.70 11.60 10.20 8.88 8.10 8.34 7.15 5.96 4.77 2.98

Relative error [%] 0.40 0.01 -0.34 0.12 0.75 0.41 0.43 0.46 0.50 0.46

Production share [%] 27.90 28.16 27.58 26.82 24.44 23.90 20.46 16.66 12.78 7.52

Dry cement kilns (new)

TIMES 1.03 0.49 1.03 1.03 1.03 5.61 9.82 14.79 20.48 29.05 42.65 48.82 54.68

Temoa 1.00 0.48 0.90 1.00 1.00 5.60 9.84 14.74 20.46 29.02 42.63 48.81 54.64

Relative error [%] -3.56 -2.53 -12.99 -3.56 -3.56 -0.26 0.13 -0.34 -0.11 -0.11 -0.04 -0.02 -0.06

Production share [%] 2.11 1.18 2.79 3.13 3.15 16.15 28.22 41.54 55.16 73.62 100.00 100.00 100.00

Cement technologies average error [%] 0.26 0.03 0.88 0.27 0.34 0.25 0.30 0.26 0.14 0.14 0.04 0.02 0.06

Continued on page 123

123

Continued from page 122

Glass (existing)

TIMES 3.64 3.13 2.82 2.51 2.50 2.22 1.90 1.58 1.27 0.79

Temoa 3.64 3.13 2.82 2.52 2.50 2.22 1.90 1.58 1.27 0.79

Relative error [%] 0.00 0.03 0.04 0.10 0.08 0.20 0.05 -0.16 0.31 -0.04

Production share [%] 97.89 100.00 100.00 100.00 100.00 83.85 71.78 58.46 44.84 26.38

Glass (new)

TIMES 0.08 0.00 0.00 0.00 0.00 0.43 0.75 1.12 1.56 2.21 3.24 3.71 4.16

Temoa 0.08 0.00 0.00 0.00 0.00 0.42 0.75 1.13 1.56 2.21 3.25 3.71 4.16

Relative error [%] 4.09 NaN4 NaN4 NaN4 NaN4 -0.61 0.12 0.47 -0.06 0.08 0.09 0.10 0.06

Production share [%] 2.11 0.00 0.00 0.00 0.00 16.15 28.22 41.54 55.16 73.62 100.00 100.00 100.00

Glass technologies average error [%] 0.09 0.03 0.04 0.10 0.08 0.26 0.07 0.29 0.17 0.07 0.09 0.10 0.06

Lime (existing)

TIMES 5.19 4.41 3.91 3.47 3.45 3.16 2.71 2.26 1.81 1.13

Temoa 5.19 4.41 3.91 3.47 3.45 3.16 2.71 2.26 1.81 1.13

Relative error [%] 0.00 -0.03 -0.08 -0.03 -0.05 0.03 0.08 0.15 0.26 0.15

Production share [%] 97.89 98.82 97.21 96.87 96.85 83.85 71.78 58.46 44.84 26.38

Lime (new)

TIMES 0.11 0.05 0.11 0.11 0.11 0.61 1.06 1.60 2.22 3.15 4.62 5.29 5.93

Temoa 0.12 0.06 0.12 0.12 0.12 0.61 1.07 1.60 2.22 3.15 4.63 5.30 5.93

Relative error [%] 4.22 5.64 4.22 4.22 4.22 0.29 0.05 0.03 -0.02 0.01 0.09 0.10 0.06

Production share [%] 2.11 1.18 2.79 3.13 3.15 16.15 28.22 41.54 55.16 73.62 100.00 100.00 100.00

Lime technologies average error [%] 0.09 0.10 0.20 0.16 0.18 0.07 0.07 0.10 0.13 0.05 0.09 0.10 0.06

4 It is not possible to derive the relative error, since the production is equal to 0.

124

Table 66. Breakout by fuel of energy consumption for "Non-metallic minerals" subsector and relative error evaluation between TIMES-Italia and Temoa-Italia results.

Fuel Parameter
Year [-]

2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050

Total

TIMES-Italia consumption [PJ] 350.64 306.22 273.75 241.19 227.34 225.29 211.78 201.43 194.02 182.30 186.00 212.90 238.46

Temoa-Italia consumption [PJ] 362.06 305.77 273.16 241.29 227.66 225.64 212.47 202.39 195.40 184.32 189.56 214.34 236.55

Relative error [%] 3.26 -0.15 -0.22 0.04 0.14 0.15 0.33 0.48 0.71 1.11 1.91 0.67 -0.80

Fuel share [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Machine

drive

TIMES-Italia consumption [PJ] 31.37 27.67 24.52 21.58 20.29 17.98 15.01 12.03 9.06 4.60

Temoa-Italia consumption [PJ] 32.53 27.68 24.85 21.60 20.31 17.99 15.01 12.05 9.07 4.60

Relative error [%] 3.70 0.06 1.33 0.11 0.09 0.00 0.02 0.15 0.16 0.05

Fuel share [%] 8.99 9.05 9.10 8.95 8.92 7.97 7.07 5.96 4.64 2.50

Steam

TIMES-Italia consumption [PJ] 15.69 14.21 12.60 11.04 10.00 8.57 6.99 5.41 3.83 1.46

Temoa-Italia consumption [PJ] 16.68 14.22 12.60 11.18 10.15 8.70 7.00 5.41 3.83 1.46

Relative error [%] 6.34 0.01 -0.01 1.33 1.45 1.45 0.02 -0.07 0.07 -0.21

Fuel share [%] 4.61 4.65 4.61 4.63 4.46 3.86 3.29 2.67 1.96 0.79

Biomass

TIMES-Italia consumption [PJ] 8.56 7.18 6.53 5.87 6.03 6.44 6.74 7.21 7.83 8.74 10.00 11.45 12.82

Temoa-Italia consumption [PJ] 8.53 7.16 6.65 5.87 6.02 6.42 6.73 7.22 7.87 8.82 10.17 11.50 12.69

Relative error [%] -0.39 -0.28 1.96 -0.02 -0.23 -0.20 -0.09 0.25 0.46 0.87 1.67 0.51 -0.99

Fuel share [%] 2.36 2.34 2.44 2.43 2.64 2.85 3.17 3.57 4.03 4.78 5.36 5.37 5.37

Coal

TIMES-Italia consumption [PJ] 26.81 22.38 21.20 18.89 18.26 27.56 34.83 43.69 54.01 69.21 93.25 106.74 119.56

Temoa-Italia consumption [PJ] 27.49 22.42 19.53 18.97 17.96 27.44 34.95 43.94 54.63 70.39 95.96 108.70 119.80

Relative error [%] 2.53 0.20 -7.89 0.43 -1.64 -0.46 0.33 0.58 1.14 1.71 2.90 1.84 0.20

Fuel share [%] 7.59 7.33 7.15 7.86 7.89 12.16 16.45 21.71 27.96 38.19 50.62 50.72 50.64

Coke

TIMES-Italia consumption [PJ] 0.16 0.16 0.14 0.12 0.12 0.10 0.09 0.07 0.06 0.04

Temoa-Italia consumption [PJ] 0.16 0.38 0.43 0.41 0.40 0.08 0.06 0.04 0.03 0.00

Relative error [%] -4.76 141.20 210.94 246.17 238.96 -23.43 -30.47 -40.46 -55.27 -100.00

Fuel share [%] 0.04 0.12 0.16 0.17 0.17 0.03 0.03 0.02 0.01 0.00

Continued on page 125

125

Continued from page 124

Electricity

TIMES-Italia consumption [PJ] 14.32 12.39 11.16 9.83 9.12 10.85 11.84 13.21 14.95 17.48 22.80 26.09 29.22

Temoa-Italia consumption [PJ] 14.07 12.08 10.70 9.58 9.89 12.09 13.21 14.53 16.19 18.63 21.20 23.95 26.45

Relative error [%] -1.71 -2.48 -4.07 -2.55 8.54 11.43 11.56 9.94 8.33 6.60 -6.99 -8.22 -9.48

Fuel share [%] 3.89 3.95 3.92 3.97 4.35 5.36 6.22 7.18 8.29 10.11 11.19 11.17 11.18

Heavy fuel

oil

TIMES-Italia consumption [PJ] 13.59 11.90 10.80 9.50 8.68 9.81 10.31 11.09 12.15 13.69 17.29 19.79 22.17

Temoa-Italia consumption [PJ] 14.38 11.87 10.33 9.48 8.68 9.90 10.50 11.37 12.57 14.32 18.29 20.75 22.83

Relative error [%] 5.82 -0.23 -4.40 -0.12 0.00 0.90 1.92 2.47 3.45 4.56 5.78 4.87 3.00

Fuel share [%] 3.97 3.88 3.78 3.93 3.81 4.39 4.94 5.62 6.43 7.77 9.65 9.68 9.65

LPG

TIMES-Italia consumption [PJ] 6.60 5.66 5.01 4.43 4.31 3.94 3.35 2.77 2.18 1.38

Temoa-Italia consumption [PJ] 6.56 5.63 4.98 4.41 4.29 3.93 3.34 2.76 2.18 1.30

Relative error [%] -0.70 -0.59 -0.60 -0.58 -0.51 -0.39 -0.31 -0.18 -0.02 -5.74

Fuel share [%] 1.81 1.84 1.82 1.83 1.89 1.74 1.57 1.36 1.11 0.70

Natural gas

TIMES-Italia consumption [PJ] 125.54 113.34 100.88 88.40 80.53 71.67 61.38 51.45 41.84 27.28 20.77 23.78 26.63

Temoa-Italia consumption [PJ] 132.94 113.05 100.39 88.18 79.85 70.71 60.40 50.33 40.72 26.11 21.61 24.27 26.91

Relative error [%] 5.89 -0.26 -0.49 -0.25 -0.85 -1.33 -1.60 -2.17 -2.67 -4.27 4.04 2.07 1.05

Fuel share [%] 36.72 36.97 36.75 36.55 35.08 31.34 28.43 24.87 20.84 14.17 11.40 11.32 11.38

Oil

products

TIMES-Italia consumption [PJ] 1.78 1.06 0.94 0.81 0.72 3.71 5.83 8.32 11.16 15.35 21.89 25.05 28.06

Temoa-Italia consumption [PJ] 2.44 1.04 0.92 0.80 0.71 3.73 5.90 8.46 11.31 15.61 22.33 25.15 27.86

Relative error [%] 37.09 -1.69 -1.93 -1.58 -1.13 0.40 1.20 1.70 1.37 1.71 2.02 0.41 -0.70

Fuel share [%] 0.67 0.34 0.34 0.33 0.31 1.65 2.78 4.18 5.79 8.47 11.78 11.74 11.78

Petroleum

coke

TIMES-Italia consumption [PJ] 106.21 90.28 79.96 70.72 69.28 64.65 55.41 46.18 36.94 23.09

Temoa-Italia consumption [PJ] 106.27 90.24 81.77 70.79 69.41 64.66 55.37 46.27 36.99 23.10

Relative error [%] 0.06 -0.04 2.26 0.11 0.18 0.01 -0.07 0.20 0.12 0.04

Fuel share [%] 29.35 29.51 29.94 29.34 30.49 28.66 26.06 22.86 18.93 12.53

126

Table 64 reports the absolute values of the produced non-metallic

minerals both evaluated with TIMES-Italia and Temoa-Italia, and the relative

error between them. It is relevant that for each product and year, the error is

within the tolerance interval to guarantee (±1%). Table 65 lists the annual

contribution of each non-metallic minerals technology to the production of the

correspondent non-metallic product while Table 66 shows the detail of fuels

consumed by “Non-metallic minerals” subsector, with the absolute values of

energy consumption evaluated both with TIMES and Temoa, the relative error

between the two models and fuel share (evaluated on the basis of Temoa

values) for each optimization year. Both for Table 65 and Table 66, focusing on

the relative errors, a large variance should be highlighted in the numeric

values evaluated for each technology and fuel consumption. This is mainly

due to the fact that for some technologies and fuels, characterized by a low

share with respect to the total production or energy consumption, also errors

due to parameters approximation (normally negligible) become relevant. This

means that a way to give different importance to the relative errors is needed,

also considering the production or fuel consumption share on the total.

This is achieved deriving an average relative error (weighted on the

correspondent share, according to Equation 29) between Temoa and TIMES

results for each optimization year. It is possible to draw an error curve, with

the average relative error evolution in the time, for the entire time horizon.

erravg[%] = ∑|erri[%]| ∗ f i[%]

i

 (29)

Concerning the production by technologies, Figure 17 shows the

average relative error evaluated for each non-metallic product, as already

reported in Table 65. From the shape of the curves, it should be highlighted

that the errors associated to the technologies’ development are below the

tolerance value along the entire time horizon. In the first years, higher error

values can be noted, probably due to the fact that the base year (2006) is treated

in a different way by the two tools. Indeed, in TIMES it is included in the

optimization and in the results, while Temoa only evaluates results for the

time periods labeled as “future” (in the Temoa-Italia case starting from 2007).

127

This difference could have an impact on the first years’ results accuracy, being

the production in those year largely due to the base year technologies.

Figure 17. Average relative error (weighted on production shares) for "Non-metallic minerals"

subsector technologies. Black line is used to represent the +1% tolerance value.

Figure 18 shows the computed relative error trend for fuel consumption

(derived by data in Table 66, according to Equation 29).

Figure 18. Average relative error (weighted on fuel shares) for "Non-metallic minerals" subsector fuel

consumption. Black line is used to represent the +1% tolerance value.

128

In this case, the average error overcome the 1% tolerance almost for the

entire time horizon (with the exceptions of 2008 and 2012). The first comment

that can be done, is that error is higher in correspondence of the first

simulation years (notably for 2007) and for 2030. Two reasons can explain this

behavior. Concerning the first years, as already said before commenting

Figure 17, this is probably due to the difference modeling of the base year

between the two tools. For 2030, it should be remembered that this is the year

at which the disposal of base-year technologies is forced (maximum activity

imposed equal to 0). Probably the 2030, completing the shift from base year

technologies to the new ones, is a critical year from the point of view of results

accuracy. Anyway, it is of course true that, comparing results for the single

fuel consumption, errors become higher with respect to simply analyze the

total non-metallic minerals production and technologies’ utilization, not only

for 2007 and 2030 but generally. Energy consumption for single fuel is derived

by the model taking into account several parameters: technologies’ efficiency,

constraints on fuel input share, constraints on commodity output share etc.

For that reason, it was predictable that the total accuracy would be lower, at

this degree of detail for the analyses. A reassuring comment consists in noting

that, in any case, the average error remains on relatively low values (in any

case less than 4%).

Energy consumption results evaluated by the two tools, split by fuel,

are also presented in Figure 19 and Figure 20. These figures allow to appreciate

the qualitative similarity of the results, in addition to the numerical evaluation

of errors already provided.

It is important to remember again that these results are not significant

from the point of view of the energy mix evolution, both for the period for

which historical data of real fuel consumption are available (2006-2018) and

for the future period for which the model provides forecasts (2020-2050). This

is due to the fact that some important constraints (present in TIMES-Italia) are

still not implemented in Temoa-Italia, as already said in Section 1.1 (and of

course for that reason relative files have been also deselected for the TIMES

optimization). For this reason, for example, the important increasing of the

coal consumption shown in the figures is not realistic. In other words, the

129

current results are useful only to prove that models provide the same results,

independently on their significance for energy forecast.

Figure 19. Energy consumption split by fuel for "non-metallic minerals" industrial subsector,

obtained from TIMES-Italia and Temoa-Italia.

Figure 20. Comparison of TIMES-Italia and Temoa-Italia results split by fuel, detail for 2020, 2030,

2040 and 2050 results.

130

Chapter 5

5. Conclusions and perspective

Temoa-Italia constitutes a valid open-source alternative as an

optimization model of the Italian energy system. Certainly, the model needs

to be completed with the missing sets of constraints, which allow not only to

obtain the same results as TIMES-Italia, but also that these results make sense

and are consistent, both with the real historical evolution of the energy mix

and the expectations on its future evolution.

However, already at the current stage of development of the model, the

objectives of the thesis have been achieved:

a. The TIMES-Italia model has been completely reviewed and

updated, particularly with new technologies transport and

industry modules, also performing updates on the calibration at

the base year.

b. The new Temoa-Italia model database has been developed,

translating in open-source format the same information

contained in the TIMES-Italia dataset and developing

integration to the Temoa framework, expanding its capabilities,

and simplifying the data preprocessing. It is an important point

having the perspective to perform further studies and works

analyzes with Temoa.

c. The results obtained both with TIMES-Italia and Temoa-Italia

have been compared in detail (as part of the thesis treatment,

only for one industrial subsector) and it has been demonstrated

that differences are contained in a certain acceptable tolerance

interval or, where not, motivations for this have been provided.

This has been done to validate the results reliability of Temoa

with respect to a well-established commercial tool such as the

TIMES model generator.

Having demonstrated that Temoa framework can be a valid alternative

in the context of energy system modeling, it can be now used as a reference

tool on which modifications or integrations on the optimization paradigms can

131

be executed. This would be a more significant contribution to the transparency

of scientific research in the context of scenario analysis, guaranteeing also

third-part verification and the accessibility of data and tools exploited by

modelers to a more and more large audience, without any commercial

restriction.

Starting from the Temoa framework and, in this case, from Temoa-

Italia, also future studies and developments are possible. First, a sustainability

analysis could be integrated into the model; it is possible to do it, at least at the

beginning, as a postprocessing of the results, in other to derive a set of

indicators to evaluate the energy mix (evaluated on the classic economic

optimization) from the sustainability point of view. However, as soon as those

indicators will prove to be adequate and consistent with the purpose to assess

the technologies environmental and social sustainability, they should be

integrated in the tecno-economic characterization of the technologies included

in the model database. This is fundamental to take into account the

sustainability levels during the optimization process, for example with a

multi-objective function, considering of course the total cost as optimization

criterion, but also the sustainability level of the energy mix and any other

indicators of interest.

Subsequently, it would certainly be desirable and necessary to apply

the same concepts of open-source and extended optimization paradigm no

longer only to a model limited to the Italian case, but to an international model.

132

Acknowledgements

Nell’ultima (spero) delle notti insonni che dedico a questa tesi, metto in

ordine qualche appunto che ho preso nel corso delle scorse settimane,

pensando a cosa scrivere in questa pagina di ringraziamenti. Approcciandomi

a scrivere queste righe avverto un misto di banalità e imbarazzo, eppure sento

il bisogno di rendere partecipe di questo mio piccolo traguardo chi ha

condiviso con me anche solo un pezzetto del percorso di questi ultimi anni.

Certamente lo farò in maniera non esaustiva.

Grazie, prima di tutto, a chi mi ha permesso di essere qui oggi. Alla mia

famiglia, che mi ha sostenuto materialmente ed emotivamente in questi anni

universitari. Ai miei genitori, che hanno accolto la scelta di allontanami da casa

sei anni fa. Grazie papi, per avermi testimoniato il valore della famiglia e del

lavoro, per essere per me un punto di riferimento. Grazie mamma, per i

sacrifici che hai sempre fatto e continui a fare per tutti noi. Grazie Marco,

perché penso che in molte cose sei un passo avanti. Grazie nonna Lucia per la

tua allegria e grazie nonna Liliana per la tua presenza anche da lontano. Grazie

nonno Giorgio e nonno Nino.

Grazie ai miei zii e cugini.

Grazie a chi, tra i primi “colleghi” che ho incontrato nelle grigie aule del

Politecnico, c’è ancora adesso. Grazie a Gianpaolo, per la sua profondità, e

grazie a Simone, per la sua presenza costante seppur a distanza e il suo

coraggio.

Grazie a chi invece ho incontrato strada facendo, ai “colleghi

energetici”. In particolare, grazie a Chiara (per la tua capacità di ascolto e per

Conca del Pra), a Silvio (per la tua scioltezza e rilassatezza), a Jonas e a

Francesco (per essere un esempio di dedizione e tenacia).

Grazie a chi condivide con me le proprie vacanze, ai miei amici

Marinesi da cui mi sono allontanato e progressivamente sento di continuare

ad allontanarmi. Grazie per la spensieratezza che sapete donarmi quando

necessario.

133

Grazie a chi, all’inizio del mio percorso da fuorisede, mi ha offerto

l’opportunità di sentirmi parte di una comunità fin dall’inizio. Grazie al Torino

110, che ha saputo accogliermi e accompagnarmi verso la Partenza. Grazie a

Marco, per essere stato un amico prima che un capo. Grazie ai miei compagni

di clan, a coloro con cui ho vissuto la ricchezza della diversità. Grazie a Giulia

Greco, per la nostra amicizia che spero di riuscire a riscoprire.

Grazie al Torino 24. E qui mi sarà concessa qualche parola in più. Grazie

dell’accoglienza che mi è stata offerta fin da subito, “a scatola chiusa”. Grazie

alla Comunità Capi per essere, in ciascun suo componente, testimone viva e

quotidiana di servizio, per la fatica e la gioia che condividiamo, per il senso di

famiglia che respiro nel riunirci (nonostante le nostre tante imperfezioni).

Grazie a chi ha sopportato il mio modo di essere in staff in questi

quattro anni. Grazie del dialogo intenso, del confronto e della mediazione.

Grazie a chi c’è sempre stato e a chi ci sarà, grazie per le risate e per i pianti

profondi. Grazie in particolare, alla mia ultima staff in Reparto. Grazie a

Letizia. Grazie a MG per esserci sempre. Per quest’ultimo anno, grazie a Benni;

per gli accordi e i disaccordi, per essere stata la mia memoria e per sostenere

con forza le tue idee, quando pensi che sia necessario.

Grazie al Reparto Antingo e alla Comunità R/S Aquile Randagie, per

essere stati ed essere ancora la più grande “sfida” della mia vita ed avermi

davvero reso “un po’ migliore di come mi avete trovato”. Specialmente, grazie

ad Anto R., Anto S., Elena, Elli, Ema, Fede, Rebecca, Vale e Vera, per essere la

mia gioia e la mia debolezza.

Infine, grazie a Daniele, per la tua pazienza nell’accompagnarmi a

scoprire tante cose per me nuove, per esserci sempre e per andare al di là dei

ruoli e delle formalità. Grazie ad Antonio per aver vissuto in parallelo a me

questo percorso di tesi e a tutto il gruppo di ricerca MAHTEP, che spero di

avere l’opportunità di conoscere meglio anche in futuro.

Grazie a Laura Savoldi. Per aver creduto in me, anche quando non ne

avrebbe avuto alcun motivo e per continuare a crederci anche oggi. Per

offrirmi quotidianamente una testimonianza di servizio, dedizione al lavoro e

ascolto del prossimo.

134

Grazie anche un po’ a me stesso, per le mie tante paure e debolezze, per

lo stupore che nasce dai piccoli gesti di coraggio che scelgo di fare. Per le

“piccole meraviglie” che ho vissuto e che fanno parte di me. Per tutto ciò che

mi aspetta e che attendo di scoprire.

135

References

[1] IPCC, "Climate Change 2014 Synthesis Report Summary for

Policymakers," February 2018. [Online]. Available:

https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.

pdf. [Accessed 29 June 2021].

[2] UNFCCC, "Kyoto Protocol to the United Nations Framework Convention

on Climate Change," 1998. [Online]. Available:

https://unfccc.int/resource/docs/convkp/kpeng.pdf. [Accessed 29 June

2021].

[3] European Commission, "Paris Agreement," [Online]. Available:

https://ec.europa.eu/clima/policies/international/negotiations/paris_en.

[Accessed 27 June 2021].

[4] Ministero dello Sviluppo Economico, Ministero della Transizione

Ecologica, "Strategia Energetica Nazionale," 10 November 2017. [Online].

Available:

https://www.minambiente.it/sites/default/files/archivio/allegati/testo-

integrale-sen-2017.pdf. [Accessed 29 June 2021].

[5] Ministero dello Sviluppo Economico, Ministero della Transizione

Ecologica, Ministero delle Infrastrutture e dei Trasporti, "PNIEC (Piano

Nazionale Integratio per l'Energia e il Clima)," 17 January 2020. [Online].

Available:

https://www.mise.gov.it/images/stories/documenti/PNIEC_finale_170120

20.pdf. [Accessed 24 June 2021].

[6] IRENA, "Planning for the renewable future: Long-term modelling and

tools to expand variable renewable power in emerging economies,"

January 2017. [Online]. Available:

https://www.irena.org/publications/2017/Jan/Planning-for-the-

renewable-future-Long-term-modelling-and-tools-to-expand-variable-

renewable-power. [Accessed 28 June 2021].

[7] M. G. Prina, G. Manzolini, D. Mosera, B. Nastasic and W. Sparbera,

"Classification and challenges of bottom-up energy system models - A

136

review," Renewable and Sustainable Energy Reviews, vol. 129, no.

109917, 2020.

[8] IEA-ETSAP, "TIMES," [Online]. Available: https://iea-

etsap.org/index.php/etsap-tools/model-generators/times. [Accessed 16

June 2021].

[9] R. Vicente-Saez, R. Gustafsson and L. d. Brande, "The dawn of an open

exploration era: Emergent principles and practices of open science and

innovation of university research teams in a digital world," Technological

Forecasting and Social Change, vol. 156, no. 120037, 2020.

[10] European Commission, "The EU's open science policy," [Online].

Available: https://ec.europa.eu/info/research-and-

innovation/strategy/strategy-2020-2024/our-digital-future/open-

science_en#the-eus-open-science-policy. [Accessed 26 June 2021].

[11] R. Morrison, "Energy system modeling: Public transparency,

scientificreproducibility, and open development," Energy Strategy

Reviews, vol. 20, pp. 49-63, 2018.

[12] OSeMOSYS community, "OSeMOSYS Open Source Energy Modelling

System," [Online]. Available: http://www.osemosys.org/. [Accessed 30

June 2021].

[13] North Carolina State University, "Temoa Tools for Energy Model

Optimization and Analysis," [Online]. Available:

https://temoacloud.com/. [Accessed 22 June 2021].

[14] ENEA, "IL MODELLO ENERGETICO TIMES-Italia," 2011. [Online].

Available: https://biblioteca.bologna.enea.it/RT/2011/2011_9_ENEA.pdf.

[Accessed 12 November 2020].

[15] ENEA, "ENEA," [Online]. Available: https://www.enea.it/. [Accessed 26

June 2021].

[16] United Nations, Department of Economic and Social Affairs, "Sustainable

Development Goals," [Online]. Available: https://sdgs.un.org/goals.

[Accessed 27 June 2021].

137

[17] IEA, "World Energy Balances," [Online]. Available:

https://www.iea.org/data-and-statistics/data-product/world-energy-

balances. [Accessed 16 June 2021].

[18] "IEA ETSAP - Cooking Appliances," [Online]. Available: https://iea-

etsap.org/E-TechDS/PDF/R06_Cooking_FINAL_GSOK.pdf.

[19] GSE, "Valutazione del potenziale nazionale e regionale di applicazione

della cogenerazione ad alto rendimento e del teleriscaldamento

efficiente," 2016. [Online]. Available:

https://ec.europa.eu/energy/sites/ener/files/documents/it_potenziale_car_

tlr_nazionale_e_regionale_dic_2016.pdf. [Accessed 28 11 2020].

[20] RSE, "Analisi tecnico-economica di interventi di riqualificazione

energetica del parco edilizio residenziale italiano," [Online]. Available:

http://www.rse-web.it/documenti/documento/315557. [Accessed 28 11

2020].

[21] EUROfusion, "ETM Model," [Online]. Available:

https://collaborators.euro-fusion.org/collaborators/socio-

economics/economics/model/. [Accessed 21 June 2021].

[22] EUROfusion, "EUROfusion," [Online]. Available: https://www.euro-

fusion.org/. [Accessed 21 June 2021].

[23] MISE, "Bollettino petrolifero - Anno 2017," [Online]. Available:

https://dgsaie.mise.gov.it/bollettino-petrolifero?anno=2017. [Accessed 21

June 2021].

[24] JRC, "JRC-EU-TIMES model," [Online]. Available:

https://ec.europa.eu/jrc/en/scientific-tool/jrc-eu-times-model-assessing-

long-term-role-energy-technologies. [Accessed 21 June 2021].

[25] GSE, "Conto Energia," [Online]. Available: https://www.gse.it/servizi-

per-te/fotovoltaico/conto-energia. [Accessed 04 July 2021].

[26] J. DeCarolis, K. Hunter and S. Sreepathi, "The TEMOA Project: Tools for

Energy Model Optimization and Analysis," 23 June 2010. [Online].

Available: https://temoacloud.com/wp-

138

content/uploads/2019/12/DeCarolis_IEW2010_paper.pdf. [Accessed 30

June 2021].

[27] J. DeCarolis, K. Hunter and S. Sreepathi, "Multi-stage stochastic

optimization of a simple energy system," 21 June 2012. [Online].

Available: https://temoacloud.com/wp-

content/uploads/2019/12/DeCarolis_IEW2012_paper.pdf. [Accessed 30

June 2021].

[28] J. DeCarolis, S. Sreepathi, K. Hunter, B. Li and S. Kanungo, "Energy

Scenario Exploration with Modeling to Generate Alternatives (MGA),"

2012. [Online]. Available:

https://arxiv.org/ftp/arxiv/papers/1912/1912.03788.pdf. [Accessed 30 June

2021].

[29] KTH Royal Institute of Technology, "2015 OSeMOSYS User Manual,"

2015. [Online]. Available:

http://www.osemosys.org/uploads/1/8/5/0/18504136/new-

website_osemosys_manual_-_working_with_text_files_-_2015-11-05.pdf.

[Accessed 24 September 2020].

[30] "GLPK (GNU Linear Programming Kit)," [Online]. Available:

https://www.gnu.org/software/glpk/. [Accessed 22 June 2021].

[31] IBM, "IBM ILOG CPLEX Optimization Studio," [Online]. Available:

https://www.ibm.com/products/ilog-cplex-optimization-studio.

[Accessed 22 June 2021].

[32] J. M. M. P. a. M. J. J. Czyzyk, "The NEOS Server," IEEE Journal on

Computational Science and Engineering, vol. 5, no. 3, pp. 68-75, 1998.

[33] W. a. M. J. J. Gropp, "Optimization Environments and the NEOS Server,"

Approximation Theory and Optimization, Vols. M. D. Buhmann and A.

Iserles, eds., Cambridge University Press, p. 167.182, 1997.

[34] E. Dolan, "The NEOS Server 4.0 Administrative Guide," 2001. [Online].

Available: https://www.mcs.anl.gov/papers/TM-250.pdf. [Accessed 22

June 2021].

139

[35] Gurobi Optimization, "Gurobi Optimization," [Online]. Available:

https://www.gurobi.com/. [Accessed 22 June 2021].

[36] KanORS-EMR, "VEDA-BE," [Online]. Available: https://www.kanors-

emr.org/veda-be. [Accessed 23 June 2021].

[37] D. Lerede, C. Bustreo, F. Gracceva, Y. Lechón and L. Savoldi, "Analysis of

the Effects of Electrification of the Road Transport Sector on the Possible

Penetration of Nuclear Fusion in the Long-Term European Energy Mix,"

Energies, vol. 13, 2020.

[38] D. Lerede, C. Bustreo, F. Gracceva, M. Saccone and L. Savoldi, "Techno-

economic and environmental characterization of industrial technologies

for transparent bottom-up energy modeling," Renewable and Sustainable

Energy Reviews, vol. 140, 2021.

140

Appendix

A. Database preprocessing

import pandas as pd
import numpy as np
import sqlite3

database_name = "Industry.sqlite"
lifetime_default = 40

print_set = {'LifetimeProcess': False,
 'Efficiency': False,
 'TechInputSplit': False,
 'TechOutputSplit': False,
 'EmissionActivity': False,
 'CostInvest': False,
 'CostFixed': False,
 'CostVariable': False,
 'MinCapacity': False,
 'MinActivity': False,
 'MaxCapacity': False,
 'MaxActivity': False,
 'AvailabilityFactor': False,
 'Demand': False,
 'CapacityFactorProcess': False,
 'CapacityCredit': False}

tosql_set = {'LifetimeProcess': True,
 'Efficiency': True,
 'TechInputSplit': True,
 'TechOutputSplit': True,
 'EmissionActivity': True,
 'CostInvest': True,
 'CostFixed': True,
 'CostVariable': True,
 'MinCapacity': True,
 'MinActivity': True,
 'MaxCapacity': True,
 'MaxActivity': True,
 'AvailabilityFactor': True,
 'Demand': True,
 'CapacityFactorProcess': True,
 'CapacityCredit': True}

LifetimeProcess

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
LifetimeProcess = pd.read_sql("select * from LifetimeProcess", conn)

regions = list()
tech = list()
vintage = list()
life_process = list()
life_process_notes = list()

tech_already_considered=list()
for i_tech in range(0, len(LifetimeProcess.tech)):
 tech_i = LifetimeProcess.tech[i_tech]

 flag_check = 0
 for check in range(0, len(tech_already_considered)):

141

 if tech_i == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(LifetimeProcess.tech)):
 if LifetimeProcess.tech[j_tech] == tech_i:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i)

 if flag == 0: # No other values

 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= LifetimeProcess.vintage[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(LifetimeProcess.regions[i_tech])
 tech.append(LifetimeProcess.tech[i_tech])
 vintage.append(int(time_periods.t_periods[i_year]))
 life_process.append(int(LifetimeProcess.life_process[i_tech]))
 life_process_notes.append(LifetimeProcess.life_process_notes[i_tech])

 else:
 for i_location in range(0, len(location)-1):
 year1 = LifetimeProcess.vintage[location[i_location]]
 year2 = LifetimeProcess.vintage[location[i_location+1]]
 life1 = LifetimeProcess.life_process[location[i_location]]
 life2 = LifetimeProcess.life_process[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 regions.append(LifetimeProcess.regions[i_tech])
 tech.append(LifetimeProcess.tech[i_tech])
 vintage.append(int(year))
 life_process.append(life1) #int(life1 + (year-year1)/(year2-
year1)*(life2-life1))

life_process_notes.append(LifetimeProcess.life_process_notes[i_tech])

 year_last = LifetimeProcess.vintage[location[i_location+1]]
 cost = LifetimeProcess.life_process[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]:
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(LifetimeProcess.regions[i_tech])
 tech.append(LifetimeProcess.tech[i_tech])
 vintage.append(int(year))

life_process.append(int(LifetimeProcess.life_process[location[i_location + 1]]))

life_process_notes.append(LifetimeProcess.life_process_notes[i_tech])
 else:
 regions.append(LifetimeProcess.regions[i_tech])
 vintage.append(int(year_last))
 tech.append(LifetimeProcess.tech[i_tech])
 life_process.append(int(LifetimeProcess.life_process[location[i_location +
1]]))
 life_process_notes.append(LifetimeProcess.life_process_notes[i_tech])

LifetimeProcess_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "tech": pd.Series(tech, dtype='str'),
 "vintage": pd.Series(vintage, dtype='int'),

142

 "life_process": pd.Series(life_process, dtype='int'),
 "life_process_notes": pd.Series(life_process_notes, dtype='str')
 }
)

if tosql_set['LifetimeProcess']:
 LifetimeProcess_DF.to_sql("LifetimeProcess", conn, index=False, if_exists='replace')

if print_set['LifetimeProcess']:
 pd.set_option('display.max_rows', len(LifetimeProcess_DF))
 pd.set_option('display.max_columns', len(LifetimeProcess_DF))
 print("\nLifetimeProcess DataFrame\n\n", LifetimeProcess_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = 1
print('[',print_i,'/',len(print_set),'] LifetimeProcess updated...')

Efficiency

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
Efficiency = pd.read_sql("select * from Efficiency", conn)

regions = list()
input_comm = list()
tech = list()
vintage = list()
output_comm = list()
efficiency = list()
eff_notes = list()

tech_already_considered=list()
for i_tech in range(0, len(Efficiency.tech)):
 tech_i = Efficiency.tech[i_tech]

 flag_check = 0
 tech_i_check = Efficiency.input_comm[i_tech] + tech_i + Efficiency.output_comm[i_tech]
 for check in range(0, len(tech_already_considered)):
 if tech_i_check == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(Efficiency.tech)):
 tech_j_check = Efficiency.input_comm[j_tech] + Efficiency.tech[j_tech] +
Efficiency.output_comm[j_tech]
 if tech_j_check == tech_i_check:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i_check)

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= Efficiency.vintage[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(Efficiency.regions[i_tech])
 input_comm.append(Efficiency.input_comm[i_tech])
 tech.append(Efficiency.tech[i_tech])
 vintage.append(int(time_periods.t_periods[i_year]))
 output_comm.append(Efficiency.output_comm[i_tech])

efficiency.append(float(np.format_float_scientific(Efficiency.efficiency[i_tech], 2)))
 eff_notes.append(Efficiency.eff_notes[i_tech])

 else:

143

 for i_location in range(0, len(location)-1):
 year1 = Efficiency.vintage[location[i_location]]
 year2 = Efficiency.vintage[location[i_location+1]]
 eff1 = Efficiency.efficiency[location[i_location]]
 eff2 = Efficiency.efficiency[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 regions.append(Efficiency.regions[i_tech])
 input_comm.append(Efficiency.input_comm[i_tech])
 tech.append(Efficiency.tech[i_tech])
 vintage.append(int(year))
 output_comm.append(Efficiency.output_comm[i_tech])
 efficiency.append(float(np.format_float_scientific(eff1 + (year-
year1)/(year2-year1)*(eff2-eff1), 2)))
 eff_notes.append(Efficiency.eff_notes[i_tech])

 year_last = Efficiency.vintage[location[i_location+1]]
 eff = Efficiency.efficiency[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]:
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(Efficiency.regions[i_tech])
 input_comm.append(Efficiency.input_comm[i_tech])
 tech.append(Efficiency.tech[i_tech])
 vintage.append(int(year))
 output_comm.append(Efficiency.output_comm[i_tech])

efficiency.append(float(np.format_float_scientific(Efficiency.efficiency[location[i_locati
on + 1]], 2)))
 eff_notes.append(Efficiency.eff_notes[i_tech])
 else:
 regions.append(Efficiency.regions[i_tech])
 input_comm.append(Efficiency.input_comm[i_tech])
 tech.append(Efficiency.tech[i_tech])
 vintage.append(int(year_last))
 output_comm.append(Efficiency.output_comm[i_tech])

efficiency.append(float(np.format_float_scientific(Efficiency.efficiency[location[i_locati
on + 1]], 2)))
 eff_notes.append(Efficiency.eff_notes[i_tech])

Efficiency_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "input_comm": pd.Series(input_comm, dtype='str'),
 "tech": pd.Series(tech, dtype='str'),
 "vintage": pd.Series(vintage, dtype='int'),
 "output_comm": pd.Series(output_comm, dtype='str'),
 "efficiency": pd.Series(efficiency, dtype='float'),
 "eff_notes": pd.Series(eff_notes, dtype='str')
 }
)

if tosql_set['Efficiency']:
 Efficiency_DF.to_sql("Efficiency", conn, index=False, if_exists='replace')

if print_set['Efficiency']:
 pd.set_option('display.max_rows', len(Efficiency_DF))
 pd.set_option('display.max_columns', len(Efficiency_DF))
 print("\nEfficiency DataFrame\n\n", Efficiency_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] Efficiency updated...')

144

TechInputSplit

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
TechInputSplit = pd.read_sql("select * from TechInputSplit", conn)

regions = list()
periods = list()
input_comm = list()
tech = list()
ti_split = list()
ti_split_notes = list()

tech_already_considered=list()
for i_tech in range(0, len(TechInputSplit.tech)):
 tech_i = TechInputSplit.tech[i_tech]

 flag_check = 0
 tech_i_check = TechInputSplit.input_comm[i_tech] + tech_i
 for check in range(0, len(tech_already_considered)):
 if tech_i_check == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(TechInputSplit.tech)):
 tech_j_check = TechInputSplit.input_comm[j_tech] + TechInputSplit.tech[j_tech]
 if tech_j_check == tech_i_check:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i_check)

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= TechInputSplit.periods[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(TechInputSplit.regions[i_tech])
 periods.append(int(time_periods.t_periods[i_year]))
 input_comm.append(TechInputSplit.input_comm[i_tech])
 tech.append(TechInputSplit.tech[i_tech])

ti_split.append(float(np.format_float_scientific(TechInputSplit.ti_split[i_tech], 2)))
 ti_split_notes.append(TechInputSplit.ti_split_notes[i_tech])

 else:
 for i_location in range(0, len(location)-1):
 year1 = TechInputSplit.periods[location[i_location]]
 year2 = TechInputSplit.periods[location[i_location+1]]
 eff1 = TechInputSplit.ti_split[location[i_location]]
 eff2 = TechInputSplit.ti_split[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 regions.append(TechInputSplit.regions[i_tech])
 periods.append(int(year))
 input_comm.append(TechInputSplit.input_comm[i_tech])
 tech.append(TechInputSplit.tech[i_tech])
 ti_split.append(float(np.format_float_scientific(eff1 + (year-
year1)/(year2-year1)*(eff2-eff1), 2)))
 ti_split_notes.append(TechInputSplit.ti_split_notes[i_tech])

 year_last = TechInputSplit.periods[location[i_location+1]]
 eff = TechInputSplit.ti_split[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]:

145

 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(TechInputSplit.regions[i_tech])
 periods.append(int(year))
 input_comm.append(TechInputSplit.input_comm[i_tech])
 tech.append(TechInputSplit.tech[i_tech])

ti_split.append(float(np.format_float_scientific(TechInputSplit.ti_split[location[i_locati
on + 1]], 2)))
 ti_split_notes.append(TechInputSplit.ti_split_notes[i_tech])
 else:
 regions.append(TechInputSplit.regions[i_tech])
 periods.append(int(year_last))
 input_comm.append(TechInputSplit.input_comm[i_tech])
 tech.append(TechInputSplit.tech[i_tech])

ti_split.append(float(np.format_float_scientific(TechInputSplit.ti_split[location[i_locati
on + 1]], 2)))
 ti_split_notes.append(TechInputSplit.ti_split_notes[i_tech])

TechInputSplit_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "periods": pd.Series(periods, dtype='int'),
 "input_comm": pd.Series(input_comm, dtype='str'),
 "tech": pd.Series(tech, dtype='str'),
 "ti_split": pd.Series(ti_split, dtype='float'),
 "ti_split_notes": pd.Series(ti_split_notes, dtype='str')
 }
)

if tosql_set['TechInputSplit']:
 TechInputSplit_DF.to_sql("TechInputSplit", conn, index=False, if_exists='replace')

if print_set['TechInputSplit']:
 pd.set_option('display.max_rows', len(TechInputSplit_DF))
 pd.set_option('display.max_columns', len(TechInputSplit_DF))
 print("\nTechInputSplit DataFrame\n\n", TechInputSplit_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] TechInputSplit updated...')

TechOutputSplit

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
TechOutputSplit = pd.read_sql("select * from TechOutputSplit", conn)

regions = list()
periods = list()
output_comm = list()
tech = list()
to_split = list()
to_split_notes = list()

tech_already_considered=list()
for i_tech in range(0, len(TechOutputSplit.tech)):
 tech_i = TechOutputSplit.tech[i_tech]

 flag_check = 0
 tech_i_check = tech_i + TechOutputSplit.output_comm[i_tech]
 for check in range(0, len(tech_already_considered)):
 if tech_i_check == tech_already_considered[check]:
 flag_check = 1

146

 if flag_check == 0:
 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(TechOutputSplit.tech)):
 tech_j_check = TechOutputSplit.tech[j_tech] +
TechOutputSplit.output_comm[j_tech]
 if tech_j_check == tech_i_check:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i_check)

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= TechOutputSplit.periods[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(TechOutputSplit.regions[i_tech])
 periods.append(int(time_periods.t_periods[i_year]))
 tech.append(TechOutputSplit.tech[i_tech])
 output_comm.append(TechOutputSplit.output_comm[i_tech])

to_split.append(float(np.format_float_scientific(TechOutputSplit.to_split[i_tech], 2)))
 to_split_notes.append(TechOutputSplit.to_split_notes[i_tech])

 else:
 for i_location in range(0, len(location)-1):
 year1 = TechOutputSplit.periods[location[i_location]]
 year2 = TechOutputSplit.periods[location[i_location+1]]
 eff1 = TechOutputSplit.to_split[location[i_location]]
 eff2 = TechOutputSplit.to_split[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 regions.append(TechOutputSplit.regions[i_tech])
 periods.append(int(year))
 tech.append(TechOutputSplit.tech[i_tech])
 output_comm.append(TechOutputSplit.output_comm[i_tech])
 to_split.append(float(np.format_float_scientific(eff1 + (year-
year1)/(year2-year1)*(eff2-eff1), 2)))
 to_split_notes.append(TechOutputSplit.to_split_notes[i_tech])

 year_last = TechOutputSplit.periods[location[i_location+1]]
 eff = TechOutputSplit.to_split[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]:
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(TechOutputSplit.regions[i_tech])
 periods.append(int(year))
 tech.append(TechOutputSplit.tech[i_tech])
 output_comm.append(TechOutputSplit.output_comm[i_tech])

to_split.append(float(np.format_float_scientific(TechOutputSplit.to_split[location[i_locat
ion + 1]], 2)))
 to_split_notes.append(TechOutputSplit.to_split_notes[i_tech])
 else:
 regions.append(TechOutputSplit.regions[i_tech])
 periods.append(int(year_last))
 tech.append(TechOutputSplit.tech[i_tech])
 output_comm.append(TechOutputSplit.output_comm[i_tech])

to_split.append(float(np.format_float_scientific(TechOutputSplit.to_split[location[i_locat
ion + 1]], 2)))
 to_split_notes.append(TechOutputSplit.to_split_notes[i_tech])

TechOutputSplit_DF = pd.DataFrame(

147

 {
 "regions": pd.Series(regions, dtype='str'),
 "periods": pd.Series(periods, dtype='int'),
 "tech": pd.Series(tech, dtype='str'),
 "output_comm": pd.Series(output_comm, dtype='str'),
 "to_split": pd.Series(to_split, dtype='float'),
 "to_split_notes": pd.Series(to_split_notes, dtype='str')
 }
)

if tosql_set['TechOutputSplit']:
 TechOutputSplit_DF.to_sql("TechOutputSplit", conn, index=False, if_exists='replace')

if print_set['TechOutputSplit']:
 pd.set_option('display.max_rows', len(TechOutputSplit_DF))
 pd.set_option('display.max_columns', len(TechOutputSplit_DF))
 print("\nTechOutputSplit DataFrame\n\n", TechOutputSplit_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] TechOutputSplit updated...')

EmissionActivity

conn = sqlite3.connect(database_name)
Efficiency = pd.read_sql("select * from Efficiency", conn)
CommodityEmissionFactor = pd.read_sql("select * from CommodityEmissionFactor", conn)

regions=list()
emis_comm=list()
input_comm=list()
tech=list()
vintage=list()
output_comm=list()
emis_act=list()
emis_act_units=list()
emis_act_notes=list()

for i_tech in range(0, len(Efficiency.tech)):
 for i_comm in range(0, len(CommodityEmissionFactor.input_comm)):
 if Efficiency.input_comm[i_tech] == CommodityEmissionFactor.input_comm[i_comm]:
 regions.append(Efficiency.regions[i_tech])
 emis_comm.append(CommodityEmissionFactor.emis_comm[i_comm])
 input_comm.append(CommodityEmissionFactor.input_comm[i_comm])
 tech.append(Efficiency.tech[i_tech])
 vintage.append(Efficiency.vintage[i_tech])
 output_comm.append(Efficiency.output_comm[i_tech])

emis_act.append(float(np.format_float_scientific(CommodityEmissionFactor.ef[i_comm] /
Efficiency.efficiency[i_tech], 2)))
 emis_act_units.append(CommodityEmissionFactor.emis_unit[i_comm])
 emis_act_notes.append('')

EmissionActivity_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "emis_comm": pd.Series(emis_comm, dtype='str'),
 "input_comm": pd.Series(input_comm, dtype='str'),
 "tech": pd.Series(tech, dtype='str'),
 "vintage": pd.Series(vintage, dtype='int'),
 "output_comm": pd.Series(output_comm, dtype='str'),
 "emis_act": pd.Series(emis_act, dtype='float'),
 "emis_act_units": pd.Series(emis_act_units, dtype='str'),
 "emis_act_notes": pd.Series(emis_act_notes, dtype='str')
 }
)

148

if tosql_set['EmissionActivity']:
 EmissionActivity_DF.to_sql("EmissionActivity", conn, index=False, if_exists='replace')

if print_set['EmissionActivity']:
 pd.set_option('display.max_rows', len(EmissionActivity_DF))
 pd.set_option('display.max_columns', len(EmissionActivity_DF))
 print("\nEmissionActivity DataFrame\n\n", EmissionActivity_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] EmissionActivity updated...')

CostInvest

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
CostInvest = pd.read_sql("select * from CostInvest", conn)

regions = list()
tech = list()
vintage = list()
cost_invest = list()
cost_invest_units = list()
cost_invest_notes = list()

tech_already_considered=list()
for i_tech in range(0, len(CostInvest.tech)):
 tech_i = CostInvest.tech[i_tech]

 flag_check = 0
 for check in range(0, len(tech_already_considered)):
 if tech_i == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(CostInvest.tech)):
 if CostInvest.tech[j_tech] == tech_i:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i)

 if flag == 0: # No other values

 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= CostInvest.vintage[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(CostInvest.regions[i_tech])
 tech.append(CostInvest.tech[i_tech])
 vintage.append(int(time_periods.t_periods[i_year]))

cost_invest.append(float(np.format_float_scientific(CostInvest.cost_invest[i_tech], 2)))
 cost_invest_units.append(CostInvest.cost_invest_units[i_tech])
 cost_invest_notes.append(CostInvest.cost_invest_notes[i_tech])

 else:
 for i_location in range(0, len(location)-1):
 year1 = CostInvest.vintage[location[i_location]]
 year2 = CostInvest.vintage[location[i_location+1]]
 cost1 = CostInvest.cost_invest[location[i_location]]
 cost2 = CostInvest.cost_invest[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]

149

 if year1 <= year < year2:
 regions.append(CostInvest.regions[i_tech])
 tech.append(CostInvest.tech[i_tech])
 vintage.append(int(year))
 cost_invest.append(float(np.format_float_scientific(cost1 + (year-
year1)/(year2-year1)*(cost2-cost1), 2)))
 cost_invest_units.append(CostInvest.cost_invest_units[i_tech])
 cost_invest_notes.append(CostInvest.cost_invest_notes[i_tech])

 year_last = CostInvest.vintage[location[i_location+1]]
 cost = CostInvest.cost_invest[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]:
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(CostInvest.regions[i_tech])
 tech.append(CostInvest.tech[i_tech])
 vintage.append(int(year))

cost_invest.append(float(np.format_float_scientific(CostInvest.cost_invest[location[i_loca
tion + 1]], 2)))
 cost_invest_units.append(CostInvest.cost_invest_units[i_tech])
 cost_invest_notes.append(CostInvest.cost_invest_notes[i_tech])
 else:
 regions.append(CostInvest.regions[i_tech])
 tech.append(CostInvest.tech[i_tech])
 vintage.append(int(year_last))

cost_invest.append(float(np.format_float_scientific(CostInvest.cost_invest[location[i_loca
tion + 1]], 2)))
 cost_invest_units.append(CostInvest.cost_invest_units[i_tech])
 cost_invest_notes.append(CostInvest.cost_invest_notes[i_tech])

CostInvest_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "tech": pd.Series(tech, dtype='str'),
 "vintage": pd.Series(vintage, dtype='int'),
 "cost_invest": pd.Series(cost_invest, dtype='float'),
 "cost_invest_units": pd.Series(cost_invest_units, dtype='str'),
 "cost_invest_notes": pd.Series(cost_invest_notes, dtype='str')
 }
)

if tosql_set['CostInvest']:
 CostInvest_DF.to_sql("CostInvest", conn, index=False, if_exists='replace')

if print_set['CostInvest']:
 pd.set_option('display.max_rows', len(CostInvest_DF))
 pd.set_option('display.max_columns', len(CostInvest_DF))
 print("\nCostInvest DataFrame\n\n", CostInvest_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] CostInvest updated...')

CostFixed

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
LifetimeTech = pd.read_sql("select * from LifetimeTech", conn)
LifetimeProcess = pd.read_sql("select * from LifetimeProcess", conn)
CostFixed = pd.read_sql("select * from CostFixed", conn)

regions = list()
periods = list()

150

tech = list()
vintage = list()
cost_fixed = list()
cost_fixed_units = list()
cost_fixed_notes = list()

tech_already_considered = list()
for i_tech in range(0, len(CostFixed.tech)):
 tech_i = CostFixed.tech[i_tech]

 flag_check = 0
 for check in range(0, len(tech_already_considered)):
 if tech_i == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 lifetime = 0
 year_lifetime = list()
 lifetime_process = list()
 for i_life in range(0, len(LifetimeTech.life)):
 if LifetimeTech.tech[i_life] == tech_i:
 lifetime = LifetimeTech.life[i_life]
 if lifetime == 0:
 for i_life in range(0, len(LifetimeProcess.life_process)):
 if LifetimeProcess.tech[i_life] == tech_i:
 year_lifetime.append(LifetimeProcess.vintage[i_life])
 lifetime_process.append(LifetimeProcess.life_process[i_life])
 else:
 lifetime = lifetime_default

 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(CostFixed.tech)):
 if CostFixed.tech[j_tech] == tech_i:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i)

 #lifetime_save = lifetime

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= CostFixed.vintage[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:

 #lifetime = lifetime_save
 year_vintage = time_periods.t_periods[i_year]
 for i in range(0, len(year_lifetime)):
 if year_vintage == year_lifetime[i]:
 lifetime = lifetime_process[i]
 start = year_vintage
 stop = year_vintage + lifetime

 for j_year in range(0, len(time_periods)):
 year_periods = time_periods.t_periods[j_year]
 if start <= year_periods < stop and year_periods !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(CostFixed.regions[i_tech])
 periods.append(int(year_periods))
 tech.append(CostFixed.tech[i_tech])
 vintage.append(int(year_vintage))

cost_fixed.append(float(np.format_float_scientific(CostFixed.cost_fixed[i_tech], 2)))
 cost_fixed_units.append(CostFixed.cost_fixed_units[i_tech])
 cost_fixed_notes.append(CostFixed.cost_fixed_notes[i_tech])

 else:
 year_list = list()

151

 cost_list = list()
 for i_location in range(0, len(location)-1):
 year1 = CostFixed.periods[location[i_location]]
 year2 = CostFixed.periods[location[i_location+1]]
 cost1 = CostFixed.cost_fixed[location[i_location]]
 cost2 = CostFixed.cost_fixed[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 year_list.append(year)
 cost_list.append(cost1 + (year-year1)/(year2-year1)*(cost2-cost1))

 year_last = CostFixed.vintage[location[i_location+1]]
 cost_last = CostFixed.cost_fixed[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-2]:
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 year_list.append(year)
 cost_list.append(cost_last)
 else:
 year_list.append(year_last)
 cost_list.append(cost_last)

 for i_year in range(0, len(year_list)):
 if year_list[i_year] >= CostFixed.vintage[i_tech]:

 #lifetime = lifetime_save
 year_vintage = year_list[i_year]
 for i in range(0, len(year_lifetime)):
 if year_vintage == year_lifetime[i]:
 lifetime = lifetime_process[i]
 start = year_vintage
 stop = year_vintage + lifetime

 for j_year in range(0, len(year_list)):
 year_periods = year_list[j_year]
 if start <= year_periods < stop and year_periods !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(CostFixed.regions[i_tech])
 periods.append(int(year_periods))
 tech.append(CostFixed.tech[i_tech])
 vintage.append(int(year_vintage))

cost_fixed.append(float(np.format_float_scientific(cost_list[j_year], 2)))
 cost_fixed_units.append(CostFixed.cost_fixed_units[i_tech])
 cost_fixed_notes.append(CostFixed.cost_fixed_notes[i_tech])

CostFixed_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "periods": pd.Series(periods, dtype='int'),
 "tech": pd.Series(tech, dtype='str'),
 "vintage": pd.Series(vintage, dtype='int'),
 "cost_fixed": pd.Series(cost_fixed, dtype='float'),
 "cost_fixed_units": pd.Series(cost_fixed_units, dtype='str'),
 "cost_fixed_notes": pd.Series(cost_fixed_notes, dtype='str')
 }
)

if tosql_set['CostFixed']:
 CostFixed_DF.to_sql("CostFixed", conn, index=False, if_exists='replace')

if print_set['CostFixed']:
 pd.set_option('display.max_rows', len(CostFixed_DF))
 pd.set_option('display.max_columns', len(CostFixed_DF))
 print("\nCostFixed DataFrame\n\n", CostFixed_DF)
 pd.reset_option('display.max_rows')

152

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] CostFixed updated...')

CostVariable

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
LifetimeTech = pd.read_sql("select * from LifetimeTech", conn)
LifetimeProcess = pd.read_sql("select * from LifetimeProcess", conn)
CostVariable = pd.read_sql("select * from CostVariable", conn)

regions = list()
periods = list()
tech = list()
vintage = list()
cost_variable = list()
cost_variable_units = list()
cost_variable_notes = list()

tech_already_considered = list()
for i_tech in range(0, len(CostVariable.tech)):
 tech_i = CostVariable.tech[i_tech]

 flag_check = 0
 for check in range(0, len(tech_already_considered)):
 if tech_i == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 lifetime = 0
 year_lifetime = list()
 lifetime_process = list()
 for i_life in range(0, len(LifetimeTech.life)):
 if LifetimeTech.tech[i_life] == tech_i:
 lifetime = float(LifetimeTech.life[i_life])
 if lifetime == 0:
 for i_life in range(0, len(LifetimeProcess.life_process)):
 if LifetimeProcess.tech[i_life] == tech_i:
 year_lifetime.append(float(LifetimeProcess.vintage[i_life]))
 lifetime_process.append(float(LifetimeProcess.life_process[i_life]))
 else:
 lifetime = lifetime_default

 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(CostVariable.tech)):
 if CostVariable.tech[j_tech] == tech_i:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i)

 #lifetime_save = lifetime

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= CostVariable.vintage[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:

 #lifetime = lifetime_save
 year_vintage = float(time_periods.t_periods[i_year])
 for i in range(0, len(year_lifetime)):
 if year_vintage == year_lifetime[i]:
 lifetime = float(lifetime_process[i])
 start = float(year_vintage)

153

 stop = float(year_vintage) + lifetime

 for j_year in range(0, len(time_periods)):
 year_periods = time_periods.t_periods[j_year]
 if start <= year_periods < stop and year_periods !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(CostVariable.regions[i_tech])
 periods.append(int(year_periods))
 tech.append(CostVariable.tech[i_tech])
 vintage.append(int(year_vintage))

cost_variable.append(float(np.format_float_scientific(CostVariable.cost_variable[i_tech],
2)))

cost_variable_units.append(CostVariable.cost_variable_units[i_tech])

cost_variable_notes.append(CostVariable.cost_variable_notes[i_tech])

 else:
 year_list = list()
 cost_list = list()
 for i_location in range(0, len(location)-1):
 year1 = float(CostVariable.periods[location[i_location]])
 year2 = float(CostVariable.periods[location[i_location+1]])
 cost1 = float(CostVariable.cost_variable[location[i_location]])
 cost2 = float(CostVariable.cost_variable[location[i_location+1]])

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 year_list.append(year)
 cost_list.append(cost1 + (year-year1)/(year2-year1)*(cost2-cost1))

 year_last = float(CostVariable.vintage[location[i_location+1]])
 cost_last = float(CostVariable.cost_variable[location[i_location+1]])
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-2]:
#different by 2050
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 year_list.append(year)
 cost_list.append(cost_last)
 else: # if year_last=2050
 year_list.append(year_last)
 cost_list.append(cost_last)

 for i_year in range(0, len(year_list)):
 if float(year_list[i_year]) >= float(CostVariable.vintage[i_tech]):

 #lifetime = lifetime_save
 year_vintage = year_list[i_year]
 for i in range(0, len(year_lifetime)):
 if year_vintage == year_lifetime[i]:
 lifetime = float(lifetime_process[i])
 start = float(year_vintage)
 stop = float(year_vintage) + lifetime
 for j_year in range(0, len(year_list)):
 year_periods = year_list[j_year]
 if start <= year_periods < stop and year_periods !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(CostVariable.regions[i_tech])
 periods.append(int(year_periods))
 tech.append(CostVariable.tech[i_tech])
 vintage.append(int(year_vintage))

cost_variable.append(float(np.format_float_scientific(cost_list[j_year], 2)))

cost_variable_units.append(CostVariable.cost_variable_units[i_tech])

154

cost_variable_notes.append(CostVariable.cost_variable_notes[i_tech])

CostVariable_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "periods": pd.Series(periods, dtype='int'),
 "tech": pd.Series(tech, dtype='str'),
 "vintage": pd.Series(vintage, dtype='int'),
 "cost_variable": pd.Series(cost_variable, dtype='float'),
 "cost_variable_units": pd.Series(cost_variable_units, dtype='str'),
 "cost_variable_notes": pd.Series(cost_variable_notes, dtype='str')
 }
)

if tosql_set['CostVariable']:
 CostVariable_DF.to_sql("CostVariable", conn, index=False, if_exists='replace')

if print_set['CostVariable']:
 pd.set_option('display.max_rows', len(CostVariable_DF))
 pd.set_option('display.max_columns', len(CostVariable_DF))
 print("\nCostVariable DataFrame\n\n", CostVariable_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] CostVariable updated...')

MinCapacity

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
MinCapacity = pd.read_sql("select * from MinCapacity", conn)

regions = list()
periods = list()
tech = list()
mincap = list()
mincap_units = list()
mincap_notes = list()

tech_already_considered=list()
for i_tech in range(0, len(MinCapacity.tech)):
 tech_i = MinCapacity.tech[i_tech]

 flag_check = 0
 tech_i_check = tech_i
 for check in range(0, len(tech_already_considered)):
 if tech_i_check == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(MinCapacity.tech)):
 tech_j_check = MinCapacity.tech[j_tech]
 if tech_j_check == tech_i_check:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i_check)

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= MinCapacity.periods[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(MinCapacity.regions[i_tech])

155

 periods.append(int(time_periods.t_periods[i_year]))
 tech.append(MinCapacity.tech[i_tech])

mincap.append(float(np.format_float_scientific(MinCapacity.mincap[i_tech], 2)))
 mincap_units.append(MinCapacity.mincap_units[i_tech])
 mincap_notes.append(MinCapacity.mincap_notes[i_tech])

 else:
 for i_location in range(0, len(location)-1):
 year1 = MinCapacity.periods[location[i_location]]
 year2 = MinCapacity.periods[location[i_location+1]]
 min_cap1 = MinCapacity.mincap[location[i_location]]
 min_cap2 = MinCapacity.mincap[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 regions.append(MinCapacity.regions[i_tech])
 periods.append(int(year))
 tech.append(MinCapacity.tech[i_tech])
 mincap.append(float(np.format_float_scientific(min_cap1 + (year-
year1)/(year2-year1)*(min_cap2-min_cap1), 2)))
 mincap_units.append(MinCapacity.mincap_units[i_tech])
 mincap_notes.append(MinCapacity.mincap_notes[i_tech])

 year_last = MinCapacity.periods[location[i_location+1]]
 min_cap = MinCapacity.mincap[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]:
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(MinCapacity.regions[i_tech])
 periods.append(int(year))
 tech.append(MinCapacity.tech[i_tech])

mincap.append(float(np.format_float_scientific(MinCapacity.mincap[location[i_location +
1]], 2)))
 mincap_units.append(MinCapacity.mincap_units[i_tech])
 mincap_notes.append(MinCapacity.mincap_notes[i_tech])
else:
regions.append(MinCapacity.regions[i_tech])
periods.append(int(year_last))
tech.append(MinCapacity.tech[i_tech])

mincap.append(float(np.format_float_scientific(MinCapacity.mincap[location[i_location +
1]], 2)))
mincap_units.append(MinCapacity.mincap_units[i_tech])
mincap_notes.append(MinCapacity.mincap_notes[i_tech])

MinCapacity_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "periods": pd.Series(periods, dtype='int'),
 "tech": pd.Series(tech, dtype='str'),
 "mincap": pd.Series(mincap, dtype='float'),
 "mincap_units": pd.Series(mincap_units, dtype='str'),
 "mincap_notes": pd.Series(mincap_notes, dtype='str')
 }
)

if tosql_set['MinCapacity']:
 MinCapacity_DF.to_sql("MinCapacity", conn, index=False, if_exists='replace')

if print_set['MinCapacity']:
 pd.set_option('display.max_rows', len(MinCapacity_DF))
 pd.set_option('display.max_columns', len(MinCapacity_DF))
 print("\nMinCapacity DataFrame\n\n", MinCapacity_DF)
 pd.reset_option('display.max_rows')

156

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] MinCapacity updated...')

MinActivity

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
MinActivity = pd.read_sql("select * from MinActivity", conn)

regions = list()
periods = list()
tech = list()
minact = list()
minact_units = list()
minact_notes = list()

tech_already_considered=list()
for i_tech in range(0, len(MinActivity.tech)):
 tech_i = MinActivity.tech[i_tech]

 flag_check = 0
 tech_i_check = tech_i
 for check in range(0, len(tech_already_considered)):
 if tech_i_check == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(MinActivity.tech)):
 tech_j_check = MinActivity.tech[j_tech]
 if tech_j_check == tech_i_check:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i_check)

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= MinActivity.periods[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(MinActivity.regions[i_tech])
 periods.append(int(time_periods.t_periods[i_year]))
 tech.append(MinActivity.tech[i_tech])

minact.append(float(np.format_float_scientific(MinActivity.minact[i_tech], 2)))
 minact_units.append(MinActivity.minact_units[i_tech])
 minact_notes.append(MinActivity.minact_notes[i_tech])

 else:
 for i_location in range(0, len(location)-1):
 year1 = MinActivity.periods[location[i_location]]
 year2 = MinActivity.periods[location[i_location+1]]
 min_act1 = MinActivity.minact[location[i_location]]
 min_act2 = MinActivity.minact[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 regions.append(MinActivity.regions[i_tech])
 periods.append(int(year))
 tech.append(MinActivity.tech[i_tech])
 minact.append(float(np.format_float_scientific(min_act1 + (year-
year1)/(year2-year1)*(min_act2-min_act1), 2)))
 minact_units.append(MinActivity.minact_units[i_tech])
 minact_notes.append(MinActivity.minact_notes[i_tech])

157

 year_last = MinActivity.periods[location[i_location+1]]
 min_act = MinActivity.minact[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]:
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(MinActivity.regions[i_tech])
 periods.append(year)
 tech.append(MinActivity.tech[i_tech])

minact.append(float(np.format_float_scientific(MinActivity.minact[location[i_location +
1]], 2)))
 minact_units.append(MinActivity.minact_units[i_tech])
 minact_notes.append(MinActivity.minact_notes[i_tech])
else:
regions.append(MinActivity.regions[i_tech])
periods.append(int(year_last))
tech.append(MinActivity.tech[i_tech])

minact.append(float(np.format_float_scientific(MinActivity.minact[location[i_location +
1]], 2)))
minact_units.append(MinActivity.minact_units[i_tech])
minact_notes.append(MinActivity.minact_notes[i_tech])

MinActivity_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "periods": pd.Series(periods, dtype='int'),
 "tech": pd.Series(tech, dtype='str'),
 "minact": pd.Series(minact, dtype='float'),
 "minact_units": pd.Series(minact_units, dtype='str'),
 "minact_notes": pd.Series(minact_notes, dtype='str')
 }
)

if tosql_set['MinActivity']:
 MinActivity_DF.to_sql("MinActivity", conn, index=False, if_exists='replace')

if print_set['MinActivity']:
 pd.set_option('display.max_rows', len(MinActivity_DF))
 pd.set_option('display.max_columns', len(MinActivity_DF))
 print("\nMinActivity DataFrame\n\n", MinActivity_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] MinActivity updated...')

MaxCapacity

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
MaxCapacity = pd.read_sql("select * from MaxCapacity", conn)

regions = list()
periods = list()
tech = list()
maxcap = list()
maxcap_units = list()
maxcap_notes = list()

tech_already_considered=list()
for i_tech in range(0, len(MaxCapacity.tech)):
 tech_i = MaxCapacity.tech[i_tech]

 flag_check = 0

158

 tech_i_check = tech_i
 for check in range(0, len(tech_already_considered)):
 if tech_i_check == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(MaxCapacity.tech)):
 tech_j_check = MaxCapacity.tech[j_tech]
 if tech_j_check == tech_i_check:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i_check)

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= MaxCapacity.periods[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(MaxCapacity.regions[i_tech])
 periods.append(int(time_periods.t_periods[i_year]))
 tech.append(MaxCapacity.tech[i_tech])

maxcap.append(float(np.format_float_scientific(MaxCapacity.maxcap[i_tech], 2)))
 maxcap_units.append(MaxCapacity.maxcap_units[i_tech])
 maxcap_notes.append(MaxCapacity.maxcap_notes[i_tech])

 else:
 for i_location in range(0, len(location)-1):
 year1 = MaxCapacity.periods[location[i_location]]
 year2 = MaxCapacity.periods[location[i_location+1]]
 max_cap1 = MaxCapacity.maxcap[location[i_location]]
 max_cap2 = MaxCapacity.maxcap[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 regions.append(MaxCapacity.regions[i_tech])
 periods.append(int(year))
 tech.append(MaxCapacity.tech[i_tech])
 maxcap.append(float(np.format_float_scientific(max_cap1 + (year-
year1)/(year2-year1)*(max_cap2-max_cap1), 2)))
 maxcap_units.append(MaxCapacity.maxcap_units[i_tech])
 maxcap_notes.append(MaxCapacity.maxcap_notes[i_tech])

 year_last = MaxCapacity.periods[location[i_location+1]]
 max_cap = MaxCapacity.maxcap[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]:
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(MaxCapacity.regions[i_tech])
 periods.append(int(year))
 tech.append(MaxCapacity.tech[i_tech])

maxcap.append(float(np.format_float_scientific(MaxCapacity.maxcap[location[i_location +
1]], 2)))
 maxcap_units.append(MaxCapacity.maxcap_units[i_tech])
 maxcap_notes.append(MaxCapacity.maxcap_notes[i_tech])
else:
regions.append(MaxCapacity.regions[i_tech])
periods.append(int(year_last))
tech.append(MaxCapacity.tech[i_tech])

maxcap.append(float(np.format_float_scientific(MaxCapacity.maxcap[location[i_location +
1]], 2)))
maxcap_units.append(MaxCapacity.maxcap_units[i_tech])

159

maxcap_notes.append(MaxCapacity.maxcap_notes[i_tech])

MaxCapacity_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "periods": pd.Series(periods, dtype='int'),
 "tech": pd.Series(tech, dtype='str'),
 "maxcap": pd.Series(maxcap, dtype='float'),
 "maxcap_units": pd.Series(maxcap_units, dtype='str'),
 "maxcap_notes": pd.Series(maxcap_notes, dtype='str')
 }
)

if tosql_set['MaxCapacity']:
 MaxCapacity_DF.to_sql("MaxCapacity", conn, index=False, if_exists='replace')

if print_set['MaxCapacity']:
 pd.set_option('display.max_rows', len(MaxCapacity_DF))
 pd.set_option('display.max_columns', len(MaxCapacity_DF))
 print("\nMaxCapacity DataFrame\n\n", MaxCapacity_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] MaxCapacity updated...')

MaxActivity

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
MaxActivity = pd.read_sql("select * from MaxActivity", conn)

regions = list()
periods = list()
tech = list()
maxact = list()
maxact_units = list()
maxact_notes = list()

tech_already_considered=list()
for i_tech in range(0, len(MaxActivity.tech)):
 tech_i = MaxActivity.tech[i_tech]

 flag_check = 0
 tech_i_check = tech_i
 for check in range(0, len(tech_already_considered)):
 if tech_i_check == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(MaxActivity.tech)):
 tech_j_check = MaxActivity.tech[j_tech]
 if tech_j_check == tech_i_check:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i_check)

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= MaxActivity.periods[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(MaxActivity.regions[i_tech])
 periods.append(int(time_periods.t_periods[i_year]))
 tech.append(MaxActivity.tech[i_tech])

160

maxact.append(float(np.format_float_scientific(MaxActivity.maxact[i_tech], 2)))
 maxact_units.append(MaxActivity.maxact_units[i_tech])
 maxact_notes.append(MaxActivity.maxact_notes[i_tech])

 else:
 for i_location in range(0, len(location)-1):
 year1 = MaxActivity.periods[location[i_location]]
 year2 = MaxActivity.periods[location[i_location+1]]
 max_act1 = MaxActivity.maxact[location[i_location]]
 max_act2 = MaxActivity.maxact[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 regions.append(MaxActivity.regions[i_tech])
 periods.append(int(year))
 tech.append(MaxActivity.tech[i_tech])
 maxact.append(float(np.format_float_scientific(max_act1 + (year-
year1)/(year2-year1)*(max_act2-max_act1), 2)))
 maxact_units.append(MaxActivity.maxact_units[i_tech])
 maxact_notes.append(MaxActivity.maxact_notes[i_tech])

 year_last = MaxActivity.periods[location[i_location+1]]
 max_act = MaxActivity.maxact[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]:
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(MaxActivity.regions[i_tech])
 periods.append(int(year))
 tech.append(MaxActivity.tech[i_tech])

maxact.append(float(np.format_float_scientific(MaxActivity.maxact[location[i_location +
1]], 2)))
 maxact_units.append(MaxActivity.maxact_units[i_tech])
 maxact_notes.append(MaxActivity.maxact_notes[i_tech])
else:
regions.append(MaxActivity.regions[i_tech])
periods.append(int(year_last))
tech.append(MaxActivity.tech[i_tech])

maxact.append(float(np.format_float_scientific(MaxActivity.maxact[location[i_location +
1]], 2)))
maxact_units.append(MaxActivity.maxact_units[i_tech])
maxact_notes.append(MaxActivity.maxact_notes[i_tech])

MaxActivity_DF = pd.DataFrame(np.transpose([regions, periods, tech, maxact, maxact_units,
maxact_notes]),
 columns=["regions", "periods", "tech", "maxact",
"maxact_units", "maxact_notes"]);

MaxActivity_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "periods": pd.Series(periods, dtype='int'),
 "tech": pd.Series(tech, dtype='str'),
 "maxact": pd.Series(maxact, dtype='float'),
 "maxact_units": pd.Series(maxact_units, dtype='str'),
 "maxact_notes": pd.Series(maxact_notes, dtype='str')
 }
)

if tosql_set['MaxActivity']:
 MaxActivity_DF.to_sql("MaxActivity", conn, index=False, if_exists='replace')

if print_set['MaxActivity']:
 pd.set_option('display.max_rows', len(MaxActivity_DF))
 pd.set_option('display.max_columns', len(MaxActivity_DF))

161

 print("\nMaxActivity DataFrame\n\n", MaxActivity_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] MaxActivity updated...')

AvailabilityFactor

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
AvailabilityFactor = pd.read_sql("select * from AvailabilityFactor", conn)

regions = list()
tech = list()
vintage = list()
af = list()
af_notes = list()

tech_already_considered=list()
for i_tech in range(0, len(AvailabilityFactor.tech)):
 tech_i = AvailabilityFactor.tech[i_tech]

 flag_check = 0
 tech_i_check = tech_i
 for check in range(0, len(tech_already_considered)):
 if tech_i_check == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(AvailabilityFactor.tech)):
 tech_j_check = AvailabilityFactor.tech[j_tech]
 if tech_j_check == tech_i_check:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i_check)

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= AvailabilityFactor.vintage[i_tech]
and time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-
1]:
 regions.append(AvailabilityFactor.regions[i_tech])
 tech.append(AvailabilityFactor.tech[i_tech])
 vintage.append(int(time_periods.t_periods[i_year]))

af.append(float(np.format_float_scientific(AvailabilityFactor.af[i_tech], 2)))
 af_notes.append(AvailabilityFactor.af_notes[i_tech])

 else:
 for i_location in range(0, len(location)-1):
 year1 = AvailabilityFactor.vintage[location[i_location]]
 year2 = AvailabilityFactor.vintage[location[i_location+1]]
 af1 = AvailabilityFactor.af[location[i_location]]
 af2 = AvailabilityFactor.af[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 regions.append(AvailabilityFactor.regions[i_tech])
 tech.append(AvailabilityFactor.tech[i_tech])
 vintage.append(int(year))
 af.append(float(np.format_float_scientific(af1 + (year-
year1)/(year2-year1)*(af2-af1), 2)))

162

 af_notes.append(AvailabilityFactor.af_notes[i_tech])

 year_last = AvailabilityFactor.vintage[location[i_location+1]]
 eff = AvailabilityFactor.af[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]:
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(AvailabilityFactor.regions[i_tech])
 tech.append(AvailabilityFactor.tech[i_tech])
 vintage.append(int(year))

af.append(float(np.format_float_scientific(AvailabilityFactor.af[location[i_location +
1]], 2)))
 af_notes.append(AvailabilityFactor.af_notes[i_tech])
 else:
 regions.append(AvailabilityFactor.regions[i_tech])
 tech.append(AvailabilityFactor.tech[i_tech])
 vintage.append(int(year_last))

af.append(float(np.format_float_scientific(AvailabilityFactor.af[location[i_location +
1]], 2)))
 af_notes.append(AvailabilityFactor.af_notes[i_tech])

AvailabilityFactor_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "tech": pd.Series(tech, dtype='str'),
 "vintage": pd.Series(vintage, dtype='int'),
 "af": pd.Series(af, dtype='float'),
 "af_notes": pd.Series(af_notes, dtype='str')
 }
)

if tosql_set['AvailabilityFactor']:
 AvailabilityFactor_DF.to_sql("AvailabilityFactor", conn, index=False,
if_exists='replace')

if print_set['AvailabilityFactor']:
 pd.set_option('display.max_rows', len(AvailabilityFactor_DF))
 pd.set_option('display.max_columns', len(AvailabilityFactor_DF))
 print("\nAvailabilityFactor DataFrame\n\n", AvailabilityFactor_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] AvailabilityFactor updated...')

Demand

conn = sqlite3.connect(database_name)
Allocation = pd.read_sql("select * from Allocation", conn)
Demand = pd.read_sql("select * from Demand", conn)
Driver = pd.read_sql("select * from Driver", conn)
Elasticity = pd.read_sql("select * from Elasticity", conn)
regions=list()
periods=list()
demand_comm=list()
demand=list()
demand_units=list()
demand_notes=list()

for i in range(0, len(Demand.demand_comm)):
 regions.append(Demand.regions[i])
 periods.append(int(Demand.periods[i]))
 demand_comm.append(Demand.demand_comm[i])
 demand.append(Demand.demand[i])

163

 demand_units.append(Demand.demand_units[i])
 demand_notes.append(Demand.demand_notes[i])
 for j in range(0, len(Allocation.demand_comm)):
 if Allocation.demand_comm[j] == Demand.demand_comm[i]:
 for k in range(0, len(Driver.periods)):
 for l in range(0, len(Elasticity.periods)):
 if Driver.driver_name[k] == Allocation.driver_name[j] and
Elasticity.demand_comm[l] == Demand.demand_comm[i] and Driver.periods[k] ==
Elasticity.periods[l]:
 regions.append(Elasticity.regions[l])
 periods.append(int(Elasticity.periods[l]))
 demand_comm.append(Elasticity.demand_comm[l])
 if not Driver.periods[k] == 2006:

demand.append(float(np.format_float_scientific(demand[len(demand)-
1]*(1+(Driver.driver[k]/Driver.driver[k-1]-1)*Elasticity.elasticity[l]), 2)))
 demand_units.append(demand_units[len(demand_units)-1])
 demand_notes.append('')

Demand_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "periods": pd.Series(periods, dtype='int'),
 "demand_comm": pd.Series(demand_comm, dtype='str'),
 "demand": pd.Series(demand, dtype='float'),
 "demand_units": pd.Series(demand_units, dtype='str'),
 "demand_notes": pd.Series(demand_notes, dtype='str')
 }
)

for i in range(0, len(Demand_DF)):
 if Demand_DF.loc[i, lambda df: "periods"] == 2006:
 Demand_DF = Demand_DF.drop(index = [i])

if tosql_set['Demand']:
 Demand_DF.to_sql("Demand", conn, index=False, if_exists='replace')

if print_set['Demand']:
 pd.set_option('display.max_rows', len(Demand_DF))
 pd.set_option('display.max_columns', len(Demand_DF))
 print("\nDemand DataFrame\n\n", Demand_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] Demand updated...')

CapacityFactorProcess

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
CapacityFactorProcess = pd.read_sql("select * from CapacityFactorProcess", conn)

regions = list()
season_name = list()
tech = list()
vintage = list()
time_of_day_name = list()
cf_process = list()
cf_process_notes = list()

tech_already_considered=list()
for i_tech in range(0, len(CapacityFactorProcess.tech)):
 tech_i = CapacityFactorProcess.tech[i_tech]

 flag_check = 0
 tech_i_check = CapacityFactorProcess.season_name[i_tech] + tech_i +
CapacityFactorProcess.time_of_day_name[i_tech]

164

 for check in range(0, len(tech_already_considered)):
 if tech_i_check == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(CapacityFactorProcess.tech)):
 tech_j_check = CapacityFactorProcess.season_name[j_tech] +
CapacityFactorProcess.tech[j_tech] + CapacityFactorProcess.time_of_day_name[j_tech]
 if tech_j_check == tech_i_check:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i_check)

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= CapacityFactorProcess.vintage[i_tech]
and time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-
1]:
 regions.append(CapacityFactorProcess.regions[i_tech])
 season_name.append(CapacityFactorProcess.season_name[i_tech])

time_of_day_name.append(CapacityFactorProcess.time_of_day_name[i_tech])
 tech.append(CapacityFactorProcess.tech[i_tech])
 vintage.append(int(time_periods.t_periods[i_year]))

cf_process.append(float(np.format_float_scientific(CapacityFactorProcess.cf_process[i_tech
], 2)))

cf_process_notes.append(CapacityFactorProcess.cf_process_notes[i_tech])

 else:
 for i_location in range(0, len(location)-1):
 year1 = CapacityFactorProcess.vintage[location[i_location]]
 year2 = CapacityFactorProcess.vintage[location[i_location+1]]
 cf1 = CapacityFactorProcess.cf_process[location[i_location]]
 cf2 = CapacityFactorProcess.cf_process[location[i_location+1]]

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 regions.append(CapacityFactorProcess.regions[i_tech])
 season_name.append(CapacityFactorProcess.season_name[i_tech])

time_of_day_name.append(CapacityFactorProcess.time_of_day_name[i_tech])
 tech.append(CapacityFactorProcess.tech[i_tech])
 vintage.append(int(year))
 cf_process.append(float(np.format_float_scientific(cf1 + (year-
year1)/(year2-year1)*(cf2-cf1), 2)))

cf_process_notes.append(CapacityFactorProcess.cf_process_notes[i_tech])

 year_last = CapacityFactorProcess.vintage[location[i_location+1]]
 eff = CapacityFactorProcess.cf_process[location[i_location+1]]
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-1]:
 for i_year in range(0, len(time_periods.t_periods)):
 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(CapacityFactorProcess.regions[i_tech])
 season_name.append(CapacityFactorProcess.season_name[i_tech])

time_of_day_name.append(CapacityFactorProcess.time_of_day_name[i_tech])
 tech.append(CapacityFactorProcess.tech[i_tech])
 vintage.append(int(year))

165

cf_process.append(float(np.format_float_scientific(CapacityFactorProcess.cf_process[locati
on[i_location + 1]], 2)))

cf_process_notes.append(CapacityFactorProcess.cf_process_notes[i_tech])
 else:
 regions.append(CapacityFactorProcess.regions[i_tech])
 season_name.append(CapacityFactorProcess.season_name[i_tech])
 time_of_day_name.append(CapacityFactorProcess.time_of_day_name[i_tech])
 tech.append(CapacityFactorProcess.tech[i_tech])
 vintage.append(int(year_last))

cf_process.append(float(np.format_float_scientific(CapacityFactorProcess.cf_process[locati
on[i_location + 1]], 2)))
 cf_process_notes.append(CapacityFactorProcess.cf_process_notes[i_tech])

CapacityFactorProcess_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "season_name": pd.Series(season_name, dtype='str'),
 "time_of_day_name": pd.Series(time_of_day_name, dtype='str'),
 "tech": pd.Series(tech, dtype='str'),
 "vintage": pd.Series(vintage, dtype='int'),
 "cf_process": pd.Series(cf_process, dtype='float'),
 "cf_process_notes": pd.Series(cf_process_notes, dtype='str')
 }
)

if tosql_set['CapacityFactorProcess']:
 CapacityFactorProcess_DF.to_sql("CapacityFactorProcess", conn, index=False,
if_exists='replace')

if print_set['CapacityFactorProcess']:
 pd.set_option('display.max_rows', len(CapacityFactorProcess_DF))
 pd.set_option('display.max_columns', len(CapacityFactorProcess_DF))
 print("\nCapacityFactorProcess DataFrame\n\n", CapacityFactorProcess_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] CapacityFactorProcess updated...')

CapacityCredit

conn = sqlite3.connect(database_name)
time_periods = pd.read_sql("select * from time_periods", conn)
LifetimeTech = pd.read_sql("select * from LifetimeTech", conn)
LifetimeProcess = pd.read_sql("select * from LifetimeProcess", conn)
CapacityCredit = pd.read_sql("select * from CapacityCredit", conn)

regions = list()
periods = list()
tech = list()
vintage = list()
cf_tech = list()
cf_tech_notes = list()

tech_already_considered = list()
for i_tech in range(0, len(CapacityCredit.tech)):
 tech_i = CapacityCredit.tech[i_tech]

 flag_check = 0
 for check in range(0, len(tech_already_considered)):
 if tech_i == tech_already_considered[check]:
 flag_check = 1

 if flag_check == 0:
 lifetime = 0

166

 year_lifetime = list()
 lifetime_process = list()
 for i_life in range(0, len(LifetimeTech.life)):
 if LifetimeTech.tech[i_life] == tech_i:
 lifetime = float(LifetimeTech.life[i_life])
 if lifetime == 0:
 for i_life in range(0, len(LifetimeProcess.life_process)):
 if LifetimeProcess.tech[i_life] == tech_i:
 year_lifetime.append(float(LifetimeProcess.vintage[i_life]))
 lifetime_process.append(float(LifetimeProcess.life_process[i_life]))
 else:
 lifetime = lifetime_default

 # Checking if other values are present for the technology
 flag = 0
 location = list()
 location.append(i_tech)
 for j_tech in range(i_tech + 1, len(CapacityCredit.tech)):
 if CapacityCredit.tech[j_tech] == tech_i:
 flag = 1
 location.append(j_tech)
 tech_already_considered.append(tech_i)

 #lifetime_save = lifetime

 if flag == 0: # No other values
 for i_year in range(0, len(time_periods)):
 if time_periods.t_periods[i_year] >= CapacityCredit.vintage[i_tech] and
time_periods.t_periods[i_year] != time_periods.t_periods[len(time_periods.t_periods)-1]:

 #lifetime = lifetime_save
 year_vintage = float(time_periods.t_periods[i_year])
 for i in range(0, len(year_lifetime)):
 if year_vintage == year_lifetime[i]:
 lifetime = float(lifetime_process[i])
 start = float(year_vintage)
 stop = float(year_vintage) + lifetime

 for j_year in range(0, len(time_periods)):
 year_periods = time_periods.t_periods[j_year]
 if start <= year_periods < stop and year_periods !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(CapacityCredit.regions[i_tech])
 periods.append(int(year_periods))
 tech.append(CapacityCredit.tech[i_tech])
 vintage.append(int(year_vintage))

cf_tech.append(float(np.format_float_scientific(CapacityCredit.cf_tech[i_tech], 2)))
 cf_tech_notes.append(CapacityCredit.cf_tech_notes[i_tech])

 else:
 year_list = list()
 cost_list = list()
 for i_location in range(0, len(location)-1):
 year1 = float(CapacityCredit.periods[location[i_location]])
 year2 = float(CapacityCredit.periods[location[i_location+1]])
 cost1 = float(CapacityCredit.cf_tech[location[i_location]])
 cost2 = float(CapacityCredit.cf_tech[location[i_location+1]])

 for i_year in range(0, len(time_periods)):
 year = time_periods.t_periods[i_year]
 if year1 <= year < year2:
 year_list.append(year)
 cost_list.append(cost1 + (year-year1)/(year2-year1)*(cost2-cost1))

 year_last = float(CapacityCredit.vintage[location[i_location+1]])
 cost_last = float(CapacityCredit.cf_tech[location[i_location+1]])
 if year_last != time_periods.t_periods[len(time_periods.t_periods)-2]:
#different by 2050
 for i_year in range(0, len(time_periods.t_periods)):

167

 year = time_periods.t_periods[i_year]
 if year >= year_last and year !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 year_list.append(year)
 cost_list.append(cost_last)
 else: # if year_last=2050
 year_list.append(year_last)
 cost_list.append(cost_last)

 for i_year in range(0, len(year_list)):
 if float(year_list[i_year]) >= float(CapacityCredit.vintage[i_tech]):

 #lifetime = lifetime_save
 year_vintage = year_list[i_year]
 for i in range(0, len(year_lifetime)):
 if year_vintage == year_lifetime[i]:
 lifetime = float(lifetime_process[i])
 start = float(year_vintage)
 stop = float(year_vintage) + lifetime
 for j_year in range(0, len(year_list)):
 year_periods = year_list[j_year]
 if start <= year_periods < stop and year_periods !=
time_periods.t_periods[len(time_periods.t_periods)-1]:
 regions.append(CapacityCredit.regions[i_tech])
 periods.append(int(year_periods))
 tech.append(CapacityCredit.tech[i_tech])
 vintage.append(int(year_vintage))

cf_tech.append(float(np.format_float_scientific(cost_list[j_year], 2)))
 cf_tech_notes.append(CapacityCredit.cf_tech_notes[i_tech])

CapacityCredit_DF = pd.DataFrame(
 {
 "regions": pd.Series(regions, dtype='str'),
 "periods": pd.Series(periods, dtype='int'),
 "tech": pd.Series(tech, dtype='str'),
 "vintage": pd.Series(vintage, dtype='int'),
 "cf_tech": pd.Series(cf_tech, dtype='float'),
 "cf_tech_notes": pd.Series(cf_tech_notes, dtype='str')
 }
)

if tosql_set['CapacityCredit']:
 CapacityCredit_DF.to_sql("CapacityCredit", conn, index=False, if_exists='replace')

if print_set['CapacityCredit']:
 pd.set_option('display.max_rows', len(CapacityCredit_DF))
 pd.set_option('display.max_columns', len(CapacityCredit_DF))
 print("\nCapacityCredit DataFrame\n\n", CapacityCredit_DF)
 pd.reset_option('display.max_rows')

conn.close()
print_i = print_i + 1
print('[',print_i,'/',len(print_set),'] CapacityCredit updated.')

B. Commodity-based emission factors table

CREATE TABLE "CommodityEmissionFactor" (
 "input_comm" text,
 "emis_comm" text,
 "ef" real,
 "emis_unit" text,
 "ef_notes" text,
 PRIMARY KEY("input_comm","ef","emis_comm"),
 FOREIGN KEY("input_comm") REFERENCES "commodities"("comm_name"),
 FOREIGN KEY("emis_comm") REFERENCES "commodities"("comm_name")
);

168

C. Tables for service demands projection

CREATE TABLE "Driver" (
 "regions" text,
 "periods" integer,
 "driver_name" text,
 "driver" real,
 "driver_notes" text,
 PRIMARY KEY("regions", "periods", "driver_name"),
 FOREIGN KEY("regions") REFERENCES "regions"("regions"),
 FOREIGN KEY("periods") REFERENCES "time_periods"("t_periods")
);

CREATE TABLE "Allocation" (
 "regions" text,
 "demand_comm" text,
 "driver_name" text,
 "allocation_notes" text,
 PRIMARY KEY("regions", "demand_comm", "driver_name"),
 FOREIGN KEY("regions") REFERENCES "regions"("regions"),
 FOREIGN KEY("demand_comm") REFERENCES "commodities"("comm_name"),
 FOREIGN KEY("driver_name") REFERENCES "Driver"("driver_name"),
);

CREATE TABLE "Elasticity" (
 "regions" text,
 "periods" integer,
 "demand_comm" text,
 "elasticity" real,
 "elaticity_notes" text,
 PRIMARY KEY("regions", "periods", "demand_comm"),
 FOREIGN KEY("regions") REFERENCES "regions"("regions"),
 FOREIGN KEY("periods") REFERENCES "time_periods"("t_periods"),
 FOREIGN KEY("demand_comm") REFERENCES "commodities"("comm_name")
);

D. Database postprocessing

import pandas as pd
import numpy as np
import sqlite3

database_name = "Temoa_Italia.sqlite"
years = np.array([2007, 2008, 2010, 2012, 2014, 2016, 2018, 2020, 2022, 2025, 2030, 2040,
2050])

Following 4 lines should be used to set the export results.
Set the flags to 1 to split by technologies/commodities, to 0 to not split.
Set to_excel_flag to 1 to export data into a Excel file
The arrays are used to select the technologies/commodities that should be considered.

to_excel_flag = 0
technologies_flag = 0
commodities_flag = 1

technologies = ['']
commodities = ['']

Input

comm = list()
tech = list()
vflow_in_2007 = list()
vflow_in_2008 = list()
vflow_in_2010 = list()
vflow_in_2012 = list()

169

vflow_in_2014 = list()
vflow_in_2016 = list()
vflow_in_2018 = list()
vflow_in_2020 = list()
vflow_in_2022 = list()
vflow_in_2025 = list()
vflow_in_2030 = list()
vflow_in_2040 = list()
vflow_in_2050 = list()

To classify by technologies, commodities or both
if technologies_flag == 1 and commodities_flag == 1:
 for i_tech in range(0, len(technologies)):
 for i_comm in range(0, len(commodities)):
 conn = sqlite3.connect(database_name)
 Output_VFlow_In = pd.read_sql("select * from Output_VFlow_In where input_comm
= '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'", conn)
 conn.close()
 vflow_in = np.zeros_like(years, dtype=float)
 for i_year in range(0, len(years)):
 for i in range(0, len(Output_VFlow_In.t_periods)):
 if years[i_year] == Output_VFlow_In.t_periods[i]:
 vflow_in[i_year] = vflow_in[i_year] + Output_VFlow_In.vflow_in[i]
 comm.append(commodities[i_comm])
 tech.append(technologies[i_tech])
 vflow_in_2007.append(vflow_in[0])
 vflow_in_2008.append(vflow_in[1])
 vflow_in_2010.append(vflow_in[2])
 vflow_in_2012.append(vflow_in[3])
 vflow_in_2014.append(vflow_in[4])
 vflow_in_2016.append(vflow_in[5])
 vflow_in_2018.append(vflow_in[6])
 vflow_in_2020.append(vflow_in[7])
 vflow_in_2022.append(vflow_in[8])
 vflow_in_2025.append(vflow_in[9])
 vflow_in_2030.append(vflow_in[10])
 vflow_in_2040.append(vflow_in[11])
 vflow_in_2050.append(vflow_in[12])

elif technologies_flag == 0 and commodities_flag == 1:
 for i_comm in range(0, len(commodities)):
 vflow_in = np.zeros_like(years, dtype=float)
 for i_tech in range(0, len(technologies)):
 conn = sqlite3.connect(database_name)
 Output_VFlow_In = pd.read_sql("select * from Output_VFlow_In where input_comm
= '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'", conn)
 conn.close()
 for i_year in range(0, len(years)):
 for i in range(0, len(Output_VFlow_In.t_periods)):
 if years[i_year] == Output_VFlow_In.t_periods[i]:
 vflow_in[i_year] = vflow_in[i_year] + Output_VFlow_In.vflow_in[i]
 comm.append(commodities[i_comm])
 tech.append('#')
 vflow_in_2007.append(vflow_in[0])
 vflow_in_2008.append(vflow_in[1])
 vflow_in_2010.append(vflow_in[2])
 vflow_in_2012.append(vflow_in[3])
 vflow_in_2014.append(vflow_in[4])
 vflow_in_2016.append(vflow_in[5])
 vflow_in_2018.append(vflow_in[6])
 vflow_in_2020.append(vflow_in[7])
 vflow_in_2022.append(vflow_in[8])
 vflow_in_2025.append(vflow_in[9])
 vflow_in_2030.append(vflow_in[10])
 vflow_in_2040.append(vflow_in[11])
 vflow_in_2050.append(vflow_in[12])

elif technologies_flag == 1 and commodities_flag == 0:
 for i_tech in range(0, len(technologies)):
 vflow_in = np.zeros_like(years, dtype=float)

170

 for i_comm in range(0, len(commodities)):
 conn = sqlite3.connect(database_name)
 Output_VFlow_In = pd.read_sql("select * from Output_VFlow_In where input_comm
= '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'", conn)
 conn.close()
 for i_year in range(0, len(years)):
 for i in range(0, len(Output_VFlow_In.t_periods)):
 if years[i_year] == Output_VFlow_In.t_periods[i]:
 vflow_in[i_year] = vflow_in[i_year] + Output_VFlow_In.vflow_in[i]
 comm.append('#')
 tech.append(technologies[i_tech])
 vflow_in_2007.append(vflow_in[0])
 vflow_in_2008.append(vflow_in[1])
 vflow_in_2010.append(vflow_in[2])
 vflow_in_2012.append(vflow_in[3])
 vflow_in_2014.append(vflow_in[4])
 vflow_in_2016.append(vflow_in[5])
 vflow_in_2018.append(vflow_in[6])
 vflow_in_2020.append(vflow_in[7])
 vflow_in_2022.append(vflow_in[8])
 vflow_in_2025.append(vflow_in[9])
 vflow_in_2030.append(vflow_in[10])
 vflow_in_2040.append(vflow_in[11])
 vflow_in_2050.append(vflow_in[12])

To find rows with only zero elements
delete_index = list()
for i_comm in range(0, len(comm)):
 flag_zero = 0
 if vflow_in_2007[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2008[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2010[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2012[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2014[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2016[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2018[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2020[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2022[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2025[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2030[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2040[i_comm] != 0:
 flag_zero = 1
 elif vflow_in_2050[i_comm] != 0:
 flag_zero = 1

 if flag_zero == 0:
 delete_index.append(i_comm)

To remove rows with only zeros elements
for i_delete in range(0, len(delete_index)):
 comm.pop(delete_index[i_delete])
 tech.pop(delete_index[i_delete])
 vflow_in_2007.pop(delete_index[i_delete])
 vflow_in_2008.pop(delete_index[i_delete])
 vflow_in_2010.pop(delete_index[i_delete])
 vflow_in_2012.pop(delete_index[i_delete])
 vflow_in_2014.pop(delete_index[i_delete])
 vflow_in_2016.pop(delete_index[i_delete])
 vflow_in_2018.pop(delete_index[i_delete])

171

 vflow_in_2020.pop(delete_index[i_delete])
 vflow_in_2022.pop(delete_index[i_delete])
 vflow_in_2025.pop(delete_index[i_delete])
 vflow_in_2030.pop(delete_index[i_delete])
 vflow_in_2040.pop(delete_index[i_delete])
 vflow_in_2050.pop(delete_index[i_delete])

 for j_delete in range(0, len(delete_index)):
 delete_index[j_delete] = delete_index[j_delete] - 1

Building and printing the table
vflow_in_DF = pd.DataFrame(
 {
 "input_comm": pd.Series(comm, dtype='str'),
 "tech": pd.Series(tech, dtype='str'),
 "2007": pd.Series(vflow_in_2007, dtype='float'),
 "2008": pd.Series(vflow_in_2008, dtype='float'),
 "2010": pd.Series(vflow_in_2010, dtype='float'),
 "2012": pd.Series(vflow_in_2012, dtype='float'),
 "2014": pd.Series(vflow_in_2014, dtype='float'),
 "2016": pd.Series(vflow_in_2016, dtype='float'),
 "2018": pd.Series(vflow_in_2018, dtype='float'),
 "2020": pd.Series(vflow_in_2020, dtype='float'),
 "2022": pd.Series(vflow_in_2022, dtype='float'),
 "2025": pd.Series(vflow_in_2025, dtype='float'),
 "2030": pd.Series(vflow_in_2030, dtype='float'),
 "2040": pd.Series(vflow_in_2040, dtype='float'),
 "2050": pd.Series(vflow_in_2050, dtype='float'),
 }
)

pd.set_option('display.max_rows', len(vflow_in_DF))
pd.set_option('display.max_columns', 16)
pd.set_option('display.precision', 2)
print(vflow_in_DF)
print("\n")
pd.reset_option('display.max_rows')

Output

comm = list()
tech = list()
vflow_out_2007 = list()
vflow_out_2008 = list()
vflow_out_2010 = list()
vflow_out_2012 = list()
vflow_out_2014 = list()
vflow_out_2016 = list()
vflow_out_2018 = list()
vflow_out_2020 = list()
vflow_out_2022 = list()
vflow_out_2025 = list()
vflow_out_2030 = list()
vflow_out_2040 = list()
vflow_out_2050 = list()

To classify by technologies, commodities or both
if technologies_flag == 1 and commodities_flag == 1:
 for i_tech in range(0, len(technologies)):
 for i_comm in range(0, len(commodities)):
 conn = sqlite3.connect(database_name)
 Output_VFlow_Out = pd.read_sql("select * from Output_VFlow_Out where
output_comm = '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'",
conn)
 conn.close()
 vflow_out = np.zeros_like(years, dtype=float)
 for i_year in range(0, len(years)):
 for i in range(0, len(Output_VFlow_Out.t_periods)):
 if years[i_year] == Output_VFlow_Out.t_periods[i]:

172

 vflow_out[i_year] = vflow_out[i_year] +
Output_VFlow_Out.vflow_out[i]
 comm.append(commodities[i_comm])
 tech.append(technologies[i_tech])
 vflow_out_2007.append(vflow_out[0])
 vflow_out_2008.append(vflow_out[1])
 vflow_out_2010.append(vflow_out[2])
 vflow_out_2012.append(vflow_out[3])
 vflow_out_2014.append(vflow_out[4])
 vflow_out_2016.append(vflow_out[5])
 vflow_out_2018.append(vflow_out[6])
 vflow_out_2020.append(vflow_out[7])
 vflow_out_2022.append(vflow_out[8])
 vflow_out_2025.append(vflow_out[9])
 vflow_out_2030.append(vflow_out[10])
 vflow_out_2040.append(vflow_out[11])
 vflow_out_2050.append(vflow_out[12])

elif technologies_flag == 0 and commodities_flag == 1:
 for i_comm in range(0, len(commodities)):
 vflow_out = np.zeros_like(years, dtype=float)
 for i_tech in range(0, len(technologies)):
 conn = sqlite3.connect(database_name)
 Output_VFlow_Out = pd.read_sql("select * from Output_VFlow_Out where
output_comm = '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'",
conn)
 conn.close()
 for i_year in range(0, len(years)):
 for i in range(0, len(Output_VFlow_Out.t_periods)):
 if years[i_year] == Output_VFlow_Out.t_periods[i]:
 vflow_out[i_year] = vflow_out[i_year] +
Output_VFlow_Out.vflow_out[i]
 comm.append(commodities[i_comm])
 tech.append('#')
 vflow_out_2007.append(vflow_out[0])
 vflow_out_2008.append(vflow_out[1])
 vflow_out_2010.append(vflow_out[2])
 vflow_out_2012.append(vflow_out[3])
 vflow_out_2014.append(vflow_out[4])
 vflow_out_2016.append(vflow_out[5])
 vflow_out_2018.append(vflow_out[6])
 vflow_out_2020.append(vflow_out[7])
 vflow_out_2022.append(vflow_out[8])
 vflow_out_2025.append(vflow_out[9])
 vflow_out_2030.append(vflow_out[10])
 vflow_out_2040.append(vflow_out[11])
 vflow_out_2050.append(vflow_out[12])

elif technologies_flag == 1 and commodities_flag == 0:
 for i_tech in range(0, len(technologies)):
 vflow_out = np.zeros_like(years, dtype=float)
 for i_comm in range(0, len(commodities)):
 conn = sqlite3.connect(database_name)
 Output_VFlow_Out = pd.read_sql("select * from Output_VFlow_Out where
output_comm = '" + commodities[i_comm] + "' and tech = '" + technologies[i_tech] + "'",
conn)
 conn.close()
 for i_year in range(0, len(years)):
 for i in range(0, len(Output_VFlow_Out.t_periods)):
 if years[i_year] == Output_VFlow_Out.t_periods[i]:
 vflow_out[i_year] = vflow_out[i_year] +
Output_VFlow_Out.vflow_out[i]
 comm.append('#')
 tech.append(technologies[i_tech])
 vflow_out_2007.append(vflow_out[0])
 vflow_out_2008.append(vflow_out[1])
 vflow_out_2010.append(vflow_out[2])
 vflow_out_2012.append(vflow_out[3])
 vflow_out_2014.append(vflow_out[4])
 vflow_out_2016.append(vflow_out[5])

173

 vflow_out_2018.append(vflow_out[6])
 vflow_out_2020.append(vflow_out[7])
 vflow_out_2022.append(vflow_out[8])
 vflow_out_2025.append(vflow_out[9])
 vflow_out_2030.append(vflow_out[10])
 vflow_out_2040.append(vflow_out[11])
 vflow_out_2050.append(vflow_out[12])

To find rows with only zero elements
delete_index = list()
for i_comm in range(0, len(comm)):
 flag_zero = 0
 if vflow_out_2007[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2008[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2010[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2012[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2014[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2016[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2018[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2020[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2022[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2025[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2030[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2040[i_comm] != 0:
 flag_zero = 1
 elif vflow_out_2050[i_comm] != 0:
 flag_zero = 1

 if flag_zero == 0:
 delete_index.append(i_comm)

To remove rows with only zeros elements
for i_delete in range(0, len(delete_index)):
 comm.pop(delete_index[i_delete])
 tech.pop(delete_index[i_delete])
 vflow_out_2007.pop(delete_index[i_delete])
 vflow_out_2008.pop(delete_index[i_delete])
 vflow_out_2010.pop(delete_index[i_delete])
 vflow_out_2012.pop(delete_index[i_delete])
 vflow_out_2014.pop(delete_index[i_delete])
 vflow_out_2016.pop(delete_index[i_delete])
 vflow_out_2018.pop(delete_index[i_delete])
 vflow_out_2020.pop(delete_index[i_delete])
 vflow_out_2022.pop(delete_index[i_delete])
 vflow_out_2025.pop(delete_index[i_delete])
 vflow_out_2030.pop(delete_index[i_delete])
 vflow_out_2040.pop(delete_index[i_delete])
 vflow_out_2050.pop(delete_index[i_delete])

 for j_delete in range(0, len(delete_index)):
 delete_index[j_delete] = delete_index[j_delete] - 1

Building and printing the table
vflow_out_DF = pd.DataFrame(
 {
 "output_comm": pd.Series(comm, dtype='str'),
 "tech": pd.Series(tech, dtype='str'),
 "2007": pd.Series(vflow_out_2007, dtype='float'),
 "2008": pd.Series(vflow_out_2008, dtype='float'),

174

 "2010": pd.Series(vflow_out_2010, dtype='float'),
 "2012": pd.Series(vflow_out_2012, dtype='float'),
 "2014": pd.Series(vflow_out_2014, dtype='float'),
 "2016": pd.Series(vflow_out_2016, dtype='float'),
 "2018": pd.Series(vflow_out_2018, dtype='float'),
 "2020": pd.Series(vflow_out_2020, dtype='float'),
 "2022": pd.Series(vflow_out_2022, dtype='float'),
 "2025": pd.Series(vflow_out_2025, dtype='float'),
 "2030": pd.Series(vflow_out_2030, dtype='float'),
 "2040": pd.Series(vflow_out_2040, dtype='float'),
 "2050": pd.Series(vflow_out_2050, dtype='float'),
 }
)
pd.set_option('display.max_rows', len(vflow_out_DF))
pd.set_option('display.max_columns', 16)
pd.set_option('display.precision', 2)
print(vflow_out_DF)
print("\n")
pd.reset_option('display.max_rows')

if to_excel_flag == 1:
 vflow_in_DF.to_excel("Export_Input.xlsx", sheet_name='Inputs')
 vflow_out_DF.to_excel("Export_Output.xlsx", sheet_name='Outputs')

