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ABSTRACT 

In the framework of Fracture Mechanics, the present work aims to analyse the 

mechanical behaviour of Fiber-Reinforced Concrete (FRC) structural elements subjected 

to monotonically increasing flexural loading. 

Following this purpose, the Bridged Crack Model is proposed as a Fracture 

Mechanics based approach able to describe the crack propagation process occurring in the 

cross-section of FRC structural elements. After a brief introduction, the basic features of 

this model are extensively described in Chapter 2: the concrete matrix is assumed as 

elastic-perfectly brittle, whereas the bridging mechanism of the secondary phase is 

modelled with suitable constitutive laws, describing the pull-out mechanisms of the 

reinforcing fibers. These mechanisms are experimentally determined on the basis of pull-

out tests results, reported in the scientific literature, depending on the geometry of the 

reinforcing steel fibers, as discussed in Chapter 3. On the basis of equilibrium and 

compatibility conditions, the response of the cracked cross-section is described in terms of 

applied moment vs localized rotation diagrams. 

Extensive experimental studies reported in the scientific literature suggest to 

describe the flexural response of FRC beams, by subdividing it into three different stages. 

Considering a notched FRC specimen subjected to bending, the related applied load vs 

deflection diagram starts with a linear elastic ascending branch (stage I), up to the 

initiation of the fracturing process. From this point forward, the post-cracking phase 

(stage II) of the element takes place, during which the main crack gradually propagates 

while the reinforcing fibers exert their bridging action. Depending on several conditions, 

including the fiber volume content, different post-cracking behaviour of the composite can 

be obtained, such as the perfectly-plastic one. The flexural response is finally described by 

a descending softening branch (stage III) of the load vs deflection curve, where the fiber 

pull-out from the brittle matrix (fiber slippage) is the dominant phenomenon. 

By applying the Buckingham’s   theorem, the dimensional analysis reveals two 

dimensionless parameters, 
P

N  and 
W

N , as crucial in the identification of the mechanical 

response of the composite in the post-cracking regimes. The first one, 
 

P f

IC

 


2
,uN V h

K
 

depends on the fiber volume fraction, 
f

V , the matrix fracture toughness, 
IC

K , the 

mechanical and geometrical properties of the fiber, 
u

  and  , and the beam characteristic 
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size, h . The second one, 
W

IC

 CEw
N

K h
, depends on the matrix fracture toughness, 

IC
K , the 

matrix Young’s modulus, E , the beam characteristic size, h , and the average embedded 

length of the fiber into the matrix, Cw . Numerical simulations conducted on the basis of 

the numerical algorithm reported in Chapter 4, point out the effect of the two 

dimensionless parameters on the global response of the composite. It is found that the 

reinforcing brittleness number, 
P

N , governs the stage II of the response, whereas a fixed 

value of 
W

N  provides the collapse of the curves onto a unique final branch, related to the 

stage III of the structural behaviour. In conclusion, by varying 
P

N  and 
W

N , brittle, 

perfectly-plastic, and softening regimes can be identified. 

In the second part of this work, the model is validated on the basis of experimental 

campaigns, carried out by other Authors on prismatic specimens of FRC subjected to 

flexural loading. A comparison between numerical results and experimental data proves 

the effectiveness of the Bridged Crack Model also in the identification of the constitutive 

law of the composite. More precisely, the experimental curves can be easily reproduced by 

varying four parameters. The matrix Young’s modulus, E , and the matrix fracture 

toughness, 
IC

K , are required to identify the elastic stage. On the other hand, the maximum 

bridging force, related to 
P

N , and the critical embedded length, related to 
W

N , are 

essential to fully describe the post-cracking regime of the response. For each experimental 

campaign, the identifying parameters can be determined, which makes the model able to 

evaluate the minimum reinforcement condition, required to achieve a stable post-cracking 

response.  

Finally, the last Chapter of this work is devoted to the simulation of experimental 

campaigns which involve FRC specimens of different sizes. Three experimental studies are 

analysed and reproduced, confirming the model’s capability to understand in a 

comprehensive manner the size effects occurring in the structural behaviour of FRC. 
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Chapter 1  

INTRODUCTION 

 

Recent developments in concrete technology, revealed the advantages in the 

structural performance of the material, when fibers were included in the concrete mixture. 

In this perspective, the Fiber Reinforced Concrete (FRC) was developed in the second half 

of the twentieth century.  

This material is generally defined as cementitious composite made of two main 

components: the cementitious matrix and the reinforcing fibers. The cementitious matrix 

may itself be considered a composite with several components (aggregate, additive, 

water), but it will be assumed to represent, in this context, the first main component of the 

FRC composite. The fiber is the secondary phase of the composite, and it is assumed 

discontinuous and randomly oriented and distributed within the volume of the composite. 

Both the fiber and the matrix work together, providing the synergism required to make an 

effective composite (Naaman, 2008). The constituents are characterized by enormous 

variability. High Strength Concrete, High Performance Concrete and many others special 

concretes are indeed available with modern technologies.  Fiber also can be really 

different, both for material and geometry. They can be made of steel, polymeric materials 

as well as inorganic materials such as carbon, glass and natural materials (CNR, 2006). 

Moreover, the fiber shape can be undeformed (straight), with a round or flat section; there 

are also fibers with deformed profile, such as cramped along the length or with hooked 

end.  This work is focused on composites with steel fiber (SFRC), but the concepts relating 

to mechanical and geometric parameters could also be extended to other materials.  

The experimental research on the flexural behaviour of the FRC specimens pointed 

out three different stages into a typical load-deflection curve. The diagram starts with a 

linear ascending branch (stage I), up to the initiation of the fracturing process. From this 

point forward, the post-cracking phase (stage II) of the element takes place, during which 

the main crack gradually propagates while the reinforcing fibers exert their bridging 

action. Depending on several conditions, including the fiber volume content, different 

behaviour of the composite can be exhibited by the composite in the second stage, such as 

brittle, perfectly plastic, or hardening. The flexural response finally experiences a 

descending branch (stage III), in this phase the fiber pull-out is the dominant mechanism.  
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The fundamental role of the secondary phase is that of providing crack control and 

improving the fracture toughness of the composite, by means of a bridging action affecting 

the matrix macro- and microcracks. However, in order to guarantee the required 

mechanical properties with minimum fiber employment, it have to be take into account 

several parameters in the design of the so called minimum reinforcement: Fiber geometric 

an mechanical characteristics, concrete mechanical properties, fiber volume fraction, and 

geometrical characteristic of the structural element. Experimental tests are thus 

necessaries, both on the two individual main components and on the composite mixture.  

The purpose of this work is to give a contribute in understanding the 

aforementioned stages, in the framework of Fracture Mechanics. Following this purpose, 

the Bridged Crack Model is proposed to reproduce analytically the flexural response, 

providing the identification of the constituent materials. The application of Buckingham’s 

  Theorem revealed two dimensionless parameters, which synthetically describe the 

post-cracking response of the composite. 

Moreover, the flexural behaviour of different specimens made of the same materials 

vary according to specimen size. This phenomenon, known as size effect, was already 

studied in ordinary reinforced concrete by Bosco, Carpinteri and Debernardi (1990). In 

this work these analyses are extended to the SFRC response.  

In conclusion, it will be clear how, by means of Bridged Crack model and 

Dimensional Analysis,  it is possible to interpret the tests and predict the mechanical 

behaviour of the structural element, by varying the design parameters, taking into account 

also the effects of the size variation. 
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Chapter 2  

THE BRIDGED CRACK MODEL 

 

2. 1 Introduction 

The fibrous composites show a common feature: the bridging action exerted by the 

fibers. This behaviour is the focus of the mechanical models, proposed in the literature, for 

the analysis of these materials. 

In the framework of Fracture Mechanics, two peculiar models can be used to analyse 

the composite failure process: the Bridged Crack model and the Cohesive Crack model. They 

have been represented in a dimensionless formulation by Carpinteri et al. (1996), and an 

experimental campaign demonstrated that, with a correct definition of the parameters 

characterizing the two options, both lead to the same structural behaviour (Carpinteri et 

al., 1996). The key-differences among these two models lies in the material basic 

assumptions, regarding the crack-tip stress field and the crack propagation condition. 

The Cohesive Crack model, in accordance with the model proposed by Barenblatt 

(1962)  for the analysis of brittle heterogeneous materials and then by Dugdale (1962) for 

the analysis of ductile materials, has been proposed by Hillerborg et al. (1976) with the 

name of Fictitious Crack model. The basic hypothesis of the Cohesive model is to replace 

the fracture process zone (FPZ) with a fictitious crack in which a distribution of reclosing 

tractions stresses applies. The cohesive tractions have a maximum value where the crack 

opening displacement is zero, and vanish when the crack opening displacement reaches its 

critical value. The stress field at the fictitious crack tip is hypothesized finite, and the crack 

propagation condition is assumed when the maximum stress reaches the composite 

tensile strength. 

On the other hand, the Bridged Crack model is a fracture mechanic model which 

assumes the composite material as a biphasic material, where the matrix and the 

reinforcing fibres constitute the first and the secondary phase, respectively. Under this 

assumption, the bridging mechanisms of the reinforcing fibers are modelled with a 

continuous (in continuous models) or discontinuous (in discontinuous model) distribution 

of reclosing forces, applied onto the crack faces. The model assumes a singular stress field 
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in the crack-tip vicinity, and the crack propagates when the crack tip stress intensity 

factor, 
I

K , reaches its critic value, i.e., the matrix fracture toughness, 
IC

K . 

Different versions of continuous model have been formulated for the analysis of 

uniformly distributed reinforcements (Marshall et al., 1985; Jenq and Shah, 1985; Foote et 

al., 1986; Cox and Marshall, 1994; Carpinteri et al., 1997).   

The discontinuous model was originally proposed by Carpinteri (1984) to 

investigate the fracturing process in reinforced concrete beams under monotonic bending, 

and it was subsequently extended also to the case of cyclic loading (A. Carpinteri and An. 

Carpinteri, 1984). This discontinuous model was able to describe the behaviour of element 

with localized reinforcement, such as bars, wires, and riveted or bonded stiffeners. 

However, when the number of localized reinforcement becomes sufficiently high, the 

global results of discontinuous and continuous models are convergent (A. Carpinteri et al., 

1997), providing a useful tool for the analysis of fibrous materials. More recently, 

significant advances have been made in the implementation of the discontinuous 

numerical model, both for motonically increasing and cyclical loading (Carpinteri et al., 

2019; Accornero et al., 2020).  

In this Chapter, the discontinuous model for FRC beams under monotonic bending is 

presented, which is the base of the numerical algorithm described in fourth Chapter.  
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2. 2  Theoretical model 

 

2. 2. 1 Basic assumptions 

The discontinuous model refers to Figure 2.1, where a scheme of the cracked cross 

section of a FRC beam in bending is represented. The geometry of the beam cross section 

is rectangular, characterized by the thickness, b , the depth, h , and the initial edge crack, 

.a0  The number of fibers for each section is n , uniformly distributed in the ligament, with 

generic position 
i

c . The m n  fibers crossing the crack are considered as active, which 

bridging action is represented by the m  reclosing forces, 
i

F . The total number of fibers 

crossing the mid-span cross section is assumed as a deterministic quantity, calculated as: 

 ,f

f

bh
n V

A
  (2.1)      

where fA  is the cross-sectional area of the single fiber, and fV is the fiber volume ratio.  

 

Figure 2.1 Theoretical scheme of the discontinuous model. 

The depth of the initial crack and the generic position of the fiber can be normalized 

with respect to the beam crack depth, h, as provided in Eq. (2.2) and in Eq. (2.3), 

respectively. The bottom of the beam is assumed as the origin of the reference system. 

 0
a

h
   (2.2) 

  
c

h
i

i
 (2.3) 
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The material behaviour in theoretical model is defined through some following 

assumptions. The concrete matrix is assumed linear elastic-perfectly brittle, both in 

traction and in compression, characterized by the Young’s modulus, E , and its fracture 

toughness, ICK . The fibers are considered as uniformly distributed in the matrix, their 

orientation is assumed horizontal, and the embedded length is considered the same for all 

the fibers. In Figure 2.2 it is showed the difference between the fiber distribution assumed 

in the model, and the actual one. Further developments of the model could randomize the 

position and orientation of the fiber, considering these quantities as stochastic variables. 

 

Figure 2.2 From real to model fiber distribution. 

By the position and orientation of the fibers depends their bridging action. 

Considering the model distribution, instead, the bridging action is related only to the crack 

opening displacement along the crack faces at the fiber level, 
i

w ; there is no more 

reclosing force when the crack opening displacement is equal to the embedded length. The 

relationship among the reclosing force and 
i

w , namely slippage constitutive law or 

bridging law, can be obtained from experimental tests or micromechanical models, which 

are illustrated in third Chapter. 

 

2. 2. 2 Stress-intensity factor    

The model assumes the crack propagation condition in according to LEFM, Eq. (2.4), 

considering only the Mode I opening: 

 
I IC

K K . (2.4) 
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The value of stress intensity factor at the crack tip is obtained, by means of the 

superposition principle, taking into account the two opposite contributes, due to bending 

moment and reclosing forces: 

  
m

I IM Ii
i=1

.K K K  (2.5) 

As regard the first contribute, considering a simply cracked bended strip, 

represented in Figure 2.3, Tada et al. (1985) found the following expression: 

 
IM M1.5

( )
M

K Y
h b

. (2.6)                                                  

 

Figure 2.3. Simply cracked bended strip.  

Considering the same geometry, the stress intensity factor due to a concentrated 

force, applied on the crack face (Figure 2.4), is given by:  

 
F
 

F
K Y

h bIF 0.5
( , )  (2.7)  

 

Figure 2.4. Simply cracked strip with concentrated forces.  

In Eq. (2.6) and Eq. (2.7), two shape functions, 
M

Y  and 
F

Y :  
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  
 

 

0.5 1.5 2.5 3.5 4.5

M 1.5

6 1.99 2.47 12.97 23.17 24.8 0.6

3.99 1 0.6
Y

     


 


     
 

 

, (2.8)                

  

 

      
 




 

 
  

 

Y G
F i i i2

1.5
i

2 1
, ,

1 1

, (2.9)                      

          
  

     
  

   
      

   

2 3

i i i
i 1 2 3 4

,G g g g g  , (2.10) 

               
5 2

2

1
0.46 3.06 0.84 1 0.66 1g  , (2.11) 

     2

2
3.52g  , (2.12) 

                        
1.5 5 2

2 3 2

3
6.17 28.22 34.54 14.39 1 5.88 1 2.64 1g ,  (2.13) 

                         g t
1.5 5 2

2 3 2

4
6.63 25.16 31.04 14.41 2 1 5.04 1 1.98 1  . (2.14) 

It is worth noting that the shape function related to the bending moment, Eq. (2.8), is 

a function of the normalized crack depth. On the other hand, the shape function introduced 

for the concentrated force, Eq. (2.9), depends also on the normalized fiber position, and it 

provides a singularity for i  .   

2. 2. 3 Compliances of a cracked beam element 

The bridging forces transmitted by the active fibers are statically undetermined. 

Until the beginning of the fiber pull-out, they are founded by imposing compatibility 

conditions. Following this purpose, the compliances of a cracked beam are introduced. 

The compliance matrix, in the simplest case of 1m , is a matrix that connect 

rotation,  , and crack opening, w , to the applied bending moment M  and the 

reinforcement reaction F : 
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FF

MM MF

FM

M

w F

 

 

    
    
    

  . (2.15) 

The matrix in Eq. (2.15) is symmetric, i.e.,  
MF FM

, for  Betty’s theorem. In order 

to obtain the value of the compliances an energetic approach, based on the Clapeyron’s 

theorem, is applied. The energy variation of the cracked beam element can be written as:  

   W M Fw
1 1

2 2
 , (2.16) 

      W M F MF2 2

MM FF MF

1 1

2 2
 . (2.17) 

Then, the strain energy release rate, G
I

,  and the relation between G
I

 and IK  are 

introduced: 

  G
I

dW

dA
 , (2.18) 

 G
2

I
I

K

E
 . (2.19) 

Thus, the energy variation can be expressed by:  

 
        G

22 2 2

IM IFI IF IF IM IF

I0 0 0 0 0 0
dh dh dh= dh+ dh+2 dh.

a a a a a aK KK K K K K
W b b b b b b

E E E E E
          (2.20) 

By substituting Eq. (2.5) and  Eq. (2.6), in Eq. (2.19): 

        M F

2 2
2 2

M F2 0 0 0

2
dξ+ dξ+ dξ

M F MF
W Y Y Y Y

b hE hE bhE

  

         .  (2.21) 

By comparing Eq. (2.17) and Eq. (2.20), the compliances are obtained as follows: 

  


  
2

MM M2 0

2
dξY

Eh b
 , (2.22) 

    FMF M0

2
dξY Y

Ehb



     , (2.23) 
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  FF

2
F0

2
dξY

Eb



    . (2.24) 

For cracked element with m  active fibers, the expressions of the crack openings at 

each fiber level and the localized rotation are defined by applying the superposition 

principle on the two acting contributes. The minus sign in the following equations is 

related to the reclosing effect of the bridging forces: 

      w w w M F
m m

i iM ij iM ij j
j=1 j=1

 , (2.25) 

         M F
m m

M j MM Mj j
j=1 j=1

  (2.26) 

where 
iM

w  and 
ij

w  are the crack opening at the level of the i-th fiber due to bending 

moment and j-th reclosing force respectively; M  and j  are the localized rotations due to 

bending moment M  and to concentrated forces 
j

F  respectively; 
MM

, 
iM

and 
ij

 are the 

local compliances, which are obtained by Carpinteri et al. (1997): 

  


  
2

MM M2 0

2
dξY

Eh b
,  (2.27) 

    FiM M i0

2
, dξY Y

Ehb



      , (2.28) 

 
 

   F
i j

ij ji M imax ,

2
, dξY Y

Eb



 
        . (2.29) 

As seen, the Eqs. (2.27), (2.28), and (2.29) are analogous to Eqs. (2.22), (2.23) and 

(2.24). Particularly, MM is unchanged increasing the number of fibers; iM and ij involve 

also the dimensionless position of i-th fiber. The integrals of Eq. (2.28) and Eq. (2.29) are 

improper because the integrand has a singularity in the interval of integration. The 

singularity of the first integrand is removable, while the second, for i j , is not removable 

and the integral diverges. The problem can be overcome, as suggested by Carpinteri et al. 

(1997), by introducing a normalized cut-off distance, 
 510t h , at the first extreme 

integration: 
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  F
i

2

ii i

2
, dξt

h

Y
Eb




  


   . (2.30) 

Now, for each fiber level, it can possible to evaluate iM , i.e., the crack opening 

displacement due to a unit bending moment, and the compliance ij , i.e., the crack opening 

displacement due to a unit opening force acting at 
j

 .  

2. 2. 4 Compatibility equation 

The compatibility conditions are applied to solve the statically indeterminate 

problem, i. e., to evaluate the bridging forces, for a given crack depth, depending on the 

applied bending moment.  The crack opening displacements vector is defined as: 

    
T

1 m,...,w w w  , (2.31) 

where 
i

w  is the crack opening displacement at the level of the i-th fiber, obtained by 

applying the superposition principle on the two opposite contributes, as seen in Eq. (2.25).  

The vector of the reactions of the m  active fibers is defined as: 

    F F F
T

1 m
,...,  . (2.32) 

The vector of the local compliance due to the bending moment is defined as: 

      
T

M 1M mM
,...,  . (2.33) 

By Eq. (2.25), the vector of the crack opening displacements can be written: 

           w M F
M

 , (2.34) 

where [ ]  is the m m  matrix of the local compliances (Eq. (2.30)) due to the bridging 

action, and it is symmetric for Betti’s theorem.  

Eq. (2.34) describe a linear system of m  equations, and 2m  unknowns, i.e., the 

bridging forces iF , and the corresponding crack opening displacements, iw . The solution 

of the system requires other m  conditions.  
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In a first stage, the reinforcement shows an elastic behaviour, and it keeps the crack 

locally closed. Thus, in this phase, the compatibility condition is expressed by the following 

expression: 

   w 0 .                                                            (2.35) 

 The reactions in the reinforcements can be thus calculated by substituting Eq. 

(2.35) in Eq. (2.34):  

    
-1

    F M
M

 . (2.36) 

When the i-th fiber reaches a particular value of reaction, the maximum one, called 

pull-out load, F
P,i

, it starts to slip. This value is known and depends on the bridging law 

adopted, i.e., as will be clarified later, on the fiber type: 

 
f,i C

 F d w
P,i u

,  (2.37) 

where 
u

 is the bond shear strength of the fiber, 
f,i

d  is the fiber’s diameter, 
C

w  is 

the critical crack opening displacement. When the pull-out load is reached, the fiber 

progressively slips from the matrix. The crack opening is thus greater than zero, and the 

bridging force decreases, as predict by the most realistic bridging law adopted (Chapter 3). 

In this second phase, the reaction depends on the crack opening displacement, according 

to the slippage constitutive law of the fiber.   

Considering the m  active fibers, the problem can be partitioned into two parts.  By 

naming f  (free displacements) the slipping fibers, and c  (constrained displacements) the 

elastic ones, one can write: 

 
M

M

ff fcf f f

cf ccc c c

w F
M

w F

 

 

      
       

      
 (2.38) 

Differently of the elastic phase, characterized solely by static unknowns, in this case 

there are both kinematic and static unknowns. Indeed, the crack opening displacements, 

iw , and the bridging forces, iF , must be determined. The problem again requires 

 m c f  additional conditions, that in this stage for c fibers are: 
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 0iw  . (2.39) 

In the case of the f fibers, the bridging force is in turn a function of the crack 

opening displacements: 

  ( )i iF F w , (2.40) 

where ( )iF w  is the force of the i-th fiber, evaluated by the slippage constitutive law 

adopted for the reinforcing phase. From the upper part of Eq. (2.38), and considering the 

conditions given by Eqs. (2.39) and (2.40), the cm  bridging elastic forces can be found: 

          1

,c cc M c cf fF M F w  


     . (2.41) 

Then, by introducing Eq. (2.41) into the lower part of Eq. (2.38), it is obtained: 

               
1 1

, ,f M f fc cc M c fc cc cf ff fw M F w       
 

                  ,(2.42) 

where the f unknowns, the crack opening displacement  fw , are determined as a 

function of the applied bending moment, M .  

Slippage constitutive law, based on experimental researches, are numerically 

implemented in the algorithm for steel fibers, straight or hooked hand. They are piecewise 

defined functions, as it will explained in next Chapter. For this reason, the determination of 

the crack opening displacements  fw , and the corresponding bridging forces 

 ( )f fF F w , requires an iterative procedure.  

2. 2. 5 Moment-rotation response 

It is possible to find the crack propagation bending moment, by means of the Eq. 

(2.4), substituting the expressions of the stress intensity factor reported in Eq. (2.6) and 

Eq. (2.7). The scalar product of vectors is used for the summation, so the crack 

propagation condition becomes: 

 
   

T

F

I M IC3 2 1 2

Y FM
K Y K

h b h b
    (2.43)  

The value of the fracture moment is: 
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   

       
T3 2 3 2

T TF

F IC IC F 1 2 F1 2
M M M

Y Fh b h b h
M K K Y F R R Y F

Y h b Y Y

 
      
 
 

, (2.44) 

where 1R  and 2R  are used to reduce the expression of the fracture moment.   

For a given crack depth, a , and a given applied bending moment, M , the related 

bridging forces have been evaluated. Also the localized rotation of the cracked cross-

section can be calculated by Eq (2.26). In matrix form: 

       M F
T

MM M
 (2.45) 

When the fracture moment is achieved the crack depth increases, and the same 

calculations, regarding fracture moment and localized rotation are required for each crack 

advancement.  

By this way, finally, the Bridged Crack model allows to describe the sectional 

response in terms of moment vs rotation. From these results, it is also possible to evaluate 

the load vs deflection response of the beam, taking into account also the elastic 

displacement of the beam midspan. This conversion, implemented in the numerical 

algorithm, will be discussed in detail in fourth Chapter.    
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Chapter 3  

FIBER PULL-OUT BEHAVIOUR 

3. 1 Introduction 

Fibers represent the secondary phase of the FRC composite material. The 

mechanical and geometrical properties of the reinforcing fibers are fundamental to 

provide the synergism with the concrete matrix, which make the material an effective 

composite. The fibers are variable, both for material and geometry. They can be made of 

steel, polymeric materials as well as inorganic materials such as carbon, glass and natural 

materials (CNR, 2006). Moreover, the shape of the fiber can be undeformed (straight), 

with a round or flat section; there are also fibers with deformed profile, such as twisted or 

with hooked end. In Figure 3.1 different types of fibres are showed. 

 

Figure 3.1 Different type of fibers (Figure from Naaman, 2008). 

Recent experimental works investigated the effects of the fiber addition in the 

concrete matrix, providing enhanced mechanical properties. The main reason behind the 

use of fiber reinforced composites is to contain cracking process. The fibers bridge the 

cracked parts of the matrix, thus delaying the sudden brittle failure of the structural 
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element. So, after the onset of the cracking process, the mechanical behaviour of FRC 

element is primarily governed by the interfacial bond stress response of the fibers, which 

is fundamental in this phase.  

The bridging mechanism allows to increase the energy absorption during the 

fracture process. Moreover, the use of fibers significantly increases the tensile and flexural 

strength of the concrete material (ACI, 1988). Further experimental researches have also 

found an increase in the shear strength of the composite (Lim et al., 1999). On the other 

hand, the addition of fibers does not significantly affect the compressive strength and the 

Young’s Modulus of the composite (ACI, 1993).  

Considering the structural design of FRC members, the addition of fibers in concrete 

elements provides advantages both in Serviceability Limit States (SLS) and Ultimate Limit 

States (ULS): the FRC has the capability to contain the cracking process and enhance, thus, 

the durability of the structural elements (SLS); moreover, the increase of concrete bearing 

capacity improve the performance in  ULS.      

 

3. 2 Bridging mechanisms of the reinforcing fibers 

Fiber pull-out tests measure the force required to pull out a fiber, embedded in a 

matrix, when it is subjected to uniaxial tension. These tests can be carried out applying the 

tensile force in one side or in double side; they can be also performed on a single fiber or 

in a multiple configuration. One-sided pull-out test has been performed mostly on single 

fiber, to investigate the properties of the matrix-fiber interface.  

This work is focused on steel fibers, particularly on the straight and the hooked-end 

ones (Figure 3.2). Regarding the bridging mechanism of the straight steel fibers, a  

theoretical formulation was proposed by Naaman et al. (1991a), then validated with 

experimental pull-out tests (Naaman et al., 1991b). It will be shortly presented in this 

section.     
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Figure 3.2 Different geometric shape of steel fibers (Figure from Abdallah, 2018). 

A scheme of the slippage phenomenon, occurring during a typical pull-out test, is 

represented in Figure 3.3, where a fiber, embedded for a length l in a cementitious matrix, 

is subjected to a tensile force P. The latter monotonically increases during the test, 

providing a progressive debonding along the fiber-matrix interface. Once debonding 

occurs along the entire embedded length of the fiber, a progressive slippage of the fiber 

into the matrix occurred, with the consequent distribution of tangential stresses, 

mobilized at the fiber-matrix interface. 

 

Figure 3.3 Free-body diagram of an element of fiber (data from Naaman et al., 1991b). 
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An idealized stress-slip relationship in a straight fiber pull-out test was proposed by 

Naaman et al. (1991b), and it is showed in Figure 3.4. 

 

 Figure 3.4 Assumed straight fiber bond shear stress versus slip relationship. 
 (Figure from Abdallah, 2018. Data from Naaman et al., 1991b). 

The diagrams stars with a linear elastic range, until the maximum bond shear 

strength, 
max
 , is reached. The corresponding  pull-out force can be found as follow. 

Considering the equilibrium of fiber element with a diameter of fd  (Figure 3.3), one 

can write: 

        2F dF F r dx , (3.1) 

    
dF

dx
, (3.2) 

 π fd  . (3.3) 

The constitutive law, related to the Linear elastic branch, is defined as follows: 

   k , (3.4) 

where the slip,  , can be written as:  

            
 f f

x
x x dx

m m0
   ,   (3.5) 

where f  and 
m

  are the displacements in the fiber and the matrix respectively; f and 

m
  are the corresponding axial strains. By solving the Eq. (3.2) and substituting the 

previous expressions of  and  , it is obtained: 

     


 

  
1 x xdF P

x Ae Be
dx

, (3.6) 
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where   KQ ; with    
m m

/K k A E  and m m1 / f fQ A E A E  , in which 
m

A  and 

fA  are the section areas of the matrix and the fiber, 
m

E and fE  are their corresponding 

Young’s moduli. The values of A and B can be found using the two boundary conditions, 

( )F l P  and (0) 0F . 

The critical force is the load at x l , corresponding to maximum value of interfacial 

shear stress: 

 

 



 







 

 
 

 
    

      
    

2
max

crit
2

1

1 1
1 1 2

l

l l

e
P

e e
Q Q

.  (3.7) 

 It is thus possible to individuate three stage of pull-out mechanism, for straight 

fibers (Figure 3.5): 

1) Elastic range: when 
crit

P P  fiber is completely bonded in the matrix. By solving 

the Eq. (3.5), it can found the slip displacement, and consequentially the 

expression of the gradient k : 

 




 



  
   

   

m m 1

Δ 2 1

l

l

A EP e

Q e
.  (3.8) 

2) Partial debonding stage: when critical value of the pull-out load is reached, only a 

part of fiber is still bonded, and the force experiences a sudden decrease. The fiber 

bonded region allows to have a remaining pull-out force, namely 
b

P . 

3) Fully debonded and frictional pull-out stage: fibre is totally debonded and its 

relative elastic elongation is neglected. The relation between the force and the slip 

becomes: 

      
fd

P l , (3.9) 

where  l   is the embedded length of the remaining fiber, fd  is the dynamic 

frictional shear stress. Pull-out tests conducted by Naaman et al. (1991b) led to a 

descending branch that is not linear, suggesting a decay in the frictional bond. So, 

the assumption that the bond shear stress remains steady after the bond strength 
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
max

 is not representative for large slips. Naaman et al. (1991b) found the 

expression of fd  with increasing slip: 

  
   

 

 

0

0

0

m

m

m

m

2
1 exp

11

1

2
1 exp

11

l

f

f

f fe
f

fd fi

f

f

l

f

f f

l

E r
E Ee

e

l

E r
E E







 



 


 




  

 

 
 

    
                

 
 

 
              



 

, (3.10) 

where 
0

   is the slip of the fiber at the end of stage 1,   is the dynamic friction 

coefficient of the interface fiber-matrix, fr is the fiber’s radius,   is the Poisson’s 

coefficient, with subscript f  and m  for fiber and matrix, respectively. The 

damage coefficient   describes decay observed in the curve, and the the exponent 

0.2  , for straight steel fiber.     

 

Figure 3.5 Pull-out behaviour of straight fiber (Stages 1-3). 
 (Figure from Abdallah, 2018). 

More complex mechanisms are exhibit in pull-out tests by deformed shape of fiber 

(Figure 3.2). The hooked-end type is the most commonly employed, because these fibers 

are able to further enhance the energy absorption during the pull-out process. For this 

type of geometry, indeed, the pull-out mechanism provides other two additional stages, 

due to the development of two plastic hinges (PH1 and PH2) correspondingly to the end 

deformed region (Figure 3.6). 
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Figure 3.6 Pull-out behaviour of hooked-end fiber (Stages 1-5). 
 (Figure from Abdallah, 2018). 

The difference between the two typical pull-out responses can be evaluated in 

Figure 3.7. The curves show the same elastic range, after which the straight fiber 

experiences the exponential decay, as previously described. On the contrary, the hooked-

end fiber reaches a higher value of the pull-out force, due to the mechanical anchorage of 

the fiber end. After this maximum, the pull-out load starts to decrease due to the 

progressive mobilization of the PH1. When the first plastic hinge has straightened the 

fiber, it is placed in the straight part of the channel. Further straightening under PH2 is 

recognize in the slight increase in pull-out load at Stage 4 (Abdallah, 2018). Finally, when 

both the hooked-end are straightened, the fiber has reached the straight configuration, 

and the same exponential decay is found.   

 

 Figure 3.7 Pull-out response of straight fiber (Stages 1-3) and hooked-end fiber (Stages 1-5). 

(Figure from Abdallah, 2018). 
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Moreover, the influence of fiber orientation and matrix strength, for hooked-end 

type, is extensively investigated by Robins et al. (2002) and Cunha et al. (2010). The 

results of the experimental researches suggest that: (i) increasing the matrix strength, and 

the embedded length, the critical value of the pull-out force increases; (ii) the embedded 

length must be greater than the hooked length to guarantee the employment of the 

mechanical anchorage; (iii) an inclination of 10-20 degrees provides the maximum value 

of energy absorption. 

3. 3 Slippage constitutive laws 

In order to define an analytical bridging-law, both for straight and hooked-end steel 

fibers, the experimental results obtained by Abdallah et al. (2019) are analysed.  

The pull-out tests on single steel fiber were carried out using the cube of  

100×100×100 mm (Figure 3.8). In each specimen, one steel fibre, characterized by a 

length of 60 mm, was placed carefully in a hole made through the bottom of moulds. The 

embedded length (
E

L ) was one half of the fibre length, i.e., equal to 30 mm. 

 

Figure 3.8 Pull-out test setup (Abdallah et al, 2019). 

 

The pull-out tests were performed using a specially designed grip system, as showed 

in Figure 3.8, which was attached to an Instron 5584 universal testing machine. The grips 

were designed such that the forces applied to the fibre provided a true reflection of the 

real situation experienced by fibers bridging a crack. Two linear variable differential 

transformer (LVDT) transducers were used to measure the distance travelled by the steel 
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fiber relative to the concrete face during testing. A displacement rate of 10 mm/s was 

adopted for all the tests. 

 In the case of straight fibers the experimental results are reported in Figure 3.9.  

 

Figure 3.9 Pull-out tests on straight steel fiber results. 
 (Abdallah, 2019). 

In all the tests, the three stages discussed in the previous section can be recognized. 

The average of the results are normalized: the load respect to the maximum pull-out force, 

P
F N110 , the slip respect to the fiber embedded length, 

C
w mm30 . This 

normalization provides the so-called slippage law per “unit embedded length” of the fiber. 

By the graphical analysis of the normalized experimental data, the function in Figure 3.10 

is thus obtained. The corresponding analytical formulation is defined as follow:  

1. For 
3

C

-  i 4.1740 10
w

w
  

 i

P

1
F

F
 , (3.11) 

2. For
-3  i

C

4.174 10 1
w

w
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i

Ci

P

5.204
w

wF
e

F

 
  

 
  , (3.12) 

3. For 
C

i 1
w

w
   

 i

P

0
F

F
. (3.13) 

 

 

Figure 3.10 Normalized pull-out curve of straight steel fiber adopted in the Bridged Crack model. 

The pull-out of straight fiber is reproduced using an exponential decay law after the 

peak load. It is worth noting that the actual fiber pull-out behaviour starts with a linear-

elastic branch, but it is analytically reproduced through the vertical line before the peak 

load. Indeed, even if it is not exactly corresponding to the experimental results, it is 

coherent with the compatibility condition of the Bridged Crack model (
i

0w   for 
i P

F F ), 

and the comparisons with experimental data (Chapters 6 and 7) confirm the effectiveness 

of this assumption. 

The same procedure is conducted for the hooked-end steel fibers; experimental pull-

out tests results (Abdallah, 2019) are represented in Figure 3.11.  
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 Figure 3.11 Pull-out tests on hooked-end steel fiber results. 
 (Abdallah, 2019). 

Also in this case, the experimental curves show the typical phases connected to the 

hooked-end fiber geometry. Particularly, it is remarkable the effect of the two plastic 

hinges correspondently to the c-d, and e-f curve’s range. In order to generalize the pull-out 

response, the average of the results are again normalized: the load respect to the 

maximum pull-out load, 
P
F N590 , the slip respect to the embedded length, 

C
w mm30 . By the graphical analysis of the normalized experimental data, the function 

in Figure 3.12 is thus obtained. The corresponding analytical formulation is defined as 

follow:  

1. For i

C

 0 0.05
w

w
   

 i

P

1
F

F
 , (3.14) 

2. For i

C

 0.05 0.1
w

w
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 i i

P C

 
   

 
1 4 0.05

F w

F w
, (3.15) 

3. For i

C

 0.1 0.15
w

w
 

 i

P

1
F

F
 , (3.16) 

4. For i

C

 0.15 0.18
w

w
 

 i i

P C

 
   

 
1 13.33 0.15

F w

F w
 (3.17) 

5. For i

C

 0.18 1
w

w
 

 

i

Ci

P

5.204 0.18

0.4

w

wF
e

F

 
  

 
     (3.18) 

6. For i

C

1
w

w
   

 
i
0F  (3.19) 
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Figure 3.12 Normalized pull-out curve of hooked-end steel fiber adopted in the Bridged Crack model. 

The pull-out response of the hooked-end is analytically reproduced taking into 

account the experimental peculiarity: the effect of the plastic hinges is considered through 

the insertion of the two plateaus. As for the straight fibers, the elastic range of the 

behaviour is approximated. 

These two constitutive slippage laws are currently implemented in the algorithm of 

the Bridged Crack model, since steel straight and hooked-end steel fibers are the most 

commonly employed in practical applications. Further pull-out tests on other fiber’s types 

could be considered, to identify the different bridging laws, and enlarge the applicability of 

the model.   
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Chapter 4  

NUMERICAL ALGORITHM 

 

 Crack Length Control Scheme (CLCS) 4.1

The algorithm of the Bridged Crack model is implemented in MATLAB language.  

The initialization requires input parameters, which are divided into the following groups: 

 Beam geometry 

 b   section thickness 

 h   section depth 

 
0

a  initial crack depth (or 
0
   normalized initial crack depth) 

 L   beam length 

 S   beam span  

 

 Fiber geometry 

 
fd  fiber diameter  

 fl  fiber length 

 fV  fiber volume fraction 

 n  number of fibers modelling 

  fiber specific weight 

 1c  position of the first fiber (or 
min

  normalized position) 

 nc  position of the last fiber (or 
max

  normalized position) 

 
C

w  average embedded length of the fiber 

 

 Matrix material 

 E  matrix Young’s modulus 

 
IC

K   matrix fracture toughness 

 ckf   matrix characteristic cylindrical compression strength  
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 Fiber material 

 uf   fiber ultimate tensile strength  

 
u

   fiber bond shear strength  

 

 Process control 

 
max

a  final crack depth (or 
max
  normalized final crack depth) 

   normalized crack depth increment at each calculation step 

The actual number of fibers is evaluated through the Eq. (2.1). However, it can be 

really high, affecting the computation time. To avoid this problem, the input data include 

the fibers number; the numerical code is able to define an equivalent bridging force, in 

order to ensure the equivalence between the two distributions. The effect of different 

numbers of fibers modelling regards the local phenomenon, whereas the global response 

remains unchanged, as discussed in section 5.3. 

As seen in Chapter 2, the fibers are considered evenly spaced in the entire ligament, 

between 1c  and nc  (Figure 2.1). The constitutive law is defined, on the basis of the type of 

reinforcement. For straight and hooked-end steel fibers the bridging laws implemented 

are illustrated in section 3.2. 

After the input data initialization, at each k-th step the crack depth is increased as 

follow: 

 
   k+1 k

    , (4.1) 

where the apex (k) indicates the generic calculation step. 

The fiber is defined active if: 

 
 k

i
  . (4.2) 

The algorithm is based on the following steps: 

1. Data initialization ; 

2. Actual crack depth. At the first step it is assumed equal to 0a ; 

3. Compute the m active fibers; 

4. Compute compliances; 
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5. Initialize cn  and fn . At the first step, it is assumed cn m , 0fn ;  

6. Computed the m  bridging actions  F , through Eq. (2.36) if cn m , or Eq. (2.41).  

6a. loop entering conditions: 

If PiF F  or PiF F  , PiF F  ; 

Update cn  and fn , and return to step 6. 

7. Compute the m  crack opening displacements  w , with Eq. (2.42). 

7a. loop entering condition: 

If ( )i iF F w  , ( ) i iF F w ; 

Update cn  , fn , iF , and return to step 3. 

10. Compute localized rotation of the cracked cross-section,  , with Eq. (2.43); 

11. Compute crack propagation moment, FM , with Eq. (2.45); 

11. Save results: FM , w , F , ;  

12. Update crack depth,    k+1 k
     and return to step 2 if  k+1

stop  . 

12. Computation of  TPBT or FPBT force and the corresponding deflection; 

13. Plot M   and TPBT TPBTP  values or FPBT FPBTP .  

The process is thus controlled by increasing the crack length (Crack Length Control 

Scheme). Using this technique, the discontinuous phenomena characterizing the post-

cracking response, i.e., snap-back and snap-through instabilities, are described by the 

model, as extensively described by Carpinteri and Accornero (2019). 

 Load-deflection curves 4.2

The conversion from M   to P  response, for three-point bending test (TPBT) 

and four-point bending test (FPBT), is developed starting from the simple schemes of 

Figures 4.1 and 4.2. The superposition principle is applied, because the displacement 
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measured at the beam midspan is the result of two contributes: the beam elastic 

deflection, 
el

 , and the rigid localized one, 

 , due to the localized rotation of the cracked 

section.  

 

Figure 4.1 Evaluation of the beam displacement in case of  three-point bending test. 

 

       (a) Test with loaded point deflection control           (b) Test with midspan deflection control 

Figure 4.2 Determination of the beam displacement in case of  four-point bending test. 

Regarding the three point bending test (Figure 4.1), the values of midspan load and 

deflection are calculated as follow: 

 
4M

P
L

  , (4.3) 
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3

el 48 4

PS S

EI


       , (4.4) 

where S  is the beam span, I  the inertia of the cross section, and E  the Young’s Modulus. 

Similar considerations can be drawn for the four-point bending test controlled by 

the loaded point deflection, Figure 4.2 scheme (a). The application points of the forces 

divides the beam span into three equal parts; with this supposition, the value of the load 

and the corresponding deflection is computed. 

 
6M

P
L

  , (4.5) 

 
3

el

5

108 6

PS S

EI


       . (4.6) 

If the test is controlled by the midspan deflection, the above expressions can be 

rewritten: 

 
6M

P
L

  , (4.7) 

 
3

el

23

1296 4

PS S

EI


       . (4.8) 

 Mechanical parameter  4.3

As seen in section 4.1, the input parameters of the model are the starting point of the 

analysis.  

The fracture toughness of the matrix, its Young’s Modulus, and the fiber’s bond shear can 

be evaluated by empirical expressions, as functions of the average cylindrical compression 

strength of the matrix. The first one gives the fracture toughness; it was proposed by John 

R. and Shah S. P. (1989): 

  
0.75

IC ck
0.06K  f  , (4.9) 

where the physical dimensions of ckf  are  MPa and of 
IC

K  are MPa m 
 

. 
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The second one provides the value of the Young’s Modulus, still as a function of the 

average cylindrical compression strength of the concrete, as suggested by EUROCODE 2 

(UNI EN 1992-1-1), Table 3.1. 

 

0.3

cm22000
10cm

E
 

   
 

f
 , (4.10) 

where the physical dimensions of 
cm

E  are MPa 
  and of 

cm
f  are MPa 

  . 

The last one allows to evaluate the bond shear stress (Fib Model Code 2010): 

 
u cm

0.1 f   (4.11) 

where the physical dimensions of  
u

  are MPa 
  and of 

cm
f  are MPa 

  . 

 Numerical errors   4.4

The predicted response is strongly affected by the increment   and by the 

distance between the crack tip and the closest active fiber. This issue is due to the shape 

function   P i,Y , that provides a singularity for   i . In order to avoid this problem, 

the following conditions are imposed in the numerical code: 

 0.005   , (4.12) 

 i 0.05      .  (4.13) 

Typical examples of numerical problems related to the crack depth increment,  , 

are shown in Figure 4.3 and Figure 4.4. The curves are obtained imposing the same 

mechanical and geometrical parameters, but different values of  . Particularly, in the 

first case (Figure 4.3), the excessive peak is the consequence of a too low  (0.0005). On 

the other hand, the second picture is found using a too high   value (0.05), so the peak 

is too low that cannot be recognizable. A more realistic solution is obtained when the 

value of Eq. (4.15) is adopted, and the corresponding result is shown in Figure 4.5. 
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Figure 4.3 Load deflection curve obtained with a value of  =0.0005.

Figure 4.4 Load deflection curve using the value of  =0.05. 
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Figure 4.5 Load deflection curve using the value of  =0.005. 
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Chapter 5  

DIMENSIONAL ANALYSIS 

 

 5.1 Buckingham’s   Theorem   

Dimensional analysis is a method to define the functional dependence between 

physical quantities that are relevant for a certain phenomenon under investigation. The 

Buckingham’s   theorem (Buckingham, 1915) states that the functional dependence 

between a certain number of variables can be reduced to obtain a set of dimensionless 

groups (Pi groups), which describe synthetically the physical phenomenon. The form of 

the functional dependence is still unknown, and it has to be defined by means of 

experimental tests.  

The application of the   Theorem requires the definition of all the variables 

involved in the phenomenon. Among these, the output parameter, q0 , is a function of a 

number of variables: 

 ( , ,... ; , ,... ; , ,... )q f q q q s s s r r r n m0 1 2 1 2 1 2 k , (5.1) 

where qi  are quantities with independent physical dimension; the dimensions of 

parameters si  can be, instead, expressed as products of powers of the dimensions of the 

parameters qi . The ri  quantities are dimensionless. 

The product of n dimensionally independent are considered: 

 10 20 0 0
1 2

1

... n i

n

n i
i

q q q q   



 , (5.2) 

to make dimensionless the output parameter, with a suitable choice of  i0 . By this 

way, all the si quantities can be transformed in dimensionless variables, as follow: 

10 20 0 21 1 12 22 2 1 2
1 2

1 2 1 2 1 21 2

, ,..., ; , ,...
... ... ...... n n n n n nm

m

n n nn

q s s s
F r r r

q q q q q q q q qq q q          

 
 
 
 


11

0 1 2
k (5.3) 
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These dimensionless groups are called 
1

, 
2

, 
3

,…,
m

; the functional 

relationship can thus be reduced to the much more compact form: 

      F , , , ..., ; r ,r , ...r ) = 0
0 1 2 3 m 1 2 k

(  (5.4) 

 5.2 Dimensional analysis of FRC beam flexural response 

In this section, the Buckingham’s   theorem is applied to describe the flexural 

behaviour of a FRC beam, in the framework of the continuous Bridged Crack model. 

Considering the local behaviour of the mid-span cross section, it is assumed to be 

governed by the following physical variables, listed along with their physical dimensions:  

 
F

M  [ ][ ]F L , crack propagation moment; 

   [ ] , localized rotation;  

 
IC

K  -1.5[ ][ ]F L , matrix fracture toughness; 

 
P

 -2[ ][ ]F L , fictitious axial  stress of the fiber; 

 Vf  [ ] , fiber volume ratio    

 E  -2[ ][ ]F L , matrix Young’s modulus; 

 
C

w  [ ]L , average embedded length of the fibers; 

 n  [ ] , the exponent of bridging law decay;  

 h  [ ]L , beam depth; 

 b  [ ]L , beam thickness; 

 a0  [ ]L , initial crack depth.  

The functional dependence between these parameters can be put into the following 

general form: 

  , , , , , , , , , , 0f M K V E w n h b a  F IC P F C 0  (5.5) 

Among all the parameters, crack propagation moment, 
F

M , and localized rotation, 

 , can be considered as the output parameters of the phenomenon, while the other ones 

as input data. The ultimate stress of the fiber, 
P

, and the average embedded length of the 

fiber, 
C

w , are assumed as independent quantities, for sake of simplicity, in this work. 
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Actually, experimental pull-out tests point out an increase in the maximum pull-out force, 

with an increase in the embedded length of the fiber into the matrix (Robins, 2002).  

The fundamental physical dimensions considered are force  F  and length  L , 

since the flexural response is assumed independent by time  t  and temperature  T . The 

matrix toughness 
IC

K  and the beam depth h  are assumed as the fundamental set of 

dimensionally independent variables.  

By applying the Theorem, the relationship between the cross sectional bending 

moment and the localized rotation can be thus described by the following equation in 

dimensionless form: 

 
1.5

, , , , , , , , 0
w aM h E h b

f V n
K h b K K h h h




 
  

 

C 0F P
F

IC IC IC

 (5.6) 

Replacing some quantities, with the corresponding product, one can obtain 

(Carpinteri et al.,1996): 

 , , , , , , 0
Ew aM V h b

f n
K h b K h hK h




 
  

 

C 0F f P
1.5

IC IC IC

. (5.7) 

The bridging law is defined, on the basis of fiber type, as seen in Chapter 3. Also the 

geometrical properties of the beam are fixed. Under these assumptions, the functional 

relationship can be written as follows: 

 , , , 0
EwM V h

f
K h b K K h




 
  

 

CF f P
1.5

IC IC IC

. (5.8) 

The M  response, in conclusion, can be defined by means of two dimensionless 

parameters, named 
P

N and 
W

N . 

The first one, i.e. 
P

N , shows this general expression: 

 


 f P
P

IC

V h
N

K
. (5.9) 



 Chapter 5.  DIMENSIONAL ANALYSIS 
 
 

43 
 

In the FRC composites, the ultimate strength is the pull-out tension. If it is expressed as a 

function of the pull-out force, i.e., the maximum bridging action exhibit by the fiber, the 

previous equation can be written:  

 

n

P,i
i=1

P

IC

P

N
K b h




. (5.10) 

Moreover, if it assumes that the maximum reclosing force is that in Eq. (5.11), the 
P

N  

expression can be rewritten.  

 
P,i

  f
u f 2

l
P d , (5.11) 

 P f
P

i f

2u

P l

A d
 

 
   

 
, (5.12) 

  f f
max uf

p f

IC f IC

2 2
hl

N V h V
K d K

 


 
  

 
, (5.13) 

where 
f

l  is the fiber length, 
f

d is the fiber diameter, and 
f
  is the fiber aspect ratio. Thus, 

since the dominant role of the slippage phenomenon respect to the yielding in FRC 

composites, the ultimate force is expressed as a function of the shear pull-out stress. 

Consequentially, in the brittleness number related to the FRC also a geometrical 

characteristic of the fiber is involved.   

The second dimensionless parameter has the following expression: 

  C
W

IC

,
Ew

N
K h

 (5.14) 

which depends on the equivalent embedded length of the fiber. Comparing Eqs. (5.9) 

and (5.14) an opposite dependence of the two parameters on the specimen size is found.   

Both the parameters affect the post-cracking behaviour of the composite. More 

precisely, 
P

N  mainly affects the so called stage II of the post-cracking phase, which can 

range from catastrophic to strain hardening. By increasing 
P

N , called also reinforcement 

brittleness number, it is possible to individuate the transition 
P

N  value, 
PC

N , the critical 
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one. It is fundamental to define the minimum reinforcement volume ratio, taking into 

account the dependence of the specimen size.   

 The second dimensionless parameter becomes relevant in case of 
P PC

N N . Under 

this hypothesis, indeed, the FRC flexural behaviour shows a post-cracking strain-

hardening regime, and only a sufficiently high value of 
W

N  guarantees the  stability of the 

ductile behaviour. On the other hand, a low 
W

N value conducts to a globally brittle 

response: the stage II undergoes a dramatic contraction, anticipating the softening branch. 

This problem in FRC structural elements is often related to a low fiber embedded length.  

The crucial role of these dimensionless parameters to define the M   response 

curve will be clarified in next section, with parametrical analysis conducted.  

 5.3 Parametrical analysis   

The influence of key-parameters on the mechanical response of the FRC beams in 

bending is investigated through numerical simulations of Three Point Bending Test 

(TPBT). They are conducted by means of the Bridged Crack model Algorithm, 

implemented in MATLAB language. The analyses are divided into five groups, depending 

on the parameter investigated. The first three groups are related to the dimensionless 

parameters, 
P

N and NW . The other two are focused on the minimum reinforcing 

condition. 

 INFLUENCE OF NW ON SOFTENING BRANCH 

To understand the role of the dimensionless parameter related to the fiber embedded 

length, three TPBT numerical simulations are conducted. Particularly, three different 

values of 
P

N are chosen (1.3, 1, and 0.7), for each of these the effect of NW  changing is 

evaluated (ranging from 2032 to 203).  

Geometrical and mechanical properties assumed for the prismatic specimen are 

summarized in Table 5.1. The slippage constitutive law of hooked-end fiber is considered.   
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Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Notch depth a0 [cm] 1.5 

Dimensionless notch depth a0/h [/] 0.1 

Beam span S [cm] 45 

Beam length L [cm] 50 

Young’s modulus E [MPa] 31500 

Fracture toughness KIC [kg/cm1.5] 70 

Concrete compressive strength fcm [MPa] 33 

Fiber diameter df [cm] 0.075 

Fiber length lf [cm] 3.5 

Fiber tensile strength fu [MPa] 1100 

Number of fibers modelling n [/] 100 

Table 5.1 Geometrical and mechanical properties of the FRC specimen. 

 

 

Figure 5.1 Influence of N
W

on softening branch . 
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Figure 5.2 Influence of N
W

on softening branch . 

 

 

Figure 5.3 Influence of N
W

on softening branch . 
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As seen in this first group of numerical simulation, the three stages of the flexural 

response are clearly recognizable. The black curves, which do not show softening branch, 

are referred to an idealized continuous reinforcement, with rigid perfectly-plastic 

constitutive bridging law ( w C ). In each diagram, the linear-elastic (stage I) is not 

affected by the parameter NW ; the second and third stages, characterizing the post-

cracking phase of the composite are, instead, really different from red curves to the blue 

ones. In second stage, indeed, bridging phenomenon starts and it is affected by the 

embedded length of the fiber (described by NW ); in third stage, finally, slippage 

mechanism prevails with respect to the bridging one, so the softening branch occurs. It is 

surprising to see the influence of NW  looking at the global response, when the brittleness 

number provides a ductile behaviour (Figures 5.1 and 5.2). By decreasing  NW , indeed, the 

so called stage II results evidently reduced and the softening branch prematurely 

appeared; also the bearing capacity of the element is reduced. The post-peak response, 

until the softening branch, thus, change from perfectly-plastic, stable (red curves) to 

brittle, unstable (blue curves).  

 On the other hand, if NP is not enough to provide a ductile behaviour, the post-

cracking  response is brittle, since the cracking bending moment is not exceeded, 

regardless of  NW  (Figure 5.3).  

 

 INFLUENCE OF NP ON POST-PEAK RESPONSE  

The reinforcement brittleness number is extremely relevant in the design process, 

to guarantee a ductile post-cracking flexural response of the structural element; as seen in 

previous analysis looking at the black curves, it is the unique dimensionless parameter in 

case of continuous reinforcement, such as ordinary steel rebars (Carpinteri, 1984; Bosco 

and Carpinteri, 1990). His role is preeminent also in discontinuous reinforcement, even if 

not enough alone to provide a stable post-peak response. In the following numerical TPBT 

simulation, four different NW values are considered: 203, 406, 1016, 2032; for each of 

these the effect of NP  changing is evaluated. The four NW values are obtained assuming 

the embedded length equal to: 0.1 lf , 0.25 lf , 0.4 lf , and 0.5 lf . Geometrical and 

mechanical properties assumed for the prismatic specimen are reported in Table 5.2. The 

slippage constitutive law of hooked-end fiber is considered.  
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Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Notch depth a0 [cm] 1.5 

Dimensionless notch depth a0/h [/] 0.1 

Beam span S [cm] 45 

Beam length L [cm] 50 

Young’s modulus E [MPa] 31500 

Fracture toughness KIC [kg/cm1.5] 70 

Concrete compressive strength fcm [MPa] 33 

Fiber diameter df [cm] 0.075 

Fiber length lf [cm] 3.5 

Fiber tensile strength fu [MPa] 1100 

Number of fibers modelling n [/] 100 

Table 5.2 Geometrical and mechanical properties of the FRC specimen. 

 

 

Figure 5.4 Influence of N
P

on post-cracking stage.  
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 Figure 5.5 Influence of N
P

on post-cracking stage.  

 

 

Figure 5.6 Influence of N
P

on post-cracking stage. 
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Figure 5.7 Influence of N
P

on post-cracking stage. 

For each value of  NW , the curves collapse in an unique final softening branch. It is 

evident especially for lowest value of NW , in Figure 5.4. For the highest value of  NW , 

instead, NP  is fundamental to define a brittle (blue curve) or a ductile (above green curve) 

global response: the high plastic deformability of the specimen, provides by the NW value, 

removes almost at all the softening branch.  

 

 SCALE EFFECT 

The two dimensionless parameters show an opposite dependence on the specimen 

size, as it can be evaluated in Eq. (5.9) and Eq. (5.14). It means that an increase of the 

specimen characteristic dimension provides a positive effect in the immediately post-peak 

stage (governs by NP ), whereas the consequentially decrease of NW value provides a 

premature appearance of the softening branch. The following numerical simulations of 

TPBT are able to clarify these considerations.  
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Five different values of beam depth are considered (ranging from 2.5 cm to 30 cm), 

for each of these the effect of NP  and NW  changing on the global response is evaluated. 

However, it is worth notice that their product is not affected by the specimen size. 

Geometrical and mechanical properties assumed for the prismatic specimen are reported 

in Table 5.3. The slippage constitutive law of hooked-end fiber is implemented.   

Beam thickness b [cm] 15 

Dimensionless notch depth a/h [/] 0.1 

Beam span S [cm] 45 

Beam length L [cm] 50 

Young’s modulus E [MPa] 31500 

Fracture toughness KIC [kg/cm1.5] 70 

Concrete compressive strength fcm [MPa] 33 

Fiber diameter df [cm] 0.075 

Fiber length lf [cm] 3.5 

Fiber tensile strength fu [MPa] 1100 

Number of fibers modelling n [/] 100 

Table 5.3 Geometrical and mechanical properties of the FRC specimen. 

 

Figure 5.8 Influence of specimen size on post-cracking stage. 
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In the Figure above, from the black curve to the fuchsia one it is observable a first 

brittle-to-ductile transition. It is due to the increase of NP  with the beam depth. His 

further increase conducted to a strain hardening range, immediately after the crack onset. 

On the contrary, lower NW values, consequent to an increase in the specimen size, make 

the global response increasingly unstable. Thus, a ductile-to-brittle transition occurs from 

the fuchsia curve to the red one.   

 INFLUENCE OF NW ON THE DUCTILE-TO-BRITTLE TRANSITION AND NOTCH-

SENSITIVITY OF 
PC

N  

In the section 5.2 the 
PC

N  is introduced, as the brittleness number corresponding to 

the minimum reinforcement condition. Since the parametrical analysis just seen, it can 

guess that the critical value of  NP  depends also on NW . In this group of numerical 

simulations this dependence is discussed. Three different values of NW are chosen: 610, 

1016, 2033; for each of these the ductile-to-brittle transition is provided. Moreover, the 

analysis are carried out for three different notch depths (0.1 h , 0.05 h , and 0.03 h ) to 

investigate also the so called notch-sensitivity of 
PC

N . Geometrical and mechanical 

properties assumed for the prismatic specimen are reported in Table 5.4. The slippage 

constitutive law of hooked-end fiber is implemented.   

Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Beam span S [cm] 45 

Beam length L [cm] 50 

Young’s modulus E [MPa] 31500 

Fracture toughness KIC [kg/cm1.5] 70 

Concrete compressive strength fcm [MPa] 33 

Fiber diameter df [cm] 0.075 

Fiber length lf [cm] 3.5 

Fiber tensile strength fu [MPa] 1100 

Number of fibers modelling n [/] 100 

Table 5.4 Geometrical and mechanical properties of the FRC specimen. 
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Figure 5.9 Influence of N
W

on the Ductile-to-Brittle transition (
PC

N ). 

 

Figure 5.10 Influence of N
W

on the Ductile-to-Brittle transition (
PC

N ). 
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Figure 5.11 Influence of N
W

on the Ductile-to-Brittle transition (
PC

N ). 

In the Figures 5.9, 5.10 and 5.11, red curves show the P   response 

corresponding to the minimum reinforcement condition (characterised by 
PC

N ).  Each 

Figure contains also the graph of the relation 
W

N -
PC

N , for the specific notch depth. It is 

worth noting that, in this circumstance, only the immediately post-cracking behaviour 

(governs by NP ) is considered to define the minimum reinforcement. Actually, in the 

design process, also the plateau’s extension must be taken into account to choose the 

minimum required reinforcement. By this way, also the length of the fibers (related to
W

N ) 

could be a design parameter.  
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 Figure 5.12 Influence of N
W

on the Ductile-to-Brittle transition (
PC

N ). 

 

Figure 5.13 Notch-sensitivity of 
PC

N . 
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The Figures 5.12 and 5.13 summarize the results: by increasing the 
W

N  value, the 

fiber volume ratio required to define the minimum reinforcement condition decreases, 

since the higher bridging action; moreover, these results show the notch-sensitivity. If the 

initial crack depth of the specimen increase, indeed, the minimum reinforcement required 

for the un-cracked structural element is underestimated.     

 FIBER DISTRIBUTION 

As discussed in Chapter 4, the number of fibers modelling, corresponding to a given 

fiber volume fraction is an input data of the MATLAB code. By the fiber amount depends 

the computation time, so it is relevant to understand how this parameter influenced the 

evaluation of the minimum reinforcement, to simplify the application of the model. 

Moreover, it is possible to choose the first dimensionless fiber position (
min
 ) and the last 

one (
max
 ). The fiber distribution has a fundamental role in the bridging action of the 

reinforcing phase, as seen in Chapter 3. An uniform distribution into the specimen section 

depends on casting technique. In the following numerical simulation of TPBT the effect of 

different fiber modelling on 
PC

N  is evaluated, both in terms of number and positioning. 

Particularly, fixed an intermedium 
W

N  value (1016), still for three different initial crack 

depth, the ductile to brittle transition is reproduced by varying the number of fiber (20 

and 100) and the value of   
max
 (0.50 and 0.95).  Geometrical and mechanical properties 

assumed for the prismatic specimen are reported in Table 5.5. The slippage constitutive 

law of hooked-end fiber is implemented.   

Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Beam span S [cm] 45 

Beam length L [cm] 50 

Young’s modulus E [MPa] 31500 

Fracture toughness KIC [kg/cm1.5] 70 

Concrete compressive strength fcm [MPa] 33 

Fiber diameter df [cm] 0.075 

Fiber length lf [cm] 3.5 

Fiber tensile strength fu [MPa] 1100 

Table 5.5 Geometrical and mechanical properties of the FRC specimen. 
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Figure 5.14 Influence of fiber modelling on 
PC

N . 

 

Figure 5.15 Influence of fiber modelling on 
PC

N . 
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Figure 5.16 Influence of fiber modelling on 
PC

N . 

 

Figure 5.17 Influence of fiber modelling on 
PC

N . 
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For each initial crack depth, it can possible to evaluate how the number of fibers 

modelling leave unchanged the critical value of NP . The NPC , indeed, is related to the 

global response, and the numerical code is able to define an equivalent bridging force for 

the less number of fibers, in order to ensure the equivalence between the two 

distributions. The effect regards, instead, the local phenomenon: less fibers are more 

distant, so the instabilities related to the brittle crack propagation are more evident. In 

Figure 5.17 the notch sensitivity is confirmed, as in the previous analysis.  

The effect of an extremely bad distribution of the fiber into the specimen section can 

be evaluated. Indeed, it is supposed that only an half of the section contains the fibers, 

even if uniformly distributed (
max

0.50  ). By comparing the results with that of the 

correct distribution (
max

0.95  ), it is clear that if the fibers are not correctly distributed 

in the specimens realizations, the amount of the minimum reinforcing results 

underestimated. 



 Chapter 6.  MINIMUM REINFORCEMENT IN FRC BEAMS 
 

60 
 

Chapter 6  

MINIMUM REINFORCEMENT IN FRC BEAMS 

 

 6.1 Introduction 

The design of FRC members requires wide experimental campaigns, both on the two 

individual main components and on the composite mixture. These tests are fundamental 

to define the mechanical properties of the constituent materials, and to provide the so-

called mix design of the composite. In this context, the definition of the minimum amount 

of reinforcement, required to ensure a ductile post-cracking response, is an attractive 

parameter for the structural design of FRC members.  

This argument has been extensively discussed in the past, in the case of ordinary 

reinforced concrete beams. In the framework of Fracture Mechanics, the Bridged Crack 

model is able to evaluate the minimum reinforcement condition, synthetically described 

by the reinforcement brittleness number, NP  (Bosco and Carpinteri, 1990). The latter, in 

case of yielding bridging mechanism of the steel rebars, is a function of steel yielding 

stress, concrete fracture toughness, steel area percentage, and beam depth, making 

possible the evaluation of the size effects on the phenomenon.  

In this work, the discussion about the minimum reinforcement condition is extended 

to FRC structural elements. As discussed in the previous section, another geometrical 

property has to be considered in the dimensional analysis: the embedded length of the 

fiber, wC . Thus, there are finally two dimensionless parameters to describe completely the 

flexural response: NW and NP . Reinforcement geometry, its resistance and finally its 

volume ratio can be thus defined on the basis of these dimensionless parameters, keeping 

also the effect of the size variation among test specimen and structural element.  

In this Chapter nine experimental campaigns, conducted by other Authors, are 

analysed. The main features characterizing each work are the matrix concrete 

composition, the fiber type and the range of fiber amount considered, the presence or 

absence of the initial notch, and finally the test setup. For each work, these main features 

are described. Then, the results of recognizing of material properties are summarized. By 

applying the best fitting procedure on the elastic range of the experimental P   curve, 
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the actual matrix properties (Young’s Modulus and fracture toughness) are recognized. 

The Young’s Modulus, E , is related to the slope of this first stage; the fracture toughness, 

K IC , instead, affects the cracking bending moment. By the analysis of the post-cracking 

stages, the maximum pull-out fiber force, PP , and its embedded length, wC , are estimated. 

Particularly, the embedded length governs mainly the softening branch, in which the 

slippage phenomenon is prevalent. The pull-out fiber force, instead, is estimated through 

the best fitting of the stage II, between the crack onset and softening range. However, also 

the pull-out force exhibited by the fiber is affects by its embedded length, thus the 

procedure of best fitting of the whole post-cracking phase allows to define correctly the 

two quantities. It is worth notice that the matrix properties are uniquely defined, whereas 

the bridging force and the embedded length are variable with the distribution; they can be 

actually different for each specimen. Thus, on the bases of these four estimated parameter, 

the dimensionless quantities NP  and NW are computed. The same procedure is repeated 

for each experimental curve. Then, the experimental P   curves are compared with the 

numerical ones. In case of experimental test on un-notched specimen, it is modelled with a 

small initial crack. The bridged crack, indeed, requires an initiation to reproduce the crack 

propagation process. Finally, considering the average of the four estimated parameter, the 

minimum fiber volume ratio required to provide a ductile post-cracking response of the 

specimen is estimated. The minimum reinforcement condition is  is characterized by NPC . 

The corresponding NW value gives information about the stability of the behaviour.  
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 6.2 Comparison with experimental data 

 6.2.1 Almusallam et al. experimental work 

In the experimental campaign conducted by Almusallam et al. (2016), the post-

cracking behaviour and the fracture properties of Hybrid FRC (HFRC) composites were 

investigated. For this purpose, a total of 27 beams with different HFRC mixes were cast. 

The HFRC composites were produced using different volume fractions of steel, Kevlar and 

polypropylene fibers. To determine the fracture parameters of the HFRC composite, 

notched beams were tested under three point loading as recommended by RILEM TC 162-

TDF. The main variables were the fiber volume content for each type of fibre. 

The results of TPBT on FRC specimens with only hooked-end steel fiber are the 

object of the comparison with analytical response. In the following, the main variables of 

the experimental campaign, including the results, are summarized. 

 MATERIALS 

 

 Matrix 

The matrix mixture, including the mechanical properties, is reported in 

Table 6.1.  

Portland cement-ASTM  type I (c) [kg/m3] 520.0 

Water (w) [l/m3] 145.0 

w/c [-] 0.28 

Superplasticizer GLI 110 [l/m3] 3 

Fine sand  [kg/m3] 586 

Coarse aggregate (0-5 mm) [kg/m3] 850 

Coarse aggregate (6-10 mm) [kg/m3] 315 

Concrete compressive strength (fcm) [MPa] 64.5 

 Table 6.1 Concrete composition and mechanical properties. 

 Fiber 

Steel hooked-end Fibers (SF) were used. Their mechanical and 

geometrical properties, and their volume ratio for each mixture (M1 and 

M3), are reported in Tables 6.2 and 6.3 respectively. 
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 SF 

Fiber diameter df [cm] 0.075 

Fiber length lf [cm] 6 

Fiber aspect ratio λ [-] 80 

Fiber tensile strength fu  [MPa] 1225 

Table 6.2 Fiber mechanical and geometrical properties. 

 
M1 M3 

Fiber volume ratio V
f
 [%] 1.2 1.4 

Table 6.3 Fiber volume ratio for each mixture. 

   TEST SETUP 

The TPBT were performed after 28 days from the cast, according to RILEM TC 162-

TDF, using prismatic specimens of 15X15X60 cm, with an initial notch of 2.5 cm (Figure 

6.1a). The specimens were tested for Mode-I fracture under servo-controlled 

electrohydraulic Zwick compression testing machine. The three point bending test was 

conducted so that the high stress fracture process zone was confined at the notched 

section. The rate of increase of mid-span deflection of the specimen was kept constant at 

0.25 mm/min. The mid-span vertical deflection was recorded by the vertical LVDT 

attached to the mid-span of beams as shown in Figure 6.1b. 

 

Figure 6.1 Bending Test setup on FRC specimen. 
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 RESULTS AND DISCUSSION 

For each specimen, identified by beam ID, the experimental data (black curves) with 

the related numerical simulations (blue curves) are represented in Figure. 6.2.  The best fit 

is obtained by varying the four parameters ( K IC , E , PP , and Cw ),  which are summarized 

in Table 6.4 along with the dimensionless quantities, NP and NW . 

 It can be appreciate that in this case the matrix Young’s modulus obtained is the 

same for the two specimen, whereas the matrix fracture toughness is different, causing 

doubt on the estimate of cracking bending moment. Both fiber pull-out force and its 

embedded length are very similar, suggesting a uniform fiber distribution among the 

specimen.  

ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

M1 150 38400 0.153 0.34 1.08 1348 

M3 213 38400 0.159 0.36 0.91 1005 

Table 6.4 Parameters obtained with best fitting procedure. 

 

 

Figure 6.2 Experimental and numerical P   response. 
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As seen in the Figure 6.2, the model is able to reproduce the three stages of the 

flexural response. Particularly, blue numerical curves follow the black numerical ones in 

elastic phase. The two curve appear slightly different in post-cracking regimes: the 

analytical are more regular than the experimental ones. It is expected, regarding mainly 

the fiber distribution, that is actually random, as widely discussed, different from the 

modelled uniform one.   

In Figure 6.2 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. To obtain it, K IC , E , PP , and Cw  are assumed as the average of 

the parameters in Table 6.4, the slippage constitutive law for hooked-end fibers (section 

3.3) is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), fibers are 

uniformly distributed into the whole ligament, the other input data are defined as in 

following table.  

Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Notch depth a0 [cm] 2.5 

Dimensionless notch depth a0/h [-] 0.17 

Beam span S [cm] 45 

Beam length L [cm] 60 

Young’s modulus E [MPa] 38400 

Fracture toughness KIC [kg/cm1.5] 182 

Concrete compressive strength fcm [MPa] 64.5 

Fiber diameter df [cm] 0.075 

Fiber length lf [cm] 6 

Fiber tensile strength fu [MPa] 1225 

Fiber pull-out strength τu [MPa] 2.21 

Dimensionless fiber average embedded length  wC/ lf [-] 0.35 

Fiber volume ratio Vf [-] 0.83 

Table 6.5 Input data for minimum reinforcement condition. 

  



 Chapter 6.  MINIMUM REINFORCEMENT IN FRC BEAMS 
 

66 
 

 6.2.2 Mobasher et al. experimental work 

The experimental research program conducted by Mobasher et al. (2014) provided 

a variety of tests conducted on notched and un-notched FRC beams, with different fiber 

types (polymeric, glass and steel fiber) and dosage rate (13 3/kg m , 26 3/kg m , and 39 

3/kg m ) .  

The results of FPBT on un-notched FRC specimen with hooked-end steel fiber are 

the object of the comparison with analytical response. In the following, the main variables 

of the experimental campaign, including the results, are summarized. 

 MATERIALS 

 Matrix 

The matrix mixture, including the mechanical properties, is reported in 

Table 6.6.  

Portland cement (c) [kg/m3] 380.0 

Water (w) [kg/m3] 242.0 

w/c [-] 0.48 

Fly ash [kg/m3] 125.0 

Fine aggregate [kg/m3] 1343 

Coarse aggregate [kg/m3] 1816 

Concrete compressive strength (fcm) [MPa] 36 

 Table 6.6 Concrete composition and mechanical properties. 

 Fiber 

Steel Hooked-end Long fibers were used as reinforcing phase (S-HL). 

Their mechanical and geometrical properties, and their volume ratio for 

each mixture, are reported in Tables 6.7 and 6.8 respectively. 

 S-HL 

Fiber diameter df [cm] 0.03 

Fiber length lf [cm] 5 

Fiber aspect ratio λ [-] 167 

Fiber tensile strength fu  [MPa] 2300 

Table 6.7 Fiber mechanical and geometrical properties. 
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S-13-HL-28d S-26-HL-28d S-39-HL-28d 

Fiber volume ratio V
f
 [%] 0.17 0.33 0.50 

Table 6.8 Fiber volume ratio for each mixture. 

 TEST SETUP 

Un-notched SFRC prismatic specimen were tested under four-point bending loading 

configuration (Figure 6.3). The specimen dimensions were 15X15X51 cm, the span was 

equal to 45 cm. The tests were carried out after 28 days of  curing. Casting of the 

specimens, their curing and the experimental setup were chosen in accordance with ASTM 

C1018-97/1997. The beams were loaded orthogonal to the casting direction. Tests were 

performed under closed loop control with the load point deflection as the controlled 

variable. The midspan deflection was measured using a Linear Variable Differential 

Transformer (LVDT) with a working range of 2.5 mm. 

 

 

Figure 6.3 Bending Test setup on FRC specimen. 

 RESULTS AND DISCUSSION 

For each specimen, identified by beam ID, the experimental data (black curves) with 

the related numerical simulations (blue curves) are represented in Figure. 6.4.  The best fit 

is obtained by varying the four parameters ( K IC , E , PP , and Cw ),  which are summarized 

in Table 6.9 along with the dimensionless quantities, NP and NW .  

The matrix toughness recognized is almost the same for two of the three specimens, 

but their Young’s modulus shows relevant differences. As expected, also in fiber properties 

there are some differences.  
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ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

S-13-HL-28d 45 22000 0.010 0.50 0.20 3156 

S-26-HL-28d 55 25000 0.015 0.38 0.49 2230 

S-39-HL-28d 56 15000 0.017 0.35 0.83 1210 

Table 6.9 Parameters obtained with best fitting procedure. 

 

Figure 6.4 Experimental and numerical P   response. 

Looking at the Figure 6.4, it is possible to appreciate the capability of the Bridged 

Crack model to reproduce analytically the flexural response of FRC. Especially in this case, 

it is surprising how the numerical curves exactly follow the experimental ones, in all the 

three stage of the response. The NPC value is equal to 0.91. For all the experimental curves 

is N NP PC (in post-cracking stage the bending moment decreases). However, it is possible 

to appreciate that the lowest NW value, corresponding to the highest fiber content, 

describes the curve most affect by the softening final branch. In this case, being the test 

specimen un-notched, a fictitious initial crack depth, set equal to 0.05 h, is used.  

In Figure 6.4 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. . To obtain it, K IC , E , PP , and Cw  are assumed as the average of 

the parameters in Table 6.4, the slippage constitutive law for hooked-end fibers (section 
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3.3) is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), fiber is 

uniformly distributed into the whole ligament, the other input data are defined as in Table 

6.10. 

Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Notch depth a0 [cm] 0.75 

Dimensionless notch depth a0/h [-] 0.05 

Beam span S [cm] 45 

Beam length L [cm] 51 

Young’s modulus E [MPa] 20700 

Fracture toughness KIC [kg/cm1.5] 52 

Concrete compressive strength fcm [MPa] 36 

Fiber diameter df [cm] 0.03 

Fiber length lf [cm] 5 

Fiber tensile strength fu [MPa] 2300 

Fiber pull-out strength τu [MPa] 0.59 

Dimensionless fiber average embedded length  wC/ lf [-] 0.41 

Fiber volume ratio Vf [-] 0.62 

Table 6.10 Input data for minimum reinforcement condition. 
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 6.2.3 Soetens et al. experimental work 

This experimental campaign was conducted by Soetens and Matthis (2014). 

Through residual flexural parameters obtained by means of three- or four-point bending 

tests, a performance classification of the SFRC was done and a Mode I crack opening 

constitutive law for SFRC was derived for structural design purposes. For this purpose, a 

total of 42 bending tests have been conducted. Test parameters included fiber dosage (20 

3/kg m  and 40 3/kg m ), fibre type (long bare steel fiber with normal strength and zinc-

coated fiber with high strength) and concrete type (normal and high strength). 

The results of FPBT on SFRC specimens with normal strength steel fiber and normal 

strength matrix are the object of the comparison with analytical response. In the following, 

the main variables of the experimental campaign, including the results, are summarized. 

 MATERIALS 

 

 Matrix 

The components and mechanical properties of the concrete matrix are 

reported in Table 6.11.  

Cement CEM I 52,5 N (c) [kg/m3] 390.0 

Water (w) [kg/m3] 188.0 

w/c [-] 0.48 

Superplasticizer glenium 51 [kg/m3] 2.20 

Sand (0-4 mm) [kg/m3] 805 

Crushed aggregate (2-7 mm) [kg/m3] 150 

Crushed aggregate (7-14 mm) [kg/m3] 850 

Concrete compressive strength (fcm) [MPa] 57.4 

 Table 6.11 Concrete composition and mechanical properties. 

 Fiber 

Long steel hooked-end with Normal strength fibers were used (LN). 

Their mechanical and geometrical properties, and their volume ratio for 

each mixture, are reported in Tables 6.12 and 6.13 respectively. 
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 LN 

Fiber diameter df [cm] 0.075 

Fiber length lf [cm] 6 

Fiber aspect ratio λ [-] 80 

Fiber tensile strength fu  [MPa] 1236 

Table 6.12 Fiber mechanical and geometrical properties. 

 
4P-LN-20 4P-LN-40 

Fiber volume ratio V
f
 [%] 0.25 0.51 

Table 6.13 Fiber volume ratio for each mixture. 

   TEST SETUP 

Four-point bending tests based on NBN (1992) were conducted (Figure 6.5) on un-

notched prismatic specimen of 15X15X60 cm. The span length is equal to 45 cm and the 

distance between the position of the loads is at 1/3th of the span length. The deflection 

was measured by means of a linear variable displacement transducer (LVDT), attached to 

a brace which is fixed to the beam by a hinge at one support and is free to slide at the other 

support. Testing is performed displacement-controlled at a deflection rate of 0.05 

mm/min until reaching a midspan deflection of at least 4 mm.  

 

Figure 6.5 Bending Test setup on FRC specimen. 
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 RESULTS AND DISCUSSION 

For each specimen, identified by beam ID, the experimental data (black curves) with 

the related numerical simulations (blue curves) are represented in Figure. 6.6.  The best fit 

is obtained by varying the four parameters ( K IC , E , PP , and Cw ),  which are summarized 

in Table 6.14 along with the dimensionless quantities, NP and NW .  

For this mixture, the estimate of the matrix fracture toughness is particularly  

different between the two specimen. The un-notched specimen could be the cause of this 

inhomogeneity in the response.   

ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

4P-LN-20 58 30000 0.209 0.26 0.79 2083 

4P-LN-40 80 33000 0.193 0.42 1.08 2684 

Table 6.14 Parameters obtained with best fitting procedure. 

 

 

Figure 6.6 Experimental and numerical P   response. 

The NPC value is equal to 0.87; the lowest fiber volume ratio is not enough to provide a 

ductile post-cracking behaviour of the specimen, whereas the highest one allows a strain 



 Chapter 6.  MINIMUM REINFORCEMENT IN FRC BEAMS 
 

73 
 

hardening (II stage). Regarding the mixture 4P-LN-40, the blue numerical curve and the 

black experimental one are slightly different. It is mainly the effect of the two assumptions 

related to the fiber distribution (discussed in section 2.1) and the constitutive slippage law 

(discussed in section 3.3).  

In Figure 6.6 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. To obtain it, K IC , E , PP , and Cw  are assumed as the average of 

the parameters in Table 6.4, the slippage constitutive law for hooked-end fibers (section 

3.3) is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), fiber is 

uniformly distributed into the whole ligament, the other input data are defined as in Table 

6.15.  

Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Notch depth a0 [cm] 0.75 

Dimensionless notch depth a0/h [-] 0.05 

Beam span S [cm] 45 

Beam length L [cm] 60 

Young’s modulus E [MPa] 31500 

Fracture toughness KIC [kg/cm1.5] 69 

Concrete compressive strength fcm [MPa] 57.4 

Fiber diameter df [cm] 0.075 

Fiber length lf [cm] 6 

Fiber tensile strength fu [MPa] 1236 

Fiber pull-out strength τu [MPa] 2.84 

Dimensionless fiber average embedded length  wC/ lf [-] 0.34 

Fiber volume ratio Vf [-] 0.34 

Table 6.15 Input data for minimum reinforcement condition. 
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 6.2.4 Alberti et al. experimental work 

The experimental campaign conducted by Alberti et al. (2014), aims to study the 

synergies between the steel fibers and the new structural synthetic fibers added to Self-

Compacting Concrete (SCC). Following this purpose, manufacture of a SCC with polyolefin 

and steel fibers was attempted. This entailed two hybrid fiber-reinforced concretes being 

manufactured, which were characterized and their properties compared with those of the 

SCC reinforced only with one type of fiber. 

Three Point Bending Test on SFRC specimen were carried out to understand the 

effect of only steel fiber reinforcing, with two different volume ratio (0.33% and 0.49%). 

The results of these FPBT are the object of the comparison with analytical response. In the 

following, the main variables of the experimental campaign, including the results, are 

summarized. 

 MATERIALS 

 

 Matrix 

The matrix was a Self-Compacting Concrete, its components and 

mechanical properties are reported in Table 6.16. 

Cement CEM I 53,5 R (c) [kg/m3] 375.0 

Water (w) [kg/m3] 187.5 

w/c [-] 0.50 

Limestone powder [kg/m3] 200.0 

Sand (0-8 mm) [kg/m3] 918 

Grit (2-16 mm) [kg/m3] 245 

Gravel (4-32 mm) [kg/m3] 367 

Young’s modulus (E) [MPa] 35800 

Concrete compressive strength (fcm) [MPa] 47 

 Table 6.16 Concrete composition and mechanical properties 

 Fiber 

Hooked end Steel fibers were considered (S). Their mechanical and 

geometrical properties, and their volume ratio for each mixture, are 

reported in Tables 6.17 and 6.18 respectively. 
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 S 

Fiber diameter df [cm] 0.055 

Fiber length lf [cm] 3.5 

Fiber aspect ratio λ [-] 64 

Fiber tensile strength fu  [MPa] 1100 

Table 6.17 Fiber mechanical and geometrical properties. 

 
S33 S49 

Fiber volume ratio V
f
 [%] 0.33 0.49 

Table 6.18 Fiber volume ratio for each mixture. 

   TEST SETUP 

In accordance with RILEM, TC-187-SOC, three-point bending tests were carried out 

on prismatic specimens, with dimensions 10X10X43 cm, of each mixture. There is an 

initial crack depth of 3.33 cm. The geometry was set based on the depth (D) of the sample 

shown in Figure 6.7. Thus, span was chosen as three times the depth and the notch height 

as one third of the depth in the center of the span. The test was initially controlled by a 

clip-on gage crack mouth opening displacement (CMOD) device placed on the notch. 

Deflection was also measured by two linear variable differential transformer (LVDT) 

devices on each side of the specimen. 

 

Figure 6.7 Bending Test setup on FRC specimen. 
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 RESULTS  

For each specimen, identified by beam ID, the experimental data (black curves) with 

the related numerical simulations (blue curves) are represented in Figure. 6.8.  The best fit 

is obtained by varying the four parameters ( K IC , E , PP , and Cw ),  which are summarized 

in Table 6.19 along with the dimensionless quantities, NP and NW .  

For this mixture, the estimate of the four parameters provides results homogeneous 

among the two specimens. 

ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

S33 90 25000 0.051 0.30 0.26 922 

S49 97 30000 0.060 0.32 0.40 1095 

Table 6.19 Parameters obtained with best fitting procedure. 

 

Figure 6.8 Experimental and numerical P   response. 

The Figure 6.8 shows that the mixture used is not able to provide a stable post-

cracking behaviour. However, these tests are carried out within a research program about 

HFRC, so this steel fiber type are then mixed with other fiber type to enhance the mixture 
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performance. It is worth notice, especially in this case, that the NW low values, ranging 

from 922 to 1095, predict correctly the un-stable response of the specimens. 

In Figure 6.8 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. . To obtain it, K IC , E , PP , and Cw  are assumed as the average of 

the parameters in Table 6.4, the slippage constitutive law for hooked-end fibers (section 

3.3) is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), fiber is 

uniformly distributed into the whole ligament, the other input data are defined as in Table 

6.20. 

Beam thickness b [cm] 10 

Beam depth h [cm] 10 

Notch depth a0 [cm] 3.33 

Dimensionless notch depth a0/h [-] 0.333 

Beam span S [cm] 30 

Beam length L [cm] 43 

Young’s modulus E [MPa] 27500 

Fracture toughness KIC [kg/cm1.5] 93.5 

Concrete compressive strength fcm [MPa] 47 

Fiber diameter df [cm] 0.055 

Fiber length lf [cm] 3.5 

Fiber tensile strength fu [MPa] 1100 

Fiber pull-out strength τu [MPa] 1.83 

Dimensionless fiber average embedded length  wC/ lf [-] 0.31 

Fiber volume ratio Vf [-] 0.53 

Table 6.20 Input data for minimum reinforcement condition. 

.      
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 6.2.5 Aydin experimental work 

The present experimental research was conducted by Aydin (2013). The effects of 

steel fiber strength on the mechanical properties of steel fiber reinforced concretes, such 

as compressive strength, modulus of elasticity, splitting tensile strength, flexural strength, 

and fracture energy have been investigated. Steel fibers with two different tensile strength 

of 1100 and 2000 MPa, and two different volume fractions of 20 and 60 3/kg m  were 

used in the production of normal and high strength concretes. 

The results of three point bending tests on High and Normal Strength Concrete (HSC 

and NSC) reinforced with High and Normal Strength Fibers (HSF and NSF) are the object of 

the comparison with analytical response. In the following, the main variables of the 

experimental campaign, including the results, are summarized. 

 MATERIALS 

 

 Matrix 

The concrete matrix components and mechanical properties are 

reported in Table 6.16, both for NSC and HSC. 

 NSC HSC 

Portland Cement CEM I 42.5 R (c) [kg/m3] 300.0 470.0 

Water (w) [kg/m3] 180.0 180.0 

w/c [-] 0.60 0.38 

Silica fume [kg/m3] - 55 

Superplasticizer [kg/m3] - 3.8 

Natural sand (0-5 mm)  [kg/m3] 480 396 

Crushed limestone (0-3 mm) [kg/m3] 545 450 

Crushed limestone (5-15 mm) [kg/m3] 850 850 

Concrete compressive strength (fcm) [MPa] 35.5 81.2 

Young’s Modulus (E) [MPa] 26200 41600 

 Table 6.21 Concrete composition and mechanical properties. 
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 Fiber 

Two different cold drawn hooked-end steel fibers with low and high 

carbon contents were used. Their mechanical and geometrical properties, 

and their volume ratio for each mixture, are reported in Tables 6.22 and 

6.23 respectively. 

 NSF HSF 

Fiber diameter df [cm] 0.055 0.055 

Fiber length lf [cm] 3 3 

Fiber aspect ratio λ [-] 55 55 

Fiber tensile strength fu  [MPa] 1100 2000 

Table 6.22 Fiber mechanical and geometrical properties. 

 
NSC-

NSF-20 
NSC- 

NSF-60 
NSC- 

HSF-20 
NSC- 

HSF-60 
HSC- 

NSF-20 
HSC- 

NSF-60 

Fiber volume ratio V
f
 [%] 0.26 0.77 0.26 0.77 0.26 0.77 

Table 6.23 Fiber volume ratio for each mixture. 

 TEST SETUP 

Flexural tests were performed on notched prismatic specimens (10X10X60 cm) 

using a closed loop deflection-controlled testing machine according to RILEM 50-FMC. All 

of the beam specimens have the same notch depth, equal to one-third of the beam height 

(Figure 6.9). SFRCs were tested at a loading rate of 0.2mm/min. The specimens were 

loaded at their mid-span and the clear distance between the simple supports was 50 cm. 

 

Figure 6.9 Bending Test setup on FRC specimen. 

 RESULTS AND DISCUSSION 
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For each specimen, identified by beam ID, the experimental data (black curves) with 

the related numerical simulations (blue curves) are represented in Figures 6.10, 6.11, and 

6.12 (for each mixture).  The best fit is obtained by varying the four parameters ( K IC , E , 

PP , and Cw ),  which are summarized in Tables 6.24, 6.26, and 6.28 along with the 

dimensionless quantities, NP and NW .  

The NSC properties are correctly recognized, homogeneous between the two 

specimen considered. As it is expected, the fiber properties, which depend on the actual 

distribution show some differences.   

ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

NSC-NSF-20 65 30000 0.043 0.50 0.23 2189 

NSC-NSF-60 66 30000 0.032 0.50 0.49 3450 

Table 6.24 Parameters obtained with best fitting procedure. 

 

Figure 6.10 Experimental and numerical P   response. 

The analytical curves follow the numerical ones in the three regimes of the post-

cracking response. The mixture NSC-NSF (with appropriate fiber content) is able to 
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provide a stable post-cracking response. It is confirmed by the high NW value 

corresponding to the specimen with N NP PC ( N W 3450). 

In Figure 6.10 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. . To obtain it, K IC , E , PP , and Cw  are assumed as the average of 

the parameters in Table 6.4, the slippage constitutive law for hooked-end fibers (section 

3.3) is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), fiber is 

uniformly distributed into the whole ligament, the other input data are defined as in Table 

6.25. 

Beam thickness b [cm] 10 

Beam depth h [cm] 10 

Notch depth a0 [cm] 3.33 

Dimensionless notch depth a0/h [-] 0.33 

Beam span S [cm] 50 

Beam length L [cm] 60 

Young’s modulus E [MPa] 30000 

Fracture toughness KIC [kg/cm1.5] 67 

Concrete compressive strength fcm [MPa] 35.5 

Fiber diameter df [cm] 0.055 

Fiber length lf [cm] 3 

Fiber tensile strength fu [MPa] 1100 

Fiber pull-out strength τu [MPa] 2.98 

Dimensionless fiber average embedded length  wC/ lf [-] 0.50 

Fiber volume ratio Vf [-] 0.56 

Table 6.25 Input data for minimum reinforcement condition. 
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The same procedure is conducted for the mixture NSC-HSF. The matrix is the same 

of the previous one, indeed its mechanical parameters estimated are the same, except the 

fracture toughness estimated for the specimen more reinforced. The fiber distribution is 

homogeneous among the two beam, as recognizable by the same estimated embedded 

length. This type of fiber provides an higher pull-out force.   

ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

NSC-HSF-20 66 30000 0.049 0.50 0.26 2156 

NSC-HSF-60 75 30000 0.039 0.50 0.54 1897 

Table 6.26 Parameters obtained with best fitting procedure. 

 

Figure 6.11 Experimental and numerical P   response. 

Also in this case the mixture shows an high stability in post-cracking phase, when 

N NP PC ; particularly, for the mixture with the minimum reinforced, 2004N W . The 

analytical curve follow the experimental data in the three stage of the response. 

In Figure 6.11 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. To obtain it, the slippage constitutive law for hooked-end fibers 

(section 3.3) is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), 
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fiber is uniformly distributed into the whole ligament, the other input data are defined as 

in Table 6.27. 

Beam thickness b [cm] 10 

Beam depth h [cm] 10 

Notch depth a0 [cm] 3.33 

Dimensionless notch depth a0/h [-] 0.33 

Beam span S [cm] 50 

Beam length L [cm] 60 

Young’s modulus E [MPa] 30000 

Fracture toughness KIC [kg/cm1.5] 71 

Concrete compressive strength fcm [MPa] 35.5 

Fiber diameter df [cm] 0.055 

Fiber length lf [cm] 3 

Fiber tensile strength fu [MPa] 2000 

Fiber pull-out strength τu [MPa] 1.71 

Dimensionless fiber average embedded length  wC/ lf [-] 0.50 

Fiber volume ratio Vf [-] 0.51 

Table 6.27 Input data for minimum reinforcement condition. 
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Finally, the same procedure is conducted for the mixture HSC-NSF. 

An High Performance Concrete is employed, the matrix properties are thus 

enhanced respect to the previous mixture, as correctly estimated by best-fit procedure: 

both the fracture toughness and the Young’s modulus are increased.   

ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

HSC-NSF-20 103 42000 0.045 0.20 0.15 774 

HSC-NSF-60 107 42000 0.074 0.15 0.70 559 

Table 6.28 Parameters obtained with best fitting procedure. 

 

Figure 6.12 Experimental and numerical P   response. 

In this case it can possible to compare the results of TPBT conducted, with the same 

test setup, on three different mixture. Looking at the Figure 6.10, 6.11, and 6.12, it is clear 

that a good synergy of the two main component of FRC is fundamental. Both the mixtures 

NSC-NSF and NSC-HSF show a stable post-cracking behaviour. If the matrix performances 

are enhanced (HSC) to increase the loading capacity, the post-peak behaviour begins un-

stable, with NW values  extremely low (for N NP PC ,  664N W ). In this case, even if the 

constitutive law modelling is still related to the slippage phenomenon, the higher 
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anchorage between the fiber and the high-strength matrix conducts more probably to the 

fiber rupture.    

In Figure 6.12 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. To obtain it, the slippage constitutive law for hooked-end fibers 

(section 3.3) is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), 

fiber is uniformly distributed into the whole ligament, the other input data are defined as 

in Table 6.29. 

Beam thickness b [cm] 10 

Beam depth h [cm] 10 

Notch depth a0 [cm] 3.33 

Dimensionless notch depth a0/h [-] 0.33 

Beam span S [cm] 50 

Beam length L [cm] 60 

Young’s modulus E [MPa] 30000 

Fracture toughness KIC [kg/cm1.5] 105 

Concrete compressive strength fcm [MPa] 81.2 

Fiber diameter df [cm] 0.055 

Fiber length lf [cm] 3 

Fiber tensile strength fu [MPa] 1100 

Fiber pull-out strength τu [MPa] 2.53 

Dimensionless fiber average embedded length  wC/ lf [-] 0.18 

Fiber volume ratio Vf [-] 0.58 

Table 6.29 Input data for minimum reinforcement condition. 
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 6.2.6 Holshemacher et al. experimental work 

The experimental research program conducted by Holshemacher et al. (2010), was 

focused on the influence of steel fibers types and amounts on flexural response of steel bar 

reinforced high-strength concrete beams. In the frame of the research different bar 

reinforcements ( 2 6 mm and 2 12 mm) and three types of fibers configurations (two 

hooked-end with different ultimate tensile strength, F1 and F2, and one corrugated, F3) 

were used. Three different fiber contents (20 3/kg m , 40 3/kg m  and 60 3/kg m ) were 

applied.  

Four Point Bending Test on FRC specimen were also carried out to understand the 

effect of only fiber reinforcing phase. The results of FPBT on FRC specimen with fiber 

types F1 and F2 are the object of the comparison with analytical response. In the 

following, the main variables of the experimental campaign, including the results, are 

summarized. 

 MATERIALS 

 

 Matrix 

The matrix was an High Strength Concrete, its components and 

mechanical properties are reported in Table 6.30. 

Portland cement (c) [kg/m3] 400.0 

Water (w) [kg/m3] 132.0 

w/c [-] 0.33 

Fly ash [kg/m3] 100.0 

Superplasticizer [kg/m3] 2.5 

Retarder [kg/m3] 0.2 

Sand (0-2 mm) [kg/m3] 696.7 

Gravel (2-8 mm) [kg/m3] 443.3 

Gravel (8-16 mm) [kg/m3] 638.4 

Young’s modulus (E) [MPa] 43100 

Concrete compressive strength (fcm) [MPa] 94 

 Table 6.30 Concrete composition and mechanical properties 
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 Fiber 

Two fiber types were considered (F1 and F2), both with hooked-end. 

Their mechanical and geometrical properties, and their volume ratio for 

each mixture, are reported in Tables 6.31 and 6.32 respectively. 

 F1 F2 

Fiber diameter df [cm] 0.1 0.1 

Fiber length lf [cm] 5 5 

Fiber aspect ratio λ [-] 50 50 

Fiber tensile strength fu  [MPa] 1100 1900 

Table 6.31 Fiber mechanical and geometrical properties. 

 
F1-20 F1-40 F1-60 F2-20 F2-40 F2-60 

Fiber volume ratio V
f
 [%] 0.25 0.51 0.76 0.25 0.51 0.76 

Table 6.32 Fiber volume ratio for each mixture. 

 TEST SETUP 

Four Point Bending Test were conducted on un-notched prismatic specimen with 

dimensions 15X15X70 cm, the span was equal to 60 cm (Figure 6.13). Casting of the 

specimens, their curing and the experimental setup were chosen according to the German 

regulations, which are similar to those of RILEM TC 162-TDF. The beams were loaded 

orthogonal to the casting direction. The load was controlled using a displacement method 

with a rate of 0.2 mm/min. The deflection was recorded by two LVDTs (one on each side of 

the beam). 

 

Figure 6.13 Bending Test setup on FRC specimen. 
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 RESULTS AND DISCUSSION 

For each specimen, identified by beam ID, the experimental data (black curves) with 

the related numerical simulations (blue curves) are represented in Figures 6.14 and 6.15 

(for each mixture).  The best fit is obtained by varying the four parameters ( K IC , E , PP , 

and Cw ),  which are summarized in Tables 6.33 and 6.35 along with the dimensionless 

quantities, NP and NW .  

The High Strength Concrete employed in this experimental campaign show, as 

expected, high values of fracture toughness and Young’s modulus, even if the estimates are 

slightly different between the three specimens. The fiber pull-out force evaluated is, 

instead, the same.  

ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

F1-20 119 43088 0.343 0.25 0.36 1169 

F1-40 128 43088 0.343 0.16 0.68 695 

F1-60 135 50000 0.343 0.12 0.95 574 

Table 6.33 . Parameters obtained with best fitting procedure. 

 

Figure 6.14 Experimental and numerical P   response. 
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The analytical curve follow the experimental ones along the three stages. This 

mixture do not provide a stable post-peak behaviour (for N NP PC , 823N W ).  

In Figure 6.14 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. . To obtain it, K IC , E , PP , and Cw  are assumed as the average of 

the parameters in Table 6.4, the slippage constitutive law for hooked-end fibers (section 

3.3) is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), fiber 

distribution is uniform into the whole ligament, the other input data are defined as in 

Table 6.34. 

Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Notch depth a0 [cm] 0.75 

Dimensionless notch depth a0/h [-] 0.05 

Beam span S [cm] 60 

Beam length L [cm] 70 

Young’s modulus E [MPa] 45000 

Fracture toughness KIC [kg/cm1.5] 126 

Concrete compressive strength fcm [MPa] 94 

Fiber diameter df [cm] 0.1 

Fiber length lf [cm] 5 

Fiber tensile strength fu [MPa] 1100 

Fiber pull-out strength τu [MPa] 4.36 

Dimensionless fiber average embedded length  wC/ lf [-] 0.18 

Fiber volume ratio Vf [-] 0.8 

Table 6.34 Input data for minimum reinforcement condition. 

The same procedure is conducted for the mixture F2.  

The fiber properties are enhanced, it is recognizable especially in the embedded 

length estimate, even if variable for inhomogeneous distribution.   

ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

 
[kg/cm1.5] [Mpa] [kN] [-] [-] [-] 

F2-20 123 50000 0.419 0.50 0.42 2624 

F2-40 125 50000 0.289 0.30 0.59 1550 

F2-60 128 43088 0.305 0.24 0.89 1043 

Table 6.35 Parameters obtained with best fitting procedure. 
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Figure 6.15 Experimental and numerical P   response. 

This campaign also confirms the effectiveness of the Bridged Crack model in the 

mixture design process. In this case two different types of fibers are used. Starting from a 

graphic analyse, and looking to the corresponding values of dimensionless parameters, it 

can possible to choose the best mixture. The fiber with an higher strength provides a more 

stable response (for N NP PC ,  1860N W ). 

In Figure 6.15 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. The slippage constitutive law for hooked-end fibers (section 3.3) 

is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), fiber 

distribution is uniform into the whole ligament, the other input data are defined as in 

Table 6.36. 
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Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Notch depth a0 [cm] 0.75 

Dimensionless notch depth a0/h [-] 0.05 

Beam span S [cm] 60 

Beam length L [cm] 70 

Young’s modulus E [MPa] 45000 

Fracture toughness KIC [kg/cm1.5] 126 

Concrete compressive strength fcm [MPa] 94 

Fiber diameter df [cm] 0.1 

Fiber length lf [cm] 5 

Fiber tensile strength fu [MPa] 1900 

Fiber pull-out strength τu [MPa] 4.30 

Dimensionless fiber average embedded length  wC/ lf [-] 0.4 

Fiber volume ratio Vf [-] 0.74 

Table 6.36 Input data for minimum reinforcement condition. 
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 6.2.7 Bencardino et al. experimental work 

In the experimental research program conducted by Bencardino et al. (2010), the 

effect of fiber type and content on the mechanical and fracture properties of FRC were 

assessed. For this purpose, sets of steel fiber reinforced concrete (SFRC) and 

polypropylene fiber reinforced concrete (PFRC) specimens were cast, both with two 

different fiber volume ratio (1% and 2%). Three Point Bending Test on notched specimens 

according to the established standard RILEM TC 162-TDF were carried out. 

The results of TPBT on SFRC specimens with hooked-end steel fiber are the object of 

the comparison with analytical response. In the following, the main variables of the 

experimental campaign, including the results, are summarized. 

 MATERIALS 

 

 Matrix 

The matrix concrete components and mechanical properties are 

reported in Table 6.37.  

Portland cement-ASTM  type I (c) [kg/m3] 500.0 

Water (w) [kg/m3] 175.0 

w/c [-] 0.35 

Silica fume [kg/m3] 25.0 

Superplasticizer [kg/m3] 7.5 

Spherical quartz sand (0-2 mm) [kg/m3] 400 

Spherical quartz sand (3-6 mm) [kg/m3] 294 

Crushed coarse aggregate (0-5 mm) [kg/m3] 522 

Crushed coarse aggregate (6-10 mm) [kg/m3] 222 

Crushed coarse aggregate (11-15 mm) [kg/m3] 240 

Concrete compressive strength (fcm) [MPa] 74.4 

 Table 6.37 Concrete composition and mechanical properties. 

 Fiber 

Dramix Steel hooked-end fibers were used (DS). Their mechanical 

and geometrical properties, and their volume ratio for each mixture, are 

reported in Tables 6.38 and 6.39 respectively. 
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 DS 

Fiber diameter df [cm] 0.063 

Fiber length lf [cm] 5 

Fiber aspect ratio λ [-] 80 

Fiber tensile strength fu  [MPa] 1050 

Table 6.38 Fiber mechanical and geometrical properties. 

 
DS1% DS2% 

Fiber volume ratio V
f
 [%] 1 2 

Table 6.39 Fiber volume ratio for each mixture. 

    TEST SETUP 

The TPBT were performed at 28 days, according to RILEM TC 162-TDF, using 

15X15X60 cm prismatic specimens (Figure 6.16a).  In the mid-span of the specimen, a 

single notch with a depth of 25 mm was sawn with a diamond blade to localize the crack. 

The tests were carried out by imposing a displacement rate of 0.05 mm/min. An INSTRON 

1195 electromechanical testing machine functioning in closed loop with crosshead stroke 

and applied force fitted up with a 100 kN type C1 HBM load cell was used. Two HBM 

WA20 LVDTs were used to measure the vertical displacement under the load point on the 

two specimen faces. The transducers were mounted on a rigid yoke accurately set up on 

the specimen in order to minimize the effect of rotation during the test. Two further 

LVDTs WI10 were placed at the tip of the notch on the two faces of the specimen to 

measure the crack tip opening displacement (CTOD). The data acquisition and signal 

control were carried out by using a HBM Spider 8 control unit. The experimental set up is 

shown in Figure 6.16b. 
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Figure 6.16 Bending Test setup on FRC specimen. 

 

 RESULTS AND DISCUSSION 

For each specimen, identified by beam ID, the experimental data (black curves) with 

the related numerical simulations (blue curves) are represented in Figure 6.17.  The best 

fit is obtained by varying the four parameters ( K IC , E , PP , and Cw ),  which are 

summarized in Table 6.40 along with the dimensionless quantities, NP and NW .  

The matrix shows high performance, it is expected looking at the compressive 

strength, and it is confirmed by the mechanical properties estimated.  

ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

DS1% 140 58000 0.142 0.25 1.29 1337 

DS2% 160 58000 0.083 0.32 1.31 1498 

Table 6.40 Parameters obtained with best fitting procedure. 
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Figure 6.17 Experimental and numerical P   response. 

The flexural response both of the DS1 and DS2 mixtures shows a post-cracking 

strain hardening range ( N NP PC ). A not uniform fiber distribution could be recognized in 

DS1 specimen, which provide a behaviour less stable then the DS2 one.  

In Figure 6.17 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. . To obtain it, K IC , E , PP , and Cw  are assumed as the average of 

the parameters in Table 6.4, the slippage constitutive law for hooked-end fibers (section 

3.3) is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), fiber 

distribution is uniform into the whole ligament, the other input data are defined as in 

Table 6.41. 
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Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Notch depth a0 [cm] 2.5 

Dimensionless notch depth a0/h [-] 0.17 

Beam span S [cm] 50 

Beam length L [cm] 60 

Young’s modulus E [MPa] 58000 

Fracture toughness KIC [kg/cm1.5] 150 

Concrete compressive strength fcm [MPa] 74.4 

Fiber diameter df [cm] 0.063 

Fiber length lf [cm] 5 

Fiber tensile strength fu [MPa] 1050 

Fiber pull-out strength τu [MPa] 2.3 

Dimensionless fiber average embedded length  wC/ lf [-] 0.29 

Fiber volume ratio Vf [-] 0.61 

Table 6.41 Input data for minimum reinforcement condition. 
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 6.2.8 Barros et al. experimental work 

This experimental campaign was carried out by Barros et al. (2005). To characterize 

the SFRC post-cracking behaviour according to RILEM TC 162-TDF recommendations, an 

experimental and a numerical research were carried out in the work. Three Point Bending 

Tests are conducted on SFRC; the test parameters are fiber diameter and amount.  

The results of TPBT on SFRC with three different dosages of Dramix hooked-end 

steel fibers (10 3/kg m , 20 3/kg m , and 30 3/kg m  ) are the object of the comparison 

with analytical response. In the following, the main variables of the experimental 

campaign, including the results, are summarized. 

 MATERIALS 

 

 Matrix 

The concrete matrix components and mechanical properties are 

reported in Table 6.42. 

Cement CEM I 42,5 R (c) [kg/m3] 300.0 

Water (w) [kg/m3] 163.8 

w/c [-] 0.55 

Superplasticizer (Rheobuild 1000) [kg/m3] 7.5 

Fine sand  [kg/m3] 173.5 

Crushed sand [kg/m3] 871 

Coarse aggregate (5-15 mm) [kg/m3] 315.7 

Coarse aggregate (15-25 mm) [kg/m3] 468.2 

Concrete compressive strength (fcm) [MPa] 39.7 

 Table 6.42 Concrete composition and mechanical properties 

 

 Fiber 

Dramix hooked-end steel fibres were used: RC-80/60-BN. Their 

mechanical and geometrical properties, and their volume ratio for each 

mixture, are reported in Tables 6.43 and 6.44 respectively. 
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 RC-80/60-BN 

Fiber diameter df [cm] 0.075 

Fiber length lf [cm] 6 

Fiber aspect ratio λ [-] 80 

Fiber tensile strength fu  [MPa] 1100 

Table 6.43 Fiber mechanical and geometrical properties. 

 

 
F80/60-10 F80/60-20 F80/60-30 

Fiber volume ratio V
f
 [%] 0.13 0.26 0.38 

Table 6.44 Fiber volume ratio for each mixture. 

 

 TEST SETUP 

Figure 6.18 represents the specimen recommended by RILEM TC 162-TDF for the 

characterization of the flexural behaviour of SFRC (dimensions 15X15X60 cm). The 

measurements which were taken during testing were the load applied, mid-span 

displacements on both sides of the beam and the crack mouth opening displacement 

(CMOD). 

 

Figure 6.18 Bending Test setup on FRC specimen. 
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 RESULTS  

For each specimen, identified by beam ID, the experimental data (black curves) with 

the related numerical simulations (blue curves) are represented in Figure 6.19.  The best 

fit is obtained by varying the four parameters ( K IC , E , PP , and Cw ),  which are 

summarized in Table 6.45 along with the dimensionless quantities, NP and NW .  

In this case, even if the matrix is a normal strength concrete, the properties 

recognizable through the best-fit procedure, especially the Young’s modulus, are really 

high. Also the fiber characteristics are performants, as looking at the average of the 

embedded length, wich is equal to 0.4 lf .   

ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

F80/60-10 86 60000 0.156 0.40 0.21 4323 

F80/60-20 85 50000 0.111 0.30 0.30 2733 

F80/60-30 91 60000 0.116 0.50 0.43 5107 

Table 6.45 Parameters obtained with best fitting procedure. 

 

Figure 6.19 Experimental and numerical P   response. 
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In this work it is worth notice that the P   experimental curves, and 

consequentially also the numerical one, experiences a post-cracking phase without the 

softening branch up to a midspan deflection of 4 mm. It could be related to the fiber length 

(6 cm) that provide an extensive bridging action. In this case, the fiber slippage behaviour 

tends to be rigid-perfectly plastic (for N NP PC , 4022N W ).   

In Figure 6.19 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. . To obtain it, K IC , E , PP , and Cw  are assumed as the average of 

the parameters in Table 6.4, the slippage constitutive law for hooked-end fibers (section 

3.3) is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), fiber 

distribution is uniform into the whole ligament, the other input data are defined as in 

Table 6.46. 

Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Notch depth a0 [cm] 2.5 

Dimensionless notch depth a0/h [-] 0.17 

Beam span S [cm] 50 

Beam length L [cm] 60 

Young’s modulus E [MPa] 56667 

Fracture toughness KIC [kg/cm1.5] 87 

Concrete compressive strength fcm [MPa] 25 

Fiber diameter df [cm] 0.075 

Fiber length lf [cm] 6 

Fiber tensile strength fu [MPa] 1100 

Fiber pull-out strength τu [MPa] 2.35 

Dimensionless fiber average embedded length  wC/ lf [-] 0.40 

Fiber volume ratio Vf [-] 0.40 

Table 6.46 Input data for minimum reinforcement condition. 
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 6.2.9 Barr et al. experimental work 

A round robin test programme was carried out by Barr et al. (2003) on the beam-

bending test recommended by the RILEM TC 162-TDF. Five testing laboratories were 

involved in the round robin testing programme, with Cardiff University lab as the task co-

ordinator. The laboratories are: Belgian Building Research, Institute Technical University 

of Derunark , Katholieke Universiteit Leuven, Ruhr-University of Bochum. Plain concrete 

and steel fiber reinfbrced concrete (SFRC) beams were included in the test programme. 

The material variables for the SFRC beams consisted of two Concrete Strengths (Normal in 

NSC and High in HSC), three fibre dosages (25 3/kg m , 50 3/kg m , and 75 3/kg m ) and 

three types of  fibers. A comprehensive statistical analysis was carried out to determine 

the applicability and robustness of the test method. 

The results of TPBT on NSC reinforced with two different dosages of hooked-end 

steel fiber (25 3/kg m  and 75 3/kg m ) are the object of the comparison with analytical 

response. In the following, the main variables of the experimental campaign, including the 

results, are summarized. 

 MATERIALS 

 

 Matrix 

The matrix was a Normal Strength Concrete (C25/30). The mix 

composition of cement: fine aggregate: coarse aggregate: water was equal to 1: 

2: 2.5: 0.56 by weight. Concrete compressive strength (fcm) equal to 35.3 Mpa. 

 Fiber 

Hooked end steel fibers were considered (Dramix 65/60 BN). Their 

mechanical and geometrical properties, and their volume ratio for each 

mixture, are reported in Tables 6.47 and 6.48 respectively. 
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Dramix  

65/60 BN 

Fiber diameter df [cm] 0.092 

Fiber length lf [cm] 6 

Fiber aspect ratio λ [-] 65 

Fiber tensile strength fu  [MPa] 1000 

Table 6.47 Fiber mechanical and geometrical properties. 

 

 
C25/30(25) C25/30(75) 

Fiber volume ratio V
f
 [%] 0.32 0.95 

Table 6.48 Fiber volume ratio for each mixture. 

 TEST SETUP 

The TPBT set-up used is illustrated in Figure 6.20 with some slight modifications 

from the RILEM recommendations. All tests were conducted under closed looped 

conditions. The measurements which were taken during testing were the load applied, 

mid-span displacements on both sides of the beam and the crack mouth opening 

displacement (CMOD). In the RILEM recommendations, it is stated that the tests should be 

conducted in a manner such that the average mid-span deflection increases at a constant 

rate of 0.2 mm/min. A slight modification was made with respect to this requirement. 

Instead of carrying out the tests under average mid-span deflection control, the tests were 

carried out under CMOD control. The actual notched specimen dimensions were 

15X15X60 cm, the beam span was  50cm (Figure 6.20).  
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Figure 6.20 Bending Test setup on FRC specimen. 

 RESULTS  

For each specimen, identified by beam ID, the experimental data (black curves) with 

the related numerical simulations (blue curves) are represented in Figure 6.21.  The best 

fit is obtained by varying the four parameters ( K IC , E , PP , and Cw ),  which are 

summarized in Table 6.49 along with the dimensionless quantities, NP and NW .  

ID K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

C25/30(25) 88 60000 0.139 0.28 0.30 2957 

C25/30(75) 104 70000 0.129 0.27 0.69 2815 

Table 6.49 Parameters obtained with best fitting procedure. 
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Figure 6.21 Experimental and numerical P   response. 

The tests conducted with the two fiber contents provide two typical response: with 

an insufficient amount of fiber the brittle failure of the specimen incurs, whereas the 

mixture more reinforced shows a strain-hardening post-cracking behaviour. The 

minimum reinforcement represent the fiber amount corresponding to the transition. Also 

in this case the high value of NW (related to the fiber length) guarantee a stable ductile 

response (for N NP PC , 2832N W ). 

In Figure 6.21 is also represented, in red, the analytical curve of estimated minimum 

reinforcement condition. . To obtain it, K IC , E , PP , and Cw  are assumed as the average of 

the parameters in Table 6.4, the slippage constitutive law for hooked-end fibers (section 

3.3) is adopted, the number of fibers modelling is the deterministic one (Eq. 2.1), fiber 

distribution is uniform into the whole ligament, the other input data are defined as in 

Table 6.50. 
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Beam thickness b [cm] 15 

Beam depth h [cm] 15 

Notch depth a0 [cm] 2.5 

Dimensionless notch depth a0/h [-] 0.17 

Beam span S [cm] 50 

Beam length L [cm] 60 

Young’s modulus E [MPa] 65000 

Fracture toughness KIC [kg/cm1.5] 96 

Concrete compressive strength fcm [MPa] 35.5 

Fiber diameter df [cm] 0.092 

Fiber length lf [cm] 6 

Fiber tensile strength fu [MPa] 1000 

Fiber pull-out strength τu [MPa] 2.86 

Dimensionless fiber average embedded length  wC/ lf [-] 0.27 

Fiber volume ratio Vf [-] 0.64 

Table 6.50 Input data for minimum reinforcement condition.
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Chapter 7  

SIZE EFFECTS IN FRC BEAMS 

 

 7.1 Introduction 

The flexural behaviour of different FRC specimens can vary with the specimen size. 

This phenomenon, known as size effect, was studied already for plain and ordinary 

reinforced concrete in the framework of Fracture Mechanics (Carpinteri, 1984; Bosco et 

al., 1990). In this work this analyse is  extended to the FRC response.  

Several other studies regarded the size effects in quasi-brittle materials, such as 

concrete. Particularly, the effects of the specimen size on tensile strength and fracture 

energy were widely investigated. These types of scale effects have been understood with a 

fractal geometry approach, which led to the definition of the Multifractal Scaling Law 

(MFSL) (Carpinteri et al., 1995). Regarding FRC composites, in the scientific literature 

there are experimental works, conducted on specimen with different specimen size, which 

confirm the scale effect on tensile or flexural strength and fracture energy (Fládr et al., 

2018; Aghdasi, 2015; Prebhakumari et al, 2013; Ferrara et al., 2001).  

This work, talking about size effect, it is referring to the global flexural behavior of 

the specimen, in terms of P   response. As seen in analytical simulations reported in 

Chapter 5, the Bridged Crack model is able to provide significant changes of the whole 

post-cracking behaviour, when the specimen depth increase. These changes can be predict 

through the dimensionless parameter NP and NW , since their opposite dependency on the 

beam depth. When the latter increases, NP  increases too, and the post-cracking behaviour 

in the stage II becomes more stable; on the other hand, an increase in the beam size, 

provides a decrease in NW , causing less stability in the third branch of the response. In 

conclusion, an increase of the beam depth involves a double brittle-to-ductile-to-brittle 

transition, as shown in Chapter 5 (Figure 5.8). 

In order to validate the model, three experimental campaigns, which involved 

specimen with different dimension, are analyzed and reproduced. All the experimental 

campaigns involve un-notched specimens; however, they are modelled with a small initial 
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crack, since the the bridged crack model requires an initiation to reproduce the crack 

propagation process. 

Also in this Chapter, as in previous, the procedure provides a best-fit of each 

experimental curve. The actual matrix properties related to the elastic range are 

estimated, i.e., Young’s modulus, E , and fracture toughness, K IC ; moreover, through the 

best-fit of the post-cracking ranges the pull-out force, PP , and fiber embedded length, wC  

are evaluated. The Bridged Crack model confirms again its capability to reproduce the 

three characteristic stage, also in case of size variation. 
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 7.2 Comparison with experimental data 

 7.2.1 Yoo et al. experimental work 

In the experimental study conducted by Yoo et al. (2016), the size effect on the 

flexural behavior of amorphous metallic fiber reinforced concrete (AM-FRC) was 

investigated. Following this purpose, several AM-FRC beams having three different sizes 

were fabricated with two different values of water-to-cementitious material ratio ( /w c ) 

and fiber volume fraction. In order to estimate the implication of fiber type on the size 

effect, steel fiber reinforced concrete (SFRC) having the same two different mixture 

proportion and 0.75% by volume of hooked-end steel fibers were also fabricated and 

tested.  

The results of FPBT on the SFRC specimen, with three different specimen size, are 

the focus of this section. 

 MATERIALS 

 

 Matrix 

The two different matrix were obtained by varying the /w c  ratio. 

Their components and mechanical properties are reported in Table 7.1.  

 W0.60 W0.45 

Portland cement  type I (c) [kg/m3] 350 467 

Water (w) [kg/m3] 210 210 

w/c [-] 0.60 0.45 

Superplasticizer  [%] 0-0.7% 0.3-1% 

Fine aggregate [kg/m3] 746 705 

Coarse aggregate  [kg/m3] 1030 973 

Concrete compressive strength (fcm) [MPa] 29.2 44.7 

 Table 7.1 Concrete composition and mechanical properties. 

 Fiber 

Steel hooked-end fibers were used (S). Their mechanical and 

geometrical properties are reported in Table 7.2. The fiber volume ratio is  

equal to 0.75%. 
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 S 

Fiber diameter df [cm] 0.05 

Fiber length lf [cm] 3 

Fiber aspect ratio λ [-] 60 

Fiber tensile strength fu  [MPa] 1195.5 

Table 7.2 Fiber mechanical and geometrical properties. 

   SPECIMEN GEOMETRY AND TEST SETUP 

In order to estimate the size effect on the flexural behavior, three different un-

notched specimen sizes were considered (Figure 7.1). However, as discussed, all the 

specimens are modelled with a small initial notch ( 0 0.05a h ).  

-small: 5X5X25 cm; 

-medium: 10X10X40 cm; 

 -large: 15X15X55. 

 

Figure 7.1 Different specimen size. 

A monotonically increasing load was applied using the UTM with a maximum load 

capacity of 3000 kN at a rate of 0.2 mm/min, and the load was measured by the load cell 

affixed to the cross head. In order to obtain true mid-span deflection excluding the beam 

settlement at the supports, two LVDTs were mounted in the middle of the beam height 
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using a steel frame. Details of the test setup are shown in Figure 7.2. The beam span is 

assumed as triple of beam depth. 

 

 Figure 7.2 Bending Test setup on FRC specimen. 

 

 RESULTS AND DISCUSSION 

For each specimen, identified by beam ID, the experimental data (black curves) with 

the related numerical simulations (blue curves) are represented in Figure 7.3 and 7.4, for 

mixture W0.60%-S0.75% and W0.45%-S0.75%, respectively.  The best fit is obtained by 

varying the four parameters ( K IC , E , PP , and Cw ),  which are summarized in Table 7.3 

and Table 7.4 (for each mixture) along with the dimensionless quantities, NP and NW . 

W0.60%-S0.75% K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

SMALL 57 22380 0.070 0.25 0.97 1317 

MEDIUM 56 22380 0.050 0.30 1.08 1137 

LARGE 29 12000 0.059 0.40 1.01 1282 

Table 7.3 Parameters obtained with best fitting procedure. 

In specimen with small and medium size, the matrix and fibers properties estimated 

are homogeneous. Indeed, it is recognizable an increase of  NP  and a decrease in  NW

values from small to medium specimen, which is consistent with the size effect predicted 

by the model. 



 Chapter 7.  SIZE EFFECTS IN FRC BEAMS 
 

111 
 

However, the matrix properties of the specimen with large size results significantly 

lower, causing the inability of the dimensionless parameters to describe this scale 

transition.  

 

Figure 7.3 Experimental and numerical P   response. 

The analytical curves describe globally the three stage of the experimental results, 

keeping the cracking load at the end of the elastic stage, the maximum load along the stage 

II, and the residual load at the end of the softening branch.  

W0.45%-S0.75% K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

SMALL 95 55000 0.090 0.15 0.87 1165 

MEDIUM 75 36000 0.077 0.19 1.33 865 

LARGE 33 20000 0.030 0.19 1.44 892 

Table 7.4 Parameters obtained with best fitting procedure. 

For the mixture with lower  /w c  ratio, thus with higher strength, the average 

fracture toughness and Young’s Modulus estimated are higher, as it is expected. However, 

the matrix properties estimate in large size specimen are again significantly lower. Also in 
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this case, the scale transition between small and medium specimen is correctly described 

by the variation in NP  and NW values. 

 

Figure 7.4 Experimental and numerical P   response. 

The analytical curves follow the experimental ones in their three characteristic 

stages, keeping the cracking load at the end of the elastic stage, the maximum load along 

the stage II, and the residual load at the end of the softening branch.  
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 7.2.2 Paschalis et al. experimental work 

The experimental campaign conducted by Paschalis et al. (2015), at University of 

Brighton, in United Kingdom, was focused on the scale effects on Ultra High Performance 

Fiber Reinforced Concrete (UHPFRC), characterized by enhanced homogeneity and high 

density. Following this purpose, Four Point Bending Test were carried out on un-notched 

specimen with four different depths: 2.5 cm, 5 cm, 7.5 cm, and 10 cm.  

 MATERIALS 

 

 Matrix 

The UHPFRC matrix components are reported in Table 7.5.  

Portland cement  52.5 N (c) [kg/m3] 657 

Water (w) [kg/m3] 185 

w/c [-] 0.28 

Superplasticizer  [kg/m3] 59 

GGBS [kg/m3] 418 

Silica fume [kg/m3] 119 

Silica sand  [kg/m3] 1051 

 Table 7.5 Concrete composition and mechanical properties. 

 Fiber 

Steel straight fibers were used (S). Their geometrical properties are 

reported in Table 7.6. The fiber volume ratio is  equal to 3%. 

 S 

Fiber diameter df [cm] 0.016 

Fiber length lf [cm] 1.3 

Fiber aspect ratio λ [-] 81 

Table 7.6 Fiber geometrical properties. 
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    SPECIMEN GEOMETRY AND TEST SETUP 

In order to estimate the size effect on the flexural behavior, four different un-

notched specimen sizes were considered (Figure 7.5). However, as discussed, all the 

specimens are modelled with a small initial notch ( 0 0.05a h ).  

 

Figure 7.5 Bending Test setup on FRC specimen. 

The tests were conducted under four point loading, with a span length of 30 cm and 

distance between the two loading points of 10 cm. Two LVDTs were used to record the 

deflection of the beams in both sides and the tests were conducted using a displacement 

control of 0.001 mm/s. An external joke was used in order to exclude any additional 

displacement at the support. The testing setup is shown in Figure 7.6.  

 

Figure 7.6 Bending Test setup on FRC specimen. 
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 RESULTS AND DISCUSSION 

For each curve, identified by beam ID, the best fitting procedure provides the four 

parameters ( K IC , E , PP , and Cw ) required to define the analytical response curve, and 

the NP and NW values are evaluated (Table 7.7). The Figure 7.7 shows each experimental 

curve with corresponding analytical simulation.   

 K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

10X2.5X50 cm 84 23000 0.010 0.30 4.05 675 

10X5X50 cm 132 23000 0.010 0.30 3.65 304 

10X7.5X50 cm 125 58000  0.007 0.30 3.39 661 

10X10X50 cm 137 30000 0.008 0.35 3.68 315 

Table 7.3 Parameters obtained with best fitting procedure. 

The estimate of the matrix properties do not allows to appreciate all the scale 

transitions through the dimensionless parameter, in this case.   

 

Figure 7.7 Experimental and numerical P   response. 

In this experimental work the scale effect are recognizable graphically. By increasing 

the specimen depth, the load capacity increases, but the response becomes less stable, as 

predicted by the Bridged Crack model. The analytical curves follow the numerical ones in 

the three characteristic regimes of the response.  
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 7.2.3 Jones et al. experimental work 

The research project of Jones et al. (2008) was conducted to investigate the 

reinforcing mechanisms and fracture processes associated with SFRC under flexural load, 

in order to develop an alternative stress-profile model to predict flexural behaviour in the 

form of a load–deflection response using strain, crack-width and fibre pull-out data as the 

principal modelling parameters. An experimental investigation was undertaken, using a 

typical wet process steel fibre reinforced sprayed concrete mix design, to obtain the 

necessary data to implement and verify the model.  

Un-notched specimens with three different depths were made with high strength 

concrete and two different amount of hooked-end steel fibers. 

  MATERIALS 

 

 Matrix 

 The base concrete mix had a water:cementitious:aggregate ratio of 0.45:1.0:2.8, and 

contained silica fume replacement at 10% by weight of cement. The cement was Class 

42.5N Portland Cement (PC), the condensed silica fume was a 50% water based slurry, the 

aggregate was a 6 mm maximum sized uncrushed river gravel. The concrete developed a 

28-day compressive strength of 72 MPa. 

 Fiber 

Hooked end steel fibers were added. Their mechanical and 

geometrical properties, and their volume ratio for each mixture, are 

reported in Tables 7.4 and 7.5 respectively. 

Fiber diameter df [cm] 0.05 

Fiber length lf [cm] 3 

Fiber aspect ratio λ [-] 60 

Fiber tensile strength fu  [MPa] 1100 

Table 7.4 Fiber mechanical and geometrical properties. 

 
C(40) C(80) 

Fiber volume ratio V
f
 [%] 0.5 1 

Table 7.5 Fiber volume ratio for each mixture. 
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 SPECIMEN GEOMETRY AND TEST SETUP 

Three different beam depths are considered. The specimens are un-notched. 

However, as discussed, all the specimens are modelled with a small initial notch (

0 0.05a h ).  

-SMALL: 10X5X50 cm 

-MEDIUM: 10X7.5X50 cm; 

-LARGE: 10X10X50 cm. 

 

Figure 7.8 Different specimen size. 

A monotonically increasing load was applied using the UTM with a maximum load 

capacity of 3000 kN at a rate of 0.2 mm/min, and the load was measured by the load cell 

affixed to the cross head. In order to obtain true mid-span deflection excluding the beam 

settlement at the supports, two LVDTs were mounted in the middle of the beam height 

using a steel frame. Details of the test setup are shown in Figure 7.9. The beam span is 

assumed as triple of beam depth. 
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Figure 7.9 Bending Test setup on FRC specimen. 

 RESULTS AND DISCUSSION 

For each curve, identified by beam ID, the best fitting procedure provides the four 

parameters ( K IC , E , PP , and Cw ) required to define the analytical response curve, and 

the NP and NW values are evaluated (Table 7.6 and Table 7.7 for mixture C(40) and C(80), 

respectively). The Figures 7.10 and 7.11 show each experimental curve with 

corresponding analytical simulation, for the two different mixture.   
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C(40) K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

SMALL 39 25000 0.053 0.38 0.77 3268 

MEDIUM 61 28000 0.065 0.30 0.75 1508 

LARGE 65 30000 0.070 0.30 0.86 1314 

Table 7.6 Parameters obtained with best fitting procedure. 

 The matrix toughness and Young’s Modulus are coherently estimated in medium 

and large specimens; indeed, it is recognizable an increase of  NP  and a decrease in  NW

values from medium to large specimen, that is coherent with the scale variation. However, 

in this case the smallest beam show a lower matrix performances.   

 

Figure 7.10 Experimental and numerical P   response. 
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C(80) K
IC

 E P
P
 w

C
/l

f
 N

P
 N

W
 

  [kg/cm1.5] [MPa] [kN] [-] [-] [-] 

SMALL 51 22000 0.058 0.20 1.29 1852 

MEDIUM 64 34000 0.057 0.33 1.24 1920 

LARGE 71 25000 0.066 0.20 1.51 668 

Table 7.7 Parameters obtained with best fitting procedure. 

The estimate of the matrix properties do not allows to appreciate all the scale 

transitions through the dimensionless parameter, in this mixture.   

 

 

Figure 7.11 Experimental and numerical P   response. 

Also in this last case, scale effects can be appreciate graphically. By increasing the 

beam depth, the flexural response becomes less stable, softening branch becomes indeed 

more influent in post-peak behaviour. The analytical curves follow the numerical ones in 

the three regimes of the response. 
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