
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master Degree Thesis

Design, development and
integration of an Instructor

Operator Station (IOS) for flight
simulators

Advisor
prof. Riccardo Sisto

Candidate

Eugenio Sorbellini
matricola: 214631

Company Supervisor
Leonardo Aircraft Division

dott. ing. Gianfranco Bellora

Academic Year 2016-2017

Summary

This thesis was carried out in collaboration with the simulator department of
Leonardo Aircraft Division.
On each simulator there is an interface where the instructor is able to control and
modify aircraft parameters, external weather conditions and every other aspect rel-
evant to the management of the simulation. This interface is known as Instructor
Operator Station (IOS).
In Leonardo AD flight simulators are managed by a software called Simulation
Framework, its duty is to read and write simulations variables and control the sta-
tus of mathematical models. This Framework capable to interact with different
simulators is in development and Leonardo AD is interested in an IOS that can be
linked to it.
Usually IOSs are tailor-made for specific aircraft, the aim of this work is to define
a generic solution that could be customized for different needs.
It is also an opportunity for the company to explore new technologies and evaluate
their advantages.
The work flow was split in three phases:

❼ Collection of requirements common to different IOSs, by analysing existing
software and interviewing pilot instructors.

❼ Definition of an architecture that can satisfy the requested modularity and
other specific non functional requirements, such as compatibility with differ-
ent operating systems (Linux and Windows at least) and with several screen
sizes.
The interface shall be suitable both for tablets and desktops, allowing the
interaction with mouse and keyboard or touch-screens.

❼ Development of a prototype that implements a subset of the requirements
found.

After the first phase, requirements were collected in a document and a Graphical
User Interface (GUI) was designed. To provide a flexible GUI the IOS was built as
a web application, taking advantage of HTML 5 and the Bootstrap library.
To speed up the development was used a web framework, different solutions were

3

analysed: Django, Spring, Laravel, Node.js, Xamarin and Ruby on Rails.
At the end was chosen Django (a web framework based on Python) for two main rea-
sons: firstly the Simulation Framework had a Python API available and secondly
Django relies on few external dependencies, has an integrated Object Relational
Mapping (ORM) engine and comes with its own development server.
Those features are valuable in the simulator department, since for security reasons
there is not an internet access. Every software packet must be provided off-line and
root privileges are limited.
The application was developed using SQLite as database solution and the integrated
server was used. The IOS runs from a folder and can be moved between different
machines without worrying about databases and web servers configurations. At the
same time professional solutions such as Apache web server and Oracle databases
are fully supported, the ORM engine makes data migration easy, so the software
can grow in complexity when needed.
Since the IOS shall display streams of data, WebSockets were introduced to break
the synchronous paradigm of HTTP requests. A library was written to integrate
the Python API with Django WebSockets (Channels) and to map the IOS variables
to Simulation Framework ones.
Different simulators may have different variables names, the library and a set of
tables allows to change the mapping by loading CSV configuration files from an
administrative interface.
At the end of the development phase a user manual was produced, and the appli-
cation was integrated on a research simulator.
Functionalities that provide support for all the IOS features, such as: reading of
data streams, writings of variables and management of models were successfully
tested and worked as expected.
Future developments may consider the integration of WebSockets support in the
Simulation Framework, allowing to remove the overhead introduced by the Python
API.

4

Contents

List of Figures 8

1 Introduction 9
1.1 Flight Simulators and Instructor Operating Stations 9

1.1.1 Full Flight Simulator . 10
1.1.2 Flight Training Device . 10
1.1.3 Instructor Operator Station 10
1.1.4 How simulator works . 11

1.2 Objective of thesis . 11

2 Requirements 13
2.1 Instructor interviews . 14
2.2 Functional categories . 15

2.2.1 Map & Generic Controls . 15
2.2.2 Reposition and Time . 15
2.2.3 Aircraft Settings & Fuel . 16
2.2.4 Failures & Circuit Breakers 16
2.2.5 Weather . 16
2.2.6 Payload . 17
2.2.7 Ground Controlled Approach 17
2.2.8 In-flight Refuel . 17
2.2.9 Communications . 17

2.3 Engineers interview . 17
2.4 GUI design . 18

3 Architecture 21
3.1 Existing architectures . 21

3.1.1 Leonardo Aircraft Division 21
3.1.2 Other IOS software analysed 22
3.1.3 Non functional requirements 22
3.1.4 Conclusions . 23

3.2 Chosen architecture . 23

5

3.2.1 AJAX . 24
3.2.2 WebSockets . 25
3.2.3 ORM . 25

3.3 Implementation analysis . 25
3.3.1 Spring MVC . 26
3.3.2 Laravel . 26
3.3.3 Ruby on Rails, Node.JS . 26
3.3.4 Xamarin . 27
3.3.5 Django . 27
3.3.6 Conclusions . 28

4 Django, description and customization 29
4.1 MVC pattern . 29
4.2 Project structure . 30

4.2.1 settings.py . 31
4.2.2 urls.py . 31
4.2.3 Channels . 32
4.2.4 Admin pages and GeoDjango 32
4.2.5 Templates and Bootstrap . 33
4.2.6 Maps and geocoding . 33

5 Simulation Framework integration 35
5.1 Framework Manager API . 37

5.1.1 Models management . 38
5.1.2 Ios and connection management 38
5.1.3 Writings . 39
5.1.4 Readings . 40

6 IOS prototype 43
6.1 Provided virtual machines . 47
6.2 Installation procedure . 48

6.2.1 Link with Framework . 50
6.2.2 Link with map server . 51

6.3 Administrator functionalities . 52
6.3.1 IOS . 55
6.3.2 Aircraft . 57
6.3.3 Authentication . 57
6.3.4 Failures . 58
6.3.5 Map . 60
6.3.6 Reposition . 60
6.3.7 Data management . 62

6.4 User functionalities . 62

6

6.4.1 Home and Map . 63
6.4.2 Reposition . 66
6.4.3 Aircraft . 70
6.4.4 Failures . 71

7 Conclusions 75
7.1 Future developments . 76

A Acronyms 79

Bibliography 81

7

List of Figures

2.1 An interface sketch-up made with MyBalsamiq 19
5.1 Sequence diagram (simplified) for a WebSocket thread 42
6.1 Current system architecture, optimize portability at performance ex-

pense, HTTP requests and WebSockets are managed by the Django
development server . 44

6.2 A possible system architecture for production, performances are greater,
WebSockets are managed by a dedicated component (Redis), al-
though the application will not be portable. 45

6.3 Admin page, view of the index . 53
6.4 Admin page, view of a table (ICD) 54
6.5 Home and Map page as is displayed on a desktop screen 64
6.6 Home and Map page as is displayed on a tablet screen, the simulation

is started and the ”Events” list is open. 65
6.7 Reposition page as is displayed on a desktop screen, the ”Load Po-

sition” menu is opened . 67
6.8 Reposition page as is displayed on a tablet screen 68
6.9 Landing Reposition page . 69
6.10 Aircraft page . 70
6.11 Failure page as is displayed on a desktop screen, The ”Hydraulic

Failure” is active and its section is expanded, also the ”Load List”
drop-down is opened . 72

6.12 Failure page as is displayed on a tablet screen, all failures loaded in
the custom list have been activated 73

7.1 View from the GRA simulator cockpit, the IOS is in operation on a
tablet . 77

8

Chapter 1

Introduction

In this chapter basic concepts necessary to understand the thesis work are intro-
duced.
In details are provided formal descriptions and classifications of Flight Simulators
from the entities that regulate their development, then is explained what is an In-
structor Operator Station (IOS), how it interact with simulators and what are the
thesis objectives.

1.1 Flight Simulators and Instructor Operating

Stations

Flight Simulators specifications are regulated by two main entities, the Federal
Aviation Administration (FAA) and the European Aviation Safety Agency (EASA).
Each authority has defined a set of categories in which simulators are divided
depending on their functionalities and realism.
Without explaining all possible classifications with their peculiarities, here will be
provided a general description of the two main categories in which both entities
divide simulation devices and that are relevant for the IOS development.
Those categories are Full Flight Simulator (FFS) and Flight Training Device (FTD).
FAA and EASA have different definitions of FFS and FTD [1] [2] [3], however they
both agree on a set of general requirements that can be summarized as follow.

9

1 – Introduction

1.1.1 Full Flight Simulator

A FFS is a replica in full size of an actual aircraft deck and cockpit, it shall in-
clude all aircraft equipment and computers programs necessary to reproduce the
behaviour of the aircraft on ground and flight operations, furthermore shall be
present a visual system that emulates the out of flight cockpit view and a force
cueing motion system that operates at least on 3 axes.
Then for FFS, both FAA and EASA provide a set of further categories, each cat-
egory must respect an increasing number of characteristic, such as broader field of
view angle or more axes for the motion system.

1.1.2 Flight Training Device

A FTD instead is an FFS where motion system and visual system are not required.
The visual system is usually replaced by a screen.
It shall not reproduce the entire aircraft cabin, however the flight instruments and
controls must be present.
There are rule and specification that simulators shall follow to be classified as FTD,
but are less restrictive.
Both agencies as for FFS, have different categories to classify the level of realism
of an FTD.

1.1.3 Instructor Operator Station

Both FFS and FTD are used for pilot training and shall provide an interface that al-
lows the instructor pilot to control and modify aircraft parameters, external weather
conditions and every other aspect relevant to the management of the simulation,
this interface is generally called Instructor Operator Station, however in literature
is also referred as Instructor Operating Station.
Both FFS and FTD shall have an IOS to comply with FAA and EASA specifica-
tions, although the complexity of the software is related to the complexity of the
simulator and the training scenario it has been designed for.
The GUI can be displayed from a single screen up to several displays and the in-
teraction can occur by means of mouse and keyboard or touch screens.
IOS in some scenario are also used for other purpose than pilot training. Aircraft
engineers may use the IOS to inject variables in the simulator, this is usually done
to test new components, before mounting them on real aircraft.

10

1.2 – Objective of thesis

1.1.4 How simulator works

At the core of flight simulators there are mathematical models, those models emu-
late specific part of the aircraft or an aircraft subsystem such as the landing gear,
the avionics, the hydraulic systems and so on.
They run in parallel, receiving and sending I/O signals to the flight instruments
and to the IOS.
In Leonardo AD models are managed by a software called Framework or Simulation
Framework. It is in charge of changing the state of models by running pausing and
stopping them. It also allows the communication between models and the external
environment and provides functionalities such as recording of variables in a specific
moment or for a time interval.
Recordings are useful both for pilot instructors and avionic engineers, for instance
an instructor can restart the simulation from a given time or show the flight record
to pilots after an exercise.
Avionic engineers instead can use records of flight data to compare different air-
craft configurations, and test changes on simulators before applying them to the
real aircraft.
The IOS works on top of the Framework and interact with it through an API, al-
though it is not just a GUI, it offers also extra functionalities that will be discussed
in depth in the following chapters.

1.2 Objective of thesis

IOSs are usually commissioned together with simulators and tailored to them, of-
fering the specific training functionalities the simulator is made for.
They are built to work on a predefined hardware and software, for instance a se-
lected operating system, a fixed number of screen and resolutions, a predefined
input device such as mouse/keyboards or touch screens.
While those are not limits for simulators that are made once and then operated
for years as they are built, it can be a problem if project requirements change in
time and if the IOS shall be able to control a range of devices instead than a single
simulator.
Leonardo AD is involved in different research projects that requires flexibility in
the IOS interface and functionalities. A Framework capable of interacting with a
range of simulators is also being developed and maintained.
They need an IOS that can be configured to work with all the simulators controlled
by the Framework, whose interface is flexible enough to be displayed on differ-
ent devices, such as desktops with single or multiple screen and tablets, and who
can be easily extended in functionalities depending on the needs of the simulation
environment.

11

1 – Introduction

The development of a complete IOS requires time and resources that are beyond a 6
months thesis. The aim of this work is firstly to define what are the functionalities
that a generic IOS shall implement, then explore possible IOS architectures that
can satisfy the Leonardo AD needs and finally develop a working prototype.
Furthermore, is also an opportunity to work with software technologies outside the
domain of existing business skills and discover which advantages they can bring to
the company. Work flow can be summarized in those steps that will be discussed
in the following chapters:

1. Comparison of different existing products and interviews with instructor pilots
and Leonardo AD engineers to collect requirements.

2. Definition of a software architecture that can cover all the functional require-
ments collected and non functional requirements specific to Leonardo AD
needs.

3. Implementation of a basic set of functionalities to show the capabilities of the
designed architecture.

12

Chapter 2

Requirements

The requirement phase started with the analysis of several software solutions, the
purpose was to identify a set of categories in which IOS functionalities are divided
and which of them are in common between different simulators.
Most of the solutions seen were addressed to aircraft but there was also the oppor-
tunity to see products for helicopters.
In details: two IOS for the Alenia C27J Spartan, one developed internally by
Leonardo AD and one acquired from L3 Brashear, an IOS developed by Leonardo
Helicopters, that has also a tablet version, and some documentation about the IOS
used to train Eurofighter and M346 AMI pilots.
All the Leonardo’s IOS, both for aircraft and helicopters, were seen in action in
FFS and FTD.
After an inspection of software and documentations the following functional cate-
gories have been identified:

1. Map & Generic Controls

2. Reposition & Time

3. Aircraft Settings & Fuel

4. Failures & Circuit Breakers

5. Weather

6. Payload

7. Ground Controlled Approach (GCA)

8. In-flight Refuel

9. Communications

13

2 – Requirements

The first 5 categories are common to all IOS even between aircraft and helicopters.
Payload is relevant only for aircraft and helicopters that can bring a payload (peo-
ple or equipment). GCA and In-flight refuel are functionalities specific to military
aircraft. The Communications section can be more or less complex depending on
the simulator equipment (headset, radios etc..).
Each category groups together one or more functions that operates in a same con-
text. After comparing the various software GUIs an initial set of mock-up has been
produced, both on paper and with MyBalsamiq software tool.
Mock-up have been shown to instructor pilots in order to be better refined in terms
of functionalities and GUI usability.

2.1 Instructor interviews

Four instructors have been interviewed, all of them involved in the training of C27J
pilots and with experience also on other simulators.
The interviews were repeated more times, after each interview mock-up were mod-
ified according to instructors advices.
During this process related features have been grouped together to divide the IOS
interface in pages. Different options have been presented to instructors for menus,
status-bar, controls and pages layouts. Instructors feelings about the existing IOS
have been collected, in detail what they appreciate, and what they want to change.
The interviews have made a fundamental contribution in the design process, allow-
ing to discover many critical issues.
There are some informations and controls instructors want to have always available
in all pages, those are: date and time of the simulation, a list of active failures,
buttons to start, stop, pause the simulation, take snapshots, and eventually a list
of those parameters that are not available in the aircraft instruments.
Informations to be displayed are related to the location of the IOS. If the station
is separated from the aircraft cabin reproduction, instructors can’t see the cockpit
so flight instruments shall be replicated in the IOS.
Instead if the station is placed right behind pilots, instructors prefer to look di-
rectly at the simulator cockpit rather than watching instruments in their digital
reproduction. This scenario apply to simulators for fighter jets and cargo aircraft.
Fighter’s cabin can usually accommodate only a pilot so the exercise has to be fol-
lowed from outside, while in cargo aircraft simulators the IOS can be placed right
behind the pilot’s seats, so the instructor can see directly the cockpit.
Features that are common to all IOS may have a different implementation depend-
ing on the type of aircraft. For instance, snapshots are common to all IOS, they
allow to restart the simulation from a given time. In most aircraft may be enough
to have a button to take a snapshots once in a while. Instead in fighters shall be
present a buffer that record last minutes of flight, so in any moment the simulation

14

2.2 – Functional categories

can be rewind.
The GUI shall be designed with care, an interface that is good on desktop may not
be easy to use on small touch-screens, this problem has been introduced recently
with the spread of tablets, when existing desktop interfaces were ported on those
devices.
Tablets are appreciated by instructors because they give them freedom to move in
the simulated aircraft cabin, without losing control over the IOS interface. How-
ever, controls that occupy a whole screen on desktops may need to be split in more
pages on tablets to make them usable.
Also touch controls such as sliders and wheels shall be designed with care, some-
times instructors have problems in setting right parameters because touch controls
have a wrong sensitivity.

2.2 Functional categories

After the interviews for each category a list of requirements has been produced and
a GUI layout has been designed.
In this section will be presented a general description of features present in each
functional category identified.

2.2.1 Map & Generic Controls

This section displays a georeferenced map with a marker to show the current air-
craft position and heading. The map may have different layers such as: terrain,
airways, VFR.
Layers can be shown or hidden depending on exercise phase, for instance during
landing the instructor can display a layer with the approach procedure, while in
flight the terrain map can be more useful.
Then a monitor section for parameters of interest may be present depending on
the exercise and instructor preference. In case of FFS, for safety reasons, are also
available controls for the actuators and any other component that can potentially
harm pilots.
If the simulator reproduces also aircraft sounds there are switches to set the vol-
umes.

2.2.2 Reposition and Time

All IOS shall have some functionality for aircraft reposition, most common are by
airport and runway selection, by providing ICAO codes or by selecting a custom
position over the map.
Then may also be present a set of in-flight positions in proximity of runways that

15

2 – Requirements

allow to quickly repeat landing procedures.
A specific functionality desired by instructor is the customization of those positions
by acting on aircraft heading, speed and altitude.
Finally, the instructor shall also be able to set date and time in the simulation to
train pilots with different light conditions, choose the season and the moon phase.

2.2.3 Aircraft Settings & Fuel

Those are controls specific to the simulated aircraft, so this section can have dif-
ferent features depending on the aircraft type. Otherwise some settings are almost
present in all IOS such as the selection of fuel quantity per each tank, buttons to
refill consumable fluids, selection of icing conditions, controls to manage the engines
start-up and ground procedures.

2.2.4 Failures & Circuit Breakers

This section allow the instructor to train pilots for the occurrence of a malfunction
or more of them, such as engines fires, defective landing gears etc... In simple IOS
there may be only buttons to activate or remove malfunctions, in most complex
ones the instructor can specify sets of malfunctions to be activated together or
define activation triggers, such as the overcoming of a certain speed or altitude.
In the circuit breaker section there is a graphical representation of all the cabin
circuit breakers that the instructor can trigger. Circuit breakers are specific to an
aircraft cabin so this part can change between simulators.

2.2.5 Weather

This section allows to control all aspects of weather such as clouds layers, clouds
coverage, wind, gust direction and intensity, presence of storms with rain snow or
hail, condition of the runways surface, definition of map areas where certain weather
conditions apply. According to instructors this is one of the most complex section to
operate, because of the number of parameters that can be set up, and the objective
complexity in reproducing all weather conditions in a simulated environment.
In this section can also be present switches to set lights parameters of runways since
instructors change them according to weather.

16

2.3 – Engineers interview

2.2.6 Payload

This section offer controls to set a specific payload configuration, move the centre
of gravity, monitor the weight, the interaction can involve customization of payload
by providing the type of loaded items and their disposition inside the aircraft or,
in simpler solutions, buttons corresponding to predefined configurations.
If needed may also be present controls to emulate the Load Master activities such
as opening/closing of cargo doors and load release.

2.2.7 Ground Controlled Approach

In this section the instructor can monitor the aircraft descent during landing, his
horizontal and vertical deviation from the defined track. In practice the instructor
impersonates the air traffic controller, providing instructions to pilots and guiding
them in a correct approach path.
Sometimes the GCA is recorded by the IOS and plotted to a graph, so that it can
be shown to pilots during the debriefing.

2.2.8 In-flight Refuel

This section is present only in simulators for military aircraft with the capability to
be refuelled in-flight. The instructor can choose a type of refuel tanker, reposition
the tanker in the simulated environment, set the light procedure, define a path that
the tanker has to follow, control the drogue movements, start and stop the fuel flow.

2.2.9 Communications

In this section there is a list of navigational aid, with their type and status, the
instructor can enable or disable them.
In FFS or FTD simulators that have a complete reproduction of the aircraft cabin
there is also a section to control all the radios and pilot headsets, enable and disable
the communication between 2 or more headset, choose communication frequencies,
turn up and down headset volumes.

2.3 Engineers interview

The IOS is used also by avionic engineers to develop aircraft features.
Their needs are completely different from the pilots ones, usually the IOS section
dedicated to engineers allows to make modifications on every simulation variable
even the one that are not related to cockpit and deck controls.
This part of the IOS if present is hidden from the main interface because can poten-
tially compromise the simulation. In this peculiar case where the IOS shall be able

17

2 – Requirements

to control multiple simulators this section will contain also all the configuration
parameters that allows to change the appearance of the instructor interface and
the simulation variables linked to the GUI.
Avionic and Aeromechanic Engineers have been interviewed to discover which fea-
tures they expect from the IOS.
The main requirement is to have available a list of all simulation variables, the list
shall allow to select a subset of parameters to be recorded and monitored on screen.
The collected data must be parsed in a human readable form, this involve the cre-
ation of graphs where variables are shown in function of time or other recorded
parameters (eg. speed in function of altitude).
Plotting parameters such as: variables to plot per each graph, type and unit of
measure of graph axis, must be configurable by engineers.
The IOS shall then allow to export the recorded data in a variety of formats, such
as PDF for graphs or CSV for raw data that needs further elaborations.
There are many secondary requirements that will not be listed in the thesis, other-
wise a complete requirement document both for engineers and instructor has been
produced.

2.4 GUI design

At the end of the interview process both of instructors and engineers a GUI has
been designed.
Depending on the number of controls categories have been divided in one or many
pages. The designed GUI includes a menu bar and a status bar repeated on every
page. The menu-bar is a vertical column with icons, it has been placed to the left
border of the screen.
Instructors prefer to use icons than textual menus, since they are easier to locate
inside the GUI, furthermore, on touch-screens icons occupy less space and are easier
to click than textual menus. Each icon in the menu-bar correspond to one category
in which functions are divided and it opens a different IOS page.
The status bar instead, is the place where are shown relevant information about
the simulation and has been located on the top border of the screen.
The instructors asked also to have a set of controls always available, so the status
bar has been split in two parts, a left side with the requested controls and a right
side where are shown simulation informations and alerts.
At the centre of the screen are displayed IOS pages relative to a selected menu
category, if a category requires more pages a tab menu is provided to move between
them.

18

2.4 – GUI design

Figure 2.1. An interface sketch-up made with MyBalsamiq

19

20

Chapter 3

Architecture

In this chapter, various IOS’s software architectures are discussed, then is presented
a list of architectures and programming languages considered for the development
and finally the chosen architecture.
Will be made references both to web frameworks and Leonardo AD Simulation
Framework, to distinguish between them the latter will be always referred as Sim-
ulation Framework or Framework with first capital letter.

3.1 Existing architectures

This section will make an overview of the architectures regarding software solutions
analysed, but in order to protect Leonardo’s intellectual property is not possible to
specify many implementation details.

3.1.1 Leonardo Aircraft Division

The IOS developed by Leonardo AD is in operation on C27J Spartan simulators.
It controls both FFS and FTD simulators.
It is written in C++ and Qt. Most parts of simulators are written in C, because it
is a language close to hardware and the main choice for real time applications.
The Qt library was chosen because it allows the creation of multi-platform GUI
making the IOS compatible with both Linux and Windows machines.
The software is based on a Client/Server architecture, the IOS (client) receives and
sends data to the Framework (server).
In this peculiar case, the communication does not happen with a network protocol
but data is read and written on a shared memory.
The current Framework change this behaviour moving the data exchange to the
TCP/IP network protocol.

21

3 – Architecture

3.1.2 Other IOS software analysed

For the other IOS software analysed can’t be made assumptions on the program-
ming languages or libraries used to build the GUI.
Although can be said that they all share the same client/server structure, where
the exchange of information happens through TCP/IP or proprietary protocols.
They are usually targeted to a specific operating system with a fixed configuration,
such as a predefined number of screens with a defined form factor and resolution.

3.1.3 Non functional requirements

For the development of the IOS a set of non functional requirements has been de-
fined, those requirements have influenced the architectural choices so they will be
listed below.
Requirements derive from research projects, where features are tested before their
integrations on aircraft. Those projects operates on a variety of aircraft, the IOS
shall adapt to them, and the interface shall be quickly editable to allow the man-
agement of tested features.

❼ The IOS shall interact with the new Framework Leonardo AD is developing.

❼ The IOS shall be configurable allowing to control different simulators.

❼ The IOS configurations shall be applicable without making use of program-
ming skills.

❼ The IOS shall include an administration section, accessible only by the engi-
neering department, where the IOS pages can be customized.

❼ The IOS shall make use as far as possible of open source software to contain
costs.

❼ The IOS will be in operation in restricted environment with no internet access,
this must be considered for what concern the software installation dependen-
cies and the external resources needed by the implemented functionalities.

❼ The IOS shall support different screen sizes and resolutions.

❼ The IOS interface shall be usable both on desktop platforms and tablets.

❼ The interaction with the IOS can happen by mouse/keyboard or touch screen.

❼ The IOS interface shall operate on the largest number of devices and OS
(Windows, Linux, Android, Apple iOS) and at least on Windows and Linux.

❼ The IOS shall be modular allowing to add new functionalities when needed.

22

3.2 – Chosen architecture

3.1.4 Conclusions

The current IOS architecture offer some advantages:

❼ The interaction with the server is straightforward because there is a direct
link with the Framework.

❼ C++ is a programming language that makes a good use of hardware resources.

❼ The client/server architecture is adequate and simple.

❼ It is easy to install the software in an off-line environment, where tracking
and installing dependencies is not an easy task.

Although it has some disadvantage, changes to the IOS requires recompilation of
code and installation on clients.
Different Operating Systems means different installer to be produced.
Even if Qt allows to design cross platform GUIs, they do not scale well with different
screen sizes and two GUI version, one for tablets and one for desktops have to be
produced.
Qt is not completely free, Qt technology has been sold and acquired multiple times,
since 2016 the library is maintained by the Qt Company. To develop commercial
products and have a full set of features, licenses must be acquired.
GUI development allows great flexibility although buttons, switches, sliders have
to be customized by programmers, the choice of predefined GUI widgets is limited.
There is not a framework behind that offer built in functionalities such as interfaces
for management of users or data, everything must be developed in C++ from
scratch.

3.2 Chosen architecture

To overcame the limits of the current architecture the choice was to develop the
software as a web application.
The IOS interface is shown in a web browser, this implies multiple advantages, the
client side of the IOS is independent from the operating system of the device.
Any device that supports a web browser can show the IOS.
Web technologies allow the creation of flexible interfaces that dynamically adapt
to different screen formats and resolutions. There is no need to reinstall the IOS
on client devices, modifications made on server will be immediately available.
The disadvantages are an increased complexity of the architecture and a slower
response time, although since the IOS shall not be a real-time application the
compromise is acceptable.
Despite what happens in simulators, where delays are perceived by pilots, if the
IOS latencies are in the order of tens of milliseconds instead of microseconds the

23

3 – Architecture

behaviour will be transparent to the instructor.
Although, there is still a problem that must be considered.
Requests and responses in a web application are usually performed on top of the
HTTP protocol that is synchronous. The user interacts with the interface displayed
in the browser, the browser makes a request to the server that sends back a response.
This can be a limit for the implementation of the IOS. Lets imagine a scenario where
the aircraft is moving on a map, if the instructor wants to see the updated position
he will have to periodically refresh the IOS page to obtain the new coordinates.
Another problem can arise if the IOS is open on two different devices, for instance
a tablet and a desktop computer.
In this case if a user modifies a parameter on a device the change will not be
immediately visible on the other, a page refresh is needed.
This behaviour is not acceptable and there are 2 technologies that can be used
to overcome those limits, AJAX and WebSockets, both have been used in the
development of the IOS since they suit different use cases.
The IOS needs also to store and retrieve data, for instance the instructor may desire
to save a set of custom coordinates for the aircraft reposition during an exercise.
There are many database solutions available both free and licensed, otherwise since
the IOS must be as flexible as possible sticking to a single product may be a limit
for the future, so support for ORM has been considered in the architectural choices.
AJAX, WebSockets and ORM are niche technologies that may not be familiar to
the reader so a brief description is provided.

3.2.1 AJAX

Is an acronym for Asynchronous JavaScript and XML, the first description of the
technology was published in 2005.
It is based on JavaScript and uses the XMLHttpRequest object to perform asyn-
chronous requests.
AJAX does not define a protocol of his own, the interaction is built on top of the
HTTP protocol.
Data is usually exchanged in XML or JSON format. While data is received the
user is not blocked and can use the GUI.
The main use of AJAX is for updating small portion of the page dynamically, it
is suitable to use when on server side is already present data that must be sent
asynchronously. When data is generated on the fly and must be streamed to the
browser a better alternative is to use WebSockets.

24

3.3 – Implementation analysis

3.2.2 WebSockets

They define a protocol used to establish a full-duplex channel between the user
browser and the server.
The API has been standardized by the W3C and the protocol by IETF (RFC 6455)
in December 2011.
Full support from all mayor browser including mobile ones came only at the end of
2013. While this can be a problem in mainstream application, it is not a limit in
the IOS environment where the browser is chosen by the system administrator.
The WebSocket protocol is different from HTTP, when a WebSocket connection is
established an ”upgrade request” is received by the browser that provide to switch
to the new protocol.
The WebSocket API provide methods to connect, disconnect, send and receive mes-
sages. Connections are based on TCP protocol which is unicast, otherwise most
high-level implementations of the protocol in WebSocket Servers allows to send
data to multiple clients at the same time.
In theory WebSockets can replace all the AJAX functionalities and offer new ca-
pabilities, otherwise they must be supported both from the user browser than the
server back-end.
In practice both technologies have their advantages and disadvantages, they coexist
and are used for different needs.

3.2.3 ORM

Acronym for Object-Relational Mapping, are systems that allows to map classes
from programming languages to SQL tables, the ORM take care of creating the
right tables and relationships among them.
The programmer does not write SQL queries but reads and writes data to mapped
classes.
ORM make the application independent from the underlying SQL database.
If the database technology is changed the ORM software will rebuild all tables and
relationships.

3.3 Implementation analysis

A web based application with support for WebSockets should allow to design a fully
functional IOS.
Although implementing everything from scratch is not a good solution since there
are many web framework which provide a basic set of functionalities that can be
extended.
Integration with the Simulation Framework must also be taken into consideration
for the final choice. There are currently 3 API that allows the connection with

25

3 – Architecture

Framework. They are written in C, C++ and Python.
Many solutions have been explored, here will be presented a small summary for
each analysed platform.

3.3.1 Spring MVC

The most popular web framework based on Java [5], it offers many APIs and rich
documentation, ORM is supported by interaction with external libraries such as
Hibernate. WebSockets are fully supported.
The disadvantages are related to the Java world, the JDK must be installed in the
development environment and a servlet such as Tomcat must be present to run the
application. After changes code must be recompiled and the application redeployed
to the servlet.
Also the way libraries are fetched can be a problem. The preferred option to
resolve dependencies is by tools such as Maven and Gradle that automatically
recover needed libraries from internet, although our development environment will
be off-line.
Of course there are ways to configure those tools to use local repositories, otherwise
in Java web development is common to use tens of different libraries, fetching all
of them manually is a long task.
Furthermore there is not a native framework API in Java and integration with C++
can lead to compatibility issues.

3.3.2 Laravel

The most popular framework for PHP development [6].
The basic requirements to develop with Laravel is having installed PHP7 and few
other PHP extensions.
There is built in support for ORM and WebSockets. Dependencies are resolved by
composer, a tool that download and install needed packets from internet, although
there are ways to configure it to use a local repository.
Laravel offers also a built-in development web server that can be used to run the
application without installing a dedicated one, such as Apache.
The only drawback is the lack of a native API for the Simulation Framework.

3.3.3 Ruby on Rails, Node.JS

The first is a framework that uses the Ruby programming language [8], it is a
niche product with few documentation, for our usage does not offer advantages
over Laravel and Spring so has not been considered a valid choice.
Node.JS is a JavaScript runtime environment [7]. It allows to use JavaScript as a
server side language.

26

3.3 – Implementation analysis

The advantage is in having a single language suitable both for the application front-
end and back-end, although Node.JS is a recent technology, still gaining popularity.
There are web frameworks based on Node that offer all the features needed for the
IOS, but there is not a solution that has imposed as market leader yet, choosing
one is risky for long time support.
Furthermore JavaScript gives great freedom in language syntax, this speeds up
the development time but make it easy to write bad code, decreasing the software
maintainability. For all those reasons even this solution has been discarded.

3.3.4 Xamarin

That is not a web framework but is worth mentioning.
It is an environment developed by Microsoft that allows to crate native user inter-
faces for Windows, Android and iOS that share the same C# code [9].
C# can integrate C++ code, so is possible to interact with the Simulation Frame-
work. Xamarin is free to use and the SDK is released under MIT license.
Unfortunately, there is not Linux support yet, both for the generated applications
than for the developing environment.
All the simulator department use Linux as main operating system and a switch to
Windows is not cost effective.

3.3.5 Django

The most used web framework based on Python [4], the basic requirements to run
Django is having installed python 2.7.
ORM functionalities are built in, the preferred way to fetch external Python li-
braries is through pip, a tool that can download and install packets from internet
or local repositories, the advantage over Spring is that most functionalities like
ORM are built in the framework, so few additional packets are needed.
Django like Laravel provides an integrated web-server for development. WebSock-
ets are available with an external library called Django Channels.
The Simulation Framework can be accessed directly from the Python API already
available. Python like PHP is an interpreted language, not requiring to recompile
code.

27

3 – Architecture

3.3.6 Conclusions

The final choice is between Django, Laravel and Spring.
The question to answer is if there is something relevant to the IOS development,
that makes Laravel or Spring a better solution and justify the effort of using the
Framework interface without a native library.
The answer is no for Laravel that offer almost the same functionalities, but a com-
parison to Spring is more complex. Spring does not include only a web framework
but is a collection of projects that cover a wider range of technologies, so it may be
more suitable for future IOS developments.
Otherwise this flexibility comes at the cost of a more complex architecture a less
agile development, due to the Java language verbosity, the need to recompile code
after changes and a more difficult integration with the Simulation Framework.
In the worst case a new Java API had to be written and the effort does not justify
the advantages.
Those are the main reasons for which Django has been chosen as the development
platform, although there are also other benefits that will be presented in the next
chapter where is provided a deeper description of the Django environment.

28

Chapter 4

Django, description and
customization

In this chapter is described the Django framework, the MVC architecture that
is at its core and the peculiar features that make it a good choice for the IOS
development.
A complete description of the framework is out of the thesis scope, only informations
about features used in the IOS or that are interesting for future developments are
provided.

4.1 MVC pattern

This programming pattern has been introduced for the first time with the Smalltalk
language in 1979. It is the architecture adopted by most web framework and in
general the most common pattern used for web development.
Django makes no exception splitting the application logic in 3 parts:

1. Model: The component that manages the data, not the real data but the
application modules that interact with it. In Django they are a set of files
called models.py. Those files using Django classes and methods define the
structure of the database that the ORM system translates into SQL tables.

2. View: The presentation layer, it defines the user interface. In Django those
are the templates files. They are standard HTML files where a template
language, made by a set of tags, is used to exchange data with the Controller.

3. Controller: It connects models with views, controlling the flow of informa-
tion. In Django consists of a set of files called views.py.

Because of this naming conventions, where Controllers are called ”views” and Views
are templates, Django architecture is usually referred as MTV.

29

4 – Django, description and customization

4.2 Project structure

Before proceeding into the description of a Django project structure is necessary to
specify what in Python is a module and what is a package.
A module is a single Python file that may contain one or more functions.
A package is a collection of modules inside a folder.
A Django project is made of a packages collection, each package can be constituted
by several modules.
There is a primary package where also application settings are defined and sec-
ondary packages usually referred as App. An App is a unit of the whole application.
The Django project made of the primary package and of one or more Apps is then
placed in a root directory.
Besides models, views and template files, there are two more mandatory files pecu-
liar to Django framework: settings.py and urls.py, whose content is described in
next sections.
By now can be said that if no coupling is maintained between Apps, parts of
the application can be added or removed simply by commenting few lines in the
settings.py and urls.py files placed in the main package.
This approach has been followed in the IOS development, where there is a set of
packages that are the backbone of the IOS.
When an additional functionality is needed, it can be added to the project as an
App and then linked to the main package by the settings and urls files.
Apps can be deployed on any webserver that supports the WSGI protocol. Or run
directly with the integrated web server.
In a basic set-up, the application is made of a folder that contains the SQLite
database (a file) and the Django project. This makes possible to run the applica-
tion without installing a DBMS software or a dedicated web server, this increase
the productivity because developers have not to deal with databases and servers
configurations.
Having an application that runs from a local folder with few external dependencies
is an important advantage in the simulator environment where software installations
and system changes are limited and must be done only by authorized personnel.
When a new project is created (by an IDE or from the operating system console)
in the root directory is generated also a manage.py file that gives access to a set of
commands defined by the framework, it allows to perform several actions, such as
launching the integrated web server, build, dump, load or migrate the database.

30

4.2 – Project structure

4.2.1 settings.py

This file contains all the information needed for the interaction between the main
App and all the other Apps both internal than external to the project. It is unique
and located only in the primary package.
Relevant sections of settings.py file are the following:

❼ Installed Apps: It is a list of all Django’s packages used in the project, a
package can be an internal app or an external library.
For instance in the IOS project here are listed all the apps which constitute
the application and the Channel package that offers support for WebSockets.

❼ Middleware: Here are listed all components that interact with requests an
responses before they are delivered to a view.
A common middleware performs user authentications, is provided in the
Django default configuration and is used by the IOS to give different access
privileges to instructors and engineers.

❼ Databases: Here are listed all the databases used, they can be more than
one. If a database is changed the ORM system allows to migrate the data
quickly by giving few commands scripted in the manage.py file.
Since only the ORM interacts directly with the database tables, no changes to
the application code are needed when a database switch is made. Supported
databases are: SQLite, PostgreSQL, MySQL and Oracle products.

❼ Static Root/Static Dirs: Those settings tells Django where static files such
as CSS and JavaScript library have to be placed.
A command scripted in the manage.py file provide to collect static files from
packages folders listed in Installed Apps.

The settings.py file can also be customized by adding additional section, this feature
is used in the IOS to enable or disable the Simulation Framework integration and
change Map’s settings.

4.2.2 urls.py

This file define the set of URL used by the application, each URL is mapped to a
view function or class, which in turn serves a template.
References can be made recursively. A root urls.py file must be placed in the
primary package. It can refer to secondary urls.py files defined in other Apps, this
approach reduce the overall coupling.

31

4 – Django, description and customization

4.2.3 Channels

Django does not offer WebSockets support out of the box, although it can be added
with a package called Channels.
When Channels are linked to the application, two more files are needed to enable
WebSockets: routing.py and consumers.py.
First one defines the urls on which channels are listening for connections, in a sim-
ilar way as urls.py does for standard HTTP request.
The latter specify the logic to apply when a connection/disconnection occurs and
when a message is received. In this file can be overwritten three methods: connect(),
disconnect() and receive(), allowing to customize the application behaviour when
those events are triggered.
Connections can be divided in groups, and thats the approach that has been fol-
lowed. For each module in the IOS that needs asynchronous messages a channel
group has been defined.
When a message is sent to the users browser, one or more target groups can be
specified.
Channels are integrated directly with the provided Django development server, oth-
erwise for application deployment is possible to split the incoming traffic in HTTP
and WebSockets requests that are managed by different servers. Using a dedicated
solution increase the performance, this option shall be considered if the IOS com-
plexity grows in the future.
On client side, channels messages are received with the standard WebSocket JavaScript
API and the output is shown on web pages.

4.2.4 Admin pages and GeoDjango

Django by default offers a web interface for the application administrators.
It is divided in sections corresponding to the various Apps that compose the project.
For each App there is an admin page where is possible to interact with the models
defined, by creating, deleting or updating items. Model pages are displayed as
tables where each element occupy a row.
Tables can be also customized by modifying the arrangement in which items are
displayed or by adding functionalities such as import/export or search fields.
GeoDjango is a GIS extension for Django that comes with the default distribution
and integrates an API to work with geographical data such as shape files.
To use the GIS functionalities a database that support geographical types such as
PostGIS or SpatialLite must be installed and linked to the application.
The GeoDjango API has not been used in the IOS but is an interesting feature for
future developments, allowing to extend the set of functions related to maps and
aircraft reposition.

32

4.2 – Project structure

4.2.5 Templates and Bootstrap

Templates are HTML pages with special tags used to display and elaborate infor-
mations coming from server back-end, each App has a template folder where all
those files are collected. Django defines its own template language that has been
used for the IOS development.
A relevant feature of template languages is inheritance, common front-end parts
can be defined in a base template and this file can be extended in each package to
provide specific functionalities. This feature is used in the IOS to define once all the
common parts such as menus, status-bar, import of CSS and JavaScript libraries.
The base template links also all the dependencies needed by the Bootstrap tool-kit.
Bootstrap is a collection of CSS and JavaScrip files, originally developed by Twitter
and now free to use and distributed under MIT license. It allows to quickly build
responsive web pages providing a set of CSS classes used to style HTML elements.
Web pages are divided in rows and each row can display up to 12 columns.
This scheme simplify the creation of pages that dynamically adapt to different
screen sizes.
During operation the size of the browser window is detected and a different number
of columns per row are displayed.

4.2.6 Maps and geocoding

Usually IOSs provides maps, they can be used to display the actual position of the
aircraft or to perform repositions.
To make this IOS as flexible as possible and decrease development times maps are
not designed as a built-in functionality, maps are displayed with the OpenLayer
JavaScript library that has been imported inside the project.
OpenLayers allows to put dynamic maps in web pages, it can interact with any
map server that offer an interface to the library, it allows to display tiles from tile
servers or directly render vector data in a variety of formats.
Each layer can contain a different data source. Layers can be displayed with differ-
ent level of transparency or hidden.
There are also features to create points, draw lines and poligons, make animations,
extract geographical coordinates from the loaded maps.
The IOS currently uses two layers, one to load a set of tiles from a remote map
server and one to display the aircraft position as an icon.
During flights the icon is moved according to latitude longitude and heading coor-
dinates coming from the simulator.

33

4 – Django, description and customization

Map data and map servers

As stated before the IOS shall work in an offline environment, this puts several
limits to the available choices in terms of map servers.
Google, Microsoft and Esri offer maps suitable for the IOS needs, otherwise they
do not allow to export maps for off-line usage without a commercial license.
The OpenStreetMap project provide several Giga Bytes of geographical data cov-
ering all the world, although data is in a raw format, to be displayed on a chart
must be converted, imported inside a geographical database such as PostGIS and
a server must be set-up.
The server should install a software for rendering maps from the PostGIS data.
Mapanik is one of the most used tool for this operation and is released under LGPL
license.
If the tile-server is a machine different than the IOS server, further software is
needed to make maps accessible in the network by means of HTTP protocol and
OpenLayers interface.
For this purpose, can be used Apache with the mod tile extension or a more specific
solution, there are several free tile-servers available on the market.
All those steps are expensive in terms of computing power, storage and time for
having all the architecture correctly set-up and running.
For the thesis purpose a simpler solution has been found in the OpenMapTiles
project that offers a collection of pre rendered tiles and a preconfigured tile-server.
Tiles are free to use for evaluation and non-commercial purpose, they are built from
the OpenStreetMap data and include a subset of the available geographical infor-
mation, they lack features such as hill-shading and contour lines, they are good for
a basic usage, although if the IOS will become a commercial product, the set-up of
a proper tile-server should be considered.

34

Chapter 5

Simulation Framework integration

Before discussing how the IOS has been connected to the Framework is necessary
to explain what the Framework does and how it works.
During a simulation mathematical models read and write data on memory areas.
Each simulator has a set of memory areas, divided in several fields that identify a
specific aircraft parameter.
Fields may have different data type, they can be integer float or arrays of values.
Simulators may have tens of memory areas, each one identified by a name and
a version number. Each area may contain hundreds of fields in which input and
output data is written.
The data structure that contains the fields for a specific memory area and version
is called Interface Control Document (ICD). When a simulator is configured an
ICDs database is created.
A legacy Framework is in operation on existing simulators, it uses special hardware
to manage memory areas and is no longer maintained.
A new Framework is under development, it will be installed on new projects and is
the solution the IOS will use.
It moves the interaction with memory areas to the TCP/IP protocol, making easier
the integration of web technologies.
It is composed by a master node in charge of executing operations on areas and
models, and by one ore more slave nodes that can exchange data and execute
commands on the master.
The Simulation Framework has two main functionalities that are of interest for the
IOS:

❼ It can manage the models involved in the simulation by starting, pausing and
stopping them.
For instance when the instructor performs a ”Freeze”, one or more simulation
models have to be paused.

❼ It allows to read and write variables in memory areas.

35

5 – Simulation Framework integration

There are memory areas for reading outputs from the simulation and memory
areas for writing values in input to models. Some actions performed by the
IOS may require using both functionalities together, some simulation data
can be elaborated by models only after a freeze or a stop.

A memory area field is identified by a unique id, those ids are not consistent across
different simulators, if the IOS uses directly fields ids, each time a new simulator is
connected the code should be changed.
To overcome this limit data structures have been designed to map each Framework
id of interest into an IOS id. In this way, when a new simulator is linked to the
IOS, will be enough to load a new transition table to write and read data from
memory areas.
To perform the mapping four tables have been defined as Django models:

❼ IosName: A list of all the names used inside the IOS code to read and write
in memory area fields, each name is unique.

❼ ICD: The collection of all ICDs of interest. Each entry is identified by a
triple: the area name, the area version and the id of the area field.
The triple allows to store ICDs from different simulators inside this table.

❼ IosRead and IosWrite: They have the same structure, they map an IOS
name to an ICD triple.
As the name suggest one table is for reading data from the simulator and the
other for writing data to it.

In principle, a single table with the same structure as IosRead/IosWrite would have
been enough to perform the mapping.
In practice working with thousands of rows is easy to do mistakes.
With a single table an error will be discovered only at run time when a read/write
occurs, and who configures the IOS shall know in advance the field names of ICDs
to create a correct mapping.
This design instead will detect most errors as soon as the data is loaded in the
application.
The IosName data is maintained by the programmer and is modified only if Python
code is changed. ICDs can be loaded directly from the Framework when the IOS
is connected, so they can be quickly refreshed if needed.
There is no limit to the number of ICDs that can be loaded, the loading can be
performed one time per each simulator and then the table refreshed only when
ICDs change.
The only tables that have to be modified per each simulator are IosRead and
IosWrite.
When values are submitted, they are compared against the IosName and the ICD
tables, so the user is notified if a mismatch occur and the wrong row is discarded.

36

5.1 – Framework Manager API

The mapping division between reads and writes avoid mistakes both from the side
of engineers that load data than programmers who define read and write functions.

5.1 Framework Manager API

In Leonardo AD is also developed and maintained a Python API that allows to
write and read data to the Simulation Framework.
Otherwise because of the mapping mechanism and the use of WebSockets it cannot
be used directly inside Django. A new set of functions has been written to perform
easily writes to memory areas and stream readings to the connected clients.
The API is made of a set of methods defined inside a Python class called Frame-
workManager.
FrameworkManager has been defined according to the singleton pattern, it is in-
stantiated the first time it is imported inside the code, and any subsequent call will
be referred to the same object.
By design to simplify maintainability the FrameworkManager class is the only point
of contact between the IOS and the Framework API, any read or write must pass
by its methods.
During the first (and only) instantiation a number of actions are performed:

1. Framework settings are read from the Django settings.py file

2. If the integration with the Simulation Framework is enabled a communication
channel is opened and kept active for all the application life cycle.

3. All the different area names available in the IosRead and IosWrite tables are
retrieved and the corresponding areas are opened in read or write mode.

4. If the management of models is enabled the IOS will read the list of models
declared in the settings.py file, it will try to resume and stop all of them and
set the IOS status to resumed and stopped.

After those steps FrameworkManager is ready to serve its methods.
Each method is defined as a Python ”class method” and can be called with the
syntax:

FrameworkManager . method name (parameters)

In this section are described all the available methods, with their input parameters
and the actions they perform.

37

5 – Simulation Framework integration

5.1.1 Models management

Four methods have been defined to manage models, they act on the list of models
declared in the settings.py file, they do not need any input parameter.

1. pause(): Pause models

2. resume(): Resume models

3. start(): Start models

4. stop(): Stops models

By the way the Simulation Framework works pause-resume and start-stop act in-
dependently, a model can be both paused and stopped, that means that if a paused
and stopped model is started it will be in pause state.
The IOS uses two distinct variables to take track of models status, one for pause-
resume the other for start-stop actions.
All the methods check the status of models after execution, errors are printed in
the console.

5.1.2 Ios and connection management

Those are methods for retrieving informations about the IOS internal status and
the framework connection.

1. is connected(): Returns True if a connection with the framework has been
established.

2. get server hostname(): Returns the hostname of the framework master
node as a string

3. get start stop status(): returns the start-stop status of the IOS as a string,
respectively ”start” or ”stop”, it refers to a variable internal to the IOS and
does not correspond necessary to the real models status (eg. if the integration
with models has been disabled in the settings file)

4. get pause resume status(): returns the pause-resume status of the IOS as
a string, respectively ”pause” or ”resume”.
Same considerations as the previous method apply.

38

5.1 – Framework Manager API

5.1.3 Writings

Here will be listed all methods that perform writings on memory areas.

set position(parameters)

This method sets all the memory area fields necessary to perform an aircraft repo-
sition, it needs several parameters in input:

❼ lat dd: latitude in decimal value as degrees

❼ lon dd: longitude in decimal value as degrees

❼ ft m sw: a string, ”ft” if altitude is expressed in feet, ”m” if is expressed in
meters.

❼ altitude: the desired altitude in decimal value, it can be expressed in feet
or meters, in Above Ground Level (AGL) or Mean Sea Level (MSL) value.

❼ kts ms mach sw: a string, ”kts” if speed is in knots, ”ms” if speed is in
m/s, ”mach” if speed is expressed in mach

❼ speed: the desired speed as decimal value, can be expressed in knots, m/s
or mach

❼ heading: heading (ψ) in degrees

❼ pitch: pitch (θ) in degrees

❼ roll: roll (φ) in degrees

❼ ramp: ramp (γ) in degrees

❼ msl agl sw: a string, ”msl” if altitude is in MSL value, ”agl” otherwise.

set fuel(list)

This method sets the fuel quantity per each tank.
In input requires a list of fuel quantities expressed in pound, the list can contain at
most 10 values.
Up to 10 memory area fields can be written by this method, each field correspond
to the fuel quantity of a tank, depending on the simulator, if the aircraft has n
tanks the first n memory area fields will be written.
An error is printed in the console if more than 10 fuel values are submitted, and
no actions are performed.

39

5 – Simulation Framework integration

set date time(datetime)

This method sets date and time in the simulation.
The input parameter is a Python datetime object. It must be initialized at least
with year, month, day, hour and minutes values.
Errors are printed in the console if the datetime object is incomplete and no actions
are performed.

write(list)

This method performs generic writes on memory areas, in input requires a list
of lists, where each element is made of a string corresponding to an entry of the
IosName table and a value to be written:

[[ios name , va lue] , [ios name , va lue] , . . .]

The method will resolve the binding between the IosName table and memory area
fields using the IosWrite table.
When a corresponding entry is not found in IosName or IosWrite, an error is
printed in the console and that writing is skipped.

5.1.4 Readings

Here will be listed all methods that perform reads on memory areas.

read(list)

This method perform a generic read, in input requires a list, where each element is
made of a string corresponding to an entry of the IosName table.
The method will resolve the binding between the IosName table and memory area
fields using the IosRead table.
If corresponding entries are found a dictionary is returned, if a name is not found
will return None and errors will be displayed in the console.
The returned dictionary will have as keys the strings submitted in input.
Following methods are more complex, they can be used to have a constant stream of
data from Framework. Retrieved variables are routed to WebSockets and constantly
refreshed on screen.
Three methods have been designed to make this operations as simple as possible,
they provide to integrate the Simulation Framework API with Django Channels
and shall be used inside the consumers.py files.
Those files are present in each module of the IOS that uses WebSockets.

40

5.1 – Framework Manager API

init websocket(group, ios names, sleep)

❼ group: A string, is the name of a Django Channel group.

❼ ios names: A list of IOS variable names, all the entries available in the
IosRead table can be submitted.

❼ sleep: An optional float number.
It is the time interval between readings expressed in seconds (eg. 0.5 =
500ms). If not present is used the default value specified in the settings.py
file

This function should be called at the beginning of consumers.py, outside the meth-
ods defined.
It creates a thread for the reader’s group passed as argument. The thread provides
to read values from the memory areas mapped to the list of IOS variables. Readings
occurs at intervals of sleep seconds.
As soon as values are red, they are sent in JSON format to all clients listening to
the Django Channel group. The JSON packet contains a dictionary, each entry is
a pair key: value, where key is the IOS variable name.
The JSON packet can be red client side with the standard JavaScrip API for Web-
Sockets.
The thread created by init websocket() will exist for all the life cycle of the IOS.
By default will be in a paused state, this is done to preserve computing resources
when not needed.
Following methods describe how to start the thread.

add reader(group)/remove reader(group)

In input they require the name of a Django Channel group as a string.
Those functions should be called in the connect() and disconnect() methods of
consumers.py file.
The group passed as argument shall be the one present also in the corresponding
init websocket() call.
add reader() increase a counter inside the corresponding thread.
remove reader() decrease the counter.
Increasing and decreasing operations are thread safe respect to the counter value
that will be always consistent. The thread will start running when counter is greater
than 0 and pause again as soon as the counter returns to 0.
This ensure that threads runs only if there are browser windows opened on web
pages requiring a data stream.

41

5 – Simulation Framework integration

Figure 5.1. Sequence diagram (simplified) for a WebSocket thread

42

Chapter 6

IOS prototype

The IOS prototype implements a subset of the functional categories found in the
first thesis part.
The application consists of 5 sections: Map, Reposition, Aircraft, Failures, Ad-
ministration. Each section correspond to one of the identified categories, with the
exception of the Administration part that provides controls for managing the IOS
data, configure the software for different simulators and change sections appear-
ance.
The application can run on the integrated Django web server, it does not require
a dedicated solution. Formerly, for performance and security reason, the Django
web server shall be used only in development. In practice the IOS will run in an
offline environment and the only user will be the pilot instructor, so there are no
particular concerns in using it.
Otherwise, if the application development will continue in the future, a switch to
a more professional web server is strongly recommended, to achieve both better
performance with WebSockets streams and a greater reliability.
SQLite has been chosen as the database platform, because it allows to store all the
data in a single file inside the main application folder.
Those implementation choices make the application portable, it can be moved from
one machine to another by simply coping the root folder, without worrying about
databases and web servers configurations.

43

6 – IOS prototype

Figure 6.1. Current system architecture, optimize portability at perfor-
mance expense, HTTP requests and WebSockets are managed by the
Django development server

44

6 – IOS prototype

Figure 6.2. A possible system architecture for production, performances are
greater, WebSockets are managed by a dedicated component (Redis), although
the application will not be portable.

45

6 – IOS prototype

The application is packaged in a zip file with the following structure:

ios.zip

ios

installation

virtual machines

django doc

ios root

map

reposition

aircraft

failures

ios

csv export

csv store

fixtures

static

framework test.py

manage.py

ios database

Proceeding with order: installation is the folder that contains all the libraries
needed to install the IOS.
virtual machines contains 2 virtual machines, one with a map server and the other
with a preconfigured IOS.
django doc is an off-line version of the official Django and Channels documentation.
The folder ios root contains all the IOS files. After the installation steps it can be
moved from one system to another.
Folders: map, reposition, aircraft and failures are Django Apps, they correspond
to the first 4 sections in which the IOS is divided. The ios folder is the application
core, it contains the Django settings.py file, the FrameworkManager API and the
definition of data structures that allow to communicate with the Framework.
Folders csv export and csv store are related to the collection of CSV files necessary
to pair the IOS with different simulators.
The fixtures folder contains a backups of the SQLite database in different configu-
rations.
The static folder is a collection of all static files used by IOS pages (CSS, JavaScrip
libraries, images..).
The last 3 files are: the database used at runtime (ios datatbase), the python script
that allows to run Django administrative tasks (manage.py) and a suit of tests for
the Python Framework API (framework tests.py).
As is evident there is not a reference to the Administration section, because it is
not a Django App defined inside the IOS, but rather a customized version of the

46

6.1 – Provided virtual machines

administration functionalities already provided by Django.

6.1 Provided virtual machines

Two virtual machines have been set-up, one with an IOS and the other with a map
server, the IOS is already configured to work with a simulator used for research
purposes and known as Generic Regional Aircraft (GRA).
Virtual machines have been created with VirtualBox 5.1.28, they have IP addresses
statically configured, x.x.x.121 for the Map server and x.x.x.120 for the IOS. If
addresses are changed the IOS has to be reconfigured properly.
Credentials .txt files with login informations are available in VirtualBox directories.
The following procedure will launch a working version of the IOS, accessible on any
node of the GRA network with a browser.
Firstly start the map server virtual machine, open a terminal inside it and give the
following commands:

✩ sudo i p t a b l e s −F
✩ t i l e s e r v e r −g l i t a l y . mbt i l e s −b 0 . 0 . 0 . 0

Now the map server should be accessible on any GRA node using this URL:

http ://<map server ip >:8080

Then the GRA Framework master node has to be started together with the model
master and model scheduler processes.
Models have to be put on stop state.
When everything is working start the IOS virtual machine, open a terminal inside
it and give the following commands:

✩ cd ✩FRAMEWORKPATH
✩ . / bin / n c f s 2 s l a v e <gra maste r ip>

Open a second terminal and give the following commands:

✩ sudo i p t a b l e s −F
✩ source i o s v i r t u a l e n v /env/ bin / a c t i v a t e
✩ cd i o s v i r t u a l e n v / i o s r o o t
✩ python manage . py runse rve r 0 . 0 . 0 . 0 : 8 0 0 0

Now the IOS shall be accessible from any browser in the GRA network at the
address:

http ://< i o s i p >:8000

47

6 – IOS prototype

6.2 Installation procedure

The application can be installed both on Windows and Linux, minimum require-
ments is having installed Python in version 2.7, GCC and the Python development
packages, needed to build Python C extensions.
The Framework is necessary only if a connection with the simulator has to be es-
tablished, in this case to exchange data the application requires that a slave node
is running.
Otherwise for the purpose of loading data or configuring pages the IOS can be
launched without an active connection.
In this section will be explained how to install the IOS on CentOS 7 since is the
reference Operating System for the simulator department, installation steps should
be similar on Windows systems, will only be necessary to download the Windows
versions of the libraries available in the installation directory.
The procedure has been tested with CentOS 7.4 (1708) with GNOME desktop envi-
ronment, and will illustrate all the steps necessary to have a fully working solution
from a stock installation.
CentOS 7 already satisfy most of the needed requirements, the only missing pack-
ets are python-devel and gcc, they can be installed with administrator privileges
executing the following commands:

✩ sudo su
yum i n s t a l l python−d e v e l
yum i n s t a l l gcc

Those are the only packets that have to be provided by the system administrator,
and they are included in the official CentOS repositories. All the following steps
can be executed in user mode.
Firstly environment variables have to be set, this can be done by adding a line to
the .bashrc file located in the home directory.
Open a terminal and execute the following command:

✩ ged i t . bashrc

If PYTHONPATH is not already defined in the environment variables, past the
following line at the end of the document, otherwise redefine the PYTHONPATH
line.

export PYTHONPATH=✩PYTHONPATH:✩HOME/ . l o c a l / l i b /python2 .7/ s i t e−packages

Save and close the file. This ensure that python packets installed in user space are
seen by the IOS.
Next unzip ios.zip to the home directory, open a new terminal, and give the fol-
lowing commands:

✩ cd i o s / i n s t a l l a t i o n / packages / pip
✩ python setup . py i n s t a l l −−user

48

6.2 – Installation procedure

✩ cd . . / pytz
✩ python setup . py i n s t a l l −−user
✩ cd . . / s i x
✩ python setup . py i n s t a l l −−user
✩ cd . . / v i r t u a l e n v
✩ python setup . py i n s t a l l −−user
✩ cd . .
✩ pip i n s t a l l −−user −−no−index −f . / incrementa l
✩ pip i n s t a l l −−user −−no−index −f . / django
✩ pip i n s t a l l −−user −−no−index −f . / channe l s

Now all packages needed by the IOS shall be available on the system.
Next steps will create an environment where the IOS can run.

✩ cd ✩HOME
✩ mkdir i o s v i r t u a l e n v
✩ cd i o s v i r t u a l e n v
✩ v i r t u a l e n v env

Virtualenv can take several minutes to build the environment

✩ cd ✩HOME
✩ cp −R i o s / i o s r o o t i o s v i r t u a l e n v /

To activate the IOS environment give the following command:

source i o s v i r t u a l e n v /env/ bin / a c t i v a t e

Next commands will use the Django manage.py script, they are needed to set-up
an initial database.

(env) ✩ cd i o s v i r t u a l e n v / i o s r o o t
(env) ✩ python manage . py makemigrations
(env) ✩ python manage . py migrate

To set-up a database with some example data:

(env) ✩ python manage . py loaddata f i x t u r e s / a l l . xml

Instead, for a minimal working configuration:

(env) ✩ python manage . py loaddata f i x t u r e s /min . xml

Now everything is ready, the Django server can be started with the following com-
mand:

(env) ✩ python manage . py runse rve r 0 . 0 . 0 . 0 : 8 0 0 0

The IOS can be used by opening a browser to:

http :// l o c a l h o s t :8000

49

6 – IOS prototype

Login is required, initial credentials can be found in the credentials.txt file available
in the installation folder.
To make the IOS accessible from any node in the network is necessary to edit the
settings.py file.

✩ cd ✩HOME
✩ ged i t i o s v i r t u a l e n v / i o s r o o t / i o s / s e t t i n g s . py

In the following line add the IP address of the IOS machine.

ALLOWED HOSTS = [’ l o c a l h o s t ’ , ’ 1 2 7 . 0 . 0 . 1 ’]

Ensure that the machine has a valid network configuration. By default CentOS will
block incoming connections, the system administrator should edit default iptables
rules.
To temporary allow connections (until reboot), give the following command:

✩ sudo i p t a b l e s −F

The IOS will be accessible on any network node at the following URL:

http ://< i o s i p >:8000

Notice that the IOS is not already linked with the Framework, in the following
section will be explained how to do it.

6.2.1 Link with Framework

This section will list all the steps necessary to link the IOS with the Framework, this
guide will assume that the IOS is installed, there is a proper network configuration
and the Framework is configured with all the necessary environment variables.
A preliminary check can be performed by launching the Framework with the fol-
lowing commands.
If the machine is also the master node:

✩ cd ✩FRAMEWORKPATH
✩ . / bin / nc f s2 maste r

otherwise:

✩ cd ✩FRAMEWORKPATH
✩ . / bin / n c f s 2 s l a v e <master hostname>

From now on, all the steps will assume that the Framework is running.
For a proper management of models is also necessary to launch the model master
and the model scheduler processes on the master node and put all models on stop
state.
The IOS uses the Python Framework interface, the following command will ensure
that it works:

50

6.2 – Installation procedure

✩ cd i o s v i r t u a l e n v / i o s r o o t
✩ python f ramework test . py <master hostname>

If error messages are returned there is a Framework misconfiguration, the IOS will
not work or will have limited functionalities.
When everything is correctly set-up, the settings.py file has to be edited.

✩ ged i t i o s / s e t t i n g s . py

The following section has to be filled properly:

framework s e t t i n g s
FRAMEWORK = {

True i f you want to connect the Framework , Fa l se o t h e r w i s e
’ACTIVE ’ : True ,

The Framework master node hostname
’MASTER HOSTNAME’ : ’ l o c a l h o s t ’ ,

True i f you want to manage models , Fa l se o t h e r w i s e
’MODEL SCHEDULER’ : True ,

Here the names o f a l l model you want c o n t r o l wi th the IOS
’TOT FREEZE MODELS ’ : [’dummy ’ ,] ,

Sleep time between WebSockets updates
1 second i s a s a f e opt ion , on f a s t machines <= 0.5 i s OK
’THR SLEEP ’ : 1 ,
}

Then the IOS can be started:

✩ cd ✩HOME
✩ source i o s v i r t u a l e n v /env/ bin / a c t i v a t e
✩ cd i o s v i r t u a l e n v / i o s r o o t
(env) ✩ python manage . py runse rve r 0 . 0 . 0 . 0 : 8 0 0 0

Now the IOS will establish a connection with the Framework on start-up, otherwise,
to control a simulator the IOS variables have to be linked to the simulator ones,
in the IOS section of the Administrator Functionalities the complete procedure is
explained.

6.2.2 Link with map server

The IOS is not dependent from a map server, any map server who expose a web
interface compatible with web tiles XYZ format can be used.
To link a Map Server with the IOS is enough to modify the settings.py file:

✩ ged i t i o s v i r t u a l e n v / i o s r o o t / i o s / s e t t i n g s . py

and edit the following section:

51

6 – IOS prototype

map s e r v e r s e t t i n g s
change the URL with your own Map Server ,
MAP SERVER = {

prov ide an URL compat ib l e wi th XYZ t i l e format
’URL ’ : ’ http ://<map server ip>:<port>/{z}/{x}/{y } . png ’

p r o j e c t i o n standard used by the t i l e s e r v e r
’PROJECTION ’ : ’EPSG:3857 ’ ,

max t i l e s e r v e r zoom l e v e l
’MAXZOOM’ : ’ 18 ’ ,

min t i l e s e r v e r zoom l e v e l
’MIN ZOOM ’ : ’ 0 ’ ,

The p i x e l r a t i o used by the t i l e s e r v e r .
For example , i f the t i l e s e r v i c e a d v e r t i z e s
256 px by 256 px t i l e s but a c t u a l l y
sends 512 px by 512 px
images (f o r r e t i n a / h i d p i d e v i c e s)
then t i l e P i x e l R a t i o shou ld be s e t to 2 .
’TILE PIX RATIO ’ : ’ 1 ’ ,

T i l e s i z e used by the t i l e s e r v e r
’ TILE SIZE ’ : ’ [256 , 256] ’ ,

}

In case is used the provided map server virtual machine, will be enough to change
the URL to:

’ http ://<vm ip addr >:8080/ s t y l e s /osm−br i gh t /{ z}/{x}/{y } . png ’

6.3 Administrator functionalities

This part of the manual illustrates all the functionalities of the Administrator part
of the IOS and is addressed to the engineering department who configures the
software for instructor usage.
The Administrator section is accessible by clicking on the ”wrench icon” in the
menu-bar or directly at the following URL:

http ://< i o s i p >:8000/admin/

The Administrator part is divided in several sections: IOS, Authentication, Air-
craft, Failures, Map, Reposition.

52

6.3 – Administrator functionalities

Figure 6.3. Admin page, view of the index

53

6 – IOS prototype

Figure 6.4. Admin page, view of a table (ICD)

54

6.3 – Administrator functionalities

6.3.1 IOS

This section allows to bind the IOS variables to the one managed by the Framework,
there are 4 tables: ICD, IosName, IosRead, IosWrite.
All those tables allows to import and export rows in CSV. To import rows from
CSVs there is an ”import” button at the top right corner of each table’s page.
Example CSVs files are available in the csv store directory.
To export rows individually or in group, select them with a tick and then click on
the export functionality available in the drop-down menu at the page top.
Generated CSVs will be stored in the csv export directory of the IOS.

ICD

This table contains unique IDs of all the Framework variables that will be read or
written by the IOS.
Each row has the following fields:

❼ Area: Memory area the variable belongs to.

❼ Version: Memory area version.

❼ Unique ID: The Framework variable id.

❼ Created: Date and time of row first creation.

❼ Updated: Date and time of last row update.

Beside the standard import/export functionalities, the interface allows to load rows
directly from Framework by providing a list of comma separated area names.

Ios Name

This table has a list of names corresponding to IOS variables, each row has a single
field, Name, that is a string of text.
After the IOS installation this table should be already populated with a set of
variables used by the IOS functionalities, if not, import the provided ios names.csv.
Names of this table should be changed only when the Python code of the IOS is
modified or new functionalities are implemented.

55

6 – IOS prototype

Ios Read/Ios Write

Those tables perform the binding between ICD Framework variables and IOS vari-
ables, respectively for reading and writing operations.
Each row has the following fields:

❼ Ios name: A foreign key to an antry of the IosName table

❼ ICD: A foreign key to an entry of the ICD table

❼ Scale factor: An optional number that will be multiplied by the value that
is retrieved or written.

Simulator first set-up

This section explains how to perform a first variable mapping.
The described procedure refers to the GRA simulator for which CSV files are al-
ready provided.
In case of a different simulator the procedure is the same but ios read.csv and
ios write.csv files must be changed with a correct mapping.

1. Open the ios read.csv and ios write.csv files available in the csv store direc-
tory of the IOS, and take notice of the different memory area names that
appear in files, (they should be 3 or 4 area names).
From the Administrator page click on icds and then on IMPORT ICD FROM
FRAMEWORK.
In the import page click on IMPORT FROM FRAMEWORK button.
A list of all available memory area should be displayed, now in the input box
write down the area names collected from the CSV and click again on the
IMPORT FROM FRAMEWORK button.
All the Framework variables available in the selected memory areas will be
imported.
At the end of the process click on icds.
The imported variables should be available in the ICD table.

2. From the Administrator page click on Ios names, a list of IOS variables should
be already available.
If not, click on IMPORT IOS NAME CSV, select the ios name.csv file from
the csv store directory of the IOS and click the SUBMIT button.

3. From the Administrator page click on Ios reads, then on IMPORT IOS READ
CSV, select the ios read.csv from the csv store directory of the IOS and click
the SUBMIT button.

56

6.3 – Administrator functionalities

4. From the Administrator page click on Ios writes, then on IMPORT IOS
WRITE CSV, select the ios write.csv from the csv store directory of the IOS
and click the SUBMIT button.

Now the mapping is complete, to make it effective and use the IOS to control the
simulator is necessary to reboot the Django server.

6.3.2 Aircraft

This section allows to create a configuration for a specific aircraft.
If the IOS has been installed loading the all.xml file, there is already an entry for
the ATR-72 of the GRA simulator.
To create a new Aircraft configuration click on the ADD AIRCRAFT button on
the top right corner of the page and fill the following fields:

❼ Name: Name of the aircraft (must be unique)

❼ Active: Put a tick to make this configuration active.
Only an aircraft at a time can be active, if there is another active aircraft an
error is returned.

❼ Fuel Tanks: An aircraft can have up to 10 fuel tanks.
To add a fuel tank click on Add another fuel tank and fill the following fields:

– Name: Name of the tank that will be displayed on the IOS Aircraft
page.

– Max Capacity: Maximum tank capacity in pound.

– Initial Fuel: Initial tank fuel in pound.

The IOS Aircraft page will display the current active configuration.

6.3.3 Authentication

This section allows to create new IOS users.
After the installation is already available the admin user that has full access to the
Administrator page.
To create a new user click on ADD USER button, provide a username and a
password and click on SAVE.
The new user will have access to all IOS pages except the Administration section.

57

6 – IOS prototype

6.3.4 Failures

This section allows to define failures.
It is divided in 4 tables: FailureCategories, Failures, FailureLists.
For each failure triggers can be defined, otherwise there is not a thread that checks
for trigger occurrences and activate failures. This is left to future IOS developments.
By now are available all the data structures necessary to perform trigger checks.

Failure categories

Is a collection of categories in which failures can be grouped.
A category can be created by clicking on ADD FAILURE CATEGORY button and
providing a name.

Failures

Is the collection of available failures, to add a new failure click on ADD FAILURE
button and fill the following fields:

❼ Category: A foreign key to an item of the category table

❼ Name: Name given to the failure, it will be visible in the Failure IOS page.
Each name must be unique.

❼ Active: A Boolean value, is True when the failure is activated.

❼ Description: An optional description for the failure, if present will be dis-
played in the Failures page.

❼ Trigger Type: Failures can be activated manually or by events, here are
defined all the events that trigger a failure, options are:

– None: No trigger assigned.

– Altitude Above: Failure is triggered when the altitude is above a
specified value.

– Altitude Below: Failure is triggered when the altitude goes below a
specified value.

– Speed Above: Failure is triggered when the speed is above a specified
value.

– Speed Below: Failure is triggered when the speed goes below a specified
value.

– Weight on wheels: Failure is triggered when the landing gear touches
the ground.

58

6.3 – Administrator functionalities

❼ Altitude: Required only when a trigger of type Altitude Above or Altitude
Below is selected, it is expressed in feet.

❼ Speed: Required only when a trigger of type Speed Above or Speed Below is
selected, is expressed in knots.

❼ Failure Parameters: A set of failure variables and corresponding values
written in memory areas when a failure is activated or disabled.
To Add a new variable click on Add another failure parameter and fill the
following fields:

– Ios Name: A drop down list with all the available IOS variables ids,
select one to write.

– Value On: The value to be written in the corresponding memory area
variable when the failure is enabled.

– Value Off : The value to be written in the corresponding memory area
variable when the failure is disabled.

There is no limit to the number of variables that a failure can write.

Failures can be imported and exported in XML format in a similar way as tables
of the IOS section are imported and exported in CSV.
The XML file should have this structure.

<?xml version=” 1 .0 ”?>
<data>
< f a i l u r e category=”cat name” name=” fa i l name ”>
<parameter ios name=” ios name ” o f f=” va l ” on=” va l ”/>

</ f a i l u r e>
< f a i l u r e category=”cat name” name=” fa i l name ”>
<parameter ios name=” ios name ” o f f=” va l ” on=” va l ”/>

</ f a i l u r e>
. . .

</ data>

All the failures imported in this way will have by default the trigger field set to
None.

Failure lists

This section allows to create lists of failures, to create a list click on ADD FAILURE
LIST and follow the procedure.
Failure lists will be displayed in the Failures IOS section and can be loaded from a
drop-down menu.

59

6 – IOS prototype

6.3.5 Map

This section has a single table Monitor, it allows to create a list of variables that
will be monitored on the Map IOS page.
To add a new variable click on ADD MONITOR and fill the following fields:

❼ Name: A label to be displayed for the monitored variable.

❼ Variable: A drop down list that refers to the row of the IosName table.
Choose a variable name to be monitored.

6.3.6 Reposition

This section allows to defines coordinates and other parameters that are written
when a reposition is performed.
It is divided in the following tables: Airport, Position, InstructorPosition, Runway.

Airport

This table is made of a list of names, to add a new airport click on ADD AIRPORT
button and enter an airport name.

Position

This table contains all the values that identify an aircraft position and that are
written in Framework variables during a reposition.
To add a new position click on the ADD POSITION button and fill the following
fields:

❼ Name: A name for the position, (eg. ”airport”-”runway”).

❼ Latitude: A float value in degrees.

❼ Longitude: A float value in degrees.

❼ Heading: A float value in degrees.

❼ Pitch: A float value in degrees.

❼ Roll: A float value in degrees.

❼ Ramp: A float value in degrees.

❼ Altitude unit: A drop-down list, available choices are meters or feet

❼ Altitude type: A drop-down list, available choices are MSL or AGL

60

6.3 – Administrator functionalities

❼ Altitude: A float value in meters or feet

❼ Speed unit: A drop-down list, available choices are: m/s, knots or mach.

❼ Speed: A float value in: m/s, knots or mach.

In this table coordinates are expressed in decimal degrees, if a coordinate is in
Degree Minutes Seconds (DMS) format can be loaded with the following procedure:

❼ Open the Reposition IOS page (not the administrator section) and enter the
DMS coordinates in the Customize Position section.
Give a name and click on SAVE

❼ The saved position will be available in the Position table where it can be
furtherly customized.
A reference to the position is also present in the InstructorPosition table, it
can be deleted, the position will be preserved.

Instructor positions

Those are positions saved by instructors while they use the IOS, otherwise they
can be created manually by clicking on ADD INSTRUCTOR POSITION button
and filling the following fields:

❼ Name: A name to be given to the instructor position.

❼ Position: A drop down list that refers to the items of the Position table.

Runway

This table allows to define parameters for airport runways, such as the take off
position or a list of in-flight positions to train pilots for landings.
A new table row can be created by clicking on ADD RUNWAY button and filling
the following fields:

❼ Airport: A drop-down list that refers to items of the Airport table.

❼ Name: Name assigned to the runway, a character string.

❼ Take off position: The start position for the aircraft take-off, is a drop-down
list referring to items of the Position table.

❼ Landing Positions: A set of in-flight positions to train pilots for landings,
a new Landing Position can be added by clicking on Add another landing
position and filling the following fields:

– Name: Name for the landing position.

61

6 – IOS prototype

– Category: A drop-down list, available choices are: Front Center, Front
Right, Front Left, Reverse Left, Reverse Right.
Those choices will define in which category the item will be displayed
inside the Landing Reposition IOS page.

– Position: A drop-down list referring to items of the Position table.

There is no limit to the number of in-flight positions that can be defined per
each runway.

6.3.7 Data management

Django provides a set of commands for loading and exporting data, for a single
App or for the whole project. Data exports are called fixtures.
The following commands must be given in an active environment and from the
ios root folder.
To export all data in XML give the following command:

(env) ✩ python manage . py dumpdata −−indent 2 −−format xml > f i l ename . xml

To export data for a single App (eg. Aircraft, Reposition, Failure..) in XML give
the following command:

(env) ✩ python manage . py dumpdata app name −−indent 2 −−format xml > f i l ename . xml

To load data from an exported XML file:

(env) ✩ python manage . py loaddata f ix ture name . xml

To delete the project database:

(env) ✩ f i nd . −path ”✯/migrat ions /✯ . py” −not −name ” i n i t . py” −de l e t e
(env) ✩ f i nd . −path ”✯/migrat ions /✯ . pyc” −de l e t e
(env) ✩ rm −r f i o s da t aba s e

After the reset is necessary to set-up again the initial database as explained in the
installation procedure.

6.4 User functionalities

This section is addressed to instructor pilots or other operators that will use the
IOS to control the simulator.
The IOS interface is composed of a top bar where are located controls to start stop
pause and resume the simulation, the current date and time of the simulation, the
time elapsed since the start button has been pressed and a drop down menu with
a counter where are listed important events.
An event can be an active failure or a setting that changes the normal aircraft
behaviour, such as the activation of ”Quick Start Engine” and ”No Consumption”
modes.

62

6.4 – User functionalities

On the left side of the screen there is a menu-bar that gives access to different
IOS pages. Relevant sections are: Home and Map (House Icon), Reposition (Globe
icon), Aircraft (aircraft icon) and Failures (flash icon).

6.4.1 Home and Map

In this section there is a Map where a marker shows the current aircraft position
and heading.
The aircraft can be locked or unlocked to the map.
When locked, the marker will be fixed at screen centre, the map will move and
rotate according to the simulation coordinates.
When unlocked, the map can be panned and zoomed, the aircraft will move inde-
pendently.
Depending on the settings applied by the Administrator may be also available a
section to monitor relevant simulation variables.

63

6 – IOS prototype

Figure 6.5. Home and Map page as is displayed on a desktop screen

64

6.4 – User functionalities

Figure 6.6. Home and Map page as is displayed on a tablet screen, the simulation
is started and the ”Events” list is open.

65

6 – IOS prototype

6.4.2 Reposition

This section allows to move the aircraft in the virtual environment and to set a
date and time.
Repositions can be applied only when the simulation is stopped. Settings will
become effective as soon as the start button in pressed.
There are three ways to select a position:

❼ By manually filling coordinates, heading, speed and altitude in the ”Cus-
tomize Position” section.

❼ By selecting airport and runway from a drop down menu, in this case the
”Customize Position” section will be automatically filled

❼ By clicking on the displayed map. In this case the ”Customize Position”
section will be filled with the coordinates of the point clicked.

The ”Customize Position” section has also buttons to change the coordinates di-
rections north and south for latitude east and west for longitude.
The speed unit: knots, m/s or mach.
The altitude unit: feet or meters.
The altitude type: MSL or AGL.
Positions can also be saved and then reloaded. There is a Save Position button to
memorize a position and a Load Position drop-down menu where saved positions
can be retrieved.
When all the fields are filled, clicking on Set Position will send the coordinates to
the simulator.
In this page there are also controls to set the date and time. A date can be chosen
in the following ways:

❼ Manually, providing a string in the format: dd/mm/yyyy hh:mm

❼ By an interactive widget displayed when the calendar icon is clicked.

❼ By selecting a season from a drop down list, each season when selected will
load a different date-time string.

The selected time will become effective only when the Set date and Time button is
clicked.
On the page top there is a tab, it gives access to the Landing Reposition section.
Here can be selected an in-flight position near an airport runway, the procedure is
the following:

❼ Stop the simulation

❼ Select an airport and a runway, 5 drop down menus will be populated with
the available in-flight positions.

66

6.4 – User functionalities

❼ Apply customizations if needed by changing heading, altitude and speed.

❼ Click the set position button to apply settings and start the simulation to see
changes.

Figure 6.7. Reposition page as is displayed on a desktop screen, the ”Load
Position” menu is opened

67

6 – IOS prototype

Figure 6.8. Reposition page as is displayed on a tablet screen

68

6.4 – User functionalities

Figure 6.9. Landing Reposition page

69

6 – IOS prototype

6.4.3 Aircraft

In this section there are all the settings that apply to the simulated aircraft such
as fuel quantities and switches.
The fuel quantity can be controlled per each tank. When the simulation is running
fuel level is shown both in a numeric and a graphical interface where aircraft tanks
are reproduced.
When simulation models are stopped or paused is possible to adjust the fuel quan-
tity per each tank, by moving sliders or by entering the fuel as a number in pound.
There are then other settings with on/off switches that allows to control aircraft
parameters.

Figure 6.10. Aircraft page

70

6.4 – User functionalities

6.4.4 Failures

This module contains all settings relative to failures.
Failures can be displayed in a single list or divided by category.
In the failure title there are two buttons, one to enable/disable the failure and the
other to add the failure to a custom list.
Clicking the failure title will open the body section. Here a description is provided,
if present, and a form for triggering the failure is shown.
The trigger type can be selected from a drop-down list, depending on the selected
trigger type may be required to enter additional values for speed (knots) or altitude
(feet).
Failures added to a custom list can be enabled, disabled and triggered all together.
Lists can be customized by adding or removing failures and saved in database by
providing a name and clicking on save button.
Saved lists can be loaded from a drop-down menu.

71

6 – IOS prototype

Figure 6.11. Failure page as is displayed on a desktop screen, The ”Hy-
draulic Failure” is active and its section is expanded, also the ”Load List”
drop-down is opened

72

6.4 – User functionalities

Figure 6.12. Failure page as is displayed on a tablet screen, all failures loaded in
the custom list have been activated

73

74

Chapter 7

Conclusions

The IOS was tested on a FTD called GRA used by Leonardo AD for research pur-
poses.
The simulator can emulate different aircraft of the ATR family. The IOS was con-
figured for the ATR-72, it allowed a complete control of simulation models.
Start, stop, pause and resume operations were correctly performed.
Was also possible to move the aircraft using the Reposition page. Different airports
and runways coordinates have been loaded and tested.
For what concerns aircraft controls was possible to set fuel levels and enable/disable
the QuickStart Engine function.
Quick Start allows to turn on engines without executing a complete start-up pro-
cedure on the simulator.
Readings of parameters such as aircraft coordinates and heading were performed
during flight and the live position was correctly displayed as a moving marker on
the map. Also Fuel levels and weights were displayed and live updated.
Was not possible to inject failures, because they are not provided by the GRA
simulator, otherwise every action performed by the IOS relies on reading/writing
variables and managing models, this capabilities have been tested, so they are ex-
pected to work when supported.
The new Simulation Framework is under development and the IOS integration was
also an opportunity to find bugs. During the IOS testing, was discovered and fixed
a problem that prevented the correct loading of variables when models were stopped
and restarted.

75

7 – Conclusions

7.1 Future developments

By now the integration of the Simulation Framework with web technologies requires
an external library to exchange data, in this peculiar case was the Python Frame-
work API that allowed Django to read and write variables.
The C++ Framework and the Django environment are two distinct entities, this
implies a delay in data exchanges and a fairly complex architecture to be managed,
there is from one side the Framework, written in C++, and on the other the web
infrastructure (web server, Django, SQLite, JavaScript, HTML pages, CSS).
During the application development was noticed that sometimes the engineering
department needs to implement quickly basic functionalities such as collection of
buttons or drop-down lists for which the complexity of a web framework is not
needed.
The current architecture can be simplified by integrating the WebSockets manage-
ment inside the Simulation Framework.
WebSockets do not require a web server, the connection is opened client-side by
JavaScript when HTML pages are displayed in browsers. If the Framework can
send and receive data with the WebSockets protocol, the Python/Django part can
be removed.
Some functionalities such as management of user sessions and ORM support will
be lost, otherwise portable web interfaces will be easily created.
All the files (HTML pages JavaScript and CSS) will be collected in a folder, and
copied where the IOS is needed.
The software will behave like a client application, but without the need to be com-
piled and installed on different platforms.

76

7.1 – Future developments

Figure 7.1. View from the GRA simulator cockpit, the IOS is in operation on a tablet

77

78

Appendix A

Acronyms

IOS Instructor Operator Station

GUI Graphical User Interface

HTML HyperText Markup Language

API Application Programming Interface

ORM Object Relational Mapping

HTTP HyperText Transfer Protocol

CSV Comma Separated Values

FAA Federal Aviation Administration

EASA European Aviation Safety Agency

FFS Full Flight Simulator

FTD Flight Training Device

I/O Input/Output

AMI Aeronautica Militare Italiana

GCA Ground Controlled Approach

VFR Visual Flight Rules

ICAO International Civil Aviation Organization

PDF Portable Document Format

TCP Transmission Control Protocol

79

A – Acronyms

IP Internet Protocol

OS Operating System

AJAX Asynchronous JavaScript and XML

XML eXtensible Markup Language

JSON JavaScript Object Notation

W3C World Wide Web Consortium

IETF Internet Engineering Task Force

RFC Request For Comments

SQL Structured Query Language

JDK Java Development Kit

SDK Software Development Kit

MVC Model View Controller

MTV Model Template View

WSGI Web Server Gateway Interface

DBMS Database Management System

IDE Integrated Development Environment

CSS Cascading Style Sheets

URL Uniform Resource Locator

GIS Geographic Information system

ICD Interface Control Document

AGL Above Ground Level

MSL Mean Sea Level

GRA Generic Regional Aircraft

GCC GNU Compiler Collectiont

DMS Degree Minutes Seconds

ATR Aerei di Trasporto Regionale

80

Bibliography

[1] Federal Aviation Administration, AC 120-40B - Airplane Simulator Qualifica-
tion, July 29 1991

[2] Federal Aviation Administration, AC 61-136A - FAA Approval of Aviation
Training Devices and Their Use for Training and Experience, November 17
2014

[3] European Aviation Safety Agency, Certification Specifications for Aeroplane
Flight Simulation Training Devices, July 4 2012

[4] https://www.djangoproject.com/ Django Project, November 15 2017
[5] https://spring.io/ Spring, November 15 2017
[6] https://laravel.com/ Laravel, November 15 2017
[7] https://nodejs.org/it/ Node.js, November 15 2017
[8] http://rubyonrails.org/ Ruby on Rails, November 15 2017
[9] https://www.xamarin.com/ Xamarin, November 15 2017

81

	List of Figures
	Introduction
	Flight Simulators and Instructor Operating Stations
	Full Flight Simulator
	Flight Training Device
	Instructor Operator Station
	How simulator works

	Objective of thesis

	Requirements
	Instructor interviews
	Functional categories
	Map & Generic Controls
	Reposition and Time
	Aircraft Settings & Fuel
	Failures & Circuit Breakers
	Weather
	Payload
	Ground Controlled Approach
	In-flight Refuel
	Communications

	Engineers interview
	GUI design

	Architecture
	Existing architectures
	Leonardo Aircraft Division
	Other IOS software analysed
	Non functional requirements
	Conclusions

	Chosen architecture
	AJAX
	WebSockets
	ORM

	Implementation analysis
	Spring MVC
	Laravel
	Ruby on Rails, Node.JS
	Xamarin
	Django
	Conclusions

	Django, description and customization
	MVC pattern
	Project structure
	settings.py
	urls.py
	Channels
	Admin pages and GeoDjango
	Templates and Bootstrap
	Maps and geocoding

	Simulation Framework integration
	Framework Manager API
	Models management
	Ios and connection management
	Writings
	Readings

	IOS prototype
	Provided virtual machines
	Installation procedure
	Link with Framework
	Link with map server

	Administrator functionalities
	IOS
	Aircraft
	Authentication
	Failures
	Map
	Reposition
	Data management

	User functionalities
	Home and Map
	Reposition
	Aircraft
	Failures

	Conclusions
	Future developments

	Acronyms
	Bibliography

