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Abstract

Artificial Intelligence has recently shown great success at language translation,
computer vision and many other sensory perception tasks. However, it still
requires further improvements to address problems that involve higher order
cognitive behaviors, such as reasoning.

The human brain relies on multiple memory systems for intelligent behavior.
Working memory is an essential component for high order cognitive tasks ranging
from language, planning and reasoning to decision making. In this thesis, I intro-
duce a new model called Differentiable Working Memory (DWM), which emulates
the human working memory. As it shows the same functional characteristics
as working memory, the model robustly learns psychology-inspired tasks and
converges faster than comparable state-of-the-art models. Moreover, the DWM
model successfully generalizes to sequences two orders of magnitude longer than
the ones used in training. Our in-depth analysis shows that the behavior of DWM
is interpretable and that it learns to have fine control over memory, allowing
it to retain, ignore or forget information based on its relevance. To facilitate
running the DWM model against the different WM tasks and also running other
models on the same set of tasks to establish baselines, we designed a framework
called MI-Prometheus, that standardizes the interface that connects together the
components needed in a machine learning system: problems, models architectures,
and training/testing configurations.

This work is a step towards building Artificial General Intelligence models,
where different kinds of memory and reasoning centers are needed. We believe
that the DWM model will be a critical part of such a cognitive architecture.

keywords: Artificial Intelligence, working memory, Memory, Differentiable Working
Memory, cognitive, reasoning, psychology-inspired tasks, framework.
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Mémoire de Travail Différentiable
Par Younes Bouhadjar

Résumé

L’intelligence artificielle a récemment démontré de nombreux succes, dans
la traduction, la vision par ordinateur et pour de nombreuses autres taches
liées a la perception sensorielle. Cependant, elle demande encore des progres
supplémentaires pour résoudre les problemes impliquant des comportements
cognitifs de plus haut niveau, tels que le raisonnement.

Le cerveau humain repose sur de multiples mémoires pour un comportement
intelligent. La mémoire de travail est une composante essentielle des taches
cognitives de haut niveau, allant du langage, passant par la planification et le
raisonnement, a la prise de décision. Dans cette these, je présente un nouveau
modele, appelé Differentiable Working Memory (DWM), qui émule la mémoire
de travail humaine. Présentant les mémes caractéristiques fonctionnelles que la
mémoire de travail, le modele apprend avec certitude des taches inspirées par la
psychologie, et converge plus rapidement que les modeles de 1’état de ’art. De
plus, le modele DWM généralise a des séquences plus longues par deux ordres de
grandeur que celles utilisées durant 'entrainement. Notre analyse approfondie
montre que le comportement de DWM est interprétable et que ce dernier apprend
a bien utiliser la mémoire, ce qui lui permet de conserver, ignorer ou oublier
des informations en fonction de leur pertinence. Pour faciliter la comparaison du
modele DWM par rapport aux différentes taches mémorielles et pour tester d’autres
modeles sur le méme ensemble de taches afin d’établir des références, nous avons
concu une libraire logicielle appelée MI-Prometheus qui standardise I’interface
reliant les composants nécessaires a un systeme d’apprentissage automatique :
problémes, architectures de modeles et configurations d’entrainement / évaluation.

Ce travail est une étape vers la construction de modeles d’intelligence artificielle
générale, dans lesquels différents types de mémoire et centres de raisonnement sont
nécessaires. Nous pensons que le modele DWM constituera un élément essentiel
d’une telle architecture cognitive.

Mots clés: Intelligence artificielle, mémoire de travail, mémoire, Differentiable Work-
ing Memory, cognitif, raisonnement, libraire logicielle.
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Memoria di Lavoro Differenziabile
Di Younes Bouhadjar

Sommario

L’intelligenza Artificiale ha recentemente dimostrato un grande successo nella
traduzione linguistica, nella visione artificiale e in molti altri compiti di perce-
zione sensoriale. Tuttavia, richiede ancora ulteriori miglioramenti per affron-
tare i problemi relativi a comportamenti cognitivi di ordine superiore, come il
ragionamento.

Il cervello umano fa affidamento a molteplici sistemi di memoria per ottenere
un comportamento intelligente. La memoria di lavoro € un componente essenziale
per le funzioni cognitive di alto livello, come il linguaggio, la pianificazione e i
ragionamenti necessari a prendere delle decisioni. In questa tesi, introduco un
nuovo modello chiamato Differentiable Working Memory (DWM), il quale emula
la memoria di lavoro umana. Poiché mostra le stesse caratteristiche funzionali
della memoria di lavoro, il modello impara funzioni ispirate a quelle psicologiche
e converge piu velocemente rispetto ad altri modelli simili attualmente esistenti.
Inoltre, il modello DWM generalizza con successo sequenze di due ordini di
grandezza piu lunghe rispetto a quelle usate nell’addestramento. La nostra analisi
dettagliata mostra che il comportamento del DWM ¢ interpretabile e che impara
ad avere un controllo dettagliato sulla memoria, permettendogli di conservare,
ignorare o dimenticare informazioni in base alla loro rilevanza. Per facilitare
I’esecuzione del modello DWM rispetto ai diversi compiti della memoria di lavoro
ed inoltre fare in modo che altri modelli siano contemporaneamente in esecuzione
sullo stesso set di task per definire le condizioni iniziali, abbiamo progettato un
framework chiamato MI-Prometheus, che standardizzi I'interfaccia che connette i
componenti necessari in un sistema di machine learning: problemi, architetture
dei modelli, e configurazioni per il training/testing.

Questo lavoro ¢ un ulteriore passo verso la costruzione di modelli di Artificial
General Intelligence, dove tipi differenti di centri di memoria e ragionamenti sono
richiesti. Crediamo che il modello DWM sara parte cruciale di tale architettura
cognitiva.

Parole chiave: Intelligenza Artificiale, memoria di lavoro, memoria, Differentiable
Working Memory, cognitivo, ragionamento, struttura
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1 Introduction

Over a period of six months starting from March 2018, I worked as a research intern at
IBM Almaden Research Center (ARC) within the Machine Intelligence (MI) Group.
This work was done within the scope of my Master thesis of the Nanotech International
program.

The MI group was created initially to implement a new Machine Intelligence algorithm
called CONTEXTUAL AWARE LEARNING (CAL), inspired by the current knowledge
of how the mammals cerebral cortex works. Recently, the MI group focus was shifted
towards deep learning ' [17]. More specifically, the main area of interest are Visual
Question Answering (VQA) [1] and Memory Augmented Neural Networks (MANNSs)
(18] .

1.1 IBM Research

IBM Research, is the largest industrial research organization in the world, with 12 labs
on six continents. The main goal of IBM Research is to help its clients achieve both
high quality and competitive products by offering a combination of Hardware, Software
and Services solutions.

During my thesis, I worked at the IBM Almaden Research Center, the focus of which
is mainly centered around the development of new cognitive computing softwares
(Artificial Intelligence) and hardwares (neuromorphic chips) aiming to enhance machines
intelligence to improve their interactions with humans. The center has other labs
which work on diverse areas ranging from quantum computers and hardware design to
biomedical field and nano-fabrication.

1.2 Thesis Motivation

Artificial Intelligence (AI) has made tremendous progress over the past few years and
is getting involved continuously in our daily life, from allowing us to translate several
languages, predicting our financial budget, to driving our cars and scheduling our
meetings [37]. A great example showing Al capabilities is the famous Jeopardy game
between Watson (IBM’s question answering AI) and the 2 Jeopardy champions - Brad
Rutter and Ken Jennings - where Watson won by a large margin [14]. Another more
recent example is Google DeepMind’s AlphaGo defeating the South Korean master Lee
Sedol in 4 games out of 5 in 2016 [3].

One of the ultimate goals of Al research is the creation of an Artificial General Intel-
ligence, that can do things in a way that is indistinguishable from human behavior,
and can be reliable in doing our different daily tasks. What have been done so far in
the field of Al is the creation of a set of algorithms that are essentially big correlation
engines that try to find any spurious pattern that describes the data being fed in. The

'Deep Learning a set of algorithms that are inspired by the structure of the brain called neural
network (Deep refers to the use of many neural networks layers)

10
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structure, size and nature of these diverse data often limits the performance of these
models. For example, this issue clearly manifests when solving problems related to
reasoning ? which is central to human intelligence [36]. One may argue that coming
closer to human intelligence requires designing models which have similarities with the
respect to human brain. This is motivated by the fact that the human brain is the
only proof we have of the existence of such an intelligence. Studying human cognition
and its neural implementation has a vital role to play, as it can provide a window into
various important aspects of higher level general intelligence [24].

Motivated by the above, we tried to come closer to neuroscience and cognitive psychology,
in order to design novel models that can solve complex tasks such as reasoning. It was
proven that the main building blocks of the human brain which allow such a superior
cognitive behavior are the different kind of memories it possesses [26]. For instance,
reasoning requires working memory, episodic memory (content in time) and associative
memory (content similarity).

In this thesis, we focused specifically on studying the human working memory (WM),
which is a mental workspace that processes data that is no more present in the environ-
ment. This led to designing a model called Differentiable Working Memory (DWM),
which could successfully mimic the functional behavior of the working memory. This
work is a step towards building Artificial General Intelligence models, where different
kinds of memory and reasoning centers are needed. We believe that the DWM model
can fill in one of these needs. The main contributions of this work are as follow:

2Reasoning is the ability to manipulate previously acquired knowledge to draw novel inferences or
answer new questions

Figure 1 — IBM Almaden research center

11
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e Develop and implement a Memory-Augmented Neural Network model, inspired
by the human working memory.

e A new attention control mechanism for memory, which can deal with interference.

e Implement psychometric tests designed for human working memory and applied
to our artificial model, which shows superior performance when compared to the
state-of-the-art (i.e. LSTM [27], Differentiable Neural Computer [19])

¢ An examination of strategies developed for handling memory scarcity.

To facilitate running the DWM model against the different WM tasks and also running
other models on the same set of tasks to establish baselines, we designed a framework
called MI-Prometheus, that standardizes the interface that connects together the
components needed in a machine learning system: problems, models architectures, and
training/testing configurations.

1.3 Structure of the thesis

The thesis begins with a background of some of the Machine Learning algorithms
mentioned throughout the different chapters of the thesis. In chapter 3, I introduce the
DWM model, which was intentionally designed to emulate human working memory.
Following, I present the results and how we could interpret the mechanism that the
model can learn to solve the different tasks. In chapter 4, I detail the framework we
designed to facilitate running the DWM model against the different tasks.

12
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2 Background

2.1 Machine Learning

Machine Learning (ML) is a subgroup of AI, which can be defined as an algorithm that
has the ability to learn from prior data in order to produce an answer. In other words,
ML teaches machines to make decisions in situations they have never encountered.
There are two main types of ML approaches:

e Supervised Learning: showing a model a data set of situations and telling it
what the right answer is. Think of it as a teacher and student scenario. Once the
model has been trained, it can be tested using previously unseen data - which is
still statistically similar to the training data, hoping it can generalizes to novel
situations. Figure 2 shows the MNIST dataset where supervised learning is used.
During training, the model is exposed to different hand written digits and has
access to the corresponding correct output (integer from 0 to 9). During the test
phase (inference), new hand written digits are fed into the model, and we ask it
to predict the corresponding label.

e Unsupervised learning: Describes the situation where training a model is done
using only a set of inputs without knowing the corresponding output. Think of it
as a situation where there is no teacher (compared to supervised learning). The
corresponding models try to find structure or relationships between the different
inputs. One of the most used unsupervised learning algorithm is clustering, which
creates different clusters (groups) of inputs and predicts in which cluster the new
input belongs.

We can also briefly mention Reinforcement Learning, where an agent (for instance a
robot) ought to take actions (e.g. go left, right, up or down) in an environment (e.g.
a maze) so as to maximize some notion of cumulative reward (e.g. exit the maze by
making the lowest number of moves possible).

2.2 Neural Networks

Artificial Neural Networks (ANNs) are a subset of ML algorithms, originally invented
in the mid-20th century, inspired by the human brain [23]. However at that time, the
limited computational power was an obstacle that researchers in this field were facing.
The interest in ANN has grown exponentially since 2012, after the development of
powerful computing hardwares, which started a new era of ANN. Since then, substantial
progress was done.

What helps the rapid development of the ANNS, is the belief of researchers that ANNs
can potentially emulate the human brain, as they were initially designed to replicate the
overall structure of the brain networks. Other Machine Learning researchers argue that
overstating the connection between ANNs and the human brain might be misleading as
neural networks are mostly guided by developments in engineering and mathematics,
rather than biology. Nevertheless, studying the human brain and how it is related to
ANNSs can be a great source of inspirations.

13
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Figure 2 — a subset of MNIST dataset and a neural network trained to predict the right
digit

2.2.1 Theory

The building blocks of the ANNs are the perceptrons, which is an attempt to model the
biological neurons. A biological neuron is a type of cell that has several inputs called
DENDRITES, which receive electrical pulses that might activate the cell to produces its
own activity and sends it along its outputs called AXONS [34]. During this process, some
paths which connect the different neurons in the Biological Neural Network (BNN) may
be "strengthened” or ”weakened”, creating specialized patterns that are behind human
cognition: learning new language, remembering a new word etc.

dendritgs\ b WoXo
T \\/} nucleus i flzwix,)
N\ NG e 4 1 p—
Y- L= — : -
< 7
// 7
/

A e
C:j// ¢ ocell “axon
N

SFTR body Hidden Unit
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terminals

out

Output Layer

Input Layer First Hidden Second Hidden
Layer Layer

(a) Biological neuron versus artificial
neuron (b) Artificial neural network composed of two layers

In the same spirit, the artificial neuron (perceptron) receives a set of inputs x;, multiply
them by a set of modifiable weights w;, then processes their sum with its activation
function ¢ and passes the result of the activation function to the next neuron, see figure
3a. We can then form a network by connecting these artificial neurons together [23].
Usually this is done in layers - one layer’s outputs are connected to the next layer’s
inputs. See figure 3b for illustration. People in the field of ML refer to neural networks

14
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with more than two layers as deep neural networks. A single neural network layer can
be formulated as following:

Yi =9 (Z wi$i> = <Z5(WTX)

The activation function ¢ determines the final output of each neuron. It is important
to properly select the function in order to create an effective network. Linear systems,
for instance, have some drawbacks, being unable to solve problems that are not linearly
separable, such as the XOR-problem.

The following are some examples of activation functions:

e Sigmoid activation: it transforms the output of the neural network to a value
between 0 and 1, similar to a probability.

1
1+ exp(—wTa)

o(w'a) =

e tanh activation: it forces the negative values to be zeros, and outputs the positive

values as they are.
p(w'a) = tanh(w’a)

2.2.2 Training

The two training methods explained previously —supervised and unsupervised can be
used to train neural networks. In the following part, I will cover the supervised one as
it was used during this thesis. When training neural networks in a supervised way, we
modify their weights so that they can predict the right answer for the majority of the
training samples. This is an iterative process: the weights get updated every time a
new input is fed until we reach convergence (defined by the minimum of a given loss
function). The trained weights form a function (denoted h) that operates on input data.
With a trained network, we can make predictions given unlabeled test inputs.

We can train a neural network to perform regression (output a continuous values) or
classification (output discrete values).

Within the scope of the two approaches, the goal is to find the set of weights that
provide the best fit to our training data. To measure how well our model fits the data,
we use a cost function (error function), L. The following are examples of cost functions:

e Regression: Least square error

e (Classification: Cross entropy

L(w) = Z yilog(h(x;, w))

15
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In order to find the optimal set of weights, we minimize L(w). One of the well-
known method to do so is Gradient Descent (GD), in which we follow the direction
of the negative gradients to find a minimum of L. Note that there exist several
other optimization algorithms, which are more complex than GD and can offer better
performance in term of avoiding local minima and faster convergence.

The following is the mathematical formulation of GD:

4
Repeat until convergence : {wj —w; — a(s—J(wj)}
wj

Neural networks being composed of many layers of neurones, we need to propagate
the error from the output layer back to the input layer to update the weights of every
node. A well-known technique is used called BACKPROPAGATION This is actually a
simple implementation of the chain rule of derivatives, which simply states the ability
to compute all required partial derivatives in linear time in terms of the graph size
(while naive gradient computations would scale exponentially with depth) [25].

2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are NNs with the previous time step being fed as
input of the next time step [20]. Figure 5 shows the overall design of a RNN with its
structure being unfolded through time. This helps RNNs to develop an understanding of
the time aspect of the input data. For instance, when translating a sentence, RNNs can
grasp the specific context of the current word to be translated, as they keeps building
knowledge when going through the different words in a sentence. However, RNNs are
not suited for static inputs, for instance when classifying handwritten digits. Here, the
model doesn’t need temporal information, as there is no difference between the first
element or 100th element of the dataset. Hence, a multi layer neural network should be
able to solve such a problem.

The basic equations of RNNs are as following;:

a® = b+ Wht=Y 4 Uz®
hY = tanh(a)

o® — ¢4 VADO

y® = softmaz(o®)

(1)

With H, W and V being neural networks and b, c are learnable biases. There are
other complex RNN models like: Long Short Term Memory (LSTM) [16] and Gated
Recurrent Unit (GRU) [4] which have superior performance in terms of preserving
information about longer input sequences.
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Figure 4 — Unfolded recurrent neural network through time, A is an artificial neural
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2.4 Memory Augmented Neural Networks (M ANNS)

A Memory Augmented Neural Network (MANNS) is a neural network coupled to an
external memory. This means that when training, the neural network learns how to read
and write from / to the memory without being explicitly programmed to do so. It was
proven that MANNs can learn algorithms to process tasks rather than just memorizing
data [18, 19], unlike what a RNN would do. This extends the capabilities of neural
networks to process longer sequences and more complex data. During this thesis, an
extensive work was done around the concept of MANNSs as one of the main goal was
to emulate the human working memory. In the following, details about MANNSs are
exposed.

Being an emerging field, the terminology surrounding (MANNSs) is constantly evolving.
We adopt the convention of Santoro et al. [38] and view a MANN as generally consisting
of the following components: a controller, a memory module, and memory-based
attention with read/write mechanisms. We describe a template that formalizes the
notion of a general MANN below and later use this template to describe our new model.

2.4.1 Controller

The controller is a module that interfaces with the external world by reading the input
stream, one element at a time, and producing an output in each time step. Most
importantly, it has the ability to read from and/or write to memory in each time step
using read/write heads. The controller is recurrent if it has an internal state that gets
transformed in each step, in analogy with a recurrent neural network (RNN).

2.4.2 Memory

The memory consists of many words, each storing a vector of values with fixed dimension
(vector-valued memory words). Crucially, when we allow memory words to contain
real numbers ?, we can also design differentiable transformations of the memory. The
words are indexed starting from 0 and the index of each word is called its address. This

3This involves a slight abuse of notation since the term “word” is usually reserved for bit-based
architectures.
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way the memory can viewed as a two-dimensional array M x N of values, where the
columns are indexed by addresses. Here N is the size and M is the width of memory.

2.4.3 Attention

We associate each read/write head with a soft attentionmechanism, i.e. a non-negative
weight vector of dimension N whose components sum to 1. With a view towards our
model, we allow additional attention mechanisms in the model for serving other roles.
Given H attention vectors, we compactly represent all of them as an H x N array.

Controller

OO0
00 e
O q:

Parameters (u;)

Interface

Reading / Writing
Attention (w;)

Memory (M;)

Figure 5 — The overall design of a memory augmented neural network

2.4.4 Overall design

The equations that govern the time evolution of a MANN for t = 1,2, ... are as follows.

(a) dy = MEM_READ(M;_1, W;_1) (b) (q¢, yt, uy—1) = CONTROLLER(qy_1, Ty, dy)
(¢c) My = MEM_WRITE(M;_1, W;_1,u;) (d) Wy = ATTN_UPDATE(W;_1, 1),

where the initial state is given by (qo, Mo, Wp). At the start of time ¢, the memory
contents are given by M;_; and the attention array equals W, ;. Using the portion of

4Although for intuition we will continue to use terms that would make sense strictly only for hard
attention.
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W;_; associated with read heads, we read the data d; from memory in part (a). Next in
part (b) the controller uses its hidden state ¢;_;, the current input element z; and the
data d; to update its state, produce an output g, and generate an update parameter u;.
Finally, u, is used to update both the memory in part (c¢), using the portion of W;_;
associated with write heads, as well as the attention array in part (d). While all the
four transformations above could contain trainable parameters, the art of designing
MANNSs involves placing suitable restrictions so that the MANN can learn to solve a
wide range of problems using tractable learning procedures.
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3 Working Memory

3.1 Introduction

Keeping information in mind after it is no longer present in the environment is critical
for all higher cognitive behaviors. Working memory (WM) is the term used for this
ability, which is distinct from the storage of vast amount of information in long-term
memory [2]. The two main distinguishing characteristics of WM are the limited capacity
(3-5 items) [7] and temporary retention (secs-minutes). Hence, WM is not a storage per
se, but a mental workspace utilized during planning, reasoning and solving problems.
Most psychologists differentiate WM from “short-term” memory because it can involve
the manipulation of information rather than being a passive storage [9]. Along the same
lines, Engle et al. [13] argued that WM is all about the capacity for controlled, sustained
attention in the face of interference or distraction. Attention-control is a fundamental
component of the WM system and probably the main limiting factor for capacity [8,
12]. Consequently, the inability to effectively parallel process two-attention demanding
tasks limits our multitasking performance severely.

Over the past several decades psychologists have developed tests to measure the indi-
vidual differences in WM capacity and better understand the underlying mechanisms.
These tests have been carefully crafted to focus on the specific aspects of WM such as
task-driven attention control, interference and capacity limits. The best known and
successfully applied class of tasks for measuring WM capacity is the “complex span’
paradigm. The challenge presented by complex span tasks is recalling the list of items,
despite being distracted by the processing task. Studies show that individuals with high
WM capacity are less likely to store irrelevant distractors [41] and they are better at
retaining task-relevant information [32]. Developing task-driven strategies for cognitive
control are essential for the effective use of WM.

)

The power of maintaining information over time has also been recognized by the Al
community. Starting with the basic recurrent neural network architectures [11, 28]
followed by the introduction of gating mechanisms [27], the research has recently moved
onto more complex architectures with memories [18, 29, 42, 19, 38, 21]. These models
are typically applied to tasks (e.g. associative recall, bAbI QA [43]) that require a
complex mixture of long-term memory (episodic and semantic) and working memory.
In the human brain, these kinds of memory systems are distinct: working memory is
instantiated in multiple interconnected areas with the prefrontal cortex playing a major
role [6], whereas for episodic memory the hippocampus is the critical structure [15].
Studying these mechanisms separately is necessary to disentangle the contributions of
each memory system and develop a detailed understanding of human intelligence.

In this work, we introduce a Differentiable Working Memory (DWM) model that more
closely mimics the functional behavior of human WM. We also present a battery of
tasks adopted from the cognitive psychology literature that allow us to elucidate the
working memory behavior of a neural network directly. In contrast to prior work on
neural nets with external memory, our starting point is the functional attributes of WM
and the tasks that primarily tests those.
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3.2 Methods

3.3 Psychometric tasks for working memory

Over last several decades cognitive psychologists have developed many tasks to measure
the performance of human WM (See figure 6 for examples). These tasks are mainly
sequential and typically divided into verbal and visuospatial domains. One of the
fundamental goals of these psychometric tests is to measure individual differences and
correlate to performance in reasoning and fluid intelligence. In this regard, WM capacity,
retention and the ability to switch between tasks are the key predictors.

Given the large number of WM tasks in the psychology literature and various cate-
gorizations by different researchers, we built a taxonomy of tasks (7) and carefully
selected tasks that seem to be the most representative for a given category. First order
categorization is based on the number and complexity of tasks. For simple tasks, the
presence of data manipulation is the next level sub-category. Serial recall is a prime
example for a simple task without manipulation. Other WM tasks may require the
manipulation of the memory content, which could be divided in spatial and temporal
domains. The complex WM tasks involve multiple sequential inputs or sub-tasks but
not necessarily implies “multi-tasking”. We follow the framework developed by Clapp
and Gazzeley [5] to distinguish the sources of goal interference, i.e. Distraction (to-be-
ignored) and Interruption (i.e. multi-tasking). For example, Operation Span (6) is a
dual task because the subjects must attend and process the summation (Interruption)
even though they do not need to recall the results afterwards. In Reading Span (1980
version by [10]) subjects read sentences and need to recall the last word of each one.

3.4 Differentiable Working Memory (DWM)

Inspired by human working memory, we designed a Differentiable Working Memory
model with the appropriate functional characteristics. We illustrate its operation on 10.
As a neural network with external memory, the DWM has three main components: a

Serial Recall Shape Rotation Operation Span

Interruption

s L4
D N
4+5 Interruption
T

!
i = Q Time ;E:@

Time X Time

R & ‘

e[ oman | e [F0D @ e[ o2 |

Figure 6 — Exemplary tasks for testing the performance of human working memory
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| Simple Task | Complex Task

e

Retention Manipulation Dual Task

Serial Recall

U Sequence Comparison
dSequence Equality

Temporal Distraction Interruption

Rotate Shape Reverse Recall ~ QReading Span QOperation Span
UIgnore UForget

Figure 7 — Taxonomy of working memory tasks

controller, an external memory and an interface between the two [44, 45]. The controller
generates parameters that allow the interface to pay attention to specific locations in
memory and then read and write to them. The procedure is sketched in Algorithm 1.
In the following, the detailed equations of DWM are exposed:

WM Controller

000 |z

OO —
r O dt

Input Output

A sequence

of 8 bits data ' Parameters (p,)

BT T T TTTTTTT1]
Bookmarks |,
(B4, BEy) WM TTTTITTTT TT]}Gating

Attenton —+— LLITTTTEMTTT]

(We_q)

Reading / Writing
Attention (w;)

Memory (M;)

Figure 8 — Illustration of the operation of the DWM Model
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3.4.1 Read from the memory

Differentiable models with addressable external memory read from the memory M with
Ny addresses through with soft attention using the formula (e.g. [42, 22]):

re = Mtwt7 (2)

where r; is a vector read from memory.

3.4.2 Memory update

There are several schemes for memory update, e.g. using least recently used access [38,
22]. In DWM we decided to use the simple erase-add scheme derived from NTM [18]:

Mt:Mt_lo(E—wt®et)+wt®at (3)

where E is a matrix of all ones, ¢; and a; are vectors of content to be erased and added
to memory, respectively. e;, a; and w; are emitted by interface mechanisms directed by
a controller network.

3.4.3 Controller

Controller processes inputs in order to produce outputs and interface parameters. In
DWM we use a single-layer recurrent neural network controller:

hy = U(Wh[xu hi_1, Tt—l]) (4)

where z; denotes the current input and h;_; and r,_; are the hidden state and vector
read from memory in the previous time step, respectively. To prevent the controller
from acting as a separate working memory, the hidden state size is chosen to be smaller
than that of a single input vector (in all of our experiments it was set to 5). The output
logits, y; and interface vector P, are produced similarly as:

Yt = Wy[%, hy—1, thl] (5)

P = WP[«Tta ht—l; Tt—l] (6)

W, W, and Wp are the only trainable parameters of our DWM model. The interface
vector P, contains all of the parameters that control reading, writing, and the attention
mechanisms. Denoting the unprocessed parameters from the interface with a hat, the
full list of parameters is as follows:

e The write vector a;, € RVM

The erase vector e; = o(é;) € [0, 1]V

The shift vector s; = softmax(softplus(3)) € [0,1]?

The bookmark update gates ¢i = o(gi) € [0, 1]Ve~1
The attention update gate & = softmax(di) e [0, 1]V5+!

The sharpening parameter v = 1 + softplus() € [1, o0]

23



Differentiable Working Memory

Algorithm 1 Operation of the Differentiable Working Memory

1: Initialize the hidden state hy and memory array M,

2: Initialize the attention vector wy and bookmark vectors {Bj:i=1,2,..., Ng}

3: fort € {1,2,...,T} do

4: Read from the memory: r;_1 < M;_jw;_q

5: Compute a new controller hidden state and parameters: hg, Py <— ¢(xy, 41, hi—1)
6: Write and erase from memory: M, < edit(w;_1, Py, M;_1)

7. Update attention and bookmarks: wy, { B{} = attn_control(w;_1, { B} ,}, P;)

8: Shift attention linearly: w; = convolution(wy{, P;)

3.4.4 Attention control

For our model to act like human working memory, it must have the same characteristics,
the most important of which is that working memory is accessed and written to
sequentially [39]. One condition is that it has to use circular convolution shifting
enabling it to shift attention over memory. For that purpose we use a mechanism similar
to the one used by Neural Turing Machine (NTM) [18]:

wy = convolution(wy, s;) (7)

where w] and w, are the vectors of attention weights over cells in memory at time ¢
before and after shifting, and s; is a shift vector outputted by the controller. The other
condition that sequentiality suggests is that the read and write operations should jointly
share a single attention so that all access happens in sequential order. As is standard
with the linear shifting in memory enhanced neural networks, we also apply a weight
sharpening step as detailed in Graves et al. [18].

Working memory also involves some limited model of when information was attended to
in the past [39]. This characteristic suggests that human working memory could contain
some limited internal record of its past attention. In DWM, this is accomplished by
storing bookmarks of system’s attention at previous time steps. This is recorded in Ny
bookmark vectors {B! :i =1,2,..., Ng} at time ¢t. At each time step, the DWM must
decide whether to remember its previous attention w;_; by recording it in a bookmark,
as:

By = gywi1 + (1 — g;) By_y, (8)
where the gating parameter ¢! is emitted by the controller. Additionally, the DWM
keeps one bookmark fixed to the initial attention at time ¢ = 0 so the model maintains
a fixed reference frame. As discussed below, we found even when limiting the bookmark
memory to only two bookmarks that we could still solve all tasks.

The DWM must also decide before moving sequentially whether it wishes to return to a
previous bookmark. For this purpose we once again use a gating mechanism, this time
in a slightly more sophisticated form:

Np

wf = 0w + Y 6B, (9)
=1

where 6!,i = 0... Ny are gating parameters emitted by the controller. These gating
parameters are scalars, normalized using a softmax function.
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The DWM attention control incorporates the presented mechanisms using the combina-
tion of equations (9),(8),(7) in order.

3.5 Formal description of tasks

In order to investigate the capabilities of working memory (WM) such as retention,
forgetting and ignoring we introduce a battery of tasks presented in 1. These tasks
are motivated by, and have a direct correspondence to the categorization shown in 7,
but modified so that they are agnostic to audio/visual processing. In addition to the
classical psychometric tasks, we introduce additional tasks that will test the effectiveness
of attention control in memory (Ignore, Forget and Scratch Pad).

The input to every WM task is a time-indexed stream of items. At a higher level,
we view the input as a concatenation of various subsequences that represent different
functional units of processing. Additionally we use a constant-sized set of special items
(called command markers) to both mark the beginning of a subsequence as well as
indicate its functional type. Important note is that the system does not know a priori
what kind of operation is associated with a given type of marker and must learn that
from data. We ignored markers in Table 1 to keep the description simple. Also, note
that such markers are also commonly employed in the psychometric tests (e.g. see [33]).

For all Simple tasks, there is only one type of subsequence, and the output will be
reproduced from the memory with or without manipulation. The | sign indicates the
delay between input and output of the primary subsequence(s). In our notation, z°
represents doing a circular shift of the bit representation of element x by half the number
of bits. The Complex tasks may involve a secondary set of subsequences, which may or
may not require immediate output as indicated in the Forget and Operation Span tasks.

3.6 Definition of input sequences

The input to every WM task is a time-indexed stream of items (Fig. 9). At a higher
level, we view the input as a concatenation of various subsequences that represent
different functional units of processing. For all ”Simple” tasks, there is only one type
of subsequence, and the output will be reproduced from the memory with or without
manipulation. The ”Complex” tasks may involve a secondary set of subsequences, which
may or may not require immediate output as indicated in the ”Forget and ”Operation
Span” tasks.

In the actual encoding of the input, we use a constant-sized set of special items (called
Command Markers, please refer to Fig. 9a) to both mark the beginning of a subsequence
as well as indicate its functional type. Important note is that the system does not know
a priori what kind of operation is associated with a given type of marker and must learn
that from data. We ignored markers in Table 1 to keep the description simple.

Each subsequence is either real data or dummy (Fig. 9b). The dummy subsequences
represent elements in the input processing where a suitable target of the same length
needs to be output. In 1 we denote this by the _. symbol. Introduction of dummies
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Task (Dinput/(O)output sequences  Notes
I: 1T ... T e Store the input and recall it
Serial Recall 2 Pl _ p
O: e vvi_| mxo... 2, in the same order
<)
2 I: 1T ... T .__ Store the input and recall it
g* Reverse Recall 2 nl— — P
& O: —voi | mpxy_y ... 21 in the reversed order
I: T1To...T e Rotate each element of sequence
Rotate Shape 2 nl—e — q
X]...X e Recall z; being the last
Reading Span ! bl ’ &
TP BB element of x;
Lxyyr oo xeYe | Recall every y; immediately,
Forget :
Y O: Y1 Yklx1...xp recall all x; in the same order
% ) Lxyyr oo X | Rotate y; immediately,
g Operation Span B ) .
S O: Yl oy X1 Xy, recall all x; in the same order
I: X]...X Return only the last x
Scratch Pad ! bl Y r
O: — e ._.| Xk
I X1y1 - XkVE| e Ignore y;, recall x;
Ignore
O: | X xg,

Table 1 — The Working Memory Tasks used in our experiments

Command markers

Real data Dummy

Control/Data bits
Control/Data bits

16 20 24 28 32
Item number/Iteration Item number/Iteration

16 20 24 28 32

(a) Command Markers (b) Real data and dummy subsequences

Figure 9 — Input sequence example

enables delays in the input processing for capturing memory retention and other aspects
of WM tasks.

Throughout the experiments, we fixed the input item size to be 8 bits supplemented by
additional 2—4 control bits, depending on the task. In order to ensure that the sequences
returned by our data generators for training, validation and testing are distinctive, we
followed the conditions for length and number of subsequences presented in 2. For the
memory based models, the memory size was chosen dynamically for each episode to
equal the (common) length of the input sequences within the batch.
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Simple tasks Complex tasks

Training Validation Testing Training Validation Testing

Subsequence Length 1-10 100 1000 1-6 20 20
Number of subsequences 1 1 1 1-3 ) 50

Table 2 — Parameters used during data generation

3.7 Experimental results

We evaluated the performance of DWM on the proposed tasks and compared it to
two models: LSTM (Long Short-Term Memory) [27], considered as a classical baseline
for sequential problems, and DNC (Differentiable Neural Computer) [19] being the
state-of-the-art memory augmented neural model. In our implementation we used the
Pytorch framework ® [35]. During training we used the Adam (Adaptive Momentum)
optimizer [31] and (average) binary cross-entropy as the loss function. We apply early
stopping based on validation loss (10~*). Additionally we terminate training when the
number of training episodes reach 100,000, where a single episode involves processing a
batch of sequences. The size of batch was a hyper-parameter that was tuned for each
model along with training rate using validation loss. The exact parameters describing
each tasks can be found in the Supplemental Information.

It is well-known that neural networks augmented by external memory learn algorithms
to process tasks rather than memorizing data [18, 19]. Therefore, to determine the
robustness of our models we train them on sequences of lengths of order 10 and then
validate and test them on sequences of size 100 and 1000, respectively. As seen in 3,
the DWM, the LSTM and the DNC are all capable of learning each of the tasks for
sequences of order 10. To train on these tasks, the DWM required on average the fewest
number of sequences with only Forget and Operation Span requiring more than 10000
batches of size 16 to converge 10. The DNC required the most number of sequences
with only Serial Recall, Rotate Shape and Ignore converging with fewer than 20000
batches of size 16 and the rest requiring between 20000 to 90000 batches.

Only the DWM was able to successfully generalize to sequences of size 1000 even
with only 1066 trainable parameters. The DNC with its 4,792 trainable parameters
generalized to sequences of length 100 just on Serial Recall, Scratch Pad and Rotate
Shape and did not fully generalize on sequences of length 1000 for any of the tasks.
Despite that the LSTM possessed over 5 million trainable parameters it was only able
to generalize to sequences of length 100 on Serial Recall.

The DWM performance on these tasks indicates that it is actually acting as a form
of artificial working memory. Human working memory’s operation is straightforward
compared to episodic memory and therefore it is more effective at solving the relatively
simple working memory tasks. We hypothesize that the DNC, which was explicitly
designed to mimic an episodic memory [19], did not learn these simple working memory
tasks as effectively because the complexity required for true episodic remembrance

5Pytorch is a scientific computing framework that offers wide support for machine learning algorithms,
it was built at the top python

27



0.7
0.6
0.5

(7]
0 0.4
o

—1 0.3
0.21
0.1
0.0

Problem: Serial Recall

Differentiable Working Memory

Best Train Accuracy  Validation Accuracy Test Accuracy

Task Seq. Size 10 (%] Seq. Size 100 [%)] Seq. Size 1000 [%)]

LSTM DNC DWM LSTM DNC DWM LSTM DNC DWM

Serial Recall 100 100 100 100 100 100 50.20 64.64 100
Reverse Recall 100 100 100 52.96 50.62 100 50.38 50.15 99.76
Rotate Shape 100 100 100 52.17 100 100 50.20 60..91 100
Reading Span 100 100 100 50.90 53.36 100 50.44 49.04 91.88
Forget 100 100 100 55.90 69.36 98.92  50.45 49.94 94.11
Operation Span 100 100 100 58.16 79.22 99.95 51.26 53.61 99.64
Scratch Pad 100 100 100 71.28 100 100 70.02 74.97 100
Ignore 100 100 100 56.13 69.32 100 50.89 49.99 90.05

Table 3 — Summary of experimental results. The first column is the average of the best
accuracy achieved during training for each run. The second column is the average of
the best validation accuracy for each run. The third column is the average of the test
accuracy for the model parameters with the best validation accuracy. For the DNC and
LSTM, the validation loss did not reached threshold for some tasks (i.e. training was
stopped at 100,000 episodes), in which cases we decided to include the best scores of
single best (but diverged) models

interfered with learning tasks that do not require episodic memory.

Problem: Distraction Ignore

Figure 10 — Training Loss

3.8 Analysis of strategies for solving tasks

In contrast to long-term memory, working memory has an extremely small capacity.
Therefore, dealing with interference (e.g. distractions) is a major challenge for memory
capacity and attention control. As mentioned earlier, ignoring distractions without
encoding them in the memory is arguably the best strategy to minimize memory
consumption. On the other hand, for a complex task with an interruption (i.e. multi-
tasking), the secondary task cannot be ignored and may require extensive memory usage.
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In this case, the best strategy might be to forget (e.g. erase or overwrite) the secondary
information as soon as possible in order to maintain sufficient memory capacity for
the main task. Ignoring and forgetting may be good strategies for the efficient use of
capacity but they also complicate the attention control and addressing during writing
in the memory.

During the training and testing of all of the tasks reported in Table 3, we provided
sufficient memory size, so that the system could store all the encoded input items in
the memory (if it has chosen to). However, limitation of the memory size can force the
system to develop more memory efficient strategies, thus we decided to investigate that
issue further.

3.8.1 Strategies for the Scratch Pad task

The goal of the Scratch Pad task is to recall only the last input subsequence. Given the
DWM mechanisms, we expect two possible strategies for the model to learn in order to
solve this task.

The ”Expand” strategy exploits the fact that memory can be used in a similar way to a
circular buffer, storing each consecutive subsequences one after the other in the memory.
In this case the model should write each subsequence, then place the dynamic bookmark
(i.e. the one that does not have fixed attention) at the start of given subsequence, and
then update the bookmark position to the beginning of the next subsequence. Finally,
when the model receives a command marker indicating it needs to recall, it should recall
the attention associated with that dynamic bookmark and then retrieve consecutive
items one by one using circular convolution.

The ”Overwrite” strategy for the Scratch Pad relies on the fact that when a new
subsequence appears, the elements from the previous one can be discarded. The model
could exploit this by learning to recall attention stored in the static bookmark (pointing
at address 0) every time it processes a command marker denoting the next subsequence,
which will result in overwriting the previous subsequences until the system is told to
recall. This strategy is clearly more memory efficient, as the system reuses the same
addresses and overwrites the memory repeatedly.

To our (initial) surprise, the model always developed the ”Overwrite” strategy, irre-
spective of the memory size (i.e. as long as the memory size was sufficient to fit all
the encoded items of a single subsequence). A typical example run of an early training
episode is presented in Fig. 11. Please note that memory addresses 1 and 2 remain
unchanged and the model stores consecutive items of subsequences x; to x5 in the same
addresses 3-7. After analyzing several runs, we hypothesize that overwriting was simpler
to learn for this task because: a) both for storing and recalling the command markers,
the model had to learn exactly the same behavior: recalling the attention stored in
the static bookmark, b) for every other input item (data and dummy) it had to shift
by one address location with the circular convolution. As a result, it could converge
rapidly by disregarding the control (update, recalling) of the dynamic bookmark (in
the last training episodes the dynamic bookmark was typically ”following” the current
attention, despite it wasn’t recalled at all).
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Figure 11 — ”Overwrite” strategy developed by DWM for Scratch Pad. Memory plot
contains a snapshot of the memory content from the last iteration, whereas the other
ones present concatenation of states from consecutive iterations (evolution in time)

3.8.2 Strategies for the Ignore task

The main goal of the Ignore task is to test the retention capabilities of the system in
the presence of distractors. For this task the input consists of two types of subsequences
x and y, where the system is supposed to ignore all y; and at the end recall x; one by
one in the order of their appearance. The task can be solved with two strategies which
we call ”Overwrite” and ”Skip”.

The ”Overwrite” strategy involves overwriting of the distractors, as we have already
observed during the Scratch Pad task. It assumes that system will store the consecutive
items in memory and use the bookmark for moving its attention to the first address
containing y to be overwritten. The difference is, however, that in this case the model
must learn to use the dynamic bookmark for that purpose. Our experiments with
sufficient memory have shown that the system can learn this strategy. An example plot
from one of the final training episodes (Fig. 12a) shows that the dynamic bookmark
retains its attention while processing items from y; and ys. As soon as the command
marker indicating x appears, the model jumps back its attention to the dynamic
bookmark and starts to overwrite. Finally, when the recall marker appears, it recalls
the attention stored in the static bookmark.

The ”Skip” strategy to solve this task would be to ignore elements within the y
subsequences and skip writing these into the memory. Our experiments with limited
memory have shown that the model could also learn this strategy. Example plots from
the final episode from one of the training runs is presented in Fig. 12b. Please notice
that in this case the model has learned to keep its attention focused on a single address
for all items of y; and shift attention only for items belonging to x;.
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Figure 12 — Strategies developed by DWM for solving the Ignore task (two different
training runs)

3.9 Ablation study

One of the essential properties of human working memory is its limited capacity to store
information, it can range from 3 to 5 elements depending on the complexity of the task
[40]. With respect to DWM, the memory size is an adjustable parameter that the user
can set. In this study, we were interested in analyzing the case where this parameter is
set below the required memory size (insufficient memory), this was motivated by the
fact that most of real datasets are very large and may exceed DWM memory. As it
can be seen in figure 13a using the serial recall task with a sequence length equal to 10
and varying the memory size from 13 cells to 3 cells, the DWM similarly to the human
working memory can remember a number of elements that correspond to its capacity
for example if a memory size equal to 8 and a sequence length equal 10 the measured
accuracy is 90%.

The strategy developed by the DWM to solve the serial recall task is presented in figure
13b, it shows that the DWM can store and recall the six middle elements effectively
and recall the first and last two elements with some deficiency, this is different from
what would a human working memory do, which is recalling the last eight elements if it
is characterized by the same capacity. This difference is resulting essentially from the
fact the elements stored in the human working memory are retained for a short period
of time —retention time, which makes the human working memory remembers only
the last elements. This is not the case for DWM as the elements can be theoretically
retained for an infinite time, this highlights one issue of the DWM design that needs to
be addressed in a future implementation.

The strategy developed by the DWM is still interesting, as it can be seen in figure
13b, although the elements x; and x5 are overwritten by xg and x19, the DWM can
still remember these two element with slight deficiency exploiting the similarity in the
structure of these four elements. This opens new research axis on whether we can design
a learnable mechanism that compresses the data before storing it.
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ory size between 13 and 3. to deal wit the ablation.

3.10 Summary

We decided to study human working memory in order to improve artificial learning
models. Our analysis allowed us to distill a novel attention control mechanism (book-
marks), which is quantitatively more robust and more data-efficient than previously
published work (i.e. DNC, LSTM) based on the tasks tested in this study. Moreover,
our model showed generalization to sequences two orders of magnitude longer than the
training regime. We also studied the behavior of our model during learning and found
out that for complex tasks, it has developed efficient strategies to control attention and
use its memory resources.
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4 MI-Prometheus

4.1 Introduction

Machine Learning models, especially deep Neural Networks, have made tremendous
progress in recent years, growing continuously in different areas such as Computer
Vision, Text Comprehension, Question Answering etc. These neural networks require a
training setup and procedure that may need a considerable amount of engineering work
to ensure consistency, results repeatability and precision. These requirements often
lead to an implementation designed for a specific pair of model and problem, making it
hard to run new experiments and compare the results. This problem clearly emerged
when trying to test the DWM model against different kind of problems — such as the
algorithmic tasks, but also when testing other models on the same problems to establish
baselines results.

To address these issues, we started to design MI-Prometheus, which is a framework based
on PyTorch [30] - an open source Machine Learning Python library - that standardizes
the interface that connects together the components needed in a deep learning system:
problems, models architectures, training/testing configurations etc. This unifies the
training and testing paradigms, enabling experiments reproducibility and making easy
the run of several models on the same dataset, or applying the same model to several
datasets.

MI-Prometheus training and testing mechanisms are no longer pinned to a specific
model or dataset. When trying to test a new model, the main change will impact
the body of the model architecture, and not the overall mechanism. We believe that
designing such a framework presents several advantages:

e A centralized code base lowers the probability of mistakes,
e New models and problems can be added with minimal changes to the code,

e A training run of a given model on a (compatible) given dataset is defined in a
configuration file. These configurations files are both human and machine readable,
easy to edit and easy to generate (we are using the YAML markup language).

e Automation of training/validation ¢ /testing pipelines.

4.2 Overall design

The framework is composed of a set of problem classes, model classes and workers. The
worker retrieves the set of parameters from the configuration file, which specifies the
model and problem to use, see figure 14. This configuration file also contains information
about the training (e.g. batch size, number of epochs, optimizer, learning rate etc),
validation and testing setups. The worker hands batches of the dataset (generated by
the problem class) to the model, which in turn outputs its predictions and hands them

6Validation is an inference step which is done during the training to check if the model is overfitting
the training data
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back to the problem class to compute the loss. The worker then can call the optimizer
to update the model weights, and eventually display visualization windows.

The workers are independent from the problem and model classes, meaning that they
can handle different dataset structures, thus making the training and testing setups
uniform across the problem and model hierarchies.

Configuration [
file(s)

Inputs, Targets

(

Inputs, Targets,
Predictions

Worker

Experiment
statistics

Experiment
logs

Figure 14 — Core concept of MI-Prometheus [source: MI group]

4.3 Main components

There are four important building blocks of the framework:

4.3.1 Problems

A problem class defines a particular dataset. Its main role is to collect the data (e.g.
download them or load them from disk), handle the batches generation, and compute
metrics such as the loss and accuracy, which are dependent on the type of problem at

hand.

The problem classes were designed such that they benefit from inheritance see figure:
15. We have designed base classes that contains features used by every problem class,
like the loss computation and logging. Then, we are able to classify the problems based
on their type: algorithmic tasks, sequence-to-sequence (e.g. like Language Translation)
problems, Image Classification (e.g. MNIST, CIFAR and ImageNet), Visual Question
Answering (VQA, datasets: CLEVR) etc. This speeds up the integration of a new
problem class as similar problem classes share characteristics (same loss function, same
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metrics, same format of data etc.). Hence, integrating it correctly in the problem classes
hierarchy limits the amount of code to write and thus speeds up the workflow.

ImageToClass name : string TextTextToClass bAbIQA

T e

MNIST CIFAR10 add_statistics() ImageTextToClass

evaluate_loss()
generate_batch()
VideoToClass retumn_generator() CLEVR ShapeColorQuery

|

SequentialPixelMMNIST

T SortOfCLEVR

SeqToSegProblem

I

AlgorithmicSeqToSeqProblem TextToTextProblem

- I [

SerialRecall Distractionignore TranslationAnki PTB

SequenceSymmetry OperationSpan

Figure 15 — Problem class hierarchy [source: MI group]

Here is a short description of the problem types we have implemented so far:
e Image to Class: Label a given image (examples of datasets: MNIST, CIFAR)

e Image and Text to Class: Answer a given question about an image (example of
dataset: CLEVR)

e Sequence to Sequence: Where both the input and output are a sequence of items
(example of dataset: Neural Machine Translation), usually used with a Recurrent
Neural Net.

e Video to Class: Questioning about certain events that occurred during a movie
(example: Sequential MNIST).

4.3.2 Model

A Model represents here a (deep) neural network (i.e. a set of differentiable mathematical
equations). Similar to the problem classes, the model classes are organized following a
hierarchy, to maximize code reusability, see figure 16. All model perform the same: they
take a tensor of data as input, perform mathematical operations on it and hand back
a tensor of prediction that will be matched against the ground truth. We try to keep
the models independent of the problem classes, as we initially wanted to test DWM
against several algorithmic tasks. Naturally, not all models will work with all problems:
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A Convolutional Neural Net is not designed for an algorithmic or sequence-to-sequence
problem. The following models are present in the current version of the framework:

torch.nn.Module
forwardy)

SimpleConvNet CHNLSTMVQA

AlexnetWrapper MultiH ops Attention
MAC
SequentialModel!
EncoderDecoder lot ThalNet
e S— () 4
DNC NTM LSTM

Figure 16 — Model class hierarchy [source: MI group]

e Memory-Augmented Neural Networks: Differentiable Working Memory, Neural
Turing Machine, Differentiable Neural Computer,

e Recurrent Neural Networks: LSTM, Memory Attention Composition (MAC),
e Models for VQA: Relational Network, CNN + LSTM, Stacked Attention Networks”

4.3.3 Workers: Trainer and Tester

A worker is a script that will execute a certain task given a model and a problem
class. They are related to either the training or the testing procedure. The trainer is
the main script of the framework. After reading the configuration file, it instantiates
the problem and model classes, and loop over the specified number of epochs, feeding
every time a batch of inputs to the model, collecting the predictions and performing an
optimization step (i.e. updating the model weights using back-propagation). Several
options are available for this script, to indicate whether we activate visualization or

is RN really working? besides shouldn’t model names be coherent with class names?
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not, whether we log the metrics using TensorBoard etc. Computations on GPUs are
supported (using CUDA). The trainer also has the ability to validate the model at a
given frequency, or at the end of the training. All events are logged to an experiment
folder, which contains among others the trained model. We have also implemented the
ability to run several experiments simultaneously on several GPUs. The tester mainly
runs an inference step using a trained model and a problem class. As its name indicates,
it allows testing the model against previously unseen samples, in order to assess the
generalization capabilities of the model.

It is planned to add support for several validation schemes (e.g. K-fold cross validation),
hyper-parameter search etc.

4.3.4 Configuration management

An important aspect of using Machine Learning software to develop a new model
is configuration management. This is critical as we need results repeatability to
ensure statistical validation, experiments definition (it should be easy to change the
value of a given parameter), and models comparison (limiting the number of varying
factors is important when benchmarking models on the same problem). To organize the
parameters setup within the framework, we implemented a ParameterRegistry singleton™
that stores all parameters across the whole framework. These parameters are organized
into a tree (i.e. sections for training / testing / model ...), and it is possible to create
multiple views of this tree, such that it eases the overwriting of one specific parameter
(leaf within the tree) to run a new experiment for instance. We consider 2 kinds of

e Default values: parameters that usually don’t change from one training run to
another, or when the user is unaware of their use-cases.

e Custom values: Can overwrite an existing value.

4.4 Summary

MI-Prometheus has helped us accelerate the several experiments we ran with the DWM.
By also helping integrate other models from different domains of Deep Learning into
one unique standardized code base, it enables research ideas to be quickly tested and
shared. In future work, we want to extend MI-Prometheus capacities to handle more
models and problems and further optimize its different tools.
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5 Conclusion

The work performed at IBM Almaden Research Center within the Machine Intelligence
group, on the Differentiable Working Memory, along with a theoretical background has
been presented. The main goal was to extend the capabilities of artificial intelligence
models to more than just remembering patterns in data, but also to understand
the meaning of structures hidden within it. Motivated by the role of the different
memories in the human brain and how they are correlated with higher order human
cognitive behaviors, we specifically target the working memory which was proven to be
responsible of many domains of cognition such as planning, solving problems, language
comprehension and understand relations in visual scenes. Using the rich literature
in cognitive psychology about working memories, which explains their properties and
underlying mechanisms, we could design the DWM model, which successfully imitates
the functional characteristics of the working memory, such as retention and processing
of information stored in memory. This was verified using a battery of working memory
tasks inspired by the psychology literature. The work on DWM led to inventing a novel
attention control mechanism (bookmarks), which is a simple mechanism that retains
relevant attention in past. Moreover, our model showed generalization to sequences two
orders of magnitude longer than the training regime. Our analysis in depth showed
that for complex tasks our model developed efficient strategies to control attention and
use its memory resources. In the ablation study, we analyze the performance of DWM
when it is given insufficient memory, this study showed some deficiencies of the DWM
model that need to be addressed in a future implementation and opens new research
areas about data compression.

Another piece of work that was developed within the scope of this thesis is the MI-
Prometheus framework, which unifies the training and testing paradigms of machine
learning models, enabling experiments reproducibility and making easy to apply the
DWM model on different algorithmic tasks, or run different models on the same tasks
to establish baselines.

In our future work we plan to use our working memory model as one component of more
complex system and combine it with long-term memory and expand the capabilities to
solve tasks that require both working and episodic memory.
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Appendices

A Experiments

A.1 Number of parameters per model

During our experiments with LSTM model we have used stacked LSTM with 3 layers
and 512 hidden units in each of them. DNC model used an single-layer LSTM controller
with 20 hidden units. Our DWM model used RNN with sigmoid activation function and
5 hidden units. In 4 we report number of trainable parameters for each of our models.

Models
LSTM DNC DWM

Number of model parameters 5,279,752 4,792 1,066
Learning Rate 5-100%  5.107° 1-1072
Optimizer Adam Adam  Adam

Table 4 — Number of parameters of the used models

A.2 Number of runs and converged models

For each model and task pair we performed 10 runs. In 5 we report number of models
that converged, i.e. the validation loss went below the 1e-4 threshold.

Number of Successful Runs
LSTM DNC DWM

Serial Recall 0/10 10/10 10/10
Reverse Recall ~ 0/10  0/10 7/10
Rotate Shape 0/10  9/10 10/10
Reading Span 0/10  0/10 8/10

Task

Forget 0/10  0/10 5/10
Operation Span  0/10  0/10 3/10
Scratch Pad 0/10  1/10 9/10
Ignore 0/10  0/10 8/10

Table 5 — Success criterion: validation loss < 10~%
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B DWM documentation

The following shows the documentation of the DWM model, it was done using Sphinz

A MI-Prometheus class models .dwm.DWM(params)  [source]

Differentiable Working Memory (DWM), is a memory augmented neural network which
emulates the human working memory. The DWM shows the same functional characteristics of
working memory and robustly learns psychology-inspired tasks and converges faster than
comparable state-of-the-art models

LICENSE forward(data_tuple) [source]

How to keep this documentation up to Forward function of the DWM model

date ?
Parameters: « data_tuple - contains (inputs, targets)
« data_tuple.inputs - tensor containing the data sequences of the batch
Batch_tester Documentation [batch, sequence_length, input_size]
Batch_tester_gpu Documentation o data_tuple.targets - tensor containing the target sequences of the batch

[batch, sequence_length, output_size]

Batch_trainer_cpu Documentation

Batch_trainer_gpu Documentation

X Returns: output: logits which represent the prediction of DWM [batch,
Tester Documentation sequence_length, output_size]
Trainer Documentation
Worker_utils Documentation Example:

>>> dwm = DWM(params)

B Models >>> inputs = torch.randn(5, 3, 10)
>>> targets = torch.randn(5, 3, 20)
Model >>> data_tuple = (inputs, targets)

>>> output = dwm(data_tuple)
B SequentialModel

E:V:" plot(data_tuple, predictions, sample_number=0)  [source]

NTM Interactive visualization, with a slider enabling to move forth and back along the time axis
LeTh (iteration in a given episode).

ThalNet Parameters: « data_tuple - Data tuple containing - input [BATCH_SIZE x

Text2Text SEQUENCE_LENGTH x INPUT_DATA_SIZE] and - target sequences
Seq25eqLSTM [BATCH_SIZE x SEQUENCE_LENGTH x OUTPUT_DATA_SIZE]

« predictions - Prediction sequence [BATCH_SIZE x SEQUENCE_LENGTH x
OUTPUT_DATA _SIZE]
« sample_number - Number of sample in batch (DEFAULT: 0)

EncoderSolver

ModelFactory

Figure 17 — Documentation of the DWM model
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C MI-Prometheus

The following shows the different software layers of MI-Prometheus

1
S St EXPERIMENT

_________ ( ] Experiment logs ) (Experiment statistics) A
((Problems &) (__ Models $1) EgyEiONENT
( Workers Q) Ei?EC,fSS

(Parameter Registry) ( Problem Factory ) ( Model Factory ) S

(Configuration Loader) ( Logging Facility ) (Statistics Collector) LAYER

( PyTorch ) (TorchVision) ( TorchText ) (TensorBoardX) EXTERNAL

((NumPy )( PIL )( NTK  )( OpenCV )( CUDA )eee Lot

Figure 18 — Software Layers of MI-Prometheus
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D Convergence plots

The following plots present convergence of the best models for each of the tasks,
expressed in training loss.

Problem: Rotate Shape
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Figure 19 — Training Loss of the best models on the Rotate Shape task
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Figure 20 — Training Loss of the best models on the Reverse Recall task

Problem: Operation Span
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Figure 21 — Training Loss of the best models on Operation Span task
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Figure 22 — Training Loss of the best models on Scratch Pad task
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Figure 23 — Training Loss of the best models on Reading Span task
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Problem: Distraction Forget
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Figure 24 — Training Loss of the best models on Forget task
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