
POLITECNICO DI TORINO
Department of Mechanical Engineering

Master’s Degree Thesis

Conceptual design, implementation, and testing
of a water vapor supply control for the purpose of

a full automated Solid Oxide Cell test rig

Politecnico di Torino’s Supervisor

Prof. MASSIMO SANTARELLI

Leibniz Universität Hannover’s Supervisors

Prof. STEPHAN KABELAC

M.Sc. JAN HOLLMANN

Candidate

SEYEDALI AYATI

A.Y. 2020/2021

Abstract

The Europ’s energy distribution grid’s continuing development makes finding
innovative ways to energy storage imperative. One promising approach is the
reversible solid oxide cell (ReSOC), with hydrogen as an energy carrier. At its core,
a ReSOC is an electrochemical cell that can operate both as an electrolyzer and
a fuel cell. Empirical research of such cells consists of large parts by conveying
electrochemical impedance spectroscopy (EIS) at a wide range of different running
conditions.
To improve the current research process, the test rig for the characterization of solid
oxide fuel cells and electrolysis cells could be up to date. These characterizations
consist of a set of operating points defined by the cell temperature, the fuel/anode
gas composition, the cathode gas composition, and the current applied to the cell.
These characterizations can be achieved nearly automated using software developed
at the institute, except for the water vapor supply.
According to the water vapor supply, the test rig has two main problems. The first
one, the water vapor supply, is not automated. The second one, the water vapor
volume flow supplied to the test rig, is fluctuating flow; thus, this action directly
impacts the Fuel Cell voltage.
As a novelty, the research aims to develop a mechanism to automatically control
the water vapor control settings’ adaptation to reach the required water volume
flow and maintain the stable condition. This mechanism consists of a stepper motor
to rotate the valve, the Coupling System, and an Arduino Uno control board to
control the stepper motor to its desired position. The control variable is the steam
pressure that is to be directed to a target value. The automated valve system runs
with the Arduino software (IDE) to control the pressure valve position. The author
also uses the Visual Studio code section to connect with Arduino IDE and run the
stepper motor. Furthermore, for designing and assembling the Coupling System,
the author utilizes SolidWorks software.
Eventually, the author will implement the automated valve system into the test
rig, and consequently, the control’s functionality will be getting more satisfying
and more accurate.

ii

Acknowledgements

First, I would like to express my gratitude to my thesis supervisor in Politecnico di
Torino, Prof. Massimo Santarelli, my supervisor in Leibniz Universität Hannover,
Prof. Stephan Kabelac, and my mentor, Mr. Jan Hollmann, for their availability
and fast responses whenever I needed guidance through all the stages of the thesis.
They selflessly shared their knowledge and experiments. They always showed a
strong will to support me.
Moreover, this thesis is prepared in the Thermodynamic Institute of Leibniz
Universität Hannover. I would like to thank all of the Institute staff, particularly
Mrs. Dorit Schulte.
I would like to express my very great appreciation to Mr. Hossein Larki Harchegani,
one of the most outstanding engineers in the Thermodynamic Institute of Leibniz
Universität Hannover, for being supportive and friend during these eight months
abroad. I should say that without his advising, guidance, and extraordinary skills
in engineering subjects, I would have never been able to advance this thesis.
I would like to express my very great thankfulness to My friends who supported
me during my master’s degree, particularly Ehsan Lesani and Erfan Jalilian.
I would like to express my very great gratitude to my transcendent friend Milad
Zandevakili. he has made Hannover a great place to work and to explore, making
it like a second home for me. I should express that without him, life in Hanover
would have been very difficult during the Lockdown period due to the Covid-19
pandemic.
In the end, I would like to express my very great gratitude to my beloved parents
and my all-embracing brother, who have supported me selflessly during my growing
up and education. I should say that I always owe them my entire life.

“Seyed Ali Ayati”
Germany,Hanover February 2021

iii

Table of Contents

List of Figures vi

List of Tables viii

Nomenclature ix

1 Introduction 1

2 Fundamentals 3
2.1 Solid Oxide Cells . 3

2.1.1 Operating Principle . 3
2.1.2 Open Circuit Operation . 5
2.1.3 Closed Circuit Operation . 6
2.1.4 Loss Mechanisms . 7

2.2 Current/Voltage Characteristics . 9
2.3 Electrochemical Impedance Spectroscopy 11

2.3.1 Methodology . 11
2.3.2 Linearity of Electrochemistry Systems 13
2.3.3 Steady State Systems . 14
2.3.4 Equivalent Electrical Circuit 14
2.3.5 Distribution of Relaxation Times (DRT) 15
2.3.6 Analysis of DRTs . 16

2.4 Test rig (Testing Station) . 17
2.4.1 Basic Solid Oxide Fuel Cell Test Station Requirements . . . 17
2.4.2 Test Conditions . 18

2.5 State of Art . 19
2.5.1 Review of the institute testing station characteristics 19
2.5.2 The aim of this thesis . 21

3 Conceptual Design 23
3.1 components in the experiment . 23

iv

3.1.1 Arduino control board . 24
3.1.2 Stepper motor driver controller 24
3.1.3 Stepper motor . 26
3.1.4 Power supply . 27
3.1.5 Jumper cable Arduino . 28

3.2 CAD-Design . 28
3.2.1 The methodology of the Coupling System design 28
3.2.2 The modeling of Coupling system by SolidWorks 30

3.3 Assembly the Coupling System and the other components 32

4 Implementation 34
4.1 Developing software (Control) . 34

4.1.1 Arduino Software (IDE) . 34
4.1.2 Arduino board control with Visual Studio 37

4.2 Building the valve automation . 42
4.3 Integrating automated valve into the test rig 43

5 Future Research 46
5.1 PID controller . 46
5.2 Feedforward controller . 47
5.3 Arduino IDE codes for the automatic control system 48
5.4 Water supply pressure sensor into test rig 52
5.5 Limitations of this experiment. 53

6 Conclusion 54

A Coupling System Drawing 55

B The Arduino Sketch 56

C Visual Studio Codes 60

Bibliography 65

v

List of Figures

2.1 Schematic of a solid oxide cell, operating as both a fuel cell (left)
and an electrolyzer (right) [1] [11] [12] 4

2.2 Typical U/j-characteristic of a solid oxide cell [1] [11] [12] 7
2.3 Schematic plot of voltage versus current density of a SOFC showing

different types of polarisations: activation polarisation is dominant
at low current densities; diffusion polarisation is dominant at high
current densities when the transport of reactive species to the elec-
trolyte / electrode interface becomes a limiting factor for the cell
reaction [18] [19] [8] . 10

2.4 Basic experimental setup for the impedance measurement of a real
SOFC with an internal impedance Zcell [22]. 12

2.5 Corresponding I-U curve. A sinusoidal current of small amplitude
i(t) is superposed to a defined bias current Iload and the voltage
response u(t) is measured [22]. 12

2.6 Typical Nyquist-plot recorded on a real anode supported SOFC
single cell. The high frequency intercept (for ω → ∞) with the
real axis corresponds to the purely ohmic resistance R0. The differ-
ence between the low and high frequency intercept is the so-called
polarisation resistance Rpol of the cell [22]. 13

2.7 Current versus Voltage Curve Showing Pseudo-Linearity [23]. 14
2.8 Distribution of relaxation times and integral of distribution function

derived from the impedance spectrum shown in Fig. 2.6 [8] [11] [12]. 17
2.9 Schematic of the FuelCon Evaluator-HT testing station used in the

experiment [11] [12]. 20
2.10 Schematic of the cell housing, including electric contacts as well as

gas supply and removal [11] [12]. 21

3.1 Image of Aurduino Uno Board [27]. 24
3.2 Image of L298N Stepper Motor Driver Controller with the description

of its elements. 25
3.3 Image of the driving stepper with H-Bridge. 25

vi

3.4 Image of stepper motor nema14-01. 26
3.5 The schematic of the A+, A-, B+, and B- wires. 26
3.6 The illustration of NEMA 14-1 Stepper Motor in connection with

L298N and Arduino. 27
3.7 The image of Mean Well - 12V/1.25A Rail Din power supply used

in this experiment. 27
3.8 The image of the MAKER FACTORY JKMF40 Jumper cable Ar-

duino used in this experiment. 28
3.9 The image of Bellows-Sealed Metering Valves manufactured by

Swagelok company [28]. 28
3.10 The illustration of the pressure valve and its elements with descrip-

tion [28]. 29
3.11 The image of modeling of the Coupling System on the view of close

to the stepper motor shaft in SolidWorks. 30
3.12 The image of modeling of the Coupling System on the view of close

to the pressure valve head in SolidWorks. 31
3.13 The image of a close view of the Coupling System after manufacturing. 31
3.14 The image of the electrical components are assembled 32
3.15 The image of the entire components are assembled 33

4.1 The image of the design surface of this windows form 41
4.2 The image of the LED pin 13 on the Arduino board 42
4.3 The image of the valve automation 1 43
4.4 The image of the valve automation 2 43
4.5 The image of the implementation of the automation valve into the

testing station . 44

5.1 The block diagram of the PID controller [31] 47
5.2 The block diagram of the Feedforward controller [32] 47
5.3 Pressure transmitter model A-10 made by WIKA LLC [34] 52

A.1 The image of the Coupling System Drawing 55

B.1 The view of the Arduino sketch for directly changing the stepper
motor position. 56

B.2 The view of the Arduino sketch for directly changing the stepper
motor position with sending the command from Visual Studio 2019. 57

B.3 The view of the Arduino sketch for automatically control the position
of the stepper motor by PID controller (part 1). 58

B.4 The view of the Arduino sketch for automatically control the position
of the stepper motor by PID controller (part 2). 59

vii

List of Tables

5.1 Examples of data-sheet include steam pressure, steam volume flow,
and corresponding valve position in different moments, which have
already been measured. 48

viii

Nomenclature

A Area

F Faraday Constant

fk Fugacity of Species k

G Gibbs Free Energy

∆RG Free Reaction Energy

j Electric Current Density

p Pressure

pΘ Standard Pressure

Rm General Gas Constant

Q Electric Charge

T Temperature [K]

t Time

U Voltage

Ucell Cell Voltage

Ucell,0 Open Circuit Cell Voltage

z Amount of Elementary Charges Carried

xk Mole fraction of any individual gas component in a gas mixture

pk Partial pressure of any individual gas component in a gas mixture

nk Moles of any individual gas component in a gas mixture

ix

ptot Total pressure of the gas mixture

ntot Total moles of the gas mixture

e Error Signal

Kp Proportional Constant

KI Integral Constant

KD Derivative Constant

Y Output of The PID Controller

η Cell Overpotential

ν Stoichiometric Coefficient

()Θ With Regard to Standard Pressure

k Species k

x

Chapter 1

Introduction

The Europ’s energy distribution grid’s continuing development is unique challenges:
Due to the prolonged usage of energy vehicles with highly unpredictable yield, such
as solar energy and wind, it is crucial to repay for alternating energy supply. For this
purpose, novel approaches to energy storage are strongly inquired. One method
of achieving such compensation is to use excess electrical energy for hydrogen
electrolysis from water to convert electrical into chemical energy. This hydrogen
can be stored until energy demand exceeds the supply and then be used to power
a fuel cell, hence providing electrical energy to the grid.
One assuring method of using hydrogen as energy storage is the reversible solid-
oxide cell (ReSOC). At its core, a ReSOC is an electrochemical cell that can operate
both as an electrolyzer and a fuel cell. It aids the oxyhydrogen reaction [1].

H2 +
1
2 O2

FC
EC H2O (1.1)

The reaction’s electrolysis direction (EC) is endothermic and needs an electrical
energy input to occur [1]. In contrast, the fuel cell direction (FC) is exothermic
and can transform chemical into electrical energy [1]. Storage systems employing
the ReSOC principle are estimated to be very efficient in converting energy as well
as economically viable [2]. However, before being used on a commercial scale, there
are still technical challenges to be spoken.
The two most significant of these challenges are the ReSOC’s long-term stability
and energy conversion efficiency. To determine favorable system configurations on a
commercial scale, modeling approaches must be practiced [3][4]. If such large-scale
models predict the behavior of entire stacks of ReSOCs correctly, they first need to
be able to portray single cell performance accurately. SOC performance is very
dependent on the operating conditions, which are defined by multiple parameters.
Furthermore, the physical processes governing the cell’s behavior are not still wholly
known. Therefore involved, partly empirical model equations are applied [5].It

1

Introduction

means empirical coefficients need to be observed for models, and they must be
approved for a wide variety of operating conditions. As a result, extensive empiri-
cal research is essential, as measurements have to be repeated at many different
combinations for the parameters defining the cell’s operating conditions.
For this purpose, the Thermodynamics institute of Leibniz Universität Hannover
employs a high-temperature testing station designed explicitly for housing ReSOCs,
as well as an impedance spectroscope. Electrochemical impedance spectroscopy
(EIS) has established an invaluable tool for in-situ examination of electrochemical
cells, particularly when combined with an analysis of the resulting spectra’s distri-
bution of relaxation times (DRT) [6] [7] [8] [9]. As electrochemical cell behavior is
dependent on a multitude of different parameters, empirical research regularly in-
cludes EIS measurements attended at a large number of other operating conditions.
To improve the current research process, the test rig for the characterization of solid
oxide fuel cells and electrolysis cells could be up to date. These characterizations
consist of a set of operating points defined by the cell temperature, the fuel/ anode
gas composition, the cathode gas composition, and the current applied to the cell.
These characterizations can be achieved nearly automated using software developed
at the institute, except for the water vapor supply.
According to the water vapor supply, the test rig has two main problems. The first
one, the water vapor supply, is not automated. The second one, the water vapor
volume flow supplied to the test rig, is fluctuating flow; thus, this action directly
impacts the Fuel Cell voltage.
As a novelty, the research aims to develop a mechanism to automatically control
the water vapor control settings’ adaptation to reach the required water volume
flow and maintain the stable condition. This mechanism consists of a stepper motor
to rotate the valve, the Coupling System, and an Arduino Uno control board to
control the stepper motor to its desired position. The control variable is the steam
pressure that is to be directed to a target value. The automated valve system runs
with the Arduino software (IDE) to control the pressure valve position. The author
also uses the Visual Studio code section to connect with Arduino IDE and run the
stepper motor. Furthermore, for designing and assembling the Coupling System,
the author utilizes SolidWorks software.
Eventually, the author will implement the automated valve system into the test rig,
and consequently, the control’s functionality will be getting more satisfying and
more accurate. Also, in chapter 2, the author will demonstrate the basic definitions
in solid oxide fuel cell and state of the art; in chapter 3, he will describe the Arduino
control board, stepper motor, and the CAD-Design section; in chapter 4, he will
define the Arduino program, the Visual Studio program and the implementation of
the automated valve system into the test rig; in chapter 5; he will represent the
automatic control program and the limitation of this research; in chapter 6, he will
explain the summary all actions done in this thesis.

2

Chapter 2

Fundamentals

2.1 Solid Oxide Cells
2.1.1 Operating Principle
Solid oxide cells are electrochemical cells used as either a fuel cell (SOFC) or an
electrolytic cell (SOEC) [1]. That means they can convert chemical energy stored in
a fuel into electrical power and convert electrical into chemical energy [1]. Because
of this capability, these cells are also called reversible solid oxide cells (ReSOC) [1].
However, this does not mean that they are thermodynamically reversible, but only
that their operating principle can be reversed. SOFCs can be used with a multitude
of fuels, including hydrogen and different natural gasses [1]. Conversely, SOECs
can use water and carbon dioxide for electrolysis [1]. In the case of hydrogen and
water as fuel, the redox reaction taking place in the cell is given by

H2 +
1
2 O2

FC
EC H2O (2.1)

Here FC denotes the fuel cell direction and EC the electrolysis direction of the
reaction. Use the term fuel cell; the fuel cell reaction is the forward; the electrolysis
reaction is the reverse reaction [1]. The operation principle in an electrochemical
cell is that the oxidation and reduction reactions occur spatially separated at the
electrodes [1]. An electrode is called Anode if the oxidation reaction occurs there
and Cathode if it is the reduction site. The electrolyte provides the separation of
Anode and Cathode [1]. In every electrochemical cell, the electrolyte serves several
important purposes: The separation of the reacting species, the electrical isolation
of both electrodes, and the transport of ions [1]. This is fundamental for the cell to
work, as the charge is transported through the electrolyte by ions while electrons
cannot pass it [1]. Instead, they can be transported via an electric circuit outside
the cell and used to provide electric power [1]. Solid oxide cells typically employ

3

Fundamentals

an electrolyte that allows passage to O2− ions. Fig. 2.1 illustrates the operating
principle for SOFC and SOEC mode [1].
As the reaction can proceed in both directions, both electrodes can be either the
Anode or the Cathode. Therefore, it is customary to designate the electrodes as
fuel and oxygen electrode when talking about reversible cells. The partial reactions
taking place at each electrode are [10]

Fuel Electrode: H2 + O2– H2O + 2e– (2.2)

Oxygen Electrode: 1
2 O2 + 2 e– O2– (2.3)

When in the fuel cell mode, the oxygen electrode acts as the Cathode. Here,
molecular oxygen is combined with electrons to form O2− ions. These can pass
through the electrolyte to the fuel electrode, which is the Anode in that case [1].
At the Anode, molecular hydrogen is oxidized by the O2− ions, resulting in water
and free electrons [1]. As the electrons cannot permeate the electrolyte layer, they
are conducted by an external electric circuit [1]. Because of the electrochemical
potential difference between the electrodes, an electrical field across the cell occurs.
The electrons in the external circuit can then be used to perform electrical work.
The process is reversed in electrolysis mode: An external power supply generates an
electric field that forces electrons to the fuel electrode, now acting as the Cathode [1].
At the Cathode, the electrons reduce water, forming hydrogen and O2− ions. The

Figure 2.1: Schematic of a solid oxide cell, operating as both a fuel cell (left) and
an electrolyzer (right) [1] [11] [12]

4

Fundamentals

O2− ions move through the electrolyte to the oxygen electrode, where they are
oxidized, creating oxygen and electrons [1]. This way, electrical energy can be
converted to chemical energy stored within the separated fuel and oxygen [1].
It is important to note that the cell reactions can only occur at the so-called triple
phase boundaries (TPBs). A triple-phase boundary is a place where the solid
electrolyte and electrode phases and the gas phase meet. Because each reaction
includes species conducted in only one of the three phases, the reactions can’t take
place anywhere else [1].
Electrodes and electrolyte must match specific criteria for the cell processes to
work. Solid oxide cells employ a solid ceramic electrolyte, typically made of yttria-
stabilized zirconia (YSZ) (cf. O’HAYRE [1]). YSZ is permeable to O2−, which
is the most typical charge conductor for SOCs [1]. However, this conductivity is
temperature-dependent, and use in electrochemical cells is only feasible at tempera-
tures above 600 °C [1]. This results in typical operating temperatures of more than
800 °C, which means that all materials used must be resistant to heat. Additionally,
electrolyte and oxygen electrode must withstand the oxidizing environment created
by the use of oxygen at such temperatures [1].
The electrodes must also have a high ionic and electrical conductivity and increased
permeability to the reactant gases since a lack of either would impede the electro-
chemical reaction. For the fuel electrode, the materials commonly used are porous
metal-ceramic mixtures (cermets) [1]. In a cermet, the ceramic component provides
ionic conductivity and metal electrical conductivity [13]. The most common oxygen
electrode materials include lanthanum strontium manganite (LSM) and Lanthanum
strontium cobalt ferrite (LSCF) [13].

2.1.2 Open Circuit Operation

An electrochemical cell with no electrical connection between the electrodes is
referred to as being in open circuit operation. In open-circuit conditions, the
electrochemical potential between the electrodes is in equilibrium [1]. In this state,
the fuel cell’s reaction rates and the electrolysis reaction are precisely equal, resulting
in a net reaction rate of zero. It is noteworthy, however, that both reactions still
take place. The maximum voltage between the electrodes of a thermodynamically
reversible electrochemical cell at a given set of parameters and in open circuit
conditions is the reversible cell voltage Ucell,0 [1]. It is strongly dependent on
the redox reaction taking place in the cell: Assuming constant temperature T
and pressure p, the relation between chemical and electrical work in a reversible
electrochemical system is given by

W rev
el (p, T) = −∆RG (p, T) (2.4)

5

Fundamentals

with the electrical work Wel and Gibb’s free energy difference of the underlying
redox reaction ∆RG [1] Electrical work is defined as

Wel = ∆Φel ·Q (2.5)

with the electrical potential difference ∆Φel and the electric charge Q. The charge
of n moles of a species is dependent on the number of elementary charges one
molecule carries z and Faraday’s constant F:

Q = n · z · F (2.6)

Combining Eqs. (2.4) through (2.6) and using the molar free energy difference
∆RGm = ∆RG/n, one can obtain the maximum difference in electric potential
between the electrodes, which equals the voltage between the electrodes. This
voltage is called the reversible cell voltage at open circuit Ucell,0 . It is customary
to only include the temperature dependency and give the reversible cell voltage
with respect to standard pressure pΘ:

Ucell,0
(
pΘ, T

)
= UΘ

cell,0 (T) = ∆ΦΘ
el (T) = ∆RGΘ

m (T)
zF

(2.7)

To account for the effects of pressure and gas composition, the Nernst equation
can be derived from the condition of electrochemical equilibrium [1]:

Ucell,0 = UΘ
cell,0 (T)− RmT

zF
ln

(∏
k

(
fk
pΘ

)νk
)

(2.8)

Here, Rm is the molar gas constant, fk the fugacity, and νk the stoichiometric
coefficient of the species k. For ideal gases, the fugacity becomes fk = pk, and the
Nernst equation is simplified to

Ucell,0 = UΘ
cell,0 (T)− RmT

zF
ln

(∏
k

(
pk
pΘ

)νk
)

(2.9)

2.1.3 Closed Circuit Operation
Electrons can flow from one electrode to the other when closing the electric circuit,
and a net flow of ions through the electrolyte occurs [1]. The electric current I
is defined as charge flowing per time t. To compare different cells, the electrical
current is usuallyexpressed as the current density j [1]:

j = I

Acell
= 1
Acell

· dQ
dt

= ṅzF

Acell
(2.10)

6

Fundamentals

with the cell area Acell and the charge carrier flow ṅ. At a net current density of
j = 0, the circuit is open, and the cell voltage Ucell,0 is present across the cell [1].
Because of that, Ucell,0 is also called open-circuit voltage (OCV) [1]. Increasing the
current density leads to a voltage drop caused by different cell loss mechanisms,
such as ohmic losses, transport of substances, and the cell’s reaction kinetics. These
current density-dependent voltage losses are called overvoltages ηk [1]. The current
density-dependent cell voltage in fuel cell mode can therefore be expressed as

Ucell (j) = Ucell,0 −
∑
i

|ηk (j) | (2.11)

To achieve a negative current density, resulting in electrolysis, a higher voltage
than the OCV must be externally applied to the cell [1]. For solid oxide cells at
high temperatures, this relation between cell voltage and current density is nearly
linear, as Fig. 2.2 illustrates [1].

Figure 2.2: Typical U/j-characteristic of a solid oxide cell [1] [11] [12]

2.1.4 Loss Mechanisms

When a fuel cell is loaded with an electric current the cell voltage drops bellow
the thermodynamically predicted (Nernst-voltage). This is due to several internal
irreversible loss mechanisms. In the following subchapters a short description of
these losses will be given [8].

7

Fundamentals

Ohmic Losses

Ohmic losses occur during the electronic or ionic transport through the electrodes
and the electrolyte. The overall ohmic resistance is the sum of each individual
ohmic contribution Rk. According to Ohm’s law, the ohmic overpotential linearly
increases with the current density j [8].

ηohm = j ·
∑
i=k

Rk = j ·Rohm (2.12)

In solid oxide cells, the main contributors to the ohmic overpotential are the
electrode’s resistance to electron transport and the electrolyte’s resistance to ion
transport [8].

Activation Loss

Activation polarisation describes the electrochemical loss mechanisms taking place
mainly at the three-phase boundary (TPB) where ionic-conducting, electronic-
conducting and gas phase meet. An activation energy is necessary in order to
overcome the energy barrier that prevents a spontaneous reaction. The higher
the temperature, the higher the probability for reactants to gain the necessary
activation energy, therefore the overpotentials are reduced. A commonly used
equation for describing the influence of activation overpotential on current density
is the well known Butler-Volmer equation [14]

j = j0

(
exp

(
αzFηact
RmT

)
− exp

(
(1− α) zFηact

RmT

))
(2.13)

Here j is the (partial pressure and temperature dependent) exchange current
density of anode/cathode, n the number of exchanged electrons, α the apparent
charge transfer coefficient, and ηact the activation overpotential of the according
electrode (anode or cathode). The charge transfer coefficient is an indicator of the
symmetry of the activation energy barrier when a positive or negative overpotential
is applied [15].

Diffusion Overpotential Loss

High current densities are correlated with an enhanced gas transport and gas
conversion in the electrode, which leads to polarisation losses. The so-called
diffusion polarisation at the anode results from an undersupply of the three-phase
points with fuel. Simultaneously the reaction product (water) is being transported
away from the reaction zone too slowly. At the cathode, losses due to diffusion
polarisation occur, too. They are caused by an undersupply with oxidizing gas [8].

8

Fundamentals

Calculation of the diffusion polarisation overpotential is based on the Nernst-
equation (Eq. 2.9), from which the following Eqs. 2.14 and 2.15 can easily be
derived [16]:

ηconc,an = RmT

2F ln

(
pTPBH2Oan

pH2Oan

· pH2an

pTPBH2an

)
(2.14)

ηconc,cat = RmT

4F ln

(
pO2cat

pTPBO2cat

)
(2.15)

ηconc,an for Anode and ηconc,cat for Cathode describe the overpotential resulting from
a partial pressure difference between gas atmosphere and TPB. pH2Oan

, pH2an
and

pO2cat
are the known partial pressures of hydrogen, water and oxygen, respectively,

in the gas channel. The unknown partial pressures at the TPB, pTPBH2Oan
, pTPBH2an

and pTPBO2cat
, are determined by applying Fick’s first law and assuming a linear

concentration gradient as a function of the current density j. In this way the
following Eqs. 2.16 and 2.17, which relate the diffusion-based voltage drop ηconc
density j, are obtained [17]:

ηconc,an = RmT

2F ln

1 + RmTLan

2FDeff
H2OpH2O,anpΘ · j

1− RmTLan

2FDeff
H2

pH2,anpΘ · j

 (2.16)

ηconc,cat = RmT

4F ln

1

1−
RmTLcat

(
1−

pO2cat

pΘ

)
4FDeff

O2
pO2,catpΘ · j

 (2.17)

Lan and Lcat denote the effective thickness of the diffusion layer on the anode and
cathode side respectively. Deff

i is the effective molecular diffusion coefficient, which
is a function of the microstructural properties (pore-size, porosity and tortuosity)
of the underlying diffusion layer.

2.2 Current/Voltage Characteristics
The effect of the different loss mechanisms, discussed above, on the actual voltage
output of a real SOFC during loading is shown qualitatively in the following Fig. 2.3.
As can be seen, even at open circuit condition the cell voltage (UOCV) is less than
the thermodynamically predicted Nernst-voltage Uth. The difference UOCV − Uth
is called the “Overpotential”. This first drop may be caused by different parasitic
losses, like for example undesired electron leaks across the electrolyte or even not
perfectly gastight electrolytes. These causes induce an unwanted fuel-utilization

9

Fundamentals

Figure 2.3: Schematic plot of voltage versus current density of a SOFC showing
different types of polarisations: activation polarisation is dominant at low current
densities; diffusion polarisation is dominant at high current densities when the
transport of reactive species to the electrolyte / electrode interface becomes a
limiting factor for the cell reaction [18] [19] [8]

already at open circuit, thus lowering the Nernst voltage.
A second cell voltage drop caused by the fuel utilization is the so-called gas
conversion loss. An increasing current density results in an increased consumption
of the fuel and oxidant gases. In the anode gas channel the hydrogen partial pressure
decreases while the reaction product water increases. This results in an increasing
oxygen partial pressure in the fuel gas mixture (pO2an). For the same reason the
cathode gas becomes depleted in oxygen (pO2cat decreases). As a consequence the
Nernst-voltage UN , which arises between cathode and anode will decrease by
increasing current density, following Eq. 2.18. UN represents the driving force for
the overall cell reaction and is therefore also called the “electromotive force” [20].

UN = RmT

4F ln

(√
pO2cat

pO2an

)
(2.18)

The two remaining losses responsible for the characteristic shape of the current
voltage curve (I-U curve) depicted in Fig. 2.3 are the ohmic and polarisation losses.
The polarisation loss is the sum of the activation and diffusion polarisation.
The strong (nonlinear) voltage drop at low current density is mainly caused by
activation losses taking place at the TPB of both electrodes. In the medium current
range the overall loss is dominated by the ohmic overpotential loss, therefore a
more or less linear decrease of the cell voltage with increasing current density is
observed. At high current densities, the voltage output of the fuel cell once again
drops rapidly due to mass-transport limitations at the electrodes (gas diffusion

10

Fundamentals

polarisation).

2.3 Electrochemical Impedance Spectroscopy
2.3.1 Methodology
In order to develop a physico-chemical model of SOFC single cells and to refine their
efficiency and long term stability the performance-related polarisation processes
have to be identified and proven. In contrast to I-U curves, where only the overall
loss of a cell can be identified, the electrochemical impedance spectroscopy (EIS) is
one of the most promising methods for unfolding complex electrochemical systems
such as a SOFC [8].
The EIS method takes advantage from the fact that the polarisation loss mechanisms
taking place in an electrochemical system differ in their characteristic time constant
and frequency response [8].
The most common and standard approach to measure the dynamic behaviour
(impedance) of an electrochemical system is by applying a sinusoidal current (or
voltage) to the interface and measure the phase shift and amplitude, or real and
imaginary parts, of the resulting voltage or (current) [8].
Here it should be noted that an impedance is only defined for systems that satisfy
the conditions of causality, linearity, and time-invariance. Although many systems,
like SOFCs, are usually non-linear, linearity can be assumed when the magnitude
of the applied current stimulus is small enough to cause a linear response [21].
For a successful interpretation of impedance curves the measurement data quality
is of crucial importance. The quality and amount of information that can be
extracted from impedance data is implicitly connected to the noise-level and the
compliance of the measured curve with the principles of causality, linearity and
stability [8].
A well established method used to asses the consistency and quality of measured
impedance spectra is the Kramers-Kronig validation [14]. The Kramers-Kronig
relations are integral equations, which constrain the real and imaginary components
of the impedance for systems that satisfy the conditions of causality, linearity, and
stability [14].
The basic experimental arrangement for impedance measurement is shown in Fig.
2.4. A sinusoidal current of small amplitude i(t) = i0sin(ωt) is superposed to a
defined bias current Iload and the sinusoidal voltage response u(t) = u0(ω)sin[(ωt+
φ(ω)] is measured (Fig. 2.5). From the ratio between the complex variables of
voltage and current the impedance is calculated as follows [22]:

Z (ω) = u (t)
i (t) = u0 (ω)

i0
ejφ(ω) = |Z (ω) |ejφ(ω) = Re{Z (ω)}+ jIm{Z (ω)} (2.19)

11

Fundamentals

Where ω = 2πf [s−1] represents the angular frequency and φ (ω) the frequency
dependent phase shift between voltage and current. This measurement is generally

Figure 2.4: Basic experimental setup for the impedance measurement of a real
SOFC with an internal impedance Zcell [22].

Figure 2.5: Corresponding I-U curve. A sinusoidal current of small amplitude
i(t) is superposed to a defined bias current Iload and the voltage response u(t) is
measured [22].

performed for a discrete quantity of frequency values in a defined frequency range
and the recorded impedance values are usually plotted in the complex plane. The

12

Fundamentals

resulting curve is also known as Nyquist-plot. Fig. 2.6 gives an example for a
Nyquist plot measured on an anode supported SOFC single cell. The high frequency
intercept (for ω →∞) with the real axis corresponds to the purely ohmic resistance
R0 of the cell, whereas the intercept at the lower frequency (for ω → 0) is identical
to the differential resistance which can be obtained from the corresponding I-U
characteristic at the given operating point. The difference between the low and
high frequency intercept is the so-called polarisation resistance Rpol of the cell. Rpol

is the sum of each single polarisation resistance caused by the loss mechanisms
explained in section 2.1.4.

Figure 2.6: Typical Nyquist-plot recorded on a real anode supported SOFC single
cell. The high frequency intercept (for ω →∞) with the real axis corresponds to
the purely ohmic resistance R0. The difference between the low and high frequency
intercept is the so-called polarisation resistance Rpol of the cell [22].

2.3.2 Linearity of Electrochemistry Systems
Electrical circuit theory distinguishes between linear and non-linear systems (cir-
cuits) [23]. Impedance analysis of linear circuits is much easier than analysis
of non-linear ones [23]. For a potentiostated electrochemical cell, the input is
the potential and the output is the current. Electrochemical cells are not linear!
Doubling the voltage will not necessarily double the current [23]. However, Fig.
2.7 shows how electrochemical systems can be pseudo-linear [23]. It appears to be
linear to look at a small enough portion of a cell’s current versus voltage curve [23].
In normal EIS practice, a small (1 to 10 mV) AC signal is applied to the cell. With
such a small potential signal, the system is pseudo-linear [23].
If the system is non-linear, the current response will contain harmonics of the
excitation frequency. A harmonic is a frequency equal to an integer multiplied by
the fundamental frequency [23]. For example, the “second harmonic” is a frequency
equal to two times the fundamental frequency [23].
Some researchers have made use of this phenomenon. Linear systems should not
generate harmonics, so the presence or absence of significant harmonic response

13

Fundamentals

Figure 2.7: Current versus Voltage Curve Showing Pseudo-Linearity [23].

allows one to determine the linearity of the system [23]. Other researchers have in-
tentionally used larger amplitude excitation potentials [23]. They use the harmonic
response to estimate the curvature in the cell’s current-voltage curve [24].

2.3.3 Steady State Systems
Measuring an EIS spectrum takes time (often up to many hours). The system
being measured must be steady throughout the time required to measure the EIS
spectrum. A common cause of problems in EIS measurements and analysis is drift
in the system being measured [23].
In practice, a steady state can be difficult to achieve. The cell can change through
adsorption of solution impurities, growth of an oxide layer, the build-up of reaction
products in solution, coating degradation, or temperature changes, to list just a
few factors [23].
Standard EIS analysis tools may give wildly inaccurate results on a system that is
not at a steady state [23].

2.3.4 Equivalent Electrical Circuit
An approach for quantifying influences of different processes on voltage losses
expected in literature is the substitution of the cell’s impedance with a number of
impedance elements known from electrical engineering. The idea is that a specific
impedance element can model each physical process. They are connected as an
equivalent circuit diagram; therefore, it results in a complete cell model. Different

14

Fundamentals

elements can be found in literature, such as R, RC-, RQ-, Warburg- and Gerischer
Phase-elements [8].
There are two main processes at the reaction layer simultaneously: Firstly, a
double layer is formed at the electrode-electrolyte-interface. Secondly, ions pass
the interface and take part in the electrode reaction while experiencing a resistance
expressed by the Butler-Volmer equation (2.13). The double-layer can be simplified
as a capacity Cact, as it is effectively an electrical field between two planes. The
equivalent resistance of the reaction kinetics can be modeled as the faradaic
resistance Ract. The faradaic resistance can be obtained by a linearization of Eq.
(2.13) [8]:

Ract = dηact
dj

∣∣∣∣∣
j=0

= RmT

zF · j0
(2.20)

The electrode-electrolyte interface can therefore be modeled as an RC-element.
The complex impedance of an RC-element is

ZRC (ω) =
(1
R

+ iωC
)−1

= R

1 + iω ·RC ′
(2.21)

where R is the ohmic resistance and C the capacity. Any RC-element is defined by
its relaxation time τ0 , which is defined as

τ0 = RC (2.22)

2.3.5 Distribution of Relaxation Times (DRT)
Calculating the distribution of relaxation times (DRT) from the impedance spectrum
of a cell is a method, that allows identifying different processes within the cell by
their time-dependent behavior. The basic approach is to approximate the cell as
a serial connection of RC-elements. The total polarisation impedance for such a
connection is

Zpol (ω) = Rpol

N∑
n=1

γn
1 + iωτn′

with
N∑
n=1

γn = 1 (2.23)

where τn is the relaxation time of element n and N is the number of RC-elements.
In this equation γn weighs the contribution of each element to the total impedance.
If each RC-element represents a physical process in the cell, γn gives a measure of
each process’s contribution to the total polarization loss [8].
Usually, the number of contributing processes is not known for certain before the
analysis. The DRT method addresses this problem by replacing the finite number
of RC-elements shown in Eq. (2.23) with an infinite number of infinitesimally small

15

Fundamentals

RC-elements with relaxation times ranging from 0 to ∞. This approach yields the
integral equation

Zpol (ω) = Rpol +
∫ ∞

0

γ (τ)
1 + iωτ

dτ with
∫ ∞

0
γ (τ) dτ = 1 (2.24)

with the distribution function γ (τ). The main difficulty in calculating the DRT is
obtaining this distribution function from the discrete data points resulting from
measurements. This step is not explained in detail here, as there are finished
algorithms available based on different works of literature [8] [6] [25]. The result of
a finished DRT analysis is a distribution function γ (f), with f = ω/(2π).

2.3.6 Analysis of DRTs
To identify the resistances of individual processes, the distribution function γ(f) is
used. Fig. 2.8 shows an example of γ(f). Each peak indicates accumulations of
infinitesimal RC-elements at a particular excitation frequency. Each peak γp(fp) in
the distribution function shows an individual process taking place at the frequency
fp with the corresponding relaxation time τp [8]. Because γ(f) weighs the influence
of each approach, the area beneath one peak multiplied by the overall polarization
resistance Rpol gives the individual resistance Rpol,k of the process k:

Rpol,k = Rpol ·
∫ f+

k

f−
k

γ (f) df (2.25)

where f−k and f+
k are the integration limits that are counted towards process k. To

correctly identify these limits, the processes involved must be isolated from one
another in the frequency domain. It is usually possible with the DRT method to find
individual processes with a resolution of up to half a frequency decade [8]. However,
processes that are not separated cannot be evaluated individually. Significantly, up
to this point, the processes identified in this way are not associated with the actual
physical processes taking place in the cell. Hence, the main challenge to researchers
using the DRT is to attribute these processes to physical loss mechanisms correctly.
To gain insights into the causes of individual polarization resistance, it is necessary
to investigate the relations between the cells operating conditions and the DRT.
This means running impedance spectroscopy measurements at each step while
varying all essential parameters, i.e., cell temperature and fuel and oxygen electrode
gas composition. This way, it is possible to discover which processes correlate
strongly with the variation of which parameter. For example, a process strongly
dependent on fuel gas composition can be associated with the fuel electrode. At
the same time, strong oxygen concentration dependence indicates a process taking
place at the oxygen electrode. Additionally, the temperature dependency of a
process is telling of its activation energy. Therefore, processes with negligible

16

Fundamentals

Figure 2.8: Distribution of relaxation times and integral of distribution function
derived from the impedance spectrum shown in Fig. 2.6 [8] [11] [12].

thermal activation are likely to be caused by gas-phase diffusion, while those
showing pronounced thermal activation most likely correspond to activation losses.
Additionally, variations of the electrical load can yield insights regarding the cell’s
electrode reactions’ symmetry and the corresponding transfer coefficient α [8].

2.4 Test rig (Testing Station)

2.4.1 Basic Solid Oxide Fuel Cell Test Station Require-
ments

As fuel cell performance strongly depends on the operating conditions, a good
test setup must allow flexible control over the operating pressures, temperatures,
humidity levels, and flow rates of the reactant gases [1].
Mass flow controllers, pressure gauges, and temperature sensors allow the operating
conditions of the fuel cell to be continually monitored during testing. Electro-
chemical measurement equipment, usually including a potentiostat/galvanostat
and an impedance analyzer, is attached to the fuel cell [1]. These measurement
devices have at least two leads; one connects to the fuel cell cathode, while the
other connects to the fuel cell anode. Often a third lead is provided for a reference
electrode [1]. Most commercially available potentiostats can perform a wide range
of potentiostatic/galvanostatic experiments, including j–V curve measurements, cur-
rent interrupt, and cyclic voltammetry [1]. Electrochemical impedance spectroscopy
often requires a dedicated impedance analyzer or an add-on unit in addition to the

17

Fundamentals

potentiostat [1].
The fuel cell in a SOFC test station needs to reside inside a furnace with precise
temperature control over a wide temperature range. Working at elevated tempera-
tures presents special challenges, particularly in providing robust seals, electrical
leads, and connections to/from the fuel cell [1]. Accurately monitoring the fuel cell
conditions (such as temperature, pressure, and gas compositions) while at elevated
temperatures is also challenging [1]. Designing a proper test station gets even
more complicated when considering that SOFCs are frequently intended for use
with hydrocarbon fuels [1]. Such fuels tend to crack at elevated temperatures and
leave undesirable carbon coatings behind [1]. Methods for removing, burning, or
controlling these carbon residues become essential in fuel cell test stations operating
at high temperatures with hydrocarbon fuels [1].

2.4.2 Test Conditions
Test conditions will dramatically affect fuel cell performance. Therefore, care must
be taken to fully document measurement operating conditions, testing procedures,
device histories, and so on [1].
The most important testing conditions to document are now briefly discussed [1]:

Warm-up

To ensure that a fuel cell system is well equilibrated, it is customary to conduct
a standardized warm-up procedure prior to cell characterization [1]. A typical
warm-up procedure might involve operating the cell at a fixed current load for
30–60 min prior to testing. Failure to properly warm up a fuel cell system can
result in highly nonstationary (non-steady-state) behavior [1].

Temperature

It is essential to document and maintain a constant fuel cell temperature during
measurement. Both the gas inlet and exit temperatures should be measured as well
as the temperature of the fuel cell itself [1]. Sophisticated techniques even allow
temperature distributions across a fuel cell device to be monitored in real time [1]. In
general, increased temperature will improve performance due to improved kinetics
and conduction processes [1].

Pressure

Gas pressures are generally monitored at both the fuel cell inlets and outlets [1]. This
allows the internal pressure of the fuel cell to be determined as well as the pressure

18

Fundamentals

drop within the cell. Increased cell pressure will improve performance [1]. (However,
increasing the pressure requires additional energy “input” from compressors, fans,
etc [1].)

Flow Rate

Flow rates are generally set using mass flow controllers.During a j–V test, there
are two main ways to handle reactant flow rates. In the first method, flow rates
are held constant during the entire test at a flow rate that is sufficiently high so
that even at the largest current densities there is sufficient supply [1]. This method
is known as the fixed-flow-rate condition. In the second method, flow rates are
adjusted stoichiometrically with the current so that the ratio between reactant
supply and current consumption is always fixed. This method is known as the
fixed-stoichiometry condition [1]. Fair j–V curve comparisons should be done using
the same flow rate method. Increased flow usually improves performance [1].

Compression Force

For most fuel cell assemblies, there is an optimal cell compression force, which leads
to best performance; thus, cell compression force should be noted and monitored [1].
Cells with lower compression forces can suffer increased ohmic loss, while cells with
higher compression forces can suffer increased pressure or concentration losses [1].

2.5 State of Art

2.5.1 Review of the institute testing station characteristics
Experiments are conducted using an Evaluator-HT testing station manufactured
by FuelCon. Its center is a thermally isolated furnace necessary for achieving
a solid oxide cell’s operating temperature. This furnace is designed to work at
temperatures up to 1100 °C and houses the examined cell. Fig. 2.9 shows the
furnace as well as the peripheral systems composing the testing station. Both
electrodes need a continuous supply of gas V̇ fuel

in and V̇ ox
in , respectively. These gas

flows can be made up of multiple components: Water, hydrogen, and nitrogen on
the fuel side, and either a mixture of oxygen and nitrogen or air on the oxygen side.
However, the fuel side is not supplied with pure nitrogen but with protection gas,
consisting of 95% nitrogen and 5% hydrogen.
This protection gas is also used to purge the cell while the testing station starts
up, shutting down, or idle at a high temperature. This is done because the fuel
electrode is not resistant to the effect of oxygen at high temperatures. By ensuring
there is always a gas flow with at least 5% hydrogen content, the fuel electrode is

19

Fundamentals

protected against oxidation. Any oxygen that might leak into the fuel gas channel
immediately reacts with hydrogen. To supply deionized water to the fuel gas
mixture, a peristaltic pump manufactured by Knauer is used. It is capable of
delivering volume flows as little as 0.001 ml/min to a downstream heater. The
heater evaporates the water, which is then stored in a heated container. The
container is connected to the fuel line via a hand valve, which can regulate its
pressure. This pressurized container decouples the steam flow to the cell from
fluctuations in the liquid water flow caused by the pump.
On the oxygen side, there is the option to use either air or a custom mixture of

Figure 2.9: Schematic of the FuelCon Evaluator-HT testing station used in the
experiment [11] [12].

nitrogen and oxygen. Air is filtered and dried, and fed to the cell at a constant
pressure. It passes a rotameter, which measures its volume flow. All other gasses
are supplied from pressurized gas cylinders, which are connected to valves via
pressure regulators. Behind the valves are mass flow controllers (MFCs), which
control each component’s exact gas flow. All outgoing gas flows are fed into the
building’s exhaust system. For checking the fuel side for leaks, the fuel side exhaust
gas can be directed through a transparent water container. The gas supply can then
be reduced until no more bubbles are observed in the water container, determining
the amount of gas currently leaking from the system.
The cell itself is situated within a ceramic housing within the furnace. The gasses
are supplied and removed through the furnace’s floor, as shown in Fig. 2.10. The
cell is arranged horizontally, with the fuel electrode being the top layer and the
oxygen electrode at the bottom. A concrete nickel block contacts the fuel electrode
with gas channels machined into its lower side. A platinum mesh contacts the

20

Fundamentals

oxygen electrode. The ceramic housing is split into two parts separated by a ceramic
gasket, preventing gas exchange between oxygen and fuel side. The cell is contacted
electronically in two ways: For maximally precise cell voltage measurements, two
slim platinum lines lead out of the furnace floor directly beneath the cell. These are
called sense lines and are used to measure Usense, the primary source of information
on the cell’s current voltage. The electric load is attached via conductive metal rods
that protrude from the furnace’s top. Between the electric metal rods, a voltage

Figure 2.10: Schematic of the cell housing, including electric contacts as well as
gas supply and removal [11] [12].

can be measured redundantly to the sense lines. This voltage Ured is only used for
validating the readings from the sense lines while the cell is in an open-circuit state
because it is distorted significantly by the conductive rod’s resistances as soon as a
current flows through them.

2.5.2 The aim of this thesis
This thesis aims to solve the problem related to the water vapor supply to fuel
electrode. First of all, the author describes this obstacle by expressing the thesis

21

Fundamentals

concept. As the author represented in the last section, the liquid water is supplied
to the fuel gas mixture by Knauer ’s peristaltic pump. Here, the problem is occurred
and makes the liquid water provide a fluctuating volume flow to the heater. Since
the peristaltic pump is manufactured by a different company than the testing
station, this problem happens.
The other issue the operator faces is changing the water vapor flow manually. Thus,
the author needs to design and build a mechanism for fully controlling the water
vapor flow and maintaining the stable condition. On the other hand, after making
this mechanism and solving this problem, water vapor pressure won’t oscillate, and
then the system works very well.
In the following, the author describes the necessity of being pressure constant.
The instability of the water supply makes partial pressure fluctuation, and gas
composition won’t be stable. Here, it should be expressed that the changing partial
pressure directly affects the Nernst equation (Eq. 2.9). This experiment shows that
the fuel side’s ideal gas mixture at high temperature and low pressure consists of
different components: hydrogen, nitrogen, and water vapor. The partial pressure
at the ideal gas is equivalent to the molar fraction. Ideally, the ratio of partial
pressures equals the ratio of the number of molecules. The mole fraction xk of an
individual gas component in an ideal gas mixture can be represented in terms of
the component’s partial pressure or the element’s moles [26]. This concept showed
in Eq. 2.26 [26]:

xk = pk
ptot

= nk
ntot

(2.26)

where xk represents mole fraction of any individual gas component in a gas mixture,
pk partial pressure of any individual gas component in a gas mixture, nk moles of
any individual gas component in a gas mixture, ntot total moles of the gas mixture,
and ptot total pressure of the gas mixture [26].
According to Eq. 2.26, changing the amount of the water vapor, which is one of the
gas components (nk), directly affects its partial pressure (pk) through the molar
fraction (xk), and then changing the partial pressure (pk) in the Nernst equation
(Eq. 2.9) directly impacts on the cell voltage and makes the cell voltage oscillate.
On the other hand, the fluctuating of cell voltage makes the trouble in useful
Impedance Spectroscopy measuring. This consequence makes the steady-state
condition of the testing station is deranged. Consequently, the operator can not
distinguish the test rig’s failure that means the appeared error would not be clear
from a defeat in the test rig or water supply system.
Nevertheless, the author needs to design the mechanism for fully automated
controlling the water vapor supply and maintaining the stable condition. In the
next chapters, the author describes this mechanism’s design, code programming,
assembling all components, and eventually, the mechanism’s implementation into
the test rig.

22

Chapter 3

Conceptual Design

This project aims to develop a mechanism and control to automatically adapt the
water vapor control settings to the required water volume flow. Therefore, it will
consist of a stepper motor and relative components to rotate the valve, including
holding the control valve and an (Arduino) based control board to control the
stepper motor to its desired position. The control variable is the vapor pressure,
which is directed to a target value.
For this reason, the author has designed the Coupling System for the desired
connection between the pressure valve and the stepper motor by SolidWorks.
Therefore, the operator will be able to control the vapor pressure automatically. In
this chapter, the author will describe the whole procedure in three sections.
In the first section, he will speak about the fundamental components needed for
running the stepper motor, including the stepper motor, driver controller, and
Arduino board.
In the second section, he will explain the Coupling System that the author designed
in the SolidWorks area and made by the Thermodynamic Institute workshop of
Leibniz Universität Hannover. In the last section, the author will speak out of the
Coupling System, stepper motor, and Arduino board assembly.

3.1 components in the experiment
In this chapter, the author will describe the fundamental components needed to
develop this mechanism. The author will explain the Coupling System in section
3.2. The essential components are as follows:

1. Arduino control board

2. Stepper motor driver controller

3. Stepper motor

23

Conceptual Design

4. Power supply

5. Jumper cable Arduino

6. Coupling System

3.1.1 Arduino control board
The author utilizes the Arduino UNO, shown in Fig. 3.1, because it is the
best and easiest board to get started with electronics and coding. Arduino Uno
has open-source software, so it’s relatively easy to implement control logic on
this microcontroller board. Arduino Uno is a microcontroller board based on
the ATmega328P (datasheet). It has 14 digital input/output pins (of which 6
can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator
(CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header and a

Figure 3.1: Image of Aurduino Uno Board [27].

reset button. It contains everything needed to support the microcontroller; simply
connect it to a computer with a USB cable or power it with a AC-to-DC adapter
or battery to get started [27].

3.1.2 Stepper motor driver controller
Stepper motors are operated by receiving the signal from the driver controller,
shown in Fig. 3.2. In this experiment, the author utilizes the L298N Motor Driver.
One of the most comfortable, best, and inexpensive way to control stepper motors
is to interface L298N Motor Driver with Arduino. It can handle both the speed
and spinning direction of any Bipolar stepper motor like NEMA 14.
As the L298N module has two H-Bridges, each H-Bridge will drive one of the
electromagnetic coils of a stepper motor. By energizing these electromagnetic coils

24

Conceptual Design

Figure 3.2: Image of L298N Stepper Motor Driver Controller with the description
of its elements.

in a specific sequence, a stepper motor’s shaft would be able to move forward or
backward precisely in small steps. However, the speed of a motor is determined by
how frequently these coils energize.In Fig. 3.3, a driving stepper with H-Bridge is
shown.

Figure 3.3: Image of the driving stepper with H-Bridge.

25

Conceptual Design

3.1.3 Stepper motor

In this experiment, the author utilizes NEMA 14-01 bipolar stepper shown in Fig.
3.4 rated at 12V. It offers 200 steps per revolution. Here, it needs to determine the

Figure 3.4: Image of stepper motor nema14-01.

A+, A-, B+, and B- wires on the motor. The best way to do this is to check the
data sheet of the motor. In this case, these are red, green, blue, and yellow. In
Fig. 3.5 shown the schematic of these wire. The connections between components

Figure 3.5: The schematic of the A+, A-, B+, and B- wires.

are relatively simple. It starts by connecting an external 12V power supply to the
VCC terminal and then be kept the 5V-EN jumper in place.
It needs to be kept both the ENA and ENB jumpers in place, so the motor is always
enabled. The input pins (IN1, IN2, IN3, IN4) of the L298N module are connected
to four Arduino digital output pins (8, 9, 10, and 11). Eventually, connect the A+,
A-, B+, and B- wires from the stepper motor to the module, as shown in Fig. 3.6.

26

Conceptual Design

Figure 3.6: The illustration of NEMA 14-1 Stepper Motor in connection with
L298N and Arduino.

3.1.4 Power supply

In this experiment, the Author utilizes the Mean Well - 12V/1.25A Rail Din power
supply shown in Fig. 3.7. It is one of the best choices for this project because of its

Figure 3.7: The image of Mean Well - 12V/1.25A Rail Din power supply used in
this experiment.

excellent reliability and unbeatable value for money. This type of power supply is
ideal to power any type of device that requires 12VDC, and also it could be mounted
directly on the DIN rail. The closed design and possession of touch-protected screw
connections are the advantages of this kind of power supply.

27

Conceptual Design

3.1.5 Jumper cable Arduino
In this experiment, the Author utilizes the MAKER FACTORY JKMF40 Jumper
cable Arduino shown in Fig 3.8. These jumper cables are easy to connect and

Figure 3.8: The image of the MAKER FACTORY JKMF40 Jumper cable Arduino
used in this experiment.

disconnect, and the connecting and disconnecting are the advantages of these types
of wires.

3.2 CAD-Design

3.2.1 The methodology of the Coupling System design
In this section, the author will explain the Coupling System. The first matter
that is essential here is the connecting element between the stepper motor and
the pressure valve. In the first view, it would be the easiest way to choose the
shaft couplings made before and already exist in the market. However, to use the
Coupling System, it has to be noted about the parts’ dimensions. These parts

Figure 3.9: The image of Bellows-Sealed Metering Valves manufactured by
Swagelok company [28].

28

Conceptual Design

are included of the pressure valve head and the stepper motor shaft. Since the
dimensions of the stepper motor shaft and the head of the pressure valve are
different, the author has decided to design a desired Coupling System for this
experiment.
The pressure valve used in this experiment is Bellows-Sealed Metering Valves shown
Fig. 3.9 manufactured by Swagelok company.
With due attention to the movement of the pressure valve head, the author noticed
that the head part not only rotates around its axis but also moves along its axis or
on the other hand, it has an axial movement. The author will show in Fig. 3.10
the illustration of the pressure valve and its elements with description. On the

Figure 3.10: The illustration of the pressure valve and its elements with descrip-
tion [28].

other side, by looking at the stepper motor shaft, the author noticed that the shaft
is not a full cross-section shaft, and it seems like a half cross-section shaft. Thus,
the author utilized the stepper motor data-sheet to design this side of the Coupling
System.
Nevertheless, the author has to design a Coupling System that allows the pressure
valve to move smoothly along its axis. Since there is a plane on the stepper motor

29

Conceptual Design

shaft, the author utilized this feature of the shaft and made the Coupling System
procedure move smoothly on this plane along the axis; simultaneously, the whole
connection mechanism rotates around its axis.

3.2.2 The modeling of Coupling system by SolidWorks
In this part, the author designed the Coupling System by SolidWorks 2019. As
SolidWorks is one of the bests in designing and modeling, the author’s choice is
SolidWorks. In modeling this part, the author considered the dimensions of each
side of the Coupling System. on the side close to the stepper motor shaft; the
author must design a hole for the shaft and make an appropriate way for the shaft
to rotate and smoothly move along the axis. Nevertheless, the author modeled the
hole with two screw thread holes M3 to fix the shaft on the spot, making the shaft
moves smoothly. The Fig. 3.11 has shown the side close to the connecting of the
stepper motor shaft. On the other side of the Coupling System, the author modeled

Figure 3.11: The image of modeling of the Coupling System on the view of close
to the stepper motor shaft in SolidWorks.

a hole according to the pressure valve head and designed three screw thread holes
around this hole to tighten the head of the pressure valve inside the Coupling
System. the size of the thread holes is M5. Since the surface around the pressure
valve head is roughly coarse, it would tighten and fix the head entirely. In Fig.
3.12 has shown a close view of the side close to the pressure valve head. Following
ending the modeling with SolidWorks, the Coupling System was made by the

30

Conceptual Design

Figure 3.12: The image of modeling of the Coupling System on the view of close
to the pressure valve head in SolidWorks.

Thermodynamic Institute workshop of Leibniz Universität Hannover. The material
used for the Coupling system is Aluminium. the author utilized the Aluminium for
making the Coupling System because of its lightness and strength. In Fig. 3.12
has shown a close view of the Coupling System after manufacturing.

Figure 3.13: The image of a close view of the Coupling System after manufactur-
ing.

31

Conceptual Design

3.3 Assembly the Coupling System and the other
components

At the end of this chapter, the author will speak out of assembling the whole
components. In the first step for connecting the driver controller with the Arduino
board, the input pins (IN1, IN2, IN3, IN4) of the L298N module are connected to
four Arduino digital output pins (8, 9, 10, and 11).
The author connected the A+, A-, B+, and B- wires from the stepper motor to the
driver controller in the second step. The next part is the connection between the
power supply and driver controller connecting the wire coming from the voltage
plus pole output on the power supply to the 12 voltage plus input on the driver
controller.
In the last step of this part, the author creates a connection between three elements:
voltage minus pole output on the power supply, the common ground (GND) on
the driver controller, and eventually the common ground (GND) on the Arduino
board.
The connection of the stepper motor, driver controller, and Arduino board is already
made. According to the Arduino board and the computer’s connection through a

Figure 3.14: The image of the electrical components are assembled

USB cable, the Arduino board will be received the required electrical power from
the computer through input USB (type B) on the Arduino Uno board. In Fig. 3.14
has shown the stepper motor, driver controller, power supply, and the Arduino

32

Conceptual Design

Uno board are assembled. It is possible to provide the required electrical power
of the Arduino board through a five-plus voltage output of the driver controller.
Since the Arduino program codes send through the USB cable and the USB cable
will always be connected to the Arduino board, it would not be essential to provide
the driver controller’s necessary electrical power.
After finishing connecting the stepper motor, driver controller, power supply, and
eventually the Arduino board, the author rejoined the Coupling System and the
pressure valve head. In the end, the whole system is entirely assembled and will be

Figure 3.15: The image of the entire components are assembled

ready to run the desired command code. In Fig. 3.15 has shown the fundamental
components are convened. In the next chapter, the author will be describing the
running codes and then the implementation part.

33

Chapter 4

Implementation

In this chapter, the author will describe the implementation part. It consists of
developing software, building the valve automation, and integrating automated
valve into the test rig. The sections that the author mounts the whole electrical
system include the Arduino board, power supply, driver controller, stepper motor,
and Coupling System on the pressure valve already installed on the test rig.
Eventually, the operating system will adequately run with the control codes sent
from the operator’s computer.

4.1 Developing software (Control)
The first section of this chapter is about developing software. The author will define
and describe the Arduino Software (IDE) and Visual Studio and then explain the
control codes using these programs to control and run the operating system.

4.1.1 Arduino Software (IDE)
To control the Arduino board, the user needs to utilize the Arduino Software (IDE),
open-source software that makes it easy to write code and upload it to the board.
This software can be used with any Arduino board [29].
In this section, the author will describe the control codes on Arduino Software
(IDE) to run the operating system directly from this software.
The first lines of code are always allocated to the libraries in Arduino IDE. Thus,
the author utilized the Stepper library to run the stepper motor in this code shown
below.

// Include the Stepper library.
#include <Stepper.h>

34

Implementation

Moreover, the author defined the code line to fit the number of steps per revolution
for the stepper motor shown below.

// change this to fit the number of steps per revolution for the
//stepper motor.
const int stepsPerRevolution = 200;

The next step is defining the code line to initialize the stepper motor library on
pins 8 through 11 of the Arduino Uno board, which is displayed below.

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11);

Before the next step, the author must define two functions in Arduino Software
(IDE). The first function is void setup() , which is technically a function created
at the top of each program. Inside the curly brackets is the code run one time as
soon as the program starts running. The next function is void loop() , which is be
used as a part of its structure. The code inside the loop function repeatedly runs
as long as the Arduino board is turned on.These functions have presented here.

void setup() {
}

void loop() {
}

According to these two functions, the author utilized the "void setup" for adding the
codes that will be run once. Thus, he defined the code line to initialize the serial
port. "Serial. begin(9600)" is employed in this function, which means the Arduino
to get ready to exchange messages with the Serial Monitor at a data rate of 9600
bits per second. That’s 9600 binary ones or zeros per second and is commonly
called a baud rate. This action has presented here.

// initialize the serial port:
Serial.begin(9600);

The next step is about the speed of the stepper motor. For this reason, the author
determined the code line still in the "void setup" function to set the speed of
revolution, which is 100 rpm. This point should be added that the operator could
change the speed of rotation.

// set the speed at 100 rpm:
myStepper.setSpeed(100);

The last action for running the stepper motor is defining the code line to control
the stepper motor steps to reach the desired point. For this reason, the author

35

Implementation

utilized the "myStepper.step()" function to run the stepper motor. Inside of the
parentheses, the operator will be able to insert the number of the desired steps.
This number could be a positive number or a negative number. It means, if the
number is positive, the stepper motor will rotate forward; otherwise, it will have a
backward rotation.
// Run the Stepper motor forward at 100 steps/second until the motor

//reaches desired steps (X/200 revolutions)(For the forward rotation,

//the number inside of the parentheses at myStepper.step() must be

//positive. For the backward rotation, this number must be negative.):

myStepper.step();

In the overall view, this code will be represented such as below
//sketch to control a stepper motor Nema 14-01 with L298N driver
//controller and Arduino UNO.

// Writen by Seyed Ali Ayati

// Include the Stepper library.
#include <Stepper.h>

// change this to fit the number of steps per revolution for the
//stepper motor.
const int stepsPerRevolution = 200;

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11);

void setup() {
// initialize the serial port:
Serial.begin(9600);

// set the speed at 100 rpm:
myStepper.setSpeed(100);

// Run the Stepper motor forward at 100 steps/second until the motor

//reaches desired steps (X/200 revolutions)(For the forward rotation,

//the number inside of the parentheses at myStepper.step() must be

36

Implementation

//positive. For the backward rotation, this number must be negative.):

myStepper.step();
}

void loop() {}

In the end, the code has to be verified. Thus, the operator should click on the
Verify button, and then this code could be uploaded on the Arduino board.

4.1.2 Arduino board control with Visual Studio
In this section, the author will explain running the operating system with Visual
Studio. First of all, it should be expressed that in case of using the Arduino Board,
the user needs to utilize the Arduino Software (IDE) for communication with the
Arduino board. However, the user could use other kinds of programming software
such as Python, Matlab, and Visual Studio to control the Arduino board. This
programming software uploads the commands to the Arduino board through Ar-
duino IDE. Thus, the author executes a connection code between this programming
software and Arduino IDE.
Concerning the connection between Arduino IDE and Visual Studio 2019, the
author has written the code on the Arduino IDE area that the user will send the
command by Visual Studio 2019.

The Arduino IDE division

The first lines of code are regularly designated to the libraries in Arduino IDE.
Thus, the author utilized the Stepper library to command the stepper motor in
this code shown here.

// Include the Stepper library.
#include <Stepper.h>

For the next step, the author defined the variables according to the subsequent
commands.

String data;
char d1;
String x;
String y;
int Stepperval;
int Speedval;

37

Implementation

Further, the author described the code line to fit the number of steps per rotation
for the stepper motor shown below.

// change this to fit the number of steps per revolution for the
//stepper motor.
const int stepsPerRevolution = 200;

The next step is determining the code line to initialize the stepper motor library
on pins 8 through 11 of the Arduino Uno board, which is presented here.

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11);

At void setup() function, the author defined the code line to initialize the serial
port ("Serial. begin(9600)"). Then, he represented the code line to set the pin 13
led on the standby situation.

void setup() {
// initialize the serial port:
Serial.begin(9600);
// set the pin 13 led on the standby situation:

pinMode(13, OUTPUT);
}

All the following codes are at the void loop() function; the author utilized the
"if" function to define the serial port object. This parameter is applied to get the
number of bytes (characters) available for reading from the serial port, which is
data that’s already reached and stored in the serial receive buffer (which holds 64
bytes).

if(Serial.available()){}

At the "if" function, the author utilized the "data" variable for reading from the
serial port, and then he changed this variable from String to Char. The new
variable is defined, named "d1."

data = Serial.readString();
d1 = data.charAt(0);

The next step is for selecting action based upon the first character. Thus, the
author defined four cases to send the concerned command from Visual Studio to
the Arduino board.
The first and second cases are related to turning on and off the pin 13 output led.
These situations are for assuring the user of the lack of defect on the Arduino
board.

38

Implementation

switch(d1){ // select action based upon first character
case 'A': //first character is an A = turn on pin 13 led
digitalWrite(13, HIGH);
break;
case 'a': //second character is an a = turn off pin 13 led
digitalWrite(13, LOW);
break;

The next case is for sending the command from Visual Studio to the Arduino board
to make the stepper motor rotate and then reach the desired position.

case 'S': //third character is an S = set stepper motor steps
x= data.substring(1);
Stepperval = x.toInt();
myStepper.step(Stepperval);
delay(100); //wait for stepper motor to finish
break;

The last case is concerning controlling the speed of the stepper motor.

case 'C': //last character is an C = control stepper motor speed
y= data.substring(1);
Speedval = y.toInt();
myStepper.setSpeed(Speedval);
delay(100);
break;

In the overall view, this code will be represented such as below

//sketch to control a stepper motor with sending the commands
//from Visual Studio to Arduino board.

// Writen by Seyed Ali Ayati

// Include the Stepper library.
#include <Stepper.h>

String data;
char d1;
String x;
String y;
int Stepperval;
int Speedval;

// change this to fit the number of steps per revolution for your motor.
const int stepsPerRevolution = 200;

39

Implementation

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11);

void setup() {
// initialize the serial port:

Serial.begin(9600);

// set the pin 13 led on the standby situation:
pinMode(13, OUTPUT);

}

void loop() {
if(Serial.available()){

data = Serial.readString();
d1 = data.charAt(0);
switch(d1){ //select action based upon first character

case 'A': //first character is an A = turn on pin 13 led
digitalWrite(13, HIGH);
break;
case 'a': //second character is an a = turn off pin 13 led
digitalWrite(13, LOW);
break;
case 'S': //third character is an S = set stepper motor steps
x= data.substring(1);
Stepperval = x.toInt();
myStepper.step(Stepperval);
delay(100); //wait for stepper motor to finish
break;
case 'C': //last character is an C = control stepper motor speed
y= data.substring(1);
Speedval = y.toInt();
myStepper.setSpeed(Speedval);
delay(100);
break;

}
}

}

The Visual Studio 2019 division

In this section, the author explained the Visual Studio area how to control the
Arduino board. Making the stepper motor easier to control, the Visual Studio is
the existing way to reach this purpose.

40

Implementation

The Visual Studio is utilized to create GUI applications using Windows Forms [30].
The layout can be controlled by housing the controls inside other containers or
locking them to the form’s side [30]. Commands that display data (like textbox,
list box, and grid view) can be bound to data sources like databases or queries.
Data-bound controls can be created by dragging items from the Data Sources
window onto a design surface [30]. The UI is linked with code using an event-driven
programming model. The author generates C# code for the application.
In the Visual Studio code section, the author has written the proper codes to

Figure 4.1: The image of the design surface of this windows form

connect with Arduino IDE and then run the stepper motor. This code is displayed
in the appendix. In Fig. 4.1, the author showed the design surface of this windows
form. As shown in this figure, the first text box is related to choose the proper
COM Ports that means the USB cable is plugged into which ports of the computer.
The second text box is concerning checking the Arduino board communication
with turn on/off pin 13 output LED shown in Fig. 4.2. The next button box is

41

Implementation

programmed to rotate backward the valve to the beginning point. For this reason,
by clicking this button, the valve location will reset to the start position. On the

Figure 4.2: The image of the LED pin 13 on the Arduino board

other hand, the valve will be closed entirely.
There are two button boxes before the next text box for making a pause in time of
shifting pressure valve position. It will act as a manual Switch and create a waiting
time for the next rotation.The next text box is for entering the desired stepper
motor speed, set by default in 10 rpm.
The next text box is related to the stepper motor position. For this purpose, two
text boxes are assigned to change the stepper motor’s direction and then change the
stepper motor’s position in degrees. The text box relating to switching the direction
has to option "Open" for forwarding revolution and for opening the pressure valve,
and "Close" is for backward rotation and for closing the pressure valve.
There is a displayed box representing the current position in the last steps, and a
text box exists for applying the new position of the pressure valve. The previous
text box only sends the difference between the new desired position and the last
position. Consequently, it will make the operator’s job more comfortable for the
small pressure valve position changes.
Eventually, the author saved this program as an EXE file to make it easier to
open the control file and then run the stepper motor. After all this debate, the
operator will control the stepper motor only with Windows Forms as an EXE file,
and technically the user would not utilize the Arduino software (IDE) anymore.

4.2 Building the valve automation
The automation valve is built with the fundamental components placed on the
Aluminium Profile System, as displayed in two different sides of view Fig. 4.3 and

42

Implementation

also Fig. 4.4.

Figure 4.3: The image of the valve automation 1

Figure 4.4: The image of the valve automation 2

4.3 Integrating automated valve into the test rig
In the last section, the author explains the implementation of the automation
valve on the testing station as shown in Fig. 4.5. For mounting this system, some
points must be observed. In this case, the essential point is the Coupling System’s
adjustment and the pressure valve head.
The alignment will always be a critical matter. For this reason, the Coupling

43

Implementation

System needs to be in an appropriate position. Otherwise, it puts pressure on both
the stepper motor shaft and also the pressure valve head.
The other point the author must observe is needing enough power for rotating the
pressure valve head. In this case, this obstacle is determined by increasing the
output voltage of the power supply. For this purpose, the voltage of the power

Figure 4.5: The image of the implementation of the automation valve into the
testing station

supply changed from 8V to around 10V. Eventually, the automation system works

44

Implementation

correctly without any problem. The operator will be able to run the testing station
and then change the pressure valve position and measure the pressure and the
cell voltage. On the other hand, the user will be able to gain the Impedance
Spectroscopy measurements and measure the process’s improvement by working
with the new automation system.

45

Chapter 5

Future Research

The previous chapters were about the Arduino board’s manual control and tech-
nically the stepper motor control for turning the pressure valve to set it on the
desired position. That means the user could manage the water supply pressure all
the time.
However, the control system, described in the current chapter, is about automati-
cally managing water supply pressure. This automatic control system will work
with the PID and Feedfroward controller through Arduino software (IDE).
The author will describe the whole procedure, consisting of the PID controller,
Feedforward controller, the Arduino IDE codes for running the stepper motor, the
pressure sensor’s introduction, which is already used in the test rig. At the end of
the chapter, the author will explain the limitation of using the automatic control
system, the restriction of performing both the manual control system and the auto-
matic control system, and the lack of a chapter on the experimental measurement
data.

5.1 PID controller
The PID controller is a generic control loop feedback mechanism (controller) widely
used in industrial control systems; a PID is the most commonly used feedback
controller [31]. Calculate an error value as the difference between the measured
process variable and the desired response. The controller attempts to minimize the
error by adjusting the process control input [31].
The PID controller calculation (algorithm) involves three constant parameters
called the proportional (P), integral (I), and derivative (D) values. These values
can be interpreted in terms of time [31]. (P) depends on the present error, (I) on
the accumulation of past error, and (D) predicts future error based on the current
change rate. The weighted sum of these three actions is used to adjust the process

46

Future Research

Figure 5.1: The block diagram of the PID controller [31]

via a control element such as a control valve position or power supplied to a heating
element [31]. In Fig. 5.1 represented the block diagram of the PID controller, and
in Eq. 5.1 represented the output of the PID controller [31]:

Y (t) = e (t)KP +KI

∫ t

0
e (t) dt+KD

de (t)
dt

(5.1)

where e represents Error Signal and KP Proportional Constant, KI Integral Con-
stant, and then KD Derivative Constant [31].

5.2 Feedforward controller
When a model of a system is well known it can be used to improve the performance
of a control system by adding a Feedforward function, as pictured in Fig. 5.2 [32].
The Feedforward function is basically an inverse model of the process. When this

Figure 5.2: The block diagram of the Feedforward controller [32]

is used together with a more traditional feedback function, the overall system can
outperform more traditional controllers function, such as the PID controller [32].
In this experiment, the PID controller measures the required pressure and sends the
stepper motor’s command to rotate and reach the desired position. This operation

47

Future Research

will be run on the test rig, and the Feedforward will act like a technic and makes
the controller work easier.
Since the operator has the data-sheet, such as Table 5.1, concerning steam pressure,
the water vapor volume flow, and corresponding valve position, he will act like a

Steam Volume Flow
(ml/min)

Steam Pressure
(bar)

Valve Position
(round)

0.241 2.9 6
0.04 2.08 1
0.121 2.553 3
0.2 2.601 5
0.28 2.548 7
0.362 2.594 8
0.019 2 0.5
0.096 2.5 2.5
0.193 2.47 4.5

Table 5.1: Examples of data-sheet include steam pressure, steam volume flow,
and corresponding valve position in different moments, which have already been
measured.

Feedforward controller. Thus he knows how much the stepper motor needs to rotate
and then makes the pressure valve reach the proper position. On the other hand,
the operator will leave the automated system on the stepper motor’s accurate range.
Then the PID controller runs the automated system and changes the pressure valve
position a little bit. This type of Feedforward controlling makes the PID controller
not work from the beginning.
Nevertheless, Feedforward control’s benefits are significant and can often justify
the time, making the system operate at high speeds.

5.3 Arduino IDE codes for the automatic control
system

This section represents the codes that the author used in this control system,
and as regularly, the Arduino IDE code commences with adding the required
libraries. Since the author utilized the PID controller codes in this program, the
PID controller library needs to be added.

// Include the Stepper library.
#include <Stepper.h>

48

Future Research

// Include the PID library
#include <PID_v1.h>

Further, the author described the code line to fit the number of steps per rotation
for the stepper motor shown below.

// change this to fit the number of steps per revolution for the
//stepper motor.
const int stepsPerRevolution = 200;

The next step is explaining the code lines to define the functions and variables
that the author utilized for employing the PID controller in Arduino IDE. For this
reason, the Setpoint shows desired pressure value, the Input presents the pressure,
which is given by the sensor, and then the Output displays the process variable.

//Define Variables we'll be connecting to
double Setpoint ; // It will be desired pressuer value
double Input ; // The pressure which is shown by the sensor
double Output ; // Process Variable
// PID Parameters
double Kp=2 , Ki=0.5 , Kd=2 ;
// create PID instance
PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);

The next step is determining the code line to initialize the stepper motor library
on pins 8 through 11 of the Arduino Uno board, which is presented here.

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11);

At void setup() function, the author defined the code line to convert the desired
pressure into voltage. Since the Arduino board always receive the voltage as data,
the author needs to do such conversion here. For this reason, the operator has
to replace the pressure number with "x" in the following equation. In this line of
code, the operator acts like a Feedforward controller, and he leaves the automated
system on the stepper motor’s reasonable range.
The next codes in void setup() function are related to launch the PID controller
here. Due to the Feedforward controller, the PID controller changes the pressure
valve position a little bit. Then, the author represented the code line to initialize
the serial port ("Serial. begin(9600)"). Eventually, the code concerning the stepper
motor speed will be inserted.

/void setup() {
//Insert the desired pressure,e.g. x bar
double converting_pressure_to_voltage = x *(5.0/16.0);

49

Future Research

//Gain the Setpoint which is voltage
Setpoint = converting_pressure_to_voltage;

//Turn the PID on
myPID.SetMode(AUTOMATIC);

// initialize the serial port:
Serial.begin(9600);

// set the speed at 100 rpm:
myStepper.setSpeed(100);

}

All the following codes are at the void loop() function; first, the author defined
"sensorValue" for the input data from the sensor through the A0 pin on the Arduino
board and then represented by the "analogRead()" function in the code lines.
The "analogRead()" function Reads the value from the specified analog pin [33].
Arduino boards contain a multichannel, 10-bit analog to digital converter [33]. This
means that it will map input voltages between 0 and the operating voltage(5V or
3.3V) into integer values between 0 and 1023 [33]. For instance, on an Arduino
Uno, this yields a resolution between readings of 5 volts / 1024 units or 0.0049
volts (4.9 mV) per unit [33].
The next code in the void loop() is concerned with the computation with the new
input in each loop. After this step, the stepper motor needs to rotate to reach the
new desired position. Finally, the list of Input, Output, and Setpoint data will be
exposed after each computation.

void loop() {
// get the sensor value
int sensorValue = analogRead(A0);
Input= sensorValue * (5.0 / 1024.0);

//computation with the new input in each loop
myPID.Compute();

//move a number of steps equal to the change in the sensor reading.
myStepper.step(Setpoint - Input);

Serial.print(Input);
Serial.print(" ");
Serial.println(Output);
Serial.print(" ");
Serial.println(Setpoint);

50

Future Research

// delay(100);
}

In the overall view, this code will be represented such as below
//Sketch to set Automaticly the position of the stepper motor by PID controller

// Writen by Seyed Ali Ayati

// Include the Stepper library.
#include <Stepper.h>

// Include the PID library
#include <PID_v1.h>

// change this to fit the number of steps per revolution for the
//stepper motor.
const int stepsPerRevolution = 200;

//Define Variables we'll be connecting to
double Setpoint ; // It will be desired pressure value
double Input ; // The pressure which is shown by the sensor
double Output ; // Process Variable
// PID Parameters
double Kp=2 , Ki=0.5 , Kd=2 ;

// create PID instance
PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11);

void setup() {
//Insert the desired pressure,e.g. 3.0 bar
double converting_pressure_to_voltage = 2.5 *(5.0/16.0);

//Gain the Setpoint which is voltage
Setpoint = converting_pressure_to_voltage;

//Turn the PID on
myPID.SetMode(AUTOMATIC);

// initialize the serial port:
Serial.begin(9600);

51

Future Research

// set the speed at 100 rpm:
myStepper.setSpeed(100);

}

void loop() {
// get the sensor value
int sensorValue = analogRead(A0);
Input= sensorValue * (5.0 / 1024.0);

//computation with the new input in each loop
myPID.Compute();

// move a number of steps equal to the change in the sensor reading.
myStepper.step(Setpoint - Input);

Serial.print(Input);
Serial.print(" ");
Serial.println(Output);
Serial.print(" ");
Serial.println(Setpoint);
// delay(100);

}

5.4 Water supply pressure sensor into test rig
The pressure sensor used for water supply into test rig is Pressure transmitter
Model A-10 made by WIKA LLC shown in Fig. 5.3. One of the output data in this

Figure 5.3: Pressure transmitter model A-10 made by WIKA LLC [34]

52

Future Research

pressure transmitter is in the current. As the Arduino board used in this project,
the whole data sent to this board must be in voltage. Thus, the current output of
the pressure transmitter needs to be converted into voltage.
For this reason, using the current-to-voltage module is one of the ways to reach
this goal. The current-to-voltage module linearly converts 0-25mA current signals
into 0-5V voltage signals.
Pressure transmitter Model A-10 has the current signal output of 4-20 mA. There-
fore. the Arduino control board can easily read the current signals output from
the sensor. Typically, current signals lower than 4mA can be applied for fault
diagnosis, and current signals higher than 20mA can be used for overrun detection.
By affording this convertor and then install on the Arduino board, the user will be
able to run the Arduino code which poses the PID controller. Then it would be
possible to control the automation valve automatically.

5.5 Limitations of this experiment.
This experiment had some problems: test rig unpreparedness and difficulty gaining
current from the pressure transmitter.
Regarding the test rig unpreparedness, the experimental procedure was impossible
to perform due to the Covid-19 Pandemic situation. As the other colleagues had to
implement the other concerned parts of the test rig and replace the new hardware,
the testing station had not been ready until the end of this thesis. Thus, the
condition of testing the codes related to the automatic control system and, indeed,
the whole system was not available.
The other problem was related to difficulty receiving the data as current from the
sensor. It would be obliged to connect the pressure transmitter to the current-to-
voltage module directly to reach this point, and for this reason, it needs to take
out the concerned current wire from the sensor. As the pressure transmitter is a
valuable component, this action may make the sensor be harmed.
This part of the research will be able to be continued in the future after passing the
Corona pandemic trouble situation. Under these circumstances, it can be hoped
that the operator will test the automatic control plan, then its weaknesses will be
revealed, and in the end, decide to improve the system.
Regarding the manual control plan, the Author examined the automated valve
system, and it worked correctly. Still, due to the test rig’s unpreparedness, it would
not be capable of gaining the experiment results such as Impedance Spectroscopy
measurement and improved test rig performance.

53

Chapter 6

Conclusion

In this thesis, the automated valve system is designed and built to control the
water vapor volume flow to prevent the water vapor’s oscillation. As a novelty, the
research developed a mechanism to automatically control the water vapor control
settings’ adaption to reach the required water volume flow.
The automated valve system is controlled through the Arduino Uno control board.
This control board sent the stepper motor’s command for rotating the pressure
valve to control the water vapor volume flow.
The uniqueness of the stepper motor shaft and pressure valve head brings us to
the point that the author designed the specific type of the Coupling System by the
SolidWorks. This design helped us to handle the pressure valve position.
The author defined two different manners: the manual control program and the
automatic control program. This definition helped us to control the automated
valve system.
The automated valve system runs with the Arduino software (IDE) to control the
pressure valve position. The author also used the Visual Studio code section to
connect with Arduino IDE and run the stepper motor. The advantage of using the
Visual Studio program was to control the automated valve system conveniently
and save the control program as an EXE file. As we aimed, the automated valve
system was examined and worked accurately.
The automated valve system considers the automatic control program to utilize
the PID controller with Feedforward controller through Arduino software (IDE).
One of the limitations that the thesis face was unable to run the PID controller to
reach the desired point automatically. Due to the Covid-19 Pandemic situation,
the testing station was unprepared, and gaining the experiment results such as
Impedance Spectroscopy measurement and improved test rig performance by the
automated valve system was impossible.

54

Appendix A

Coupling System Drawing

Figure A.1: The image of the Coupling System Drawing

55

Appendix B

The Arduino Sketch

Figure B.1: The view of the Arduino sketch for directly changing the stepper
motor position.

56

The Arduino Sketch

Figure B.2: The view of the Arduino sketch for directly changing the stepper
motor position with sending the command from Visual Studio 2019.

57

The Arduino Sketch

Figure B.3: The view of the Arduino sketch for automatically control the position
of the stepper motor by PID controller (part 1).

58

The Arduino Sketch

Figure B.4: The view of the Arduino sketch for automatically control the position
of the stepper motor by PID controller (part 2).

59

Appendix C

Visual Studio Codes

The codes used in the Visual Studio 2019

1 us ing System ;
2 us ing System . C o l l e c t i o n s . Generic ;
3 us ing System . ComponentModel ;
4 us ing System . Data ;
5 us ing System . Drawing ;
6 us ing System . Linq ;
7 us ing System . Text ;
8 us ing System . Windows . Forms ;
9 us ing System . IO . Ports ;

10 us ing System . Threading ;
11

12 namespace Visual_Manual_Part
13 {
14 pub l i c p a r t i a l c l a s s Form1 : Form
15 {
16 pub l i c s t a t i c double p o s i t i o n = 0 ;
17 pub l i c s t a t i c double max_position_value = 7 ∗ 360 ;
18 pub l i c Form1 ()
19 {
20 In i t i a l i z eComponent () ;
21 s e r i a l P o r t 1 . Open () ;
22

23 }
24

25 pr i va t e void Form1_Load(ob j e c t sender , EventArgs e)
26 {
27 s t r i n g [] por t s = S e r i a l P o r t . GetPortNames () ;
28 cBoxCOMPORT. Items . AddRange(por t s) ;
29 CurrentPos i t ion . Text = Convert . ToString (p o s i t i o n) ;
30 }

60

Visual Studio Codes

31

32 pr i va t e void comboBox1_SelectedIndexChanged (ob j e c t sender ,
EventArgs e)

33 {
34

35 }
36

37 pr i va t e void onButton_Click (ob j e c t sender , EventArgs e)
38 {
39 // Send command to Arduino to turn pin 13 on
40 s e r i a l P o r t 1 . Write ("A") ;
41 }
42

43 pr i va t e void of fButton_Click (ob j e c t sender , EventArgs e)
44 {
45 // Send command to Arduino to turn pin 13 o f f
46 s e r i a l P o r t 1 . Write (" a ") ;
47 }
48

49 pr i va t e void StepperMotorDeg_Click (ob j e c t sender , EventArgs e
)

50 {
51 double s i gn ;
52 switch (comboBox_Sign . Se l ec tedI tem)
53 {
54 case " open " :
55 s i gn = 1 ;
56 break ;
57 case " c l o s e " :
58 s i gn = −1;
59 break ;
60 d e f a u l t :
61 s i gn = 0 ;
62 break ;
63 }
64

65 //Send Steps va lue to Stepper Motor
66 double doubletextbox1 = Convert . ToDouble (textBox1 . Text) ;
67 double DoubleValue = 0 .5555556 ; // (200 s t ep s / 360 degree

= 0.5555556)
68 double ConversionDegreeToSteps = doubletextbox1 ∗

DoubleValue ∗ s i gn ;
69 double new_position = p o s i t i o n + doubletextbox1 ∗ s i gn ∗

−1;
70 i f (new_position < 0)
71 {
72 s t r i n g message = " Pos i t i on value sma l l e r than minimum

p o s i t i o n . " ;
73 s t r i n g capt ion = " Error " ;

61

Visual Studio Codes

74 MessageBoxButtons buttons = MessageBoxButtons .OK;
75

76 Dia logResu l t r e s u l t ;
77

78 r e s u l t = MessageBox . Show(message , capt ion , buttons) ;
79

80

81 }
82 e l s e
83 i f (new_position > max_position_value)
84 {
85 s t r i n g message = " Pos i t i on value h igher than maximum

p o s i t i o n . " ;
86 s t r i n g capt ion = " Error " ;
87 MessageBoxButtons buttons = MessageBoxButtons .OK;
88

89 Dia logResu l t r e s u l t ;
90

91 r e s u l t = MessageBox . Show(message , capt ion , buttons) ;
92

93

94 }
95 e l s e
96 {
97 s t r i n g Str ingedConvers ionDegreeToSteps =

ConversionDegreeToSteps . ToString () ;
98 s t r i n g m1 = "S" + Str ingedConvers ionDegreeToSteps ;
99 s e r i a l P o r t 1 . Write (m1) ;

100 p o s i t i o n = p o s i t i o n + doubletextbox1 ∗ s i gn ∗ −1;
101 CurrentPos i t ion . Text = Convert . ToString (p o s i t i o n) ;
102 }
103 }
104

105 pr i va t e void labe l5_Cl i ck (ob j e c t sender , EventArgs e)
106 {
107

108 }
109

110 pr i va t e void textBox2_TextChanged (ob j e c t sender , EventArgs e)
111 {
112

113 }
114

115 pr i va t e void StepperMotorSpeed_Click (ob j e c t sender , EventArgs
e)

116 {
117 s t r i n g m2 = "C" + textBox2 . Text ;
118 s e r i a l P o r t 1 . Write (m2) ;
119 }

62

Visual Studio Codes

120

121 pr i va t e void labe l6_Cl i ck (ob j e c t sender , EventArgs e)
122 {
123

124 }
125

126 pr i va t e void button2_Click (ob j e c t sender , EventArgs e)
127 {
128 s t r i n g message = " Rotate va lve manually to minimum

p o s i t i o n and pre s s OK. " ;
129 s t r i n g capt ion = " Error " ;
130 MessageBoxButtons buttons = MessageBoxButtons .OK;
131

132 Dia logResu l t r e s u l t ;
133

134 r e s u l t = MessageBox . Show(message , capt ion , buttons) ;
135 p o s i t i o n = 0 ;
136 CurrentPos i t ion . Text = Convert . ToString (p o s i t i o n) ;
137

138

139 }
140

141 pr i va t e void RotateToPosit ion_Click (ob j e c t sender , EventArgs
e)

142 {
143

144

145 double new_position = Convert . ToDouble (Des i r edPos i t i on .
Text) ;

146

147 i f (new_position < 0)
148 {
149 s t r i n g message = " Pos i t i on value sma l l e r than 0 . " ;
150 s t r i n g capt ion = " Error " ;
151 MessageBoxButtons buttons = MessageBoxButtons .OK;
152

153 Dia logResu l t r e s u l t ;
154

155 r e s u l t = MessageBox . Show(message , capt ion , buttons) ;
156

157

158 }
159 e l s e
160 i f (new_position > max_position_value)
161 {
162 s t r i n g message = " Pos i t i on value h igher than maximum

p o s i t i o n . " ;
163 s t r i n g capt ion = " Error " ;
164 MessageBoxButtons buttons = MessageBoxButtons .OK;

63

Visual Studio Codes

165

166 Dia logResu l t r e s u l t ;
167

168 r e s u l t = MessageBox . Show(message , capt ion , buttons) ;
169

170

171 }
172 e l s e
173 {
174

175 double d i f f e r e n z = new_position − p o s i t i o n ;
176

177 double DoubleValue = 0 .5555556 ; // (200 s t ep s / 360
degree = 0.5555556)

178 double ConversionDegreeToSteps = d i f f e r e n z ∗
DoubleValue ∗ −1;

179 s t r i n g Str ingedConvers ionDegreeToSteps =
ConversionDegreeToSteps . ToString () ;

180 s t r i n g m1 = "S" + Str ingedConvers ionDegreeToSteps ;
181 s e r i a l P o r t 1 . Write ("R") ;
182 Thread . S leep (3000) ;
183 s e r i a l P o r t 1 . Write (m1) ;
184 i n t waitt ime = (Convert . ToInt32 (d i f f e r e n z) /360 ∗ 60/

Convert . ToInt32 (textBox2 . Text)) ∗1000 + 5000 ;
185 Thread . S leep (waitt ime) ;
186 s e r i a l P o r t 1 . Write (" r ") ;
187

188 p o s i t i o n = new_position ;
189 CurrentPos i t ion . Text = Convert . ToString (p o s i t i o n) ;
190 }
191 }
192

193 pr i va t e void RelaisOn_Click (ob j e c t sender , EventArgs e)
194 {
195 s e r i a l P o r t 1 . Write ("R") ;
196 }
197

198 pr i va t e void Re la i sOf f_Cl i ck (ob j e c t sender , EventArgs e)
199 {
200 s e r i a l P o r t 1 . Write (" r ") ;
201 }
202 }
203 }

64

Bibliography

[1] Ryan P O’Hayre, Suk-Won Cha, Whitney G Colella, and Fritz B Prinz. 1014
Fuel Cell Fundamentals. 2008 (cit. on pp. 1, 3–7, 17–19).

[2] Paolo Di Giorgio and Umberto Desideri. «Potential of reversible solid oxide
cells as electricity storage system». In: Energies 9.8 (2016), p. 662 (cit. on
p. 1).

[3] Martin Hauth et al. «Production and reliability oriented SOFC cell and stack
design». In: ECS Transactions 78.1 (2017), p. 2231 (cit. on p. 1).

[4] Christopher H Wendel and Robert J Braun. «Design and techno-economic
analysis of high efficiency reversible solid oxide cell systems for distributed
energy storage». In: Applied energy 172 (2016), pp. 118–131 (cit. on p. 1).

[5] Kun Wang et al. «A review on solid oxide fuel cell models». In: International
journal of hydrogen energy 36.12 (2011), pp. 7212–7228 (cit. on p. 1).

[6] Bernard A Boukamp and Aurélie Rolle. «Use of a distribution function of
relaxation times (DFRT) in impedance analysis of SOFC electrodes». In:
Solid state ionics 314 (2018), pp. 103–111 (cit. on pp. 2, 16).

[7] André Leonide, Volker Sonn, André Weber, and Ellen Ivers-Tiffée. «Evaluation
and modeling of the cell resistance in anode-supported solid oxide fuel cells».
In: Journal of the Electrochemical Society 155.1 (2007), B36 (cit. on p. 2).

[8] A. Leonide. SOFC Modelling and Parameter Identification by Means of
Impedance Spectroscopy. Schriften des Instituts für Werkstoffe der Elektrotech-
nik, Karlsruher Institut für Technologie. KIT Scientific Publ., 2010. isbn:
9783866445383. url: https://books.google.de/books?id=kE3Otpn2DS8C
(cit. on pp. 2, 7, 8, 10, 11, 15–17).

[9] Helge Schichlein, Axel C Müller, Michael Voigts, Albert Krügel, and Ellen
Ivers-Tiffée. «Deconvolution of electrochemical impedance spectra for the
identification of electrode reaction mechanisms in solid oxide fuel cells». In:
Journal of Applied Electrochemistry 32.8 (2002), pp. 875–882 (cit. on p. 2).

[10] HD Baehr and S Kabelac. Thermodynamics: Fundamentals and Technical
Applications. 14th edition. 2009 (cit. on p. 4).

65

https://books.google.de/books?id=kE3Otpn2DS8C

BIBLIOGRAPHY

[11] Jan Hollmann. «Experimentelle Validierung und Erweiterung eines Modells
zur Beschreibung des Betriebsverhaltens einer umkehrbaren Festoxidzelle
(ReSOC)». MA thesis. Institut für Thermodynamik: Leibniz Universität
Hannover, 2018 (cit. on pp. 4, 7, 17, 20, 21).

[12] Johannes Kube. «Development of an Automated Test Sequence for the Char-
acterisation of High Temperature Solid Oxide Cells (SOFC / SOEC)». MA
thesis. Institut für Thermodynamik: Leibniz Universität Hannover, 2018 (cit.
on pp. 4, 7, 17, 20, 21).

[13] Sergio Yesid Gómez and Dachamir Hotza. «Current developments in reversible
solid oxide fuel cells». In: Renewable and Sustainable Energy Reviews 61 (2016),
pp. 155–174 (cit. on p. 5).

[14] Mark E Orazem and Bernard Tribollet. «Electrochemical impedance spec-
troscopy». In: New Jersey (2008) (cit. on pp. 8, 11).

[15] Allen J Bard, Larry R Faulkner, et al. «Fundamentals and applications». In:
Electrochemical Methods 2.482 (2001), pp. 580–632 (cit. on p. 8).

[16] S Primdahl and M Mogensen. «Gas diffusion impedance in characterization of
solid oxide fuel cell anodes». In: Journal of the electrochemical society 146.8
(1999), p. 2827 (cit. on p. 9).

[17] Jai-Woh Kim, Anil V Virkar, Kuan-Zong Fung, Karun Mehta, and Subhash C
Singhal. «Polarization effects in intermediate temperature, anode-supported
solid oxide fuel cells». In: Journal of the Electrochemical Society 146.1 (1999),
p. 69 (cit. on p. 9).

[18] A Weber. «Development and characterization of materials and components
for the high-temperature fuel cell SOFC». PhD thesis. dissertation, University
"a t Karlsruhe (TH), 2002 (cit. on p. 10).

[19] Subhash C Singhal and Kevin Kendall. High-temperature solid oxide fuel cells:
fundamentals, design and applications. Elsevier, 2003 (cit. on p. 10).

[20] E Ivers-Tiffée. «Brennstoffzellen und Batterien, lecture notes». In: Institut
für Werkstoffe der Elektrotechnik (IWE), Karlsruher Institut für Technologie
(KIT), Germany (2009) (cit. on p. 10).

[21] Axel M "u ller. «Multi-layer anode for the high-temperature fuel cell (SOFC)».
PhD thesis. publisher cannot be determined, 2004 (cit. on p. 11).

[22] Helge Schichlein. Experimental modeling for "u r the high-temperature fuel
cell SOFC. Mainz, 2003 (cit. on pp. 11–13).

[23] Gamry Instruments. «Basics of electrochemical impedance spectroscopy». In:
G. Instruments, Complex impedance in Corrosion (2007), pp. 1–30 (cit. on
pp. 13, 14).

66

BIBLIOGRAPHY

[24] David Loveday, Pete Peterson, and Bob Rodgers. «Evaluation of organic
coatings with electrochemical impedance spectroscopy». In: JCT coatings
tech 8 (2004), pp. 46–52 (cit. on p. 14).

[25] Yanxiang Zhang, Yu Chen, Mei Li, Mufu Yan, Meng Ni, and Changrong Xia.
«A high-precision approach to reconstruct distribution of relaxation times
from electrochemical impedance spectroscopy». In: Journal of power sources
308 (2016), pp. 1–6 (cit. on p. 16).

[26] AD McNaught and A Wilkinson. IUPAC Compendium of Chemical Termi-
nology, 2nd edn.(1997). 1997 (cit. on p. 22).

[27] Arduino LLC. Arduino Uno Board Description. 2021. url: https://store.
arduino.cc/arduino-uno-rev3 (visited on 01/13/2021) (cit. on p. 24).

[28] Swagelok LLC. Bellows-Sealed Metering Valves. 2021. url: https://www.
swagelok.com/downloads/webcatalogs/en/MS-01-23.pdf (visited on
01/22/2021) (cit. on pp. 28, 29).

[29] Arduino LLC. Arduino Software (IDE) Software Description. 2021. url:
https://www.arduino.cc/en/software (visited on 01/19/2021) (cit. on
p. 34).

[30] Microsoft LLC. Bind controls to data in Visual Studio. 2021. url: https:
/ / docs . microsoft . com / en - us / previous - versions / visualstudio /
visual-studio-2015/data-tools/bind-controls-to-data-in-visual-
studio?view=vs-2015&redirectedfrom=MSDN (visited on 01/22/2021) (cit.
on p. 41).

[31] Manoj Kushwah and Ashis Patra. «Tuning PID controller for speed control
of DC motor using soft computing techniques-A review». In: Advance in
Electronic and Electric Engineering 4.2 (2014), pp. 141–148 (cit. on pp. 46,
47).

[32] Hugh Jack. «Dynamic system modeling and control». In: Draft Ver 2 (1993)
(cit. on p. 47).

[33] Arduino LLC. Arduino Software (IDE) "analogRead()" Description. 2021. url:
https://www.arduino.cc/reference/en/language/functions/analog-
io/analogread/ (visited on 01/24/2021) (cit. on p. 50).

[34] WIKA LLC. Pressure transmitter, model A-10 description. 2021. url: ht
tps://www.wika.us/upload/DS_PE8160_en_co_1631.pdf (visited on
01/24/2021) (cit. on p. 52).

67

https://store.arduino.cc/arduino-uno-rev3
https://store.arduino.cc/arduino-uno-rev3
https://www.swagelok.com/downloads/webcatalogs/en/MS-01-23.pdf
https://www.swagelok.com/downloads/webcatalogs/en/MS-01-23.pdf
https://www.arduino.cc/en/software
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2015/data-tools/bind-controls-to-data-in-visual-studio?view=vs-2015&redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2015/data-tools/bind-controls-to-data-in-visual-studio?view=vs-2015&redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2015/data-tools/bind-controls-to-data-in-visual-studio?view=vs-2015&redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2015/data-tools/bind-controls-to-data-in-visual-studio?view=vs-2015&redirectedfrom=MSDN
https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/
https://www.wika.us/upload/DS_PE8160_en_co_1631.pdf
https://www.wika.us/upload/DS_PE8160_en_co_1631.pdf

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Fundamentals
	Solid Oxide Cells
	Operating Principle
	Open Circuit Operation
	Closed Circuit Operation
	Loss Mechanisms

	Current/Voltage Characteristics
	Electrochemical Impedance Spectroscopy
	Methodology
	Linearity of Electrochemistry Systems
	Steady State Systems
	Equivalent Electrical Circuit
	Distribution of Relaxation Times (DRT)
	Analysis of DRTs

	Test rig (Testing Station)
	Basic Solid Oxide Fuel Cell Test Station Requirements
	Test Conditions

	State of Art
	Review of the institute testing station characteristics
	The aim of this thesis

	Conceptual Design
	components in the experiment
	Arduino control board
	Stepper motor driver controller
	Stepper motor
	Power supply
	Jumper cable Arduino

	CAD-Design
	The methodology of the Coupling System design
	The modeling of Coupling system by SolidWorks

	Assembly the Coupling System and the other components

	Implementation
	Developing software (Control)
	Arduino Software (IDE)
	Arduino board control with Visual Studio

	Building the valve automation
	Integrating automated valve into the test rig

	Future Research
	PID controller
	Feedforward controller
	Arduino IDE codes for the automatic control system
	Water supply pressure sensor into test rig
	Limitations of this experiment.

	Conclusion
	Coupling System Drawing
	The Arduino Sketch
	Visual Studio Codes
	Bibliography

