
POLITECNICO DI TORINO

Department of Electronics and Telecommunications
Master of Science in ICT for Smart Societies

Master Degree Thesis

Optical Character Recognition

Supervisor: Author:
Prof. Monica Visintin Ani DEVER

April 2018

DEDICATION

I dedicate this dissertation work to my inspiring parents, for their endless

support and encouragement during the challenges of my life.

ii

ACKNOWLEDGEMENTS

I wish to present my special thanks to Autour team of Shared Reality Lab,

McGill University. They have been a great team, whose help and motivation

made my research successful.

I would like to express my gratefulness to Mathieu Bouchard, the lead

developer of Autour, who taught me a lot about computer science and mobile

application development.

I would like to pay my regards to Professor Monica Visintin, my advisor

at Politecnico di Torino, who inspired my interest to machine learning and

deep learning. Her encouragement made it possible to achieve my goals.

I would like to show my warm thank to Professor Jeremy Cooperstock,

my advisor at McGill University, who gave me the chance being his intern

and explore the research activities at his lab. I appreciate his trust in me, his

moral and financial support.

iii

ABSTRACT

Autour[5] 1 is an eyes-free, cartographical mobile application being devel-

oped by Shared Reality Laboratory of McGill University as a research project.

Autour presently runs on iPhones starting from iPhone 4S and the correspond-

ing Android version is being developed. The application is designed to give

visually impaired individuals a better sense of their surroundings. It can be

used hands-free by leaving the phone in a bag around the user’s neck or hand-

held. It utilizes inbuilt capabilities and sensors of the smart phone such as

accelerometer, gyroscope, compass and Global Positioning System (GPS), to

determine the user’s location and orientation. Then the relevant sound in-

structions are presented to the user either through a bone-conducting or open

air headphones so as not to interfere with the ambient sounds. The applica-

tion’s aim is to use ambient audio to expose the sort of information that visual

cues, e.g signs and markings, give to individuals with sight.

Autour has several modes: the tilt of the device allows users to choose

between two of the modes: horizontal mode and vertical mode. By default,

the vertical mode is Radar mode and the horizontal mode is Beam mode. In

total, user has following modes: Shockwave, Browse, Tutorial, Menu and a

mode that just waits for GPS lock. In any horizontal and vertical mode, user

can tap the screen twice quickly to hear the address where the user is located,

the status of the sensors and a summary of places around the user. While that

is spoken, user may interrupt by tapping the screen once or tilt the device.

There are two different Sweep modes: Radar and Shockwave. Sweep

1 http://autour.mcgill.ca/en/

iv

modes are used when the device is being used horizontally. The selection of

the sweep modes can be done in the settings. In Radar mode, a tap will start

an automatic sweep when the device is pointed upwards with the screen facing

towards the user. The user will hear a ticking sound indicating the progress

of the scan, along with the names of the places around the user sorted by

distance. In Shockwave mode sorting is done by direction, therefore the sweep

is done as a circle starting from where the user is and grows until the specified

maximum distance is reached.

Beam mode can be activated and deactivated in the same manner as in

Sweep modes. When the Beam mode is activated the user will hear a tick,

then places that are in that sector are enumerated in order of increasing dis-

tance.

Browse mode creates a list of places nearby and reads it to the user. The

user can navigate through the list by swiping. Standby mode starts automati-

cally when GPS does not work well. Autour stays in Standby mode until GPS

data is available again.

Autour is a mobile application depending on external services such as

GPS, Foursquare
TM

, Google Places
TM

or OpenStreetMap which can be unreli-

able. The application may fail if certain conditions are not satisfied e.g. if the

user is traveling in a vehicle or if one the external services break unexpectedly.

Autour does not recommends its user to rely on it for navigation and safety,

it is not designed for mobilized user. It is not a replacement for a cane or a

guide dog.

Shared Reality Lab is hosting the Autour team composed of a lead devel-

oper and students with different levels and backgrounds, a team of individuals

with different interests and skills. Current objective is to add new features

v

to Autour (such as scene description, chat boxes and optical character recog-

nition) in order to provide a broad visual feedback to its users. Ideally, the

users will be able to know what kind of scene they are in, what is written in

their point of view and will be able to ask questions about what is happening

around.

The visual task of classifying an object once was a big challenge. Yet,

recent advancements in artificial intelligence have sparked major progression

in computer vision. Now machines are drastically successful at computer vi-

sion problems such as pattern recognition, object detection and classification.

Currently, the most accomplished methods in the literature are deep learning

based. Today it is possible build strong computer vision systems by the help

of deep learning algorithms and frameworks.

This thesis documents the effort given to assemble an optical character

recognition (scene text detection and recognition to be precise) system by

gathering state-of-the-art methods. The primary goal of this thesis work is to

build a system by pipelining two different open source projects provided by

the authors & developers of the methods [69, 51]. Ultimately Autour will be

able to read the texts out loud, present in the user’s scene.

vi

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . ix

1 Introduction . 1

2 Background . 3

2.1 OCR history . 3
2.2 Methodologies . 4

2.2.1 Text Detection . 5
2.2.2 Text Recognition 10

3 Design and Implementation . 13

3.1 Design . 13
3.1.1 Text detection . 14
3.1.2 Text recognition . 17

3.2 Implementation . 21
3.2.1 Text detection . 21
3.2.2 Text recognition . 22
3.2.3 Pipelining . 23
3.2.4 Inference . 27
3.2.5 Training . 29

4 Results and Discussion . 32

4.1 Results . 32
4.2 Discussion . 34

5 Benchmark Datasets . 37

5.1 Text detection . 37
5.2 Text recognition . 39

6 Appendices . 43

Appendix A - project layout . 44

vii

Appendix B - icdar.py . 45

Appendix C - model.py . 64

Appendix D - multigpu train.py . 68

Appendix E - eval.py . 74

Appendix F - preproc.py . 77

Appendix G - box modifier.py . 79

Appendix H - crnn main.py . 81

Appendix I - adaptor.cpp . 87

Appendix J - recognize.py . 89

Appendix K - crnn.py . 91

Appendix L - utils.py . 93

Appendix M - dataset.py . 97

References . 101

List of Abbreviations . 108

viii

LIST OF FIGURES
Figure page

1–1 Scene text detection . 2

2–1 Stepwise methodology . 4

2–2 Integrated methodology . 5

2–3 MSER detection of a sample image from ICDAR 7

2–4 Canny edge detection of a sample image from ICDAR 8

2–5 Text segmentation . 11

3–1 Autour’s high-level data flow 13

3–2 Text detection high-level data flow 14

3–3 A generic FCN architecture 15

3–4 Text recognition high-level data flow 18

3–5 An RNN architecture . 19

3–6 A generic LSTM architecture 20

3–7 An example of box manipulation 26

3–8 A sample image training image from ICDAR15 30

4–1 An instance of text detection 32

4–2 Cropped boxes from Fig 4–1 33

5–1 Typical images from COCO-text 37

5–2 Typical images from MSRA-TD500 38

5–3 Typical images from ICDAR incidental scene text dataset . . . 39

5–4 Typical train images IIIT . 40

5–5 Typical images from SVT . 41

5–6 Typical character recognition images IC03 42

5–7 Typical images from IC13 . 42

ix

6–1 Project layout . 44

x

CHAPTER 1
Introduction

According to World Health Organization (WHO) there are approximately

253 million people living with visual impairment: 36 million are blind and 217

million have moderate to severe vision impairment as of September 2017. Of

these visually impaired people 90% are living in low- and middle-income coun-

tries. Furthermore WHO estimates that up to 80% of visual impairment and

blindness in adults is preventable or treatable. Important progress is already

being made by international communities such as WHO and World Blind

Union in order to fight avoidable blindness. Besides that, the existence of

projects like Autour is remarkably improving the life quality of blind commu-

nity.

Being able to read visible texts in natural scenes e.g name tags at a door,

street nameplates, store names, has a considerable importance in our daily

life as they convey essential information about the environment. A technol-

ogy allowing access to such information could provide a better independent

travel experience, environmental awareness and improved self-confidence to

blind users. This is the exact purpose of this thesis work, adding an end-to-

end scene text detection and recognition engine to Autour in favor of exposing

such opportunity.

Optical Character Recognition, abbreviated as OCR, can be defined as the

identification and conversion of printed, typed or handwritten characters into

machine encoded text. It is a process of transforming and importing already

existing texts into machine environment. On the other hand, scene text de-

tection and recognition is an open and more complicated task when compared

1

to standard OCR. Scene texts do not necessarily have uniform background or

text alignment, they might appear in random sections of the image in different

fonts and languages. These facts makes classic OCR techniques inadequate in

Autour context. An example of scene text detection can be seen in Fig 1–1.

Figure 1–1: Scene text detection
figure taken from ICDAR’s website: http://rrc.cvc.uab.es/?ch=2&com=tasks

2

CHAPTER 2
Background

2.1 OCR history

The idea of machines imitating human abilities is a long coming idea, and

character recognition has always been a subset of this idea. The invention

of character recognition is considered as Charles R. Carey’s retina scanner.

Later on in 1954 The Reader’s Digest magazine installed an OCR mechanism

to convert the sales reports into punched cards. As these advancements have

triggered the progression, OCR started to have a bigger role in our life as in

form of postal, passport and price tag scanner.

Nowadays, OCR is a domain of computer vision which obtains increasing

popularity and significance. Top level conferences such as Conference on Com-

puter Vision and Pattern Recognition (CVPR) and International Conference

on Computer Vision (ICCV) have witnessed major discoveries in computer

vision and pattern recognition. The International Conference on Document

Analysis and Recognition (ICDAR) is a leading conference touching to charac-

ter and text recognition along with camera and video based scene text analy-

sis. The ICDAR hosts number of competitions: Arabic, Chinese Handwriting

Recognition Competition, Writer Identification Contest. Nonetheless the most

promising one for Autour’s case is the Robust Reading Competition. “Robust

Reading”1 refers to the research area dealing with the interpretation of writ-

ten communication in unconstrained settings such as born-digital (such as the

1 http://rrc.cvc.uab.es/

3

ones used in Web pages and email messages) and real scene images and videos.

Typically Robust Reading is linked to the detection and recognition of textual

information in scene images. The competition is organized around challenges

that represent specific application domains for robust reading. Challenges are

selected to cover a wide range of real-world situations such as Incidental Scene

Text, Focused Scene Text [27].

2.2 Methodologies

Complete text detection and recognition systems can be analyzed with

two commonly used methodologies: stepwise (see Fig 2-1) and integrated

(see Fig 2-2). Integrated methodologies, have a goal of recognizing words

where the detection and recognition procedures share information with char-

acter classification and/or use joint optimization strategies [64]. With an in-

tegrated methodology, character classification responses are considered the

primary cues, and shared with detection and recognition modules. Stepwise

methodologies, by contrast, have separated detection and recognition mod-

ules, and use a feed-forward pipeline to detect, segment and recognize text

regions. They typically employ a coarse-to-fine strategy, which first localizes

text candidates, and then verifies, segments, and recognizes them [61].

Figure 2–1: Stepwise methodology

4

Figure 2–2: Integrated methodology

2.2.1 Text Detection

Existing methods for text detection can be roughly categorized into two

major groups: connected component (CC) based methods [7, 11, 55], and re-

gion based methods (also called sliding window based methods) [4, 44, 8].

The region based methods use a multi-scale window to exhaustively scan

through an image for candidate text regions. Then these regions are clas-

sified as text or non-text regions by a classifier which may exert intensity

histogram, gradients or edges. Candidate text regions are first found with an

edge map or gradient information. Subsequently, a refinement stage is con-

ducted using heuristic rules or learned classifiers [66]. Region based methods

commonly utilize an Adaboost classifier [31, 15, 8]. Recently deep learning ap-

proaches [59, 25, 9] are exploited, unsupervised learning techniques are used

in [9] individually for detection and recognition, a linear SVM classifier is em-

ployed to classify the candidate regions. Although these methods can detect

text effectively with high recall rate and robust to noise, their classification

can be sensitive to false positives due to the large number of candidates. But

due to heavy computations for intensive window scanning and advanced clas-

sification, these approaches are unsatisfactory to real-time applications.

The connected component(CC) based methods follows the connected com-

ponent analysis theory, a case where subgroups of CCs are uniquely labeled

5

hinge on heuristics. The candidate text regions are generated based on ex-

tracted CCs of the region, which may differ by the used properties e.g spatial

layout, color [65], edge [22], texture [28] or gradient [32] features. Color fea-

tures are used under the assumption of ”text is often produced in a consistent

and distinguishable color so that it contrasts with the background” [33]. The

family of edge/gradient-based approaches assumes that text exhibits a strong

and symmetric gradient against its background. Thus, those pixels with large

and symmetric gradient values could be regarded as text components. [64].

Then non-text regions are eliminated, a conditional random fields (CRFs)

model is adopted in [46] for this purpose whereas in [70], a neural network is

used. The advantage of the connected component methods is that their com-

plexity typically does not depend on the properties of the text (range of scales,

orientations, fonts) and that they also provide a segmentation which can be

exploited in the OCR step. Their disadvantage is a sensitivity to clutter and

occlusions that change connected component structure [44].

Especially, Maximally Stable Extremal Regions(MSER) [39] and Stroke

Width Transform(SWT) [13] are two breakthrough techniques which already

have achieved impressive performance in scene text detection. MSER is an

affine feature region detection algorithm used for blob detection in images.

The MSER algorithm extracts a number of co-variant regions called MSER

which are connected components of the appropriately thresholded image. A

new set of elements alleged extremal regions are introduced, these elements are

distinguished regions possessing important properties: they are closed under

the affine transformation of image coordinates and invariant to affine transfor-

mation of intensity. The word ‘extremal’ refers to the property that all pixels

inside the MSER have either higher (bright extremal regions) or lower (dark

extremal regions) intensity than all the pixels on its outer boundary. The

6

‘maximally stable’ in MSER describes the property optimized in the thresh-

old selection process [40]. These properties makes MSER robust against scale,

view point and lighting changes. This is why MSER is a widely adopted

algorithm in context of text detection among the other region detectors e.g

Harris-affine and Hessian-affine. An example of MSER method is depicted in

Fig 2–3.

Figure 2–3: MSER detection of a sample image from ICDAR

The use of MSER based methods for text detection and recognition started

with [11], where MSERs are classified using cross-correlation with training

templates. However, its sensitivity against blur makes it unsatisfactory to

utilize without an auxiliary technique; in [7], MSER and Canny edges [6] are

combined to obviate MSER’s sensitivity against blur, which is achieved by re-

moving the pixels outside the boundaries formed by Canny edges. In [23, 55]

an intersection of Canny edges with MSER region is taken into considera-

tion. Then a Stroke Width Transform step is placed after region detection by

7

Canny enhanced MSER. An example of MSER method is depicted in Fig 2–4

(OpenCV implementation of Canny [6]).

Figure 2–4: Canny edge detection of a sample image from ICDAR

Stroke Width Transform assumes that attached characters constructing

text blocks are sharing similar attributes suchlike size, color and especially

stroke width. SWT is a local image operator which computes per pixel the

width of the most likely stroke containing the pixel. The output of the SWT

is an image of size equal to the size of the input image where each element

contains the width of the stroke associated with the pixel [13]. The biggest

restraint of SWT method is its reliance on edge detection which may be un-

successful in presence of blur and low-contrast. The approach defined in [23]

uses SWT as filtering, text candidate regions where the stroke width varies

largely are eliminated. Where [7] proposes a way of determining the stroke

width based on distance transform, guaranteeing to provide stroke width in-

formation at every pixel of the original connected component with any stroke

form. Different ways of enhancing SWT are introduced in [3] by edge ori-

entation variance(EOV) and opposite edge pairs(OEP) or a combination of

spatial-temporal analysis in [38].

8

However, these methods fall behind of those based on deep neural net-

works, in terms of both accuracy and adaptability, especially when deal-

ing with challenging scenarios, such as low resolution and geometric distor-

tion [69]. Deep learning based methods [68, 56, 35, 69, 26] achieved notable

performance when compared to traditional methods. A Fully Convolutional

Network (named Text-Block FCN) is used to generate a pixel-wise text/non-

text salient map in [68], text blocks are detected via the FCN, followed by

multi-line oriented text line extraction considering MSER components. The

approach described in [56] introduces a novel Connectionist Text Proposal

Network, a joint Convolutional Neural Network - Recurrent Neural Network

model that directly localizes text sequences in convolutional layers. Authors

of [56] have also developed a vertical anchor regression mechanism that jointly

predicts vertical location and text/non-text score of each text proposal. The

sequential proposals are naturally connected by a recurrent neural network,

a Bi-directional Long Short Term Memory. Even though the method is reli-

able at horizontal and multi-scale text detection, it is not as competent as for

text written at an angle. TextBoxes [35] is an end-to-end scene text detector

inspired by SSD [36] and inherits the popular VGG-16 architecture [54]. Au-

thors of [35] have proposed a single neural neural network to detect texts by

directly predicting word bounding boxes. The approach adopts CRNN [51] as

text recognizer in conjunction with TextBoxes, therefore it results in a simple

pipeline and a single network to train. The work in [69] is named EAST, a

simplistic scene text detection pipeline exploiting an FCN. The network has

two stages only: an FCN which directly produces word or text-line level pre-

dictions, excluding redundant and slow intermediate steps such as candidate

proposal, text region formation and word partition and NMS stage to obtain

ultimate results. The method proposed in [26] is called Rotational Region

9

CNN based on Faster R-CNN [48] architecture. Authors take advantage of a

Region Proposal Network to generate bounding boxes enclosing the candidate

regions containing text. These proposals are classified and bounding boxes are

refined before NMS is utilized to post-process the region candidates to yield

the final results.

2.2.2 Text Recognition

Text recognition can be defined as the task of converting regions con-

taining text into strings. Traditionally, text recognition has been focused on

document images, where OCR techniques are well suited to digitize planar,

paper-based documents. However, when applied to natural scene images, these

document OCR techniques fail as they are tuned to the largely black-and-

white, line-based environment of printed documents [25]. Despite the efforts

and improvements, scene text recognition still remains as a challenging task

considering the fact that the scene text regions might have complex back-

ground and non-uniform text patterns. In scene text detection-recognition

case, detection modules generates bounding boxes around text candidate re-

gions, after this point text recognition attempts to recognize the text repre-

sented within the box or refuse the box in case of a false positive detection.

The text recognition problem has been addressed in the literature on mul-

tiple levels: character recognition [9, 50], word recognition [45, 43] and text

detection. The character recognition problem implicates constructing a recog-

nizer to attain a probability distribution over all characters, when a character

containing image is introduced. The character recognition problem is a classi-

fication problem that is generally addressed with the use of strong classifiers

such as CNNs in [59], deformable parts models [53] or manually-engineered

feature-extraction followed by a classifier [12]. The word recognition problem

10

is, much like phone recognition and handwriting recognition, a sequence recog-

nition problem. Previous works have addressed this problem using CNNs [60],

Conditional Random Fields (CRFs) [43, 45] and Pictorial Structures (PS) [2].

As for scene text (cropped word) recognition, the existing methods can be

grouped into segmentation-based word recognition and holistic word recogni-

tion. The main method for scene text recognition is considered as segmentation-

based word recognition. In general, segmentation-based word recognition

methods integrate character segmentation and character recognition with lan-

guage priors using optimization techniques, such as Markov models and CRF [66].

Methods of text segmentation are:

• text binarization: operates to extract text pixels and remove the back-

ground pixels

• text line segmentation: attempts to convert a region of multiple text

lines into multiple sub-regions of single text lines

• character segmentation: separates a text region into multiple regions of

single characters [64]

An instance of text segmentation is shown in Fig 2–5.

Figure 2–5: Text segmentation
figure taken from ICDAR’s website: http://rrc.cvc.uab.es/?ch=2&com=tasks

Text segmentation step is used by approaches [4, 25] to achieve accurately

bounded characters. These approaches treat isolated character classification

11

and subsequent word recognition separately. As they read each character in-

dependently they do not unleash the full potential of word context information

in the recognition. Nonetheless their performance is severely harmed by the

difficulty of character segmentation or separation. Importantly, recognizing

each character independently discards meaningful context information of the

words, significantly reducing its reliability and robustness [17]. Great portion

of the work in this field relies on lexicon-dependent approaches. A lexicon is

a set of label sequences that prediction is constrained to, e.g. a spell checking

dictionary [51]. As it currently stands, it is difficult to recognize words with

high accuracy without any language model due to the character confusion

problem, therefore, all of the previous systems rely on lexicons to improve the

results. However, since lexicons can be very large, authors of [2] make the

distinction in our approach between where query time is linear in the size of

the lexicon and those approaches where it is constant.

Given that texts are formed by sequentially ordered characters it is possi-

ble to see them as sequence-like objects. A system aspiring to recognize these

objects are supposed to predict a series of labels, therefore this task can be cast

as a sequence recognition problems where the length of the sequence may vary

severely. RNNs are primarily designed to handle sequences and they are able

to effectively learn continuous sequential features. Novel approaches [51, 17]

are exploiting RNN’s capability of learning continuous sequential features suc-

cessfully by combining it with convolutional layers in order to leverage both

the advantages of CNN and RNN.

12

CHAPTER 3
Design and Implementation

3.1 Design

As described and mentioned before, the goal of this dissertation is to

design, build and integrate a scene text detector-recognizer to Autour for a

possible use case that can be seen in Fig 3–1. The process starts when user

captures a photo, that photo is then uploaded to a server which contains the

deep learning models (OCR, scene description and chat box). Once the photo

is received by the server, it is inferred through the neural networks. Each

model generates its output and these outputs can be combined (text regions

with detected objects) if there is a relevant match. A stepwise approach (see

Fig 2–1) is followed in order to construct OCR pipeline to be invoked upon

query. The scene text detection-recognition module consists of two major

modules as is evident from its name.

Figure 3–1: Autour’s high-level data flow

13

3.1.1 Text detection

Text detection module relies on EAST: An Efficient and Accurate Scene

Text Detector [69] and its reimplementation 1 with TensorFlow [1]. A high-

level overview of text detection module is depicted in Figure 3–2. The funda-

mental element of the proposed algorithm is a fully-convolutional neural net-

work which follows the general principles of [21]. The proposed model aban-

dons unnecessary intermediate components and steps, and allows for end-to-

end training and optimization. The resultant system, equipped with a single,

light-weighted neural network, surpasses all previous methods by an obvious

margin in both performance and speed.

Figure 3–2: Text detection high-level data flow

Various parameters should be taken into consideration whilst designing

neural networks aimed to detect text. Predicting bounding geometries of a

small text region requires low level information in early stages, while large text

regions need features from late-stage of a neural network. A network should

be designed in a way that it should be able to utilize features from early and

late stages of its structure, considering the fact that real scene text regions are

not uniform. HyperNet [30] meets these conditions on features maps, however

merging a large number of channels on large feature maps would significantly

increase the computation overhead for later stages. In remedy of this, authors

1 https://github.com/argman/EAST

14

of EAST have adopted the idea from U-shape [49] to merge feature maps grad-

ually, while keeping the up-sampling branches small [69].

EAST’s model can be decomposed in to three parts: feature extractor

stem, feature-merging branch and output layer. An image is passed into the

FCN, starting from the feature extractor and multiple channels of pixel-level

text score map and geometry are generated at the output layer. A generic FCN

architecture can be seen in Fig 3–3. The stem can be a convolutional network

with interleaving convolution and pooling layers. Four levels of feature maps

are extracted from the stem, whose sizes are respectively 1
32
, 1
16
, 1
8
and 1

4
of the

input image. As a base model of stem, three different networks are examined:

VGG16 [54] which is a commonly used model in many tasks, PVANET [19]

a light-weight substitute of the feature extractor Faster-RCNN [48] and its

double-channeled version PVANET2x. A generic FCN architecture developed

for classification is depicted in Fig 3–3.

Figure 3–3: A generic FCN architecture
Image taken from from Matworks - https://www.mathworks.com/discovery/convolutional-neural-network.html

In the branch the features are gradually merged, in each merging stage,

the feature map from the last stage is first fed to an unpooling layer to double

its size, and then concatenated with the current feature map [69]. The final

15

output layer contains several 1× 1 convolution operations to project 32 chan-

nels of feature maps into 1 channel of score map and a multi-channel geometry

map. Authors of EAST have experimented two geometry shapes for text re-

gions, rotated box (RBOX) and quadrangle (QUAD), the geometry output

can be one of them. For RBOX, the geometry is represented by 4 channels of

axis-aligned bounding box (AABB) R and 1 channel rotation angle θ, R is for-

mulated in [21]. The authors of [21] have defined the left top and right bottom

points of the target bounding box in output coordinate space as pt = (xt, yt)

and as pb = (xb, yb) respectively, then each pixel i is located at (xi, yi) in the

output feature map describes a bounding box with a 5-dimensional vector as

t̂i = i{ŝ, ˆdxt = xi − xt, d̂yt = yi − yt, ˆdxb = xi − xt, ˆdyb = yi − yt}, 4 channels

ˆdxt, d̂yt, ˆdxb, ˆdyb denote 4 distances from the pixel location to the top, right,

bottom, left boundaries of the rectangle respectively and ŝ is the confidence

score of being an object in. In EAST, ŝ denotes the rotation angle θ. For

QUAD, 8 numbers are used to denote the coordinate shift from four corner

vertices (same as RBOX description) of the quadrangle to the pixel location

As each distance off-set contains two numbers (Δxi,Δyi) the geometry output

contains 8 channels [69].

Non-Maximum Suppression (NMS) stage has made its place in object de-

tection methods as a post-processing step. As a popular pattern (object, text)

detection approach the geometry scores are filtered by a predefined thresh-

olding, valid geometries are then merged through NMS. A greedy NMS algo-

rithm greedily selects high scoring detections and deletes close-by less confident

neighbors since they are likely to cover the same object, a reasonable practice,

since the actual goal is to generate exactly one detection per object. Yet the

greedy NMS method makes hard decision by deleting detections and bases this

decision on one fixed parameter that controls how wide the suppression is [20].

16

A naive NMS (running in O(n2), where number of candidate geometries is

noted as n) would not be efficient, as the predictions are in great number.

As an alternative a weighted merge algorithm is developed by the authors of

EAST instead of a greedy NMS by assuming that closely located pixels are

likely to be highly correlated. Developed algorithm merges the geometries row

by row, and while merging geometries in the same row, it iteratively merges

the geometry currently encountered with the last merged one. The coordi-

nates of merged quadrangle are weight-averaged by the scores of two given

quadrangle. To be clear, given two quadrangles g, p, the proposed method

WEIGHTEDMERGE is defined as follows: a = WEIGHTEDMERGE(g, p)

then ai = V (g)gi + V (p)i and V (a) = V (g) + V (p) where ai is one of the co-

ordinates of a subscripted by i and V (a) is the score of geometry a.

3.1.2 Text recognition

Text recognition module is built on An End-to-End Trainable Neural

Network for Image-based Sequence Recognition and Its Application to Scene

Text Recognition [51] which originally is implemented in Torch [10] but for this

project its PyTorch [47] 2 port 3 is chosen. Convolutional Recurrent Neural

Network is explicitly designed for recognizing sequence-like objects in images.

CRNN is a combination of Deep Convolutional Neural Network (DCNN) and

Recurrent Neural Network (RNN). This combination possesses desired prop-

erties from both architecture and it is not confined by their constraints. Like a

DCNN, CRNN is able to learn informative representations directly from image

data but it has much less parameters than a standard DCNN model. CRNN is

capable of producing sequence of labels still it is not constrained by the length

2 http://pytorch.org/

3 https://github.com/meijieru/crnn.pytorch

17

of the sequence-like object. A high-level overview of text detection module is

depicted in Fig 3–4.

Figure 3–4: Text recognition high-level data flow

The convolutional layers automatically extract a feature sequence from

each input image. These layers are adopted from a standard CNN by taking

its convolutional and max-pooling layers and removing fully-connected layers

so that it can be used to extract a sequential feature representation from an

input image. Then a sequence of feature vectors is extracted from the fea-

ture maps produced by the convolutional layers and fed into recurrent layers.

Convolutional layer architecture is based on well-known VGG [54] design. A

deep bidirectional Recurrent Neural Network, as recurrent layers, is built on

the top of the convolutional layers, in order to make prediction for each frame

of the feature sequence. An RNN is favored in this context because of sev-

eral reasons: its strong capability of capturing contextual information within

a sequence, its ability to back-propagate error differentials to its input, its

strength to operate on sequences of arbitrary lengths, traversing from starts

to ends. However, traditional RNN units deteriorates from vanishing gradient

problem which prevents the gradients i.e. weights of the network, from chang-

ing its value. Vanishing gradient problem confines the range of context the

unit can store and causes difficulty to train the network. The basic structure

of a recurrent neuron is shown in the left hand side of Fig 3–5, the unfolding

of three time steps of the RNN is depicted in the right-hand side.

Long Short Term Memory (LSTM) [18] is specifically designed to address

18

Figure 3–5: An RNN architecture
Image taken from from https://wiki.tum.de/display/lfdv/Recurrent+Neural+Networks+-+Combination+of+RNN+and+CNN

this problem. A common LSTM composition consists of a memory cell, an

input gate, an output gate and a forget gate. Essentially, the memory cell

stores past values e.g. states, and the input and output gates allow the cell

to store values for either long or short time periods. This time interval is

defined by designing the forget gate’s activation, namely, the use of linear

identity function (which has 1 as its derivative) will avoid the gradient to van-

ish. Nevertheless, in image-based sequences, information from both forward

and backward directions are valuable and complementary to each other yet

traditional LSTM’s are unidirectional, allowing the use of only past informa-

tion. To overcome this issue a bidirectional LSTM is designed by merging a

forward and a backward LSTM. A generic LSTM is depicted in Fig 3–6 with

its gates. The implementation can be seen on crnn.py on page 91 as class

named BidirectionalLSTM.

The transcription layer, as the final component of CRNN is adopted to

translate the per-frame predictions by the recurrent layers into a label se-

quence. For this reason conditional probability defined by Connectionist Tem-

poral Classification (CTC) layer proposed in [14] is adopted . CTC is proposed

to solve a fundamental issue of RNNs. RNNs can only be trained to make a

series of independent label classifications. This means that the training data

must be pre-segmented, and that the network outputs must be post-processed

19

Figure 3–6: A generic LSTM architecture
Image taken from: https://wiki.tum.de/display/lfdv/Recurrent+Neural+Networks+-+Combination+of+RNN+and+CNN

to give the final label sequence. CTC models all aspects of the sequence within

a single network architecture and trains the network to label the entire input

sequence at once [14].

Both lexicon-based and lexicon-free transcription are examined. However,

for extensive lexicons, such as Hunspell spell-checking dictionary4 , it would be

highly time consuming to execute an exhaustive search over the lexicon. The

authors of [51] have discovered that label sequences predicted via lexicon-free

transcription are generally close to the ground-truth under the edit distance

metric. Exploiting this fact, CRNN authors were able to limit the search to

the nearest neighbor candidates in order to cope with long search issue.

The objective function (negative log-likelihood of conditional probability

of ground truth) which calculates a cost value directly from the image and its

4 https://hunspell.github.io

20

ground truth label sequence is defined. Stochastic gradient algorithm is used

to train the network, where gradients are calculated by the back-propagation

algorithm [51].

3.2 Implementation

3.2.1 Text detection

The text detection module is implemented using Google’s open-source

machine learning framework TensorFlow. Main programming language of the

project is Python. However, locality aware NMS module is written in C++ by

the authors of [51] which provides drastic time savings. The project depends

on several Python packages. SciPy, is a Python ecosystem consists of packages

like NumPy and Matplotlib which are commonly used in mathematics, science,

and engineering applications. Especially NumPy is a preferred Python library

especially for scientific applications like neural networks, providing support for

large, multi-dimensional arrays and matrices, along with a broad set of high-

level mathematical functions to perform on these arrays. Polygon function of

Shapely, a Python package for manipulation and analysis of planar geometric

objects, ease area calculations of polygons, use can be seen on page 45 of ic-

dar.py. Besides that there are several architectural differences between the

implementation and the published paper: paper adopts three different base

networks VGG16 [54], PVANET [19] and PVANET2x for its feature extractor

stem, for the Tensorflow implementation of ResNet50 [16] is selected. ResNet

(Residual Network) introduces residual learning, which eases the training of

the network and provides increased depth. The variants of ResNet (ResNet50,

ResNet101, ResNet152) have proved their success and accuracy on image clas-

sification. As ResNet V1 50 implementation 5 of TensorFlow’s TF-Slim library,

5 https://github.com/tensorflow/models/blob/master/research/slim/nets/

21

a lightweight package for defining, training and evaluating models, is utilized.

The paper experiments with two geometry shapes for text regions: rotated

box (RBOX) and quadrangle (QUAD). EAST authors have adopted balanced

cross entropy loss inspired by [63] to facilitate a simpler training procedure.

The loss function is defined as −βY ∗logŶ − (1−β)(1−Y ∗)log(1− Ŷ) where Ŷ

is prediction of the score map (named F score in the code), Y ∗ is the ground

truth and β is the balancing factor between positive and negative samples.

Alternatively the implementation uses dice loss (optimize Intersection over

Union of segmentation) for both score map prediction and RBOX regression.

Briefly, dice loss is a measure of overlap, proposed in [41] as a loss function.

Authors of [41] states that dice coefficient is a quantity ranging between 0 and

1 aimed to be maximized. The dice coefficient D between two binary volumes

is be written as:

D =

2
N�
i

pigi

N�
i

p2i +
N�
i

g2i

where the sums run over the N voxels, of the predicted binary segmentation

volume pi ∈ P and the ground truth binary volume gi ∈ G. The code defini-

tion of loss function and dice coefficients can be seen on page 64, defined in

model.py as loss and dice coefficient functions respectively.

3.2.2 Text recognition

The text recognition module is originally implemented 6 by the authors

of [51], using Torch [10] an open source machine learning library implemented

in C with a wrapper in LuaJIT scripting language. The original implementa-

tion is a good reflection of the published paper with custom implementations

6 https://github.com/bgshih/crnn

22

for the LSTM units (in Torch7/CUDA), the transcription layer (in C++) and

the BK-tree data structure (in C++). However for Autour’s OCR PyTorch

port is selected, which is slightly different than the original. The original im-

plementation contains two modes of transcription, namely the lexicon-free and

lexicon-based transcriptions. In lexicon-free mode, predictions are made with-

out any lexicon. In lexicon-based mode, predictions are made by choosing the

label sequence that has the highest probability. In the paper, ADADELTA [67]

is used for optimization to automatically calculate per-dimension learning

rates. The PyTorch port is built on PyTorch, an open-source deep learn-

ing framework mainly developed by Facebook’s artificial intelligence research

team. It wraps the core Torch binaries in Python. The project has two de-

pendencies: lmdb and warp-ctc. Lmdb is a universal Python binding for the

LMDB Lightning Database, it is used to create a tiny database to manipu-

late (resize, label, batch) the images. Warp-CTC is a CTC implementation

developed by Baidu’s AI Lab. Since the project is implemented in PyTorch,

Warp-CTC’s PyTorch binding7 is used. Unlike the original implementation

PyTorch port does not provide lexicon-based transcriptions despite this it en-

ables to choose between ADAM, ADADELTA and RMSprop as optimizer.

3.2.3 Pipelining

Testings of this project is started in McGill University’s Shared Reality

Lab computer with a dedicated NVIDIA Tesla K40c GPU with CUDA 7.5 in-

stalled and a 4 core Intel Core i5 Haswell CPU at 3.50GHz. Tesla series GPUs

are targeted for high-performance computing applications such as stream pro-

cessing, deep learning(both training and inference). Tesla K40c model has

2880 processor cores, 12GB of memory with type DDR5 SDRAM.

7 https://github.com/SeanNaren/warp-ctc

23

GPUs differently from CPUs are designed to compute the same instruc-

tions in parallel, they might have thousands of cores, more computational

units and a higher bandwidth to retrieve from memory. On the other hand,

DNN’s are engineered in a manner such that at each layer of the network thou-

sands of identical artificial neurons perform the same computation (especially

huge amounts of matrix multiplications). As a consequence, the structure

of a DNN fits greatly with the sorts of computation that a GPU can effi-

ciently (by parallelizing) perform. Exclusively NVIDIA is pioneering artificial

intelligence with their specially designed hardware and their SDKs such as

cuDNN, cuSPARSE and cuBLAS to support main deep learning frameworks

e.g. TensorFlow, Keras and PyTorch. CUDA Toolkit of NVIDIA supplies

a development environment for building high performance GPU-accelerated

applications. With CUDA, developers are able to greatly fasten computing

applications by exploiting the power of GPUs. In GPU-accelerated applica-

tions, CPU handles the sequential part of the workload since it is is optimized

for single-threaded performance, while the computationally demanding frag-

ment of the application runs on GPU cores in parallel. As the modules are

implemented in different frameworks, it is critical to make sure that both

frameworks will be able to access GPU for computations by installing their

GPU-enabled versions.

The main contribution of this thesis is to combine the two aforemen-

tioned modules in a pipeline. By default, EAST’s implementation is generat-

ing axis-aligned minimum bounding boxes (AABB) are wrapped around the

text region. Namely, the text detection module produces bounding boxes in a

following manner (x1, y1, x2, y2, x3, y3, x4, y4). Meanwhile CRNN’s implemen-

tation uses Python Imaging Library (PIL) which accepts rectangles as input, in

this case it was not possible to use text detection’s output without modifying.

24

The solution is to produce bounding boxes using its (min(x), max(x), min(y),

max(y)) coordinates which encloses the AABB generated by text detection.

These bounding boxes are very likely to have bigger size as they have excess

pixels with no text content, modified to fit the conditions. In other words, a

box with coordinates (377, 117, 463, 120, 465, 130, 378, 150) is enlarged to

(377, 465, 117, 150). Finally these boxes are cropped from the image, rep-

resented as NumPy ndarrays and passed to text recognizer (recognize.py),

starting from line 87 of eval.py on page 74. However, text detection module

intrinsically produces tightly wrapped bounding boxes around the text region,

this causes separation of words which are meant to be read and/or pronounced

together.

A straightforward search algorithm is developed to predict such text re-

gions (to be combined), so that each cropped box can be passed in recogni-

tion module individually. This algorithm is called match check (defined in

box modifier.py on page 74) and it basically looks for an overlap of bound-

ing boxes over all possible permutations of two boxes. Since the boxes are

enlarged, the probability of overlap of relevant boxes is naturally increased.

This approach lowers the probability of false transcriptions by breaking word

sequences. An image is shown in Fig 3–7 to provide better understanding of

box modifier.py. Green boxes are created by the text detection module, yet

red boxes are cropped to pass into text recognizer then as the overlapping

boxes (the ones at top right-hand corner and the ones at mid right-hand side)

are combined together (after recognition) to form a bigger box.

Recognition module then transcripts each cropped box into a string. In

order to have accurate and relevant results a spellchecking library PyEnchant

is placed after recognition. Each string is run through the dictionary to check

25

Figure 3–7: An example of box manipulation

whether the word is correctly spelled, in case the word is misspelt the first

element from a suggestion list (where the suggested words are ordered from

most likely replacement to least likely) is returned. It is an essential step,

especially for a city like Montreal where both English and French is commonly

used in daily life.

To sum up, this thesis work gathers two independent open-source work

and builds a bridge between them. Output of the text detection module is

manipulated and provided to text recognition, then the results are improved

with the help of a spellchecking dictionary. Exploiting the location infor-

mation of the boxes, the strings ‘likely to be related’ are combined with a

developed algorithm and their box coordinates are merged. As the developed

and provided projects of the authors of EAST [69] and CRNN [51] are per-

forming satisfactory, no modifications are done on top of values selected by

them. Python scripts of the original projects are divided into smaller parts in

order to have a clear view and understanding e.g preprocess.py, detect.py

and recognize.py. Project layout in an Integrated Development Environ-

ment can be seen on page 44. By default trained CRNN model is stored in

26

directory model CRNN, trained text detection (EAST) model is stored in di-

rectory east icdar2015 resnet v1 50 rbox and the input images are taken from

directory images.

3.2.4 Inference

The inference can be initiated by invoking eval.py found on page 79.

Multiple flags are set with tf.app.flags.DEFINE string to define variables such

as input data path, model path and GPU list. By its design Tensorflow has

two main steps: constructing a dataflow graph (tf.Graph) and executing the

graph in a session (tf.Session). Generally most Tensorflow programs begins

with a dataflow construction stage, where nodes (tf.Operation) and edges

(tf.Tensor) are specified in an abstract way. Then a tf.Session is created,

running the session allows the graph to be executed on resources like CPU or

GPU. This approach brings few favorable attributes such as parallelism, dis-

tributed execution, compilation and portability. In eval.py they are defined

as tf.get default graph().as default() and

tf.Session(config=tf.ConfigProto(allow soft placement=True)) as sess respec-

tively, allow soft placement flag ignores tf.device annotations that attempt to

place CPU-only operations on a GPU device. When the session is created the

trained model is restored from checkpoint path defined with a flag.

The function get images (defined at preproc.py, page 77), is used to load

the images from test data path. Then the images are resized by the function

resize image (there is no certain input size, however by design it has to be

multiple of 32 and less than 2400 pixels per vertex in order to confine GPU

memory usage).

In line 65 of eval.py the session is run, the input images are fed into

model. Within the function model (defined in model.py) the model is easily

built through the use of argument scoping, arg scope, provided by tf.slim. The

27

function model takes images as input and generates score (F score) for each

geometry (F geometry), where F geometry is represented by 4 channel of axis

aligned bounding box and 1 channel rotation angle.

The obtained scores and geometries are passed to function detect (defined

at detect.py, on page) as parameters: score map and geo map. Besides these,

detect has three different constant threshold parameters: score map thresh,

box thresh=0.2, nms thres=0.6. They are thresholds for respectively: score

map, box, non-maximum suppression. Score maps are filtered according to

threshold value and detected boxes are sorted via the y-axis afterwards. The

sorted boxes are then restored with function restore rectangle (defined in ic-

dar.py, on page 45) before NMS.

NMS stage (implemented in C++ and ported to project) is initiated at

line 37 of detect.py by invoking the function merge quadrangle n9, alterna-

tively there is an unused Python version of NMS is included within the project

under the name locality aware nms.py. The script adaptor.cpp (can be

seen on page 87) describes the bindings. The obtained bounding boxes with

low scores are filtered by the average score map, differently from paper.

Acquired bounding box coordinates are checked for their coherence, start-

ing at line 83 of eval.py. In the sequel, these boxes are cropped as mentioned

in section 3.2.3 and fed into recognizer.

Each step before this point was a component of text detection, by calling

recognize.py system switches to text recognition. When the function rec-

ognize is invoked an instance of CRNN model (defined in crnn.py, on page

91) is created depending on CUDA availability. Then the trained model is

loaded from model path. The defined alphabet (at line 13 of recognize.py)

is then converted from string to labels by function deode in class strLabelcon-

verter defined in utils.py (can be found on page 93). The cropped bounding

28

box image is loaded, resized (to 100× 32) and passed into a PyTorch variable

with the same name (image). Raw predictions are attained after an inference

through the network (see line 45 of recognize.py).

The inference of an high definition image through the text detection net-

work takes less than 1.5 seconds and less than 50 millisecond at NMS stage

(around 400 milliseconds when NMS Python is used), an inference through

the whole pipeline takes less than 3 seconds on the mentioned computer of

Shared Reality Lab. On a mid-end computer with no CUDA support and

an Intel i5 CPU at 2.50GHz (model runs on CPU), text detection inference

takes about 4 seconds and the whole pipeline inference runs around 6 seconds.

Bearing in mind that, as GPU limitations are not explicitly set, deep learning

frameworks allocates all GPU memory for the process whilst they run. The

size of the input image and the number of text regions in the image plays a

crucial role on inference timing as well as GPU performance .

3.2.5 Training

Since there are two different modules implemented on two different frame-

works, they have to be trained separately. Text detection model can be

trained by running multigpu train.py. Several flags are set in the begin-

ning of the script e.g. batch size per gpu, learning rate, save checkpoint steps

and save summary steps. At the function tower loss (starting at line 28 of

multigpu train.py) the inference graph is built by calling the model defined at

model.py. Model loss is computed with loss function defined in model.py

and by adding regularization losses to model loss, total loss is computed (see

line 35 of multigpu train.py) In the main function, placeholders for input

images and geometry maps are created global step, learning rate and opti-

mizer is defined. The session tf.Session starts at line 137, and runs until loss

is diverged, if not until the defined step number is reached.

29

To train the text detection model benchmark datasets (can be found in

section 5.1) can be used. For training, a separate text file should be provided

for each image in dataset. For instance, if the scene image is represented as

img 1.jpg the corresponding text file should be named as img 1.txt. Each text

region should be noted with its coordinates in format (x1, y1, x2, y2, x3, y3, x4,

y4) followed by its text representation. The annotations are loaded by using

load annotation function described in icdar.py. A sample training image is

depicted in Fig 3–8, and corresponding text file should be as follows:

377,117,463,117,465,130,378,130,Genaxis Theatre

493,115,519,115,519,131,493,131,[06]

374,155,409,155,409,170,374,170,###

492,151,551,151,551,170,492,170,62-03

376,198,422,198,422,212,376,212,Carpark

494,190,539,189,539,205,494,206,###

374,1,494,0,492,85,372,86,###

Figure 3–8: A sample image training image from ICDAR15

The network is trained end-to-end using only training images from IC-

DAR 2015 and ICDAR 2013 with ADAM [29] optimizer. Learning rate of

ADAM starts from 1e-3, decays to one-tenth every 27300 mini batches, and

stops at 1e-5 (staged learning rate decay), implementation instead accepts

linear learning rate decay [69], can be seen on page 68. Such trained model

30

achieves 77.32% recall and 84.66% precision rate on ICDAR 2015 Incidental

Scene Text Detection Challenge It would be beneficial to keep in mind that

the script multigpu train.py is developed considering ICDAR images as

input (icdar.py is developed specifically to adapt to multigpu train.py).

Text recognition module can be trained by running crnn main.py (can

be seen on page 81). The script starts with flags e.g. ngpu (number of GPUs

to use), batchSize, niter (number of epochs to train for) and optimizer option

(ADAM, ADADELTA or RMSprop). The function trainBatch takes the CNN

model, optimizer (set up starts at line 114 of crnn main.py) and CTCLoss

from warp-ctc as criterion, trains a batch and returns cost (defined at line

187) until the niter is reached. To train the text recognition model, bench-

mark datasets (can be found in section 5.2) can be used. An LMDB Lightning

Database should be created by using function dataset.py, any kind of prepro-

cessing e.g. transformations, tensorization and batching is handled by class

lmdbDataset defined in the same script. The training of CRNN model takes

little more than 2 days using MJSynth synthetic dataset introduced in [24].

31

CHAPTER 4
Results and Discussion

4.1 Results

This section aims to demonstrate how the pipeline works by showing its

results. A photo of an hotel taken in downtown Montreal is used. The im-

plementation of EAST authors generates cyan colored bounding boxes, yellow

colored bounding boxes are cropped from the image (see Fig 4–1).

Figure 4–1: An instance of text detection

32

Figure 4–2: Cropped boxes from Fig 4–1

The raw output of the text recognition module is as following:

1--------2----1----6------ => 1216

s-------c--o--m-f-o-r-t--- => scomfort

c------o--m--f--o--r--t--- => comfort

s-------u---i--t--e---s--- => suites

s-----u---i--t--e---s----- => suites

h-------o-----t---e---l--- => hotel

e------------t--o----h---- => etoh

p-----e---r--i-o---d--ee-- => periode

i--n--t-e--r---d-iitt-e--- => interdite

2----------------z-------- => 2z

s--------o---u----n---d--- => sound

Note that ‘scomfort ’ is the output of bigger box containing ‘comfort’ string

found at top left-hand corner of the image, ‘etoh’ is the output of small box

containing reflected ‘hotel’ string and ‘2z’ is the output of graffiti written on

pole. After spellchecking filtering, accent removal of French words and box

merging the outcome is [’comfort suites’, ’hotel’, ’suites comfort’, ’periode

interdite’, ’comfort suites’, ’1216’], followed by the box centre coordinate in

percentage with regards to the image. To be more clear, if the box centre is

33

at (120, 200) where the image size is 480 × 600 the returned location will be

(0.25, 0.2).

The project is maintained in this 1 repository, the trained ResNet model

can downloaded from this 2 link, a complete trained EAST model can be

found in this 3 Google drive folder and trained CRNN model can be found

this 4 Dropbox folder.

4.2 Discussion

Currently, this OCR engine has its role within an existing mobile appli-

cation. Depending on external factors, the application is able to give detailed

visual description of users’ scene with a tolerable latency in real-life scenarios.

However, it is necessary to be aware of weaknesses of the system. It is clear

that today’s mobile platforms are not able to run such sized models (scene

description and OCR in Autour’s case) with their resource limitations. As an

initial phase, Autour server runs these models sequentially. Namely, the scene

description model is run then it is followed by OCR model. Even though it

is a minor setback (which can be solved by assigning multiple resources or

switching to cloud computing platforms enabling dynamic scaling), it intro-

duces noticeable latency.

The current string combinations are made only in pairs. Namely, the

system will fail to combine if there are three consecutive words present in the

scene. Besides that, the filtering method, as it stands, relies on a spellchecking

dictionary and the system has no apriori information about the language of

1 https://github.com/heildever/AutourOCR

2 download.tensorflow.org/models/resnet v1 50 2016 08 28.tar.gz

3 https://drive.google.com/file/d/0B3APw5BZJ67ETHNPaU9xUkVoV0U/

4 https://www.dropbox.com/s/dboqjk20qjkpta3/crnn.pth?dl=0

34

the text (options may vary in multi-cultural cities) which means if the word

is misspelt the system suggests French words only. One of the intended im-

provements is to make use of location information coming from Foursquare
TM

,

Google Places
TM

or OpenStreetMap look for possible matches i.e. in case of

Fig 4–1 the hotel name ‘Comfort Suites’ can be confirmed by location infor-

mation. As blind users of Autour indicated that they are not interested in

every text in their scene.

The text detection module holds a prestigious ranking among published

methods, and its implementation is performing satisfactory for Autour’s use.

However, ICDAR 2015 dataset is constructed by images containing mostly

horizontally oriented text regions. Since the model is trained on such dataset,

this may cause miss or imprecise predictions in case system encounters a ver-

tically text instance.

CRNN inherently is able to recognize text sequences written with a straight

orientation with similar characters. In the other words, system will fail to rec-

ognize if the text is written upside down or slightly angled. On the other hand,

authors of CRNN [51] made a tweak to recognize English texts by adopting

1 × 2 sized rectangular pooling windows instead of the conventional squared

one in the 3rd and 4th max-pooling layers. Assuming that typically a feature

sequence of 25 frames can be generated from an image sized 100× 32 and an

image with that size contains up to 10 characters which exceeds the length

of most English words. Meaning that system might misrecognize the words

longer than 10 characters.

Nevertheless CRNN [51] is still accepted as state-of-the-art and used as a

recognition module such as TextBoxes [35] and TextBoxes++ [34]. In addition

to this the authors of CRNN have published a model which is able to recognize

several types of irregular text, including perspective text and curved text [52].

35

Differently, a unified network is proposed in [37] for simultaneous detection

and recognition. A new differentiable operator is introduced in order to share

convolutional features between detection and recognition. Leveraging from

convolution sharing strategy and the joint training method (enabling to learn

more generic features), the method outperforms almost all state-of-the-art

methods in both text localization and end-to-end tasks of ICDAR Incidental

Scene Text challenge. Rankings can be seen on ICDAR’s website 5 .

5 http://rrc.cvc.uab.es/?ch=4&com=evaluation&task=1

36

CHAPTER 5
Benchmark Datasets

5.1 Text detection

COCO-Text [57] is a large scale dataset for text detection and recog-

nition in natural images. The dataset is based on the MS COCO dataset,

which contains images of complex everyday scenes. The dataset is organized

around three tasks: Text localization, Cropped Word Recognition and End-

to-End Recognition. The images were not collected with text in mind and

thus contain a broad variety of text instances. The dataset contains 63,686

images with 173,589 labeled text regions in which 43,686 are chosen to be the

training set and the rest 20,000 for testing. Three images from COCO-Text

are shown in Fig 5–1.

Figure 5–1: Typical images from COCO-text

MSRA-TD500 [62] The MSRA Text Detection 500 Database contains

500 natural images, which are taken from indoor (office and mall) and out-

door (street) scenes using a pocket camera. The indoor images are mainly

signs, doorplates and caution plates while the outdoor images are mostly guide

boards and billboards in complex background. The dataset is divided into two

37

parts: training set and test set. The training set contains 300 images randomly

selected from the original dataset and the remaining 200 images constitute the

test set. All the images in this dataset are fully annotated. Several images

from MSRA-TD500 are depicted in Fig 5–2, text regions are emphasized with

bounding boxes.

Figure 5–2: Typical images from MSRA-TD500

ICDAR 2015 [27] Competition on Robust Reading is structured in four

challenges addressing text extraction in different application domains, namely

born-digital images, focused scene images, incidental scene text and video text.

Incidental Scene Text refers to text that appears in the scene without the user

having taken any prior action to cause its appearance in the field of view, or

improve its positioning or quality in the frame. While focused scene text is

the expected input for applications such as translation on demand, incidental

scene text covers another wide range of applications linked to wearable cam-

eras or massive urban captures where the capture is difficult or undesirable

to control. For incidental scene text a new dataset is introduced, a dataset

of 1,670 images (17,548 annotated regions) acquired using the Google Glass.

38

Authors of [27] have used 1000 of images are used for training and the remain-

ing are for testing. Few images from ICDAR’S incidental scene text dataset

are shown in Fig 5–3.

Figure 5–3: Typical images from ICDAR incidental scene text dataset

5.2 Text recognition

IIIT 5K [42] is harvested from Google image search. Query words like

billboards, signboard, house numbers, house name plates, movie posters were

used to collect images. The dataset contains 5000 cropped word images from

Scene Texts and born-digital images. The dataset is divided into train and

test parts. Three training images (above) and three test images (below) of

IIIT5K are depicted in Fig 5–4.

SVT [58] The Street View Text dataset was harvested from Google Street

View. The annotators were asked to find a place of business with its signboard,

then have a clear point of view to minimize the skew of the text before taking

a screen shot. Therefore the dataset includes business names and business

39

Figure 5–4: Typical train images IIIT

signs. Each business (hotel, restaurant and etc) and its sign is associated with

representative text. Precisely; the annotators have generated annotations of

horizontal bounding boxes and a non case-sensitive transcription for each text

region. The word annotations are adopted to produce a dataset of cropped

words called SVT-50. In total, SVT dataset contains 100 training and 250

testing images collected from 20 different cities. Four different SVT images

can be seen in Fig 5–5.

IC03 datasets are created by the images that have been extracted from

natural scenes for the ICDAR 2003 Robust Reading competitions. Four inde-

pendent competitions were organized: Robust Reading, Robust Word Recogni-

tion, Robust Character Recognition and Text Locating. Recognition datasets

are word recognition (made of 1157 words training set, 1111 words of test-

ing set) and character recognition (made of 6185 characters training set, 5430

characters testing set). Few cropped character and cropped word images are

depicted in Fig 5–6.

IC11 and IC13, IC11 is an extension of datasets used in earlier Robust

Reading Competitions organized in ICDAR 2003 and 2005. Images of IC03

are taken as a base, the images without text are removed and around 100

images are added which are captured with a digital camera using auto focus

and natural lighting. The final dataset consisted of 485 images containing

40

Figure 5–5: Typical images from SVT

text in a variety of colors and fonts on many different backgrounds and in var-

ious orientations. IC13 is an image dataset used for the ICDAR2013 Robust

Reading Competition is almost the same as the dataset IC11. The differ-

ence from the ICDAR2011 dataset is revision of ground-truth texts at several

images. In addition, a small number of images duplicated over training and

test sets were excluded. Accordingly, ICDAR2013(IC13) dataset is a subset

of ICDAR2011(IC11) dataset. The number of images of ICDAR2013 dataset

is 462, which is comprised of 229 images for the training set and 233 images

for the test set. Cropped characters (above) and cropped words (below) are

shown in Fig 5–6.

41

Figure 5–6: Typical character recognition images IC03

Figure 5–7: Typical images from IC13

42

CHAPTER 6
Appendices

43

Appendix A - project layout

Figure 6–1: Project layout

44

Appendix B - icdar.py

1 # coding:utf-8

2 import glob

3 import csv

4 import cv2

5 import time

6 import os

7 import numpy as np

8 import scipy.optimize

9 import matplotlib.pyplot as plt

10 import matplotlib.patches as Patches

11 from shapely.geometry import Polygon

12

13 import tensorflow as tf

14

15 from data_util import GeneratorEnqueuer

16

17 tf.app.flags.DEFINE_string('training_data_path', '/data/ocr/icdar2015/',

18 'training dataset to use')

19 tf.app.flags.DEFINE_integer('max_image_large_side', 1280,

20 'max image size of training')

21 tf.app.flags.DEFINE_integer('max_text_size', 800,

22 'if the text in the input image is bigger than this, then we

resize'�→

23 'the image according to this')

24 tf.app.flags.DEFINE_integer('min_text_size', 10,

25 'if the text size is smaller than this, we ignore it during

training')�→

26 tf.app.flags.DEFINE_float('min_crop_side_ratio', 0.1,

27 'when doing random crop from input image, the'

28 'min length of min(H, W')

29 tf.app.flags.DEFINE_string('geometry', 'RBOX',

30 'which geometry to generate, RBOX or QUAD')

31

32

33 FLAGS = tf.app.flags.FLAGS

34

35

36 def get_images():

45

37 files = []

38 for ext in ['jpg', 'png', 'jpeg', 'JPG']:

39 files.extend(glob.glob(

40 os.path.join(FLAGS.training_data_path, '*.{}'.format(ext))))

41 return files

42

43

44 def load_annotation(p):

45 '''

46 load annotation from the text file

47 :param p:

48 :return:

49 '''

50 text_polys = []

51 text_tags = []

52 if not os.path.exists(p):

53 return np.array(text_polys, dtype=np.float32)

54 with open(p, 'r') as f:

55 reader = csv.reader(f)

56 for line in reader:

57 label = line[-1]

58 # strip BOM. \ufeff for python3, \xef\xbb\bf for python2

59 line = [i.strip('\ufeff').strip('\xef\xbb\xbf') for i in line]

60

61 x1, y1, x2, y2, x3, y3, x4, y4 = list(map(float, line[:8]))

62 text_polys.append([[x1, y1], [x2, y2], [x3, y3], [x4, y4]])

63 if label == '*' or label == '###':

64 text_tags.append(True)

65 else:

66 text_tags.append(False)

67 return np.array(text_polys, dtype=np.float32), np.array(text_tags, dtype=np.bool)

68

69

70 def polygon_area(poly):

71 '''

72 compute area of a polygon

73 :param poly:

74 :return:

75 '''

76 edge = [

77 (poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),

46

78 (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),

79 (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),

80 (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])

81]

82 return np.sum(edge)/2.

83

84

85 def check_and_validate_polys(polys, tags, xxx_todo_changeme):

86 '''

87 check so that the text poly is in the same direction,

88 and also filter some invalid polygons

89 :param polys:

90 :param tags:

91 :return:

92 '''

93 (h, w) = xxx_todo_changeme

94 if polys.shape[0] == 0:

95 return polys

96 polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w-1)

97 polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h-1)

98

99 validated_polys = []

100 validated_tags = []

101 for poly, tag in zip(polys, tags):

102 p_area = polygon_area(poly)

103 if abs(p_area) < 1:

104 # print poly

105 print('invalid poly')

106 continue

107 if p_area > 0:

108 print('poly in wrong direction')

109 poly = poly[(0, 3, 2, 1), :]

110 validated_polys.append(poly)

111 validated_tags.append(tag)

112 return np.array(validated_polys), np.array(validated_tags)

113

114

115 def crop_area(im, polys, tags, crop_background=False, max_tries=50):

116 '''

117 make random crop from the input image

118 :param im:

47

119 :param polys:

120 :param tags:

121 :param crop_background:

122 :param max_tries:

123 :return:

124 '''

125 h, w, _ = im.shape

126 pad_h = h//10

127 pad_w = w//10

128 h_array = np.zeros((h + pad_h*2), dtype=np.int32)

129 w_array = np.zeros((w + pad_w*2), dtype=np.int32)

130 for poly in polys:

131 poly = np.round(poly, decimals=0).astype(np.int32)

132 minx = np.min(poly[:, 0])

133 maxx = np.max(poly[:, 0])

134 w_array[minx+pad_w:maxx+pad_w] = 1

135 miny = np.min(poly[:, 1])

136 maxy = np.max(poly[:, 1])

137 h_array[miny+pad_h:maxy+pad_h] = 1

138 # ensure the cropped area not across a text

139 h_axis = np.where(h_array == 0)[0]

140 w_axis = np.where(w_array == 0)[0]

141 if len(h_axis) == 0 or len(w_axis) == 0:

142 return im, polys, tags

143 for i in range(max_tries):

144 xx = np.random.choice(w_axis, size=2)

145 xmin = np.min(xx) - pad_w

146 xmax = np.max(xx) - pad_w

147 xmin = np.clip(xmin, 0, w-1)

148 xmax = np.clip(xmax, 0, w-1)

149 yy = np.random.choice(h_axis, size=2)

150 ymin = np.min(yy) - pad_h

151 ymax = np.max(yy) - pad_h

152 ymin = np.clip(ymin, 0, h-1)

153 ymax = np.clip(ymax, 0, h-1)

154 if xmax - xmin < FLAGS.min_crop_side_ratio*w or ymax - ymin <

FLAGS.min_crop_side_ratio*h:�→

155 # area too small

156 continue

157 if polys.shape[0] != 0:

158 poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \

48

159 & (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)

160 selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0]

161 else:

162 selected_polys = []

163 if len(selected_polys) == 0:

164 # no text in this area

165 if crop_background:

166 return im[ymin:ymax+1, xmin:xmax+1, :], polys[selected_polys],

tags[selected_polys]�→

167 else:

168 continue

169 im = im[ymin:ymax+1, xmin:xmax+1, :]

170 polys = polys[selected_polys]

171 tags = tags[selected_polys]

172 polys[:, :, 0] -= xmin

173 polys[:, :, 1] -= ymin

174 return im, polys, tags

175

176 return im, polys, tags

177

178

179 def shrink_poly(poly, r):

180 '''

181 fit a poly inside the origin poly, maybe bugs here...

182 used for generate the score map

183 :param poly: the text poly

184 :param r: r in the paper

185 :return: the shrinked poly

186 '''

187 # shrink ratio

188 R = 0.3

189 # find the longer pair

190 if np.linalg.norm(poly[0] - poly[1]) + np.linalg.norm(poly[2] - poly[3]) > \

191 np.linalg.norm(poly[0] - poly[3]) + np.linalg.norm(poly[1] - poly[2]):

192 # first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)

193 ## p0, p1

194 theta = np.arctan2((poly[1][1] - poly[0][1]), (poly[1][0] - poly[0][0]))

195 poly[0][0] += R * r[0] * np.cos(theta)

196 poly[0][1] += R * r[0] * np.sin(theta)

197 poly[1][0] -= R * r[1] * np.cos(theta)

198 poly[1][1] -= R * r[1] * np.sin(theta)

49

199 ## p2, p3

200 theta = np.arctan2((poly[2][1] - poly[3][1]), (poly[2][0] - poly[3][0]))

201 poly[3][0] += R * r[3] * np.cos(theta)

202 poly[3][1] += R * r[3] * np.sin(theta)

203 poly[2][0] -= R * r[2] * np.cos(theta)

204 poly[2][1] -= R * r[2] * np.sin(theta)

205 ## p0, p3

206 theta = np.arctan2((poly[3][0] - poly[0][0]), (poly[3][1] - poly[0][1]))

207 poly[0][0] += R * r[0] * np.sin(theta)

208 poly[0][1] += R * r[0] * np.cos(theta)

209 poly[3][0] -= R * r[3] * np.sin(theta)

210 poly[3][1] -= R * r[3] * np.cos(theta)

211 ## p1, p2

212 theta = np.arctan2((poly[2][0] - poly[1][0]), (poly[2][1] - poly[1][1]))

213 poly[1][0] += R * r[1] * np.sin(theta)

214 poly[1][1] += R * r[1] * np.cos(theta)

215 poly[2][0] -= R * r[2] * np.sin(theta)

216 poly[2][1] -= R * r[2] * np.cos(theta)

217 else:

218 ## p0, p3

219 # print poly

220 theta = np.arctan2((poly[3][0] - poly[0][0]), (poly[3][1] - poly[0][1]))

221 poly[0][0] += R * r[0] * np.sin(theta)

222 poly[0][1] += R * r[0] * np.cos(theta)

223 poly[3][0] -= R * r[3] * np.sin(theta)

224 poly[3][1] -= R * r[3] * np.cos(theta)

225 ## p1, p2

226 theta = np.arctan2((poly[2][0] - poly[1][0]), (poly[2][1] - poly[1][1]))

227 poly[1][0] += R * r[1] * np.sin(theta)

228 poly[1][1] += R * r[1] * np.cos(theta)

229 poly[2][0] -= R * r[2] * np.sin(theta)

230 poly[2][1] -= R * r[2] * np.cos(theta)

231 ## p0, p1

232 theta = np.arctan2((poly[1][1] - poly[0][1]), (poly[1][0] - poly[0][0]))

233 poly[0][0] += R * r[0] * np.cos(theta)

234 poly[0][1] += R * r[0] * np.sin(theta)

235 poly[1][0] -= R * r[1] * np.cos(theta)

236 poly[1][1] -= R * r[1] * np.sin(theta)

237 ## p2, p3

238 theta = np.arctan2((poly[2][1] - poly[3][1]), (poly[2][0] - poly[3][0]))

239 poly[3][0] += R * r[3] * np.cos(theta)

50

240 poly[3][1] += R * r[3] * np.sin(theta)

241 poly[2][0] -= R * r[2] * np.cos(theta)

242 poly[2][1] -= R * r[2] * np.sin(theta)

243 return poly

244

245

246 def point_dist_to_line(p1, p2, p3):

247 # compute the distance from p3 to p1-p2

248 return np.linalg.norm(np.cross(p2 - p1, p1 - p3)) / np.linalg.norm(p2 - p1)

249

250

251 def fit_line(p1, p2):

252 # fit a line ax+by+c = 0

253 if p1[0] == p1[1]:

254 return [1., 0., -p1[0]]

255 else:

256 [k, b] = np.polyfit(p1, p2, deg=1)

257 return [k, -1., b]

258

259

260 def line_cross_point(line1, line2):

261 # line1 0= ax+by+c, compute the cross point of line1 and line2

262 if line1[0] != 0 and line1[0] == line2[0]:

263 print('Cross point does not exist')

264 return None

265 if line1[0] == 0 and line2[0] == 0:

266 print('Cross point does not exist')

267 return None

268 if line1[1] == 0:

269 x = -line1[2]

270 y = line2[0] * x + line2[2]

271 elif line2[1] == 0:

272 x = -line2[2]

273 y = line1[0] * x + line1[2]

274 else:

275 k1, _, b1 = line1

276 k2, _, b2 = line2

277 x = -(b1-b2)/(k1-k2)

278 y = k1*x + b1

279 return np.array([x, y], dtype=np.float32)

280

51

281

282 def line_verticle(line, point):

283 # get the verticle line from line across point

284 if line[1] == 0:

285 verticle = [0, -1, point[1]]

286 else:

287 if line[0] == 0:

288 verticle = [1, 0, -point[0]]

289 else:

290 verticle = [-1./line[0], -1, point[1] - (-1/line[0] * point[0])]

291 return verticle

292

293

294 def rectangle_from_parallelogram(poly):

295 '''

296 fit a rectangle from a parallelogram

297 :param poly:

298 :return:

299 '''

300 p0, p1, p2, p3 = poly

301 angle_p0 = np.arccos(np.dot(p1-p0, p3-p0)/(np.linalg.norm(p0-p1) *

np.linalg.norm(p3-p0)))�→

302 if angle_p0 < 0.5 * np.pi:

303 if np.linalg.norm(p0 - p1) > np.linalg.norm(p0-p3):

304 # p0 and p2

305 ## p0

306 p2p3 = fit_line([p2[0], p3[0]], [p2[1], p3[1]])

307 p2p3_verticle = line_verticle(p2p3, p0)

308

309 new_p3 = line_cross_point(p2p3, p2p3_verticle)

310 ## p2

311 p0p1 = fit_line([p0[0], p1[0]], [p0[1], p1[1]])

312 p0p1_verticle = line_verticle(p0p1, p2)

313

314 new_p1 = line_cross_point(p0p1, p0p1_verticle)

315 return np.array([p0, new_p1, p2, new_p3], dtype=np.float32)

316 else:

317 p1p2 = fit_line([p1[0], p2[0]], [p1[1], p2[1]])

318 p1p2_verticle = line_verticle(p1p2, p0)

319

320 new_p1 = line_cross_point(p1p2, p1p2_verticle)

52

321 p0p3 = fit_line([p0[0], p3[0]], [p0[1], p3[1]])

322 p0p3_verticle = line_verticle(p0p3, p2)

323

324 new_p3 = line_cross_point(p0p3, p0p3_verticle)

325 return np.array([p0, new_p1, p2, new_p3], dtype=np.float32)

326 else:

327 if np.linalg.norm(p0-p1) > np.linalg.norm(p0-p3):

328 # p1 and p3

329 ## p1

330 p2p3 = fit_line([p2[0], p3[0]], [p2[1], p3[1]])

331 p2p3_verticle = line_verticle(p2p3, p1)

332

333 new_p2 = line_cross_point(p2p3, p2p3_verticle)

334 ## p3

335 p0p1 = fit_line([p0[0], p1[0]], [p0[1], p1[1]])

336 p0p1_verticle = line_verticle(p0p1, p3)

337

338 new_p0 = line_cross_point(p0p1, p0p1_verticle)

339 return np.array([new_p0, p1, new_p2, p3], dtype=np.float32)

340 else:

341 p0p3 = fit_line([p0[0], p3[0]], [p0[1], p3[1]])

342 p0p3_verticle = line_verticle(p0p3, p1)

343

344 new_p0 = line_cross_point(p0p3, p0p3_verticle)

345 p1p2 = fit_line([p1[0], p2[0]], [p1[1], p2[1]])

346 p1p2_verticle = line_verticle(p1p2, p3)

347

348 new_p2 = line_cross_point(p1p2, p1p2_verticle)

349 return np.array([new_p0, p1, new_p2, p3], dtype=np.float32)

350

351

352 def sort_rectangle(poly):

353 # sort the four coordinates of the polygon, points in poly should be sorted clockwise

354 # First find the lowest point

355 p_lowest = np.argmax(poly[:, 1])

356 if np.count_nonzero(poly[:, 1] == poly[p_lowest, 1]) == 2:

357 # X, p0

358 p0_index = np.argmin(np.sum(poly, axis=1))

359 p1_index = (p0_index + 1) % 4

360 p2_index = (p0_index + 2) % 4

361 p3_index = (p0_index + 3) % 4

53

362 return poly[[p0_index, p1_index, p2_index, p3_index]], 0.

363 else:

364 #

365 p_lowest_right = (p_lowest - 1) % 4

366 p_lowest_left = (p_lowest + 1) % 4

367 angle = np.arctan(-(poly[p_lowest][1] - poly[p_lowest_right][1])/(poly[p_lowest][0] -

poly[p_lowest_right][0]))�→

368 # assert angle > 0

369 if angle <= 0:

370 print(angle, poly[p_lowest], poly[p_lowest_right])

371 if angle/np.pi * 180 > 45:

372 # p2

373 p2_index = p_lowest

374 p1_index = (p2_index - 1) % 4

375 p0_index = (p2_index - 2) % 4

376 p3_index = (p2_index + 1) % 4

377 return poly[[p0_index, p1_index, p2_index, p3_index]], -(np.pi/2 - angle)

378 else:

379 # p3

380 p3_index = p_lowest

381 p0_index = (p3_index + 1) % 4

382 p1_index = (p3_index + 2) % 4

383 p2_index = (p3_index + 3) % 4

384 return poly[[p0_index, p1_index, p2_index, p3_index]], angle

385

386

387 def restore_rectangle_rbox(origin, geometry):

388 d = geometry[:, :4]

389 angle = geometry[:, 4]

390 # for angle > 0

391 origin_0 = origin[angle >= 0]

392 d_0 = d[angle >= 0]

393 angle_0 = angle[angle >= 0]

394 if origin_0.shape[0] > 0:

395 p = np.array([np.zeros(d_0.shape[0]), -d_0[:, 0] - d_0[:, 2],

396 d_0[:, 1] + d_0[:, 3], -d_0[:, 0] - d_0[:, 2],

397 d_0[:, 1] + d_0[:, 3], np.zeros(d_0.shape[0]),

398 np.zeros(d_0.shape[0]), np.zeros(d_0.shape[0]),

399 d_0[:, 3], -d_0[:, 2]])

400 p = p.transpose((1, 0)).reshape((-1, 5, 2)) # N*5*2

401

54

402 rotate_matrix_x = np.array([np.cos(angle_0), np.sin(angle_0)]).transpose((1, 0))

403 rotate_matrix_x = np.repeat(rotate_matrix_x, 5, axis=1).reshape(-1, 2,

5).transpose((0, 2, 1)) # N*5*2�→

404

405 rotate_matrix_y = np.array([-np.sin(angle_0), np.cos(angle_0)]).transpose((1, 0))

406 rotate_matrix_y = np.repeat(rotate_matrix_y, 5, axis=1).reshape(-1, 2,

5).transpose((0, 2, 1))�→

407

408 p_rotate_x = np.sum(rotate_matrix_x * p, axis=2)[:, :, np.newaxis] # N*5*1

409 p_rotate_y = np.sum(rotate_matrix_y * p, axis=2)[:, :, np.newaxis] # N*5*1

410

411 p_rotate = np.concatenate([p_rotate_x, p_rotate_y], axis=2) # N*5*2

412

413 p3_in_origin = origin_0 - p_rotate[:, 4, :]

414 new_p0 = p_rotate[:, 0, :] + p3_in_origin # N*2

415 new_p1 = p_rotate[:, 1, :] + p3_in_origin

416 new_p2 = p_rotate[:, 2, :] + p3_in_origin

417 new_p3 = p_rotate[:, 3, :] + p3_in_origin

418

419 new_p_0 = np.concatenate([new_p0[:, np.newaxis, :], new_p1[:, np.newaxis, :],

420 new_p2[:, np.newaxis, :], new_p3[:, np.newaxis, :]],

axis=1) # N*4*2�→

421 else:

422 new_p_0 = np.zeros((0, 4, 2))

423 # for angle < 0

424 origin_1 = origin[angle < 0]

425 d_1 = d[angle < 0]

426 angle_1 = angle[angle < 0]

427 if origin_1.shape[0] > 0:

428 p = np.array([-d_1[:, 1] - d_1[:, 3], -d_1[:, 0] - d_1[:, 2],

429 np.zeros(d_1.shape[0]), -d_1[:, 0] - d_1[:, 2],

430 np.zeros(d_1.shape[0]), np.zeros(d_1.shape[0]),

431 -d_1[:, 1] - d_1[:, 3], np.zeros(d_1.shape[0]),

432 -d_1[:, 1], -d_1[:, 2]])

433 p = p.transpose((1, 0)).reshape((-1, 5, 2)) # N*5*2

434

435 rotate_matrix_x = np.array([np.cos(-angle_1), -np.sin(-angle_1)]).transpose((1, 0))

436 rotate_matrix_x = np.repeat(rotate_matrix_x, 5, axis=1).reshape(-1, 2,

5).transpose((0, 2, 1)) # N*5*2�→

437

438 rotate_matrix_y = np.array([np.sin(-angle_1), np.cos(-angle_1)]).transpose((1, 0))

55

439 rotate_matrix_y = np.repeat(rotate_matrix_y, 5, axis=1).reshape(-1, 2,

5).transpose((0, 2, 1))�→

440

441 p_rotate_x = np.sum(rotate_matrix_x * p, axis=2)[:, :, np.newaxis] # N*5*1

442 p_rotate_y = np.sum(rotate_matrix_y * p, axis=2)[:, :, np.newaxis] # N*5*1

443

444 p_rotate = np.concatenate([p_rotate_x, p_rotate_y], axis=2) # N*5*2

445

446 p3_in_origin = origin_1 - p_rotate[:, 4, :]

447 new_p0 = p_rotate[:, 0, :] + p3_in_origin # N*2

448 new_p1 = p_rotate[:, 1, :] + p3_in_origin

449 new_p2 = p_rotate[:, 2, :] + p3_in_origin

450 new_p3 = p_rotate[:, 3, :] + p3_in_origin

451

452 new_p_1 = np.concatenate([new_p0[:, np.newaxis, :], new_p1[:, np.newaxis, :],

453 new_p2[:, np.newaxis, :], new_p3[:, np.newaxis, :]],

axis=1) # N*4*2�→

454 else:

455 new_p_1 = np.zeros((0, 4, 2))

456 return np.concatenate([new_p_0, new_p_1])

457

458

459 def restore_rectangle(origin, geometry):

460 return restore_rectangle_rbox(origin, geometry)

461

462

463 def generate_rbox(im_size, polys, tags):

464 h, w = im_size

465 poly_mask = np.zeros((h, w), dtype=np.uint8)

466 score_map = np.zeros((h, w), dtype=np.uint8)

467 geo_map = np.zeros((h, w, 5), dtype=np.float32)

468 # mask used during traning, to ignore some hard areas

469 training_mask = np.ones((h, w), dtype=np.uint8)

470 for poly_idx, poly_tag in enumerate(zip(polys, tags)):

471 poly = poly_tag[0]

472 tag = poly_tag[1]

473

474 r = [None, None, None, None]

475 for i in range(4):

476 r[i] = min(np.linalg.norm(poly[i] - poly[(i + 1) % 4]),

477 np.linalg.norm(poly[i] - poly[(i - 1) % 4]))

56

478 # score map

479 shrinked_poly = shrink_poly(poly.copy(), r).astype(np.int32)[np.newaxis, :, :]

480 cv2.fillPoly(score_map, shrinked_poly, 1)

481 cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1)

482 # if the poly is too small, then ignore it during training

483 poly_h = min(np.linalg.norm(poly[0] - poly[3]), np.linalg.norm(poly[1] - poly[2]))

484 poly_w = min(np.linalg.norm(poly[0] - poly[1]), np.linalg.norm(poly[2] - poly[3]))

485 if min(poly_h, poly_w) < FLAGS.min_text_size:

486 cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0)

487 if tag:

488 cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0)

489

490 xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1))

491 # if geometry == 'RBOX':

492 #

493 fitted_parallelograms = []

494 for i in range(4):

495 p0 = poly[i]

496 p1 = poly[(i + 1) % 4]

497 p2 = poly[(i + 2) % 4]

498 p3 = poly[(i + 3) % 4]

499 edge = fit_line([p0[0], p1[0]], [p0[1], p1[1]])

500 backward_edge = fit_line([p0[0], p3[0]], [p0[1], p3[1]])

501 forward_edge = fit_line([p1[0], p2[0]], [p1[1], p2[1]])

502 if point_dist_to_line(p0, p1, p2) > point_dist_to_line(p0, p1, p3):

503 # p2

504 if edge[1] == 0:

505 edge_opposite = [1, 0, -p2[0]]

506 else:

507 edge_opposite = [edge[0], -1, p2[1] - edge[0] * p2[0]]

508 else:

509 # p3

510 if edge[1] == 0:

511 edge_opposite = [1, 0, -p3[0]]

512 else:

513 edge_opposite = [edge[0], -1, p3[1] - edge[0] * p3[0]]

514 # move forward edge

515 new_p0 = p0

516 new_p1 = p1

517 new_p2 = p2

518 new_p3 = p3

57

519 new_p2 = line_cross_point(forward_edge, edge_opposite)

520 if point_dist_to_line(p1, new_p2, p0) > point_dist_to_line(p1, new_p2, p3):

521 # across p0

522 if forward_edge[1] == 0:

523 forward_opposite = [1, 0, -p0[0]]

524 else:

525 forward_opposite = [forward_edge[0], -1, p0[1] - forward_edge[0] * p0[0]]

526 else:

527 # across p3

528 if forward_edge[1] == 0:

529 forward_opposite = [1, 0, -p3[0]]

530 else:

531 forward_opposite = [forward_edge[0], -1, p3[1] - forward_edge[0] * p3[0]]

532 new_p0 = line_cross_point(forward_opposite, edge)

533 new_p3 = line_cross_point(forward_opposite, edge_opposite)

534 fitted_parallelograms.append([new_p0, new_p1, new_p2, new_p3, new_p0])

535 # or move backward edge

536 new_p0 = p0

537 new_p1 = p1

538 new_p2 = p2

539 new_p3 = p3

540 new_p3 = line_cross_point(backward_edge, edge_opposite)

541 if point_dist_to_line(p0, p3, p1) > point_dist_to_line(p0, p3, p2):

542 # across p1

543 if backward_edge[1] == 0:

544 backward_opposite = [1, 0, -p1[0]]

545 else:

546 backward_opposite = [backward_edge[0], -1, p1[1] - backward_edge[0] *

p1[0]]�→

547 else:

548 # across p2

549 if backward_edge[1] == 0:

550 backward_opposite = [1, 0, -p2[0]]

551 else:

552 backward_opposite = [backward_edge[0], -1, p2[1] - backward_edge[0] *

p2[0]]�→

553 new_p1 = line_cross_point(backward_opposite, edge)

554 new_p2 = line_cross_point(backward_opposite, edge_opposite)

555 fitted_parallelograms.append([new_p0, new_p1, new_p2, new_p3, new_p0])

556 areas = [Polygon(t).area for t in fitted_parallelograms]

58

557 parallelogram = np.array(fitted_parallelograms[np.argmin(areas)][:-1],

dtype=np.float32)�→

558 # sort thie polygon

559 parallelogram_coord_sum = np.sum(parallelogram, axis=1)

560 min_coord_idx = np.argmin(parallelogram_coord_sum)

561 parallelogram = parallelogram[

562 [min_coord_idx, (min_coord_idx + 1) % 4, (min_coord_idx + 2) % 4, (min_coord_idx

+ 3) % 4]]�→

563

564 rectange = rectangle_from_parallelogram(parallelogram)

565 rectange, rotate_angle = sort_rectangle(rectange)

566

567 p0_rect, p1_rect, p2_rect, p3_rect = rectange

568 for y, x in xy_in_poly:

569 point = np.array([x, y], dtype=np.float32)

570 # top

571 geo_map[y, x, 0] = point_dist_to_line(p0_rect, p1_rect, point)

572 # right

573 geo_map[y, x, 1] = point_dist_to_line(p1_rect, p2_rect, point)

574 # down

575 geo_map[y, x, 2] = point_dist_to_line(p2_rect, p3_rect, point)

576 # left

577 geo_map[y, x, 3] = point_dist_to_line(p3_rect, p0_rect, point)

578 # angle

579 geo_map[y, x, 4] = rotate_angle

580 return score_map, geo_map, training_mask

581

582

583 def generator(input_size=512, batch_size=32,

584 background_ratio=3./8,

585 random_scale=np.array([0.5, 1, 2.0, 3.0]),

586 vis=False):

587 image_list = np.array(get_images())

588 print('{} training images in {}'.format(

589 image_list.shape[0], FLAGS.training_data_path))

590 index = np.arange(0, image_list.shape[0])

591 while True:

592 np.random.shuffle(index)

593 images = []

594 image_fns = []

595 score_maps = []

59

596 geo_maps = []

597 training_masks = []

598 for i in index:

599 try:

600 im_fn = image_list[i]

601 im = cv2.imread(im_fn)

602 # print im_fn

603 h, w, _ = im.shape

604 txt_fn = im_fn.replace(os.path.basename(im_fn).split('.')[1], 'txt')

605 if not os.path.exists(txt_fn):

606 print('text file {} does not exists'.format(txt_fn))

607 continue

608

609 text_polys, text_tags = load_annoataion(txt_fn)

610

611 text_polys, text_tags = check_and_validate_polys(text_polys, text_tags, (h,

w))�→

612 # if text_polys.shape[0] == 0:

613 # continue

614 # random scale this image

615 rd_scale = np.random.choice(random_scale)

616 im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)

617 text_polys *= rd_scale

618 # print rd_scale

619 # random crop a area from image

620 if np.random.rand() < background_ratio:

621 # crop background

622 im, text_polys, text_tags = crop_area(im, text_polys, text_tags,

crop_background=True)�→

623 if text_polys.shape[0] > 0:

624 # cannot find background

625 continue

626 # pad and resize image

627 new_h, new_w, _ = im.shape

628 max_h_w_i = np.max([new_h, new_w, input_size])

629 im_padded = np.zeros((max_h_w_i, max_h_w_i, 3), dtype=np.uint8)

630 im_padded[:new_h, :new_w, :] = im.copy()

631 im = cv2.resize(im_padded, dsize=(input_size, input_size))

632 score_map = np.zeros((input_size, input_size), dtype=np.uint8)

633 geo_map_channels = 5 if FLAGS.geometry == 'RBOX' else 8

60

634 geo_map = np.zeros((input_size, input_size, geo_map_channels),

dtype=np.float32)�→

635 training_mask = np.ones((input_size, input_size), dtype=np.uint8)

636 else:

637 im, text_polys, text_tags = crop_area(im, text_polys, text_tags,

crop_background=False)�→

638 if text_polys.shape[0] == 0:

639 continue

640 h, w, _ = im.shape

641

642 # pad the image to the training input size or the longer side of image

643 new_h, new_w, _ = im.shape

644 max_h_w_i = np.max([new_h, new_w, input_size])

645 im_padded = np.zeros((max_h_w_i, max_h_w_i, 3), dtype=np.uint8)

646 im_padded[:new_h, :new_w, :] = im.copy()

647 im = im_padded

648 # resize the image to input size

649 new_h, new_w, _ = im.shape

650 resize_h = input_size

651 resize_w = input_size

652 im = cv2.resize(im, dsize=(resize_w, resize_h))

653 resize_ratio_3_x = resize_w/float(new_w)

654 resize_ratio_3_y = resize_h/float(new_h)

655 text_polys[:, :, 0] *= resize_ratio_3_x

656 text_polys[:, :, 1] *= resize_ratio_3_y

657 new_h, new_w, _ = im.shape

658 score_map, geo_map, training_mask = generate_rbox((new_h, new_w),

text_polys, text_tags)�→

659

660 if vis:

661 fig, axs = plt.subplots(3, 2, figsize=(20, 30))

662 # axs[0].imshow(im[:, :, ::-1])

663 # axs[0].set_xticks([])

664 # axs[0].set_yticks([])

665 # for poly in text_polys:

666 # poly_h = min(abs(poly[3, 1] - poly[0, 1]), abs(poly[2, 1] - poly[1,

1]))�→

667 # poly_w = min(abs(poly[1, 0] - poly[0, 0]), abs(poly[2, 0] - poly[3,

0]))�→

668 # axs[0].add_artist(Patches.Polygon(

61

669 # poly * 4, facecolor='none', edgecolor='green', linewidth=2,

linestyle='-', fill=True))�→

670 # axs[0].text(poly[0, 0] * 4, poly[0, 1] * 4,

'{:.0f}-{:.0f}'.format(poly_h * 4, poly_w * 4),�→

671 # color='purple')

672 # axs[1].imshow(score_map)

673 # axs[1].set_xticks([])

674 # axs[1].set_yticks([])

675 axs[0, 0].imshow(im[:, :, ::-1])

676 axs[0, 0].set_xticks([])

677 axs[0, 0].set_yticks([])

678 for poly in text_polys:

679 poly_h = min(abs(poly[3, 1] - poly[0, 1]), abs(poly[2, 1] - poly[1,

1]))�→

680 poly_w = min(abs(poly[1, 0] - poly[0, 0]), abs(poly[2, 0] - poly[3,

0]))�→

681 axs[0, 0].add_artist(Patches.Polygon(

682 poly, facecolor='none', edgecolor='green', linewidth=2,

linestyle='-', fill=True))�→

683 axs[0, 0].text(poly[0, 0], poly[0, 1], '{:.0f}-{:.0f}'.format(poly_h,

poly_w), color='purple')�→

684 axs[0, 1].imshow(score_map[::, ::])

685 axs[0, 1].set_xticks([])

686 axs[0, 1].set_yticks([])

687 axs[1, 0].imshow(geo_map[::, ::, 0])

688 axs[1, 0].set_xticks([])

689 axs[1, 0].set_yticks([])

690 axs[1, 1].imshow(geo_map[::, ::, 1])

691 axs[1, 1].set_xticks([])

692 axs[1, 1].set_yticks([])

693 axs[2, 0].imshow(geo_map[::, ::, 2])

694 axs[2, 0].set_xticks([])

695 axs[2, 0].set_yticks([])

696 axs[2, 1].imshow(training_mask[::, ::])

697 axs[2, 1].set_xticks([])

698 axs[2, 1].set_yticks([])

699 plt.tight_layout()

700 plt.show()

701 plt.close()

702

703 images.append(im[:, :, ::-1].astype(np.float32))

62

704 image_fns.append(im_fn)

705 score_maps.append(score_map[::4, ::4, np.newaxis].astype(np.float32))

706 geo_maps.append(geo_map[::4, ::4, :].astype(np.float32))

707 training_masks.append(training_mask[::4, ::4, np.newaxis].astype(np.float32))

708

709 if len(images) == batch_size:

710 yield images, image_fns, score_maps, geo_maps, training_masks

711 images = []

712 image_fns = []

713 score_maps = []

714 geo_maps = []

715 training_masks = []

716 except Exception as e:

717 import traceback

718 traceback.print_exc()

719 continue

720

721

722 def get_batch(num_workers, **kwargs):

723 try:

724 enqueuer = GeneratorEnqueuer(generator(**kwargs), use_multiprocessing=True)

725 enqueuer.start(max_queue_size=24, workers=num_workers)

726 generator_output = None

727 while True:

728 while enqueuer.is_running():

729 if not enqueuer.queue.empty():

730 generator_output = enqueuer.queue.get()

731 break

732 else:

733 time.sleep(0.01)

734 yield generator_output

735 generator_output = None

736 finally:

737 if enqueuer is not None:

738 enqueuer.stop()

739

740

741

742 if __name__ == '__main__':

743 pass

63

Appendix C - model.py

1 import tensorflow as tf

2 import numpy as np

3 from tensorflow.contrib import slim

4 tf.app.flags.DEFINE_integer('text_scale', 512, '')

5 from nets import resnet_v1

6 FLAGS = tf.app.flags.FLAGS

7

8

9 def unpool(inputs):

10 return tf.image.resize_bilinear(inputs, size=[tf.shape(inputs)[1]*2,

tf.shape(inputs)[2]*2])�→

11

12

13 def mean_image_subtraction(images, means=[123.68, 116.78, 103.94]):

14 '''

15 image normalization

16 :param images:

17 :param means:

18 :return:

19 '''

20 num_channels = images.get_shape().as_list()[-1]

21 if len(means) != num_channels:

22 raise ValueError('len(means) must match the number of channels')

23 channels = tf.split(axis=3, num_or_size_splits=num_channels, value=images)

24 for i in range(num_channels):

25 channels[i] -= means[i]

26 return tf.concat(axis=3, values=channels)

27

28

29 def model(images, weight_decay=1e-5, is_training=True):

30 '''

31 define the model, we use slim's implemention of resnet

32 '''

33 images = mean_image_subtraction(images)

34

35 with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=weight_decay)):

36 logits, end_points = resnet_v1.resnet_v1_50(images, is_training=is_training,

scope='resnet_v1_50')�→

64

37

38 with tf.variable_scope('feature_fusion', values=[end_points.values]):

39 batch_norm_params = {

40 'decay': 0.997,

41 'epsilon': 1e-5,

42 'scale': True,

43 'is_training': is_training

44 }

45 with slim.arg_scope([slim.conv2d],

46 activation_fn=tf.nn.relu,

47 normalizer_fn=slim.batch_norm,

48 normalizer_params=batch_norm_params,

49 weights_regularizer=slim.l2_regularizer(weight_decay)):

50 f = [end_points['pool5'], end_points['pool4'],

51 end_points['pool3'], end_points['pool2']]

52 for i in range(4):

53 print('Shape of f_{} {}'.format(i, f[i].shape))

54 g = [None, None, None, None]

55 h = [None, None, None, None]

56 num_outputs = [None, 128, 64, 32]

57 for i in range(4):

58 if i == 0:

59 h[i] = f[i]

60 else:

61 c1_1 = slim.conv2d(tf.concat([g[i-1], f[i]], axis=-1), num_outputs[i], 1)

62 h[i] = slim.conv2d(c1_1, num_outputs[i], 3)

63 if i <= 2:

64 g[i] = unpool(h[i])

65 else:

66 g[i] = slim.conv2d(h[i], num_outputs[i], 3)

67 print('Shape of h_{} {}, g_{} {}'.format(i, h[i].shape, i, g[i].shape))

68

69 # here we use a slightly different way for regression part,

70 # we first use a sigmoid to limit the regression range, and also

71 # this is do with the angle map

72 F_score = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid,

normalizer_fn=None)�→

73 # 4 channel of axis aligned bbox and 1 channel rotation angle

74 geo_map = slim.conv2d(g[3], 4, 1, activation_fn=tf.nn.sigmoid,

normalizer_fn=None) * FLAGS.text_scale�→

65

75 angle_map = (slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid,

normalizer_fn=None) - 0.5) * np.pi/2 # angle is between [-45, 45]�→

76 F_geometry = tf.concat([geo_map, angle_map], axis=-1)

77

78 return F_score, F_geometry

79

80

81 def dice_coefficient(y_true_cls, y_pred_cls,

82 training_mask):

83 '''

84 dice loss

85 :param y_true_cls:

86 :param y_pred_cls:

87 :param training_mask:

88 :return:

89 '''

90 eps = 1e-5

91 intersection = tf.reduce_sum(y_true_cls * y_pred_cls * training_mask)

92 union = tf.reduce_sum(y_true_cls * training_mask) + tf.reduce_sum(y_pred_cls *

training_mask) + eps�→

93 loss = 1. - (2 * intersection / union)

94 tf.summary.scalar('classification_dice_loss', loss)

95 return loss

96

97

98 def loss(y_true_cls, y_pred_cls,

99 y_true_geo, y_pred_geo,

100 training_mask):

101 '''

102 define the loss used for training, containing two parts,

103 the first part we use dice loss instead of weighted logloss,

104 the second part is the IoU loss defined in the paper

105 :param y_true_cls: ground truth of text

106 :param y_pred_cls: prediction of text

107 :param y_true_geo: ground truth of geometry

108 :param y_pred_geo: prediction of geometry

109 :param training_mask: mask used in training, to ignore some text annotated by ###

110 :return:

111 '''

112 classification_loss = dice_coefficient(y_true_cls, y_pred_cls, training_mask)

113 # scale classification loss to match the iou loss part

66

114 classification_loss *= 0.01

115

116 # d1 -> top, d2->right, d3->bottom, d4->left

117 d1_gt, d2_gt, d3_gt, d4_gt, theta_gt = tf.split(value=y_true_geo, num_or_size_splits=5,

axis=3)�→

118 d1_pred, d2_pred, d3_pred, d4_pred, theta_pred = tf.split(value=y_pred_geo,

num_or_size_splits=5, axis=3)�→

119 area_gt = (d1_gt + d3_gt) * (d2_gt + d4_gt)

120 area_pred = (d1_pred + d3_pred) * (d2_pred + d4_pred)

121 w_union = tf.minimum(d2_gt, d2_pred) + tf.minimum(d4_gt, d4_pred)

122 h_union = tf.minimum(d1_gt, d1_pred) + tf.minimum(d3_gt, d3_pred)

123 area_intersect = w_union * h_union

124 area_union = area_gt + area_pred - area_intersect

125 L_AABB = -tf.log((area_intersect + 1.0)/(area_union + 1.0))

126 L_theta = 1 - tf.cos(theta_pred - theta_gt)

127 tf.summary.scalar('geometry_AABB', tf.reduce_mean(L_AABB * y_true_cls * training_mask))

128 tf.summary.scalar('geometry_theta', tf.reduce_mean(L_theta * y_true_cls * training_mask))

129 L_g = L_AABB + 20 * L_theta

130

131 return tf.reduce_mean(L_g * y_true_cls * training_mask) + classification_loss

67

Appendix D - multigpu train.py

1 import time

2 import numpy as np

3 import tensorflow as tf

4 from tensorflow.contrib import slim

5

6 tf.app.flags.DEFINE_integer('input_size', 512, '')

7 tf.app.flags.DEFINE_integer('batch_size_per_gpu', 14, '')

8 tf.app.flags.DEFINE_integer('num_readers', 16, '')

9 tf.app.flags.DEFINE_float('learning_rate', 0.0001, '')

10 tf.app.flags.DEFINE_integer('max_steps', 100000, '')

11 tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '')

12 tf.app.flags.DEFINE_string('gpu_list', '1', '')

13 tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '')

14 tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint')

15 tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '')

16 tf.app.flags.DEFINE_integer('save_summary_steps', 100, '')

17 tf.app.flags.DEFINE_string('pretrained_model_path', None, '')

18

19 import model

20 import icdar

21

22 FLAGS = tf.app.flags.FLAGS

23

24 gpus = list(range(len(FLAGS.gpu_list.split(','))))

25

26

27 def tower_loss(images, score_maps, geo_maps, training_masks, reuse_variables=None):

28 # Build inference graph

29 with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables):

30 f_score, f_geometry = model.model(images, is_training=True)

31

32 model_loss = model.loss(score_maps, f_score,

33 geo_maps, f_geometry,

34 training_masks)

35 total_loss = tf.add_n([model_loss] +

tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))�→

36

37 # add summary

68

38 if reuse_variables is None:

39 tf.summary.image('input', images)

40 tf.summary.image('score_map', score_maps)

41 tf.summary.image('score_map_pred', f_score * 255)

42 tf.summary.image('geo_map_0', geo_maps[:, :, :, 0:1])

43 tf.summary.image('geo_map_0_pred', f_geometry[:, :, :, 0:1])

44 tf.summary.image('training_masks', training_masks)

45 tf.summary.scalar('model_loss', model_loss)

46 tf.summary.scalar('total_loss', total_loss)

47

48 return total_loss, model_loss

49

50

51 def average_gradients(tower_grads):

52 average_grads = []

53 for grad_and_vars in zip(*tower_grads):

54 grads = []

55 for g, _ in grad_and_vars:

56 expanded_g = tf.expand_dims(g, 0)

57 grads.append(expanded_g)

58

59 grad = tf.concat(grads, 0)

60 grad = tf.reduce_mean(grad, 0)

61

62 v = grad_and_vars[0][1]

63 grad_and_var = (grad, v)

64 average_grads.append(grad_and_var)

65

66 return average_grads

67

68

69 def main(argv=None):

70 import os

71 os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list

72 if not tf.gfile.Exists(FLAGS.checkpoint_path):

73 tf.gfile.MkDir(FLAGS.checkpoint_path)

74 else:

75 if not FLAGS.restore:

76 tf.gfile.DeleteRecursively(FLAGS.checkpoint_path)

77 tf.gfile.MkDir(FLAGS.checkpoint_path)

78

69

79 input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3],

name='input_images')�→

80 input_score_maps = tf.placeholder(tf.float32, shape=[None, None, None, 1],

name='input_score_maps')�→

81 if FLAGS.geometry == 'RBOX':

82 input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 5],

name='input_geo_maps')�→

83 else:

84 input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 8],

name='input_geo_maps')�→

85 input_training_masks = tf.placeholder(tf.float32, shape=[None, None, None, 1],

name='input_training_masks')�→

86

87 global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0),

trainable=False)�→

88 learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, global_step,

decay_steps=10000, decay_rate=0.94, staircase=True)�→

89 # add summary

90 tf.summary.scalar('learning_rate', learning_rate)

91 opt = tf.train.AdamOptimizer(learning_rate)

92 # opt = tf.train.MomentumOptimizer(learning_rate, 0.9)

93

94

95 # split

96 input_images_split = tf.split(input_images, len(gpus))

97 input_score_maps_split = tf.split(input_score_maps, len(gpus))

98 input_geo_maps_split = tf.split(input_geo_maps, len(gpus))

99 input_training_masks_split = tf.split(input_training_masks, len(gpus))

100

101 tower_grads = []

102 reuse_variables = None

103 for i, gpu_id in enumerate(gpus):

104 with tf.device('/gpu:%d' % gpu_id):

105 with tf.name_scope('model_%d' % gpu_id) as scope:

106 iis = input_images_split[i]

107 isms = input_score_maps_split[i]

108 igms = input_geo_maps_split[i]

109 itms = input_training_masks_split[i]

110 total_loss, model_loss = tower_loss(iis, isms, igms, itms, reuse_variables)

111 batch_norm_updates_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS,

scope))�→

70

112 reuse_variables = True

113

114 grads = opt.compute_gradients(total_loss)

115 tower_grads.append(grads)

116

117 grads = average_gradients(tower_grads)

118 apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

119

120 summary_op = tf.summary.merge_all()

121 # save moving average

122 variable_averages = tf.train.ExponentialMovingAverage(

123 FLAGS.moving_average_decay, global_step)

124 variables_averages_op = variable_averages.apply(tf.trainable_variables())

125 # batch norm updates

126 with tf.control_dependencies([variables_averages_op, apply_gradient_op,

batch_norm_updates_op]):�→

127 train_op = tf.no_op(name='train_op')

128

129 saver = tf.train.Saver(tf.global_variables())

130 summary_writer = tf.summary.FileWriter(FLAGS.checkpoint_path, tf.get_default_graph())

131

132 init = tf.global_variables_initializer()

133

134 if FLAGS.pretrained_model_path is not None:

135 variable_restore_op = slim.assign_from_checkpoint_fn(FLAGS.pretrained_model_path,

slim.get_trainable_variables(),�→

136 ignore_missing_vars=True)

137 with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:

138 if FLAGS.restore:

139 print('continue training from previous checkpoint')

140 ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_path)

141 saver.restore(sess, ckpt)

142 else:

143 sess.run(init)

144 if FLAGS.pretrained_model_path is not None:

145 variable_restore_op(sess)

146

147 data_generator = icdar.get_batch(num_workers=FLAGS.num_readers,

148 input_size=FLAGS.input_size,

149 batch_size=FLAGS.batch_size_per_gpu * len(gpus))

150

71

151 start = time.time()

152 for step in range(FLAGS.max_steps):

153 data = next(data_generator)

154 ml, tl, _ = sess.run([model_loss, total_loss, train_op], feed_dict={input_images:

data[0],�→

155

input_score_maps:

data[2],

�→

�→

156

input_geo_maps:

data[3],

�→

�→

157

input_training_masks:

data[4]})

�→

�→

158 if np.isnan(tl):

159 print('Loss diverged, stop training')

160 break

161

162 if step % 10 == 0:

163 avg_time_per_step = (time.time() - start)/10

164 avg_examples_per_second = (10 * FLAGS.batch_size_per_gpu *

len(gpus))/(time.time() - start)�→

165 start = time.time()

166 print('Step {:06d}, model loss {:.4f}, total loss {:.4f}, {:.2f}

seconds/step, {:.2f} examples/second'.format(�→

167 step, ml, tl, avg_time_per_step, avg_examples_per_second))

168

169 if step % FLAGS.save_checkpoint_steps == 0:

170 saver.save(sess, FLAGS.checkpoint_path + 'model.ckpt',

global_step=global_step)�→

171

172 if step % FLAGS.save_summary_steps == 0:

173 _, tl, summary_str = sess.run([train_op, total_loss, summary_op],

feed_dict={input_images: data[0],�→

174

input_score_maps:

data[2],

�→

�→

175

input_geo_maps:

data[3],

�→

�→

72

176

input_training_masks:

data[4]})

�→

�→

177 summary_writer.add_summary(summary_str, global_step=step)

178

179 if __name__ == '__main__':

180 tf.app.run()

73

Appendix E - eval.py

1 # encode=utf-8

2 # text detection

3 import time

4 import os

5 import cv2

6 import numpy as np

7 import tensorflow as tf

8 import model

9 from preproc import get_images, resize_image

10 from detect import detect

11 from recognize import recognize

12 import box_modifier

13 import enchant

14 import locality_aware_nms as nms_locality

15

16 tf.app.flags.DEFINE_string('test_data_path', './images/', '')

17 tf.app.flags.DEFINE_string('model_path', './model_CRNN/', '')

18 tf.app.flags.DEFINE_string('gpu_list', '0', '')

19 tf.app.flags.DEFINE_string('checkpoint_path', './east_icdar2015_resnet_v1_50_rbox/', '')

20 tf.app.flags.DEFINE_string('output_dir', './images/', '')

21

22 FLAGS = tf.app.flags.FLAGS

23 dictEN = enchant.Dict("en_US")

24 dictFR = enchant.Dict("fr_FR")

25

26

27 def dict_check(sim_pred):

28 if dictEN.check(sim_pred) is True:

29 return sim_pred + '_EN'

30 elif dictFR.check(sim_pred) is True:

31 return sim_pred + '_FR'

32

33

34 def main(argv=None):

35 os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list

36 try:

37 os.makedirs(FLAGS.output_dir)

38 except OSError as e:

74

39 if e.errno != 17:

40 raise

41

42 with tf.get_default_graph().as_default():

43 input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3],

name='input_images')�→

44 global_step = tf.get_variable('global_step', [],

initializer=tf.constant_initializer(0), trainable=False)�→

45

46 f_score, f_geometry = model.model(input_images, is_training=False)

47

48 variable_averages = tf.train.ExponentialMovingAverage(0.997, global_step)

49 saver = tf.train.Saver(variable_averages.variables_to_restore())

50

51 with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:

52 ckpt_state = tf.train.get_checkpoint_state(FLAGS.checkpoint_path)

53 model_path = os.path.join(FLAGS.checkpoint_path,

os.path.basename(ckpt_state.model_checkpoint_path))�→

54 print('Restore from {}'.format(model_path))

55 saver.restore(sess, model_path)

56

57 im_fn_list = get_images()

58 for im_fn in im_fn_list:

59 im = cv2.imread(im_fn)[:, :, ::-1]

60 start_time = time.time()

61 im_resized, (ratio_h, ratio_w) = resize_image(im)

62

63 timer = {'net': 0, 'restore': 0, 'nms': 0}

64 start = time.time()

65 score, geometry = sess.run([f_score, f_geometry], feed_dict={input_images:

[im_resized]})�→

66 timer['net'] = time.time() - start

67

68 boxes, timer = detect(score_map=score, geo_map=geometry, timer=timer)

69 print('{} : net {:.0f}ms, restore {:.0f}ms, nms {:.0f}ms'.format(

70 im_fn, timer['net'] * 1000, timer['restore'] * 1000, timer['nms'] *

1000))�→

71

72 if boxes is not None:

73 boxes = boxes[:, :8].reshape((-1, 4, 2))

74 boxes[:, :, 0] /= ratio_w

75

75 boxes[:, :, 1] /= ratio_h

76

77 duration = time.time() - start_time

78 print('[timing] {}'.format(duration))

79

80 text = []

81 box_coor = []

82 for box in boxes:

83 # to avoid submitting errors

84 box = box_modifier.sort_poly(box.astype(np.int32))

85 if np.linalg.norm(box[0] - box[1]) < 5 or np.linalg.norm(box[3] - box[0])

< 5:�→

86 continue

87 # cropping the boxes

88 for _ in box:

89 _box = im[(np.amin(box, 0)[1]):(np.amax(box, 0)[1]),

90 (np.amin(box, 0)[0]):(np.amax(box, 0)[0])]

91 _box_coor = [(np.amin(box, 0)[0]), (np.amax(box, 0)[0]),

(np.amin(box, 0)[1]),�→

92 (np.amax(box, 0)[1])]

93 if recognize(_box) is not None:

94 text.append(recognize(_box))

95 box_coor.append(_box_coor)

96

97 matches = box_modifier.match_check(box_coor)

98

99 for i in range(len(matches)):

100 text[matches[i][0]] = text[matches[i][0]] + ' ' + text[matches[i][1]]

101

102 box_modifier.comb_boxes(box_coor, matches)

103 box_location = box_modifier.get_box_location(box_coor, im)

104

105 return text, box_location

106

107

108 if __name__ == '__main__':

109 tf.app.run()

76

Appendix F - preproc.py

1 import cv2

2 import os

3 import tensorflow as tf

4

5 FLAGS = tf.app.flags.FLAGS

6

7 def get_images():

8 '''

9 find image files in test data path

10 :return: list of files found

11 '''

12 files = []

13 exts = ['jpg', 'png', 'jpeg', 'JPG']

14 for parent, dirnames, filenames in os.walk(FLAGS.test_data_path):

15 for filename in filenames:

16 for ext in exts:

17 if filename.endswith(ext):

18 files.append(os.path.join(parent, filename))

19 break

20 print('Found {} images'.format(len(files)))

21 return files

22

23

24 def resize_image(im, max_side_len=2400):

25 '''

26 resize image to a size multiple of 32 which is required by the network

27 :param im: the resized image

28 :param max_side_len: limit of max image size to avoid out of memory in gpu

29 :return: the resized image and the resize ratio

30 '''

31 h, w, _ = im.shape

32

33 resize_w = w

34 resize_h = h

35

36 # limit the max side

37 if max(resize_h, resize_w) > max_side_len:

77

38 ratio = float(max_side_len) / resize_h if resize_h > resize_w else

float(max_side_len) / resize_w�→

39 else:

40 ratio = 1.

41 resize_h = int(resize_h * ratio)

42 resize_w = int(resize_w * ratio)

43

44 resize_h = resize_h if resize_h % 32 == 0 else (resize_h // 32 - 1) * 32

45 resize_w = resize_w if resize_w % 32 == 0 else (resize_w // 32 - 1) * 32

46 im = cv2.resize(im, (int(resize_w), int(resize_h)))

47

48 ratio_h = resize_h / float(h)

49 ratio_w = resize_w / float(w)

50

51 return im, (ratio_h, ratio_w)

78

Appendix G - box modifier.py

1 import itertools

2 import numpy as np

3

4

5 def sort_poly(p):

6 min_axis = np.argmin(np.sum(p, axis=1))

7 p = p[[min_axis, (min_axis + 1) % 4, (min_axis + 2) % 4, (min_axis + 3) % 4]]

8 if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):

9 return p

10 else:

11 return p[[0, 3, 2, 1]]

12

13

14 # look for matches itertools permutations

15 def match_check(box_coor):

16 comb_box = []

17 for i, j in itertools.permutations(box_coor, 2):

18 if (j[0] <= i[1] and j[2] <= i[3]) and (i[0] <= j[1] and i[2] <= j[3]):

19 comb_box.append((box_coor.index(i), box_coor.index(j)))

20 matches = list(set(tuple(sorted(l)) for l in comb_box))

21 for k in range(len(matches)):

22 if box_coor[matches[k][0]][2] <= box_coor[matches[k][1]][3]:

23 matches[k] = (matches[k][1], matches[k][0])

24 elif box_coor[matches[k][0]][0] <= box_coor[matches[k][1]][1]:

25 matches[k] = (matches[k][1], matches[k][0])

26 else:

27 pass

28 return matches

29

30

31 def comb_boxes(box_coor, matches):

32 for i in matches:

33 box_coor[i[0]] = [(np.minimum(box_coor[i[0]][0], box_coor[i[1]][0])),

34 (np.maximum(box_coor[i[0]][1], box_coor[i[1]][1])),

35 (np.minimum(box_coor[i[0]][2], box_coor[i[1]][2])),

36 (np.maximum(box_coor[i[0]][3], box_coor[i[1]][3]))]

37

38 return box_coor

79

39

40

41 def get_box_location(box_coor, im):

42 im_size = np.shape(im)

43 box_location = []

44 for i in range(len(box_coor)):

45 box_x = (box_coor[i][0] + box_coor[i][1]) / 2

46 box_y = (box_coor[i][2] + box_coor[i][3]) / 2

47 print(float(box_x/im_size[0]), float(box_y/im_size[1]))

48 box_location.append([box_y / im_size[0], box_x / im_size[1]])

49

50 return box_location

80

Appendix H - crnn main.py

1 from __future__ import print_function

2 import argparse

3 import random

4 import torch

5 import torch.backends.cudnn as cudnn

6 import torch.optim as optim

7 import torch.utils.data

8 from torch.autograd import Variable

9 import numpy as np

10 from warpctc_pytorch import CTCLoss

11 import os

12 import utils

13 import dataset

14

15 import models.crnn as crnn

16

17 parser = argparse.ArgumentParser()

18 parser.add_argument('--trainroot', required=True, help='path to dataset')

19 parser.add_argument('--valroot', required=True, help='path to dataset')

20 parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)

21 parser.add_argument('--batchSize', type=int, default=64, help='input batch size')

22 parser.add_argument('--imgH', type=int, default=32, help='the height of the input image to

network')�→

23 parser.add_argument('--imgW', type=int, default=100, help='the width of the input image to

network')�→

24 parser.add_argument('--nh', type=int, default=256, help='size of the lstm hidden state')

25 parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for')

26 parser.add_argument('--lr', type=float, default=0.01, help='learning rate for Critic,

default=0.00005')�→

27 parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')

28 parser.add_argument('--cuda', action='store_true', help='enables cuda')

29 parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')

30 parser.add_argument('--crnn', default='', help="path to crnn (to continue training)")

31 parser.add_argument('--alphabet', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz')

32 parser.add_argument('--experiment', default=None, help='Where to store samples and models')

33 parser.add_argument('--displayInterval', type=int, default=500, help='Interval to be

displayed')�→

81

34 parser.add_argument('--n_test_disp', type=int, default=10, help='Number of samples to display

when test')�→

35 parser.add_argument('--valInterval', type=int, default=500, help='Interval to be displayed')

36 parser.add_argument('--saveInterval', type=int, default=500, help='Interval to be displayed')

37 parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is

rmsprop)')�→

38 parser.add_argument('--adadelta', action='store_true', help='Whether to use adadelta (default

is rmsprop)')�→

39 parser.add_argument('--keep_ratio', action='store_true', help='whether to keep ratio for

image resize')�→

40 parser.add_argument('--random_sample', action='store_true', help='whether to sample the

dataset with random sampler')�→

41 opt = parser.parse_args()

42 print(opt)

43

44 if opt.experiment is None:

45 opt.experiment = 'expr'

46 os.system('mkdir {0}'.format(opt.experiment))

47

48 opt.manualSeed = random.randint(1, 10000) # fix seed

49 print("Random Seed: ", opt.manualSeed)

50 random.seed(opt.manualSeed)

51 np.random.seed(opt.manualSeed)

52 torch.manual_seed(opt.manualSeed)

53

54 cudnn.benchmark = True

55

56 if torch.cuda.is_available() and not opt.cuda:

57 print("WARNING: You have a CUDA device, so you should probably run with --cuda")

58

59 train_dataset = dataset.lmdbDataset(root=opt.trainroot)

60 assert train_dataset

61 if not opt.random_sample:

62 sampler = dataset.randomSequentialSampler(train_dataset, opt.batchSize)

63 else:

64 sampler = None

65 train_loader = torch.utils.data.DataLoader(

66 train_dataset, batch_size=opt.batchSize,

67 shuffle=True, sampler=sampler,

68 num_workers=int(opt.workers),

69 collate_fn=dataset.alignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio=opt.keep_ratio))

82

70 test_dataset = dataset.lmdbDataset(

71 root=opt.valroot, transform=dataset.resizeNormalize((100, 32)))

72

73 nclass = len(opt.alphabet) + 1

74 nc = 1

75

76 converter = utils.strLabelConverter(opt.alphabet)

77 criterion = CTCLoss()

78

79

80 # custom weights initialization called on crnn

81 def weights_init(m):

82 classname = m.__class__.__name__

83 if classname.find('Conv') != -1:

84 m.weight.data.normal_(0.0, 0.02)

85 elif classname.find('BatchNorm') != -1:

86 m.weight.data.normal_(1.0, 0.02)

87 m.bias.data.fill_(0)

88

89

90 crnn = crnn.CRNN(opt.imgH, nc, nclass, opt.nh)

91 crnn.apply(weights_init)

92 if opt.crnn != '':

93 print('loading pretrained model from %s' % opt.crnn)

94 crnn.load_state_dict(torch.load(opt.crnn))

95 print(crnn)

96

97 image = torch.FloatTensor(opt.batchSize, 3, opt.imgH, opt.imgH)

98 text = torch.IntTensor(opt.batchSize * 5)

99 length = torch.IntTensor(opt.batchSize)

100

101 if opt.cuda:

102 crnn.cuda()

103 crnn = torch.nn.DataParallel(crnn, device_ids=range(opt.ngpu))

104 image = image.cuda()

105 criterion = criterion.cuda()

106

107 image = Variable(image)

108 text = Variable(text)

109 length = Variable(length)

110

83

111 # loss averager

112 loss_avg = utils.averager()

113

114 # setup optimizer

115 if opt.adam:

116 optimizer = optim.Adam(crnn.parameters(), lr=opt.lr,

117 betas=(opt.beta1, 0.999))

118 elif opt.adadelta:

119 optimizer = optim.Adadelta(crnn.parameters(), lr=opt.lr)

120 else:

121 optimizer = optim.RMSprop(crnn.parameters(), lr=opt.lr)

122

123

124 def val(net, dataset, criterion, max_iter=100):

125 print('Start val')

126

127 for p in crnn.parameters():

128 p.requires_grad = False

129

130 net.eval()

131 data_loader = torch.utils.data.DataLoader(

132 dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))

133 val_iter = iter(data_loader)

134

135 i = 0

136 n_correct = 0

137 loss_avg = utils.averager()

138

139 max_iter = min(max_iter, len(data_loader))

140 for i in range(max_iter):

141 data = val_iter.next()

142 i += 1

143 cpu_images, cpu_texts = data

144 batch_size = cpu_images.size(0)

145 utils.loadData(image, cpu_images)

146 t, l = converter.encode(cpu_texts)

147 utils.loadData(text, t)

148 utils.loadData(length, l)

149

150 preds = crnn(image)

151 preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))

84

152 cost = criterion(preds, text, preds_size, length) / batch_size

153 loss_avg.add(cost)

154

155 _, preds = preds.max(2)

156 preds = preds.squeeze(2)

157 preds = preds.transpose(1, 0).contiguous().view(-1)

158 sim_preds = converter.decode(preds.data, preds_size.data, raw=False)

159 for pred, target in zip(sim_preds, cpu_texts):

160 if pred == target.lower():

161 n_correct += 1

162

163 raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]

164 for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):

165 print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))

166

167 accuracy = n_correct / float(max_iter * opt.batchSize)

168 print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))

169

170

171 def trainBatch(net, criterion, optimizer):

172 data = train_iter.next()

173 cpu_images, cpu_texts = data

174 batch_size = cpu_images.size(0)

175 utils.loadData(image, cpu_images)

176 t, l = converter.encode(cpu_texts)

177 utils.loadData(text, t)

178 utils.loadData(length, l)

179

180 preds = crnn(image)

181 preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))

182 cost = criterion(preds, text, preds_size, length) / batch_size

183 crnn.zero_grad()

184 cost.backward()

185 optimizer.step()

186 return cost

187

188

189 for epoch in range(opt.niter):

190 train_iter = iter(train_loader)

191 i = 0

192 while i < len(train_loader):

85

193 for p in crnn.parameters():

194 p.requires_grad = True

195 crnn.train()

196

197 cost = trainBatch(crnn, criterion, optimizer)

198 loss_avg.add(cost)

199 i += 1

200

201 if i % opt.displayInterval == 0:

202 print('[%d/%d][%d/%d] Loss: %f' %

203 (epoch, opt.niter, i, len(train_loader), loss_avg.val()))

204 loss_avg.reset()

205

206 if i % opt.valInterval == 0:

207 val(crnn, test_dataset, criterion)

208

209 # do checkpointing

210 if i % opt.saveInterval == 0:

211 torch.save(

212 crnn.state_dict(), '{0}/netCRNN_{1}_{2}.pth'.format(opt.experiment, epoch,

i))�→

86

Appendix I - adaptor.cpp

1 #include "pybind11/pybind11.h"

2 #include "pybind11/numpy.h"

3 #include "pybind11/stl.h"

4 #include "pybind11/stl_bind.h"

5

6 #include "lanms.h"

7

8 namespace py = pybind11;

9

10

11 namespace lanms_adaptor {

12

13 std::vector<std::vector<float>> polys2floats(const std::vector<lanms::Polygon>

&polys) {�→

14 std::vector<std::vector<float>> ret;

15 for (size_t i = 0; i < polys.size(); i ++) {

16 auto &p = polys[i];

17 auto &poly = p.poly;

18 ret.emplace_back(std::vector<float>{

19 float(poly[0].X), float(poly[0].Y),

20 float(poly[1].X), float(poly[1].Y),

21 float(poly[2].X), float(poly[2].Y),

22 float(poly[3].X), float(poly[3].Y),

23 float(p.score),

24 });

25 }

26

27 return ret;

28 }

29

30

31 /**

32 *

33 * \param quad_n9 an n-by-9 numpy array, where first 8 numbers denote the

34 * quadrangle, and the last one is the score

35 * \param iou_threshold two quadrangles with iou score above this threshold

36 * will be merged

37 *

87

38 * \return an n-by-9 numpy array, the merged quadrangles

39 */

40 std::vector<std::vector<float>> merge_quadrangle_n9(

41 py::array_t<float, py::array::c_style | py::array::forcecast>

quad_n9,�→

42 float iou_threshold) {

43 auto pbuf = quad_n9.request();

44 if (pbuf.ndim != 2 || pbuf.shape[1] != 9)

45 throw std::runtime_error("quadrangles must have a shape of (n, 9)");

46 auto n = pbuf.shape[0];

47 auto ptr = static_cast<float *>(pbuf.ptr);

48 return polys2floats(lanms::merge_quadrangle_n9(ptr, n, iou_threshold));

49 }

50

51 }

52

53 PYBIND11_PLUGIN(adaptor) {

54 py::module m("adaptor", "NMS");

55

56 m.def("merge_quadrangle_n9", &lanms_adaptor::merge_quadrangle_n9,

57 "merge quadrangels");

58

59 return m.ptr();

60 }

88

Appendix J - recognize.py

1 # coding=utf-8

2

3 import models.crnn as crnn

4 import torch

5 from torch.autograd import Variable

6 import utils

7 import dataset

8 import enchant

9 import unicodedata

10 from PIL import Image

11

12 model_path = './crrn.pth'

13 alphabet = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'

14 dictEN = enchant.Dict("en_US")

15 dictFR = enchant.Dict("fr_FR")

16

17

18 #

https://stackoverflow.com/questions/517923/what-is-the-best-way-to-remove-accents-in-a-python-unicode-string�→

19 def remove_accents(input_str):

20 nfkd_form = unicodedata.normalize('NFKD', input_str)

21 only_ascii = nfkd_form.encode('ASCII', 'ignore')

22 return only_ascii.decode('utf-8')

23

24

25 def recognize(box_coor):

26 '''

27

28 '''

29 model = crnn.CRNN(32, 1, 37, 256)

30 if torch.cuda.is_available():

31 model = model.cuda()

32 # print('loading pretrained model from %s' % model_path)

33 model.load_state_dict(torch.load(model_path))

34

35 converter = utils.strLabelConverter(alphabet)

36 transformer = dataset.resizeNormalize((100, 32))

37

89

38 image = Image.fromarray(box_coor).convert('L')

39 image = transformer(image)

40 if torch.cuda.is_available():

41 image = image.cuda()

42 image = image.view(1, *image.size())

43 image = Variable(image)

44 model.eval()

45 preds = model(image)

46 _, preds = preds.max(2)

47 # preds = preds.squeeze(2)

48 preds = preds.transpose(1, 0).contiguous().view(-1)

49 preds_size = Variable(torch.IntTensor([preds.size(0)]))

50 raw_pred = converter.decode(preds.data, preds_size.data, raw=True)

51 sim_pred = converter.decode(preds.data, preds_size.data, raw=False)

52 if len(sim_pred) > int(1):

53 if dictEN.check(sim_pred) is True:

54 return sim_pred

55 elif dictFR.check(sim_pred) is True:

56 return sim_pred

57 else:

58 sugg = dictFR.suggest(sim_pred)

59 for i in range(0, len(sugg)):

60 sugg[i] = remove_accents(sugg[i])

61 if sim_pred in sugg:

62 return sugg[0]

63 else:

64 pass

65 else:

66 pass

90

Appendix K - crnn.py

1 import torch.nn as nn

2

3 class BidirectionalLSTM(nn.Module):

4

5 def __init__(self, nIn, nHidden, nOut):

6 super(BidirectionalLSTM, self).__init__()

7

8 self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True)

9 self.embedding = nn.Linear(nHidden * 2, nOut)

10

11 def forward(self, input):

12 recurrent, _ = self.rnn(input)

13 T, b, h = recurrent.size()

14 t_rec = recurrent.view(T * b, h)

15

16 output = self.embedding(t_rec) # [T * b, nOut]

17 output = output.view(T, b, -1)

18

19 return output

20

21

22 class CRNN(nn.Module):

23

24 def __init__(self, imgH, nc, nclass, nh, n_rnn=2, leakyRelu=False):

25 super(CRNN, self).__init__()

26 assert imgH % 16 == 0, 'imgH has to be a multiple of 16'

27

28 ks = [3, 3, 3, 3, 3, 3, 2]

29 ps = [1, 1, 1, 1, 1, 1, 0]

30 ss = [1, 1, 1, 1, 1, 1, 1]

31 nm = [64, 128, 256, 256, 512, 512, 512]

32

33 cnn = nn.Sequential()

34

35 def convRelu(i, batchNormalization=False):

36 nIn = nc if i == 0 else nm[i - 1]

37 nOut = nm[i]

38 cnn.add_module('conv{0}'.format(i),

91

39 nn.Conv2d(nIn, nOut, ks[i], ss[i], ps[i]))

40 if batchNormalization:

41 cnn.add_module('batchnorm{0}'.format(i), nn.BatchNorm2d(nOut))

42 if leakyRelu:

43 cnn.add_module('relu{0}'.format(i),

44 nn.LeakyReLU(0.2, inplace=True))

45 else:

46 cnn.add_module('relu{0}'.format(i), nn.ReLU(True))

47

48 convRelu(0)

49 cnn.add_module('pooling{0}'.format(0), nn.MaxPool2d(2, 2)) # 64x16x64

50 convRelu(1)

51 cnn.add_module('pooling{0}'.format(1), nn.MaxPool2d(2, 2)) # 128x8x32

52 convRelu(2, True)

53 convRelu(3)

54 cnn.add_module('pooling{0}'.format(2),

55 nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # 256x4x16

56 convRelu(4, True)

57 convRelu(5)

58 cnn.add_module('pooling{0}'.format(3),

59 nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # 512x2x16

60 convRelu(6, True) # 512x1x16

61

62 self.cnn = cnn

63 self.rnn = nn.Sequential(

64 BidirectionalLSTM(512, nh, nh),

65 BidirectionalLSTM(nh, nh, nclass))

66

67

68 def forward(self, input):

69 # conv features

70 conv = self.cnn(input)

71 b, c, h, w = conv.size()

72 assert h == 1, "the height of conv must be 1"

73 conv = conv.squeeze(2)

74 conv = conv.permute(2, 0, 1) # [w, b, c]

75

76 # rnn features

77 output = self.rnn(conv)

78

79 return output

92

Appendix L - utils.py

1 #!/usr/bin/python

2 # encoding: utf-8

3

4 import torch

5 import torch.nn as nn

6 from torch.autograd import Variable

7 import collections

8

9

10 class strLabelConverter(object):

11 """Convert between str and label.

12

13 NOTE:

14 Insert `blank` to the alphabet for CTC.

15

16 Args:

17 alphabet (str): set of the possible characters.

18 ignore_case (bool, default=True): whether or not to ignore all of the case.

19 """

20

21 def __init__(self, alphabet, ignore_case=True):

22 self._ignore_case = ignore_case

23 if self._ignore_case:

24 alphabet = alphabet.lower()

25 self.alphabet = alphabet + '-' # for `-1` index

26

27 self.dict = {}

28 for i, char in enumerate(alphabet):

29 # NOTE: 0 is reserved for 'blank' required by wrap_ctc

30 self.dict[char] = i + 1

31

32 def encode(self, text):

33 """Support batch or single str.

34

35 Args:

36 text (str or list of str): texts to convert.

37

38 Returns:

93

39 torch.IntTensor [length_0 + length_1 + ... length_{n - 1}]: encoded texts.

40 torch.IntTensor [n]: length of each text.

41 """

42 if isinstance(text, str):

43 text = [

44 self.dict[char.lower() if self._ignore_case else char]

45 for char in text

46]

47 length = [len(text)]

48 elif isinstance(text, collections.Iterable):

49 length = [len(s) for s in text]

50 text = ''.join(text)

51 text, _ = self.encode(text)

52 return (torch.IntTensor(text), torch.IntTensor(length))

53

54 def decode(self, t, length, raw=False):

55 """Decode encoded texts back into strs.

56

57 Args:

58 torch.IntTensor [length_0 + length_1 + ... length_{n - 1}]: encoded texts.

59 torch.IntTensor [n]: length of each text.

60

61 Raises:

62 AssertionError: when the texts and its length does not match.

63

64 Returns:

65 text (str or list of str): texts to convert.

66 """

67 if length.numel() == 1:

68 length = length[0]

69 assert t.numel() == length, "text with length: {} does not match declared length:

{}".format(t.numel(), length)�→

70 if raw:

71 return ''.join([self.alphabet[i - 1] for i in t])

72 else:

73 char_list = []

74 for i in range(length):

75 if t[i] != 0 and (not (i > 0 and t[i - 1] == t[i])):

76 char_list.append(self.alphabet[t[i] - 1])

77 return ''.join(char_list)

78 else:

94

79 # batch mode

80 assert t.numel() == length.sum(), "texts with length: {} does not match declared

length: {}".format(t.numel(), length.sum())�→

81 texts = []

82 index = 0

83 for i in range(length.numel()):

84 l = length[i]

85 texts.append(

86 self.decode(

87 t[index:index + l], torch.IntTensor([l]), raw=raw))

88 index += l

89 return texts

90

91

92 class averager(object):

93 """Compute average for `torch.Variable` and `torch.Tensor`. """

94

95 def __init__(self):

96 self.reset()

97

98 def add(self, v):

99 if isinstance(v, Variable):

100 count = v.data.numel()

101 v = v.data.sum()

102 elif isinstance(v, torch.Tensor):

103 count = v.numel()

104 v = v.sum()

105

106 self.n_count += count

107 self.sum += v

108

109 def reset(self):

110 self.n_count = 0

111 self.sum = 0

112

113 def val(self):

114 res = 0

115 if self.n_count != 0:

116 res = self.sum / float(self.n_count)

117 return res

118

95

119

120 def oneHot(v, v_length, nc):

121 batchSize = v_length.size(0)

122 maxLength = v_length.max()

123 v_onehot = torch.FloatTensor(batchSize, maxLength, nc).fill_(0)

124 acc = 0

125 for i in range(batchSize):

126 length = v_length[i]

127 label = v[acc:acc + length].view(-1, 1).long()

128 v_onehot[i, :length].scatter_(1, label, 1.0)

129 acc += length

130 return v_onehot

131

132

133 def loadData(v, data):

134 v.data.resize_(data.size()).copy_(data)

135

136

137 def prettyPrint(v):

138 print('Size {0}, Type: {1}'.format(str(v.size()), v.data.type()))

139 print('| Max: %f | Min: %f | Mean: %f' % (v.max().data[0], v.min().data[0],

140 v.mean().data[0]))

141

142

143 def assureRatio(img):

144 """Ensure imgH <= imgW."""

145 b, c, h, w = img.size()

146 if h > w:

147 main = nn.UpsamplingBilinear2d(size=(h, h), scale_factor=None)

148 img = main(img)

149 return img

96

Appendix M - dataset.py

1 #!/usr/bin/python

2 # encoding: utf-8

3

4 import random

5 import torch

6 from torch.utils.data import Dataset

7 from torch.utils.data import sampler

8 import torchvision.transforms as transforms

9 import lmdb

10 import six

11 import sys

12 from PIL import Image

13 import numpy as np

14

15

16 class lmdbDataset(Dataset):

17

18 def __init__(self, root=None, transform=None, target_transform=None):

19 self.env = lmdb.open(

20 root,

21 max_readers=1,

22 readonly=True,

23 lock=False,

24 readahead=False,

25 meminit=False)

26

27 if not self.env:

28 print('cannot creat lmdb from %s' % (root))

29 sys.exit(0)

30

31 with self.env.begin(write=False) as txn:

32 nSamples = int(txn.get('num-samples'))

33 self.nSamples = nSamples

34

35 self.transform = transform

36 self.target_transform = target_transform

37

38 def __len__(self):

97

39 return self.nSamples

40

41 def __getitem__(self, index):

42 assert index <= len(self), 'index range error'

43 index += 1

44 with self.env.begin(write=False) as txn:

45 img_key = 'image-%09d' % index

46 imgbuf = txn.get(img_key)

47

48 buf = six.BytesIO()

49 buf.write(imgbuf)

50 buf.seek(0)

51 try:

52 img = Image.open(buf).convert('L')

53 except IOError:

54 print('Corrupted image for %d' % index)

55 return self[index + 1]

56

57 if self.transform is not None:

58 img = self.transform(img)

59

60 label_key = 'label-%09d' % index

61 label = str(txn.get(label_key))

62

63 if self.target_transform is not None:

64 label = self.target_transform(label)

65

66 return (img, label)

67

68

69 class resizeNormalize(object):

70

71 def __init__(self, size, interpolation=Image.BILINEAR):

72 self.size = size

73 self.interpolation = interpolation

74 self.toTensor = transforms.ToTensor()

75

76 def __call__(self, img):

77 img = img.resize(self.size, self.interpolation)

78 img = self.toTensor(img)

79 img.sub_(0.5).div_(0.5)

98

80 return img

81

82

83 class randomSequentialSampler(sampler.Sampler):

84

85 def __init__(self, data_source, batch_size):

86 self.num_samples = len(data_source)

87 self.batch_size = batch_size

88

89 def __iter__(self):

90 n_batch = len(self) // self.batch_size

91 tail = len(self) % self.batch_size

92 index = torch.LongTensor(len(self)).fill_(0)

93 for i in range(n_batch):

94 random_start = random.randint(0, len(self) - self.batch_size)

95 batch_index = random_start + torch.range(0, self.batch_size - 1)

96 index[i * self.batch_size:(i + 1) * self.batch_size] = batch_index

97 # deal with tail

98 if tail:

99 random_start = random.randint(0, len(self) - self.batch_size)

100 tail_index = random_start + torch.range(0, tail - 1)

101 index[(i + 1) * self.batch_size:] = tail_index

102

103 return iter(index)

104

105 def __len__(self):

106 return self.num_samples

107

108

109 class alignCollate(object):

110

111 def __init__(self, imgH=32, imgW=100, keep_ratio=False, min_ratio=1):

112 self.imgH = imgH

113 self.imgW = imgW

114 self.keep_ratio = keep_ratio

115 self.min_ratio = min_ratio

116

117 def __call__(self, batch):

118 images, labels = zip(*batch)

119

120 imgH = self.imgH

99

121 imgW = self.imgW

122 if self.keep_ratio:

123 ratios = []

124 for image in images:

125 w, h = image.size

126 ratios.append(w / float(h))

127 ratios.sort()

128 max_ratio = ratios[-1]

129 imgW = int(np.floor(max_ratio * imgH))

130 imgW = max(imgH * self.min_ratio, imgW) # assure imgH >= imgW

131

132 transform = resizeNormalize((imgW, imgH))

133 images = [transform(image) for image in images]

134 images = torch.cat([t.unsqueeze(0) for t in images], 0)

135

136 return images, labels

100

References

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Józefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A.
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems. CoRR, abs/1603.04467, 2016.

[2] Ouais Alsharif and Joelle Pineau. End-to-end text recognition with hybrid
HMM maxout models. CoRR, abs/1310.1811, 2013.

[3] B. Bai, F. Yin, and C. L. Liu. A fast stroke-based method for text detec-
tion in video. In 2012 10th IAPR International Workshop on Document
Analysis Systems, pages 69–73, March 2012.

[4] A. Bissacco, M. Cummins, Y. Netzer, and H. Neven. Photoocr: Reading
text in uncontrolled conditions. In 2013 IEEE International Conference
on Computer Vision, pages 785–792, Dec 2013.

[5] Jeffrey R. Blum, Mathieu Bouchard, and Jeremy R. Cooperstock. Whats
around me? spatialized audio augmented reality for blind users with a
smartphone.

[6] J. Canny. A computational approach to edge detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698,
Nov 1986.

[7] H. Chen, S. S. Tsai, G. Schroth, D. M. Chen, R. Grzeszczuk, and B. Girod.
Robust text detection in natural images with edge-enhanced maximally
stable extremal regions. In 2011 18th IEEE International Conference on
Image Processing, pages 2609–2612, Sept 2011.

[8] Xiangrong Chen and A. L. Yuille. Detecting and reading text in natural
scenes. In Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 2,
pages II–366–II–373 Vol.2, June 2004.

101

102

[9] Adam Coates, Blake Carpenter, Sanjeev Satheesh, Bipin Suresh, Tao
Wang, David J. Wu, and Andrew Y. Ng. Text detection and character
recognition in scene images with unsupervised feature learning.

[10] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like
environment for machine learning. In BigLearn, NIPS Workshop, 2011.

[11] M. Donoser, H. Bischof, and S. Wagner. Using web search engines to im-
prove text recognition. In 2008 19th International Conference on Pattern
Recognition, pages 1–4, Dec 2008.

[12] Tefilo Emdio de Campos, Bodla Rakesh Babu, and Manik Varma. Char-
acter recognition in natural images. 2:273–280, 01 2009.

[13] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural scenes with
stroke width transform. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 2963–2970, June 2010.

[14] Alex Graves, Santiago Fernndez, and Faustino Gomez. Connectionist
temporal classification: Labelling unsegmented sequence data with recur-
rent neural networks. In In Proceedings of the International Conference
on Machine Learning, ICML 2006, pages 369–376, 2006.

[15] S. M. Hanif and L. Prevost. Text detection and localization in complex
scene images using constrained adaboost algorithm. In 2009 10th Inter-
national Conference on Document Analysis and Recognition, pages 1–5,
July 2009.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[17] Pan He, Weilin Huang, Yu Qiao, Chen Change Loy, and Xiaoou Tang.
Reading scene text in deep convolutional sequences. 06 2015.

[18] Sepp Hochreiter and Jrgen Schmidhuber. Long short-term memory, 1997.

[19] Sanghoon Hong, Byung-Seok Roh, Kye-Hyeon Kim, Yeongjae Cheon, and
Minje Park. Pvanet: Lightweight deep neural networks for real-time ob-
ject detection. CoRR, abs/1611.08588, 2016.

[20] Jan Hendrik Hosang, Rodrigo Benenson, and Bernt Schiele. Learning
non-maximum suppression. CoRR, abs/1705.02950, 2017.

[21] Lichao Huang, Yi Yang, Yafeng Deng, and Yinan Yu. Densebox: Uni-
fying landmark localization with end to end object detection. CoRR,
abs/1509.04874, 2015.

103

[22] R. Huang, P. Shivakumara, and S. Uchida. Scene character detection by
an edge-ray filter. In 2013 12th International Conference on Document
Analysis and Recognition, pages 462–466, Aug 2013.

[23] M. R. Islam, C. Mondal, M. K. Azam, and A. S. M. J. Islam. Text de-
tection and recognition using enhanced mser detection and a novel ocr
technique. In 2016 5th International Conference on Informatics, Elec-
tronics and Vision (ICIEV), pages 15–20, May 2016.

[24] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Synthetic
data and artificial neural networks for natural scene text recognition. In
Workshop on Deep Learning, NIPS, 2014.

[25] Vedaldi A. Jaderberg M. and Zisserman A. Deep feature for text spotting.
pages 512–528, 2014.

[26] Yingying Jiang, Xiangyu Zhu, Xiaobing Wang, Shuli Yang, Wei Li, Hua
Wang, Pei Fu, and Zhenbo Luo. R2CNN: rotational region CNN for
orientation robust scene text detection. CoRR, abs/1706.09579, 2017.

[27] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh, A. Bagdanov,
M. Iwamura, J. Matas, L. Neumann, V. R. Chandrasekhar, S. Lu,
F. Shafait, S. Uchida, and E. Valveny. Icdar 2015 competition on robust
reading. In 2015 13th International Conference on Document Analysis
and Recognition (ICDAR), pages 1156–1160, Aug 2015.

[28] Kwang In Kim, Keechul Jung, and Jin Hyung Kim. Texture-based ap-
proach for text detection in images using support vector machines and
continuously adaptive mean shift algorithm. volume 25, pages 1631–1639,
Dec 2003.

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[30] Tao Kong, Anbang Yao, Yurong Chen, and Fuchun Sun. Hypernet: To-
wards accurate region proposal generation and joint object detection.
CoRR, abs/1604.00600, 2016.

[31] J. J. Lee, P. H. Lee, S. W. Lee, A. Yuille, and C. Koch. Adaboost for text
detection in natural scene. In 2011 International Conference on Document
Analysis and Recognition, pages 429–434, Sept 2011.

[32] Minhua Li and Chunheng Wang. An adaptive text detection approach in
images and video frames. In 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence),
pages 72–77, June 2008.

104

[33] Jian Liang, David S. Doermann, and Huiping Li. Camera-based analysis
of text and documents: a survey. International Journal of Document
Analysis and Recognition (IJDAR), 7:84–104, 2004.

[34] M. Liao, B. Shi, and X. Bai. TextBoxes++: A Single-Shot Oriented Scene
Text Detector. ArXiv e-prints, January 2018.

[35] Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang Wang, and Wenyu
Liu. Textboxes: A fast text detector with a single deep neural network.
CoRR, abs/1611.06779, 2016.

[36] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E.
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox
detector. CoRR, abs/1512.02325, 2015.

[37] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan. FOTS: Fast
Oriented Text Spotting with a Unified Network. ArXiv e-prints, January
2018.

[38] X. Liu and W. Wang. Robustly extracting captions in videos based on
stroke-like edges and spatio-temporal analysis. IEEE Transactions on
Multimedia, 14(2):482–489, April 2012.

[39] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline
stereo from maximally stable extremal regions. In In Proc. BMVC, pages
384–393, 2002.

[40] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. Van Gool. A comparison of affine
region detectors. International Journal of Computer Vision, 65(1):43–72,
Nov 2005.

[41] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully
convolutional neural networks for volumetric medical image segmentation.
CoRR, abs/1606.04797, 2016.

[42] A. Mishra, K. Alahari, and C. V. Jawahar. Scene text recognition using
higher order language priors. In BMVC, 2012.

[43] Anand Mishra, Karteek Alahari, and C V. Jawahar. Scene text recogni-
tion using higher order language priors. 09 2012.

[44] L. Neumann and J. Matas. Real-time scene text localization and recogni-
tion. In 2012 IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3538–3545, June 2012.

[45] Tatiana Novikova, Olga Barinova, Pushmeet Kohli, and Victor Lempit-
sky. Large-lexicon attribute-consistent text recognition in natural images.

105

[46] Y. F. Pan, X. Hou, and C. L. Liu. A hybrid approach to detect and localize
texts in natural scene images. IEEE Transactions on Image Processing,
20(3):800–813, March 2011.

[47] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in pytorch. 2017.

[48] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-
CNN: towards real-time object detection with region proposal networks.
CoRR, abs/1506.01497, 2015.

[49] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. CoRR,
abs/1505.04597, 2015.

[50] Zohra Saidane and Christophe Garcia. Automatic scene text recogni-
tion using a convolutional neural network. In In Proceedings of the Sec-
ond International Workshop on Camera-Based Document Analysis and
Recognition (CBDAR, 2007.

[51] Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end trainable neural
network for image-based sequence recognition and its application to scene
text recognition. CoRR, abs/1507.05717, 2015.

[52] Baoguang Shi, Xinggang Wang, Pengyuan Lv, Cong Yao, and Xiang
Bai. Robust scene text recognition with automatic rectification. CoRR,
abs/1603.03915, 2016.

[53] Cunzhao Shi, Chunheng Wang, Baihua Xiao, Yang Zhang, Song Gao, and
Zhong Zhang. Scene text recognition using part-based tree-structured
character detection. pages 2961–2968, 06 2013.

[54] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

[55] A. Tabassum and S. A. Dhondse. Text detection using mser and stroke
width transform. In 2015 Fifth International Conference on Communi-
cation Systems and Network Technologies, pages 568–571, April 2015.

[56] Zhi Tian, Weilin Huang, He Tong, Pan He, and Yu Qiao. Detecting text
in natural image with connectionist text proposal network. volume 9912,
pages 56–72, 10 2016.

[57] Andreas Veit, Tomas Matera, Lukas Neumann, Jiri Matas, and Serge J.
Belongie. Coco-text: Dataset and benchmark for text detection and recog-
nition in natural images. CoRR, abs/1601.07140, 2016.

106

[58] Kai Wang, B. Babenko, and S. Belongie. End-to-end scene text recogni-
tion. In 2011 International Conference on Computer Vision, pages 1457–
1464, Nov 2011.

[59] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end text recognition
with convolutional neural networks. In Proceedings of the 21st Interna-
tional Conference on Pattern Recognition (ICPR2012), pages 3304–3308,
Nov 2012.

[60] Tao Wang, David J Wu, Adam Coates, and Andrew Y Ng. End-to-end
text recognition with convolutional neural networks. 02 2018.

[61] W. Wu, D. Chen, and J. Yang. Integrating co-training and recognition
for text detection. In 2005 IEEE International Conference on Multimedia
and Expo, pages 4 pp.–, July 2005.

[62] C. Yao, X. Bai, W. Liu, Y. Ma, and Z. Tu. Detecting texts of arbitrary
orientations in natural images. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1083–1090, June 2012.

[63] Cong Yao, Xiang Bai, Nong Sang, Xinyu Zhou, Shuchang Zhou, and
Zhimin Cao. Scene text detection via holistic, multi-channel prediction.
CoRR, abs/1606.09002, 2016.

[64] Q. Ye and D. Doermann. Text detection and recognition in imagery: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(7):1480–1500, 2015.

[65] C. Yi and Y. Tian. Localizing text in scene images by boundary clustering,
stroke segmentation, and string fragment classification. IEEE Transac-
tions on Image Processing, 21(9):4256–4268, Sept 2012.

[66] X. C. Yin, Z. Y. Zuo, S. Tian, and C. L. Liu. Text detection, tracking
and recognition in video: A comprehensive survey. IEEE Transactions
on Image Processing, 25(6):2752–2773, June 2016.

[67] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method.
CoRR, abs/1212.5701, 2012.

[68] Zheng Zhang, Zhang Chengquan, Wei Shen, Cong Yao, Wenyu Liu, and
Xiang Bai. Multi-oriented text detection with fully convolutional net-
works. pages 4159–4167, 06 2016.

[69] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang. East:
An efficient and accurate scene text detector. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2642–2651,
July 2017.

107

[70] Karel Zimmermann. A new class of learnable detectors: Cser- class spe-
cific extremal regions.

List of Abbreviations

IEEE: Institute of Electrical and Electronics Engineers, Inc.

WHO: World Health Organization

CVPR: The Conference on Computer Vision and Pattern Recognition

ICCV: International Conference on Computer Vision

ICDAR: International Conference on Document Analysis and Recognition

OCR: Optical Character Recognition

CC: Connected Component

MSER: Maximally Stable Extremal Regions

SWT: Stroke Width Transform

CRF: Conditional Random Field

NN: Neural Network

DNN: Deep Neural Network

CNN: Convolutional Neural Network

DCNN: Deep Convolutional Neural Network

FCN: Fully Convolutional Network

RNN: Recurrent Neural Network

EAST: Easy Accurate Scene Text

RCNN & CRNN: Convolutional Recurrent Neural Network

NMS: Non Maximum Suppression

LSTM: Long Short Term Memory

CTC: Connectionist Temporal Classification

GPU: Graphics Processing Unit

CPU: Central Processing Unit

108

GHz: Gigahertz, 1 billion hertz

SDK: Software Development Kit

JSON: JavaScript Object Notation

GPS: Global Positioning System

109

