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I 
 

Abstract 
 

The aim of this thesis is to analyze the behavior of suspension bridges under wind loads. In particular, the 

George Washington bridge has been chosen as a case study, in both original and latest stiffened versions 

respectively of 1931 and 1962. The goal is to determine the critical wind velocity that leads the bridge to 

the well-known phenomenon of flutter instability adopting a commercial finite element software and to 

find a simplified approach for the estimation of the motion-related wind loads. The research is also 

focused on the study of the computational fluid dynamic models aimed at determining the aerodynamic 

parameters on which the approach mentioned before is based. 

The work is divided in two parts, a first part containing the theoretical and bibliographical background on 

which the calculations carried out in the second part are based. 

The first part begins with considerations regarding the description of wind effects on suspension bridges, 

some analytical approaches and descriptions of the phenomenon of flutter instability are presented, with 

an in-depth reference to the method used by the software adopted. A chapter was subsequently 

dedicated to the description of the load acting on an oscillating body in a uniform airflow by different 

authors. The strong duality between time-domain and frequency-domain representations is focused with 

the aim of reporting a relationship between flutter derivatives, Theodorsen functions and aerodynamic 

static coefficients. The final chapter of the first part is dedicated to a brief introduction to the 

computational fluid dynamic followed by some examples of application to bridge decks. 

The second part starts with an application of the formulas developed in the first part for the calculation 

of flutter derivatives; the Great Belt and the Akashi Kaykio bridges were chosen as case studies. In the 

next chapter, several CFD analysis with ANSYS FLUENT have been carried out with the aim of obtaining 

the aerodynamic static coefficients of the bridges mentioned before. The results were compared with the 

data found in the literature and then the same parameters of George Washington Bridge have been 

calculated with the same approach. Thereafter considerations were made about numerical modelling of 

suspension bridges in ANSYS APDL. Some bridges have been modeled in order to make a comparison 

between the results obtained and the literature data. In the end a flutter analysis of the two versions of 

George Washington bridge have been carried out and it was possible to draw conclusions on the influence 

of the lower deck on the aerodynamic performance of the bridge. 
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1. INTRODUCTION 
 

The longest span bridges in the world are currently the suspension bridges, this type of construction 

provides that the traffic-carrying deck is supported by a series of wire ropes that hang from massive cables 

draped between tall towers. 

Earliest versions of suspension bridges were built by Tangtong Gyalpo, Tibetan saint and bridge builder 

from the 15th century. He built over 58 iron chain suspension bridges and one of these survived until 2004 

when it was destroyed by a flood. Nonetheless the first iron chain suspension bridge in United States was 

designed by James Finley and made at Jacob’s Creek in Westmoreland County, Pennsylvania in 1801. This 

bridge, as illustrated in Figure 1.1 [1], was the first to have all the necessary components of a modern 

suspension bridge.  

 

 

Figure 1.1: Suspension bridge at Jacob's Creek in Westmoreland County [1] 

 

Between the 19th and the 20th centuries the historical developments of long span suspension bridges, as 

the main engineering advances, show an endless conflict between economy and structural performances. 

The use of the deflection theory allowed very slender deck for static load and shifted the design trend at 

that time from rigid truss to slender edge girder, this evolution ended brutally with the Tacoma Narrows 

Bridge disaster on November 7, 1940. Early in the morning, under a recorded wind speed of 18.8 m/s the 

bridge developed vertical wave motions of a character previously experienced. Then, shortly after 10:00 

am, the motion changed: the main span started to vibrate with the two cables out of phase and the motion 

resulted in a twisting of the roadway, the tilting of the deck amounted to more than 30 degrees each way 

from the horizontal. As a result of this movement the main began to break up before 11:00 am (Figure 

1.2) [2].  

The failure of the Tacoma Narrows bridge is the starting point of all the studies on bridge aero-elasticity. 
From then on, every design of a flexible structure must assure that the structure is stable under the 
dynamic effects of the wind loads. In fact, wind stability has become a governing criteria in the design of 
long span suspension bridges. 
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Figure 1.2: Tacoma Narrows collapse [3]. 

 

It is important to note that the phenomenon of flutter instability was observed and studied long before 

the collapse of Tacoma Narrows, it was a well-known concept in aeronautical field. The first recorded and 

documented case of flutter in an aircraft was that which occurred to a Handley Page O/400 bomber during 

a flight in 1916, it suffered a violent oscillation which caused extreme distortion of the rear fuselage and 
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the elevators to move asymmetrically. Since than considering flutter characteristic is an essential part of 

designing an aircraft.  

 

 

Figure 1.3: Motion for an Airfoil Exhibiting Flutter [4]. 

 

Several studies have been carried out with the aim of prevent this aero-elastic phenomenon, both in 

aeronautical and civil engineering field, and sometimes these studies have been compared each other 

leading to some interesting solutions. 
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1.1. George Washington Bridge 
 

The George Washington Bridge is a suspension bridge spanning the Hudson River, it has been opened to 

the traffic in 1931. The bridge is made by still, has a total length of 1450 meters and a longest span of 

1067m. Initially it was composed only by the upper level (Figure 1.4), the lower deck was constructed from 

1958 to 1962 because of increasing traffic flow (Figure 1.5).  

 

 

Figure 1.4: George Washington bridge, single deck [5]. 

 

The George Washington Bridge has been chosen as a case study because of its historical relevance, it had 

the longest main bridge span in the world at the time of its opening and held that distinction until 1937, 

when the Golden Gate Bridge was built. No studies have been found in literature regarding the 

aerodynamic performance of the Bridge, probably because the deck had no particular slenderness and 

had not the main characteristic that use to cause the flutter instability. As calculated in the final section 

of this thesis, the motion related load are not a big issue for the George Washington Bridge. The chose 

was motivated also by the peculiarity of the bridge to have two decks. In fact, many researches have been 

done to study the aerodynamic performances of several trusses typology but not one for a double decked 
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bridge. It has been interesting to compare the results obtained for the two different version. From a 

mechanical point of view, the double decked version is of course more rigid. But is not immediate to assert 

the same for its aerodynamic behavior, in fact the aerodynamic static coefficients are smaller in the single 

decked version, so the forces induced by the wind are higher in the double decked one. Finally, the critical 

wind speed that induce the phenomenon of flutter, will depend on the complex interaction between the 

mechanical stiffness and the aerodynamic performance. 

 

 

Figure 1.5: George Washington Bridge, double deck [6]. 
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2. MOTION RELATED WIND LOADS 
 

The problem of evaluating the loads acting on a moving body immersed in a low-speed flow is of great 

importance in many applications, ranging from aeronautics to mechanical and civil engineering. The case 

of the airfoil moving inside an inviscid flow was solved by Wagner [7] in 1925 and Theodorsen [8] in 1935 

with different approaches, but under the same assumption of a zero-thick profile namely “thin airfoil” 

approached by the flow with a small angle of attack. The time-domain formulation based on the Wagner 

indicial functions and the mixed time-frequency formulation developed by Theodorsen were reorganized 

and further developed by many authors, reveling the main theoretical background needed to explain 

some complex fluid-structure interaction problem, such as the flutter instability. 

Neverthless, when unstreamlined body as typical bridge decks are considered, possible large flow 

separation, reattachment, recirculation zones and vortex shedding can occur, inducing significant 

unsteady effects and preventing to identify a thin and well defined boundary layer. Accordingly, the thin 

airfoil theory should not be used directly to predict the behavior of the so called “bluff bodies”.  

In order to overcome this problem several theoretical and computational approaches have been 

developed, based on both frequency-domain and time-domain description. In bridge aerodynamics 

context, motion-induced loads are described by distinguishing in-phase and out-of-phase components 

with respect to the time evolution of the motion, instead of the distinction between circulatory and non-

circulatory effects as for the thin airfoil [9]. Regarding frequency-domain approaches, Scanlan successfully 

exported some features of the Theodorsen results, describing the wind loads induced by sectional 

harmonic motions by means of a linearized format based on experimentally evaluated parameters namely 

“flutter derivatives”, that supplied the lack of closed- form analytical formulations. 

For the synthesis of the concepts, the scheme adopted in [10] [11] has been followed. The first part of this 

chapter the problem of evaluating the loads acting on a moving body immersed in a low-speed flow is 

defined and the main results of the airfoil theory are recalled together with the main strategies currently 

used to extend their applicability to bluff bodies. In the last part a unified time-domain description is 

introduced and the analytical relationships between time and frequency-domain quantities are deducted. 

The aim is to introduce the simplified approach adopted in the following chapters for the calculation of 

flutter derivatives, and to clarify the nature of the simplifications on which it is based. 
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2.1. Problem setting and background 

 

Consider a rigid cylindrical body with an infinite span length and an elongated cross section immersed in 

a low-speed wind flow orthogonal to the body axis. Denote with B the chord dimension, 𝜌 the air density, 

and with U the mean wind velocity of the approaching flow. As shown in Figure 2.1 the body has three 

degrees of freedom in the cross sectional plane corresponding to horizontal (𝑝𝑑), vertical (ℎ𝑑) and angular 

(𝛼) displacements. Rotation is assumed to be about a chord point distant aB/2 from the midpoint of the 

chord. Moreover the angle of incidence �̂� between the wind direction and the cross-section chord defines 

the reference configuration of the body. 

 

 

Figure 2.1: Sectional model [10]. 

 

The flow is assumed to be perfectly correlated along the span length and possible turbulence in the 

approaching flow is considered to be uncoupled in frequency with the turbulence initiated by the body 

itself. Accordingly, flow distribution can be regarded as two-dimensional in the sectional plane and the 

induced pressure distribution on the body can be reduced to the generalized force components illustrated 

in Figure 2.1: 

 

 
𝐷𝑟𝑎𝑔:𝐷 =

1

2
𝜌𝑈2𝐵𝐶𝑑 

(2.1.1) 

 
 

𝐿𝑖𝑓𝑡: 𝐿 =
1

2
𝜌𝑈2𝐵𝐶𝑙 

(2.1.2) 

 
𝑃𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡:𝑀 =

1

2
𝜌𝑈2𝐵2𝐶𝑚 

(2.1.3) 

 

Where 𝐶𝑑, 𝐶𝑙 and 𝐶𝑚 are the dimensionless force coefficients. 
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2.2. Thin airfoil 

 

The thin airfoil is defined as a rigid flat plate with vanishing thickness, the problem related to the 

characterization of the aerodynamic forces acting on it while is supposed harmonically oscillating in a two-

dimensional, incompressible and perfectly inviscid approaching flow, was solved by Theodorsen [8]. He 

defined the self-exited forces as the superposition of circulatory and non-circulatory contributions, the 

first depending on the frequency oscillations and accounting for flow unsteady effects and the second 

independent by frequency oscillations and including inertial effects due to the moved fluid mass. In 

dimensionless form they result in: 

 

 
𝐶𝑙

𝑛𝑐(𝑠) =
𝐶𝑙,𝛼

4
(𝛼′ + ℎ′′ −

𝑎

2
𝛼′′) 

 

(2.2.1) 

 
 

𝐶𝑚
𝑛𝑐(𝑠) = −

𝐶𝑚,𝛼

2 (
1
2 + 𝑎)

[
1

2
(
1

2
− 𝑎)𝛼′ +

1

4
(
1

8
+ 𝑎2) 𝛼′′ −

𝑎

2
ℎ′′] 

 

(2.2.2) 

 
𝐶𝑙

𝑐(𝑘, 𝑠) = 𝐶𝑙,𝛼�̃�(𝑘) [𝛼 + ℎ′ +
1

2
(
1

2
− 𝑎)𝛼′] 

 

(2.2.3) 

 
𝐶𝑚

𝑐 (𝑘, 𝑠) = 𝐶𝑚,𝛼�̃�(𝑘) [𝛼 + ℎ′ +
1

2
(
1

2
− 𝑎)𝛼′] 

 

(2.2.4) 

   

Where 𝑠 =
𝑈𝑡

𝐵
 is the dimensionless time, 𝑘 =

𝐵𝜔

𝑈
 is the reduced frequency, 𝐶𝑗,𝛼 =

𝜕𝐶𝑗

𝜕𝛼
 and f’ denotes the 

first derivative of f with respect to s. The frequency-dependent function C(k) is the Theodorsen’s complex 

circulatory function defined by Hankel functions of the second kind [12] and it can be expressed by 

composing real and imaginary part as �̃�(𝑘) = �̃�(𝑘) + 𝑖�̃�(𝑘), Figure 2.2 shows the variation of �̃� and �̃� 

under the reduced frequency. 

 

Figure 2.2: Real and Imaginary part of Theodorsen Function [11]. 
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It must be noticed that circulatory contributions to lift and moment expressed in (2.2.4) and (2.2.3) are 

function of both time and frequency, so the approach proposed by Theodorsen could be considered in a 

mixed time-frequency domain.  

By a different approach, Wagner [7] solved the problem of an abrupt change of the angle of attack from 

�̂� = 0. He described the evolution of the lift force up to its static value by introducing an indicial lift-

growth function 𝜙(𝑠) variating from 0.5 in initial step to 1 for s tending to infinity. 

Introducing the downwash dimensionless velocity at the rear neutral point (the three-quarter chord 

point), on which the expressions (2.2.4) and (2.2.3) are based as: 

 

𝑤3/4(𝑠) = 𝛼 + ℎ′ +
1

2
(
1

2
− 𝑎)𝛼′ 

(2.2.5) 

 

Due to the simplification at the basis of the thin airfoil theory, lift and moment induced by an arbitrary 

motion that involves also the vertical displacement h can be expressed both in function of the downwash 

function and the Wagner’s indicial function. Invoking the superposition principle and assuming the airfoil 

moving from the rest at 𝑠 = 0, circulatory terms in the time-domain can be expressed by the following 

Duhamel’s convolution integrals [13]: 

 

𝐶𝑙
𝑐(𝑠) = 𝐶𝑙,𝛼 ∫ 𝜙(𝑠 − 𝜎)𝑤3/4(𝜎)𝑑𝜎

𝑠

−∞

= 𝐶𝑙,𝛼 [𝜙(0)𝑤3/4(𝑠) + ∫ 𝜙′(𝜎)𝑤3/4(𝑠 − 𝜎)𝑑𝜎
𝑠

0

] 

 

 
(2.2.6) 

 

𝐶𝑚
𝑐 (𝑠) = 𝐶𝑚,𝛼 ∫ 𝜙(𝑠 − 𝜎)𝑤3/4(𝜎)𝑑𝜎

𝑠

−∞

= −
1

2
(
1

2
+ 𝑎) 𝐶𝑙

𝑐(𝑠) 

 

(2.2.7) 

 

Where 𝜙(𝑠) is assumed to be 0 for 𝑠 < 0. 

By imposing a Fourier synthesis, a stronger duality was proven by Garrick [14] between time-domain and 

frequency-domain descriptions, resulting in the following relationships among the Theodorsen’s function 

�̃�(k) and the Wagner’s function 𝜙(𝑠): 

 

𝜙(𝑠) =
1

2𝜋𝑖
∫

�̃�(𝑘)

𝑘
𝑒𝑖𝑘𝑠𝑑𝑘 

∞

−∞

 
(2.2.8) 

 

�̃�(𝑘) = 𝑖𝑘 ∫ 𝜙(𝜎)𝑒−𝑖𝑘𝜎𝑑𝜎 
∞

0

 
(2.2.9) 
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2.3. Bridge deck sections 

 

The bridge deck sections present some differences with respect to the thin airfoil, for instances possible 

large flow separation, reattachment, recirculation zones and vortex shedding can occur, inducing 

significant unsteady effects and preventing to identify a thin and well defined boundary layer. 

In order to overcome this problem several theoretical and computational approaches have been 

developed, based on both frequency-domain and time-domain description. In bridge aerodynamics 

context, motion-induced loads are described by distinguishing in-phase and out-of-phase components 

with respect to the time evolution of the motion, instead of the distinction between circulatory and non-

circulatory effects as for the thin airfoil [9]. Regarding frequency-domain approaches, Scanlan successfully 

exported some features of the Theodorsen results, describing the wind loads induced by sectional 

harmonic motions by means of a linearized format based on experimentally evaluated parameters namely 

“flutter derivatives”, that supplied the lack of closed- form analytical formulations. 

Time-domain approaches have not been developed as much as frequency-domain models, generally they 

are based on the definition of more indicial Wagner-like functions, but there are many difficulties due to 

the direct experimental evaluation of the response to an abrupt change of motion. Some attempts have 

been made by Scanlan and coworkers [15] [16] to combine Fourier synthesis and rational approximation 

techniques for analytically extracting the indicial functions from the experimentally derived flutter 

derivatives. Anyway the experimentally derivation of flutter derivatives implicitly contains the non-

circulatory contributions to the motion, so tightly they cannot be considered consistent with the Wagner 

theory that formally takes in to account the circulatory effects only. 

The importance of pseudo non-circulatory contribution to the motion-related wind loads have been 

widely discussed, it can be considered problem dependent. For instances, it can be considered of 

secondary importance for a truss deck with whit large opening and grates [10]. 

 

2.3.1.  Frequency-domain  

 

In the context of the bridge aerodynamics, Scanlan [17] found an expression for lift and moment induced 

by small-amplitude harmonic motions linearly depending from the displacement parameters of the deck, 

in dimensionless form they can be expressed as: 

 

 𝐶𝑙(𝑠, 𝑘) = 𝐶�̂� + 𝑘𝐻1
∗ℎ′ + 𝑘𝐻2

∗𝛼′ + 𝑘2𝐻3
∗𝛼 + 𝑘2𝐻4

∗ℎ (2.3.1) 
  

𝐶𝑚(𝑠, 𝑘) = 𝐶�̂� + 𝑘𝐴1
∗ℎ′ + 𝑘𝐴2

∗𝛼′ + 𝑘2𝐴3
∗𝛼 + 𝑘2𝐴4

∗ℎ 

 
(2.3.2) 

   
 

Where 𝐶�̂� and 𝐶�̂� are the mean generalized dimensionless forces associated with �̂� defined in (2.1.1) and 

(2.1.2), and 𝐻𝑖
∗, 𝐴𝑖

∗ (𝑖 = 1…4) are the flutter derivatives function of the reduced frequency k and the 
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mean angle of attack �̂�. They naturally depend also on the section shape and actually the most reliable 

way to find it is to test scaled models in wind tunnel. 

Considering an harmonic rotation 𝛼(𝑠) = 𝛼0𝑒
𝑖𝑘𝑠 about �̂�, the dimensionless forces result in: 

 

𝐶𝑙(𝑠, 𝑘) − 𝐶�̂� = 𝑘2(𝑖𝐻2
∗ + 𝐻3

∗)𝛼0𝑒
𝑖𝑘𝑠 = 𝐻𝑙𝛼(𝑘)𝛼(𝑠) (2.3.3) 

 

𝐶𝑚(𝑠, 𝑘) − 𝐶�̂� = 𝑘2(𝑖𝐴2
∗ + 𝐴3

∗ )𝛼0𝑒
𝑖𝑘𝑠 = 𝐻𝑚𝛼(𝑘)𝛼(𝑠) 

 
(2.3.4) 

  
 

Where the square modulus of the complex functions 𝐻𝑙𝛼 and 𝐻𝑚𝛼 represent an aerodynamic frequency-

response functions. Moreover, it is possible to express the forces themselves as harmonic in time with the 

reduced frequency k as 𝐶𝑗(𝑠, 𝑘) − 𝐶�̂� = 𝐶𝑗𝑒
𝑖𝜓𝑗  (𝑗 = 𝑙,𝑚)  being 𝐶𝑗 the amplitude and 𝜓𝑗 the phase shift 

with respect to the motion. Hence the previously equations became: 

 

𝐶𝑙𝑒
𝑖𝜓𝑙

𝛼0
= 𝐻𝑙𝛼(𝑘) 

(2.3.5) 

 

𝐶𝑚𝑒𝑖𝜓𝑚

𝛼0
= 𝐻𝑚𝛼(𝑘) 

 
(2.3.6) 

 

It is possible to obtain similar expressions involving the frequency-response functions 𝐻𝑗ℎ(𝑘) by 

considering harmonic vertical motions ℎ(𝑠) = ℎ0𝑒
𝑖𝑘𝑠. 

These formulations are fundamental to extract the flutter derivatives defining the Scanlan frequency-

domain description with the forced vibration method [11]. 

 

2.3.2. Time-domain 

 

The time domain approach developed by Wagner for the motion-induced load acting on the thin airfoil 

does not contain a description of the non-circulatory effects that should not be neglected in the analysis 

of mid-bluff body as bridge deck sections. A consistent time domain description it has been made 

considering the superposition of both circulatory and non-circulatory effects in the definition of the 

dimensionless aerodynamic loads [10]. It must be noticed that the distinction between the two effects 

cannot be rigorously made for the generic bridge deck sections, in the case of geometry with a moderate 

bluff aerodynamic response, a distinction can be postulated in terms of measurable effects between 

contributions depending or not on the motion history. 

In the context of a time-domain description, non-circulatory loads are assumed linearly depending on the 

first and the second time derivatives of the displacement parameters: 
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𝐶𝑗
𝑛𝑐(𝑠) = 𝐶𝑗𝛼[𝐼𝑗𝛼1𝛼

′ + 𝐼𝑗𝛼2𝛼
′′ + 𝐼𝑗ℎ1ℎ

′ + 𝐼𝑗ℎ2ℎ′′] (2.3.7) 

 

Where the eight dimensionless quantities 𝐼𝑗𝑔𝑖 ( 𝑗 = 𝑙,𝑚 ; 𝑔 = 𝛼, ℎ ; 𝑖 = 1,2 ) are model parameters and 

𝐶𝑗,𝛼 =
𝜕𝐶𝑗

𝜕𝛼
 as introduced previously. 

The circulatory contributions are calculated by combining via convolution two indicial functions for each 

generalized force with downwash terms. The downwash terms are assumed to be different for each force 

and for each displacement component. Accordingly, circulatory terms are expressed as: 

 

𝐶𝑗
𝑐(𝑠) = 𝐶𝑗𝛼 ∫ [𝜙𝑗𝛼(𝑠 − 𝜎)𝑤𝑗𝛼(𝜎) + 𝜙𝑗ℎ(𝑠 − 𝜎)𝑤𝑗ℎ(𝜎)]𝑑𝜎

𝑠

−∞

 
(2.3.8) 

 

Where the downwash functions are: 

 

𝑤𝑗𝛼(𝑠) = 𝐷𝑗𝛼0𝛼(𝑠) + 𝐷𝑗𝛼1𝛼′(𝑠) (2.3.9) 

 

𝑤𝑗ℎ(𝑠) = 𝐷𝑗ℎ0ℎ(𝑠) + 𝐷𝑗ℎ1ℎ′(𝑠) (2.3.10) 

 

The eight dimensionless quantities 𝐷𝑗𝑔𝑖 ( 𝑗 = 𝑙,𝑚 ; 𝑔 = 𝛼, ℎ ; 𝑖 = 0,1 )  are model parameters and 𝜙𝑗𝑔(𝑠) 

are proper Wagner-like indicial functions describing the transient aerodynamic response when a step-

wise change in the downwash function 𝑤𝑗𝑔(𝑠) from zero to the final value �̂�𝑗𝑔 occurs at 𝑠 = 0. 

 

2.3.3. Time-frequency duality  

 

As seen previously for the thin airfoil, the Fourier transformation allows to find analytical relationship 

between time-domain and frequency-domain descriptions. By equating the Fourier transformations of 

self-exited loads defined by Scanlan in (2.3.1) and (2.3.2) to the time-domain equations (2.3.7) and (2.3.8), 

the following complex relationships hold: 

 

𝐶𝑗𝛼[𝑖𝑘𝐼𝑗𝑔1 − 𝑘2𝐼𝑗𝑔2 + �̃�𝑗𝑔(𝑘)(𝐷𝑗𝑔0 + 𝑖𝑘𝐷𝑗𝑔1)] = 𝐻𝑗𝑔(𝑘)       

 

(2.3.11) 

 

Where 𝑗 = 𝑙,𝑚 and 𝑔 = 𝛼, ℎ, the frequency-response functions are defined as in (2.3.3) and (2.3.4), and 

�̃�𝑗𝑔 are the four Theodorsen-like functions: 
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�̃�𝑗𝑔(𝑘) = �̃�𝑗𝑔(𝑘) + 𝑖�̃�𝑗𝑔(𝑘) = 𝑖𝑘 ∫ 𝜙𝑗𝑔(𝜎)𝑒−𝑖𝑘𝜎𝑑𝜎
∞

0

= 𝜙𝑗𝑔
0 + �̅�𝑗𝑔(𝑘)      

 
(2.3.12) 

 

So that: 

 

𝜙𝑗𝑔(𝑠) =
1

2𝜋𝑖
∫

�̃�𝑗𝑔(𝑘)

𝑘
𝑒𝑖𝑘𝑠𝑑𝑘

∞

−∞

=
2

𝜋
∫

�̃�𝑗𝑔(𝑘)

𝑘
sin(𝑘𝑠) 𝑑𝑘

∞

0

      
 

(2.3.13) 

 

Where  𝜙𝑗𝑔
0 = 𝜙𝑗𝑔(0) and the frequency dependent quantity 𝑓̅(𝑘) = ∫ 𝑓(𝑠)𝑒−𝑖𝑘𝑠𝑑𝑠

∞

−∞
 denotes the 

Fourier transform of the time-dependent function f(s). Collecting real and imaginary contributions in 

equation (2.4.1) the following frequency-based equations are obtained: 

 

𝑘2𝐻1
∗(𝑘) = 𝐶𝑙,𝛼[𝑘𝐼𝑙ℎ1 + �̃�𝑙ℎ(𝑘)𝐷𝑙ℎ0 + 𝑘�̃�𝑙ℎ(𝑘)𝐷𝑙ℎ1] (2.3.14) 

 

𝑘2𝐻2
∗(𝑘) = 𝐶𝑙,𝛼[𝑘𝐼𝑙𝛼1 + �̃�𝑙𝛼(𝑘)𝐷𝑙𝛼0 + 𝑘�̃�𝑙𝛼(𝑘)𝐷𝑙𝛼1] (2.3.15) 

 

𝑘2𝐻3
∗(𝑘) = 𝐶𝑙,𝛼[−𝑘2𝐼𝑙𝛼2 + �̃�𝑙𝛼(𝑘)𝐷𝑙𝛼0 − 𝑘�̃�𝑙𝛼(𝑘)𝐷𝑙𝛼1] (2.3.16) 

 

𝑘2𝐻4
∗(𝑘) = 𝐶𝑙,𝛼[−𝑘2𝐼𝑙ℎ2 + �̃�𝑙ℎ(𝑘)𝐷𝑙ℎ0 − 𝑘�̃�𝑙ℎ(𝑘)𝐷𝑙ℎ1] (2.3.17) 

 

𝑘2𝐴1
∗(𝑘) = 𝐶𝑚,𝛼[𝑘𝐼𝑚ℎ1 + �̃�𝑚ℎ(𝑘)𝐷𝑚ℎ0 + 𝑘�̃�𝑚ℎ(𝑘)𝐷𝑚ℎ1] (2.3.18) 

 

𝑘2𝐴2
∗ (𝑘) = 𝐶𝑚,𝛼[𝑘𝐼𝑚𝛼1 + �̃�𝑚𝛼(𝑘)𝐷𝑚𝛼0 + 𝑘�̃�𝑚𝛼(𝑘)𝐷𝑚𝛼1] (2.3.19) 

 

𝑘2𝐴3
∗ (𝑘) = 𝐶𝑚,𝛼[−𝑘2𝐼𝑚𝛼2 + �̃�𝑚𝛼(𝑘)𝐷𝑚𝛼0 − 𝑘�̃�𝑚𝛼(𝑘)𝐷𝑚𝛼1] (2.3.20) 

 

𝑘2𝐴4
∗ (𝑘) = 𝐶𝑚,𝛼[−𝑘2𝐼𝑚ℎ2 + �̃�𝑚ℎ(𝑘)𝐷𝑚ℎ0 − 𝑘�̃�𝑚ℎ(𝑘)𝐷𝑚ℎ1] (2.3.21) 

 
 

These equations represent a closed-form relationship between flutter derivatives and Theodorsen-like 

circulatory functions.  
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2.4. A simplified approach for flutter derivatives 

 

The direct application of equations (2.3.14) - (2.3.21) for calculating the flutter derivatives of bridge decks 

is not easy to be made, the relationships are function of the sixteen parameters introduced that should 

be estimated via experimental or difficult numerical approaches. In this section a simplified approach is 

proposed, it is based on the theoretical estimation of the sixteen parameters previously introduced for 

the thin airfoil; the flutter derivatives will be expressed as functions of real and imaginary component of 

the Theodorsen function, and of the aerodynamic pressure coefficient of a generic bridge deck. In the 

case of the thin airfoil and considering �̂� = 0 the four indicial functions introduced in (2.3.8) reduce to 

the Wagner function and analogously the Theodorsen-like in (2.3.11) and (2.3.12) reduce to the well-

known Theodorsen function. Moreover, the sixteen parameters result in: 

 

𝐼𝑙𝛼1 =
1

4
   ;    𝐼𝑙𝛼2 = −

𝑎

8
  ;   𝐼𝑙ℎ1 = 𝐼𝑚ℎ1 = 0   ;    𝐼𝑙ℎ2 =

1

4
 

(2.4.1) 
 

𝐼𝑚𝛼1 = −
1

4

(
1
2 − 𝑎)

(
1
2 + 𝑎)

   ;    𝐼𝑚𝛼1 = −

1
8(

1
8 + 𝑎2)

(
1
2 + 𝑎)

   ;    𝐼𝑚ℎ2 =
𝑎

4(
1
2 + 𝑎)

 

 

 
(2.4.2) 

 

𝐷𝑗𝛼0 = 𝐷𝑗ℎ1 = 1   ;    𝐷𝑗𝛼1 =
1

2
(
1

2
− 𝑎)  ;    𝐷𝑗ℎ0 = 0          ( 𝑗 = 𝑙,𝑚) 

(2.4.3) 
 

 

Accordingly, relationships (2.3.14) – (2.3.21) reduce to: 

𝑘𝐻1
#(𝑘) = −𝐶𝑙,𝛼�̃�(𝑘) (2.4.4) 

 

𝑘𝐻2
#(𝑘) = 𝐶𝑙,𝛼 [(

1

4
− 𝑎) �̃�(𝑘) +

�̃�(𝑘)

𝑘
] +

𝐶𝑙,𝛼

4
 

(2.4.5) 
 

𝑘2𝐻3
#(𝑘) = 𝐶𝑙,𝛼 [�̃�(𝑘) − 𝑘�̃�(𝑘) (

1

4
− 𝑎)] + 𝐶𝑙,𝛼𝑘2

𝑎

4
 

(2.4.6) 
 

𝑘2𝐻4
#(𝑘) = 𝐶𝑙,𝛼𝑘�̃�(𝑘) +

𝐶𝑙,𝛼𝑘2

4
 

(2.4.7) 
 

𝑘𝐴1
#(𝑘) = −𝐶𝑚,𝛼�̃�(𝑘) (2.4.8) 

 

𝑘𝐴2
#(𝑘) = 𝐶𝑚,𝛼 [(

1

4
− 𝑎) �̃�(𝑘) +

�̃�(𝑘)

𝑘
] +

𝐶𝑙,𝛼

4
(𝑎 −

1

4
) 

 
(2.4.9) 

 

𝑘2𝐴3
#(𝑘) = 𝐶𝑚,𝛼 [�̃�(𝑘) − 𝑘�̃�(𝑘) (

1

4
− 𝑎)] + 𝐶𝑙,𝛼𝑘2

𝑎

4
+

𝐶𝑙,𝛼𝑘2

128
 

 

 
(2.4.10) 

 

𝑘2𝐴4
#(𝑘) = −𝐶𝑚,𝛼  𝑘�̃�(𝑘) − 𝐶𝑙,𝛼𝑘2

𝑎

4
 (2.4.11) 

 
  

Where 𝐴𝑖
#(𝑘) and 𝐻𝑖

#(𝑘) are the flutter derivatives for thin airfoil as expressed by Fung [13] [18].
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3. CFD FOR THE EVALUATION OF AERODYNAMIC COEFFICIENTS 

 

The formulas developed in the last chapter for the calculation of flutter derivatives are based on some 

aerodynamic parameters: the derivatives of lift and moment coefficients with respect to the angle of 

attack. The so called pressure coefficients have been introduced in (2.1.1), (2.1.2), they characterize the 

distribution of pressure due to a wind flow approaching with an angle of incidence so the interaction 

between the structure and the wind must be evaluated. The interaction between a turbulent flow and a 

rigid body is theoretically explained by the Navier-Stokes equations that generically describe the motion 

of viscous fluid substances. Currently, there are no analytical solution in closed form for this set of 

equations so several numerical methods have been developed in order to provide approximate solutions 

to the problem. The Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that uses 

numerical methods to analyze and solve problems that involve fluid flows. Computers are used to perform 

the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with 

surfaces defined by boundary conditions (Figure 3.1). The Computational Fluid Dynamics is a very complex 

branch, in this chapter will only be shortly introduced the main features that will be used in the simulations 

presented in the second part, and some examples of application will be reported and taken as a 

benchmark for the results obtained. 

 

 

 

Figure 3.1: Aircraft in a fluid flow [19] 
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3.1. Overview on turbulence modeling 
 

In the literature, a considerable amount of theoretical work can be found dealing with different methods 

adopted to take into account turbulence in fluid-structure-interaction (FSI) problems, spanning from 

laminar simulation to large eddy simulation (LES) with increasing level of physical insight, mathematical 

complexity and computational cost (Figure 3.2). 

 

 

Figure 3.2: Numerical approaches for turbulence modeling [20]. 

 

The laminar approach is not even mentioned because it gives a physical representation of the flow only 

at very low Reynolds numbers that typically do not characterize the wind in the atmosphere. At higher 

Reynolds numbers inertial forces prevail and the flow field is characterized by random fluctuations whose 

time and length scales are smaller than the mean flow ones. The direct simulations of the turbulence flow 

(DNS) is rarely adopted because involves an enormous computational cost. However, it is generally 

accepted that the mean flow characteristics have small influence on the fluctuations developed by 

turbulence at several order of magnitude difference. Accordingly, a statistical approach is often used in 

order to take into account the small scale effects on the mean flow without directly simulating them. The 

most common approach currently used is the RANS (Reynolds-averaged Navier-Stokes), it is based on the 

time averaging of the Navier–Stokes equations and allows to model a turbulent flow with an acceptable 

computational cost [21]. Another approach, as shown in Figure 3.2, more sophisticated than RANS is LES 

(Large Eddy Simulation) [22] [23]. It is based on space-averaging rather than time-averaging adopted in 

RANS. As the DNS, LES use is limited because of its high computational cost that can reach 105 − 106 

times the one required by RANS [24]. In Figure 3.3 a qualitative difference between the different 

approaches to simulate the turbulence is illustrated with respect to the experimental one [25]. It is 
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possible to notice that the time-averaging operating in RANS simulations is not able to model the details 

resulting from high frequency fluctuations and, therefore, these use to be modeled by a turbulence model. 

 

 

Figure 3.3: Comparison between experimental (a), LES (b) and RANS (c) turbulent structures [25].  

 

Currently, there are a lot of turbulence models developed for RANS simulations, the most commonly used 

are the two equations 𝑘 − 𝜀 and 𝑘 − 𝜔 [26] [27] models. The theoretical background of these models will 

not be developed in this work of thesis; they allow to model the turbulence by only two parameters and 

two additional equations are introduced. Their relatively low computational cost makes them suitable for 

industrial applications, moreover, they are the simplest turbulence models that can be considered 

general, in the sense that their parameters are not strongly problem-dependent.  The main difference 

between the two equations models lies in the near wall flow solution and it is summarized in [21] as 

follow: the 𝑘 − 𝜀 model does not allow the direct integration through the boundary layer because 𝜀 

becomes zero close to the wall. Otherwise, the 𝑘 − 𝜔 model allows to direct integrate through the 

boundary layer, so permits to improve the wall boundary layer unsteady solution as demonstrated in [27]. 

As a drawback, the 𝑘 − 𝜔 model has proved to be highly sensitive to inlet turbulence boundary conditions 

that can sensibly affect the solution even in large computational domain [28]. Another interesting 

possibility is offered by the 𝑘 − 𝜔 𝑆𝑆𝑇 model developed by Menter et al in [28].It consists in a sort of 

combination between the 𝑘 − 𝜀 and 𝑘 − 𝜔 models whose weighting is controlled by the wall distance. It 

preserves the main advantages of the classical 𝑘 − 𝜔 model but it has been proved to be less sensible to  

the variation of inlet conditions. 

 

3.2. Aerodynamic analysis of Great Belt East 
 

The RANS approach to simulate the motion of a turbulent flow approaching against a bluff body is the 

most commonly used because of its relatively low computational cost. In this section the cross-section of 

the Great Belt Est Bridge (Figure 3.4) has been reported as a case study [21]. The results obtained have 

been compared with the ones obtained experimentally by wind tunnel tests performed on a scaled model 

(1:80) at the Danish Maritime institute by Reinhold et al [29]. No accessory structures are modeled, 

because of their small dimension and high porosity their influence on the global aerodynamic behavior 

can be neglected.  
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The model consists in a scaled bridge cross-section of length B (Figure 3.5) immersed into a computational 

domain having dimension of 12B in the direction parallel to the wind flow and 5.5B in the transversal 

direction.  

 

 

Figure 3.4: View of the Great Belt East Bridge [21]. 

 

The computational analysis in the article is subdivided in two stages named steady and dynamic, the first 

is aimed to the determination of the pressure coefficients while the second to the determination of the 

flutter derivatives. Only the stationary analysis has been reported in this work in order to make a 

comparison with the results obtained in section 6.1. 

 

 

Figure 3.5: Cross-section (scale 1:80, dimension in mm) and the adopted mesh structure [12]. 
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Generally, bridge decks cross-sections aerodynamic behavior is not strongly influenced by Reynolds 

number, accordingly, the meshing procedure has been performed by the authors as follows. In the region 

adjacent to the cross-section a structured mesh is built with cell size in the order of 𝐵 ∗ 10−3, then, the 

computational grid is slowly coarsened and characterized by an unstructured mesh until a maximum size 

of the order of 𝐵 ∗ 10−1. Moreover, in order to capture the vortex shedding instability, a particular care 

to well represent the fluid volume close to the trailing edge and the vortex street has been taken: for a 

distance not smaller than 4B the mesh size has been imposed not bigger than 𝐵 ∗ 10−2. Finally, as a 

boundary conditions a velocity input and a pressure outlet regions have been created with a turbulent 

intensity of 0.5% according to standard wind tunnel conditions for laminar flow, and a turbulent viscosity 

ratio equal to 2 seeking to provide a good agreement with the static coefficients at 0°. 

The pressure coefficients of the bridge deck are evaluated for five different values of the incidence angle: 

0°; ±5°; ±10°. The comparison between experiments and computations reveals that the proposed 

simulation methodology is able to predict the static bridge aerodynamic behavior for all the considered 

configurations (Figure 3.6). 

 

 

Figure 3.6: Variation of the pressure coefficients with the angle of incidence [21]. 

Highly relevant for the present work are the aerodynamics coefficient slopes because the previously 

introduced (2.4.4) and (2.4.11) are strictly dependent on them, their values are reported in Table 3.1. 

 

Table 3-1: Experimental and numerical aerodynamic coefficients slope [21]. 
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3.3. Aerodynamic performance of a steel truss stiffening girder 
 

The previous section shows how the aerodynamic behavior of a streamlined bridge deck cross-section can 

be reliably reproduced by a RANS simulation of a two-dimensional model. It is not immediate to extend 

the reliability of a two-dimensional model from a streamlined section to steel truss girder, the last in fact 

is characterized by an unsteady envelop of the cross-section throw the longitudinal direction of the bridge. 

This section reports an article [30] where the aerodynamic behavior of a typical truss stiffened girder is 

represented with a bi-dimensional CFD model with the aim of compare several different aerodynamic 

countermeasures to find an optimization scheme for improvement of the bridge flutter stability. It is 

worth to notice that the aim of this work is different, in the framework of the thesis this article has been 

taken as an example of how the aerodynamic behavior of a truss can be successfully modelled by a two-

dimensional CDF model. 

A suspension bridge with steel truss stiffening girder and a middle span of 1100 meters located in the dry-

hot river valley whit deep canyon area is selected to carry out the analysis. The cross-section is 

characterized by a width of 27 meters and an eight is 8.2 meters (Figure 3.7). 

 

 

Figure 3.7: outline of the steel truss stiffening girder (in millimeters) [30]. 

 

The 2D simplified model has a scale ratio equal to 1/43.6 which is the same value adopted in wind tunnel 

tests taken as comparison, and the computational mesh is shown in Figure 3.8. The computational domain 

is imposed to be 6.5 ∗ 𝐵 in the flow direction and 4 ∗ 𝐵 in the transversal direction, where B is the model 

width of the bridge deck; the model is placed on a distance from the inlet boundary of 2B. As it shown in 

Figure 3.8, the computational domain is also divided in three parts meshed differently: the rigid mesh 
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zone is discretized by a quadrilateral unstructured grid, the dynamic mesh zone by triangular unstructured 

grid and the fixed mesh zone by a quadrilateral structured mesh. 

 

 

Figure 3.8: Local computational mesh of the 2D model [30]. 

 

Finally, RANS simulations are performed by using the k-ω SST model, as for the previous section, in order 

to estimate the flutter derivatives of the bridge. Next, several flutter analyses have been performed to 

obtain the flutter velocities and frequencies with and without aerodynamic countermeasures under 

different values of angle attack. The results are summarized and compared with the ones obtained by 

wind tunnel tests in Table 3.2. 

 

 

 

 

 

 

 

 

Table 3-2: Flutter conditions of the suspension bridge [30]. 
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4. FLUTTER OF LONG SPAN BRIDGES 

 

The history of long span suspension bridges had been characterized by the ever increasing awareness that 

the wind load represents one of principal challenge to be addressed during the design phase. The first 

suspension bridge destroyed by the wind was the Menai Bridge, designed by the English engineer Telford 

in 1826, it had a 176 main span that connected Anglesey land and England. Even in Europe and USA in 19th 

century several bridges fell down under wind action, in fact no analysis regarding this load was done 

before the bridge construction until the middle of 20th century. As mentioned in the first chapter, thanks 

to the improvement of the design methods, the bridges were realized with an increasing slenderness and 

the ratio between the height of deck and main span length became smaller. An important example of this 

trend is the Golden Gate Bridge in San Francisco (Figure 4.1), it was built in 1937 and it has been the 

longest span bridge in the world until 1964 when the Verrazano Narrows Bridge was erected. The Golden 

Gate few times presented fluctuations under wind action of 3 meters in horizontal plane.  

 

 

Figure 4.1: View of the Golden Gate Bridge [31]. 

 

A structure with a more important slenderness was the Tacoma Narrows Bridge, with a main span of 853 

meters, it was characterized by an insufficient stiffness to counteract wind dynamic actions and as 

mentioned in the introduction it fell down under a recorded wind speed of 18.8 m/s. After this disaster, 

the researchers decided to focus on the studies of the bridge aerodynamics and the analyses in aircraft 

wings were used for big span bridges to evaluate the effect of the wind load on the decks. To the current 

state of the art, the most dangerous phenomenon in suspension bridge is flutter, the effect of the 

interaction between unsteady forces produced by moving structure and its fluctuation. 
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4.1. Dynamic instability 
  

The aeroelastic instability plays an important role in long span suspension bridge design. The aeroelastic 

instability caused by the so called “classical flutter” is characterized by the matching of two modes of 

fluctuation with a similar deformed shape, generally the interaction concerns flexural and torsional 

modes. The wind action provides energy to the system and brings frequencies closer together until the 

two fluctuations are timed on the same frequency. Bridge flutter can also involve a single mode, usually 

the torsional one. 

 Wind effects on decks are correctly evaluated with time domain analysis, using nonlinear numerical 

models defining appropriate wind stories and experimental test on scaled models in wind tunnel. 

Currently the most reliable tests are those conduced in wind tunnel, but theoretical models are very 

important for predicting at least the order of magnitude of wind speed through which the instability may 

occur. 

The most common theoretical models consist on analysis in frequency domain based on a linearization of 

the phenomenon with the introduction of stiffness and damping coefficients obtained experimentally.  

Assuming an elastic behavior of the structure with a sinusoidal exponentially dumped response and the 

transition between stable and unstable configuration in condition of oscillatory motion about equilibrium 

configuration on average wind condition, it is possible to represent the dynamic problem, in linearized 

form, with this equation: 

 

[𝑀] ∗ �̈�(𝑇) + [�̅�] ∗ 𝛿(𝑇) = 0      (4.1.1) 
 

 

Where 𝛿, [M], and [�̅�] are the time depending displacement vector, the mass matrix and the tangent 

stiffness matrix, respectively. The matrix [�̅�] includes the effect of loading. If the latter is non-

conservative, [�̅�] is non-symmetric, and dynamic instability can occur, depending on the loading level.  

The necessity of performing a stability linear analysis led to consider harmonic time disturbances, because 

dynamic response of the structure could be divided in a series of harmonic contributions with a Fourier 

transformation. Hence it is assigned an harmonic disturbance 𝛿(𝑡) = 𝛿0 ∗ 𝑒𝑖𝜔𝑡, where 𝛿0 is the initial 

displacement. The system of differential equations (4.1.1) has trivial modes as solution except for modes 

with 𝜔 pulsation that satisfy characteristic equation: 

 

([�̅�] − 𝜔2[𝑀]) ∗ {𝛿} = {0}      (4.1.2) 
 

It Is possible to obtain eigenvalue 𝜔𝑗(𝑗 = 1,2…𝑛 𝑑. 𝑜. 𝑓) as a function of a loading parameter λ, the 

equilibrium can become unstable in correspondence of the critical value 𝜆𝑐. 
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Finally searching for the solution in the form mentioned above and assuming the eigenvalues composed 

by real and imaginary part: 𝜔𝑗 = (𝜔𝑟 + 𝑖𝜔𝑖)𝑗. It is possible to attribute the onset  of the instability to the 

sing of the imaginary part of the eigenvalue 𝜔𝑗. 

Being: 

{𝛿𝑗} = {𝛿0,𝑗} ∗ 𝑒𝑖𝜔𝑟𝑗𝑡 ∗ 𝑒−𝜔𝑖𝑗𝑡 

 

 
(4.1.3) 

 If 𝜔𝑖𝑗 > 0 for each eigenvalue, equilibrium is stable; 

 If 𝜔𝑖𝑗 = 0 at least for one eigenvalue, equilibrium is metastable; 

 If 𝜔𝑖𝑗 < 0 at least for one eigenvalue, equilibrium is unstable. 

 

 

Figure 4.2: Representation of dynamic instability [32]. 
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4.2. Two degrees of freedom flutter 
 

After several studies, the researchers discovered the possibility to take advantages of the analysis 

developed in aeronautic field for the definition of the load acting on the wings of aircrafts, and adapt 

some models to the sections of suspension bridges deck to perform aeroelastic stability analisys. In Figure 

4.3 is reported a definition of the so called self-excited forces acting on a deck transversal section 

subjected to a constant wind flow U, in this simplified model the only two components of the 

displacement taken in to account are the vertical displacement h and the torsional rotation α. 

 

 

Figure 4.3: Two degrees of freedom simplified model. 

 

Scanlan and Tomko developed an expression of self-excited forces, valid in small fluctuation field, where 

the wind load is linearly related to the motion coordinates of the bridge deck by means of the so called 

Flutter derivatives. This formulation is currently the most used for the flutter analysis of bridge decks and 

is the following: 

 

𝐿𝑆𝐸 = 
1

2
𝜌𝑈2𝐵 [𝐾𝐻1

∗(𝐾)
 ℎ̇(𝑡)

𝑈
+ 𝐾𝐻2

∗(𝐾)
𝐵 �̇�(𝑡)

𝑈
+ 𝐾2𝐻3

∗(𝐾)𝛼(𝑡) + 𝐾2𝐻4
∗(𝐾)

ℎ(𝑡)

𝐵
  ]    

 

 
(4.2.1) 

𝑀𝑆𝐸 = 
1

2
𝜌𝑈2𝐵2 [𝐾𝐴1

∗(𝐾)
 ℎ̇(𝑡)

𝑈
+ 𝐾𝐴2

∗ (𝐾)
𝐵 �̇�(𝑡)

𝑈
+ 𝐾2𝐴3

∗ (𝐾)𝛼(𝑡) + 𝐾2𝐴4
∗ (𝐾)

ℎ(𝑡)

𝐵
  ] 

(4.2.2) 

 

Where t is the time, 𝐾 =
𝜔𝐵

𝑈
 is the circular reduced frequency and 𝐻𝑖

∗(𝐾), 𝐴𝑖
∗(𝐾) are the flutter 

derivatives. 
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Nowadays the most reliable methods for the calculation of flutter derivatives are based on experimental 

analysis on scale models in the wind tunnel, in Figure 4.4 are shown some examples of flutter derivatives 

plotted in function of the reduced velocity U/fB.   

 

 

Figure 4.4: Examples of flutter derivatives [17]. 

 

Classic formulation for flutter analysis starts from the assumption that the interaction between wind and 

structure can be evaluated considering a bi-dimensional model representing the deck cross section, so 

tridimensional effects are negligible. Another simplification, that lose its validity for longest span bridges, 

is to neglect section motion in wind direction. So considering as only degrees of freedom the vertical 

displacement h and the torsional angle α of the deck (Figure 4.3) the equations of motion can be expressed 

in these forms: 

 

𝑚ℎ̈(𝑡) + 𝑐ℎℎ̇(𝑡) + 𝑘ℎℎ(𝑡) = 𝐿𝑆𝐸(𝑡, 𝐾)    
 

(4.2.3) 

𝐼�̈�(𝑡) + 𝑐𝛼�̇�(𝑡) + 𝑘𝛼𝛼(𝑡) = 𝑀𝑆𝐸(𝑡, 𝐾) (4.2.4) 
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Where m and I represent the mass and the polar moment of inertia of the system per unit length, and 

𝑐𝑖, 𝑘𝑖 are the mechanic damping and elastic stiffness factors, respectively. 

Searching solution in the harmonic form: 

 

ℎ(𝑡) = ℎ0𝑒
𝑖𝜔𝑡  ;  𝛼(𝑡) = 𝛼0𝑒

𝑖𝜔𝑡 (4.2.5) 
 

By separating the real and imaginary parts, two equations of the 4th and 5th order in K are obtained. The 

common solution gives the reduced frequency 𝐾𝐹 to which the flutter frequency 𝜔𝐹 is associated.  

So the flutter instability speed can be obtained as: 

 

𝑈𝐹 =
𝐵𝜔𝐹

𝐾𝐹
 

 

 
(4.2.6) 

 

Alternatively, it is possible to define the eigenvalues of the system as a composition of real and imaginary 

part : 𝜔𝑗 = (𝜔𝑟 + 𝑖𝜔𝑖)𝑗. So the unset of flutter condition could be found by increasing the wind velocity 

until the imaginary part of at least one eigenvalue becomes negative. This method is focused in section 

4.4 with some differences related to the different form of the eigenvectors. 
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4.3. Three degrees of freedom flutter 
 

Increasing the diffusion of the suspension bridges as a construction technology, the problem of the 

dynamic instability caused by the wind has become increasingly relevant and new analytic models have 

been developed. The representation of the bridge deck response with only two degrees of freedom is very 

affordable, it has spread widely over the years leading to excellent results. But increasing the length of 

the mid span and developing increasingly deformable structures, it has been noticed that the influence of 

the self-exited load in the direction of wind cannot be neglected. Several studies have been made to 

estimate the influence of the motion-induced Drag on the critical wind speed. More precisely, it has been 

discovered that it starts to become significant for suspension bridges having a mid-span longer than 1.5 

kilometers. 

The three degrees of freedom of the bridge deck cross-section are the vertical displacement, the torsional 

rotation and the horizontal displacement, to which correspond the aero-elastic forces reported in Figure 

4.5. 

 

 

Figure 4.5: Three degrees of freedom sectional model [33]. 

 

Considering the additional horizontal degree of freedom, the expression of the self-exited (4.2.1), (4.1.2) 

forces is modified as follow: 

 

𝐿𝑆𝐸 = 
1

2
𝜌𝑈2(2𝐵) [𝐾𝐻1

∗
 ℎ̇

𝑈
+ 𝐾𝐻2

∗
𝐵 �̇�

𝑈
+ 𝐾2𝐻3

∗𝛼 + 𝐾2𝐻4
∗
ℎ

𝐵
+ 𝐾𝐻5

∗
 �̇�

𝑈
+ 𝐾2𝐻6

∗
𝑝

𝐵
 ]    

 

 
(4.3.1) 

𝐷𝑆𝐸 = 
1

2
𝜌𝑈2(2𝐵) [𝐾𝑃1

∗
 �̇�

𝑈
+ 𝐾𝑃2

∗
𝐵 �̇�

𝑈
+ 𝐾2𝑃3

∗𝛼 + 𝐾2𝑃4
∗
𝑝

𝐵
+ 𝐾𝑃5

∗
 ℎ̇

𝑈
+ 𝐾2𝑃6

∗
ℎ

𝐵
 ]    

 
(4.3.2) 

𝑀𝑆𝐸 = 
1

2
𝜌𝑈2(2𝐵2) [𝐾𝐴1

∗
 ℎ̇

𝑈
+ 𝐾𝐴2

∗
𝐵 �̇�

𝑈
+ 𝐾2𝐴3

∗𝛼 + 𝐾2𝐴4
∗
ℎ

𝐵
+ 𝐾𝐴5

∗
 �̇�

𝑈
+ 𝐾2𝐴6

∗
𝑝

𝐵
 ] 

 
(4.3.3) 
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4.4. Flutter analysis using ANSYS 
 

The coupled flutter analysis, using the measured flutter derivatives from the spring-mounted bridge 

sectional model testing in wind tunnel, pioneered by Scanlan and described in the previous chapter cannot 

the capability of calculating motion-dependent aeroelastic loads. 

The researchers X.G. Hua and Z.Q. Chen [33] proposed a method that allows to perform a flutter analysis 

using commercial finite element package ANSYS. The method is based on the definition of the aeroelastic 

loads by means of a particular user defined element and is shortly illustrated below. 

The equation of motion for a deck section in the smooth flow can be expressed as: 

 

𝑀�̈� + 𝐶�̇� + 𝐾𝑋 = 𝐹𝑎𝑒 (4.4.1) 
 

Where M, K and C are the global mass, stiffness and damping matrices, respectively;  �̈�, �̇� and 𝑋 represent 

the nodal acceleration, velocity and displacement vectors, respectively; and 𝐹𝑎𝑒 denotes the vector of 

nodal self-exited forces defined in (4.3.1)-(4.3.3) and represented in Figure 4.5.  

By converting the distributed aeroelastic forces of a generic element e of bridge girder into equivalent 

nodal loads acting on member ends, one obtains the equivalent nodal loadings for that element as: 

 

𝐹𝑎𝑒
𝑒 = 𝐾𝑎𝑒

𝑒 𝑋𝑒 + 𝐶𝑎𝑒
𝑒 �̇�𝑒 (4.4.2) 

 

Where 𝐾𝑎𝑒
𝑒  and 𝐶𝑎𝑒

𝑒  are the aeroelastic stiffness and damping matrices for element e, respectively. Using 

a lumped formulation, they can be expressed as: 

 

𝐾𝑎𝑒
𝑒 = [

𝐾𝑎𝑒1
𝑒 0

0 𝐾𝑎𝑒1
𝑒 ] 

 
(4.4.3) 

𝐶𝑎𝑒
𝑒 = [

𝐶𝑎𝑒1
𝑒 0

0 𝐶𝑎𝑒1
𝑒 ] 

 
(4.4.4) 

𝐾𝑎𝑒1
𝑒 = 𝑎

[
 
 
 
 
 
0 0 0 0 0 0
0 𝑃4

∗ 𝑃6
∗ 𝐵𝑃3

∗ 0 0

0 𝐻6
∗ 𝐻4

∗ 𝐵𝐻3
∗ 0 0

0 𝐵𝐴6
∗ 𝐵𝐴4

∗ 𝐵2𝐴3
∗ 0 0

0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

 

 
 
 

(4.4.5) 
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𝐶𝑎𝑒1
𝑒 = 𝑏

[
 
 
 
 
 
0 0 0 0 0 0
0 𝑃1

∗ 𝑃5
∗ 𝐵𝑃2

∗ 0 0

0 𝐻5
∗ 𝐻1

∗ 𝐵𝐻2
∗ 0 0

0 𝐵𝐴5
∗ 𝐵𝐴1

∗ 𝐵2𝐴2
∗ 0 0

0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

  

 
 
 

(4.4.6) 

 

 

Where 𝑎 = 𝜌𝑈2𝐾2𝐿𝑒/2 and 𝑏 = 𝜌𝑈𝐵𝐾𝐿𝑒 and 𝐿𝑒 is the length of the element e. 

Hence it is necessary to represent the elemental stiffness and damping matrices due to motion-dependent 

aeroelastic forces by element MATRIX27. The user-defined element in ANSYS, MATRIX27can only model 

either an aeroelastic stiffness matrix or an aeroelastic damping matrix instead of both of them 

simultaneously, so a pair of MATRIX27 elements are attached to each node of a generic bridge deck 

element as illustrated in Figure 4.6. 

 

 

Figure 4.6: Hybrid finite element model [33]. 

 

The MATRIX27 elements e1 and e3 represent respectively the aeroelastic stiffness and damping of the 

node i, as the MATRIX27 elements e2 and e4 represent respectively the aeroelastic stiffness and damping 

of the node j. If the length of each bridge deck element is the same, the element matrices are simplified 

as: 

 

𝐾𝑒1 = 2𝐾𝑎𝑒
𝑒  (4.4.7) 

𝐶𝑒3 = 2𝐶𝑎𝑒
𝑒  (4.4.8) 

𝐾𝑒2 = 2𝐾𝑎𝑒
𝑒  (4.4.9) 

𝐶𝑒4 = 2𝐶𝑎𝑒
𝑒  (4.4.10) 

 

Assembling all elemental matrices into global aeroelastic stiffness and damping matrices leads to: 

 

𝐹𝑎𝑒 = 𝐾𝑎𝑒𝑋 + 𝐶𝑎𝑒�̇� (4.4.11) 
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Substituting (4.4.11) in (4.4.1) the mathematical model of an integrated system is obtained, with the effect 

of aeroelasticity parametrized by wind velocity and vibration frequency: 

 

𝑀�̈� + (𝐶 − 𝐶𝑎𝑒)�̇� + (𝐾 − 𝐾𝑎𝑒)𝑋 = 0 (4.4.12) 

 

With this equation, complex eigenvalue analysis can be carried out to determine the eigenvalues of the 

system at specific wind velocity and vibration frequency. 

 Assuming the conjugate pairs of complex eigenvalues 𝜆𝑗 = 𝜎𝑗 ± 𝑖𝜔𝑗 and the conjugate pairs of complex 

eigenvectors 𝜙𝑗 = 𝑝𝑗 ± 𝑖𝑞𝑗 have been obtained, the system will be dynamically unstable if the real part 

of any eigenvalue become positive. Hence the condition for onset of flutter instability is stated as follow: 

at a certain wind velocity 𝑈𝑓  the system has only one eigenvalue 𝜆𝑓 with zero real part, the corresponding 

wind velocity 𝑈𝑓  being the critical flutter wind velocity and the imaginary part 𝜔𝑗 of the complex 

eigenvalue 𝜆𝑓 becoming the flutter frequency. 

It is necessary to provide the variation of both wind velocity and vibration frequency in the complex 

eigenvalue analysis, so a mode-by-mode tracking method is employed to iteratively search the flutter 

frequency and the flutter velocity. The procedure is summarized in the following steps: 

1. Establish the Finite Element model for the original structure without MATRIX27 elements, perform a 

modal analysis including the effect of permanent loads computing the first m natural frequencies 𝜔𝑖
0 (𝑖 =

1,2… ,𝑚). 

2. Determine the present wind velocity U. 

3. Let the initial oscillation frequency 𝜔0 be the frequency 𝜔𝑖
0 of each natural mode in turn. 

4. Determine the reduced frequency K and the aeroelastic stiffness and damping matrices in MATRIX27 

elements in (4.4.3) - (4.4.6) at the present iteration, and then carry out the complex eigenvalues analysis. 

5. Compare the imaginary part of the ith computed complex eigenvalue 𝜆𝑖 with 𝜔0. If |(𝐼𝑚(𝜆𝑖) −

𝜔0)/𝐼𝑚(𝜆𝑖)| > 10−3  let  𝜔0 = 𝐼𝑚(𝜆𝑖)  and repeat step 4 and 5, otherwise go to step 6. 

6. Loop steps 3-5 over all the m computed natural modes to obtain all m pairs of complex eigenvalues at 

the present wind velocity U. 

7. Repeat steps 2-6 for the range of interest of wind velocity in order to obtain the variation of m pairs of 

complex eigenvalues with wind velocity. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 PART 2 

 

 

 

 

 

 

 

 

 

 



5. FLUTTER DERIVATIVES FROM PRESSURE COEFFICIENTS 

 ___________________________________________________________________________________  

 ___________________________________________________________________________________  
35 

 

 

5. FLUTTER DERIVATIVES FROM PRESSURE COEFFICIENTS 
 

As mentioned in the first part, the only method considered reliable for the calculation of flutter derivatives 

is based on experimental test in wind tunnels. However, several methods have been developed in the last 

years in order to obtain an approximate estimation very useful in pre-dimensioning phases. The most 

accurate are currently the ones based on the use of finite element programs. Various commercial software 

packages are available and able to simulate the interaction between the motion of a body immersed in a 

turbulent flow. Some theoretical aspect related to the numerical models of turbulence have been 

presented in CHAPTER 3, it must be noticed that the motion of the body immersed in the flow has never 

been introduced, in fact the body has ever been supposed motionless or fixed. Introducing the body 

motion leads to an exponential increase of the computational time, but rigorously it must be done for the 

numerical calculation of flutter derivatives. 

The simplified approach presented in section 2.4 is based on the pressure coefficients defined in Eq. (2.1.1) 

- (2.1.3) extractable from CFD analysis. However, the calculation of these parameters requires relatively 

low computational time, because the motion of the bridge deck can be neglected and performing several 

analyses for different flow angles of attack the coefficients slope can be calculated. It worth to note that 

a particularization of the method proposed in this thesis for the calculation of flutter derivatives has been 

already widely used: the flutter derivatives of thin airfoil.  As a result of the potential flow theory [12], the 

pressure distribution induced by flow on a fixed airfoil under a small angle of incidence reduces in a zero 

drag force, an upward lift with a slope 𝐶𝑙,𝛼 = 2𝜋 and a pitching moment with a slope 𝐶𝑚,𝛼 =
𝜋

2
. By 

substitute these values in the Eq. (2.4.4) – (2.4.11) the flutter derivatives of thin airfoil are obtained. These 

formulas have been tested by Scanlan [17], in his book the flutter derivatives of thin airfoil have been 

compared with the flutter derivatives of three streamlined bridge deck finding a good agreement (Figure 

5.1). 

 

 

Figure 5.1: Comparison between flutter derivatives of thin airfoil and streamlined cross-sections [17]. 
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The flutter derivatives of thin airfoil have also been used by several authors to compensate the lack of 

experimental data required. For instances Adel Al-Assaf in [34], after some observations of the results 

experimentally obtained by Scanlan for truss-stiffened girder bridges, proposed a set of “synthesized” 

flutter derivatives based on the Theodorsen functions. Next, he utilized that flutter derivatives to perform 

a flutter analysis of the Golden Gate Bridge and the second Takoma Narrows finding a good agreement 

with the results available in literature. 

The aim of this chapter is to validate the approach abovementioned by the application of Eq. (2.4.4) – 

(2.4.11) in two real cases of which are available the experimental data extracted in the wind tunnel.  

 

5.1. Flutter derivatives of Great Belt Est Bridge 
 

The Great Belt Est Bridge (Figure 3.4) has been the subject of various studies because of its simplicity and 

high slenderness. In fact, it was one of the example presented by Scanlan in Figure 5.1 with the aim of 

testing the flutter derivatives of the thin airfoil. In Figures 5.2-5.3 are illustrated the flutter coefficients of 

the bridge calculated experimentally by Reinhold et al. [29], compared with the derivatives of thin airfoil 

and the derivatives calculated with Eq. (2.4.4) – (2.4.11). These latter have been represented in orange 

and have been named “Fung” while the derivatives of thin airfoil are named “Theodorsen” and illustrated 

in grey. 

 

 

Figure 5.2: Moment flutter derivatives of the Great Belt Est. 
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Figure 5.3: Lift flutter derivatives of Great Belt Est. 

 

The flutter derivatives calculated by the Fung formulation refer to pressure coefficients obtained from 

wind tunnel testing of a 1:80 section model as reported by Larsen and reported in Table 5.1 [35] [36]: 

 

𝐶𝑙,𝛼   [-/rad]  4.37 

𝐶𝑚,𝛼 [-/rad] 1.17 

Table 5-1: Slope of the pressure coefficients of Great Belt Est. 

 

From the comparison it is possible to notice that the Fung formulation leads generally to a good alignment 

to the experimental curves, the average trend is always respected except for the  𝐻4 that in some cases 

could be neglected [34]. Moreover, it possible to conclude that in most plotted cases the Fung 

formulations find a better agreement with respect to the Theodorsen one, but unfortunately, is not 

immediate to assert which method is more conservative than the other.   

 

 

 



5. FLUTTER DERIVATIVES FROM PRESSURE COEFFICIENTS 

 ___________________________________________________________________________________  

 ___________________________________________________________________________________  
38 

 

5.2. Flutter derivatives of Akashi Kaykio 
 

The Akashi Kaykio Bridge is the suspension bridge that currently has the longest span in the world: 1991 

meters (its central span). It links the city of Kobe to Iwaya, on Awaji Island crossing the Akashi Strait (Figure 

5.4). 

 

 

Figure 5.4: View of Akashi Kaykio Bridge [37]. 

 

The bridge, unlike the Great Belt East treated in the previous chapter, has a steel truss stiffening girder. 

This characteristic makes him similar to the George Washington Bridge with the difference that the latter 

is equipped with a lower deck on the lowest level of the trusss.  

For the aerodynamic parameters of the bridge utilized in this section, reference has been made to Katsuchi 

[38] and Scanlan [39]. The static wind force coefficients on which are based the Fung formulas for the 

flutter derivatives are reported in Table 5.2. The flutter derivatives are shown in Figures 5.5-5.6 where the 

comparison between the different formulations is made. 

 

𝐶𝑙,𝛼   [-/rad]  1.191 

𝐶𝑚,𝛼 [-/rad] 0.306 

Table 5-2: Slope of the pressure coefficients of Akashi Kaykio. 

 

The comparison shows a substantial alignment between the experimentally obtained flutter derivatives 

and the same calculated with the Fung formulation, especially with regard to the 𝐴𝑖. Furthermore, it is 
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interesting to observe that for a truss-stiffened girder, the Theodorsen formulation for thin airfoil 

becomes unable to reliably predict the aerodynamic behavior. 

 

 

Figure 5.5: Moment flutter derivatives of the Akashi Kaykio. 

 

Figure 5.6: Lift flutter derivatives of Akashi Kaykio. 
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6. CFD SIMULATIONS 
 

In the third chapter of this thesis, a short theoretical background of the computational fluid dynamics has 

been presented. Several analyses have been performed in order to test the reliability of different factors 

as the turbulence model, mesh sizing, extension of the computational domain and the boundary 

conditions. The finite element package ANSYS FLUENT was chosen both for meshing and simulating the 

fluid flow around the rigid body, with the aim of integrate the pressure distribution and finally obtain the 

aerodynamic static coefficients. Before dealing with the various case studies, the characteristic that the 

models have in common will be listed. 

For each model a RANS simulation has been performed, modeling the turbulence with the 𝑘 − 𝜔 𝑆𝑆𝑇 as 

in articles mentioned in Chapter 3. As a boundary conditions, the velocity inlet was characterized by a 

wind velocity of 30 m/s, a turbulent intensity of 0.5% according to standard wind tunnel conditions for 

laminar flow, and a turbulent viscosity ratio equal to 2. The pressure outlet region was created with a null 

speed and the same turbulent intensity and viscosity of the velocity inlet. The dimensions of the 

computational domain were set following the indication of [21], hence around 12B in along the wind 

direction and 5.5B in the transversal one. The domain has been subdivided in different regions as shown 

in Figure 6.1. 

 

 

Figure 6.1: Geometrical division of the computational domain. 

 

The outside rectangle delimits the fluid region, the left and the right size represent the velocity inlet and 

the pressure outlet, respectively. The circle and the inner rectangle has been created as auxiliary 

geometric entities allowing a differentiated meshing of the closer fluid regions and the wind wake. Being 

the dimensions of the models very similar, the same mesh size has been set following the indications of 
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[21]. In the inner regions the mesh goes from an edge sizing of 1 centimeter until a maximum size of 25 

centimeters with a growth ratio equal to 1.1. In the fluid region between the external boundary and the 

inner parts a maximum size of 3 meters was fixed and a growth ratio of 1.2. In Figures 6.2 and 6.3 an 

example of meshed model is illustrated with different zoom levels. 

 

 

Figure 6.2: Discretization of the fluid domain. 

 

Figure 6.3: Discretization of the inner regions closest to the deck. 

 

A quadrilateral mesh has been chosen for each models in order to reduce the computational time. Finally, 

the bridge deck edges were selected for the integration of the pressure distribution, and the model 

parameters like wind velocity, chord length (B) and air density have been set with the purpose of get the 

dimensionless pressure coefficients directly by the program.To take into account the different angle of 

attacks, several analyses has been performed rotating the bridge cross-section and keeping unaltered the 

boundary conditions and the computational domain. Next, the derivatives of the coefficients with respect 

to the angle of attack have been calculated by the definition of the incremental ratio:  
𝐶𝑖(𝛼0+∆𝛼)−𝐶𝑖(𝛼0)

∆𝛼
. 
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6.1. Great Belt East 
 

The Great Belt East bridge was presented and shortly described in the previous chapters, its girder deck 

has been chosen as first test problem due to its relative simplicity. The geometrical values of the cross-

section are reported in Figure 6.3, it worth to note that the various models found in literature may present 

some little geometrical differences. 

 

 

Figure 6.4: Great belt East cross-section. 

 

The computational domain is 360x180 square meters, the inner rectangular region is 180x30, the mesh 

size and the boundary conditions have been defined previously. In Figure 6.4 the distribution of velocity 

magnitude and pressure are shown in the case of horizontal flow.  

 

 

Figure 6.5: Distribution of velocity magnitude and static pressure around the deck with 𝛼 = 0°. 



6. CFD SIMULATIONS 

 ___________________________________________________________________________________  

 ___________________________________________________________________________________  
43 

 

In the next figures the same distributions are reported for different angles of attack in order to provide a 

qualitative representation of the parameters variation (Figure 6.5).  

 

 

Figure 6.6: Distribution of velocity magnitude and static pressure around the deck with 𝛼 = ±5° 

 

The results obtained, in terms of aerodynamic static coefficients are plotted in Figure 6.6, where in 

addition, a comparison with the results obtained in the research mentioned in section 3.2 is made [21]. 

 

 

Figure 6.7: Aerodynamic static coefficients of Great Belt East as functions of the angle of attack. 

 

The graphs above show a good agreement between the results obtained by the simulation in FLUENT and 

the results found in literature, especially with reference to coefficients slope. The latter indeed, represent 

the main goal of the simulations because the Fung formulation for flutter derivatives is based on them. 
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6.2. Akashi Kaikyo 
 

The Akashi Kaikyo bridge is introduced in section 5.2 (Figure 5.4), it has been chosen as a case study 

because of its truss girder (Figure 6.8). In fact, a two-dimensional model of a truss represents a forced 

simplification compared with the 2D model of the streamlined girder bridge presented in the previous 

section. 

 

 

Figure 6.8: View of the Akashi Kaikyo lower level. 

 

Initially, several efforts were made with the aim of represent the aerodynamic behavior with a simplified 

3D model (Figure 6.9). Unfortunately, the huge solid domain and the precision level required lead to an 

impossibility to generate a suitable mesh discretization with the processor available. 

 

 

Figure 6.9: 3D model of the Akashi Kaikyo truss girder. 
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Hence inevitably, it was opted for a bi-dimensional model. After taking a cue from the work presented in 

section 3.3 [30], the 2D model was created modeling only the main structural elements. The 

computational domain is 360x160, the inner region is composed by a circle with radius equal to 40 meters 

and a rectangle 150x30, the mesh size and the boundary conditions have been defined previously. In 

Figure 6.10 the distribution of velocity magnitude and pressure are shown in the case of horizontal flow.  

 

 

Figure 6.10: Distribution of velocity magnitude and static pressure around the deck with 𝛼 = 0°. 

 

It is possible to note that the mesh size seems able to catch the flow characteristics in the regions close 

to the edges. Furthermore, the interaction between the upper and the lower level is influenced by the 

diagonal beams composing the truss, modeled only with their cross-section placed at half height. It also 

must be noticed that the 2D model does not contain any information regarding the porous grids and the 

envelope of the truss among the wind direction.  

In Figure 6.10 the distributions of velocity and static pressure for different angles of attack are reported, 

in order to provide a qualitative representation of the parameters variation. The aerodynamic static 

coefficients are plotted as functions of the angle of attack in Figure 6.11, next the results are summarized 



6. CFD SIMULATIONS 

 ___________________________________________________________________________________  

 ___________________________________________________________________________________  
46 

 

and compared with the ones obtained by other authors in Table 6.1. The comparison between the results 

obtained by other authors shows unneglectable differences. Even if the pressure coefficients obtained 

with null angle of attack could be considered reliable, their derivatives cannot. 

 

 

Figure 6.11: Distribution of velocity magnitude and static pressure around the deck with 𝛼 = ±5°. 

 

Figure 6.12: Aerodynamic static coefficients of Akashi Kaikyo as functions of the angle of attack. 

Author 𝐶𝐷[−] 𝐶𝐿[−] 𝐶𝑀[−] 𝐶′𝐿 [
−

𝑟𝑎𝑑
] 𝐶′𝑀 [

−

𝑟𝑎𝑑
] 

Katsuchi [38] 0.386 0.094 0.01 1.905 0.272 

Scanlan [39] 0.421 0.025 0.013 1.192 0.307 

Present simulation 0.313 0.061 0.056 5.120 0.801 

Table 6-1: Comparison of the Aerodynamic static coefficients of Akashi Kaykio.   



6. CFD SIMULATIONS 

 ___________________________________________________________________________________  

 ___________________________________________________________________________________  
47 

 

It is possible to attribute this great difference to the complexity of the real truss girder (Figure 6.8). It can 

be asserted that a two-dimensional model is not able to represent the aerodynamic behavior of the 

bridge. Alternatively, the simplifications imposed by the turbulence model (Chapter 3), that has been 

validated for simpler model, could not work as well for this specific case. Or else, the turbulent intensity 

and viscosity set as boundary conditions could be calibrated differently.  

Despite the results are not been considered correct, a 3D model is not a realizable option. Hence a 2D 

model has been done to represent the truss-like girder of the stiffened version of the George Washington 

Bridge (1962). Indeed, there are many differences between the two truss cross sections that can give hope 

that the analysis of the George Washington Bridge can lead to better results; in fact, the latter is 

characterized by two decks linked by a steel truss (Figure 6.13).  

 

 

Figure 6.13: View of the lower deck of George Washington Bridge. 

 

So its aerodynamic behavior could be closer to a combination of two mid-bluff decks rather than a 

properly truss. Anyway, in Chapter 7 it has been proposed a method to validate the flutter derivatives by 

the comparison of two analyses in which the wind actions are modeled differently. 
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6.3. George Washington Bridge, single deck (1931)   
 

The George Washington Bridge, as originally built was made from a single deck (Figure 1.4). The 

geometrical data of the cross section has been taken by [40], the model of the cross section is shown in 

Figure 6.14. 

The computational domain is 360x180, the inner region is composed by a circle with radius equal to 20 

meters and a rectangle 150x24 for the wake, the mesh size and the boundary conditions have been 

defined previously. In Figure 6.14 are also shown the distribution of velocity magnitude and pressure in 

the case of horizontal flow.  

 

 

Figure 6.14: Distribution of velocity magnitude and static pressure around the deck with 𝛼 = 0°. 

 

The calculated aerodynamic static coefficients are plotted in Figure 6.14 and summarized in Table 6.2 in 

absolute value. 
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Figure 6.15: Aerodynamic static coefficients of George Washington Bridge (first version) as functions of 
the angle of attack. 

 

𝐶𝐷[−] 𝐶𝐿[−] 𝐶𝑀[−] 𝐶′𝐿 [ 
−

𝑟𝑎𝑑
 ] 𝐶′𝑀 [ 

−

𝑟𝑎𝑑 
] 

0.0549 0.124 0.0079 7.6 2.04 

Table 6-2: Aerodynamic static coefficients of George Washington Bridge (first version). 

 

Unfortunately, no similar analyses have been found in literature for a comparison. However, the results 

have been critically analyzed and considered reliable. Firstly, from Figure 6.15 is possible to note the 

linearity of the functions around 𝛼 = 0°, this is a peculiarity of the coefficients experimentally noticed for 

several mid-bluff profiles. Following, Figure 6.14 shows that the distribution of the velocity magnitude can 

be viewed as a distribution around a flat plate, since the lateral obstacles deviate the airflow making him 

overtake the inner obstacles represented by the longitudinal beams. For this reason, the derivatives of 

the pressure coefficients were expected to be close to the theoretical values of the flat plate: 

 

𝐶′𝐿 = 2𝜋 = 6.28 [
−

𝑟𝑎𝑑
]   

(6.3.1) 

𝐶′𝑀 =
𝜋

2
= 1.57 [

−

𝑟𝑎𝑑
]  

(6.3.2) 
 

The higher values calculated for the bridge are well explained by the air recirculation between the 

longitudinal beams.  
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6.4. George Washington Bridge, double deck (1962) 
 

The lower deck of the George Washington Bridge was constructed under the existing span from 1958 to 

1962 because of increasing traffic flow, in fact it provides six additional lanes (Figure 6.13). From a 

mechanical point of view, the bridge has been certainly stiffened, is not immediate to assert the same for 

the aerodynamic aspect. The wind loads increase proportionally to the surface of the material added and 

the aerodynamic behavior became more complex. Anyway, in most cases the truss-stiffened girder is 

characterized by higher critical wind speed and a better performance with respect to the simple girder, 

except in cases where the cross section is designed with regard to aerodynamic aspects. The geometrical 

data of the cross section has been taken by [40], the model of the cross section is shown in Figure 6.16. 

The computational domain is 360x180, the inner region is composed by a circle with radius equal to 40 

meters and a rectangle 150x30 for model the wake, the mesh size and the boundary conditions have been 

defined previously. In Figure 6.16 are also shown the distribution of velocity magnitude and pressure in 

the case of horizontal flow.  

 

 

Figure 6.16: Distribution of velocity magnitude and static pressure around the deck with 𝛼 = 0° 
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The calculated aerodynamic static coefficients are plotted in Figure 6.17 and summarized in Table 6.3 in 

absolute value. 

 

 

Figure 6.17: Aerodynamic static coefficients of George Washington Bridge (last version) as functions of 
the angle of attack. 

 

𝐶𝐷[−] 𝐶𝐿[−] 𝐶𝑀[−] 𝐶′𝐿 [ 
−

𝑟𝑎𝑑
 ] 𝐶′

𝑀(+) [ 
−

𝑟𝑎𝑑 
] 𝐶′

𝑀(−) [ 
−

𝑟𝑎𝑑 
] 

0.23 0.08 0.081 13.11 1.37 0.06 

Table 6-3: Aerodynamic static coefficients of George Washington Bridge (last version). 

 

As mentioned in section 6.2, since the two-dimensional model of the Akashi Kaykio has not provided good 

results, this model cannot be considered totally reliable. Moreover, as shown in Figure 6.17 and 

highlighted in Table 6.3, the moment coefficient is not linear around 0°. It presents a different slope in the 

left and right surrounds, even with different sing. For upcoming calculations, the coefficient has been 

supposed linear in the range [−1° ; 1° ] and accordingly, the slope has been calculated as: 

 

𝐶𝑖(1°) − 𝐶𝑖(−1°)

2°
= 2.035 [ 

−

𝑟𝑎𝑑 
] 

(6.4.1) 
 

 

The derivative of the lift coefficients has a reasonable value, since this is a double deck and as stated in 

the previous chapter, its value is close to the double of Eq. (6.3.1). 
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7. FLUTTER ANALYSIS OF GEORGE WASHINGTON BRIDGE 
 

There are many methods to perform a flutter analysis of a suspension bridge; in chapter 4 the theoretical 

background was introduced. In this work of thesis, it has been chosen to perform the analyses by finite 

element numerical models using the commercial software ANSYS APDL. One of the main reason is that 

the numerical models in ANSYS APDL allow to easily take in to account several non-linear aspects of 

fundamental importance for the suspension bridges. In fact, this kind of structures presents a non-linear 

geometric behavior due to hangers and main cables. The increasing of pull stresses in main cables induce 

a reduction of displacements given by further loads. Accordingly, the weight of the bridge itself generate 

a global stiffening of the structure, so neglecting the influence of these phenomena lead to wrong physical 

representations.  

 The modeling of self-exited load and the iterative technique for the determination of flutter velocity and 

frequency has been explained in section 4.4. For the numerical simulation of the mechanical behavior 

three different kind of finite elements has been used: BEAM189, LINK180, MASS21. BEAM 189 is a linear 

beam element composed by three nodes (beginning, middle, end) and an additional one to define the 

spatial orientation i.e. the local reference system. It is a 3D element having six degrees of freedom per 

node: translation and rotation in the three spatial directions defined by the local reference system; the 

element can be used with any cross section using the appropriate ANSYS command, and includes stress 

stiffness terms by default in any analysis that includes large-deflection effects. LINK180 is a 3D element 

that can be used to model trusses, cables and links. It is a uniaxial tension-compression element unable 

to transfer any moment, so it is composed by two nodes (beginning, end) each having three degrees of 

freedom: translation in the three spatial directions. MASS21 is a point element useful to model the 

structural mass properties. It can have up to 6 degrees of freedom in a 3D model and allow to assign 

different mass and rotary inertia to each coordinate direction. In this work it has been used only to model 

the mass moment of inertia in some simplified models, the weight of the elements has been defined as a 

combination of sectional properties and material models. Ultimately, the non-linear geometric behavior 

of the bridges, in particular of the main cables, has been taken into account in terms of pre-stress effects. 

In facts, the software allows to include effects due to the pretension in a modal damped analysis, simply 

by running a preliminary static analysis in which the pre-stress effects are include, and next running the 

modal damped analysis, again including the pre-stress effects. This method has been validated by several 

models, comparing the results obtained with the theoretical exact solution in some cases and with 

literature data in other. The validation examples have not been reported for the sake of brevity, reference 

can be made to [41]. 

In this chapter, one case study is reported in order to validate the procedure explained in section 4.4 for 

the calculation of the flutter velocity and frequency of a simply supported beam-like bridge with thin 

airfoil cross section. Finally, the analyses of the George Washington Bridge are performed for both 

versions (1931,1962). For the double decked version (1962) two different approaches are developed 

because of the uncertainty related to the flutter derivatives input parameters. 
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7.1. Simply supported thin airfoil structure  
 

The simply supported beam-like bridge with a thin airfoil cross-section is an ideal model of which is 

available the theoretical solution. It has been chosen as a case study in order to try the tricky method 

developed by [33] and introduced in section 4.4. It was necessary to ensure the correct usage of the matrix 

elements utilized for modeling the motion induced wind loads, and to get involved in the extraction of 

real and imaginary parts of the eigenvalues at each step. The parameters of the structure are summarized 

in the following table (Table 7.1): 

 

Span length (L) 300 [m] 

Chord (B) 40 [m] 

Young modulus (E) 2.1E11 [N/m2] 

Poisson modulus (ν) 0.3 [-] 

Vertical moment of 
inertia (Iz) 

85.714 [m4] 

Lateral moment of 
Inertia (Iy) 

10 [m4] 

Torsional moment 
of Inertia (It) 

5.076 [m4] 

Mass moment of 
Inertia per unit span 

length (Im) 

 
4.5E6 [Kg*m2/m] 

Deck mass per unit 
span length (m) 

20000 [Kg/m] 

Air density 1.248 [Kg/m3] 

Table 7-1: Model parameters of the simply supported thin airfoil. 

 

The deck was modeled with 30 BEAM189 elements, each having the same length of ten meters. A MASS21 

nodal element has been located every ten meters, at the end of each element, in order to model the mass 

moment of inertia. As boundary conditions, the nodes at the ends of the beam are imposed to be fixed in 

all the translation directions and in the torsional rotation Rx, being x the longitudinal axis. 

Natural modal analysis of the bridge FE model without MATRIX27 elements is first conducted, where the 

lumped mass formulation is used to construct the mass matrix. The first ten eigenvalues have been 

extracted and summarized in Table 7.2, where also a comparison have been done with the results 

obtained in [33]. The table shows a good agreement, errors always remain below 1%, except for the lateral 

modes, where the error of the 9th frequency reach the 4%. MATRIX27 elements are then incorporated 

into the structural model to perform the damped modal analyses. A total of 58 elements are employed to 

formulate 29 aeroelastic stiffness and 29 aeroelastic damping; the elements have been assigned to line 



7. FLUTTER ANALYSIS OF GEORGE WASHINGTON BRIDGE 

 ___________________________________________________________________________________  

 ___________________________________________________________________________________  
54 

 

entities having the same length of the deck elements, the fictitious nodes external to the deck generated 

in this way have been fixed in all degrees of freedom. The hybrid finite element model incorporating 

structural model with MATRIX27 elements for flutter analysis is illustrated in Figure 7.1. The flutter 

derivatives of thin airfoil have been calculated with Eq. (2.4.4) – (2.4.11) where 𝐶𝑙,𝛼 = 2𝜋 and 𝐶𝑚,𝛼 =
𝜋

2
. 

In Figure 7.2 the flutter derivatives are plotted as functions of the reduced wind speed. 

 

Mode 
number 

Mode shape Mode frequency [Hz] Error [%] 

Present simulation [33] 

1 S-V 0.1786 0.1788 -0.112 

2 S-T 0.5028 0.5028 0.000 

3 S-L 0.5175 0.5236 -1.165 

4 A-V 0.7123 0.7154 -0.433 

5 A-T 1.004 1.0043 -0.030 

6 S-T 1.503 1.503 0.000 

7 S-V 1.5946 1.6096 -0.932 

8 A-T 1.9976 1.9976 0.000 

9 A-L 2.0014 2.0944 -4.440 

10 S-T 2.4868 2.4867 0.004 

Table 7-2: Modal frequencies of the simply supported thin airfoil. 

 

Figure 7.1: Finite element model for flutter analysis.  

 

Figure 7.2: Flutter derivatives for thin airfoil. 
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Finally, the iterative procedure for the determination of flutter speed and frequency has been carried out. 

For brevity, since it was known the solution, only the evolution of the second mode has been developed 

and reported in Figure 7.3 with respect to the wind velocity. The increment step of wind velocity was set 

variable, from a maximum value of 20 meters per second in the ranges far from the flutter instability to a 

minimum of 1 meter per second around the instability. So the flutter velocity resultant has the accuracy 

of the unit (m/s). After all, the results obtained have been compared with the exact solution and with the 

values obtained in [33] (Table 7.3). 

 

 

Figure 7.3: Variation of imaginary and real parts of the 2nd complex eigenvalue versus wind velocity. 

 

Source Flutter wind velocity  
[m/s] 

Error 
[%] 

Flutter frequency  
[Hz] 

Error 
[%] 

Present simulation 138 - 0.386 - 

Exact Solution 136.5 1.10 0.3914 -1.38 

() 135.1 2.15 0.394 -2.03 

Table 7-3: Comparison of flutter analysis results for thin airfoil bridge. 

 

The table above shows a good agreement between the results obtained and the ones used as a basis for 

comparison: the difference recorded with the exact solution are under the 2% regarding both the flutter 

wind velocity and frequency. 
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7.2. George Washington Bridge, single deck (1931) 
 

The George Washington Bridge has been introduced in section 1.1 and its sectional aerodynamic behavior 

was discussed in section 6.3. In this section a finite element model will be treated in order to study the 

global structure performance of the bridge, and finally determine the critic wind velocity and frequency 

that induce the flatter instability. The ANSYS numerical model was realized with the geometrical 

properties found in literature [42] and illustrated in Table 7.4. A “Fish-bone” model of the central span 

was realized: the slab constituting the deck was modeled as a beam element having the same geometrical 

properties of the slab, and its connection with the hangers has been modeled with “rigid links”. 

 

Span length (L) 1066.8 [m] 

Chord (B) 36.3 [m] 

Sag 97.3 [m] 

Area cable 1.03 [m2] 

Area Hangers 0.011 [m2] 

Young modulus of 
cables, deck, 

Hangers 

 
2.1E11 [N/m2] 

Poisson modulus 
(ν) 

0.3 

Deck vertical 
moment of inertia 

(Iz) 

 
28.8 [m4] 

Deck lateral 
moment of Inertia 

(Iy) 

 
0.0101 [m4] 

Deck torsional 
moment of Inertia 

(It) 

 
0.023 [m4] 

Deck mass 
moment of Inertia 

per unit span 
length (Im) 

 
4.475E6 [Kg*m2/m] 

Deck mass per 
unit span length 

 
28600 [Kg/m] 

Table 7-4: Geometrical and mechanical properties of George Washington Bridge.   

 

The two main cables of each side are modeled as an equivalent cable using BEAM189 elements and are 

restrained by hinges at the extremities. Hangers are realized using LINK180 elements that transmit only 

tension forces between the deck and the main cables. As mention before, the deck is modeled with beam 
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elements, is connected with the hangers by rigid links and simply supported in its extremities. The mass 

moment of inertia of the deck was modeled using MASS21 elements at the ends of each deck element. 

Finally, the rigid links have been modeled with BEAM189 elements having a big inertia to obtain rigid 

flexural behavior and its weight is imposed equal to zero. The numerical model is shown in Figure 7.4. 

Before introducing the aeroelastic nodal forces with MATRIX27 elements, a modal analysis was 

performed, the results are summarized in Table7.5. Since is known that flutter instability occurs usually in 

the first modes at lower frequencies, only the first 7 modes have been extracted, the 6th mode is a local 

one so it has been neglected. 

 

 

Figure 7.4: Finite element model of the George Washington Bridge (1931) without MATRIX27. 

 

  

Mode 1, L-S, 0.0559 Hz Mode 2, (L+T)-A, 0.109 Hz 

  

Mode 3, V-A, 0.1167 Hz Mode 4, T-A, 0.1348 Hz 

  

Mode 5, V-S, 0.159 Hz Mode 7, (L+T)-S, 0.183 Hz 

Table 7-5: Modal frequencies and shapes of George Washington Bridge (1931). 
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Once evaluated the natural vibration frequencies, the flutter analysis has been performed with the 

method descripted in [33]. The aim of flutter analysis is to predict the lowest critical wind velocity that 

induces flutter instability, and the corresponding flutter frequency. MATRIX27 elements are then 

incorporated into the structural model to perform the damped modal analyses. A total of 84 elements are 

employed to formulate 42 aeroelastic stiffness and 42 aeroelastic damping. The hybrid finite element 

model incorporating structural model with MATRIX27 elements for flutter analysis is illustrated in Figure 

7.5. The flutter derivatives of thin airfoil have been calculated with Eq. (2.4.4) – (2.4.11) where 𝐶𝑙,𝛼 and 

𝐶𝑚,𝛼 has been calculated in section 6.3. In Figure 7.6 the flutter derivatives are plotted as functions of the 

reduced wind speed. 

 

 

Figure 7.5: Finite element model with MATRIX 27 incorporated. 

 

Figure 7.6: Flutter derivatives of George Washington Bridge (1931). 

 

Finally, the iterative procedure for the determination of flutter speed and frequency has been carried out. 

Unlike the case study mentioned in the previous section, the computational steps have been followed for 

the first five modes extracted by the modal analysis and summarized in Table 7.5. The damped complex 

eigenvalue analyses were conducted for the model under wind velocities varying from 0 to 100 m/s. The 

increment step of wind velocity was set variable, from a maximum value of 20 m/s in the ranges far from 

the flutter instability to a minimum of 1 m/s around the instability. So the flutter velocity resultant has 

the accuracy of the unit (m/s). The first five conjugate pairs of complex eigenvalues and complex 
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eigenvectors are obtained, the variation of these complex eigenvalues versus wind velocity is plotted in 

Figure 7.7. 

 

 

Figure 7.7: Variation of real and imaginary parts of complex eigenvalues versus wind velocity. 

 

Figure 7.8: Variation of real and imaginary parts of the flutter mode. 

 

The analysis furnished a flutter critical speed of 31 m/s and a critical frequency of 0.128 Hz. 

 This wind velocity, corresponding to 111,6 Km/h, belongs to the 11th level of the Beaufort scale that 

characterizes the “violent storms”. It is not a common situation, but for decree the safety of the bridge, 

several meteorological researches should be made. Figure 7.7 shows that the frequencies of the lateral 

modes remain stable with the increase of the wind velocity, while the original values of vertical and 

torsional frequencies decrease, more strongly after the critical wind speed. It is not correct to assert that 

the torsional mode is the responsible of flutter instability condition, in fact a variation of the modal shape 

associated to the variation of the eigenvalues can be observed with the increase of the wind velocity. As 

stated in Chapter 4, the interaction between different modes is the triggering factor of the instability. 

Nevertheless, in a strictly analytic sense due to the model adopted, the variation of the torsional 

asymmetric mode (Figure 7.8) is the cause of the flutter instability. In fact, the flutter condition occurs 

when the real part of the complex eigenvalue became positive. 
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7.3. George Washington Bridge, double deck (1962) 
 

The George Washington Bridge has been introduced in section 1.1 and its sectional aerodynamic behavior 

was discussed in section 6.4. In this section a finite element model will be treated in order to study the 

global structure performance of the bridge, and finally determine the critic wind velocity and frequency 

that induce the flatter instability. 

 A “Fish-bone” model was considered inappropriate to model the mechanical behavior of the double 

decked version of the bridge, further, no data was found in the literature regarding the mechanical 

properties. Hence, the entire truss of the central span has been modeled, with the only simplification 

regarding the slabs constituting the decks. As for the model treated in the previous section, the decks 

have been modeled using beam elements, this is a need arising from the method adopted to model the 

unsteady wind forces. The numerical model was realized with the properties listed in Table 7.4, and for 

the additional elements constituting the truss reference have been made to [40] and the main values are 

summarized in Table 7.6. All the elements, except the hangers, have been modeled with BEAM189. Unlike 

the “fish-bone” model, no rigid link and no MASS21 are needed in this model because the mechanical 

behavior is modeled by the interaction of the various elements. The numerical model is shown in Figure 

7.9.  

 

Elements Cross section Area [m2] Moment of inertia [m4] 

 

Longitudinal upper 
beams 

rectangular 1.82 Izz 0.297 Iyy 0.256 

Vertical beams rectangular 1.82 Ixx 0.297 Iyy 0.256 

Longitudinal lower 
beams 

rectangular 0.9 Izz 0.108 Iyy 0.042 

V-shaped up-winds rectangular 0.9 I11 0.108 I22 0.042 

Transversal beams I shaped 0.635 Ixx 0.886 Izz 0.062 

Table 7-6: Geometrical properties of the truss. 

 

Figure 7.9: Finite element model of the George Washington Bridge (1962) without MATRIX27. 
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Before introducing the aeroelastic nodal forces with MATRIX27 elements, a modal analysis was 

performed, the results are summarized in Table7.5. Since is known that flutter instability occurs usually in 

the first modes at lower frequencies, only the first 8 modes have been extracted.  

 

  

Mode 1, L-S, 0.0647 Hz Mode 2, (L+T)-A, 0.1174 Hz 

  

Mode 3, V-A 0.1367 Hz Mode 4, V-S, 0.1584 Hz 

  

Mode 5, (L+T)-S, 0.1842 Hz Mode 6, T-A, 0.1939 Hz 

  

Mode 7, T-S, 0.2149 Hz Mode 8, V-S, 0.2256 Hz 

Table 7-7: Modal frequencies and shapes of George Washington Bridge (1962). 

 

Once evaluated the natural vibration frequencies, the flutter analysis be performed with the method 

descripted in [33]. MATRIX27 elements must be incorporated into the structural model to perform the 

damped modal analyses. Since the aerodynamic parameters of the double deck modeled in section 6.4 

cannot be considered plenty reliable, two different methods have been proposed to model the 

aerodynamic forces acting on the bridge deck. Using the method developer in section 4.4, the aeroelastic 

loads are modeled as nodal forces modifying the stiffness matrix of the element to which the nodes 

belong. 
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The firs method (section 7.3.1) consists in the application of the aeroelastic unsteady forces on the upper 

deck. Where the latter are expressed as functions of the flutter derivatives related to the aerodynamic 

coefficients calculated for the two decks in section 6.4. 

The second method (section 7.3.2) has been proposed in order to avoid using the aerodynamic coefficients 

calculated in section 6.4. It consists in the application of the aeroelastic unsteady forces on both upper 

and lower deck. Where, in this case, the latter are expressed as functions of the flutter derivatives related 

to the aerodynamic coefficients calculated for the single deck in section 6.3. It is worth to underline that 

this method does not represent a linear add that should be forbidden in such a non-linear framework. 

Anyway this procedure is definitively wrong from different point of views. In fact, this simplification 

implies that there is no aerodynamic interference between the two decks, while the mechanical 

interference is correctly modeled by the elements composing the truss. Furthermore, the aerodynamic 

influence of the secondary truss elements is totally neglected. 

 

Figure 7.10: Schematization of the firs method for the application of aeroelastic loads. 

 

Figure 7.11: Schematization of the second method for the application of aeroelastic loads. 
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7.3.1.  First method 

 

As stated in the previous chapter, this method implies that the aerodynamic unsteady forces are applied 

only to the upper deck. A total of 84 elements are employed to formulate 42 aeroelastic stiffness and 42 

aeroelastic damping. The hybrid finite element model incorporating structural model with MATRIX27 

elements for flutter analysis is illustrated in Figure 7.12. The flutter derivatives of thin airfoil have been 

calculated with Eq. (2.4.4) – (2.4.11) where 𝐶𝑙,𝛼 and 𝐶𝑚,𝛼 has been calculated in section 6.4. In Figure 7.13 

the flutter derivatives are plotted as functions of the reduced wind speed. 

 

 

Figure 7.12: Finite element model with MATRIX 27 incorporated. 

 

Figure 7.13 Flutter derivatives of George Washington Bridge (1962). 

 

Finally, the iterative procedure for the determination of flutter speed and frequency has been carried out. 

The computational steps have been followed for the first seven modes extracted by the modal analysis 

and summarized in Table 7.5. The damped complex eigenvalue analyses were conducted for the model 

under wind velocities varying from 0 to 150 m/s. The increment step of wind velocity was set variable, 

from a maximum value of 20 m/s in the ranges far from the flutter instability to a minimum of 1 m/s 
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around the instability. Accordingly, the flutter wind velocity resultant has the accuracy of the unit (m/s). 

The first 7 conjugate pairs of complex eigenvalues and complex eigenvectors are obtained, the variation 

of these complex eigenvalues versus wind velocity is plotted in Figure 7.14. 

 

 

Figure 7.14: Variation of real and imaginary parts of complex eigenvalues versus wind velocity. 

 

 

Figure 7.15: Variation of real and imaginary parts of the flutter mode. 

 

The analysis furnished a flutter critical speed of 98 m/s and a critical frequency of 0.184 Hz. This wind 

velocity, corresponding to 352,8 Km/s, it is higher than the maximum ever recorded. Figure 7.14 shows 

that the frequencies of the lateral modes remain stable with the increase of the wind velocity, while the 

original values of vertical and torsional frequencies decrease, more strongly after the critical wind speed. 

In a strictly analytic sense due to the model adopted, the variation of the 5th mode (Figure 7.15) is the 

cause of the flutter instability. In fact, the flutter condition occurs when the real part of the complex 

eigenvalue became positive. Nevertheless, as stated in Chapter 4, the interaction between different 

modes is the triggering factor of the instability. In this analysis the interaction is more evident than in the 

previous one. In fact, around the flutter wind velocity, the real part of three complex eigenvalues became 

positive, this aspect will be treated in section 7.3.3 in order to make a comparison between the two 

different methods adopted. 
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7.3.2.  Second method 

 

This method has been proposed because allows to avoid the aerodynamic parameters obtained for the 

double decked version of the bridge in section 6.4. It implies that the aerodynamic unsteady forces are 

applied to both decks. A total of 168 elements are employed to formulate 84 aeroelastic stiffness and 84 

aeroelastic damping. The hybrid finite element model incorporating structural model with MATRIX27 

elements for flutter analysis is illustrated in Figure 7.16. Where blue elements are the MATRIX27 that 

represents the aeroelastic stiffness and damping of the upper deck, and the red elements are the 

MATRIX27 of the lower deck. The flutter derivatives are the same utilized in section 7.1 for the single 

decked version (Figure 7.6).  

 

 

Figure 7.16: Finite element model with MATRIX 27 incorporated. 

 

Finally, the iterative procedure for the determination of flutter speed and frequency has been carried out. 

The computational steps have been followed for the first seven modes extracted by the modal analysis 

and summarized in Table 7.5. The damped complex eigenvalue analyses were conducted for the model 

under wind velocities varying from 0 to 120 m/s. The increment step of wind velocity was set variable, 

from a maximum value of 20 m/s in the ranges far from the flutter instability to a minimum of 1 m/s 

around the instability. Accordingly, the flutter wind velocity resultant has the accuracy of the unit (m/s). 
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The first 7 conjugate pairs of complex eigenvalues and complex eigenvectors are obtained, the variation 

of these complex eigenvalues versus wind velocity is plotted in Figure 7.17.  

 

Figure 7.17: Variation of real and imaginary parts of complex eigenvalues versus wind velocity. 

 

 

Figure 7.18: Variation of real and imaginary parts of the flutter mode versus wind velocity. 

 

The analysis furnished a flutter critical speed of 71 m/s and a critical frequency of 0.183 Hz. This wind 

velocity, corresponding to 255.6 Km/h, belongs to the 5th and last category of the Saffir-Simpson scale of 

the hurricanes.  

 Figure 7.17 shows the same trends of the previous analyses: the frequencies of the lateral modes remain 

stable with the increase of the wind velocity, while the original values of vertical and torsional frequencies 

decrease, more strongly after the critical wind speed. In a strictly analytic sense due to the model adopted, 

the variation of the 5th mode (Figure 7.18) is the cause of the flutter instability. In fact, the flutter condition 

occurs when the real part of the complex eigenvalue became positive. Nevertheless, as stated in Chapter 

4, the interaction between different modes is the triggering factor of the instability. In this analysis, as in 

the previous one, the interaction is underlined by the slope of the real part of different eigenvalues. 
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7.3.3.  Comparison between the two methods 

 

The two methods introduced represent a simplification of the real situation. The first, is commonly used 

[33] [41] for the analyses carried out with the method descripted in section 4.4, and provided good results 

compared with other obtained differently. Nevertheless, this method forces the center of the torsional 

rotation to lie in the deck axis. The validity of this assumption is related to the methods adopted for the 

calculation on flutter derivatives, that generally can be different. Regarding the second method, no 

applications have been found in literature, but no applications on double decked bridges have been found 

too. As mentioned before, this simplification implies that there is no aerodynamic interference between 

the two decks and furthermore, the aerodynamic influence of the secondary truss elements is totally 

neglected. Both assumptions are not so far from any realistic cases, but undoubtedly its validity must be 

proved. The two methods furnished significantly different values of critical wind speed, this could be 

attributed to the unreliability of the aerodynamic coefficients calculated for the double decked version of 

the bridge, on which are based the flutter derivatives of the first method. Alternatively, the cause can be 

attributed to the excessive simplifications on which the second method is based. Nevertheless, the 

methods provide a good agreement in terms of flutter frequency, and generally they show the same 

interaction between the different modes. In fact, both methods provide that the responsible mode of the 

flutter instability is the 5th (Figures 7.15, 7.18). Furthermore, the analyses conducted with the two 

methods show a similar trend of the complex eigenvalues related to the torsional modes around the 

flutter wind velocity (Figure 7.19). 

 

 

Figure 7.19: Variation of real and imaginary parts of the torsional modes versus wind velocity.
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8. CONCLUSIONS AND FURTHER DEVELOPMENTS 
 

The aerodynamic analysis of a long span suspension bridge represents a relevant challenge for the civil 

engineers. Most of the analytical models available for flutter analyses are based on the Scanlan 

aerodynamic parameters. Nowadays, the only reliable methods to calculate them, are based on 

sophisticated experimental tests on reduced models in the wind tunnel. In this work of thesis, it has been 

developed a simplified approach that allows to calculate the flutter derivatives by analytical formulations 

based on the aerodynamic static coefficients. Where the latter parameters have been calculated by CFD 

simulations using the finite element software ANSYS FLUENT. Once calculated the flutter derivatives, the 

goal was to determine the critical wind velocity that leads the bridge to the flutter instability adopting the 

commercial finite element software ANSYS APDL. Both, CFD and flutter analyses, have been carried out 

for the two versions of the bridge in order to evaluate the influence of the lower deck on the aerodynamic 

and mechanic behavior. 

The results obtained in the three chapters of the second part can be summarized as follow: 

The application of the simplified method, introduced for the calculation of flutter derivatives, has provided 

good results for the case studies analyzed in the 5th chapter. The main advantage of the method lies in the 

relative simplicity of the calculation of the aerodynamic static coefficients, on which the formulation is 

based. To further validate the method, it should be applied to several and different bridge decks, of which 

both aerodynamic static parameters and flutter derivatives are available for a comparison.  

The methods applied in the CFD analyses provided good results for the 2D model of the Great Belt Est, 

while the results obtained for the application on the Akashi Kaikyo were considered unsatisfactory. The 

reason could lie in the difficult of representing the complex aerodynamic behavior of a truss girder by a 

two-dimensional model. In this area, many improvements can be made, only some of these are listed 

below: 

 some detailed analyses could be carried out in order to better define the boundary conditions 

 a more accurate model for the turbulence structure could be adopted 

 a method to perform a 3D analysis with an affordable computational cost could be investigated 

It is worth noting that in the context of CFD, several complex methods are already available even for the 

direct calculation of the flutter derivatives of bridge decks. So generally, a further development could be 

to reduce the computational cost of the existent methods. 

Regarding the flutter analyses conduced in the seventh chapter, no literature results were available for a 

comparison. But the method adopted has been already validated in several cases [33] [41]. The innovative 

method proposed in section 7.3.2 provided a good result in terms of flutter frequency, and generally a 

realistic outcome. It could represent a good solution for the design of double decked suspension bridges, 

it should be validated by more detailed analysis.  
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