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Summary

This Thesis focuses on the combination of reduced order models and data-driven tech-
niques applied to the study of turbulent flows in order to improve the pressure and velocity
accuracy of standard reduced order methods. The full order model is based on the incom-
pressible Navier–Stokes equations; the reduced order model is constructed by means of
Proper Orthogonal Decomposition with Galerkin approach. The available data are used
to construct different correction/closure terms, which are added to the reduced equations
in order to model the interaction between the resolved and the unresolved scales.

Both supremizer enrichment approach and Poisson equation approach have been con-
sidered for pressure treatment at the reduced level. The effect of the data-driven correction
terms on both resolution systems has been studied and compared.

The numerical investigation of the turbulent flow past a circular cylinder at Re = 50000
shows that our method yields significantly more accurate velocity and pressure approxi-
mations than the standard reduced order method. In particular, the velocity correction
introduced in the momentum equation improves both the velocity and pressure fields. In
addition, the pressure corrections developed, which — to the best of my knowledge —
have been introduced here for the first time, further improve the pressure accuracy.
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Introduction

The present Master Thesis investigates the application of data-driven techniques to pro-
jection - based Reduced Order Methods for the incompressible Navier–Stokes Equations.
The main goal is that of improving the accuracy of the reduced approximation of velocity
and pressure fields making use of data-driven terms in the governing equations of the
online problem.

The project of the Thesis has been carried out in collaboration with Scuola Inter-
nazionale Superiore di Studi Avanzati (SISSA) of Trieste and it is inserted in the Accu-
rate ROMs for Industrial Applications (ARIA) framework. The work is also related to
the project ERC AROMA-CFD (European Research Council: Advanced Reduced Order
Methods with Applications in Computational Fluid Dynamics) and to the MIUR PRIN
project NA_FROM -PDEs (Numerical Analysis of Full and Reduced Order Methods for
Partial Differential Equations).

The Full Order fluid dynamic model considered in this Thesis is the incompressible
Reynolds-Averaged Navier–Stokes Equations. As well-known, the resolution of the numer-
ical problem associated to the incompressible NSE at the Full Order level is particularly
expensive in terms of computational cost and CPU time. Instead, Reduced Order Models
exploit information obtained from a series of full order simulations carried out in a typi-
cally expensive offline phase, to set up a lower dimensional problem that can be solved in
a limited amount of time with minor computational effort in an online phase. Based on
such an offline/online paradigm, the Reduced Order Methods (ROMs) have been widely
applied to fluid flow simulations to reduce the computational cost of the resulting para-
metric numerical simulations in the context of many-query problems, such as in the recent
works [2, 3].

In particular, this Thesis focuses on ROMs constructed with a POD-Galerkin method
(POD-Galerkin ROMs) [4, 5, 6, 7]. These ROMs are built by using the general Galerkin
framework: compute a set of basis functions {φ1, . . . ,φr}, {χ1, . . . , χq} (modes), identified
applying the Proper Orthogonal Decomposition to a series of solutions (or snapshots) of
the Full Order problem; reconstruct the unknown solution as a linear combination of
these modes, u(x, t) =

∑r
i=1 ai(t)φi(x), p(x, t) =

∑q
i=1 bi(t)χi(x); project the FOM

governing equations onto the space spanned by these modes. The resulting Galerkin
ROM (G-ROM) is a system of equations in which the unknowns are the coefficients in the
linear combination ansatzes used above. The main difference between the ROMs and the
classical Galerkin methods is that the ROM basis is a global data-driven basis — since it
is constructed from the available numerical data obtained from the Full Order simulations
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Introduction

— whereas the classical Galerkin methods do not generally use data to build the basis.
Since the ROM basis exploits knowledge of prior solutions of the problem, it allows in
most applications for good accuracy with a significant reduction of the resolution system
degrees of freedom.

Although ROMs have been already successfully used in numerous fluid flow applica-
tions, there are significant challenges in the development of fast, stable and robust ROMs
engineering for CFD problems. In particular, in the numerical simulation of turbulent
flows a standard ROM approximation could require hundreds of ROM modes, which
would significantly increase the ROM computational cost. To ensure a low ROM com-
putational cost, ROMs are generally built with relatively few basis functions. Yet, in
presence of turbulence the standard G-ROM approach would yield inaccurate approxi-
mations. One popular approach for increasing the accuracy of the standard G-ROM in
high Reynolds number regime is to add an extra term to the reduced equations, named
correction/closure term. The same terminology has been used in classical Large Eddy
Simulation (LES) [8, 9].

The role of the ROM closure term is to model the effect of the discarded ROM modes,
{φr+1, . . .} , {χq+1, . . .}, on the ROM dynamics.

There are three main approaches to model the correction/closure term at the reduced
order level:

• Functional modelling, in which physical insight is used to build the model.

• Structural modelling, in which mathematical methods (e.g., expansions and asymp-
totics) are used to build the model.

• Data-driven modelling, in which available numerical or experimental data is used to
build the model.

The present Thesis exclusively focuses on data-driven modelling of the correction/closure
terms, and it can be considered the expansion of previous works, such as [1], [10] and [11].

The past work by Hijazi et al. [1] focused on an hybrid data-driven approach, with
the introduction of a data-driven turbulence term in the equations of a POD-Galerkin
reduced model. Different and totally new data-driven correction terms are developed in
this Thesis, taking inspiration from works proposed by the group of Prof. Traian Iliescu,
such as [10, 11, 12]. Such previous literature, only focused on Large Eddy Simulation
equations and only included a correction for the nonlinear term related to the momentum
equation. In the context of the present Thesis, data-driven correction/closure terms are
instead applied to RANS simulation, and are extended to also improve the pressure field
approximation.

The case study considered to test the efficiency of the approach developed is that of
the unsteady turbulent flow around a cross-flow circular cylinder. The reduced order
model is treated with two different pressure/velocity coupling techniques, namely the
supremizer enrichment approach (SUP-ROM) and the Poisson approach (PPE-ROM).
The first technique consists in the addition of velocity modes — called supremizer modes
— in the velocity POD space in order to fulfill the inf-sup condition [13, 14]; the second
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approach is based on replacing the continuity equation with the Poisson equation for
pressure [8, 15].

As mentioned, in the framework of the ROM-Galerkin models considered, the reduced
approximation of velocity and pressure fields is obtained through an offline-online proce-
dure applied to the case study of the turbulent flow past a circular cylinder.

In this work, the offline phase Full Order solutions are computed making use of the
C++ open source software OpenFOAM [16]. POD is then applied to extract modal infor-
mation from the previously computed snapshots, making use of the functions of ITHACA-
FV (In real Time Highly Advanced Computational Applications for Finite Volumes), a
C++ library based on the finite volume solver OpenFOAM and developed at the mathLab
group in SISSA ([17, 18, 19]). Finally, a specified Python software has been developed for
the online stage of the procedure. Here, the reduced equations are solved both in the stan-
dard SUP-ROM and PPE-ROM approaches. In this work, several different data-driven
corrections are added to the reduced systems for both formulations so as to evaluate their
effect in terms of reduced fields accuracy, measured by means of relative errors of the
reduced velocity and pressure fields with respect to their FOM counterparts.

The data-driven correction methods by Iliescu et al. ([10, 11, 12]), here applied for the
first time to RANS equations model, result in an improvement especially in the approx-
imation of the velocity field. Unfortunately, the same is not observed for pressure. This
motivation has led to the formulation of new data-driven pressure correction terms at the
reduced level, which are able to significantly increase the reduced pressure field accuracy.
Finally, the data-driven approach developed in the present work is also first compared and
then coupled with the turbulence modelling approach developed by Hijazi et al. in [1].

The present Thesis has the following structure:

• Chapter 1: Full Order Model for the incompressible NSE. In this Chapter, the general
Full Order Model and the finite volume discretization is described. The Reynolds
Averaged Navier–Stokes approach (RANS) and the eddy viscosity turbulence models
are then presented.

• Chapter 2: Reduced Order Methods. The Reduced Order Method is here explained
and performed on the Full Order system, and the methodology of the Proper Orthog-
onal Decomposition (POD) is explained. The two different approaches of SUP-ROM
and PPE-ROM are then presented. The problem of the introduction of a turbulence
model at the reduced order level is addressed.

• Chapter 3: The Novel Data-Driven approach applied to the Reduced Order Models.
In this chapter the alternative data-driven formulation, the heart of the Thesis, is
presented; all the methods used to find the correction/closure terms added to the
reduced NSE are explained in detail.

• Chapter 4: Results. The case study used to test the methods is here presented in its
physics and computational setting; the approximated fields for velocity and pressure
are displayed and compared to those obtained in the Full Order Model and in the
standard reduced order setting.
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• Chapter 5: Conclusions and Outlooks. This Chapter retraces the logical passages
followed in the numerical simulations carried out in the online phase.
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Chapter 1

Full Order Model:
incompressible Navier–Stokes
Equations

In the present Chapter, the Full Order Model is formulated starting from the Navier–
Stokes Equations (NSE) for incompressible flows. We consider the fluid domain Ω ∈ Rd
with d = 1, 2 or 3, Γ is defined as its boundary; t ∈ [0, T ] is the time variable, u = u(x, t)
is the flow velocity vector field and p = p(x, t) is the normalized pressure scalar field
divided by the fluid density, ν is the fluid kinematic viscosity. The strong form of the
non-dimensionalized NSE is the following.

∂u
∂t = −∇ · (u⊗ u) +∇ · ν

(
∇u + (∇u)T

)
−∇p in Ω× [0, T ],

∇ · u = 0 in Ω× [0, T ],
+ boundary conditions on Γ× [0, T ],
+ initial conditions in (Ω,0).

(1.1)

In System (1.1), the first equation is the momentum equation, corresponding to a momen-
tum conservation law. The acceleration of the fluid ∂u

∂t is expressed as a combination of
different contributions: the viscosity effect ∇ · ν

(
∇u + (∇u)T

)
, the convective non linear

effect −∇·(u⊗u), the effect of the gradient of pressure −∇p, deriving from the divergence
of the hydrostatic part of the Cauchy stress tensor.

The analytical solution for System (1.1) can be found just in specific ideal cases,
otherwise the system is numerically solved. In order to distinguish different types of flows
the adimensional Reynolds number is considered. As in (1.2), it is defined as a quotient
between inertial effects, represented by the characteristic velocity U and the characteristic
length L, and viscous effects, expressed by the kinematic viscosity ν.

Re = ρUL

µ
= UL

ν
. (1.2)
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Full Order Model: incompressible Navier–Stokes Equations

A threshold for the Reynolds number can be identified depending on the working problem;
above this threshold the inertial effects are prevalent with respect to the viscous effects
and the flow begins to show a turbulent behaviour.

A turbulent flow is typically characterized by the following properties:

• the formation of three-dimensional vortexes, belonging to different scales;

• a chaotic, unstable and irregular movement of the fluid particles, governed by sta-
tistical laws;

• a multiscale dissipative process, leading to an energy cascade from the highest to the
smallest scales, called Kolmogorov scales.

1.1 Finite Volume Discretization for the NSE
In the computation of the full order solutions of Navier–Stokes Equations, the software
OpenFOAM employes the finite volume method. The finite volume method ([20]) is a
mathematical technique that converts the partial differential equations (the NSE in our
case) defined on differential volumes in algebraic equations defined on finite volumes.

The first preliminary step of this method is a polyhedral discretization of the domain,
in order to define the finite control volumes. The second step is to consider the integral
form of the NSE over each finite volume and to discretize them.

The momentum equation in integral form on a single control element of the domain Vi
can be written in the following form:

∫
Vi

∂u
∂t

dV +
∫
Vi

∇ · (u⊗ u) dV −
∫
Vi

∇ · ν(∇u + (∇u)T ) dV +
∫
Vi

∇p dV = 0. (1.3)

All the terms appearing in Equation (1.3) are transformed into integral surfaces accord-
ing to the divergence theorem and are evaluated at the faces of the discretized volumes.
We consider ∂Vi the set of all the boundaries of the control volume, Sf the surface vector
related to face f ; pf and uf are the pressure and velocity fields evaluated at the centre of
face f .

The pressure gradient in Equation (1.3) is evaluated in the following way:∫
Vi

∇p dV =
∫
∂Vi

p dS ≈
∑
f

Sfpf .

The convective term is evaluated as follows:∫
Vi

∇ · (u⊗ u) dV =
∫
∂Vi

(u⊗ u) · dS ≈
∑
f

uf ⊗ uf · Sf =
∑
f

(uf · Sf )uf =
∑
f

Ffuf ,

where Ff is the mass flux through the face f .
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1.1 – Finite Volume Discretization for the NSE

The diffusion term is discretized in the following way:∫
Vi

∇ · ν(∇u + (∇u)T ) dV =
∫
∂Vi

ν(∇u + (∇u)T ) · dS ≈
∑
f

νf (∇u)f · Sf , (1.4)

where (∇u)f and νf are the gradient of the velocity field and the viscosity evaluated at
the center of face f , respectively. In particular the scalar product in (1.4) is computed as:

(∇u)f · Sf = |Sf |
uN − uP
|d|

,

where uN and uP are the velocities evaluated at the centers of two adjacent volumes and
d is the vector connecting the centers of the cells [21].

1.1.1 The pressure-based solver for the incompressible NSE
The solver used in our simulations by OpenFOAM to solve the discretized system is
pimpleFoam and it involves the PIMPLE algorithm. The PIMPLE algorithm [20] uses a
segregated pressure-based approach and it is the combination of SIMPLE (Semi-Implicit
Method for Pressure-Linked Equations) [22] and PISO (Pressure Implicit with Splitting
of Operators) [23] algorithms. For instance, the work [24] propose a reduced order model
which is fully consistent with the SIMPLE algorithm.

First of all, the discretized system of the NSE can be written in matricial form in the
following way: [ [Au] [∇(·)]

[∇ · (·)] [0]

] [
u
p

]
=
[
0
0

]
, (1.5)

where the matrix Au is defined such that:

Auu = ∂u
∂t

+∇ · (u⊗ u)−∇ · ν(∇u + (∇u)T ) .

The momentum equation in (1.5) can be written as follows:

u + [A−1
u ][∇(·)][p] = 0 . (1.6)

By taking the divergence of Equation (1.6), and considering that [∇ · (·)]u = 0, a
Poisson equation for pressure is obtained:

[∇ · (·)][A−1
u ][∇(·)][p] = 0 .

Since the matrix Au can be dense and hard to be inverted, the following decomposition
is introduced:

[Au] = [Du] + [LUu] ,
where matrix [Du] is a diagonal matrix, whereas the matrix [LUu] is the off-diagonal part
of matrix [Au]. The resulting system is:[ [Du] [∇(·)]

[∇ · (·)] [0]

] [
u
p

]
=
[
−[LUu][u]

0

]
.
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Full Order Model: incompressible Navier–Stokes Equations

The momentum equation can be written in a discretized version for each control volume
as follows:

auPuP = H(u)−∇p , (1.7)

where: auP is the vector of diagonal coefficients evaluated at a generic cell centre, H(u)
contains the off-diagonal coefficients and any right hand side contributions.

The non-linearity contained in the convective term and included in term H(u) of
equation (1.7) is solved in this case by considering H(uN−1

P ) at the r.h.s., in which uN−1
P

is the solution computed at the previous time step.

The SIMPLE algorithm consists in the following steps:

1. start with an initial guess for pressure and velocity;

2. Momentum predictor step: solve the discretized momentum equation with the guessed
pressure field;

3. Pressure correction step: solve the Poisson equation with the available velocity field
and correct the pressure field;

4. repeat until convergence.

The PISO algorithm involves two correction steps for pressure without re-discretizing
the momentum equation. In the first correction step, a conservative velocity field is
obtained; in the second correction step, a more physical pressure field is obtained.

The PIMPLE algorithm is essentially a repeated PISO algorithm: the number of times
the PISO procedure is iterated is the number of outer corrections of the PIMPLE algo-
rithm.

1.2 Reynolds Averaged Navier–Stokes (RANS) ap-
proach

At the full order level the Navier–Stokes Equations are solved by the software OpenFOAM
[16], following the discretization techniques and the pressure-based solver described in
Section (1.1). Different models have been used in literature to characterize turbulent
flows; in this Thesis we consider the RANS model (Reynolds Averaged Navier–Stokes
equations).

The RANS model is based on the Reynolds decomposition, proposed for the first time
by Osborne Reynolds [25]. The Reynolds decomposition arose from the observation that
many properties in turbulent flows are characterized by random oscillations both in space
and time. In particular, the decomposition considers each flow field as the sum of its
mean and its fluctuating parts. Considering a generic field σ(x, t), with x = (x, y, z), the
Reynolds decomposition can be written as:

σ(x, t) = σ(x, t) + σ′(x, t),
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1.2 – Reynolds Averaged Navier–Stokes (RANS) approach

where σ(x, t) is the mean field. In the case of steady flows the mean flow is just dependent
on space:

σ(x) = lim
T→∞

1
T

∫ t+T

t
σ(x, s) ds. (1.8)

The expression (1.8) can be written since in steady flows the scales of the mean field and
of the fluctuating field are far between each other. In the case of an unsteady flow, both
scales (named T1 and T2) have to be considered in the definition of the mean field. In the
unsteady case the mean field is dependent on both space and time and it is defined as
follows.

σ(x, t) = lim
T→∞

1
T

∫ t+T

t
σ(x, s)ds, T1 ≤ T ≤ T2.

In the RANS model the Navier–Stokes equations are rewritten just taking the Reynolds
time-average of the equations.

First of all, the NSE in (1.1) are written using the Einstein notation:
∂ui
∂xi

= 0,
∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ 2ν ∂Eij

∂xj
,

(1.9)

where E is the strain rate tensor, describing the rate of stretching and shearing, and it is
defined as:

Eij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
.

System (1.9) is rewritten, taking into account the following properties:

∂u′i
∂xi

= 0,

uiuj = uiuj + u′iu
′
j .

(1.10)

From the first property in (1.10), the continuity equation in (1.9) is written as follows:

∂ui
∂xi

= 0. (1.11)

The convective term is expressed as follows:

uj
∂ui
∂xj

= ∂(uiuj)
∂xj

− ui
∂uj
∂xj

= ∂(uiuj)
∂xj

.

By replacing the convective term in the momentum equation in (1.9), the new momen-
tum equation is:

∂ui
∂t

+ ∂(uiuj)
∂xj

= − ∂p

∂xi
+ 2ν ∂Eij

∂xj
. (1.12)
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Full Order Model: incompressible Navier–Stokes Equations

Taking the time-average of equation (1.12), the following momentum equation is ob-
tained:

∂ui
∂t

+
∂(uiuj + u′iu

′
j)

∂xj
= − ∂p

∂xi
+ 2ν ∂Eij

∂xj
, (1.13)

where the averaged strain rate tensor becomes:

Eij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
.

Considering the equality (1.11), we also have:

∂(uiuj)
∂xj

= ui
∂uj
∂xj

+ uj
∂ui
∂xj

= uj
∂ui
∂xj

.

Then the momentum equation in (1.13) can be finally written as follows:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ∂(2νEij −Rij)

∂xj
, (1.14)

where Rij = u′iu
′
j is the Reynolds stress tensor. Equations (1.11) and (1.14) form the

RANS equations. The Reynolds stress tensor is a feature of the turbulent flows and it is
a symmetric tensor. Since the Reynolds stress tensor adds 6 additional unknowns to the
RANS system, it is not a closed system. The main aim of the introduction of a turbulence
modelling is the one of finding a closure model for the system. This is done by adding
equations which define the additional unknowns of the system.

1.2.1 Eddy Viscosity Models
In the full order simulation, the closure problem is solved by considering an Eddy viscosity
model. This model is based on the Boussinesq hypothesis, stating that the Reynolds stress
tensor is proportional to the strain rate tensor:

Rij = 2νtEij −
2
3κδij , (1.15)

in which κ = 1
2u
′
iu
′
i is the turbulent kinetic energy, νt is the eddy viscosity. The Eddy

Viscosity Models are based on the assumption (1.15) and are aimed to find a closure model
to the RANS equations. Two examples of eddy viscosity models are the κ− ε and κ− ω
models, where ε is the turbulent dissipation and ω is the specific turbulent dissipation
rate and it is dependent on κ and ε. The definitions of ε and ω are here reported:

ε = ν
∂u′i
∂xk

∂u′i
∂xk

,

ω = ε

κβ∗
,

where β∗ = 0.09.
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1.2 – Reynolds Averaged Navier–Stokes (RANS) approach

The κ− ε turbulence model consists in adding two transport partial differential equa-
tions to the full order formulation, one for κ and one for ε, respectively; this model has
been presented in [26]. In a similar way, the κ− ω model introduces two transport equa-
tions for κ and ω and it has been first proposed in [27]. The SST κ− ω model, presented
in [28], is used in this Thesis and it combines the standard κ − ω and the κ − ε models.
The equations of the SST κ−ω model and all constants appearing are defined in [1]. The
final formulation, including the RANS equations and the transport equations for κ and
ω, is the following:

∂u
∂t

+∇ · (u⊗ u) = ∇ ·
[
−pI + (ν + νt)

(
∇u + (∇u)T

)]
in Ω× [0, T ],

∇ · u = 0 in Ω× [0, T ],
νt = a1 κ

max (a1 ω,ΩsF2) in Ω× [0, T ],
∂κ

∂t
+ u · ∇κ = P − β∗ωκ+∇ · [(ν + σkνt)∇κ] in Ω× [0, T ],

∂ω

∂t
+ u · ∇ω = αΩ2

s − βω2 +∇ · [(ν + σωνt)∇ω]

+2(1− F1)σω2

ω
∇ω · ∇κ in Ω× [0, T ],

+ Boundary conditions on Γ× [0, T ],
+ Initial conditions in (Ω,0),

(1.16)

where the following constants appear:

P = min
(
Rij

∂ui
∂xj

, 10β∗ωκ
)
, Ωs =

√
2EijEij ,

F1 = tanh arg4
1, arg1 = min

[
max

( √
k

β∗ωy
,

500ν
y2ω

)
,

4σω 2k

CDkω y2

]
,

CDκω = max
(

2ρσω2
1
ω

∂κ

∂xj

∂ω

∂xj
, 10−10

)
,

F2 = tanh arg2
2, arg2 = max

(
2
√
κ

β ∗ ωy
,

500ν
y2ω

)
,

σk1 = 0.85, σω1 = 0.65, β1 = 0.075, σk2 = 1.00, σω2 = 0.856, β2 = 0.0828,
β∗ = 0.09, a1 = 0.31.
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Chapter 2

Reduced Order Methods for
the NSE

In the previous Chapter, the Full Order Model computed in the solver OpenFOAM is
presented. The discretization techniques and the pressure-based solvers implemented in
OpenFOAM for the NSE have been displayed, together with the turbulence treatment
with the RANS approach.

In the present Chapter, the Proper Orthogonal Decomposition (POD) technique is
explained and applied to the discretized NSE in order to find the velocity and pressure
modes and the correspondent coefficients. The computation of the solutions of the Full
Order Model and the Proper Orthogonal Decomposition represent the offline phase of the
procedure followed in this project.

In this Chapter, the basic theory of the Reduced Order Methods is also presented and
applied to the incompressible NSE.

2.1 The Proper Orthogonal Decomposition
The Proper Orthogonal Decomposition (POD) is a technique generally used to decompose
a field depending on the variables that influences its behaviour. The method of snapshots
is the technique used in this Thesis to generate the POD reduced order space. The method
consists in computing the FOM solutions for different time instants {tj}NTj=1: each of the
Full Order solution is called FOM shapshot.

The Proper Orthogonal Decomposition is applied on the Full Order snapshots matrices,
given by the following matrices:

Su = {u(x, t1), ...,u(x, tNT )} ∈ RNh
u×NT ,

Sp = {p(x, t1), ..., p(x, tNT )} ∈ RNh
p×NT ,

where Nh
u and Nh

p are the degrees of freedom for velocity and pressure fields.
Now we consider Snu and Snp the n-th velocity and pressure snapshots, obtained at the

n-th time step.
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Reduced Order Methods for the NSE

The POD procedure consists in the research for the velocity and pressure POD spaces,
by solving two optimization problems [1]:

VuPOD = arg mini=1,...,NT
1
NT

∑NT
n=1 ||Snu −

∑Nu
i=1(Snu ,φi)L2(Ω)φi||2L2(Ω) ∀Nu = 1, ..., NT ,

VpPOD = arg mini=1,...,NT
1
NT

∑NT
n=1 ||Snp −

∑Np
i=1(Snp , χi)L2(Ω)χi||2L2(Ω) ∀Np = 1, ..., NT .

(2.1)
The POD spaces, solutions of (2.1), are VuPOD = span{[φi]Nui=1} and VpPOD = span{[χi]Npi=1},

with Nu << Nh
u and Np << Nh

p . The POD basis modes, [φi]Nui=1 for velocity and [χi]Npi=1
for pressure, can be equivalently found by solving an eigenvalue problem [7]. In particular
the correlation matrices are:

(Cu)ij = (Siu,Sju)L2(Ω), (Cp)ij = (Sip,Sjp)L2(Ω), where Cu ∈ RNT×NT and Cp ∈ RNT×NT .

Each mode can be computed as follows [1]:

φi = 1
NTλ

u
ii

NT∑
j=1
SjuVu

ij , χi = 1
NTλ

p
ii

NT∑
j=1
SjpV

p
ij ,

where Vu and Vp are the matrices whose columns are the eigenvectors of the correlation
matrices, whereas λu and λp are diagonal matrices whose entries are the eigenvalues of
the correlation matrices.

Once the velocity and pressure modes are computed, the solution can be projected into
a certain number of modes and for any number of modes considered it will be the optimal
solution, i.e. the one that minimizes the error in the particular norm considered. In our
case the projection of the FOM solution into the POD space is the one that minimizes
the L2 norm.

In the Chapter dedicated to results, each of the solutions obtained in the online phase
will be compared to the best possible solution, which is the POD projection into the
number of modes considered in each specific case.

2.2 POD-Galerkin Reduced Order Methods
In this Section, the online part of the procedure is explained, in particular we focus on
POD-Galerkin Reduced Order Methods [29]. The ROM technique is based on the as-
sumption that an approximated solution of the velocity and pressure fields can be written
as a linear combination of the POD modes:

u(x, t) ≈ ur(x, t) =
r∑
i=1

ai(t)φi(x),

p(x, t) ≈ pr(x, t) =
q∑
i=1

bi(t)χi(x),
(2.2)

30



2.2 – POD-Galerkin Reduced Order Methods

where r and q are the reduced number of modes considered to approximate velocity and
pressure, respectively. The approximated expressions of the fields are then replaced in
the incompressible NSE and the ROM procedure is applied to incompressible NSE. This
procedure consists in projecting the momentum equation into the velocity modes and the
continuity equation into the pressure modes.

After the projection is performed, a dynamical system is obtained, whose unknowns
are the velocity and pressure vectors of coefficients; the components of those vectors are
the coefficients related to velocity and pressure modes, as follows:

a = (ai)ri=1, b = (bi)qi=1.

An approach considered in [1] was that of solving the momentum equation, having as
unknowns the coefficients of the velocity vector a with the hypothesis that b = a. In
this case, the results obtained for pressure are poor. Since the pressure field is used to
compute a lot of outputs, such as lift and drag forces, two stabilization techniques are
considered in this Thesis in order to obtain a better reconstruction of the pressure field.
The two different velocity-pressure coupling approaches for the ROM are the following:

• the SUP-ROM: a reduced order method in which the momentum equation and the
continuity equation are solved in the reduced order space, introducing additional
modes for the velocity space in order to satisfy the inf-sup condition and to avoid
stability issues of the solution;

• the PPE-ROM: a reduced order method in which the continuity equation is replaced
by the Poisson equation for pressure; it allows a better reconstruction of the pressure
field.

2.2.1 Reduced Order Method with Supremizer Approach (SUP-
ROM)

In the SUP-ROM approach the POD spaces computed for velocity and pressure are the
following:

VuPOD = span{[φi]Nui=1 ⊕ [si]Nsupi=1 }, VpPOD = span{[χi]Npi=1},

where some additional velocity modes called supremizer modes are considered [14]. Each
of these additional modes is associated to each of the pressure modes, according to the
following expression: {

∆si = −∇χi in Ω ,

si = 0 on ∂Ω.
(2.3)

The supremizer problem is here expressed in strong form; details on the derivation can
be found in [30] and [31].

Two strategies can be adopted in order to fulfill the inf-sup condition: the exact and
the approximated supremizer enrichment [13, 14]. In the exact approach, problem (2.3)
is solved for each pressure basis χi in the POD space. In the approximated approach,
which is the one here adopted, the problem (2.3) is solved for each pressure snapshot p(t)
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and the snapshot matrix of supremizer is assembled. Then the supremizer basis functions
(si)Nsupi=1 are found through a POD procedure [14].

From now on we consider: [φi]
Nu+Nsup
i=Nu = [si]Nsupi=1 .

This approach is called supremizer enrichment, it was first introduced in [30] and then
also treated in [13]: the aim of this technique is to fulfill the inf-sup condition.

The incompressible NSE equations (1.1) are then rewritten by replacing the approxi-
mations of velocity and pressure fields (2.2). The momentum equation is then projected
into the velocity modes and the continuity equation into the pressure modes, as follows:
(
−∂ur

∂t −∇ · (ur ⊗ ur) +∇ · ν
(
∇ur + (∇ur)T

)
−∇pr,φi

)
L2(Ω)

= 0

for i = 1, ..., Nu +Nsup ,

(∇ · ur, χi)L2(Ω) = 0 for i = 1, ..., Np .

(2.4)
Considering a the vector of coefficients for velocity field and b the vector of coefficients

for pressure field, system (2.4) becomes the following dynamical system:{
Mȧ = ν(B + BT)a − aTCa −Hb ,
Pa = 0 .

(2.5)

Matrices appearing in system (2.5) are defined in the following way:

(M)ij = (φi,φj)L2(Ω), (B)ij = (φi,∇ · ∇φj)L2(Ω), (BT)ij = (φi,∇ · (∇φj)T )L2(Ω),

(C)ijk = (φi,∇ · (φj ⊗ φk))L2(Ω), (H)ij = (φi,∇χj)L2(Ω), (P)ij = (χi,∇ · φj)L2(Ω).

2.2.2 Reduced Order Method with Poisson Equation for Pres-
sure (PPE-ROM)

The second approach we followed is the PPE-ROM approach, in which the continuity
equation in the reduced system (2.5) is replaced by the Poisson equation for pressure,
obtained by taking the divergence of the momentum equation and taking into account the
fact that the velocity field is divergence-free. This approach was firstly proposed in [32]
and then re-proposed in [18] and [14] in a finite volume setting.
The following equation for pressure is obtained at the full order level:

∆p = −∇ · (∇ · (u⊗ u)) inΩ. (2.6)

Equation (2.6) is the Poisson equation for pressure, that induces the so-called PPE for-
mulation for the full order NSE:

∂u
∂t = −∇ · (u⊗ u) +∇ · ν

(
∇u + (∇u)T

)
−∇p in Ω× [0, T ] ,

∆p = −∇ · (∇ · (u⊗ u)) in Ω ,

+ initial conditions in (Ω,0) ,
+ boundary conditions on Γ× [0, T ] ,
∂p

∂n
= −νn · (∇×∇× u)− n ·Rt on Γ× [0, T ] .

(2.7)
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2.2 – POD-Galerkin Reduced Order Methods

The last equation in (2.7) is a Neumann boundary condition for the Poisson equation
for pressure [14]. In this case, the velocity and pressure POD spaces are found without
introducing additional supremizer modes:

VuPOD = span{[φi]Nui=1},

VpPOD = span{[χi]Npi=1},
(2.8)

where Nu << Nh
u and Np << Nh

p , [φi]Nui=1 are the velocity POD modes, [χi]Npi=1 are the
pressure POD modes.

A Galerkin projection procedure is carried out in order to obtain the approximated
fields:

u(x, t) ≈ ur(x, t) =
Nu∑
i=1

ai(t)φi(x),

p(x, t) ≈ pr(x, t) =
Np∑
i=1

bi(t)χi(x).
(2.9)

Then the momentum equation in (2.7) is projected onto velocity modes and the pressure
Poisson equation in (2.7) is projected onto pressure modes. Projected NSE are written as
follows:
(
−∂ur

∂t −∇ · (ur ⊗ ur) +∇ · ν
(
∇ur + (∇ur)T

)
−∇pr,φi

)
L2(Ω)

= 0 for i = 1, ..., Nu,

(∇pr +∇ · (ur ⊗ ur),∇χi)L2(Ω) − ν(n×∇χi,∇× ur)Γ − (n ·Rt, χi)Γ = 0 for i = 1, ..., Np.

(2.10)
In the second equation of (2.10) the vector R is such that:

u(x, t) = R(x) on ΓInlet ,

where ΓInlet is the inlet of the boundary domain. In the specific test case considered in
the results Chapter, the velocity conditions at the inlet do not change as time evolves and
the term (n ·Rt, χi)Γ is identically null.

Considering a = (ai)Nui=1 and b = (bi)Npi=1, the following dynamical system is obtained:{
Mȧ = ν(B + BT)a − aTCa −Hb ,
Db + aTGa − νNa − L = 0 .

(2.11)

Additional matrices appearing in system (2.11) are defined in the following way:
(D)ij = (∇χi,∇χj)L2(Ω) , (G)ijk = (∇χi,∇ · (φj ⊗ φk))L2(Ω),

(N)ij = (n×∇χi,∇φj)Γ , (L)ij = (χi,n ·Rt)Γ .

2.2.3 Boundary Conditions Treatment
In the simulations of our fluid dynamics problems it is necessary to impose non-homogeneous
Dirichlet boundary conditions. These conditions have to be considered in the dynam-
ical system solved in the online phase. Different methods have been developed in or-
der to include the boundary conditions into the system, for example the penalty method
[33, 34, 35, 36, 37], which is the one used in this Thesis.

33



Reduced Order Methods for the NSE

The Penalty Method

We consider the Dirichlet boundary ΓD ⊂ Γ and it can be decomposed into separate
boundaries: ΓD1,ΓD2, ...,ΓDk. We call NBC the number of boundary conditions imposed
on some parts of the boundary; each boundary condition corresponds to the non-zero
component of the velocity vector on each part of the boundary considered. In particular,
the notation (UBC)i,j indicates the non-zero value of the i− th component of the velocity
vector in the part ΓDj of the boundary. We consider the vector UBC as the vector of the
scalar velocities (UBC)ij of dimension NBC.

The dynamical system obtained for the ROM with the supremizer enrichment (2.5)
becomes the following system, by adding the boundary conditions:Mȧ = ν(B + BT)a − aTCa −Hb + τ

(∑NBC
k=1 (UBC,kDk − Eka)

)
,

Pa = 0 .
(2.12)

The term τ
(∑NBC

k=1 (UBC,kDk − Eka)
)
in (2.12) is a constraint expressing the Dirichlet

non-homogeneous boundary conditions: this way of enforcing the boundary conditions
is called penalty method [38]. In particular, NBC is the number of velocity boundary
conditions on k different parts of the Dirichlet boundary; UBC,k is the velocity non-zero
component at the k-th part of the Dirichlet boundary; τ is a penalization factor, matrices
Ek and vectors Dk are defined as:

(Ek)ij = (φi,φj)L2(ΓDk ), (Dk)i = (φi)ΓDk , for all k = 1, ..., NBC .

In a similar way, the dynamical system obtained for the ROM with the supremizer
enrichment (2.11) becomes the following system, by adding the boundary conditions:Mȧ = ν(B + BT)a − aTCa −Hb + τ

(∑NBC
k=1 (UBC,kDk − Eka)

)
,

Db + aTGa − νNa − L = 0 .
(2.13)

2.3 Turbulence Modelling
In the previous Section, a dynamical system both for the SUP-ROM and the PPE-ROM
approaches is obtained. However, in systems (2.12) and (2.13) a turbulence modelling
needs to be included. At the Full Order Level the turbulence was included by adding
to RANS equations the transport equations for κ and ω, as in (1.16). At the reduced
order level an approximation of the eddy viscosity term can be included in equations by
introducing a reduced order version of the eddy viscosity [1], as follows:

νt(x, t) ≈ νtr(x, t) =
Nνt∑
i=1

gi(t)ηi(x) ,

where ηi(x) is the i-th eddy viscosity POD mode and gi(t) is the correspondent coeffi-
cient. Before including the turbulence term in the dynamical system, the eddy viscosity
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2.3 – Turbulence Modelling

coefficients need to be evaluated. The approach for the computation of the eddy viscosity
coefficients used in [1] involved a data-driven technique based on Radial Basis Functions
[39, 40]. In particular, in the offline phase the eddy viscosity POD modes are found by
solving an eigenvalue problem, similarly to the velocity and the pressure modes:

ηi = 1
NTλ

νt
ii

NT∑
j=1
SjνtV

νt
ij ,

where the diagonal matrix λνt has on its entries the eigenvalues of the correlation matrix
Cνt , Vνt is the matrix whose columns are the eigenvectors of Cνt , Sνt is the eddy viscosity
snapshot matrix.

Adding the turbulence terms to system (2.12), the new dynamical system is the fol-
lowing: Mȧ = ν(B + BT)a − aTCa + gT (CT1 + CT2)a −Hb + τ

(∑NBC
k=1 (UBC,kDk − Eka)

)
,

Pa = 0 ,
(2.14)

where the new matrices appearing are defined as:{
(CT1)ijk = (φi, ηj∇ · ∇φk)L2(Ω) ,

(CT2)ijk = (φi,∇ · ηj(∇φk)T )L2(Ω) .

When a PPE approach is considered, the FOM momentum and Poisson equation, accord-
ing to the RANS turbulent model, are written as follows:

∂u
∂t

+∇ · (u⊗ u) = ∇ ·
[
−pI + (ν + νt)

(
∇u + (∇u)T

)]
in Ω× [0, T ] ,

∆p = −∇ · (∇ · (u⊗ u)) +∇ ·
[
∇ ·

(
νt
(
∇u + (∇u)T

))]
in Ω ,

+ Boundary Conditions on Γ× [0, T ] ,
+ Initial Conditions in (Ω,0) .

Consequently the dynamical system (2.13) evolves in the following form:Mȧ = ν(B + BT)a − aTCa + gT (CT1 + CT2)a −Hb + τ
(∑NBC

k=1 (UBC,kDk − Eka)
)
,

Db + aTGa − gT (CT3 + CT4 )a − νNa − L = 0 ,
(2.15)

where:

(CT3)ijk = (∇χi, ηj∇ · ∇φk)L2(Ω) , (CT4)ijk = (∇χi,∇ · ηj(∇φk)T )L2(Ω) .

In the dynamical systems defined in (2.14) and (2.15), the number of unknowns is com-
posed by: Nu +Nsup (in (2.14)) and Nu (in (2.15)) coefficients for velocity, Np coefficients
for pressure, Nνt coefficients for the eddy viscosity. However, the number of equations is
Nu + Nsup + Np in (2.14) and Nu + Np in (2.15). Thus, there are more unknowns than
equations and the system is not closed in both cases of supremizer and Poisson approach.
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The vector g should be computed with data-driven methods in order to close the reduced
system: the coefficients [gi(t)]

Nνt
i=1 are approximated considering the mapping g = f(a)

through interpolation or regression techniques.
In the first approach the reduced eddy viscosity coefficients are interpolated with Radial

Basis Functions [39, 40]. This technique was exploited in [1], following the POD-I approach
[41, 42, 43]. In the second approach, which is the one used in this Thesis, the reduced eddy
viscosity coefficients are computed with a regression technique starting from the velocity
coefficients [ai]Nui=1 through a fully-connected neural network.
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Chapter 3

A Novel Approach based on
Data-Driven Reduced Order
Methods (DD-ROMs)

In this Chapter, the Reduced Order Methods and the techniques described in Section
2.3 are compared and combined with other data-driven techniques, which were previously
addressed in [10, 11, 12]. The reduced order momentum equation in the standard Galerkin-
ROM (G-ROM) formulation can be written in the form:

ȧ = f (a) , (3.1)

where the unknowns are a = (a1(t), a2(t), ..., ar(t)) and the reduced velocity field is
ur =

∑r
i=1 ai(t)φi(x). In the numerical simulation of turbulent flows, a standard ROM

approximation could require hundreds or even thousands of ROM modes, which would
significantly increase the ROM computational cost. To ensure a low ROM computational
cost, ROMs are generally built with relatively few basis functions. The data-driven tech-
niques addressed for the G-ROM formulation consist in the addition of one or more extra
terms to the momentum equation in order to include the contribution of the unresolved
modes. Equation (3.1) is rewritten as follows:

ȧ = f (a) + τ (a) ,

where τ (a) is called closure or correction term and has the aim of describing the interac-
tions between the resolved modes and the unresolved modes. The closure/correction term
is found by solving an optimization problem between the exact term and an ansatz which
is proposed to approximate it. The procedure followed to compute the approximated term
inherited the method used in [44].

In particular, two reduced regimes can be distinguished depending on the number of
modes resolved in the online phase:

• the under-resolved regime, using fewer ROM modes than the number required to
accurately approximate the dynamics of the given system. In this situation, the
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A Novel Approach based on Data-Driven Reduced Order Methods (DD-ROMs)

terms added to the equation are called closure terms, which is the same terminology
used for LES [45, 9, 8].

• the marginally-resolved regime, which is an intermediate regime, between the under-
resolved regime and the fully resolved regime (i.e., when the number of modes is
enough to represent the underlying dynamics). When we are in this situation, the
terms added to the equation are called correction terms [46].

In the simulations carried out in this Thesis, the regime considered is the marginally-
resolved regime. In this case, the number of ROM basis functions is enough to represent
the main features of the underlying dynamics, but the standard G-ROM yields inaccurate
approximations especially in terms of pressure, as can be seen in [1]. In order to better
approximate the pressure field, the models described in 2.2.1 and 2.2.2 are analysed in
this Thesis as stabilization techniques for the standard G-ROM formulation.

The framework considered for both approaches is that of data-driven filtered ROM
(DDF-ROM ) [10]. The filtered ROM formulation is obtained by applying a spatial filter
to the Full Order Model (the incompressible NSE in our case), following a typical LES-
ROM approach [9, 47, 2]. The spatial filter applied to the FOM is the ROM projection
itself, as described in [10] and [11]. The ROM projection of velocity and pressure onto the
first r and q modes, respectively, is seen as a spatial filter of the full order variables such
that, for fixed r and q:

(ūr,φi) = (u,φi)∀i = 1, ..., r , (3.2)

(p̄r, χi) = (p, χi) ∀i = 1, ..., q . (3.3)

The number of modes taken into account in (3.2) is r = Nu+Nsup when supremizer modes
are added, and r = Nu when supremizer modes are not considered; the number of modes
for pressure in (3.3) is q = Np. The POD-Galerkin ROM procedure is then applied to the
NSE. The system obtained with the stabilization techniques is in the following form:{

ȧ = f (a,b) ,
g(a,b) = 0 ,

(3.4)

where a = (a1(t), ..., ar(t)) and b = (b1(t), ..., bq(t)). The system (3.4) is rewritten adding
the closure/correction terms in the following way:{

ȧ = f (a,b) + τ 1(a,b) ,
g(a,b) + τ 2(a,b) = 0 ,

(3.5)

where the terms τ i(a,b), i = 1, 2 are new correction/closure terms developed in this
Thesis. Since the velocity correction significantly improved the results for velocity but
not for pressure, new correction terms depending on pressure have been developed in order
to obtain a better reconstruction of the pressure field as well. Since in the supremizer
approach the terms depending on pressure are linear terms, their effect on the results is not
as evident as the effect of the velocity correction term. Therefore, the Poisson approach is
addressed since it allows to define and propose for the first time some pressure correction
terms, totally or partially depending on pressure reduced coefficients.
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3.1 – Data-driven velocity corrections in the SUP-ROM approach

3.1 Data-driven velocity corrections in the SUP-ROM
approach

In this Section, the data-driven approach introduced in [10, 11] is applied to the reduced
NSE when a supremizer enrichment is considered.

The reduced system (2.4) can be reformulated as a system of spatially filtered NSE:
(
−∂ūrd

∂t ,φi

)
+ ν

(
∇ ·

(
∇ūrd + (∇ūrd)T

)
,φi

)
− ((ūrd · ∇)ūrd,φi)− (∇p̄rd,φi)+

+cu
(
τ SFS
u ,φi

)
+ cp(1)

(
τ SFS
p(1),φi

)
= 0 for i = 1, ..., r ,

(∇ · ūrd, χi) + cp(2)

(
τSFS
p(2) , χi

)
= 0 for i = 1, ..., q ,

(3.6)

where the following correction terms for velocity and pressure have been introduced:

τ SFS
u = −

(
(ud · ∇) ud

r − (ūrd · ∇)ūrd
)
,

τ SFS
p(1) = −

(
∇pd

r −∇p̄rd
)
,

τSFS
p(2) = ∇ · ud

r −∇ · ūrd .

(3.7)

In system (3.6), cu, cp(1) and cp(2) are parameters such that:

• cu = 1 if the first correction term in (3.7) is added to the system (3.6), and cu = 0
if not;

• cp(1) = 1 if the second correction term in (3.7) is added to the momentum equation
in (3.6), and cp(1) = 0 otherwise;

• cp(2) = 1 if the third correction term in (3.7) is added to the continuity equation in
(3.6), and cp(2) = 0 otherwise.

The parameters cu, cp(1), cp(2) are added to the system in order to evaluate the influence
of each correction term in the reduced system. The aim is to analyse the effect of each
data-driven term singularly, but also to evaluate the solutions of the system when more
than one correction terms are considered.

In the spatially filtered NSE, the following hypotheses are introduced:

• in order to reduce the computational effort u ≈ ud =
∑d
i=1 ai(t)φi(x) and p ≈ pd =∑dp

i=1 bi(t)χi(x). In this Thesis, d = dp = 50: the projection in the filtered NSE
(3.6) is carried out not starting from the FOM fields, but starting from the fields
reconstructed using a number d and dp of modes, where d and dp are smaller than
the rank of the snapshots matrix, as in [10];

• Since the ROM projection is used as a spatial filter:

ūrd = ur and p̄rd = pr ,

where r << d and q << dp.
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Then the following terms are introduced:

τ u such that τui =
(
τ SFS
u ,φi

)
,

τ p(1) such that τp(1)
i =

(
τ SFS
p(1),φi

)
,

τ p(2) such that τp(2)
i =

(
τSFS
p(2) , χi

)
.

(3.8)

Adding the correction terms and the boundary conditions, the dynamical system (2.5)
becomes:Mȧ = ν(B + BT)a − aTCa −Hb + τ

(∑NBC
k=1 (UBC,kDk − Eka)

)
+ cuτ

u + cp(1)τ
p(1) ,

Pa + cp(2)τ
p(2) = 0 .

(3.9)
The new system (3.9) is not a closed system because the correction terms depend on fields
ud and pd. In order to close the problem a data-driven modelling is adopted, as in [10]
and [11]. The key problem is to find the approximated expressions:

τ u ≈ τ u(a), τ p(1) ≈ τ p(1)(b), τ p(2) ≈ τ p(2)(a) .

3.1.1 Data-driven correction for velocity
In this Section, only the correction term for velocity τ u is considered in system (3.9)
in order to evaluate its influence on the dynamical system first, i.e. we consider: cu =
1, cp(1) = cp(2) = 0.

The correction term for velocity is modelled as in [10] using the ansatz:

τ u(a) = Ãa + aT B̃a , (3.10)

where B̃ is a 3-entries tensor.
To find Ã and B̃ the following optimization problem is solved:

min
Ã∈Rr×r,
B̃∈Rr×r×r

M∑
j=1
||τ exact(tj)− τ ansatz(tj)||2L2(Ω) , (3.11)

whereM time instances are considered to build the correction term and the term τ exact(tj)
is computed starting from the snapshot vectors asnap

d (tj), satisfying the conditions:

asnap
di

(tj) = (ud(tj),φi) ∀i = 1, ..., d, j = 1, ...,M .

The exact correction term is evaluated as follows:

τ exact(tj) =
(
−(asnap

d (tj))TCdasnap
d (tj)

r)
−
(
−(asnap

r (tj))TCasnap
r (tj)

)
,

where the tensor Cd ∈ Rd×d×d is defined in the following way.

Cd ijk =
(
φi,∇ · (φj ⊗ φk)

)
.
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3.1 – Data-driven velocity corrections in the SUP-ROM approach

The approximated term is evaluated as in (3.10), but starting from asnap
r (tj) at each time

step j:
τ ansatz(tj) = Ãasnap

r (tj) + (asnap
r (tj))T B̃asnap

r (tj)
The optimization problem (3.11) is rewritten as a least squares problem following a pro-
cedure similar to that used in [44]. In particular, the following terms are defined:

• the snapshot matrix X̂ ∈ RM×r. Indicating with X̂j,· the j-th row of the matrix, we
have:

X̂j,· = asnap
r (tj);

• r vectors a(1)(tj),...,a(r)(tj) for each time step, such that:

a(i)(tj) = asnap
i (tj)


asnap

0 (tj)
asnap

1 (tj)
...

asnap
i (tj)

 ∈ Ri for i = 1, ..., r ,

where asnap
i (tj) is the i-th component of the snapshot vector at time step j;

• r different matrices X̂(1),...,X̂(r), with X̂(i) ∈ RM×i such that:

X̂
(i)
j,· = a(i)(tj) ;

• the matrix R ∈ RM×r such that:

Rj,· = τ exact(tj) ∀j = 1, ...M .

The optimization problem (3.11) can be expressed in the following way:

min
Ã∈Rr×r,
B̃∈Rr×r×r

||R − X̂ÃT −
r∑
i=1

X̂(i)(B̃(i))T ||2F , (3.12)

where B̃(i) are blocks of the tensor B̃ of dimension i× i, and the norm considered in the
minimization is the Frobenius norm. In a more compact form the optimization problem
(3.12) can be written as follows:

min
O
||R −DOT ||2F , (3.13)

where:
D = [X̂, X̂(1), X̂(2), ..., X̂(r)], O = [Ã, B̃(1), B̃(2), ..., B̃(r)]

The problem (3.13) can be also seen as a set of r optimization problems:

min
oi,i=1,...,r

||ri −Doi||2L2(Ω) ,

where oi is the i-th row of matrix O and ri is the i-th column of matrix R. As in [10]
and [44], the problem (3.13) is ill-conditioned since matrix D has a very high condition
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number. In order to solve this issue, a truncated singular value decomposition is applied
to matrix D, just as in step 6 of Algorithm 1 in [10].

After Ã and B̃ are found from the least squares problem, the dynamical system to be
solved is:Mȧ = ν(B + BT)a − aTCa −Hb + τ

(∑NBC
k=1 (UBC,kDk − Eka)

)
+ Ãa + aT B̃a ,

Pa = 0 .
(3.14)

The ill-conditioning of the least squares problem leads to an ill-conditioning of the
dynamical system (3.14). In order to fix this problem step 5 of Algorithm 1 of article [12]
is applied: the number R of singular values retained for matrix D is the optimal one, i.e.
the one that minimizes the error metric:

εu(L2) =
M∑
j=1
||usol(tj)− ur(tj)||L2(Ω) , (3.15)

where usol(tj) =
∑r
i=1 ai(tj)φi is found from the solution of the dynamical system at

each time step and ur(tj) is the projection of the full order solution on the POD space
generated by r modes.

3.1.2 Constrained data-driven correction for velocity
The least squares problem for velocity can be also solved using a different approach, as
the one used in [11]. In this approach the matrices Ã and B̃ inherit the following physical
properties:

• aT Ãa ≤ 0, i.e. Ã negative semi-definite;

• aT (aT B̃a) = 0, i.e. B̃ skew-symmetric.

The optimization problem becomes:

min
Ã∈Rr×r,
B̃∈Rr×r×r,

aÃa≤0,
aT (aT B̃a)=0

M∑
j=1
||τ exact(tj)− τ ansatz(tj)||2L2(Ω) . (3.16)

As showed in [11] and in the results Chapter, the constrained method is more efficient than
the not constrained one when the number of modes considered for velocity and pressure
is very small; as the number of modes increases, the not constrained method seems to
produce better results in terms of percentage error of velocity and pressure. We will
refer to the number of singular values retained in the truncated SVD as Rc in the results
Chapter.
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3.1.3 Three-Scales Data-Driven Variational Multiscale ROMs
(3S-DD-VMS-ROM)

The correction term for velocity τ u can be also built starting from a variational multiscale
(VMS) methodology. According to this LES-inspired approach, the POD modes obtained
in the offline phase can be divided into three categories: (i) resolved large scales, (ii)
resolved small scales, (iii) unresolved scales, as in article [12]. The VMS-ROM closure
term τ u should capture the interactions between all the classes of scales. In Section 3.1.1,
the full order velocity field is considered as the sum of a resolved ROM component ur and
of an unresolved ROM component, as follows:

u(x, t) = ur + u′ =
r∑
i=1

ai(t)φi(x) +
d∑

i=r+1
ai(t)φi(x) . (3.17)

The closure term used in Section 3.1.1 is built solving the least squares problem (3.11) and
it models the interaction between the resolved ROM modes {φi}ri=1 and the unresolved
modes {φi}di=r+1, without considering the interaction within the two types of resolved
scales. In this Section all the three scales are considered, with r1 large resolved modes,
r − r1 small resolved modes, d − r unresolved modes. The velocity field is written as
follows:

u(x, t) = uL + uS + u′ =
r1∑
i=1

ai(t)φi(x) +
r∑

i=r1+1
ai(t)φi(x) +

d∑
i=r+1

ai(t)φi(x) .

Two vectors of coefficients can be distinguished: the one which describes the large resolved
scales aL = (ai)r1

i=1, and the one of the small resolved scales aS = (ai)ri=r1+1.

The momentum equation of system (3.6) can be written for both the large and the small
resolved ROM components, just considering the closure term (τ SFS

u ,φi). In particular,
one can write:(

−∂uL
∂t

,φi

)
+ ν

(
∇ ·

(
∇uL + (∇uL)T

)
,φi

)
− ((uL · ∇)uL,φi)− (∇pL,φi)+

+
(
τ SFS
u ,φi

)
= 0 for i = 1, ..., r1 ,(

−∂uS
∂t

,φi

)
+ ν

(
∇ ·

(
∇uS + (∇uS)T

)
,φi

)
− ((uS · ∇)uS ,φi)− (∇pS ,φi)+

+
(
τ SFS
u ,φi

)
= 0 for i = r1 + 1, ..., r .

The term τ SFS
u is defined as: τ SFS

u = −
(
(ud · ∇)ud

r − ((uL + uS) · ∇) (uL + uS)
)
.

The following two terms are defined:

τL ∈ Rr1 such that τLi =
(
τ SFS
u ,φi

)
for i = 1, ..., r1 ,

τS ∈ Rr−r1 such that τSi =
(
τ SFS
u ,φi

)
for i = r1, ..., r .
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The terms τL and τS are modelled with the same ansatz used in Section 3.1.1:

τL(aL) = ÃLaL + aTLB̃LaL, τS(aS) = ÃSaS + aTS B̃SaS ,

where ÃL ∈ Rr1×r1 , B̃L ∈ Rr1×r1×r1 , ÃS ∈ R(r−r1)×(r−r1), B̃S ∈ R(r−r1)×(r−r1)×(r−r1).
The matrices above mentioned are evaluated through the following two least squares

problems:

min
ÃL,B̃L

||τ exact
L − (ÃLasnap

L + (asnap
L )T B̃Lasnap

L )||L2(Ω) ,

min
ÃS ,B̃S

||τ exact
S − (ÃSasnap

S + (asnap
S )T B̃Sasnap

S )||L2(Ω) .
(3.18)

The least squares problems (3.18) are solved separately just as in Section 3.1.1; the
problems are different from those explained in [12], in which matrices are applied to the
vector a, including all the coefficients related to the resolved ROM scales. The least
squares problems evolve in the following forms:

min
oLi ,i=1,...,r1

||rLi −DLoLi ||2L2(Ω) ,

min
oSi ,i=1,...,r−r1

||rSi −DSoSi ||2L2(Ω) ,

where:

• rLi and rSi are the i-th columns of matrices RL ∈ RM×r1 and RS ∈ RM×(r−r1) such
that RLj,· = τL(tj) and RSj,· = τS(tj);

• DL = [X̂L, X̂
(1)
L , ..., X̂

(r1)
L ] and DS = [X̂S , X̂

(1)
S , ..., X̂

(r−r1)
S ].

Matrices X̂L ∈ RM×r1 and X̂S ∈ RM×(r−r1) are the snapshots matrices for the two
ROM scales, such that:

X̂Lj,· = asnap
L (tj), X̂Sj,· = asnap

S (tj);

• oLi and oSi are the i-th rows of matrices OL and OS respectively, where:

OL = [ÃL, B̃(1)
L , ..., B̃

(r1)
L ], OS = [ÃS , B̃(1)

S , ..., B̃
(r−r1)
S ].

Matrices B̃(i)
L and B̃(i)

S are blocks of matrices B̃L and B̃S , respectively.

Then the following dynamical system is solved:
Mȧ = ν(B + BT)a − aTCa −Hb + τ

(∑NBC
k=1 (UBC,kDk − Eka)

)
+
[
ÃLaL + aTLB̃LaL
ÃSaS + aTS B̃SaS

]
,

Pa = 0 .
(3.19)

where a = [aL aS ]T . As in the previous Section, a truncated SVD is applied to matrices
DL and DS in order to avoid the ill-conditioning of system (3.19). In simulations the
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number of singular values and the value of r1 should be the optimal ones, i.e. the one that
minimizes the error metric (3.15), as in Algorithm 2 of [12]. The following minimization
problem should be solved:

min
r1,RL,RS

εu(L2) ,

where RL and RS are the singular values retained for DL and DS , respectively.

3.1.4 Data-driven corrections for pressure
In the present Section, the aim is to introduce new correction or closure terms involving
also the pressure modes. In particular, the combined effect of the closure terms for velocity
and pressure is analysed, i.e. in system (3.9), we have cu = cp(1) = cp(2) = 1. As it will
be widely discussed in the Chapter of results, the reason for proposing a new correction
term involving pressure is that the pressure field is not improved when only a velocity
correction is considered.

In this Section, the focus is on the evaluation of the closure expressions for the new
terms τ p(1) and τ p(2). From the expressions (3.8) and following a procedure similar to
that one used in Section 3.1.1, the expressions of ansatzes for the correction terms are
written as:

τ p(1)(b) = H̃b ,
τ p(2)(a) = P̃a .

Two alternatives are here studied in order to find the matrices H̃ and P̃ .

1. Solve two different and disjoint optimization problems, one for each correction term:

min
H̃∈Rr×q

||τp(1)
exact − τp(1)

ansatz||2L2(Ω) ,

min
P̃∈Rq×r

||τp(2)
exact − τp(2)

ansatz||2L2(Ω) .
(3.20)

where:

τp(1)
exact(tj) =

(
−Hdbsnap

dp
(tj)

r)
−
(
−(Hbsnap

q (tj))
)
,

τp(2)
exact(tj) =

(
Pdasnap

d (tj)
r)
− (Pasnap

r (tj)) ,

τp(1)
ansatz = H̃bsnap

q (tj) ,
τp(2)

ansatz = P̃asnap
r (tj) .

Matrices Hd and Pd appearing in the exact terms are defined as:

(Hd)ij = (φi,∇χj)L2(Ω), (Pd)ij = (χi,∇ · φj)L2(Ω) .

2. Solve a unique optimization problem to find both terms:

min
H̃∈Rr×q ,
P̃∈Rq×r

||τp
exact − τp

ansatz||2L2(Ω) , (3.21)
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where:

τp
exact = [τp(1)

exact, τp(2)
exact], τp

ansatz = [τp(1)
ansatz, τp(2)

ansatz] .

In both cases the matrices of the least squares problems are ill-conditioned and the
truncated singular value decomposition should be applied to solve this issue. As in Section
3.1.1, the number of singular values retained in each optimization problem is chosen in
order to minimize the error metric εp(L2), defined as:

εp(L2) =
M∑
j=1
||psol(tj)− pq(tj)||L2(Ω) , (3.22)

where psol(tj) =
∑q
i=1 bi(tj)χi is found from the solution of the dynamical system at each

time step, and pq(tj) is the projection of the full order pressure on the space generated by
q modes. The reasons for choosing a different error metric involving the pressure field is
that the pressure corrections are here introduced to improve the accuracy of the pressure
field. The number of singular values retained in problem 1 is called Rp1 for the first
and Rp2 for the second optimization problem. The number of singular values retained in
the third optimization problem 3.21 is Rptot . The dynamical system obtained with the
introduction of the new terms is the following one:Mȧ = ν(B + BT)a − aTCa −Hb + τ

(∑NBC
k=1 (UBC,kDk − Eka)

)
+ Ãa + aT B̃a + H̃b ,

Pa + P̃a = 0 .
(3.23)

As we will see in the results Chapter, the correction terms τ p(1) and τ p(2) do not
improve the solutions with respect to those obtained without corrections. For this reason,
in Section 3.2, the only correction term added to the momentum equation will be τ u(a).

For the construction of the closure terms for pressure and velocity the supremizer modes
are not considered since they induce instability in the reduced dynamical system. For this
reason in the least squares problems r′ = Nu instead of r = Nu +Nsup is considered.

3.2 Data-driven corrections for the PPE-ROM ap-
proach

In this Section, the approach considering the Poisson equation for pressure is analysed.
This approach induces the definition of new correction terms, corresponding to terms in
the Poisson equation, as showed in (3.24), where in this case r = Nu and q = Np.

(
−∂ūrd

∂t ,φi

)
+ ν

(
∇ ·

(
∇ūrd + (∇ūrd)T

)
,φi

)
− ((ūrd · ∇)ūrd,φi)− (∇p̄rd,φi)+

+cu
(
τ SFS
u ,φi

)
= 0 for i = 1, ..., r ,

(∇p̄rd,∇χi) + (∇ · (ūrd ⊗ ūrd),∇χi)− ν (∇× ūrd,n×∇χi)Γ −
(
n ·Rr

dt
, χi
)

Γ
+

+cD
(
τSFS
D ,∇χi

)
+ cG

(
τSFS
G ,∇χi

)
= 0 for i = 1, ..., q .

(3.24)
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The new exact closure terms introduced in the system (3.24) are:

τ SFS
D = ∇pd

r −∇p̄rd ,
τ SFS
G = ∇ · (ud ⊗ ud)

r −∇ · (ūrd ⊗ ūrd) .

The parameters cD and cG added to the system (3.24) are equal to 1 only if the correction
to which they are referred is considered in simulations. In particular:

• cD = 1 if the correction corresponding to the term Db is added in the Poisson
equations for pressure, and cD = 0 otherwise;

• cD = 1 if the correction corresponding to the term aTGa is added to the Poisson
equation and it’s null otherwise.

Then, the following terms are introduced:

τD such that τDi =
(
τ SFS
D ,∇χi

)
,

τG such that τGi =
(
τ SFS
G ,∇χi

)
.

(3.25)

Adding the correction terms defined in (3.25), the dynamical system (2.11) becomes:Mȧ = ν(B + BT)a − aTCa −Hb + τ
(∑NBC

k=1 (UBC,kDk − Eka)
)

+ cuτ
u ,

Db + aTGa − νNa − L + cDτ
D + cGτ

G = 0 .
(3.26)

In order to close the system (3.26) the following approximated expressions need to be
found:

τ u ≈ τ u(a), τD ≈ τD(b), τG ≈ τG(a,b) .

3.2.1 Data-driven correction for term Db
For the term τD the following ansatzes have been proposed and added into the reduced
system:

1. τD(b) = D̃b, with a linear approximation;

2. τD(b) = D̃b+bT B̃Pb, with a quadratic approximation, similar to the one proposed
for the velocity data-driven correction.

Case 1: the linear correction

In order to compute the matrix D̃, the following optimization problem should be solved:

min
D̃∈Rq×q

M∑
j=1
||τ exact

D (tj)− τ ansatz
D (tj)||2L2(Ω) , (3.27)
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where the term τ exact(tj) is computed starting from the snapshot vectors bsnap
d (tj), satis-

fying the conditions:

bsnap
di

(tj) = (pd(tj), χi) ∀i = 1, ..., d , j = 1, ...,M .

The exact correction term is evaluated as follows:

τ exact
D (tj) =

(
Ddbsnap

d (tj)
q)
−Dbsnap

q (tj) ,

where the matrix Dd ∈ Rd×d is defined in the following way:

(Dd) ij = (∇χi,∇χj) , with i, j = 1, ..., d .

We recall that dp = d = 50 in all simulations performed in this Thesis. For this reason,
in all equations dp is replaced by d for the sake of simplicity.

The approximated term is evaluated at each time step j:

τ ansatz
D (tj) = D̃bsnap

q (tj) . (3.28)

The optimization problem (3.27) is rewritten as a least squares problem where the follow-
ing terms are defined:

• the snapshot matrix X̂P ∈ RM×q. Indicating with X̂Pj,· the j-th row of the matrix,
we have:

X̂Pj,· = bsnap
q (tj);

• the matrix RD ∈ RM×q such that:

RDj ,· = τ exact
D (tj) ∀j = 1, ...M .

The optimization problem (3.27) is rewritten as:

min
D̃∈Rq×q

||RD − X̂P D̃
T ||2F . (3.29)

The problem (3.29) can be also seen as a set of q optimization problems, as follows:

min
oi,i=1,...,q

||ri − X̂Poi||2L2(Ω) ,

where oi is the i-th row of matrix D̃ and ri is the i-th column of matrix RD. As in [10]
and [44], the problem (3.29) is ill-conditioned since the matrix D has a very high condition
number and, as done in the previous Sections, a truncated singular value decomposition
is applied to matrix D.

After D̃ is found from the least squares problem, the Poisson equation in the dynamical
system is:

Db + aTGa + D̃b− νNa − L = 0 . (3.30)

48



3.2 – Data-driven corrections for the PPE-ROM approach

The ill-conditioning of the least squares problem leads to an ill-conditioning of the
dynamical system considered. In order to fix this problem, the number R of singular
values retained for matrix XP is the optimal one, i.e. the one that minimizes the error
metric 3.22. The error metric to be minimized for terms in the Poisson equation concerns
the pressure field. The reason for this choice is that the correction term Ãa + aT B̃a has a
role in improving the results mainly for the velocity field; it is experimentally showed that
the correction terms added in the Poisson equation have no effect on the velocity field,
but they significantly improve the pressure accuracy results.

Case 2: the quadratic correction

The linear correction described in the previous Section did not give good results in terms
of improvement with respect to the standard ROM; it is also not a good approximation
of the exact correction term, as shown in the results Chapter. For this reason, in this
Section a quadratic correction is analysed too.

The correction term for Db is modelled using the ansatz:

τ ansatz
D (b) = D̃b + bT B̃Pb , (3.31)

where B̃P is a 3-entries tensor.
To find D̃ and B̃P a similar procedure to the one presented in Section 3.1.1 is consid-

ered. The following terms are defined:

• q vectors b(1)(tj),...,b(q)(tj) for each time step, such that:

b(i)(tj) = bsnap
i (tj)


bsnap

0 (tj)
bsnap

1 (tj)
...

bsnap
i (tj)

 ∈ Ri for i = 1, ..., q ,

where bsnap
i (tj) is the i-th component of the snapshot vector at time step j;

• q different matrices X̂(1)
P ,...,X̂(q)

P , with X̂(i)
P ∈ RM×i such that:

X̂
(i)
Pj ,· = b(i)(tj) .

The optimization problem (3.27) can be expressed in the following way:

min
D̃∈Rq×q ,

B̃P∈Rq×q×q

||RD − X̂P D̃
T −

q∑
i=1

X̂
(i)
P (B̃(i)

P )T ||2F , (3.32)

where B̃(i)
P are blocks of the tensor B̃P of dimension i × i. In a more compact form the

optimization problem (3.32) can be written as follows:

min
OD

||R −DPOT ||2F , (3.33)
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where:
DP = [X̂P , X̂

(1)
P , X̂

(2)
P , ..., X̂

(q)
P ], OD = [D̃, B̃(1)

P , B̃
(2)
P , ..., B̃

(q)
P ] .

The problem (3.33) can be also seen as a set of q optimization problems.

min
oDi ,i=1,...,q

||ri −DPoDi ||2L2(Ω) ,

where oDi is the i-th row of matrix OD and rPi is the i-th column of matrix RP . As in
the previous corrections, a truncated singular value decomposition is applied to matrix
DP and the number of singular values retained is the one that optimizes the error metric
(3.22).

The Poisson equation of the dynamical system becomes:

Db + aTGa + D̃b + bT B̃Pb− νNa − L = 0 . (3.34)

3.2.2 Data-driven correction for term aT Ga
For the term τG a similar ansatz to the one proposed in Section 3.1.1 has been considered:

τG(a) = G̃Aa + aT G̃Ba

The procedure followed to find matrices G̃A and G̃B is exactly the same explained in
Section 3.1.1 for the computation of matrices Ã and B̃, but in this case the exact term is
expressed as:

τ exact
G = (asnap

d (tj))TGdasnap
d (tj)

r
− (asnap

r (tj))TGasnap
r (tj) ,

where tensor Gd ∈ Rd×d×d is defined as:

Gdijk = (∇χi,∇ · (φj ⊗ φk)) , with i, j, k = 1, ..., d

The Poisson equation considering just the correction for the term containing tensor G can
be rewritten as:

Db + aTGa + G̃Aa + aTGBa − νNa − L = 0 . (3.35)

3.2.3 Combined data-driven corrections proposals
Other attempts have been done in order to provide a more compact ansatz in equations.
In particular, we have tried to approximate more than one correction terms with a unique
ansatz. The following ansatzes have been considered and simulated:

1. Joint correction to Db and aTGa, with the following ansatz:

τ joint
DG (a,b) = D̃pgb + aT B̃pga .

2. Joint correction to Db and aTGa as a function of vector of coefficients ab = (a,b) ∈
RNu+Np , with the following ansatz:

τ joint, ab
DG (ab) = ĨAab + abT ĨBab .
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3. Joint correction to Db and aTGa in Poisson equation and aTCa in momentum
equation, using the following ansatz:

τ joint, ab
DCG (ab) = J̃Aab + abT J̃Bab .

In all previous cases just one least squares problem is solved to find the unknown
matrices appearing in the ansatz expression.

Case 1

In the first case the least squares problem to be solved is:

min
D̃pg∈Rq×q ;
B̃pg∈Rq×r×r

M∑
j=1
||τ exact

DG (tj)− τ ansatz
DG (tj)||2L2(Ω) , (3.36)

where the exact correction term is:

τ exact
DG (tj) = τ exact

D (tj) + τ exact
G (tj) ∀j = 1, ...,M , (3.37)

and the ansatz is:
τ joint

DG (a,b) = D̃pgb + aT B̃pga .

In this case the optimization problem (3.36) becomes:

min
D̃pg∈Rq×q ,

B̃pg∈Rq×r×r

||RDG − X̂P D̃
T
pg −

q∑
i=1

X̂(i)(B̃(i)
pg )T ||2F , (3.38)

where B̃(i)
pg are blocks of the tensor B̃pg of dimension i× i. Matrix RDG in (3.38) is defined

as:
RDGj ,· = τ exact

DG (tj) ∀j = 1, ...M .

Problem (3.38) is seen as follows:

min
ODG
||RDG −DDGOT

DG||2F , (3.39)

where:

DDG = [X̂P , X̂
(1), X̂(2), ..., X̂(q)], ODG = [D̃pg, B̃

(1)
pg , B̃

(2)
pg , ..., B̃

(q)
pg ] .

The problem (3.39) is decomposed into q different optimization problems and a truncated
singular value decomposition is applied to matrix DDG. The error metric minimized is still
the one involving pressure (3.22), since terms involved in the correction are contained in
the Poisson equation for pressure and they’re supposed to improve the results for pressure.
Adding the correction term obtained using this approach, the Poisson equation becomes:

Db + aTGa − νNa − L + D̃pgb + aT B̃pga = 0 .
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Case 2

In this Section, a particular case is considered. Since term Db depends just on pressure
modes, whereas term aTGa depends on both velocity and pressure modes, the two terms
can be merged into a unique least squares problem involving the total vector of coefficients
ab = (a,b). In particular, calling rtot = r + q the least squares problem is:

min
ĨA∈Rq×rtot ;

ĨB∈Rq×rtot×rtot

M∑
j=1
||τ exact

DG (tj)− τ ansatz
joint, ab(tj)||2L2(Ω) , (3.40)

where the ansatz for the correction is:

τ ansatz
joint, ab(ab) = ĨAab + abT ĨBab .

Then the following terms are defined:

• the matrix âb ∈ RM×rtot such that âbj,· = absnap
r (tj) = (asnap

r (tj),bsnap
r (tj));

• rtot vectors ab(1)(tj),...,ab(rtot)(tj) for each time step, such that:

ab(i)(tj) = absnap
i (tj)


absnap

0 (tj)
absnap

1 (tj)
...

absnap
i (tj)

 ∈ Ri for i = 1, ..., rtot ,

where absnap
i (tj) is the i-th component of the snapshot joint vector at time step j.

In this way mixed terms of pressure and velocity snapshot coefficients are also taken
into account;

• the matrix Dab = [âb, âb(1)
, ..., âb

(rtot)];

• the matrix Oab = [ĨA, Ĩ(1)
B , ..., Ĩ

(rtot)
B ] .

The optimization problem (3.40) then becomes:

min
Oab

||RDG −DabOT
ab||2F . (3.41)

Problem (3.41) can also be decomposed into a set of q different least squares problems
and as in the other cases the truncated SVD is applied.

Adding the correction term to the Poisson equation, it becomes:

Db + aTGa − νNa − L + ĨAab + abT ĨBab = 0 .

Case 3

In the last case, the parameters in system (3.26) are such that cu = cD = cG = 1, i.e.
all the correction terms are considered in the reduced system. In this case a unique least
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squares problem is solved in order to find the three data-driven terms. The optimization
problem is:

min
J̃A∈Rrtot×rtot ;

J̃B∈Rrtot×rtot×rtot

M∑
j=1
||τ exact

DCG, ab(tj)− τ ansatz
DCG, ab(tj)||2L2(Ω) . (3.42)

The exact term is defined as follows:

τ exact
DCG ab(tj) =

(
τ exact
u (tj), τ exact

D (tj) + τ exact
G (tj)

)
∀j = 1, ...,M .

The ansatz is:
τ ansatz

DCG, ab(ab) = J̃Aab + abT J̃Bab ,

where matrices J̃A ∈ Rrtot×rtot and J̃B ∈ Rrtot×rtot×rtot are computed through a similar
procedure to the one used in Case 2. The final correction to be inserted in the system can
be divided in two vectors:

J̃Aab + abT J̃Bab = (J1,J2) where J1 ∈ RNu ,J2 ∈ RNp .

The new dynamical system with data-driven terms becomes:

Mȧ = ν(B + BT)a − aTCa −Hb + τ
(∑NBC

k=1 (UBC,kDk − Eka)
)

+ J1 ,

Db + aTGa − νNa − L + J2 = 0 .
(3.43)
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Chapter 4

Numerical Results

This Chapter is dedicated to the presentation and discussion of the numerical simulations
results. The case study considered is that of the turbulent incompressible flow around a
circular cylinder. This test case is a common benchmark for unsteady turbulent flows,
given its simple posure and yet significant practical applications. In the offline-online
procedure, the offline phase was carried out making use of the C++ open source software
OpenFOAM [16]; the reduced system of equations has been assembled with the C++
library ITHACA-FV [17, 18, 19]. The online part consists in a series of simulations, in
which the data-driven terms examined in Chapter 3 are computed and included in the
reduced systems; the online part is carried out in a specifically developed Python script.

The results of the FOM simulations are compared with the results obtained by solving
the reduced order dynamical systems with and without the correction terms.

4.1 The Case Study: Unsteady Flow around a Cir-
cular Cylinder

The case study analysed is that of the unsteady incompressible flow past a circular cylin-
der. It is a well-known case study in literature, analysed in detail in [48, 49, 50, 51]. The
case study has been simulated with reduced order techniques in the past, for instance in
[18, 52, 10, 53, 54]. Given the inherent 2D nature of the vortex shedding phenomenon,
the case is studied in two dimensions and the mesh used is composed by 11644 cells.
The mesh and the boundary conditions set for velocity and pressure are represented in
Figure 4.1 [1]. The diameter of the cylinder is D = 1 m, the fluid kinematic viscosity
ν = 1× 10−4 m2 s−1 and the velocity at the inlet is horizontal and fixed at Uin = 5 m s−1,
which corresponds to Re = 5× 104. The penalty parameter τ appearing in the boundary
conditions in (2.12) and (2.13) is set to τ = 1000. This parameter is usually set according
to a sensitivity analysis, as discussed in [55], but a too large value for τ can lead to an
ill-conditioning of the dynamical system [1].

As mentioned, the software OpenFOAM is used to evaluate the full order fields for the
offline stage. In particular, we made use of the unsteady solver pimpleFoam, which imple-
ments the PIMPLE algorithm, and of the κ − ω two equations model for the turbulence
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(a)

(b)

Figure 4.1: (a) The mesh used in simulations. (b) The mesh zoomed around the cylinder.
Image taken from [1].

treatment. The time step considered in the simulations is 0,0002 s, but the time snapshots
are taken every 20 time steps, i.e. every 0,004 s. The simulation last 100 seconds.

Then 5000 time snapshots, corresponding to the time window [79.992,99.992], are
selected. The Proper Orthogonal Decomposition is performed through the C++ library
ITHACA-FV on the aforementioned interval: the POD modes for velocity, pressure, and
supremizer fields (in the case of SUP-ROM approach), are obtained from the snapshot
matrices.

In the online phase, the reduced order dynamical system is computed and solved. In
this stage different existing and newly proposed data-driven approaches are considered
to compare their results to those obtained with the approach presented in [1]. To better
guide the reader through the numerical tests and their rationale, a brief summary of their
evolution throughout this Thesis work is here provided.

1. A preliminary step is to analyse the POD results. An analysis on the eigenval-
ues decay for pressure and velocity is carried out in order to find which are the
under-resolved and marginally-resolved regimes. The projected solutions for differ-
ent numbers of modes are studied in terms of relative errors of velocity and pressure
fields with respect to the high fidelity solutions. We will refer to these errors as
reconstruction errors.

2. Secondly, the solution of the SUP-ROM given by system (3.9), where a suprem-
izer approach is applied without any correction term, is studied. In particular, the
stability issues caused by the supremizer fields are discussed.
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3. The data-driven methods proposed in [10, 11, 46] are then applied and fitted to
the SUP-ROM approach. Correction/closure terms depending on the reduced order
velocity coefficients are added to the momentum equation in system (3.9), and the
influence of term τ u(ai), which we refer to as correction term for velocity, is analysed.
The dynamical system (3.9) with cu = 1 and cp(1) = cp(2) = 0 produces a better
approximation of the velocity field than the formulation without any correction term.
However, in these tests the reproduction of the pressure field is not significantly
improved with respect to the solution of the system without the velocity correction
term.

4. Since in several applications it is important to obtain an accurate pressure field
prediction, new pressure corrections for the SUP-ROM approach are also introduced.
To this end, the dynamical system (3.9) with cu = cp(1) = cp(2) = 1 is solved,
making use of both the velocity and the pressure correction/closure terms. As will
be documented, the results still show no improvement of the pressure field. One of
the possible reasons for this is that, as it is the case for its velocity counterpart, the
pressure correction is mainly designed to surrogate effects of nonlinear terms. Since
no nonlinear terms involve pressure, the corresponding correction/closure term is
less effective than the velocity correction.

5. The next step is to consider a different approach where a dedicated equation for
pressure is considered, in particular the PPE-ROM is taken into account. In the
PPE formulation, new pressure correction terms for the Poisson equation are added
and different ansatzes are proposed. The results lead to an evident improvement of
the reduced pressure field.

6. The last step of our analysis is to compare the results obtained with the SUP-ROM
and the PPE-ROM approach with those obtained in previous works [1], which was
focused on a different data-driven approach where the reduced eddy viscosity field
was introduced in the reduced NSE. Finally also the combination of the two data-
driven approaches is studied and implemented, leading to even better results for the
pressure and the velocity fields.

For the supremizer approach the most general form in which also the turbulent data-
driven terms are introduced is the following:

Mȧi = ν(B + BT)ai − (ai)TCai −Hbi + cuτ u(ai,bi) +
+cp(1)τ p(1)(ai,bi) + ct

(
(gi)T (CT1 + CT2)ai

)
at each i = 1, ...,M ,

Pai + cp(2)τ p(2)(ai,bi) = 0 at each i = 1, ...,M ,

(4.1)

where M is the total number of time steps in the online phase. In most of the simulations
we will considerM = 500, corresponding to 2 s; in order to analyse the time extrapolation
efficiency of the method we will consider M = 2000 in some simulations, corresponding
to 8 s.

For the Poisson approach the dynamical system with the addition of the turbulent
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terms is the following:
Mȧi = ν(B + BT)ai − (ai)TCai −Hbi + cuτ u(ai,bi) +
+ct

(
(gi)T (CT1 + CT2)ai

)
at each i = 1, ...,M ,

Dbi + (ai)TGai − νNai − L + ct
(
(gi)T (CT3 + CT4)ai

)
+

+cDτD(ai,bi) + cGτG(ai,bi) = 0 at each i = 1, ...,M .

(4.2)

In systems (4.1) and (4.2), the parameter ct is introduced to add or remove the tur-
bulence treatment. More specifically, when ct = 1 the eddy viscosity turbulence model is
added to the reduced system.

As for the time integration two different approaches are taken into account; the time
derivative ȧi appearing in the momentum equation in (4.1) and (4.2) is computed following
two implicit time schemes, namely:

• implicit Euler time scheme:

ȧi = ai − ai−1

∆t , (4.3)

where ∆t is the time interval and i indicates the time step at with the coefficients
are evaluated;

• implicit second order time scheme:

ȧi = ai − ai−1

∆t , for i = 1,2 ,

ȧi = 3ai − 4ai−1 + ai−2

2 ∆t , for i > 2 .
(4.4)

It is worth remarking that the second order time scheme corresponds to the scheme im-
plemented in OpenFOAM and used to solve the full order problem.

The results are usually displayed in terms of the percentage L2(Ω) error of the absolute
value of velocity and pressure. The errors are evaluated with respect to the full order fields
and compared with the reconstruction errors. The projection of the full order solution is
the best possible result which can be achieved with a given amount of modes. Thus, the
solution of the reduced system cannot improve with respect to that projection.

The percentage errors with respect to the full order fields at each j-th time step are
evaluated in the following way:

εu(tj) =
||uabsr (x, tj)− uabsd (x, tj)||L2(Ω)

||uabsd (x, tj)||L2(Ω)
, εp(tj) =

||pr(x, tj)− pd(x, tj)||L2(Ω)

||pd(x, tj)||L2(Ω)
. (4.5)

In order to compute the errors defined in (4.5), the following vectors are considered:
• the reduced order field of the velocity, taken in its absolute value uabsr (x, tj) at each
j-th time step. It is evaluated taking the norm of the reduced vector field for velocity
at each time step, expressed as follows:

ur(x, tj) =
r∑
i=1

ai(tj)φi(x) ,

58



4.2 – Modal Decomposition Effectiveness

where the coefficients ai(tj) are the solutions of the dynamical systems (4.1) (in the
supremizer approach) and (4.2) (in the Poisson approach). The number of modes
for velocity is r = Nu +Nsup in the supremizer approach, and r = Nu in the Poisson
approach;

• the approximated full order field of the absolute value of velocity uabsd (x, tj), at
each time step. It is evaluated starting from the first d modes, where d = 100
when a supremizer approach is considered, and d = 50 when a Poisson approach is
considered. The absolute value of the velocity at each cell and at each time step is
evaluated starting from the following approximated field:

ud(x, tj) =
d∑
i=1

asnap
i (tj)φi(x) .

When a supremizer approach is considered: {φi}100
i=51 = {si(χi)}50

i=1 are the suprem-
izer modes;

• the reduced order field for pressure pr(x, tj) computed as follows:

pr(x, tj) =
q∑
i=1

bi(tj)χi(x) ,

where the coefficients (bi)qi=1 are computed as the solution of the reduced dynamical
system;

• the approximated full order field of pressure pd(x, tj), computed starting from the
first dp = d = 50 modes for pressure:

pd(x, tj) =
dp∑
i=1

bsnap
i (tj)χi(x) .

4.2 Modal Decomposition Effectiveness
In the present Section, an analysis of the eigenvalues corresponding to the velocity, suprem-
izer and pressure modes is carried out, in order to capture the number of modes retaining
most of the system’s energy. In Figure 4.2 the plot of the eigenvalues decay shows that
the first mode of both velocity and pressure retains more than the 90 % of the system’s
energy.

Looking at Figure 4.2, 3 ,4, 5 or 6 modes for velocity and pressure can be attributed
to the marginally-resolved regime, which will be the main interest of our analysis.

The projection of the solution into the reduced order POD space is the best possible
approximation among the solutions belonging to the same reduced space. Figure 4.3 dis-
plays the percentage L2 reconstruction errors of velocity and pressure referred to different
number of modes. As expected, the approximations of velocity and pressure fields become
more accurate as the number of modes generating the POD space increases.
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Figure 4.2: Decay of the eigenvalues corresponding to velocity, pressure and supremizer
modes.
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Figure 4.3: Percentage reconstruction errors for different numbers of modes.

4.3 Analysis of the POD Galerkin SUP-ROM with-
out corrections

This Section is dedicated to the preliminary analysis of the solutions of the dynamical
system which is not including data-driven corrections and turbulence model terms.

Figures 4.4 and 4.5 display the errors of the absolute value of velocity and of pres-
sure with respect to the high-fidelity solutions, as a result of a 1st order time evolution
scheme. Different combinations of number of modes are considered; the expectation is
that the precision of the standard Galerkin-ROM would improve as the number of modes
is increased. However, the approximated supremizer approach is characterized by stability
issues particularly affecting the pressure field. As can be appreciated from Figure 4.4(b)
when the number of velocity and pressure modes is greater than 10 and the number of
supremizer modes is Nsup = Nu = Np, the reduced pressure solution error significantly
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4.3 – Analysis of the POD Galerkin SUP-ROM without corrections

increases. These issues are not as severe when Nsup > Np, as shown in Figure 4.5. Con-
sidering for instance Nu = Np = 10 and Nsup = 15, or Nu = Np = 20 and Nsup = 40
results show an acceptable accuracy. Unfortunately, the stability issues are still evident
when Nu = Np = 30 and Nsup = 50.

This problem comes from the fact that the supremizer approximated procedure has
been adopted, and it would be solved with an exact procedure [13, 17].
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Figure 4.4: Percentage errors of the absolute value of velocity and of pressure with respect
to the full order simulations, considering different combinations of number of modes, with
Nu = Np = Nsup. In simulations time integration is carried out by means of a first order
time scheme.
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Figure 4.5: Percentage errors of the absolute value of velocity and of pressure with respect
to the full order simulations, considering different combinations of number of modes, with
Nu = Np and Nsup > Np. In simulations time integration is carried out by means of a
first order time scheme.

Figures 4.6 and 4.7 also display the results of simulations computed with a second
order time scheme. Here, the same stability issue can be observed when Nu ≥ 10 and the
number of supremizer modes is equal to the number of pressure and velocity modes.

From the comparison between Figures 4.5 and 4.7 it can be seen that when a first
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order time scheme is considered the results for the velocity field are similar to the one
obtained with a second order time scheme, except for an explosion of the error just at
the end of simulation for the second order, for the case Nu = Np = 30, Nsup = 50. This
fact is likely due to the reduced numerical dissipation associated with the second order
numerical scheme used for time integration. Such lower dissipation might in fact expose
the instabilities associated with the supremizer pressure treatment in a greater fashion.
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Figure 4.6: Percentage errors of the absolute value of velocity and of pressure with respect
to the full order simulations, considering different combinations of number of modes, with
Nu = Np = Nsup. In simulations time is evolved with a second order time scheme.
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Figure 4.7: Percentage errors of the absolute value of velocity and of pressure with respect
to the full order simulations, considering different combinations of number of modes, with
Nu = Np and Nsup > Np. In simulations time is evolved with a second order time scheme.

The present Section leads to the following conclusions:

• in most cases, in the standard SUP-ROM the number of supremizer modes should be
higher than the number of pressure modes in order to avoid stability issues (Figures
4.4 and 4.6);

• the standard SUP-ROM performs better when a first order time scheme is considered,
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4.4 – Effect of velocity correction in the SUP-ROM approach

because of the greater dissipation associated to it, as can be seen from the comparison
between Figures 4.5 and 4.7;

• the standard SUP-ROM leads to more accurate results for the velocity field than for
the pressure field; the main goal of the following Sections will be that of improving
the pressure accuracy.

4.4 Effect of velocity correction in the SUP-ROM ap-
proach

This Section is dedicated to the analysis of the effect of the velocity correction terms on
the dynamical system obtained with the supremizer enrichment and treated in Section
3.1.1. In particular the following studies are included:

• the problem of choosing R and Rc, the number of singular values in the truncated
SVD of least squares problems (3.11) and (3.16), respectively;

• a comparison between the standard and the constrained velocity correction terms,
considering different numbers of modes;

• study of the extrapolation efficiency of the method, building the correction terms
from a reduced time interval;

• study of the 3S−DD−VMS−ROM approach developed in [46] for the construction
of the velocity correction term.

4.4.1 Velocity correction: the influence of R
In this Section, the number of modes considered is fixed at Nu = Np = Nsup = 5. This
combination for the number of modes is chosen because it is not affected by stability issues,
as can be appreciated from Figures 4.4 and 4.6. It also belongs to the marginally-resolved
regime, which is the region on which our analysis is focused.

The solution for system (4.1) with cu = 1 and cp(1) = cp(2) = 0 is computed. Figures
4.8 and 4.9 present the relative errors of velocity and pressure. In particular, Figure
4.8 refers to the solution of the system in which the standard velocity correction is added
(Section 3.1.1), whereas Figure 4.9 refers to the constrained correction described in Section
3.1.2. Different curves correspond to different numbers of singular values R retained
in the truncated singular value decomposition used to solve the least squares problem.
From Figures 4.8 and 4.9, it is clear that there exists an optimal R, i.e. a value of
R that minimizes the error with respect to the projection of the high fidelity solution.
The solution for R = 0 corresponds to the solution of the dynamical reduced system
without any correction term and it is used in Figures as a reference point for the curves
corresponding to the correction effect: for small values of R the solution of the system
in terms of velocity and pressure improves with respect to the solution of the standard
system. For larger values of R, the reduced solution is not converging anymore to the full
order one. For this reason, when a correction term is added to the reduced system the
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Figure 4.8: Percentage errors of the absolute value of velocity (a) and of pressure (b) with
respect to the full order simulations, considering Nu = Np = Nsup = 5. The correction
term included is the unconstrained velocity correction.
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Figure 4.9: Percentage errors of the absolute value of velocity (a) and of pressure (b) with
respect to the full order simulations, considering Nu = Np = Nsup = 5. The correction
term included is the constrained velocity correction.

number of singular values retained in the truncated SVD is optimized with respect to the
error metric expressed in (3.15). The trend of the error metric for different values of R
and Rc is represented in Figure 4.10.

It is worth reporting that at each value of R or Rc the optimization problems are aimed
to minimize the difference between the approximated correction term τ ansatz

u and the exact
closure term τ exact

u . However, the optimal values of R and Rc are the values for which
the error metric (3.15) is minimized and they are not selected to minimize the distance
from the exact correction term. For this reason, it can happen that the approximated
correction performs better than the exact one in terms of accuracy with respect to the
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full order fields, as can be seen from Figure 4.11.
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Figure 4.10: Variation of the metric εu(L2) varying the number of singular values retained
in the singular value decomposition.
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Figure 4.11: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = Nsup = 5, including the
simulation with the exact correction. The optimal R and Rc are considered.

In Table 4.1 the optimal numbers of singular values retained in the truncated SVD
for the optimization problem in both the unconstrained and the constrained cases are re-
ported. The optimal R or Rc depends not only on the degrees of freedom of the dynamical
systems, but also on the scheme used for the approximation of the time derivative. In
Table 4.1 the results for the first and the second order are displayed. From the Table,
it can be noticed that in the marginally-resolved regime the optimal R and Rc are small
values. This is due to the fact that the correction term in the reduced system corresponds
to additional degrees of freedom, representing the interaction among the resolved and the
unresolved modes.

Increasing values of R or Rc lead to larger degrees of freedom and to a higher complexity
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Optimal number of singular values retained
Nu Nsup Np optimal

R (1st or-
der time
scheme)

optimal
Rc (1st
order time
scheme)

optimal R
(2nd or-
der time
scheme)

optimal
Rc (2nd
order time
scheme)

1 1 1 1 1 1 1
2 2 2 4 2 4 2
3 3 3 3 4 2 4
4 4 4 8 8 5 5
5 5 5 9 6 9 6
6 6 6 18 15 9 15
7 7 7 21 7 12 13
8 9 8 10 14 14 14
9 10 9 9 21 9 20
10 15 10 16 22 16 22

Table 4.1: Optimal number of singular values retained in the truncated SVD, varying the
number of modes considered in online simulations. Both optimization problems for the
standard and constrained case are taken into account. The dynamical system is evolved
according to an implicit Euler time scheme or to a second order implicit time scheme.

of the system, which can cause an ill-conditioning of the system itself. Moreover, larger
values of R and Rc can affect the accuracy of the optimization problem, leading to an
overfitting effect.

From the present Section, the following conclusions can be drawn:

• in the least squares problem which has to be solved to find the corrections, there
exists an optimal value for the number of singular values in the truncated SVD. The
optimal value will be considered in all the following simulations;

• the selected value optimizes the error on the velocity field, but not the difference
with respect to the exact correction. Thus, it can provide better results than the
exact correction.
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4.4.2 Velocity correction: constrained and not constrained
This Section has the aim of making a comparison between the constrained and uncon-
strained corrections for the term τ u. Parameters appearing in system (4.1) are set as
cu = 1, cp(1) = cp(2) = 0. Thus, in this Section the dynamical system only involving
correction τ u is considered. Both constrained and normal least squares problems are
solved. As suggested in [11], the constrained method is more efficient than the uncon-
strained method when the number of modes is smaller, as can be seen from the comparison
between Figures 4.12, 4.13 and 4.14.
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Figure 4.12: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = Nsup = 3. Results
without any correction term, with the correction term for velocity constrained and not.
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Figure 4.13: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = Nsup = 5. Results
without any correction term, with the correction term for velocity constrained and not.
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Figure 4.14: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = 10 and Nsup = 15.
Results without any correction term, with the correction term for velocity constrained
and not.

In Figure 4.12 it can be seen that when the number of modes Np = 3 there is a larger
improvement in terms of pressure accuracy than in the cases of larger Np.

The constrained correction is derived including physical conditions in the optimization
problem, which are supposed to positively influence the velocity and pressure fields.
However, the gain in accuracy for the constrained method is typically marginal, except
for lower modes, and the addition of constraints to the method is not sufficient to obtain
an accurate pressure field.
In order to reach this goal, new correction terms are introduced and evaluated in the
numerical simulations of the following Sections.
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Figure 4.15: Percentage errors of the absolute value of velocity (a) and of pressure (b) with
respect to the full order simulations, considering different numbers of modes. Results refer
to the case in which the standard velocity correction is added to the dynamical system
and the time is evolved according to a first order implicit scheme.
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Figure 4.16: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering different numbers of modes. Results
refer to the case in which the constrained velocity correction is added to the dynamical
system and the time is evolved according to an Euler implicit scheme.

Figures 4.15 and 4.16 are also added in this Section in order to evaluate how the
two types of velocity correction behave for different degrees of freedom, when the time
derivative is computed according to a first order time scheme. In simulations the value
set for R and Rc is the optimal one, so the results in the Figures are the best possible we
can obtain by adding the velocity correction terms.

It is interesting to compare the plots obtained in this Section with the plots in Figure
4.3, which are the best possible results referred to the projection of the full order solution.
The results obtained for the velocity field are very close to those obtained for the pro-
jection, especially for the marginally-resolved regime, i.e. Nu = 3, 4, 5 or 6, whereas the
correction is less effective as the number of modes grows. However, the reduced pressure
field is not captured with as high accuracy as the reduced velocity.
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Figure 4.17: Percentage errors of the absolute value of velocity (a) and of pressure (b) with
respect to the full order simulations, considering different numbers of modes. Results refer
to the case in which the standard velocity correction is added to the dynamical system
and the time is evolved according to a second order implicit scheme.
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Figure 4.18: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering different numbers of modes. Results
refer to the case in which the constrained velocity correction is added to the dynamical
system and the time is evolved according to a second order implicit scheme.

In Figures 4.17 and 4.18 results for the standard and constrained velocity correction
are presented in the case of a second order time evolution. From the comparison with
Figures 4.15 and 4.16, it is clear that the corrections at the second order produce less
accurate results than in the first order and show instability as time evolves. The fact
that all the relative errors represented in Figures 4.17 and 4.18 increase with time might
suggest that the second order time scheme is not able to dump possibly unstable higher
modes, since it is a less dissipative integration scheme than the Euler scheme.

This Section leads to some important observations:

• the velocity correction, both constrained and not, improves the velocity and pressure
fields with respect to the standard SUP-ROM;

• for the second order time scheme, results are more unstable in time since the scheme
is less dissipative than the first order one;

• the constrained correction produces slightly better results for the marginally-resolved
regime, but the effect is not so much evident in terms of pressure accuracy. For this
reason, in the following part additional corrections are taken into consideration for
the SUP-ROM approach.
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4.4.3 Velocity correction: extrapolation efficiency
The present Section evaluates the performance of the method proposed in Sections 3.1.1
and 3.1.2 when larger time windows are considered and time extrapolation is carried out.
In particular, the matrices Ã and B̃ are built using the snapshots taken from a smaller
interval that does not cover all the simulated time, in order to test the capability of the
method to well approximate the exact correction term in larger time intervals. Two cases
are considered:

• correction built starting from 100 time instances, simulation lasting 500 time in-
stances, which correspond to 0,4 s and 2 s, respectively;

• correction built starting from 500 time instances, simulation lasting 2000 time in-
stances, corresponding to 2 s and 8 s, respectively.

In both cases the combinations of modes considered are Nu = Np = Nsup = 5 and
Nu = Np = Nsup = 3; the time scheme used for the time derivative is of first order.

Correction built starting from 100 time instances

In this first case, the term τ u is built just using data of the first 100 steps of simulations;
the results are displayed in Figures 4.19 and 4.20. The numbers of singular values R and
Rc retained in the correction terms are the optimal values and they are different from the
values of R found in Table 4.1.
In the case Nu = Np = Nsup = 5 for instance, for the unconstrained case the optimal R is
6, whereas it is 16 when the entire time window is considered for the construction of the
correction term.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [s]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

εf
u
ll

u
[%

]

(a) Percentage error on velocity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [s]

5

10

15

20

25

30

εf
u
ll

p
[%

]

Without corrections

With not constrained correction

With constrained correction

Projection

(b) Percentage error on pressure

Figure 4.19: Percentage errors of the absolute value of velocity (a) and of pressure (b) with
respect to the full order simulations, considering Nu = Np = Nsup = 3. Results without
any correction term, with the standard and constrained correction term for velocity. The
optimal R and Rc are both 5.
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Figure 4.20: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = Nsup = 5. Results
without any correction term, with the correction term for velocity constrained and not.
The optimal R and Rc are 9 and 4 respectively.

The reduced velocity field in Figure 4.20 (in the case Nu = Nsup = Np = 5) seems to
suggest that the constrained method might have a more efficient extrapolation capability
after the time step 100 when the number of modes for all fields is 5; however, the two
techniques lead to similar results in both cases Nu = Np = Nsup = 3 (Figure 4.19) and
Nu = Np = Nsup = 5 (Figure 4.20) and are able to improve the results of simulations
without corrections.

Correction built starting from 500 time instances

In the second case a simulation lasting 2000 steps, i.e. 8 seconds, is computed using a
correction term built from the first 500 steps. The results are displayed in Figures 4.21
and 4.22 for Nu = Np = Nsup = 3 and Nu = Np = Nsup = 5, respectively.

The correction improves a lot both velocity and pressure accuracy especially in the
interval [2,8] seconds: 500 time steps are sufficient to construct matrices Ã and B̃ appear-
ing in the correction and to have a good improvement of results w.r.t. the case without
corrections.

In addition, the error curves associated with all the test cases in which corrections have
been applied appear to be significantly more stable than the test case without correction.
This might suggest that if the training set contains a sufficient number of solution cycles,
the correction will increase its ability to lead to stable solutions over time, and extended
time integration and extrapolation will be possible. However, in such a stable scenario,
constraining the minimization for the calculation of Ã and B̃ is not leading to significant
improvements, as can be seen from Figures 4.21 and 4.22.
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Figure 4.21: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = Nsup = 3. Results
without any correction term, with the correction term for velocity constrained and not.
The optimal R and Rc are 3 and 4, respectively.
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Figure 4.22: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = Nsup = 5. Results
without any correction term, with the correction term for velocity constrained and not.
The optimal R and Rc are 9 and 6, respectively.

• The conclusion that can be drawn regarding the present Section is that the data-
driven methods presented so far show an excellent extrapolation efficiency if a sufficient
amount of data is considered to build the correction term.
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4.4.4 Velocity correction: the 3S-DD-VMS-ROM approach

In this Section, the results of simulations carried out with the three-scales approach pre-
sented in Section 3.1.3 are displayed. The number of total resolved modes considered
is Nu = Np = 10 and Nsup = 15, but in the construction of the correction term the
supremizer modes are discarded. In Figure 4.23 the percentage errors are displayed for
velocity and pressure in order to compare what obtained in Section 4.4.2 with the results
obtained with the 3S-DD-VMS-ROM approach. Figure 4.23 (b) displays better pressure
field results with respect to the classical approach; as for velocity, comparable percent-
age errors can be observed. In this simulation the value of r1 (number of large resolved
ROM modes) is fixed a priori and equal to 5. The optimal number of singular values is
considered: RL = 13 and RS = 1.
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Figure 4.23: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = 10, Nsup = 15. Results
without any correction term, with the correction term for velocity not constrained and
with the correction term using 2 scales for resolved ROM are showed.

The following considerations can be drawn:

• the 3-scales correction produces slightly better results than the standard and the
constrained correction, but it requires the resolution of an additional least squares
problem with respect to the other techniques previously developed.

• in general, in all the results obtained considering the velocity correction, the pressure
field shows poorer results than the velocity field. Such a fact has brought us to add
in the SUP-ROM further corrections related to the terms which include the pressure
reduced coefficients.
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4.5 Effect of pressure corrections in the SUP-ROM
approach

Results in Section 4.4 have showed that the velocity correction significantly improves the
results in terms of velocity field but the same cannot be said for pressure field.

The results shown in Section 4.4 characterize in fact the performance of data-driven
correction terms tested so far for LES simulation [10, 11], when applied to RANS models.
To the best of our knowledge no attempt has been made to devise similar data-driven
corrections for the improved reconstruction of the pressure field.

Since the pressure field is extremely important in applications to compute other rel-
evant properties of the flow or output values such as forces, the new methods developed
in Section 3.1.4 for increased pressure field accuracy are here investigated. In Figure 4.24
the following cases for system (3.9) are taken into account:

• cu = cp(1) = cp(2) = 0, i.e. absence of any correction term;

• cu = 0, cp(1) = 1, cp(2) = 0, in which the correction for term −Hb is added in the
momentum equation;

• cu = 0, cp(1) = 0, cp(2) = 1, in which the correction for term Pa is added in the
continuity equation;

• cu = 0, cp(1) = cp(2) = 1, where the pressure corrections are added to the original
system.

Figure 4.24 represents the percentage errors on the absolute value of velocity and for
pressure when the number of modes considered is Nu = Np = Nsup = 3.
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Figure 4.24: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = Nsup = 3. Results
without any correction term, with the correction term for velocity only, with both the
correction terms for velocity and pressure are displayed.
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For simulations involving the velocity correction, the constrained data-driven correc-
tion is applied, since it provides better results, as pointed out in Section 4.4.2.

The number of singular values retained for matrices in the least squares problems is
the optimal one. In particular, Rc = 6 is the value that minimizes the error metric for
velocity (3.15); Rp1 = 6, Rp2 = 4, Rptot = 6 are the optimal numbers of singular values
for the least squares problems in (3.20) and (3.21), obtained minimizing the error metric
for pressure (3.22).

The images show that the effect of the velocity data-driven correction is much more
evident than the effect of pressure corrections. The ineffectiveness of the pressure related
corrections on the pressure field is further investigated with some specific tests. We
must first understand if the poor pressure reconstruction is a product of inaccuracies
of minimizations (3.20) and (3.21) or instead if it is due to inherent inabilities of the
correction terms devised, in affecting the pressure field. To this end, we evaluate the
performance of the exact correction terms. Removing the minimization error, this will
suggest if the pressure correction terms can be effective in the present form.

In Figure 4.25 the results with cu = 0 (no velocity correction) related to the following
cases are displayed:

• cp(1) = cp(2) = 0, i.e. absence of any correction term;

• cp(1) = 1, cp(2) = 0, in which the exact correction for term −Hb is added to the
momentum equation;

• cp(1) = 0, cp(2) = 1, in which the exact correction for term Pa is added in the
continuity equation;

• cp(1) = cp(2) = 1, in which the exact pressure corrections are added to the original
system.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [s]

3.5

4.0

4.5

5.0

5.5

6.0

εf
u
ll

u
[%

]

(a) Percentage error on velocity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [s]

5

10

15

20

25

30

εf
u
ll

p
[%

]

Without corrections

With P correction

With H correction

With P and H corrections

Projection

(b) Percentage error on pressure

Figure 4.25: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = Nsup = 3. Results with
and without the exact pressure corrections are presented.
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4.6 – Analysis of the POD Galerkin PPE-ROM without corrections

As can be seen in Figure 4.25, the pressure corrections have no effect on the dynamical
system obtained with the supremizer enrichment. The approximations H̃b and P̃a are
ineffective because the exact terms τ exact

p(1) and τ exact
p(2) are too, as can be seen in Figure 4.25. If

there is no improvement with the exact term, we cannot hope to have an improvement with
the approximated corrections. This clearly suggests that the structure of the corrections,
rather than the accuracy of the minimization, must be improved.

Different considerations can be done:

• The terms Hb and Pa are linear terms, whereas the velocity term aTCa is a non-
linear term and it has a more evident effect on pressure and velocity accuracy; the
same holds true for the correspondent correction terms. However, there can be cases
at lower Reynolds number where the linear correction terms have a visible effect on
results; for instance in [56] a linear correction for the viscous term in the momentum
equation is introduced, producing an improvement for values of ν larger than 10−3;

• terms only involving the pressure modes are not provided in the system adopted for
the supremizer formulation. Given the construction of the model, there is no way
to build a correction which is directly acting upon the pressure reduced coefficients.
Instead, the only pressure correction terms that can be included in the supremizer
formulation either involve the pressure coefficients within the momentum equation,
or involve the velocity and supremizer coefficients in the continuity equation.

For the reasons already pointed out, a different formulation is taken into account in the
following Section. The PPE model, which includes a pressure equation, naturally offers
the opportunity to include different possible specific pressure corrections.

4.6 Analysis of the POD Galerkin PPE-ROM with-
out corrections

In this Section the solution of the dynamical system (4.2) are displayed, considering the
parameters cu = cD = cG = 0, i.e. without any correction term. The results obtained in
terms of percentage errors on the pressure and velcity fields are displayed in Figures 4.26
and 4.27, where a first and a second order time scheme are used, respectively.

From Figure 4.26 one can note that the accuracy increases as the number of modes
increases, as desirable. The stability issue exhibited by the supremizer approach solution
and discussed in Section 4.3 is not observed in this case. However, when a second order
time scheme is used, results appear more unstable, especially when a high number of
pressure and velocity modes are considered in the reduced simulations. The reason for
this fact might be the same already pointed out in Section 4.3, related to the numerical
damping of the integration time schemes.

As was the case with the supremizer approach, also when a PPE approach is considered
the reduced order regime we are interested in is the marginally-resolved regime. Thus,
most of the numerical tests here presented are carried out considering Nu = Np = 3 or
Nu = Np = 5.
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Figure 4.26: Percentage errors of the absolute value of velocity and of pressure with respect
to the full order simulations, considering different combinations of number of modes, with
Nu = Np. In simulations time is evolved with a first order time scheme.
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Figure 4.27: Percentage errors of the absolute value of velocity and of pressure with respect
to the full order simulations, considering different combinations of number of modes, with
Nu = Np. In simulations time is evolved with a second order time scheme.

• The conclusions of this part are quite similar to the facts already pointed out in
Section 4.3, such as the instability of the second order time scheme. The motivation of
the next Sections will be the improvement of the pressure field.
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4.7 Effect of corrections in the PPE-ROM approach
The present Section discusses the results obtained with the PPE approach enhanced with
different data-driven corrections. The following studies are considered:

• evaluation of the different ansatzes and of the effect of the correction related to term
Db;

• study of the effects of different pressure corrections in the Poisson pressure equation
and of their combined use;

• evaluation of the combined influence of velocity correction and pressure corrections.
In this Section, the results of different possibilities presented in Section 3.2.3 are also
studied and compared.

4.7.1 Evaluation of the correction term τD

In this Section, the different ansatzes for the correction term τD are compared in terms
of pressure error reduction. Thus, dynamical system (4.2) with cu = cG = ct = 0 and
cD = 1 is computed and solved. In Figure 4.28 the linear correction term follows the
ansatz presented in (3.28), whereas the quadratic correction refers to the ansatz presented
in (3.31).
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Figure 4.28: Percentage errors of the absolute value of velocity (a) and of pressure (b) with
respect to the full order simulations, considering Nu = Np = 3. Results are displayed for
the cases: without any correction ( ), with the exact correction term τD ( ), with the
linear ansatz ( ) and the quadratic ansatz ( ) for the correction τD. The previous
cases are compared with the reconstruction error ( ).

First of all, Figure 4.28 suggests that the effect of the correction term influences only the
pressure field and not the velocity field. The pressure error plots on the right also indicate
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that the linear correction term does not produce a significant improvement of the results
with respect to the solution obtained with the standard dynamical system. On the other
hand, adding the pressure quadratic correction results in improved pressure accuracy,
approaching that obtained with the exact correction. Moreover, the accuracy obtained
by including the pressure quadratic correction is even higher than the one obtained with
the exact correction term. This phenomenon was already pointed out in Section 4.4.1
and it is due to the fact that the number of singular values retained for the optimization
problem does not correspond to the value that minimizes the error with respect to the
exact correction term. In fact, for the velocity approximated correction, the value selected
for R and Rc is the one that minimizes the metric (3.15); for the pressure approximated
corrections here introduced the metric to be minimized is (3.22). The reason for this
choice is that the pressure corrections are introduced in order to improve the accuracy of
the pressure field.

From now on, the quadratic ansatz is always computed for the correction term τD,
since it produces a better effect on the pressure field with respect to the linear ansatz.

4.7.2 Effect of pressure corrections in the PPE-ROM
In this subsection the correction term for τG, which was presented in Section 3.2.2, is
introduced. We recall that such a correction, located in the Poisson pressure equation, is
based on the reduced velocity vector. Thus, its single effect and its combined effect with
the other pressure correction in the Poisson equation are here evaluated. In particular,
dynamical system (4.2) is solved considering cu = ct = 0. Figure 4.29 displays the results
for the following cases:

• cD = 0, cG = 1;

• cD = 1, cG = 0, where the quadratic ansatz for τ is computed;

• cD = cG = 1, where the corrections are obtained by solving two disjoint optimization
problems for the pressure corrections presented in Sections 3.2.1 and 3.2.2;

• cD = cG = 1, where a unique optimization problem is solved, using an ansatz with
a linear dependence on a and a quadratic dependence on b (Section 3.2.3 Case 1);

• cD = cG = 1, in which a unique optimization problem is solved, considering an
ansatz with a quadratic dependence on vector ab (Section 3.2.3 Case 2).

The plots in Figure 4.29 show that when only one correction is added in the system,
the pressure approximated fields improves and the velocity approximation is unchanged
in terms of accuracy with respect to the high fidelity solution. When the system (4.2)
is solved including both the pressure corrections, the best result is achieved using the
method presented in Case 2 of Section 3.2.3, in which the correction is a function of
vector ab = (a,b), as can be seen from Figure 4.29(b).

An important consideration is that the pressure corrections in the PPE-ROM approach
improve the pressure result, whereas in the SUP-ROM approach results are unchanged
adding the pressure corrections (Section 4.5).
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Figure 4.29: Percentage errors of the absolute value of velocity (a) and of pressure (b) with
respect to the full order simulations, considering Nu = Np = 3. Results in the following
cases are displayed: without corrections ( ); with the correction τD ( ); with the
correction τG ( ); with both τD and τG found from two disjoint least squares problems
( ), in Case 1 and 2 of section 3.2.3 ( and , respectively). Results are compared
with the reconstruction errors, referred to the projected fields ( ).

• The conclusion of the present part is that both pressure corrections added in the
PPE-ROM produce a significant improvement only in the pressure field.
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4.7.3 Combined effect of velocity and pressure corrections in the
PPE-ROM

The previous subsection results confirmed that adding data-driven corrections in the Pois-
son equation for pressure leads to improvements in the ROM pressure field accuracy.

The aim is now to understand if combining the Poisson equation and momentum
equation corrections, additional gains can be obtained. Thus, in this Section the velocity
correction term τ u is introduced in system (4.2). Figure 4.30 considers the following cases:

• cu = cD = 1, cG = 0;

• cu = cG = 1, cD = 0;

• cu = cG = cD = 1, where the method presented in (3.2.3) (Case 3) is computed and
a unique least squares problem is solved to find all correction terms.
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Figure 4.30: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = 3. Results in the
following cases are displayed: without corrections ( ); with the velocity correction τ u
( ); with the corrections τ u and τD ( ); with τ u and τG ( ), with τ u, τD and
τG in Case 3 of section 3.2.3 ( ). Results are compared with the reconstruction errors,
referred to the projected fields ( ).
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Figure 4.30 displays the results obtained when the velocity correction is combined with
one of the two pressure correction terms. The right plot clearly shows further gains in
pressure accuracy with respect to the previous cases. The result obtained with the both
velocity and pressure corrections is also very close to the reconstruction error for the
velocity field, which is the best result we can obtain, as can be seen on the left diagram
in Figure 4.30.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [s]

3.5

4.0

4.5

5.0

5.5

εf
u
ll

u
[%

]

(a) Percentage error on velocity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [s]

101

6× 100

2× 101

εf
u
ll

p
[%

]

Without corrections

With vel, D and G corrections

With vel.,D and G corrections (Case 1)

With vel.,D and G corrections (Case 2)

With vel.,D and G corrections (Case 3)

Projection

(b) Percentage error on pressure

Figure 4.31: Percentage errors of the absolute value of velocity (a) and of pressure (b) with
respect to the full order simulations, considering Nu = Np = 3. Results in the following
cases are displayed: without corrections ( ); with τ u, τD and τG disjoint ( ); with
the velocity and pressure corrections in Cases 1, 2 and 3 of section 3.2.3 ( , and

, respectively). Results are compared with the reconstruction errors, referred to the
projected fields ( ).

In Figure 4.31 the results obtained combining the momentum equation correction with
all the Poisson corrections forms developed are showed. In particular, the methods pro-
posed in Section 3.2.3 are compared. All the methods produce a pressure reduced solution
very close to the projected pressure one and the results of all methods look similar. How-
ever, the most efficient method is the one presented in 3.2.3, as can be also seen in Figure
4.32, which displays the results of longer simulations lasting 8 seconds, with corrections
built from the snapshots of the first 2 seconds.
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Figure 4.32: Percentage errors of the absolute value of velocity (a) and of pressure (b) with
respect to the full order simulations, considering Nu = Np = 3. Results in the following
cases are displayed: without corrections ( ); with τ u, τD and τG disjoint ( ); with
the velocity and pressure corrections in Cases 1, 2 and 3 of section 3.2.3 ( , and

, respectively). Results are compared with the reconstruction errors, referred to the
projected fields ( ).

The conclusions of the present Section are here listed:

• the velocity correction reduces the error for both velocity and pressure fields, whereas
the pressure corrections added in the Poisson equation only improve the pressure
field;

• the most significant improvement in the accuracy of the reduced pressure field is
reached when all data-driven corrections are added to the reduced system.

4.8 Comparison: the turbulence modelling, the data-
driven corrections and the combined effect

In this Section, the results obtained with the addition of the correction terms in systems
(4.1) and (4.2) are compared with the solution of reduced systems where the turbulence
modelling is included [1], i.e. ct = 1. The results obtained using the turbulence inclusion
are graphically represented on the test case grid making use of the open-source application
Paraview and the results are compared to those obtained in previous Sections of the Thesis,
in which no turbulence modelling is included.

4.8.1 Turbulence inclusion in the SUP-ROM approach
In the supremizer approach framework, the following cases are solved and compared, for
both the first and the second order time evolution (Figures 4.33 and 4.34). The dynamical
system considered is (4.1) and the following cases are analysed:
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• cu = cp(1) = cp(2) = ct = 0, i.e. the SUP-ROM without any correction is performed;

• cu = 1, cp(1) = cp(2) = ct = 0, and τ u(ai) = Ãa + aT B̃a, i.e. just the velocity
correction is added to the dynamical system;

• cu = cp(1) = cp(2) = 0 and ct = 1, i.e. just the turbulence modelling is considered;

• cu = ct = 1 and cp(1) = cp(2) = 0, i.e. both the velocity correction and the turbulence
modelling are considered.
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Figure 4.33: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = Nsup = 5 and a first
order time scheme. Results include the following cases: without any data-driven term
( ); with velocity constrained correction ( ); with turbulence term ( ); with both
velocity correction and turbulence term ( ); projection ( ).

The coefficients of the reduced eddy viscosity field (gi)
Nνt
i=1 are computed making use

of a fully-connected neural network, starting from the velocity coefficients (ai)Nui=1. The
network is composed by 2 hidden layers, the ReLU function is used as activation function
in the network and the learning rate is set as 10−5.

The momentum equation correction term here considered is only the one referred to
the nonlinear term and this velocity correction is obtained with the constrained method,
since it provides the best performance on velocity accuracy for a low number of modes,
as pointed out in Section 4.4.2. No pressure correction is considered in the momentum
equation since both corrections simulated in Section 4.5 have not significant effects on
velocity and pressure fields. Figure 4.33 displays the results obtained using a first order
time scheme. In such a case, the inclusion of a turbulence modelling does not appear to
have a completely positive effect on accuracy.

In addition, coupling the turbulence and correction effect does not lead to higher
accuracy, especially when the pressure field is considered. In such a case in fact, the
combined method leads to worse results than in the no-corrections case.
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Figure 4.34: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = Nsup = 5 and a second
order time scheme. Results include the following cases: without any data-driven term
( ); with velocity constrained correction ( ); with turbulence term ( ); with both
velocity correction and turbulence term ( ); projection ( ).

When considering a second order time evolution scheme (Figure 4.34) results obtained
with turbulence modelling or with both correction closure terms and turbulence terms
are improved with respect to the results of standard ROM and approach reconstruction
errors. In particular, the results in terms of accuracy of the velocity reduced field are very
similar to the projected field.
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4.8.2 Turbulence inclusion in the PPE-ROM approach
The combined effect of data-driven terms and turbulence modelling is here evaluated for
the PPE approach for a simulation lasting 8 seconds in Figures 4.35 and 4.36.
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Figure 4.35: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = 5 and a first order time
scheme. Results include the following cases: without any data-driven term ( ); with
all corrections ( ); with turbulence term ( ); with corrections and turbulence term
( ); projection ( ).
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Figure 4.36: Percentage errors of the absolute value of velocity (a) and of pressure (b)
with respect to the full order simulations, considering Nu = Np = 5 and a second order
time scheme. Results include the following cases: without any data-driven term ( );
with all corrections ( ); with turbulence term ( ); with corrections and turbulence
term ( ); projection ( ).
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In simulations, the correction terms are built starting from the first 2 seconds, just as
in 4.4.3 and all corrections are included using the approach detailed in Section 3.2.3 Case
3.

When the first order time evolution is considered in the dynamical system, the combi-
nation of turbulence and corrections leads to the results depicted in Figure 4.35. Figure
4.36 refers instead to the results obtained when a second order scheme is used.

From Figures 4.35 and 4.36 there is an evident difference, which confirms what observed
with the SUP-ROM results. When a first order scheme is used (Figure 4.35) the combined
turbulent-data-driven approach does not significantly improve with respect to the only
turbulent or only data-driven approaches.

On the other hand, in the case in which a second order time scheme is computed, the
effect of the combination of turbulence and corrections leads to an effective improvement
of results. However, a difference also in the standard ROM results is observed. The
blue line (in Figures 4.35 and 4.36) shows in fact better results in the case of the first
order time scheme. In any case, the results achieved just including the turbulence model
improve with respect to both the standard ROM, but also the opposite is true. Adding
data-driven corrections to turbulent ROMs leads to improvements, too. In this way, the
methods developed in this Thesis lead to more accurate results than in [1], where the
turbulent models are deeply analysed.

Moreover, the model has an excellent extrapolation efficiency. The corrections have
been in fact constructed just with the first 2 seconds data and they have a good effect
also in the time interval [2,8] seconds.

The results obtained in Figures 4.34 and 4.36 show that the instability of the second
order integration scheme is damped by the addition of the turbulence modelling.

The data-driven approach shows all its potential in improving the accuracy when the
second order scheme is considered. It also acts as a stabilizer for the error as it does not
increase as much as in the standard ROMs cases.

4.8.3 Combined effect of turbulence modelling and correction
terms for different mode regimes

The integrals of the percentage errors for the absolute value of velocity and for pressure
on a 500 time steps window are evaluated. The expressions for the overall time window
L2 errors are the following:

∫ T

0
εfullu (t)dt ≈

M∑
j=1

εfullu (tj) ∆t ,
∫ T

0
εfullp (t)dt ≈

M∑
j=1

εfullp (tj) ∆t ,

where T corresponds to 2 s and to the time step M = 500 from the beginning of the
simulation; the expressions of the percentage errors are expressed in (4.5), and ∆t =
0,004 s. The integrals of the percentage errors are analysed for all the cited cases mentioned
in the previous Sections, for a first order and for a second order time scheme.

The graphical results are showed in semi-logarithmic plots in Figures 4.37 and 4.38 for
the supremizer approach, in Figures 4.39 and 4.40 for the Poisson approach.
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When a first order time scheme is considered, the addition of a turbulence modelling
does not work well both in the supremizer and in the Poisson models; the combination
of a turbulence modelling and the data-driven correction has a negative effect on the
performance of the solution, too. For the velocity correction, from Figure 4.37(b) a slight
improvement can be seen with a constrained approach, instead of a classical one, especially
when the number of modes belongs to the marginally-resolved regime.

The results in terms of integral of the error in Figures 4.37 and 4.39 show that a good
improvement can be achieved with the introduction of the correction terms, but not with
the usage of a turbulence modelling.

Given the results shown in the previous Sections, an implicit second order time scheme
(described by (4.4)) is also taken into account in order to improve the results obtained
with a turbulence modelling.
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Figure 4.37: Integral of the percentage errors of the absolute value of velocity and of
pressure with respect to the full order simulations, varying the number of modes. The
model is the SUP-ROM with a first order time scheme. The cases represented are the
following: without any data-driven term ( ); with turbulence modelling, without cor-
rections ( ); without turbulence modelling, with standard and constrained correction
( and , respectively); with both turbulence modelling and constrained correction
( ); projection ( ).

In Figures 4.37 and 4.38 the number of modes considered for supremizer modes Nsup >
Np when Nu = Np is equal to 8, 9 and 10, in order to avoid stability issues. From the
Figures one can note that the data-driven corrections have a more evident positive effect
when a small number of modes is considered; the improvement with respect to the standard
Galerkin-ROM, especially for pressure field, is not visible when the number of modes is
larger than 8.
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Figure 4.38: Integral of the percentage errors of the absolute value of velocity and of
pressure with respect to the full order simulations, varying the number of modes. The
model is the SUP-ROM with a second order time scheme. The cases represented are
the following: without any data-driven term ( ); with turbulence modelling, without
corrections ( ); without turbulence modelling, with standard and constrained correction
( and , respectively); with both turbulence modelling and constrained correction
( ); projection ( ).
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Figure 4.39: Integral of the percentage errors of the absolute value of velocity and of
pressure with respect to the full order simulations, varying the number of modes. The
model is the PPE-ROM with a first order time scheme. The cases represented are the
following: without any data-driven term ( ); with turbulence modelling, without correc-
tions ( ); without turbulence modelling, with corrections ( ); with both turbulence
modelling and corrections ( ); projection ( ).
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Figure 4.40: Integral of the percentage errors of the absolute value of velocity and of
pressure with respect to the full order simulations, varying the number of modes. The
model is the PPE-ROM with a second order time scheme. The cases represented are
the following: without any data-driven term ( ); with turbulence modelling, without
corrections ( ); without turbulence modelling, with corrections ( ); with both tur-
bulence modelling and corrections ( ); projection ( ).

4.8.4 Graphical results

The inclusion of the correction terms and of turbulence modelling in the reduced formu-
lations is also examined from a graphical point of view for the SUP-ROM and PPE-ROM
approaches on the test case grid.

The pressure and the velocity magnitude fields are represented in Figures 4.41 and 4.42,
respectively, for different SUP-ROM and PPE-ROM simulation and the correspondent
absolute errors of both fields with respect to the full order fields are displayed in Figures
4.43 and 4.44. The corrections taken into account are the constrained velocity correction
examined in Section 3.1.2 for the SUP-ROM, and the joint velocity and pressure correction
presented in Section 3.2.3 (Case 3). The time integration scheme to which the graphical
fields refer is the second order one, since it provides the best results in Sections 4.8.1 and
4.8.2.

The POD is performed on the time interval [79.992,99.992] seconds and the reduced
order systems (4.1) and (4.2) are solved in the interval [79.992,87.992] seconds, since the
maximum length of the online simulations carried out is 8 seconds. For this reason, all
the fields are captured at the final time step of online simulations, which is second 87.992.

In order to obtain the reduced fields, the reduced order systems with Nu = Np = 5,
and Nsup = 5 for the supremizer approach, are solved. The reduced fields are computed
from the coefficients’ vectors a and b and the POD modes (φi)

Nu+Nsup
i=1 and (χi)Npi=1 as in

(2.2).
It is observable a difference between the fields computed with the standard ROMs and

those coming from the systems including only the correction terms. In fact, the fields in
Figures 4.41 and 4.42(c) and (d) are closer to the full order fields especially in the region
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around the cylinder. The improvement of the error nearby the circular cylinder is an
important gain as it would lead to a better reconstruction of the ROM lift coefficient.

As expected, results get even better by including the turbulence terms in the reduced
systems, as in Figures 4.41 and 4.42(e) and (f). The absolute errors represented in Figures
4.43 and 4.44 confirm the presence of a higher error nearby the cylinder in the fields
resulting from standard ROMs simulations. From the range of the scales used to represent
errors of the velocity field, it is worth remarking that there is a difference of one order
of magnitude between the standard ROMs (Figure 4.44(a) and (b)) and the DD-ROMs
(4.44(c) and (d)). These differences are observable also for the pressure errors and are
even more evident when the turbulence terms are added in the ROM formulations (Figures
4.43 and 4.44 (e) and (f)).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.41: Representation of the pressure field for the FOM, the SUP-ROM and the
PPE-ROM simulations with and without the correction terms and the turbulent terms.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.42: Representation of the velocity magnitude field for the FOM, the SUP-ROM
and the PPE-ROM simulations with and without the correction terms and the turbulent
terms.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.43: Representation of the absolute errors on the pressure field for the FOM, the
SUP-ROM and the PPE-ROM simulations with and without the correction terms and the
turbulent terms.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.44: Representation of the absolute errors on the velocity magnitude field for the
FOM, the SUP-ROM and the PPE-ROM simulations with and without the correction
terms and the turbulent terms.
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4.8.5 Analysis of the computational cost of simulations
This Section is dedicated to the evaluation of the computational time for the simulations
in the online phase. The aim of this Section is to make a comparison among the costs
of computing the high fidelity solution and the approximated solutions; moreover, the
reduced simulations with and without the data-driven terms are compared in terms of
computational cost.

The Full Order simulation last 1 h 31 min from second 80 to second 100, which is
the time interval used to compute the POD and corresponding to 5000 time snapshots.
The Proper Orthogonal Decomposition, performed with the ITHACA-FV library, last 1 h
34 min.

The time for the resolution of the reduced order systems is computed and a second
order time scheme is used to compute the time derivative since it provides better results
when the turbulence terms are included in the reduced order formulation, as can be seen
from Figures 4.38 and 4.40. In Tables 4.2 and 4.3 the results of this analysis are displayed
for the supremizer and Poisson approaches, respectively. The time intervals are found by
taking the mean among 100 values.

Computational time with the SUP-ROM approach
Nu Nsup Np Model Computational time
10 15 10 SUP-ROM 1.4260
3 3 3 SUP-ROM 0.4304
3 3 3 DD-SUP-ROM

(only correction)
0.8467

3 3 3 DD-SUP-ROM
(correction and
turbulence)

4.6779

Table 4.2: Computational time evaluated for some simulations carried out making use of
the supremizer approach.

Computational time with the PPE-ROM approach
Nu Np Model Computational time
10 10 PPE-ROM 1.0735
3 3 PPE-ROM 0.4812
3 3 DD-PPE-ROM

(only correction)
1.1097

3 3 DD-PPE-ROM
(correction and
turbulence)

3.9641

Table 4.3: Computational time evaluated for some simulations carried out making use of
a Poisson approach.
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From the Tables, it is evident that the reduced systems without any data-driven term
with 10 modes for velocity and pressure are solved in a time interval which is very similar
to the one necessary to solve the reduced systems with the correction terms but with a
smaller number of degrees of freedom (3 for velocity and for pressure). It is important
to remark that the solution of the reduced system with an higher number of degrees of
freedom but without corrections is less accurate than the result of the reduced system
with a smaller number of degrees of freedom and with correction terms, as can be seen in
Figures 4.38 and 4.40. Basically the correction terms allow to compute a solution more
accurate than the one obtained from a standard ROM approach, with less degrees of
freedom and in a similar amount of time. The inclusion of a turbulence modelling into
the system leads to an increased computational time but also to more accurate results.

From the analysis of the effect of turbulence modelling at the reduced level, the fol-
lowing conclusions are drawn:

• the combination of corrections and turbulence modelling provides the most accurate
reconstruction of the full order fields, as can be seen from the graphical representa-
tions displayed in Section 4.8.4;

• the addition of the turbulence terms improves the results obtained with the standard
ROM approach only if a second order time integration scheme is considered. This
fact can be the consequence of additional dissipation effects which characterize the
turbulence modelling.
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Chapter 5

Conclusions and Outlooks

This Thesis presents an investigation based on a data-driven approach applied in the
Reduced Order Methods framework to the study of a turbulent flow around a circular
cylinder. The technique developed in this work is based on introducing data-driven cor-
rection/closure terms to the online equations of the reduced order model. The main role
of such terms is that of including the contribution of the unresolved modes. In the offline
phase, the POD-Galerkin approach developed, named DD-ROM, requires the resolution
of an optimization problem and calibrates the coefficients of the data-driven correction
terms so as to minimize the distance between the effect of the correction and that of the
unresolved modes on the solution.

Concluding remarks

In the online part of our analysis, different approaches and data-driven techniques are
taken into account at the reduced order level. The following logical passages are consid-
ered.

• The online resolution approach initially considered in the Thesis is the SUP-ROM,
based on the approximated supremizer enrichment of the POD velocity space [13, 14].
The first data-driven term introduced in the model is the velocity correction, based
on the method developed in [10, 11, 12]. The velocity correction improves the results
in terms of velocity and pressure field with respect to the standard SUP-ROM, as
can be seen in Section 4.4. However, the improvement on the reduced pressure field
is not as significant as that observed on the reduced velocity field.

• In order to further improve the pressure accuracy, correction terms including the
pressure coefficients are proposed and added to the reduced system (Section 4.5).
These terms do not appear to change the solution in a significant way and their effect
is negligible with respect to the one of the velocity correction term. One possible
reason for this fact is that the SUP-ROM formulation does not include a dedicated
pressure equation, in which a correction term can directly affect the pressure field.

• Therefore, the different formulation of PPE-ROM is taken into account, in which
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the Poisson pressure equation takes the place of the continuity equation. This for-
mulation allows for the introduction of data-driven pressure correction terms, which
finally lead to a significant improvement of the reduced pressure field, as can be seen
in Section 4.7.

• In the final part of the Thesis (Section 4.8), the data-driven eddy viscosity turbu-
lence modelling proposed in [1] is added to the reduced model alongside with the
correction terms here proposed for the first time. The combination of both data-
driven terms provides the best performance, leading to an increased accuracy of the
reduced pressure and velocity field with respect to the high-fidelity solution, in both
supremizer and Poisson approaches.

Outlooks

Finally, we propose some suggestions about future extensions of the work carried out in
the present Thesis.

• The pressure data-driven corrections developed in this work, when introduced in the
SUP-ROM formulation, have not significantly improved the results of the standard
formulation in terms of the accuracy of the pressure field. However, the supremizer
approach, first introduced in [13] and explored in [14], has been a successful technique
for the stabilization of the POD-Galerkin ROMs. Therefore, further data-driven
terms including the reduced pressure coefficients should be explored and tested to
identify an effective pressure data-driven correction for the SUP-ROM formulation.

• In this Thesis, the only parameter considered in the reduced order simulations is
time. The correction terms introduced in the reduced formulation are computed
by solving an optimization problem, in which only data from a limited amount of
time instants is taken into account. Thus, the matrices appearing in the data-driven
corrections are assumed to be time and parameter independent. An interesting task
for the future would be the introduction of a parameter in the reduced formulation
— for instance the velocity at the inlet of the domain — as in [1]. In that case,
the goal would be that of expressing the data-driven terms as a function of both the
parameter considered and of time.

• In the present work, data-driven correction techniques have proven to be successful
in the marginally-resolved regime for the case study of a turbulent flow around a
cylinder. In future works, the data-driven techniques can be tested on case studies
with a more complex setting and in different modal regimes, in order to analyse how
the effect of the corrections varies case-by-case.
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