
POLITECNICO DI TORINO

Collegio di Ingegneria Informatica, del Cinema e Meccatronica
Classe LM-32

Corso di Laurea Magistrale in
INGEGNERIA INFORMATICA (COMPUTER ENGINEERING)

Design and development of a full-stack platform
for validation of the WRF weather forecasts model

Candidato: Relatore:

Marco Bergesio Prof. Daniele TRINCHERO

 Correlatori:

 Giovanni Colucci

 Massimiliano Manfrin

 Federico Spanna

 Andreoli Valentina

Anno Accademico 2019 - 2020

https://didattica.polito.it/pls/portal30/sviluppo.scheda_collegio.html?c=CL003
https://didattica.polito.it/laurea_magistrale/ingegneria_informatica/it/

2

3

ABSTRACT

Background

La tecnologia diventa giorno dopo giorno sempre più pervasiva in ogni ambito, anche in

quelli apparentemente da lei più distanti, con lo scopo di cercare di migliorare l’attività

dei settori storicamente non tecnologici, quali ad esempio l’agricoltura. Proprio in

questo campo, oggigiorno sono disponibili molti modelli matematici che simulano la

crescita delle piante e lo sviluppo delle loro malattie. Tali modelli operano con dati

raccolti in tempo reale da appositi sensori posizionati nei campi coltivati. Grazie a questi

sensori e all’attività di analisi dei dati è possibile prevenire l’insorgere delle malattie

agendo in anticipo con opportune contromisure. Contemporaneamente, sono

disponibili molte strategie per il calcolo di previsioni meteorologiche che potrebbero

essere di supporto a tali modelli, ma questi due mondi che condividono un terreno

comune non sono in comunicazione tra loro.

Obiettivo

Questa tesi vuole mettere in contatto il mondo della meteorologia con quello

dell’agrometeorologia, introducendo l’utilizzo delle previsioni meteorologiche

nell’applicazione dei modelli agrometeorologici. Se fossero disponibili non solo dati

raccolti in tempo reale, ma anche dati di tipo previsionale, i modelli potrebbero produrre

risultati migliori. Questo renderebbe possibile intervenire con ancora più anticipo per

prevenire le malattie delle piante causate dalle condizioni meteorologiche. Ma prima di

poter introdurre l’utilizzo delle previsioni meteorologiche nell’applicazione dei modelli

agrometeorologici, è obbligatoria una fase di validazione dei dati previsionali per

valutarne la bontà e il grado di affidabilità. Questa tesi fornisce il punto di partenza per

effettuare tali operazioni di validazione dei dati previsionali.

Metodologia

Per raggiungere l’obiettivo descritto, si propone la realizzazione di una piattaforma web

che raccolga i dati previsionali, forniti dal Dipartimento di Fisica dell’Università degli

4

studi di Torino, e i dati misurati dalle stazioni agrometeorologiche della Regione

Piemonte. Questi dati sono debitamente organizzati e memorizzati in un database. Per

permettere le operazioni volte a validare i dati, l’applicazione fornisce un’architettura a

plugin, in grado di permettere in modo facile e veloce l’aggiunta di nuove funzionalità in

futuro.

Conclusioni

Questa applicazione permette di validare le previsioni meteorologiche e di effettuare

miglioramenti nel loro calcolo se necessari. Se da questa analisi risulterà possibile

utilizzare le previsioni meteorologiche nell’impiego dei modelli matematici fitosanitari,

si apriranno nuovi ed interessanti scenari per quanto riguarda il mondo dell’agricoltura,

che potrà così sempre più soddisfare le sentite esigenze di un approccio ecosostenibile

volto alla salvaguardia dell’ambiente, limitando l’utilizzo delle risorse non rinnovabili e

la produzione di sostanze inquinanti. L’impiego della tecnologia in tale settore permette

di anticipare il verificarsi degli eventi e quindi di agire in modo opportuno per limitarne

i danni che si verificheranno, utilizzando solamente le risorse necessarie e niente più.

5

ABSTRACT

Background

Technology becomes more and more pervasive day after day in every area, even in those

apparently more distant from it, with the aim of trying to improve the activity of

historically non-technological sectors, such as agriculture. Precisely in this field, many

mathematical models are available today that simulate the growth of plants and the

development of their diseases. These models work with data collected in real time by

special sensors located in the cultivated fields. Thanks to these sensors and data analysis

it is possible to prevent the onset of diseases by acting in advance with appropriate

countermeasures. At the same time, many ways are available for calculating weather

forecasts that could support these models, but these two worlds that share common

aspects are not in communication with each other.

Goal

This thesis wants to connect the agrometeorological world with the meteorology one,

introducing weather forecast in application of agronomic models. If not only real-time

collected data were available, but also weather forecast ones, models could produce

better results. This would make it possible to act even earlier to prevent plant diseases

caused by weather conditions. But before being able to introduce the use of

meteorological forecasts in the application of agrometeorological models, a validation

phase of the forecast data is required to assess its goodness and degree of reliability.

This thesis provides the starting point for performing these validation operations of the

forecast data.

Methods

To achieve the described target, we propose the creation of a web platform that collects

forecast data, provided by the Physics Department of the University of Turin, and data

measured by the agrometeorological stations of the Piedmont Region. These data are

duly organized and stored in a database. To allow operations aimed at validating data,

6

application provides a plug-in architecture, capable of allowing the addition of new

features in the future quickly and easily.

Conclusions

This application allows validation of weather forecasts and correction and improvement

in their calculation if necessary. If from this analysis it will be possible to apply

meteorological forecasts in the use of phytosanitary mathematical models, new and

interesting scenarios will open up regarding the world of agriculture, which will thus

increasingly be able to satisfy the felt needs of an eco-sustainable approach aimed at

safeguarding the environment, limiting the use of non-renewable resources and the

production of polluting substances. The use of technology in this sector allows to

anticipate the occurrence of events and therefore to act appropriately to limit the

damage that will occur, using only the necessary resources and nothing more.

7

8

Index

1 Introduction .. 11

2 WRF model ... 14

2.1 Background .. 15

2.2 WRF and its applications .. 16

2.3 Output .. 17

3 Weather stations .. 20

3.1 Background .. 20

3.2 Weather station network .. 22

3.3 Technical features .. 23

4 Application overview .. 25

5 Technical features .. 30

5.1 Python .. 30

5.2 Flask ... 30

5.2.1 Application factory pattern .. 31

5.2.2 Routes and view function ... 32

5.2.3 Configuration .. 33

5.2.4 Blueprints .. 34

5.2.5 Templates ... 35

5.2.6 Bootstrap .. 36

5.2.7 Error handling ... 37

5.2.8 User authentication .. 38

5.2.9 Web form and Flask-WTF ... 41

5.3 Database .. 45

9

5.3.1 Database and DBMS ... 51

5.3.2 Python connector and SQLAlchemy ... 52

5.4 Python multiprocessing ... 53

5.5 Python scheduler ... 58

5.6 Plugin architecture ... 59

5.7 Deployment ... 61

6 Conclusions ... 63

7 Bibliography .. 65

10

11

1 Introduction

Meteorology is a branch of the atmospheric sciences which is focused on study

atmospheric chemistry and atmospheric physics, with a particular regard on weather

forecasting. Weather forecasting is the application of all scientific and technological

knowledge to predict the atmosphere condition for a given location and a given time.

Weather forecasting have a scientific approach since the 19th century. To produce

weather forecast, a large quantity of data about the current atmosphere situation has

to be collected.

Agrometeorology is the application of meteorological knowledge in agricultural

production and keeps into account relationship between atmosphere, soil and

vegetation. Agrometeorology is fundamental to choose which type of production grows

in a particular area and what improvements can be adopted depending on the weather

conditions.

It is clear that meteorology and agrometeorology have a lot of things in common, but

they do not communicate so much. They have a shared starting point which is the use

of weather forecast collected data, but they proceed in different directions, each one

doing its own stuff. It is also clear that agrometeorology could get a big help from

meteorology, because nowadays a large number of agrometeorological mathematical

models are available that are able to simulate phenological phases of plants and also of

plants disease. Until now, all these models worked on historical data or, at most, with

real-time data. In the agronomic field, models provide, for example, the daily simulation

of growth, development and productivity of many plant species, as well as the use of

the water content of the soils, and also the simulations on the effects of diversified

fertilizations on crop yield in the various stages of vegetable development. In the

phytosanitary1 field, the knowledge of the relationships between the dynamics of

climatic factors and the biological and phenological behaviour of the organisms

constituting the agricultural biotic complex is an element of great importance for the

1 Phytosanitary: relating to the health of plants

12

improvement and rationalization of crop management. In the entomological2 field,

categories of mechanistic models have been developed that can numerically link

environmental variables to the development of specific insect resources.

At an operational level, some regional authorities have started to adopt the most tested

modelling solutions on a permanent basis, in order to respond to requests coming

directly from the agricultural world (data supply, alert and forecasting services). At the

same time, the recent regulations issued by the European Community on plant health

protection and weed control attribute an important role to agrometeorological supports

and to the use of modelling tools as fundamental supports for integrated crop

management. In this point of view, agrometeorological modelling can be a great help

because current knowledge allows to simulate, estimate and reconstruct a large number

of variables of fundamental importance, which can be used both directly to provide

climate information and knowledge of the territory, and indirectly as guide for the

application of more complex modelling tools linked to soil-environment-cultivation

interaction.

If to all of this is given a predictive meaning and not just a diagnostic one, the value of

modelling applications increases exponentially. The possibility of obtaining numerical

climatic forecast information of a medium-term, to be subjected to a validation process

using data actually measured, would allow the development of very useful operational

supports in the area, making possible planning the correct crop management

interventions. All this therefore requires both research in the modelling field (validation

and processing) and a technical-operational support system in order to make this big

amount of information accessible to users.

This thesis wants to go in that direction: it wants to try to connect the two unlinked

worlds, meteorology and agrometeorology. But before integrate weather forecast in

agronomic modelling it is essential to conduct a rigorous and precise study in order to

understand how accurate weather forecast are. This step is fundamental because

weather forecasts are strongly influenced by the geographical territory in which are

2 Entomology is the branch of zoology concerned with the study of insects.

13

computed. It is not rare that even adopting the same weather forecast model we obtain

completely different results depending on the physics features land. If we find the

specific way in which weather forecast models act in the geographical land of interest,

it would be possible to apply some corrections in order to limit intrinsic errors, obtaining

a more precise and reliable forecast value. This is the goal of this job: we want to realize

a platform that works as starting point, making easy to perform all needed validation.

The activity of acquiring data from meteorological stations and meteorological forecasts

and the organization of such data intends to create the starting point for building a

system that supports agricultural activities. The aim is to optimize agronomic practices

in order to manage water resources, chemicals products for agriculture and fertilizers

more and more carefully and rationally. The integrated system of data acquisition on

the territory (through field monitoring and meteorological stations), the elaboration and

diffusion of technical information on the territory will allow to achieve this objective.

We realized a collaboration between Politecnico di Torino, the research group in

Atmospheric Physics and Meteorology of the Physics Department of the University of

Turin which provides weather forecast information using the WRF model and the

Agrometeorological Section of the Piedmont Council which provides measured data.

14

2 WRF model

Weather forecasts used in this thesis are computed using the WRF (Weather Research

and Forecast) model, version 4.1.2.

The Weather Research and Forecasting (WRF) Model is an atmospheric model

developed for numerical weather prediction (NWP) and for research [1]. The effort to

develop WRF began in the latter 1990's and was a collaborative partnership of many

entities, like the National Center for Atmospheric Research (NCAR), a US federally

funded research and development center focused on meteorology, climate science,

atmospheric chemistry, solar-terrestrial interactions, environmental and societal

impacts, the U.S. Air Force, the Naval Research Laboratory, the University of Oklahoma,

and the Federal Aviation Administration (FAA).

Since its first release on December 2000 WRF has become very popular not only among

scientific community in US: nowadays it is the most used atmospheric model all over the

world and it has a large worldwide community of registered users (a cumulative total of

over 48,000 in over 160 countries [2]). Figure 1 shows a graphical representation of WRF

growth starting from 2000 up to now.

Figure 1: WRF Registration from 2000 to 2020

15

2.1 Background

During the 1990s the fifth-generation Pennsylvania State University and NCAR

Mesoscale Model (MM5) was very popular in the research community because it was

able to work with smaller atmospheric scale and because it could run on workstation-

level computer. However, even if that model was nonhydrostatic3, it was not optimized

to work with such small areas, it was not accurate and it lacked a framework helping the

addition of advanced physic parameters or that would support many desirable software

attributes, like portability, parallelism, extensibility and APIs (Application Programming

Interface). Those were the main causes that lead to start developing a new model, the

WRF.

Compared to the previous models, such as the MM5, what emerged was a superior in

high-order numerical accuracy and scalar conservation properties. Moreover, an

innovative framework for the model’s dynamics, physics and input-output components

was added. This software architecture united the modelling components logically and

efficiently, allowing system extensibility, ease of development, and scalable massively-

parallel operation. Another development attempt addressed the pre-processors for

domain and input preparation while a separate effort was related to data assimilation.

Working on these task leads to the release of the first WRF model in December 2000.

WRF is officially supported by NCAR, which also provides regular workshops and

tutorials on it. WRF’s widespread acceptance is in part due to its being provided without

cost, copyright encumbrance, or restrictions on modification. Though WRF is mature, it

continues to advance. The system is being vigorously applied in new research directions,

real-time settings, and marketplace opportunities.

Starting from its releasing, WRF has grown during the time, and in July 2018 was

released the 4th version, also known as ARW (Advanced Research WRF), more flexible

and updated to the last features, making it more and more used above all in climate

research. Indeed, its potentiality in resolving smaller-scale atmospheric and land surface

3 In LAM (Limited Area Model) there are two main categories: hydrostatic and nonhydrostatic models. The
latter are the vanguard of meteorological modelling and they are capable to works with smaller areas.

16

processes exceeds the traditional global models used for climate projections in

particularly for regional areas.

2.2 WRF and its applications

WRF produces atmospheric simulations. The process consists of two phases: the first

one is about configuration of the model domain(s), ingest the input data, and prepare

the initial conditions, and the second one is the execution of the forecasting model. The

forecast model components operate within WRF’s software framework, which takes

care of manage the I/O operations and the parallel-computing communications.

WRF simulation starts with the WRF Pre-processing System (WPS). First of all, WPS

inserts all geographical information, such as the topography of the land use, to set up

the user’s model domains. Next, it takes, reformats, and interpolates the required

atmospheric data to the user’s domains. Lastly, the input fields are put on the model’s

vertical levels and lateral boundary conditions are generated. At this point WRF is ready

to run.

By design, WRF can also be configured to perform idealized simulations. This specific

aspect allows users to study processes in a simplified setting by varying some

parameters and initial conditions. WRF currently comes with 12 different idealized

scenarios, such as flow over topography, supercell convection and tropical cyclones.

Moreover, each user can construct other different idealized configurations.

WRF can also be executed as a global model on a latitude-longitude grid.

WRF has been extensively used for research with both real data and idealized

configurations. In recent years the use of WRF for research on the regional climate has

increased and, in this, the strength of WRF is solving the atmospheric and terrestrial

surface processes on a smaller scale better than the global models traditionally used for

climate projections.

The WRF Data Assimilation System (WRFDA) is the main system for collecting data for

WRF. It can handle three-dimensional and four-dimensional variational (3DVAR, 4DVAR)

17

approaches. In this way it can get a wide range of direct and indirect observation type,

starting from traditional in place surface and over-air data to measurements coming

from satellites.

Nowadays WRF is used operationally both from governmental centres and from private

companies all around the world. The possibility to configure high-resolution domains,

the variety of all possible input data, the flexibility in computation (especially when

resources are limited) and the ability to adopt model advances from a global research

community have made it very attractive for real-time forecasting. In the US, National

Centers for Environmental Prediction (NCEP) uses WRF in support of the National

Weather Service in a number of different applications, like energy, hydrology, severe

weather, aviation weather and air quality. One of the recent custom developed versions

of WRF is focus on simulate emissions and transport of smoke from wildfires. Also, the

usage of WRF in private sector is very important. There are many different

implementations, each one focused on different target: there are custom WRF that

support flight forecasting to predict convection, turbulence and icing, other

implementations are focused on optimizing energy production from wind and solar and

other more are aimed at supporting agriculture.

2.3 Output

In this work, weather forecasts come from an accurate analysis made by the research

group in Atmospheric Physics and Meteorology of the Physics Department of the

University of Turin. The model computes weather forecasts in 2850 distinct points

forming a rectangle area of 50 distinct values of latitude and 57 distinct values of

longitude, as shown in Figure 2. The distance between one point and the other is equal

to 0,0369 degrees, both in latitude and in longitude. Forecast values are to be intended

as referred not only for the specific point, but for the area whose point is the center. For

this reason, to better understand the whole forecasts data, is provided a new map in

Figure 3 showing the point with its rectangle area of influence.

18

Figure 2: grid points from Google Earth

The model computes five-days weather forecast every six hours every day, starting from

midnight, for every point in the area described above. Data are stored in Network

Common Data Form (netCDF), that is a set of software libraries and machine-

independent data formats that support creation, access, and sharing of array-oriented

scientific data [3]. It is also a community standard for sharing scientific data. The major

characteristics of netCDF files are:

• Self-description, because each file has information about data contained in the

file itself

• Portability, because files can be accessed by computers with different ways of

storing integers, characters and floating-point numbers

• Efficiency, because it is possible to perform direct access to a small subset of the

entire dataset without having to process all the data stored in the file. This

feature is very important because allows to save time and memory

19

• The possibility to append new data in an existing netCDF file without copying the

entire dataset or redefining its structure

• The possibility to perform multiple accesses by one writer and many readers at

the same time

Figure 3: detail of WRF area with boundaries for each grid points from Google Earth

The model provides hourly data, but we compute a daily mean of them because

Piedmont Council and the Physics Department of the University of Turin decided to work

with daily values.

20

3 Weather stations

Measured data are provided by Piedmont Council’s weather stations.

Piedmont Council follows the trend of the meteorological situation through a

monitoring system of the agricultural territory composed by a set of detection stations

called RAM (Regional Agro-Meteorological network) [4]. This network has been working

for many years and this led to the creation of a large database. This network is the

starting point to setup agrometeorological reginal activities.

3.1 Background

Over the years, a new awareness has emerged: the management of production

processes in agriculture must lead to a final result capable of associating the aspects of

quantity and quality with those of sustainability and respect for the environment, taking

also into account consumers and operators health.

The central core of this new trend is the environmental protection: agriculture has to

dealt with climate changes, it has to adapter itself to new climate and, at the same time,

it has to try to reduce pollution production responsible of the climate changes.

Operating in this direction, Piedmont Council is acting to:

• Limit the contamination of non-renewable resources (water, soil, air) by

agricultural activities

• Support the restoration, maintenance and improvement of natural and

agricultural biodiversity and the landscape

• Improve the conservation of the soil system

• Spread agricultural practices suitable for increasing carbon sequestration

• Support water saving in the exercise of agricultural activities

Moreover, it supports and promotes more sustainable farming practices on the

environment and consumer health. With regard to this last point, the Piedmont Region

also wants to optimize the use of chemical products useful for fighting plant diseases.

21

In this context, innovative strategies and techniques have become established such as

integrated, organic production or conservative agriculture4. To achieve the large-scale

objectives that these techniques propose, however, it is necessary to overcome many

operational and organizational obstacles. Among these, the need for farmers to benefit

from technical and operational information to plan decisions regarding the best

techniques to be adopted at a specific time of the season in order to obtain the best

production result. European and national regulations also underline the fundamental

importance of this type of support and underline that the Regions ensure the creation

of monitoring networks and information distribution systems.

In this context, the evolution of the adopted methods and the availability of tools like

diagnostic and forecasting modelling in the agrometeorological field has given a strong

impetus to the increase of technological applications in agriculture. This sector has

experienced a moment of strong rise in recent years all over the world and it is still in

constant expansion, also due to the parallel growth of Information and Communication

Technology (ICT), which has made possible to develop and implement increasingly

complex systems. The agricultural sector needs to have detailed information available

in terms of quantifiable numerical relationships relating to the correlation between

climatic conditions and physiology of living beings, in order to have elements capable of

explaining the development mechanisms of a living being in relation to variables that

determine them. The models for estimating the water consumption of crops and for

simulating the development and growth of crops, just to mention a few examples,

constitute valid tools to support decisions to agronomic practices and agricultural

management.

To achieve all these objectives, specific technical skills and technical support tools are

required. What is need is:

• detailed meteorological data for the area of interest

4 With integrated production, organic production and conservative agricultural are intended all those
particular techniques that allow to use less chemistry products, less water and that produces less CO2
gas. In general term they are all those practises that keep into account the environmental protection.

22

• phenological and phytosanitary data provided by a monitoring network and,

where available, by forecasting systems

The best way to collect all needed data is by using weather stations located on the sites

of interest.

3.2 Weather station network

The network of Piedmont Region is composed of more than a hundred of electronic

weather stations. Continuous operation over the years has allowed the database to be

fed, which has now taken on a very significant historical reference value. Many stations

have been operating continuously since the second half of the 90s. In any case, most of

the stations now have a climatic historical series of over 10-15 years which is today

extremely valuable for capillary climatological analysis and interpretation of the

atmospheric, agricultural and phytosanitary phenomena of the present time compared

to the past.

The electronic weather stations transmit information daily via GPRS to an operational

center for the collection and storage of meteorological data. Data that reach the

Operations Center are subjected to validation, possible reconstruction of missing data

to do not have incorrect values. This information is then used for specific

agrometeorological applications, also of a model nature like explained before, and sent

to specific subjects.

Measured data used in this thesis are provided by Agrometeorological Section of

Piedmont Council. In particular, we use data collected by 138 agrometeorological

stations located throughout the region, as shown in Figure 4.

23

Figure 4: agrometeorological stations from Google Maps

3.3 Technical features

Stations forming this network are SIAP brand and they are able to acquire data on daily

or hourly intervals. All stations record the following hourly quantities: average,

minimum and maximum air temperature, average, minimum and maximum air humidity

and rainfall. Moreover, some of them can optionally acquire other type of quantities,

like atmospheric pressure, wind direction and speed, solar radiation, soil moisture and

soil temperature.

24

The following table shows technical details for the most significant quantities measured

by all stations involved in this work:

QUANTITY RESOLUTION ACCURACY OPERATIVE RANGE

Air temperature 0.03°C ±0.3°C -30°C ÷ +60°C

Air humidity 0.5% RH ±2% RH 0% ÷ 100% RH

Rainfall 0.2 mm 3% (0 ÷ 500 mm) 0 mm ÷ 999.8 mm

Table 1: technical details about measurements

Resolution is the smallest variation of the measuring value that can be measured by the

instrument. Accuracy is the error between real and measured value. Operative range

represents all possible measurable value.

Stations transmit collected data to a server using GPRS technology. In case of failure in

radio connection, each station is able to save data for at least seven days, waiting for

the restoring connection. Stations are powered by solar panels and they are able to keep

on working for at least seven days in the absence of sun.

Moreover, the central server that collect data from all the stations provide spatial

interpolation to reconstruct missing data. In order to validate the WRF model, we do not

want to use those data so, for this reason, we get measured data before the

interpolation procedure starts.

Data measured from weather stations are collected by 3A, a society born in 1997

focused on weather-climatic monitoring of agricultural environments [5]. It offers a

support decision platform using data measured by weather stations and predictive

modelling. We collect data from their server every morning at 7:00 AM, before they

starting the interpolation procedure of missing data at 7:15 AM, performing a SOAP

request.

25

4 Application overview

In order to allow validation of weather forecasts, the developed application, written in

Python and using the Flask micro framework, collects forecasting data coming from the

execution of the WRF model and measured data coming from weather stations. This

application is cloud based and runs on a server hosted by the Electronics and

Telecommunications Department of Politecnico di Torino.

The focus is without doubt the database, which plays a central role for the application

purpose. Database contains data coming from weather stations and from the execution

of the WRF model. All these data are properly organized into a certain number of table

(more details in chapter 5). Moreover, they need to be elaborated in order to get some

statistical information about the weather forecast accuracy.

To obtain measured data, application interacts with the Piedmont Council contracting

company’s server, which is implemented with the SOAP protocol and handles all data

coming from Piedmont Council’s weather stations. There is one dedicated module of the

application which is responsible to execute this specific task and it is scheduled to be

executed once every day. Contracting company’s server exposes some API used by our

application to retrieve information. SOAP (Simple Object Access Protocol) is an XML

based protocol which allows machine-to-machine web interaction. This protocol defines

messages format that applications can send in order to obtain or ask data. This protocol

is platform independent and can be used by any programming language.

For what concerns handling forecasting data coming from WRF execution, there is

another module of the application which is scheduled to be executed once every day

and checks if new data are available in the DET storage. DET storage is a department

storage developed with basic cloud technologies that allows to save and retrieve files.

In the machine-to-machine interaction, DET storage uses WebDav protocol, which is an

extension of the HTTP protocol and allows users to handle files on a remote server. For

security reasons, WRF data are not directly saved on DET storage, because external

26

accesses are not allowed. To solve this problem, WRF data are sent using rsync on a

proxy server and subsequently they are stored in the DET storage.

The general application workflow is represented in Figure 5.

Figure 5: general application structure

Application also finds, for each weather station, the nearest weather forecast grid point

in order to compare measured and forecast data for the same geographical point. This

is done by using a function provided by MySQL which is able to compute the distance

between two geographical points. This connection between a weather station and the

grid point is not fixed: user can change the default grid point for one weather station by

choosing another one, because the best weather forecast grid point for a weather

station is not always the nearest one. E.g., if a weather station is located over the only

hill in a flat area, measured data are affected by the hills themselves, while weather

27

forecast are influenced by the predominant flat area. In this situation, it would be better

to choose another nearby grid point located in a mainly hilly area.

To ease the validation task, the application provides a plugin architecture: in this way it

is possible to add new features in an easy and fast way. It is just necessary to provide a

Python file implementing the validation logic and a html file to display the results. It is

also provided an example plugin to show the correct implementation and integration.

Plugins can be activated or disabled by the user and can work using data (both measured

and forecasting) of one weather station in a period of time of one year (chosen by the

user).

The entire application is developed in Python because nowadays the main libraries for

data analysis are available in this language and because this language is the one that

suits best for plugins development also by non-expert people.

Figure 6 shows the application’s home page. There is a big map provided by Google in

which each weather station is identified by a marker. Above the map there is a table

which can be hided if user does not want to see it. This table is just a list of all weather

stations with geographical information such as latitude or longitude. By clicking over a

marker in the map user can navigate throw the specific weather station page.

Figure 6: application home page

28

Figure 7 shows the page of one specific weather station. There is a map provided by

Google in which there are one red marker for the weather station and a yellow one for

the associated grid point. The yellow rectangle delimits the influenced area of the grid

point. Below the map there is an area providing further information for the weather

station. There are two hiding tables, one providing last five days available weather

forecast and the other provides last five days available information about measured

data. Moreover, user can execute one of the all available and active plugin. He can

interact with the provided web form in which he can select one plugin and the year on

which perform plugin. At the top of the page there is a link through which user can

change the corresponding grid point of the weather station. To activate or disable

plugin, user can navigate in the plugin page from the navigation bar in which are

displayed all available plugin.

Figure 7: station's personal page

29

Figure 8 shows web page for changing the associated grid point for the weather station.

The map, provided as usual by Google, shows the weather station identified by the red

marker and the four nearest grid point. User can select the new grid point for that

weather station by clicking on the yellow marker. In this way, application stores the new

association and starts, from that moment, to compute weather forecast on the new grid

point selected by user.

Figure 8: page for changing associated grid point

30

5 Technical features

5.1 Python

The whole application is developed in Python. We decide to choose this language

because it is very flexible and robust and it has a lot of usage areas like web

development, GUI desktop application, networking, database management and

nowadays it is very popular among all applications concerning data analysis and

numerical computations. There are some very famous libraries, like Pandas and Numpy,

dedicated especially to this task that are widely distribute and usage.

Taking into account all plugin that will have to be developed in the future, I think that

Python represents the best choice, because operations that need to be executed are

oriented to the data analysis world. So, what explains the choice to choose Python is the

desire to simplify the validation task that will have to be developed.

5.2 Flask

For what concerns application’s backend, we used Flask framework. Flask is a micro web

framework written in Python. The word “micro” is not to be intended in negative term,

such as the application should be one file only or that it cannot be complex, but micro

means Flask aims to keep the framework core as simple as possible, but extensible.

There are a lot of things that Flask does not include, like a database: there is not a

designed database to use within the framework, but every developer can choose the

one that suits him best. This is just one example.

This is a specific choice of the framework in order to reach the biggest number of

developers leaving them free to use Flask as they want, without any kind of imposition.

Despite these apparently lack of the framework, there are a certain number of

extensions covering the major aspects, not included in the core, that can be used like if

31

they were part of the core itself. Flask was developed from the very beginning to be

extensible. This is why extensions work very well with this framework.

Flask has three main dependencies:

• Routing, debugging and Web Server Gateway Interface (WSGI) subsystems which

come from Werkzeug

• The template support which comes with Jinja2

• The command-line integration which comes from Click

All these dependencies are developed by the author of the framework, Armin Ronacher,

and are automatically installed with Flask through the command pip install flask.

The entire application has been developed using PyCharm Professional which provides

a good support in writing Flask application. Of course, we use a Python virtual

environment, that is a copy of the Python interpreter in which we can install packages

without affecting the global Python interpreter installed in the operative system.

5.2.1 Application factory pattern

Any Flask application is an instance of the Flask class to which web server passes all

requests it receives from clients. The most quickly and easiest way to create an

application is to create a global variable at the top of the code that instantiate the class,

but this can be dangerous and difficult to manage as the application grows. So, for this

reason, a good practise is to use the “application factory pattern”, that consists in

creating a function, usually called create_app in which we can instantiate the Flask

class and in which we do all the configuration stuff. Everything concerning the creation

of the application happens into this function. In this way we also simplify the testing

phase, because we can create different instances of the application with different

configuration parameters. Moreover, we do not have to manage a global variable (using

global variable is never a good idea, if we can avoid them, we should do it).

The factory is defined in the __init__.py file of the application package and is recalled

from the entry point of the Flask application, the file associated to the variable

32

FLASK_APP. This variable contains the Python file that is executed when we start our

application. This is the only place in which the application still exists as a global instance.

5.2.2 Routes and view function

When clients send requests to web server, this one forwards them to the Flask

application instance, that needs to know which Python function it has to execute in

order to satisfy clients’ requests. So, we need an association between different URLs and

Python functions. This connection is called routes.

Routes can be defined using Python decorator app.route exposed by the application

instance. Decorators are a standard feature offered by Python language. They are

commonly used to register functions as handler functions that will be executed when a

particular event occurs. They must be written just before the function we want to

decorate. Route decorator takes as argument the relative URL to associate the Python

function that decorates.

Decorated functions are called view functions. The return value of this function is the

response the client receives. Response can be just a simple string with HTML tag or can

be very complex and can contains a lot of things. Embedding response string with HTML

tag in Python file is not a great idea, because it is very difficult to maintain. Solution for

this problem are templates, that will be treated later.

Using Flask, it is possible to build dynamic routes, that are expressed with the following

syntax: ‘/static_part_of_URL/<dynamic_part>’. Any URL matching the static part is

mapped to the route and when the view function is invoked, it receives as argument the

dynamic part of the URL. An example of dynamic routes in our application are all those

routes for a specific page of a weather station, in which the dynamic part is the id of the

station. In this way we can have personalized web page for each station associated to

only one Python function. It would not be possible to have one Python function for each

different weather station, this solution is not scalable and is impossible to maintain.

33

5.2.3 Configuration

Flask, and also many of its extensions, gives the developer some freedom in how do

things and, for this reason, we have to tell the framework our preferences. We can do

this by storing our decisions in a list of configuration variables and giving it to the

framework.

There are several ways in which we can set all the configuration options. The most

simple solution is to define variables in a dictionary form, in which key is the name of

the configuration variable and the corresponding value is the specific configuration

parameter we have chosen. Despite its simplicity, this is not a good way to work because

we are putting together the creation of the application and the specific details about its

configuration. Best practise suggests to keep this logically separate, because in this way

we can better maintain the code in future and we can easily modify configuration

aspects preserving application’s core. Following this trend, we create a dedicated class

in a separate Python file for the app configuration, called Config class. In this class are

defined all the configuration variables.

Among all configuration variables, the most important one is SECRET_KEY, that is used

not only from Flask framework, but also from many extensions. This variable is a

cryptographic key, useful to generate signatures and tokens. For examples, Flask-WTF

extension uses it to protect web form against the cross-site request forgery (CSRF)5.

Everything is done automatically if we have the secret key value properly set and if we

include in form template a hidden tag in which Flask-WTF insert the validation token.

The value of the secret key is an expression consisting of two terms joined by the or

operator: the first one tries to retrieve the value from an environment variable. If that

variable is not set, the second term of the secret key expression set the value. This

practise allows developer to keep things simple in development phase because they can

check that everything work properly by setting on the fly an easy value for the secret

5 Cross-site request forgery is a malicious attack in which unauthorized commands are transmitted from
a user trusted by the web application. This happens because the cracker can steal user’s cookies and,
using them, he personifies the real user. This attack exploits the trust of a website for a particular user.

34

key, but, at the same time, ensures high security level in production if the environment

variables are well set.

When all the configuration variables are properly defined in the “Config class”, we just

need to start Flask in order that it can load and apply all the configuration rules defined.

5.2.4 Blueprints

A blueprint is a logical structure representing one part of the whole application. A

blueprint can contain element like route, template, form, view functions and static files.

Blueprints are useful because almost all applications are composed of a certain number

of different subsystems, like the one for authentication, another one for error handling,

another more for the main purpose of application and so on. Blueprints help in keeping

things logically separate, so we can have one blueprint for the authentication

subsystem, another one for the error handling and so on. In this way we follow a

modular approach in developing our application with all its benefits, like the ease in the

maintenance phase and the possibility to reuse part of the code for other project.

In essence, a blueprint is nothing more than a python package. In the __init__.py file

we create the blueprint and the other file of the package contain the logic of the

subsystem. When a blueprint is created, it is in a dormant state, it can do nothing and it

is not part of the whole application until it is not registered. To make a blueprint active

it must be registered with the application. The registration is made just after the creation

of the application. During the registration, all the elements that blueprint contains are

passed to the application and become part of it. So, we can think of a blueprint as a sort

of temporary storage for the application’s functionality.

Our project contains three blueprints, one for the authentication subsystem, one for the

error handling and the last one for the core business of the application.

35

5.2.5 Templates

A view function has to generate a response to a client request. In many cases a single

request triggers many changes in the application state and the view function is the place

in which all these changes are generated. For examples we can think to a user that want

to register a new account on a website. He types an email and a password and, pressing

the submit button, he sends the information to the server. When server receive the

client request, the view function is called to handle it. This view function needs to

interact with database to check if data provided by user are valid or not and then it has

to generate a response to send back to the client with a success or failure message.

These two tasks are called business logic and presentation logic respectively.

Put together business and presentation logic is not a good practise, because it makes

the code hard to understand and to maintain. Template help developers keep things

separate. We can move presentation logic into templates to have a better organized

code.

Templates are files containing text of a response with placeholder variables for those

parts that will be known only in the context of a request. The process that replaces

placeholders with actual values and returns the final response is called rendering. To

render templates, Flask uses a powerful template engine called Jinja2.

All templates have to be stored in the templates subdirectory located inside the main

application directory. This is the default place in which Flask looks for template files.

View functions use the render_template function to call the Jinja2 template engine.

This function takes the filename of the template as first argument. Any additional

argument must be given in the form key-value and it will be made available to the

template engine as actual value in order to replace placeholders.

In template file, placeholders are enclosed in double braces. Jinja2 recognizes any type

of variable, even complex type like lists, dictionaries and objects. Variable can be

modified with filters, which can be added after the variable name with a pipe character

as separator, like the following: “{{ variable | filter }}”. The safe filter is interesting to

36

learn more. By default, Jinja2 escapes all variables for security purpose. But there are

some cases in which we do not want to perform escape task because we want to display

HTML tags stored in a variable. The most common case is when we want to display a

table passed to the template as variable. The variable already contains all HTML tags

necessary for well display table in browser. If these tags are deleted, table is not well

represented in the client’s browser. In this case, we have to use safe filter to avoid

escaping operation. It is very important to never use safe filter on untrusted value, for

example input text coming from client.

Jinja2 offers many control structures useful to modify the flow of the template

depending on runtime context. We can use the if-else statement, the for loop, we

can define macros that are similar to Python functions. Jinja2 also support template

inheritance, which is similar to class inheritance in Python. This function is very useful to

define some aspect that are common to all pages in our application, for example the

navigation bar. Without template inheritance we should define in each template the

navigation bar. This approach produce code difficult to maintain, because, when a

change occurs, we have to modify the same thing in many different places. There is a

very high probability to forget something and to have therefore an inconsistent website.

With template inheritance we can define a base template in which we developed

navigation bar and other shared stuff. In the base template we define also a block that

will be overridden by derived templates in which each template can put his particular

stuff to display. In this way all templates will have the shared parts, but everyone will

contain its own specific stuff.

5.2.6 Bootstrap

Bootstrap is an open-source web browser framework from Twitter that help in providing

a clean and attractive user interface compatible with all modern web browser, both

desktop and mobile. Bootstrap is a client-side framework, so the server is not directly

involved. Server just have to provide HTML responses that references Bootstrap’s CSS

and JavaScript file. All this is done, of course, in templates.

37

The primitive way to integrate Bootstrap with our application is to modify HTML code,

applying all changes recommended by Bootstrap documentation. This approach is not

the best one, we should do a lot of work to properly display web pages. Luckily there is

a Flask extension that make things simpler and faster. This extension is called Flask-

Bootstrap and we can install it throw the command pip install flask-bootstrap.

Once that we have initialized Flask-Bootstrap, a base template including all the

Bootstrap file and general structure is available to our application. Using template

inheritance provided by Jinja2, we can extend this base template in order to have all

Bootstrap features. We extend Bootstrap base template in our base template, in order

to make it available to all our templates. In this way we are creating our base template

in the same way Flask-Bootstrap provides its own base template.

5.2.7 Error handling

When an error occurs, it is important not to show error details to user: we do not want

that user can get information about our application internal structure, but we want, at

the same time, that the error page has the same layout of all other pages. To do this, we

have to create custom error pages. Flask provide a mechanism for an application to

install its own error pages. To declare a custom error handler, we have to use the

errorhandler decorator, which receives in input the error code it has to manage. The

error function is a real view function. In our application we define view function for the

two most common HTTP error, 404 e 500. These view functions return a second value

after the template they have to render, that is the error code.

When an error occurs, it is important to register it into a log file. In this way we are able

to collect all failures that are not Python exceptions but they may be still interest enough

to save and to resolve in a second moment. For this reason, we implement a log file for

the application. To do this we have to add a handler function to the application. For this

new handler we use the RotationFileHandler, which is able to rotate the logs

ensuring that log files do not grow too much when application runs for a long time. We

38

limit the size file to 10KB and we keep only the last ten files to not use too much space

on disk.

5.2.8 User authentication

Authentication is a fundamental part of the application because it allows to keep track

of users and it allows to perform operations only to registered ones and not to everyone.

The most common method of authentication requires user to provide an identification,

like a username or the email address, and a secret only know by him, that is the

password. This is not the most secure way to authenticate a user, because there are

some problems related to the password usage. The most common one is that user write

down password somewhere to not forget them, but in this way if someone else find the

password can login in place of the real person. Another common problem is that the

same password is valid for many different accesses: in this way, if a cracker steals the

user’s authentication credential when they are sent over the network, he can personify

the real user. To avoid all these problems there are some other authentication

techniques that use different technologies, like for examples one-time password (OTP)

or challenge-response authentication with asymmetric cryptography. These methods

are no doubt safer, but they are more difficult to implements and to use. It is reasonable

to adopt them when we deal with money or with very import and secret data. This is

not our case and, for this reason, we can use the username-password authentication

method without problems.

Even when we use the simplest authentication method, we have to keep into account

some things to make our application as secure as possible. One of them is related to

information stored into database. If database contains passwords in plain-text, if an

attacker is able to break into our server and access the database, he can read and steal

all users’ password. If this happens, the risk is bigger then what we can think: even if we

do not store any sensitive information in our database, it is known that most user use

the same password for many different web sites. For this reason, we must do all we can

to avoid that an attacker could steal users’ passwords. What we can do is not to save

39

password in database as plain-text, but we have to store a hash of it. Moreover, we can

add the salt to the password before compute the hash. The salt is a random string

combined with the password useful to avoid what are called dictionary attack6. A

password hashing function takes a password as input, add salt to it and then applies

several one-way cryptographic transformations to it. The result is a new string

completely different from the original password that has no known way to be

transformed back into the original password. Password hashes can be verified in place

of the real password because hash functions are repeatable and they can be computed

very fast: given the same input (password and salt), the result is always the same.

Password hashing is a very complex task to be implemented from scratch without

making errors, so it is recommended to not do this, but to use one of the many available

and tested implementations. One of them is provided by Werkzeug, that comes with

Flask by default. There are two helpful functions we can use for this task. One is

generate_password_hash, which takes in input a plain-text password and return the

password hash as a string that can be stored in the database. This function has two more

input parameters, one is the hash function to use (default value is sha256), and another

one is the salt length. To combine salt with password, this function use hmac7. The

returned string looks like this: “method$salt$hash”. In this way we have all information

needed to check password’s hash. We use this function when we want to add a new

user in the database. Otherwise, when we want to check if user gives the correct

password when he wants to login, we have to use the check_password function,

which takes in input the password hash generated from the previous function and the

plain-text password given by the user. This function computes hash of the new password

using the same salt and hash function used by the generate_password_hash

function: if they are equal, it returns True, otherwise it returns False.

6 A dictionary attack consists in look into a list containing hash of most used password to find user
password. If we modify password with a random string before compute hash, it is impossible to find it
into a pre-calculated list.
7 HMAC (keyed-hash message authentication code) is a specific type of message authentication code
(MAC) that use a cryptography hash function and a secret cryptography key. This is a standardized
function that avoid problem that can occurs when we manually combine the secret key and the data.

40

When user login the application, his authenticated state has to be saved in the user

session8, so that it is remembered as he navigates through different pages. Without

doing this, when user goes into a new web page, he has to login again. This is not

acceptable. Flask-login is a small extension that helps in managing this particular aspect

of a user authentication system. We can install it through the command pip install

flask-login. Flask-login works with the application’s own User object. To be able to

do this, Flask-login requires the application’s User model to implement the following

methods:

• is_authenticated, which returns True is the user has valid login credential or

False otherwise

• is_active, which return True if the user is allowed to login or False otherwise.

A False value indicates disabled accounts

• is_anonymous, which is False for all regular logged-in user

• ged_id, which returns a unique identifier fir the user

We can implement all these methods directly in the User model class, but Flask-login

provide UserMixin class that has a default implementation of all these methods

appropriate for most cases. All we have to do is to make our User class to inherit from

the UserMixin class and to provide a function that Flask can use when it needs to load

a user from the database given its identifier. This function is decorated with the

login_manager.user_loader decorator.

Flask-login provides the login_required decorator with which we can make a page

accessible only to logged in users. If a not authenticated user tries to access a protected

route, Flask-login will intercept the request and redirect the user to the login page

instead. To make a route protected, we have to add the login_required decorator

after the route decorator. The order is very important because, when we dealt with

multiple decorators, each one affects only those that are below it. If we act in this way,

first we protect the view function and then we register it to the given URL. Reversing the

8 Whit “session” we mean all interactions between browser and server until the browser is closed. With
sessions we can keep track of all choices made by user, like for example the login.

41

order will produce a wrong result, because the route decorator will register the view

function before the login_required decorator protect its, and so that URL will be

visible to everyone.

When user want to login the application, he fills the login web form. Then the view

function will check if the given credentials are valid and correct and, if they are, it is

executed the login_user function, which comes with Flask-login. This function

registers the user as logged in for the user session. This function takes as input the user

and also the “remember me” Boolean option. If this option is set to False, the user

session will expire when the browser is closed, otherwise it will survive.

To logout user, Flask-login user_logout function is called to remove and reset the user

session.

Last thing to do is to display the login or the logout button in the navigation bar of our

application depending on the circumstance. To distinguish if a user is logged in or not,

we can use the current_user variable, defined by Flask-login and available to view

functions and templates. This variable contains the current logged-in user or an

anonymous object if the user is not logged in. Using the is_authenticated property

described above on the current_user variable we can understand if we have to

display the login or the logout button.

For what concerns user registration, we do not expose any public URL that allows this

operation because we do not want that everyone can register on our application. So,

when we want to add a new user, we do it by hand.

5.2.9 Web form and Flask-WTF

Without web form, information can flow only in one direction, from server to client. If

client wants to send some information to the server, without web form he cannot do

that. With HTML it is possible to create web forms in which users can enter information.

Form is then submitted to the server by the client web browser, typically performing a

POST operation. By default, Flask provides a support in handling web form, but working

42

only in this way can become tedious and repetitive, it is not a smart approach. Like in

other aspect, even for working with web form there is an appropriate Flask extension.

In this case, the extension to use is call Flask-WTF which, as usual, can be installed with

the command pip install flask-wtf.

Unlike many other extensions, Flask-WTF does not need to be initialized when we create

the application instance, but it expects the application to have the secret key properly

configured because this key is used by the extension to protect all forms against CSRF

attack, as explained before. Flask-WTF generates security tokens for all forms and stores

them in the user session, which is protected with cryptographic signatures generated

starting from the secret key value.

With Flask-WTF, each web form is represented in the server by a class that inherits from

the FlaskForm class. Class representing web form has one object for any webform

field. Any fields can have one or more validators attached. A validator is a function that

checks whether data submitted by the user is valid or not. Here are some default

validators provided by Flask-WTF:

• DataRequired which checks if field contains data after type conversion

• Email which checks if the input is an email (it checks only the syntax without

control if that email address exists or not)

• EqualTo which compares value of two fields, useful when we ask user to repeat

some input data to be sure (like password in registration phase)

• Optional which allows empty input in the field

• Regex which validates the input using a regular expression

• AnyOf which checks if the input is one of a list of possible value

• NoneOf which checks if the input is none of a list of possible value

• NumericRange which checks if entered value is within a numeric range

• URL which checks if the input is a URL

It is also possible to define some custom validator for our webform, in addition to the

default ones. To do that, we have to implement a function, in the class in which we

define the web form, whose name matches the patter validate_<fiel_name>.

43

When those methods are provided, they are invoked automatically in additional to any

regularly defined validators. With these methods we can implement custom and more

complex controls on the input data.

Flask-Bootstrap extension provides a high-level helper function that renders Flask-WTF

form using Bootstrap’s predefined style with just one single call. To do this, we have to

import in the template file the bootstrap/wtf.html and then using the quik_form

method, which takes the actual form as argument. This method renders the form with

also the hidden tag in which Flask-WTF puts the security token.

When we register a view function with the decorator app.route, we can add a list of

methods that will trigger that function. If we don’t provide any list, Flask will call that

function only if a GET operation is performed on that URL. When we deal with form, we

have to register the view function to be executed both with GET and POST operations,

because when a client fills a webform, his browser sends it to the server performing a

POST operation.

The view function has to create an instance of the class that implements the form. This

class offers the method validate_on_submit which returns True when form is

submitted and data are accepted by all the field validators. In all other cases this function

returns False. In this way we can easily determinate if we have to render the webform

or if have to process it. When a user navigates for the first time to the URL associated to

the view function that handles the form, he performs a GET operation because he wants

to visualize the web form on his browser. At this point there are no data that need to be

processed, so validate_on_subimt will return False and the view function

understand that it just has to render the webform, without doing nothing more. But

when client presses the submit button, his browser performs a POST operation on the

same URL used before to ask the rendering of the webform. This time, if data are correct,

the validate_on_subimt function will return True and the view function can

perform its operation over data.

After a user submit a webform, it would be nice if we give him some feedback about the

performed operation. This could be a confirmation message, a warning or an error. A

44

typical use case is when a user tries to authenticate himself but provides wrong

credential. If we simply show again the login page without any message, he most likely

will not understand what happened and maybe he can think that our service is not

working well. It would be better if we tell him that provided credentials were wrong, so

he can easily try again paying more attention. Flask includes this functionality by default

in its core throw the flash function. This function takes as argument the string we want

to display as message and must be invoked in the view function, before render the

template. But calling this function is not enough to get message displayed; templates

used by application need to render these messages. Best place to do this is in the base

template, in order to have this functionality available in all our application templates.

To do this, we call the get_flashed_message function which makes available to the

template all flashed messages. By performing a for loop over all those messages, we

can easily display all them. Messages retrieved by get_flashed_message will not be

returned the next time this function is called, so every flash message is just display one

time.

Last thing we have to pay attention while using webform is the pattern submit-refresh.

If a user submits a webform and then press the refresh button, the browser will show

an alert message asking confirmation before reload page and therefore submit the form

again. This happens because the refresh button repeats last request sent by the

browser. If user presses submit button, browser performs a POST operation and so

refreshing the webpage will cause a second form submission with the alert message.

Submit form multiple times can cause some problems and, for this reason, browser asks

confirmation before doing this. Moreover, many users cannot understand the

confirmation message provided by the browser. It is not a good practise for web

application to leave a POST operation as the last request performed by a user. To act

accordingly to best practises, we have to respond to a POST request with a redirect

instead of a normal response, such for example render a template. A redirect is a special

response containing a URL instead of a string with HTML tags or a template to render.

When browser receives a redirect response, it performs a GET request to the URL

provided by the redirect. This flow can last a few milliseconds more because browser

45

has to perform one additional request, but in this way the last operation is always a GET

even if the user press the submit button after filling a webform.

5.3 Database

Database represents the persistent layer of the application. Our application has to store

different type of data: first of all, of course, information about registered user, but this

is not the focus. The predominant part is the one concerned to weather forecast and

geographical information. The aim of this work is to build up a system capable to save

data coming from the WRF model and from the weather forecast stations of Piedmont

Council in order to allow some operation over this data to validate weather forecast.

The first decision to make before starting to build up the database layer is to choose

between SQL and NoSQL database. SQL means “Structured Query Language” so, as its

name suggests, it is a language specific for structured data. We can say that data are

structured when it’s easy to think them in form of a table, where columns represent the

different attributes and rows, called entry, are the data itself. The table form is the core

of the SQL database because these ones describe everything using tables where every

object is one row of one specific table. For example, for what concerns the register users

of our application, username and password are the attribute of each user, while the

different value of username and password of each user are the entry of the table. NoSQL

means instead “Not Only SQL”. They can represent both structured and non-structured

data, like for example multimedia information (photos, videos or audios). There is not

one database that is better under every aspect respect another one, but the choose

between SQL and NoSQL depends on the purpose of the application and on the type of

data that we have to manage. Another aspect to consider when we have to decide what

is the technology to use is if the structure of our data will change as time goes or not.

This because, before using an SQL database, we have to define the structure of the

database itself: that means that we have to properly define all tables, all columns of

each table and also the relations between different tables and different columns of

different tables (one column can referred another column on another table). There is a

46

not negligible amount of work to do before start using an SQL database. If the structure

of our data changes at a certain time, we have to redefine the whole database schema.

On the other hand, NoSQL database does not have a pre-designed and fixed structure,

basically because they don’t have table, but data are stored in documents. So, they are

good if we handle not structured data or data whose structure is not always the same.

If at a certain time we have to save a new attribute of some entity, we simply add the

new attribute in the document, we do not have to do nothing more. The freedom given

by NoSQL database is of course an advantage under certain aspect, however, the rigid

structure of SQL database is not just an imposition, but can become a help in avoid error

and in highlight coherences and integrity in our database.

In our application, as I said, we have to work with weather forecast information, a type

of data that lends itself well to be represented in a table form. Moreover, the aim of the

job is to perform validation on weather forecast data, and for this reason it is better if

we work always with the same type of data. There is no sense to modify data structure

from a moment on. These are the main aspects that led me to choose an SQL database.

To realize the database, I follow the Entity-Relationship (ER) model, which is the most

popular model for realizing SQL database. Entity represents classes of object of real

world (persons, things, events…) that have common properties and autonomous

existence. An entity occurrence is an object of the class represented by the entity.

Entities are characterized by attributes, which describe the entity’s properties. Entities

are identified by one or more unique attributes. These attributes are call identifier and

can belong to the entity they describe or they can be composed by one or more attribute

of the entity itself joined with one or more attribute of another entity. In the last case,

the entity is described as weak if it cannot identify itself alone. Relation represents a

logical connection between two or more entities. Relations are characterized by a value

of cardinality, which describe the minimum and maximum number of a relation

occurrence in which an occurrence of an entity can participate. The minimum can be 0

(optional participation) or 1 (mandatory participation), while the maximum can be 1 (at

most one occurrence) or N (arbitrary number of occurrence). So, we can have binary

relationship one-to-one, one-to-many or many-to-many.

47

To properly development an SQL database using ER-model we must to follow some step.

Starting from application requirements, we have to do the conceptual design of the

database, in which we translate requirements into entities and relationships and we

describe entities with attributes. After doing this, we have to produce the logical design

consisting in produce real table that will populate the database from the conceptual

design.

The conceptual design consists also in understand properly all data and decide which

data are useful and must be saved and which one are useless and must be discarded. In

this first phase we collaborated closely with colleagues from the Piedmont Council and

the Physics Department in order to take these decisions.

After the data comprehension, we keep on doing the conceptual design by identify all

the entities involved. The first is the one that describe the WEATHER STATION. Each

weather station is characterized by a name and a geographical position expressed in

term of latitude and longitude. There is also information about the altitude and the

interval of data acquisition. These two last aspects are not essential, but we decided to

save them notwithstanding, to make the database more complete. We also add an id to

each station to better identify them and to simplify join operations in the workflow. The

list of all the weather stations involved in this project was provided by the

Agrometeorological Section of Piedmont Council with an Excel file. The second entity

involved is MEASUREMENTS. Each measure is characterized by the weather station that

made it, by the date in which it was produced and by a list of parameters related to

weather forecast, like rain, air temperature and so on. The third entity is GRID POINT,

described by a geographical position expressed in latitude and longitude and by an id.

The last entity is WEATHER FORECAST, characterized by the id of the grid point whose is

referred, the date in which has been computed and the date to which that forecast is

referred.

A schema of the conceptual design is reported in Figure 9.

48

Figure 9: conceptual design of the database

As we can see, both “measurements” and “weather forecast” are weak entities because

they are identified with an external identifier.

Relation between “weather forecast” and “measurement” is a one-to-many relation

because for each weather station we have at least one measurement (we do not have

in our database weather stations that not produce measurements), but each

measurement is associated to one and only one weather station. The relation between

“weather forecast” and “grid point” is also a one-to-many relation, because for each grid

point we have at least one weather forecast and each weather forecast is associated to

one and only one grid point. Relation between “weather station” and “grid point” is a

many-to-many relation because each weather station can potentially be associated to

many grid points and each grid point can be associated to many weather stations. This

because our application finds, for each weather stations, the nearest grid point but gives

user the freedom to change the associated grid point if he wants to perform other type

of analysis. The user may want to change the related grid point because of geographical

49

reasons: it can happen that one grid point covers a mostly flat area, but the weather

station in located on a small hill belonging to the area referred by that grid point. Maybe,

in situation like this one, user want to change the association weather station – grid

point done automatically by the application considering just the distance choosing an

area that better represents the geographical conditions in which the weather station is

located. For that reason, the relation between weather stations and grid points is a

many-to-many and not a one-to-many.

After doing this, we have to convert the conceptual model into the logical design. The

goal of this step is to translate entities and relations into table. Translating entities into

tables is quite simple in our case because we do not have redundancies, hierarchies,

multivalued or composed attributes. So, for each entity we will have one table. On the

other hand, translating relation is a bit more complex because we have to handle

different type of relations and everyone has its own rules to apply. The many-to-many

relation is translated by creating a new table that works as a bridge between the two

entities involved. The primary key of this table is the combination of the primary keys of

the two entities involved. To convert the two one-to-many relationships, we can

proceed in two different ways: we can create a new table whose primary key is the one

of the table which cardinality is equal to one or we can simply add the value of the

primary key of the table with cardinality is equal to “many” in the table whose cardinality

is equal to “one”. To avoid creating two new tables, the second strategy has been

adopted.

A schema of the logical design is shown in Figure 10.

Last step of logical design is to define referential integrity constraints. In particular, the

“id_place” in measurements table references the “id_place” in weather stations table.

This means that all the id present in measurements table must be present in weather

station table. Other constraints like this one are the “id_place” of weather forecast table

that references the “id_place” of grid points table, and the “id_weather_staion” and

“id_grid_point” in the bridge table that reference respectively the id on weather station

table and the id of the grid points table.

50

Figure 10: database schema

51

5.3.1 Database and DBMS

Database are nothing more than a set of files whose aim is to save permanently some

data and making them available for any kind of software. Database must follow an

internal structure, as discussed in the previous chapter of this thesis.

DBMS (Data Base Management System) is a software designed to store and manage

database. Programs that use database cannot operate with database directly, but they

interface with a DBMS who then handle database. A DBMS is made by a lot of

components. First of all, there is the optimizer which receives in input the SQL

instructions, transform the query in an internal representation and select the

appropriate execution strategy for accessing data to answer queries. Then there is the

access method manager, which performs the physical access to data implementing the

strategy selected by the optimizer. After we find the buffer manager, which manage

page transfer from disk to main memory and vice versa, it takes care of concurrent

access to data (fundamental with writing operations) guaranteeing that different

applications do not interfere among them. It guarantees also correctness of the

database content when the system crashes. All this thing is done automatically by the

database management system and this is the reason why we use this kind of software

and we do not simply save data for example in one or many files.

DBMS works with transaction, which is a logical unit of work performed by an

application. It is a sequence of one or many SQL instructions performing operations on

the database. A transaction starts automatically with the first SQL instruction and ends

when we perform “commit” or “rollback” operation. We do “commit” when everything

is ok and we want to apply our SQL instruction on the database, otherwise we perform

“rollback” when we do not want to apply changes on the database because something

has gone wrong. Any transaction must guarantee what are called ACID properties:

atomicity, consistency, isolation and durability. Atomicity means that a transaction

cannot be divided in smaller units, it is not possible to leave the database in an

intermediate state of execution. Consistency means that a transaction cannot violate

integrity constraint on a database. This is ensured by defining integrity constraint in

52

database schema. When a violation occurs, the system can rollback the transaction or

try to automatically correct the violation. Isolation means that the execution of a

transaction is independent of the concurrent execution of other transactions. Durability

means that the effect of a committed transaction is not lost in presence of failures.

The DBMS chosen for this project is MySQL, perhaps the most popular SQL server, with

InnoDB as engine. InnoDB creates automatically indexes for primary key, foreign key and

unique constraint. Indexes are auxiliary structures that speed up searching operation on

data. For this reason, we have an index on email attribute in user’s table (because email

is set to be unique in that table), while other indexes in other tables are or for primary

key or for foreign key. We add by hand indexes on date because we perform queries on

date when we run plugins.

5.3.2 Python connector and SQLAlchemy

To work with MySQL in Python we use both “Flask-SQLAlchemy” and “mysql-connector-

python”. The first one is a Flask extension that simplifies the use of SQLAlchemy inside

the application. SQLAlchemy is a relational database framework that offers high-level

ORM (Object Relational Mapper). ORM provides the data mapper pattern, where classes

can be mapped to the database. With an ORM we can work with high-level SQL, we

don’t have to write by hand SQL query, but we handle Python object. We use this

approach only for what concerns the user table, because, to handle user log-in and log-

out, we use a very popular extension, called Flask-login, that needs object representing

user to work properly. So, the most natural way to work was with SQLAlchemy. For all

other stuff concerning weather forecast, we prefer to work directly with SQL language,

to have a better control over data. In order to handle SQL in Python, we need a

connector, a software layer that interface with MySQL server. Whit this connector it is

possible to execute SQL command directly from Python application. We decide to use

raw SQL language basically for one reason: the geographical data. We have to handle a

lot of geographical information and we have to compute distance from all grid points

(2850) to all weather stations (138), in order to fill the bridge table. Geographical

53

information is saved in the database with “POINT” data type, provided by MySQL. To

insert geographical data into table we have to use “ST_GeomFromText(‘POINT(y

x)’)” function that construct geometry value starting from latitude and longitude. To

compute distance between two geographical point, MySQL provides a dedicated

function called “ST_Distance_Sphere(point(long, lat), point(long,

lat))”. This function returns the distance in meters from two point. This function

computes distance as the crow flies, it takes not into account road or traffic, but this

don’t care for the purpose of this application. So, this function provide by MySQL is

perfect in this use case.

5.4 Python multiprocessing

Compute the “bridge_ws_gp” table is a very expensive and time-consuming operation.

To complete this task, we have to estimate the distance of each weather stations from

each grid points using an SQL instruction: we have to perform 138 * 2850 = 393300

operations. If we do not adopt some strategies, this task can take up to 30 minutes in a

medium-level personal computer9.

To compute distance between points, we start from two Pandas data frame, one for the

weather stations and another one for the grid points, both whose columns are id,

longitude and latitude. The basic idea is to iterate over the weather station data frame

and, for each row, iterate over the grid point data frame computing distance between

points. The output is a new data frame which column are weather station’s index, grid

point’s index and distance expressed in kilometres. Given this data frame, we sort rows

for each different weather station’s index based on distance value. This approach has

two big problems: the first one is that appending every time a new row in the result data

frame is a very long operation, the second one is that this is clearly a candidate problem

to be solved with parallelization.

9 These results are not obtained doing professional test on different hardware and conditions, but are the
simple evidence observed on the PC used to developed this application: CPU Intel i7-7500U 2.7GHz, RAM
8 GB, SSD 512 GB.

54

To solve the first problem, some “test” has been performed with different way to add

new item to Pandas data frame. We found that the fastest way is to work with

dictionaries and to build data frame from them. First thing to do is to declare an empty

result data frame, which will be returned by the function and will contain the list of all

weather stations with the nearest grid point of each and the relative distance. Then, we

have to declare, for each new weather station, a list of dictionaries. After, we can

estimate the distance between weather station and grid point and then, for every new

single distance value computed, we create a new dictionary in which we add the

weather station’s index, the grid point’s index and the distance value and then we

append this new dictionary to the list of dictionaries declared before. Next, when we

finish to iterate over grid points, we create a Pandas data frame starting from the list of

dictionaries, we sort value based on distance, we keep only the first value (which

represent the nearest grid point for the given weather station) and last we append this

partial data frame to the final data frame that will be returned by the function. Working

in this way speed up considerably the entire process, at least for what concerns saving

partial results.

The second problem underlined before is completely different from the previous one. It

is not specific about the Pandas libraries, but it is more general and quite diffuse in many

programming areas. This task is clearly suitable to be execute in concurrent mode,

because we can think to divide the weather stations data frame into a certain number

of smaller data frame each one containing a subset of the whole weather stations. Then

we can apply the function describe in previous paragraph on each one of these data

frame to compute distance. This is exactly what we do in the application: before starting

computing distance, we check how much weather stations we have to work with. The

threshold is set to 30: if we have less than 30 weather stations, we do not use concurrent

computation, otherwise we split the initial data frame into four data frames, each one

with one quarter of the weather stations.

When we deal with concurrent computation, first of all we have to understand if our

task is CPU-bound or I/O-bound. A task is CPU-bound if it spends most of the time doing

computation using CPU, but it does a very little I/O operations, or maybe nothing at all.

55

On the other hand, a task in I/O bound if it does not perform operations that need a

massive usage of CPU, but it is involved in I/O stuff, it waits for input and output

operations to be completed. I/O functions include downloading data from network,

transfer data from disk to main memory or vice versa, doing operations with file-system

and so on. Multithreading can speed up programs that perform I/O-bound task, because

with thread code is not really run concurrently, it is just an illusion: when one thread is

waiting for an I/O operation to be completed, another thread is started. In fact, they are

not executed at the same time, we can say that they just wait together and nothing

more. We would not get as much speed up if we use multithreading to perform CPU-

bound task, because all the threads run inside one single process. Whit multiprocessing,

otherwise, we can use all the core presents in the CPU and we can effectively run code

in parallel mode.

If we have to perform one task that simply wait for 1 second, Figure 11 shows what

happens if we use multithreading, while Figure 12 shows the situation with

multiprocessing.

Figure 11: multithreading

56

Figure 12: multiprocessing

Some benchmarks found on the web [6], even if they are quite old, show clearly the

difference in using multithreading and multiprocessing when we deal with a CPU bound

task. In this specific case, the author compares results of executing parallel a function

that compute factorization of a number (this function is not optimized, but this do not

care for the aim of this test). Results shown in Figure 13 are surprising. Splitting the

computation to several threads slow down the performance, and the more threads are

used, the slower the task runs. This is due to the way Python thread are implemented

and the GIL (Global Interpreter Lock). It is a quite complex situation and this thesis does

not want to go into it too much in detail. We just want to underline the final result.

Otherwise, if we use multiprocessing, thigs are completely different. The more process

we use, the more the application run faster. Obviously, there is a limit and we should

find the right threshold. Result obviously are influenced by the specific task we want to

perform and by the hardware we use, but also by the operative system, other programs

in execution at the same time on the same PC and so on. There are many and many

aspects to keep into account, and we must be aware of it. What we should keep from

this article is the demonstration that Python threads are not good if we want to speed

up our CPU-bound application (they actually slow it down), but we must use processes.

57

Figure 13: multithreading versus multiprocessing in a CPU bound task

Last thing we have to pay attention when we use multiprocessing computation is the

way in which we can returning a result. If we create by hand a process using

multiprocessing library, function we call cannot return a value with the return

statement. The only way to get a result from the function is to pass a variable to every

process in which they can store the result. But when we want to read that value, we

must be sure that computation has been finished, otherwise we get an unpredictable

result.

Starting from Python 3.2, the standard library introduced the future object in the

modules concurrent.future. Future object is like a proxy for the result that is not

known when we start a new process because the computation is not yet finished.

Futures simplified the way in which we can get the result from a concurrent

computation. Instead of creating processes calling the constructor of

multiprocessing library, we can use the ProcessPoolExecutor from

concurrent.future. In this way we can write the function to be executed

concurrently like any other function, with the return statement at the end. Using

ProcessPoolExecutor with the Python context manager, we can use the submit method

58

to schedule a new function to be executed and to get the corresponding future object.

On the future object we can then simply call the result method to obtain the value

returned by the function.

Work with process with the ProcessPoolExecutor is simpler than creating it by

hand. Future make code simpler and, consequently, reduce the possibility to make

mistakes. For these reasons they should be used anytime we can.

5.5 Python scheduler

In this application, we have to regularly check if new weather forecast or measurement

data are available, and if they are, we have to save them on the database. To perform

this operation, we use the APScheduler (Advanced Python Scheduler) library [7], which

can be installed throw the command “pip install apscheduler”. This library

allows to schedule Python code to be executed in a second moment, either just one time

or periodically. This library has many types of different scheduler, some of them

dedicated to specific framework like Qt. In our project we use the

“BackgroundScheduler”, which is not specific for any framework in particular and runs

in background using a separate thread (when we call the start method of the

scheduler, it will return immediately). The default executor of the background scheduler

is the ThreadPoolExecutor, which uses futures like the processes explained before,

but of course with thread and not with process. We basically need simply to check if

there are new data and, if they are, we have to save them. We do a very little process

over these data. So, we can say that operations performed by the scheduler are mostly

I/O-bound and, for this reason, threads are the best choice.

In order to schedule a job, we have to choose a proper trigger for it. Trigger determines

when the scheduled function has to be executed. APScheduler supports three type of

triggers:

• date: useful when we want to execute the function just once in a specific

moment

59

• interval: useful when we want to execute the function at fixed intervals of time

• cron: useful when we want to execute the function periodically, every day at a

given time

In our application we scheduled two different functions, the first one that get new

measured data from 3A society and the second one that check if new weather forecast

data are available in the DET storage. For both we use, as said, the BackgrounScheduler

with “cron” as trigger, because we want those functions to be executed every day at a

given time. The first one starts at 7:00 AM, while the second starts at 2:00 AM. The first

time has been chosen together with 3A society: it is good because at 7:15 AM they start

the interpolation procedure and we do want to have modified data, but we prefer deal

with raw information. The second time has been chosen because, at 2:00 AM most likely

nobody is performing requests to the server, so we can spend part of CPU resource to

upload new data. It is not rare to perform system update, uploading new data and other

operations that need some resources when system is not overload.

5.6 Plugin architecture10

For the purpose of this applications, we need to plan the possibility to add new features

to perform validation over collected data in a second moment. Plug-in architecture is

what we were looking for, it is the best solution for this problem because gives the

possibility to other people to write new Python files that can be easy add to our

application and that can work together with it.

The basic idea under this solution is to have one folder in our application main directory

that can collect all the new plugin organized in any way: they can be saved directly in

the plugin folder or they can be put into an arbitrary number of subdirectories under

the base folder. This because maybe one plugin can be quite complex and it can be

composed of many files collecting together in a directory.

10 The plugin solution has been found on GitHub https://github.com/gdiepen/python_plugin_example

https://github.com/gdiepen/python_plugin_example

60

The starting point for defining the plugin architecture is to create the base class Plugin,

which contains the title and the description of the plugin itself, the active

variable, which is a flag that is True if the plugin is active or False if is disable, the

filename of the plugin python file and the perform_operation method, which

implements the plugin logic. This basic class can be interpreted like a sort of Java

interface, it is the starting point for all the plugin that will be added. Each one of them

must inherit from this base class and must implement the perform_operation

method, otherwise NotImplementedError exception will be raised.

To have a system that can dynamically load different modules at runtime, we have to

introduce a new class, the PluginCollection class, that will take care of loading all

plugin and enables them in order to apply the perform_operation method. The core

of this class is the walk_package function, which look for all modules present in the

plugin folder and, for each one, get all classes defined in the module and check if they

are subclasses of Plugin class, but not the Plugin class itself, and if exist one html file

in the templates directory which has the same name of the python file. Each class that

satisfied these criteria is instantiated and added to a dictionary in which the key is just

an id. In this way, plugin folder can contain also other classes that are not plugin (they

can be support class for another plugin for example) and they will not influence the

plugin framework.

Once that all plugin present directly in the package has been imported, application starts

looking for the presence of sub-packages and inspects them by calling recursively the

walk_package function.

The PluginCollection class is instantiate when the application starts in order to

make all plugins available from the beginning.

All plugins are supposed to work with data of one single weather station, selected by

user, over a period of time of one year, also decided by user from all the available years.

All plugins get as input two Pandas dataframe, one for data coming from weather station

and the other for weather forecast data.

The plugin execution work flows is the following:

61

• User selects one plugin among the active and the year on which he wants to

execute it

• Application collects data related to that weather station for that year and calls

the perform_operation method, giving to it the collected data

• Plugin performs all needed operations and must return a single result in the

result variable

• Application performs the render_template method, calling the relative html

file of the plugin giving to it the result

In this way application is capable to handle plugins without knowing what is the output

of each single plugin and how it has to be displayed. It is up to the developer to

implement the visualization of the obtained result.

5.7 Deployment

The developed application is cloud based and runs on a Linux server hosted by the

Electronics and Telecommunications Department of Politecnico di Torino. We connect

to this server through an SSH client. We installed the whole application by cloning it

from the git repository we used for version control. After cloning the application, we

create the Python virtual environment and installed all the dependencies in the virtual

environment listed in the requirements file we made throw the command pip freeze

> requirements.txt. In this way we obtain a text file containing all needed Python

packages required by our application.

Even if Flask comes with an integrated web server useful during the development phase,

this one is not adapted when we want to run our application on a production server

because it was not built to be robust and performant enough. For this reason, we decide

to substitute it with Gunicorn, which is a pure Python web server but it is robust and it

is used by a lot of people as production server. Gunicorn can be installed with the

command pip install gunicorn. We setup Gunicorn to listen requests in the

internal network interface on port 8000. Gunicorn can be started by command line, but

this is not the best option since we do not want to start it every time the server is

62

rebooted. It would be better to have the server running in the background and have it

under control in order to restart it if the system is rebooted. To do this, we provide a

bash script which takes care of start Gunicorn and we schedule this script to be executed

on system start-up. Gunicorn was developed to run behind a reverse proxy because it is

designed for fast, low-latency client, but there also many clients that are neither fast or

low-latency. For all these clients the reverse proxy is the solution. The developers

themselves strongly recommend to use Nginx as reverse proxy within Gunicorn, because

Nginx is capable of handling thousands of hundreds concurrent clients efficiently. To

explain the importance of the reverse proxy, we can think to a slow client that interact

whit the application: due to his slow connection, he keeps the Gunicorn worker busy for

a long time and he make other client wait. The reverse proxy can buffer incoming

requests from clients and the application responses and then he can send them at once,

without making anyone wait.

Follow this suggestion, we adopt Nginx and we configure it to listen on port 80 and to

redirect all clients’ requests to the Gunicorn server. We do not use the https protocol on

port 443 because we cannot buy an SSL certificate, which is needed to enable security

protocol. To make Nginx serving a web site, we have to provide a configuration file in

which we specify the TCP port (the 80 one in our case) and the actions to perform, which

in our case are simply to forward all client requests to the Gunicorn server.

63

6 Conclusions

The developed application now is ready to start working: it is possible to perform any

kind of validation over weather forecast by simply implement a Python script that

performs operations over data and an html file to visualize results. Application is capable

of handles all possible validations: there are no limits and no particular requirements,

but the Python script which has to extends the base Plugin class and the html file.

With this effort we want to connect the meteorology world with the agrometeorology

one in order to have a more performant and more powerful weather station, which

keeps on collecting real-time data but which can also handle forecasting data thanks to

the WRF model. If this works properly, there will be a lot of new possible improvements

for what concerns the agrometeorological models. Until now, models worked only with

real-time data to simulate phenological phases of plants and also of plant’s disease, but

if they can work with forecasting data, simulation can go further in the future, providing

knowledges not available before. This could be of great help because it allows to

planning in advance the correct crop management interventions depending on what will

happen in the future. It is reasonable to think that acting in advance would be better,

because it allows to prepare farmers adequately and better for what will happen.

Therefore, before using weather forecast information to run models, it is essential to

know if weather forecasts are good or not and how much they are reliable, because they

are very influenced by the geographical conditions: weather forecast computed on a flat

territory could perform very differently from weather forecast computed on a

mountainous territory. Another very interesting aspect to examine is the presence of

regular error pattern: what we expect while performing validation is to find some

behaviour of weather forecast that are always the same, for example an overestimation

of rain or temperature. If validation is capable to find these patterns, it will be easy to

take action to correct them obtaining in this way a good and reliable value. Or maybe it

will be found that not all forecasting variables are reliable in the same way, because the

WRF model can easily predict some kind of variable better than other or because not all

64

forecasting variables have the same behaviour in the geographical zone in which they

are computed. There are many aspects that need to be considered.

These are just few examples to underling how indispensable is the validation before

using operatively weather forecast information.

With this application we realized the starting point for trying to connect together

meteorology and agrometeorology, with the aim to obtain a more performant weather

station that could help more and more the crop grow. We solved all problems related

to acquiring data from weather stations and from WRF model, to interpreting data, to

parsing them and to store them in a properly well-organized database. We solved

problem of finding the nearest grid point for each station and we made possible to

change this association every time user wants. We provided also a user-friendly

interface to operate with and we made simple to introduce new plugins that can extend

application adding new functions. This software architecture is perfect to do what this

application is supposed to: allow weather forecast validation in an easy way in order to

use them in future for support agrometeorological mathematical models.

65

7 Bibliography

[1] J. G. Powers, “The weather research and forecasting model. Overview, system

efforts and future directions,” American meteorological society, pp. 1717-1737,

2017.

[2] “Weather research and forecasting model,” [Online]. Available:

https://www.mmm.ucar.edu/weather-research-and-forecasting-model. [Accessed

2020].

[3] “Network Common Data Form (NetCDF),” [Online]. Available:

https://www.unidata.ucar.edu/software/netcdf/. [Accessed 2020].

[4] “La rete agrometeorologica del Piemonte (RAM),” [Online]. Available:

https://www.regione.piemonte.it/web/temi/agricoltura/agroambiente-meteo-

suoli/rete-agrometeorologica-piemonte-ram. [Accessed 2020].

[5] “3a,” [Online]. Available: https://www.green-planet.it. [Accessed 2020].

[6] “Python - parallelizing CPU-bound tasks with multiprocessing,” [Online]. Available:

https://eli.thegreenplace.net/2012/01/16/python-parallelizing-cpu-bound-tasks-

with-multiprocessing/. [Accessed 2020].

[7] “Advanced Python Scheduler,” [Online]. Available:

https://apscheduler.readthedocs.io/en/stable/index.html. [Accessed 2020].

[8] S. Orlandini, L. Massetti and A. Dalla Marta, “An agrometeorogical approach for the

simulation of Plasmopara viticola,” Computers and electronics in agriculture, pp.

149- 161, 2008.

66

[9] V. Rossi, T. Caffi, S. Giosuè and R. Bugiani, “A mechanicistic model simulating

primary infections of downy mildew in grapevine,” Ecological Modelling, pp. 480-

491, 2008.

	1 Introduction
	2 WRF model
	2.1 Background
	2.2 WRF and its applications
	2.3 Output

	3 Weather stations
	3.1 Background
	3.2 Weather station network
	3.3 Technical features

	4 Application overview
	5 Technical features
	5.1 Python
	5.2 Flask
	5.2.1 Application factory pattern
	5.2.2 Routes and view function
	5.2.3 Configuration
	5.2.4 Blueprints
	5.2.5 Templates
	5.2.6 Bootstrap
	5.2.7 Error handling
	5.2.8 User authentication
	5.2.9 Web form and Flask-WTF

	5.3 Database
	5.3.1 Database and DBMS
	5.3.2 Python connector and SQLAlchemy

	5.4 Python multiprocessing
	5.5 Python scheduler
	5.6 Plugin architecture9F
	5.7 Deployment

	6 Conclusions
	7 Bibliography

