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Abstract

In order to satisfy the continually increasing demand for more capacity in fiber-optical
networks, spectrally efficient modulation formats such as quadrature amplitude modula-

tion with high cardinality have to be employed.

However, non-ideal characteristics of optical transmitter components such as digital-to-
analog converter, modulator driver amplifier and electro-optic modulator cause distortions

of the generated optical waveforms leading to a reduced quality of transmission.

One promising option to compensate these distortions are digital nonlinear pre-distortion
filters applied in the transmitter digital signal processing unit. The goal of the thesis
is to develop advanced regularization algorithm in penalized least squares approach for
transmitter impairment estimation in order to determine the optimum pre-distortion fil-
ters. The algorithms are implemented and verified in Matlab. Finally, the implemented

algorithms were validated in laboratory experiments.
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Chapter 1

Introduction

1.1 Motivation and outline contributions

The attainable information rates in optical systems have been extensively increased over
the past decades with the launch of optical amplifiers, coherent detection, modulation

formats and digital signal processing techniques.

The recovery of signal amplitude and signal phase using coherent optical detection con-
stitutes a compelling information for compensation and effective mitigation of the trans-
mission impairments. This coherent detection establishes a technique for optical commu-

nication to push the performance closer to the Shannon capacity limit.

The long-haul high-capacity performance in optical communication systems is significant-
ly deteriorated by transmission impairments such as polarization mode dispersion, phase
noise and nonlinearities among others. Polarization mode dispersion can be adaptively
equalized. Phase noise can be estimated and compensated using carrier phase estimation.

Nonlinearities can be commonly mitigated by using pre-distortion at the receiver.

Pre-distortion is a compensation method for optical communication systems. In pre-
distortion, the idea is to add a compensation module preceding the channel it is about to
compensate. The pre-distorter is a nonlinear inverse filter which aims to counteract the
nonlinear characteristics of the channel so that the merged block of these two is almost

linear.
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Notice the difference between pre-distorter and equalizer, the latter is used to reverse
the distortions drawn by a signal transmitted through a channel. Pre-distortion can be
interpreted as a design process for adapting the signal to the nonlinearities of the channel

assuming knowledge of the channel at the transmitter.

Pre-distorters can be implemented using model structures such as Volterra series, parallel
Hammerstein structures, or lookup tables (LUT) among others. The model estimation
can be seen as a least squares problem, which minimize the sum of squared residuals. The
residuals are the difference between an observed value and the fitted value provided by
the model.

The odd comes when the least squares approach deals with short data (more predictors
than observations) or in low SNR regimes. The primary focus of the work presented in
this thesis is to examine an alternate path to the least-squares solution under bad condi-
tions. The alternative is a regularization algorithm to the penalized least squares (PLS)
solution, a regularization function which introduces additional a priori information of the
signal to the estimation.

This study bring us one step closer to solving the problem of nonlinear signal processing,

and how it can be better used to obtain accurate estimates in noisy environments.
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1.2 Organization of the thesis
The master thesis is divided into six chapters.

Chapter [/ : Introduction

In chapter I of the thesis, an introduction is briefly shown where the motivation and

organization of the thesis are presented.

Chapter /] : Application Scenarios

Chapter 11 presents different scenarios where the digital nonlinear pre - distortion can
be applied with significant improvement in performance. Due to the number of nonlinear
components in a coherent system, a coherent communication system is a suitable scenario

for the digital nonlinear pre - distortion implementation.

Chapter //] : Theoretical Approach

In chapter 111, a theoretical approach discussion about nonlinear systems is shown. Vol-
terra kernels are discussed and the different methods or techniques to obtain them, such as
ordinary least squares error (OLS) and penalized least squares error (PLS). In the latter
case, the regularization solution proposed by this thesis is discussed as well as regulariza-

tion parameter \.

Chapter /V : Simulation Results

Chapter IV introduces the different results obtained by a set of simulations implemented
using Matlab. This chapter constitutes a set of simulations to test the preformance of the

algorithms implemented in this thesis.

Chapter V' : Experimental Results

Chapter V discussess the different results obtained by the actual experiment setup imple-
mented at the HHI lab.

Chapter VI : Conclusion

First, chapter VI presents the actual problem with the proposed solution of the thesis.
Then, the procedure used in order to validate the performance of the implemented algo-
rithms is explained. Finally, a summary and dissertation of the results are presented and
conclusions are drawn from the empirical results along with different directions towards

future research.



Chapter 2

Application Scenarios

2.1 Coherent System

1-Q modulator

Coherent
Front- End

|
DSP

Symbol Source

’—I ADC axpol ‘—

1-Q modulator

Fig 2.1: Scheme of a coherent system.

ADC a-vrol

DSP

It is a well known fact that the market of coherent optical communications systems em-

ploying polarization division multiplexing (PDM) and coherent detection assisted by di-

gital signal processing (DSP) contributed to the evolution of long-haul transmission. The

computation is solved by optoelectronic modules with high-speed, application-specific in-

tegrated circuits (ASICs) in coherent optical receivers.

This solution empowers adaptive electronic equalization of linear transmission impair-

ments such as polarization mode dispersion (PMD) and polarization - dependent loss

(PDL). This solution allows to compensate all lincan effects at the analog optical trans-

mitter and at the receiver front-end, such as time skew of quadrature components along

with quadrature and polarization imbalance.
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Finally, all the digital receiver functionalities such as digital clock recovery, intermediate

frequency offset and phase-noise estimation can be performed.

Let us present the basic structure of a coherent system with a brief description of each of

its parts.

2.1.1 Optical Transmitter: Optical Modulator

— DAC i1-xpol *{Dé/
] I—Q modulator
— | DAC axpol ‘I%
O]
o
3| |
DD TL PBS | PBC
el |Aa
S
>
m
| DAC v pol »b
1 I—Q modulator
— DAC avy pol 4‘%/

Fig 2.2: Scheme of a optical transmitter.

The first part of any communication system is the transmitter module. In figure 2.2, there
are four different paths with different delay which leads to different phase noise from the
structure digital - to - analog converter (DAC) + driver amplifier (DA) + IQ modulator.
The aim is to estimate these effects caused by the previous structure and compensate

them in the coherent transmitter.

Two outputs from the DAC + DA structure feed each I-QQ modulator. The I-Q) modulator
box represents an amplitude/phase modulation in which a Super Mach-Zehnder modula-
tor is used to encode one data stream into an optical carrier for the components I and Q.

This approach is also known as Super Mach-Zehnder structure.

The lightbeam from the laser is split by the polarization beam splitter (PBS). Finally,

the two polarization X and Y are combined by using a polarization beam combiner (PBC).
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In the previous coherent system scheme figure 2.2, the different components of the opti-
cal transmitter marked in yellow correspond to those components respounsible for adding

nonlinear effects to the system. These are the components:

- Driver Amplifier (DA ) Amplifiers usually operate as a linear device under small am-
plitude signal conditions and become nonlinear and distorting with the increasing drive
level and the resulting distortion. Nonlinearity in amplifiers means that the output signal
power does not vary in direct proportion to the input signal power [3].

- Mach-Zehnder Modulator (MZM) since MZMs have a nonlinear (sinusoidal) cha-
racteristic response it is a major cause of nonlinear effects. In practice, the linear regime
is achieved by narrowing the driving signals to a linear interval of the MZMs response
but limiting the system capacity in term of OSNR penalties for nonlinear distortions or

by using nonlinear pre-distortion as a linearization method.

2.1.2  Transmission fiber

The second part of the coherent transmission system previously proposed is the channel,

optical fiber.

- Silica Fibers is a dielectric medium which, in presence of an electric field induces elec-
tric charges within the material, creating a dielectric polarization field. The induced field
will have an orientation such that the equivalent field within the dielectric declines. The-
refore, the interaction between the electrical field and dielectric produces a modulation of

the equivalent field within the medium.

Such modulation is a nonlinear function of the input field power. This phenomenon is
the cause of the Kerr effect, which appears in silica fibers and causes nonlinear effects in
optical communication systems. The Kerr effect can be seen as a change in the refractive
index of the material proportional to the incident electrical power field [4][5].
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2.1.3 Optical Receiver: Coherent Detection

PBS
Ex
SIG Z ADC i1xpol
ELOx A
90° Optical Hybrid Z
x ADC axpol
DSP
ELoy I
ADC v ol
LO A
90° Optical Hybrid
PBS Z
Z ADC a-vpa
Ev o

Fig 2.3: Scheme of the coherent receiver.

The last part of the coherent transmission system is the coherent detection. Coherent
detection offers flexibility in the modulation formats, as the information can be encoded
in amplitude and phase, or in both in-phase (I) and quadrature (QQ) components of the

carrier.

Coherent detection requires the knowledge of the transmitted carrier phase at the receiver:
the received signal is demodulated by a local oscillator (LO) that is used as an absolute

phase reference [6].

The figure 2.3 shows a schematic of a standard coherent optical front - end. The optical
carrier and the local oscillator (LO), after passing through the polarization beam splitters
are directed towards two optical 90 degrees hybrids that act as an 1QQ demodulator and it
is used to mix the signal with the local oscillator (LO) as well as with the 90 degree shifted
version of the local oscillator (LO). Then, there are balanced photo - detectors marked in
green in the figure 2.3, after the detection of the outputs in the balanced photodiodes, the
in-phase and quadrature components of the data signal (referenced to the continuous

wave CW local oscillator) are restored.

The coherent receiver is employed to detect the two orthogonal polarizations of the recei-

ved signal (the polarizations are separated using a polarization beam splitter) [6][7].
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2.2  Thesis Application Scenario

As it has been described in the preceding sections, the sources of nonlinear effects are wide
and distributed all along the coherent system. The main aim of this thesis is to design
and implement a regularization method for the pre-distortion of nonlinear effects caused
by the transmission module (DAC + DA + IQ mod). The pre-distortion process takes

place in the coherent transmitter.
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Chapter 3

Theoretical Approach

In this chapter we introduce the theoretical approach to pre-distortion, this is the sche-
matic to be applied at the Kernels estimation module in the coherent detection system
with pre-distortion. This pre - distortion estimates the transmitter nonlinear effect at the

receiver level of the system.

DRIVER
DSP DAC + Coherent Scope
MZM Receiver
pls estimation
pls - gev estimation cross-correlation demultiplexer
Is estimation SOP polarization demultiplexer
Kernels Polarization
Estimation Demultiplexer

Fig 3.1: Brief thesis schematics.

The first part of the scheme consists on a simple coherent system. The received signal at
the oscilloscope (scope) is processed by a typical digital signal processing dsp chain with

a polarization demultiplexer.

At this point, in the polarization demultiplexing, there are two approaches, polarization
demultiplexing based on cross-correlation or polarization demultiplexing based on state

of polarization SOP. The difference in performance is discussed in the simulation chapter.
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Finally, the kernels estimation module which compensate the nonlinear effects of the trans-
mitter can use different algorithms; ordinary least squares (ols), penalized least squares
(pls) and penalized least squares with cross - validation (pls - gev). The regularization

function in the penalized least squares is the major goal of this thesis.

Let us have a theoretical introduction for a better understanding of the kernel estimation.

3.1 Nonlinear Systems

Nonlinear systems are very common, and have been studied in the science field. To mo-
del and analyze nonlinear systems and solve related problems, people have carried out
extensive studies, and developed a collection of mathematical theories, among which the

Volterra series is one of the most famous.

Volterra series guaranteed to explain nonlinear behaviors, but the computational process
was complex and it could only be applied to the analysis of simple nonlinear systems.
This problem limited its application to a small range of practical engineering issues but
it computation was very slow. This situation changed in the 1990s with the promotion of

computer technology [11].

3.2 Volterra Series

Volterra series is one of the early approaches to achieve a characterization of a nonlinear
system. It is a powerful mathematical tool for nonlinear system analysis. Actually, it is an

extension of the standard convolution description of linear systems to nonlinear systems.

The Volterra series is a model for nonlinear behavior similar to the Taylor series [12] [13].
It can be interpreted as a generalization of the Taylor series extension for the analytic

functions.

The Taylor series response of a nonlinear system depends only in the input at that par-
ticular time. Nevertheless, in the Volterra series, the response of the nonlinear system

depends on the input to the system at all times.
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Volterra Series

If a system is linear and time-invariant, then the linear input-output relation of the system

can be represented by the convolution integral, which is shown as follows;

y(t) = /h(t —71)x(T)dr (3.1)

where, y(t) is the output and x(¢) is the input and the system is determined uniquely by
the impulse response function h(t).

In contrast, for nonlinear continuous time-variant systems with memory, if the level of
energy of the input signal x(t) is limited, the system response can be described by Volterra

series.

y(t) = ho + /hl(T)x(t —7)dT + ... // ho (11, 72)x(t — 7)x(t — To)dT1dT2 (3.2)

where, hq, hs,..., h, are the different orders Volterra kernel functions, which are expansions
of the impulse response for the linear system to the nonlinear system. Then, the term hg

represents the DC component of the system.

Volterra system can also be considered in the discrete domain:

mp—1 mp—l

H{ylnly = 0 > ylkr, o kylyln =k — 7]yl — ky — 1) (3.3)

k1=0  kp=kp_1
Let us consider the following example with a third order memory m = [my, ms, ms| con-

sidering the order dependent delay 7, constant.

Hlolnl} = 3 Ikl ol — k). (3.9
Ho{yn|} = Z_: z_: halky, ko]y[n — kilyln — ko). (3.5)
k1=0 ko=k1

m3—1 ms—1

Hz{yln]} = Z Z ha(ki, k2, kaly[n — kily[n — ko]y[n — k3] (3.6)

k1=0  ka=ko
The Volterra series is fully determined by the kernels h,, where hy, hy, hs stand for the
first, second, and third order Volterra kernels [12]. The memory lengths are represented

by m,,, where the index p refers to the order of the kernel system[12].
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3.3 Volterra Kernels Identification

The estimation of Volterra kernels is a difficult problem. By its inverse nature, is a linear
inverse problem since the system model must be determined from input/output measure-
ments from the system [11] [13]. It does not assure at least one of the three assumptions
of a well-posed problem (1. existing solution, 2. convergence to a unique solution, 3. the
solution changes continuously with respect to the initial conditions). This fact brings in-

stability in the inversion process.

Typically, the kernels representation needs a large number of parameters, with the number
increasing geometrically with the order of the kernel. The first-order kernel represents
the linear dynamics of the system while the higher-order kernels describe the nonlinear
dynamics. It should be clear that, for a linear system, the first-order kernel is equivalent
to the impulse response of the system. Therefore, the Volterra theory can be viewed as

an expansion of the concept of linear convolution to nonlinear systems.

3.3.1 Ordinary Least Squares (OLS)

The aim of this linear regression approach is to minimize the sum of the squares of the
residuals, residuals are the difference between the fitted value by the model and the ob-

servation.

On one hand, the positive aspect of this approach is that it is simple. On the other hand,
the negative aspect of this approach is that it does not achieve the highest performance

under a noisy environment and/or short data set [13].

X0=Y 0 € R Y ¢ R" (3.7)
X'X0-Y)=0 —» X'X6-X"6=0 (3.8)
0= (X"X)"'X"Y (3.9)

N _ . 2 T —1~T
fors = arg melnz e = (X" X)"X'Y (3.10)

1=1
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Let us consider the case of an arbitrary nonlinear channel estimation. The following pro-

posed channel consists on an exponential decay along the different kernel coefficients.

1 Channel
original
0.8 T
0.6 1
0.4 :
0.2 r T
O - 4
0 5 10 15 20 25 30
kernels

Fig 3.2: Original channel.

The following figures 3.3, 3.4 and 3.5 represent the normalized kernel coefficients for a
Volterra memory m = [mq, ma, ms] = [20, 3, 1], a SNR = 30 dB and a result MSE =
4,59E-05.
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The setup of the simulation consists in generating a signal with an arbitrary filter shape.
Then, the signal goes through the channel it is intended to estimate in the simulation.
Finally, the generated input signal, the output signal (through channel) and the Volterra

memory are used to estimate the channel.

Simulation setup:

- filter shape: 'rootraisedcosine’

- filter order: 3

- filter roll-off: 0.1

- filter bandwidth: 0.5 GHz

- Volterra memory: [20, 3, 1] - SNR: 30 dB
- error parameter: MSE

Mean squared error is defined as:
MSE = (1/n)> (Y =Y)?

Where Y corresponds to the predicted values with the kernel estimation, Y corresponds
to the observation and n represents the number of samples.
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; Channel
h m= Original

0.8+ | S, MSE: 4.59¢e-05 | _
0.6 _
04r i
0.2 i

Or _

0 5 10 15 20 25 30

kernels

Fig 3.3: Least squares estimation of the arbitrary nonlinear channel.

The following picture 3.4 describes the kernel visualization for the Ix component estima-

tion.
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» kernel coefficients of order 1, scaled by 1.66

0.8 T

Magnitude
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B »
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Fig 3.4: kernel coeflicients of first order.

The linear component corresponds to the channel to be estimated.

kernel coefficients of order 2, scaled by 11

Fig 3.5: kernel coefficients of second order.
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3.3.2 Penalized Least Squares (PLS)

It is well known that polynomial regression models, such as the Volterra filter, often suffer
from inverse linear problem. Therefore, least squares Volterra filter estimates obtained

from short noisy data are often very bad in accuracy[13].

The least squares approach does not meet all the requirements of a well-posed problem,
this is the reason why some regularization must be added to the least squares equati-
on. This regularization or penalization function contains prior: information of the signal

(main contribution of this thesis).

Penalized least squares is a well-known method for regularizing the least squares estimator
and simulations have shown major improvements in the Volterra filter estimates. The main
contribution of this thesis is the design of appropriate penalizing functions for the Volterra
filter estimation problem [13] [15].

Y =X 0+ 1<is<n (3.11)

Where x;,...,x,, are known column vectors and 7y,...,n, are scalar observation noises. Ga-

thering the observations into a vector, we have the following description:

y=X0+1n (3.12)

The ordinary least squares (OLS) estimator is:

0= (X"X)"'X"Y (3.13)

And # minimizes the sum of squared errors

X 1
Omin = —|[Y — XT9|)? (3.14)
n

The problem with the OLS estimator is that if the noise is large enough, then demanding
6 to adapt to the data, will produce a model that takes the noise as well as 6 as a pa-
rameter. In other words, it starts modelling the noise. For that reason, the least squares

estimator may result in a very large variance with short noisy data records [13].

An approach to address this issue is known as the method of regularization.

A 1
Ormin = ;||Y —XT0|1> + AJ(0) A >0 (3.15)
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Where J() is a non-negative real-valued function which measures the roughness of 6.
Here, the estimation problem consists in two penalizations. The first term of the right
side of the equation 3.15 represents a penalization that comes from the data, the second

term of the right side of the equation 3.15 comes from prior information of the signal.

Penalized methods usually come with at least one regularization parameter A that con-
trols the trade off between likelihood (variance) and penalty (bias). In other words, the
regularization parameter decides which penalization is going to have more relevance, the
penalization referring to data or the penalization coming from prior information of the

signal.

Notice that for A = 0 there is no longer the penalized least squares (PLS) method but the
ordinary least squares (OLS) method defined previously.

Thus, when this penalized function will be a trade off between fidelity to the data and
smoothness of the function.
J(0) = 6" Re J(O) = (01— 20; +0;11)° (3.16)

J=1

Oprs(\) = (XTX +nAR) XY (3.17)
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3.4 Regularization Matrix R

The following section is a discussion about the different approaches towards this regula-

rization matrix R in order to obtain an accurate estimation.
Oprs(\) = (XTX +nAR)'XTY (3.18)

3.4.1 Projection Matrix

The kernel-penalizing matrix is the projection onto the low - dimensional subspace. The
projection matrixes used in this approach correspond to T, and U, [13].

Oprs(\) = (XTX +nAUTR,U,) 'XTY (3.19)

3.4.1.1 Derivation of T, and U,

First, considering the set of all possible p - tuples, then g, are the unique generating p
- tuples. The matrix T), is constructed as follows. The kth row of the T, corresponds to
the kth unique generating p - tuple gx = (i1, ..., %px). Let ny be the number of distinct
permutation of gy [13]

Let us study the case of computing the matrix 7, in relation with h, which contains all
the indexes of the Volterra Kernel of the p - order. Moreover 6, contains the symmetric
indexes of the Volterra Kernel coefficients. Following the notation in [13], let’s verify that
Op = T, hy for m = 3 and p = 2.

O, =

h,g =

N — = O O O
N NN~ NN~ O

N NN~ =) = O O O
N R O N~ O NN O
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[1 00000 0 0 0]
0502200000
Tﬁoo%ooo%oo
000 O0O1O0O0O0OTO
00000G4030
0 000000 0 1]
So the previous equation will result in: 6, = T3 hy
_0 0_
_ - _ - |10 1
00 100 00O0O0OTO0OTO 0
1 1 0 2
01 030500000 10
0 2 00 ooo0dloo
= 2 2 11 (3.20)
11 000O0O1O0O0O0OTFO
1 | 1 2
1 2 00000350350 5 0
2 2 00 0O0O0O0OO0OTO 0?1
- - - - 12 1
2 2
Paying attention on how the second index is computed, it can be appreciated that:
1 1
1] _ [ 1] h [1 ] 3.21
[0 S0 1]+5[ 0 (3.21)
Then the third index...
[0 2]—1[0 2]+1[2 0] (3.22)
2 2 '

In the computation of the matrix T, the number of elements per row that are different
from zero is given by the number of permutation of the elements of the index correspon-

ding to that row, for instance:

The index [ 0 2 ] has two permutations because the elements of this index can be written
as: [0 2] or [20]. While the index [ 1 1] has one permutation because it can only be
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written like that.

The other part of the computation remains in how the columns of the elements different
from zero are placed. The columns are the correspondent positions of the permutations

of our index in the expanded version of all the Volterra indexes.

Let’s see it for the case of the index [ 0 2 | with permutations [0 2 ] and [ 2 0 ] . Searching

for the permutations at hy we found the position 3 and 7.

ha

Il
N NN~ = =2 O O O
N~ O N R O N~ O

Those previous positions 3 and 7 will be the columns of the elements different from zero
at the row of the index [0 2] in 6, in the T matrix.

10 0 000 0 00

05 0 000 00

00 2 000 500
T, =

00 0 0100 00

00 0 003 0 50

00 0 000 0 0 1

Columns 3 and 7 at the third row in this case.
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3.4.1.2  Order of the vector £,
Following the notation given by [13]
y(k) = hLd® (k) (3.23)

Where d®) (k) detones the p - fold tensor product of the vector d(k) with itself.

For example, if
d(k) = [z(k), 2(k — 1)]" (3.24)

and p = 2, then

dP (k) = [22(k), z(k)x(k — 1), 2(k — 1)a(k), 2%(k — 1)]" (3.25)

The equivalent in matlab is the kronecker tensor product which is defined as [30]:

(IllB algB alNB
A 2 B GQTB aggB e GQNB
aNlB (ZNQB aNNB

With A [N x N] matrix.

Let’s try the following example with d(k) = [z(k),z(k — 1), z(k — 2)]" and p = 3 (third
order). Let’s consider x(k) = [1,2, 3]"

123
dik)= |2 3 1
31 2
d? (k) = d(k) ® d(k)
(1 2 32 46 3 6 9]
2 3146269 3
3126249 36
2 463609123
d? (k) =
6 2 493631 2
36912324686
6 9323146 2
9363126 2 4
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The columns marked in red corresponds to the d(Q)(k) expansion shown below

d? (k) = (k- 1)

ha

I
NN R E s O
N = O NN — O N O

So when the product y(k) = hfd® (k) takes place, the combination of the products
correspond with the index of the Volterra Kernel.

With U ~ T7

Us

I
SRR
O O O O OvE Ok O

O O v O O O O O
O O O O = O O O O
O = O O O O O O
= o O O O O o o o




3. Theoretical Approach 25

Let the matrix S denotes the orthogonal projector corresponding to the penalized subspace
[13]. The Fourier series corresponds to orthogonal projections of a given function onto the

trigonometric polynomials.

S = F 'HF (3.26)

Where F is the Fourier transform of the identity matrix and H is a diagonal matrix which
corresponds to a dynamic filter matrix based on spectrum shape of the input signal or

also called smooth term [13].

Each p - order has a different projection matrix S,). The matrix S,y will correspond to
Sp) = F(p;H(p)F(p). In each case, Hy,) is a diagonal matrix with a dimension m,,, which

is the memory associated to the p - order.

This means that the diagonal elements of H,y are the m, samples of the spectrum shape

of the input signal. This is the aspect of the regularization matrix R based of orthogonal

projection:
1 0 0 0
U1 -s)?u, = | Ui (T -s)®u, U X
P "o 0 U1 - S,)?|U, 0
0 0 0 U [(T— S)® Uy

Where the first 1 in the left-top corner of the regularization matrix corresponds to the
DC component of the system and [(I — S)®)] stands for the p - order kroneker expansion
of (I = S) which corresponds to the non-penalizing subspace [13]. Two versions can be
applied for the non-penalizing subspace, the previous one with [(I—S)®)] which penalizes
the high frequency components (thesis approach) or the [I”) — S®] which penalizes the

low frequency components [13].
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In order to verify the performance of this approach a base band signal has been employed
to test the system. While the considered spectrum is the root raised cosine filter, which
means that the diagonal elements of H,) are the m, samples of the spectrum shape of
the input with p = 1... P while P is the number of orders of the Volterra kernels.

The content of Hyy, H) and Hysy will differ depending on the m,,, memory of the order
p

Fig 3.6: Sampled envelope of the H,, filter with p = 1...3 and m; = my = mg = 20.

The frequency follows this scheme: reading from left to right the frequencies appreciated
are; first the terms around DC component, then the positive frequencies and finally the
negative frequencies. The filter applied to shape the input signal is a root raised cosine
with a roll - off: 0.25 and bandwidth = 8 GHz.

3.5 Regulator parameter (\)

Coming back to the equation 3.15
. 1
Omin = —|[Y = XT0||? + A J(0) A>0
n

The first term of the right side of the equation 3.15 represents a penalization that comes
from the data, the second term of the right side of the equation 3.15 comes from prior

information of the input signal.

The parameter A plays a roll of trade-off on how much it is going to be emphasize one

term with respect to the other.
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3.5.1 Cross - Validation (CV)

Cross-validation assesses the fit of the model with a particular A in a very similar way
to the residual sum of squares, but removes the value y; and observes how well the fit

predicts the previously removed value [13] [14].

In other words, it attempts to minimize the residual sum of squares while ignoring the
closest value; it is often referred to as the leave - one - out strategy. The problem with

this model is that it assumes periodicity of the signal.

V) = =3 (s — a0 (3.27)

3.5.2 Generalized - Cross - Validation (GCV)

For the determination of the optimum smooth parameter, the thesis uses the generalized
cross validation (GCV) approach. It is based on the principle of cross validation in which,
the regularized inverse problem is solved by omitting at each realization one point of the
observed data [13]. Then, the periodicity problem of the cross validation (CV) method is
solved by adding different weights to the samples.

For each realization is used a different regularization parameter A. It is expected that the
adequate \ is chosen, that is, the estimated data parameters is near to the observed data

parameters.

Vo(A) =+ tA) = Z Y (3.28)

k; are the eigenvalues of (X?X)™'R
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Vo Generalized Cross - Validation function

0.523 |
= 0.5225 | .
\5 L
>
0.522 | .
1073 1072 10~ 109

A

Fig 3.7: V,(A) Generalized Cross - Validation Function.

In the previous illustration 3.7, the specific value of A that minimizes the generalized cross
validation function V,(\) is the value A = 0.2. On one hand, the region previous to the
Aopt 1t is known as under fitting because it is not the minimum error estimation. On the
other hand, the region posterior to the A\, is known as overfitting and it gives us high
level of error.

Let us see some comparative results between a prediction based on a generalized cross
validation against a no regularization parameter predictor. The comparison is established

on the mean squared error parameter for different values of SNR.
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The setup of the simulation consists in generating a signal with an arbitrary filter shape.
Then, the signal goes through the channel it is intended to estimate in the simulation.

Finally, the generated input signal, the output signal (through channel) and the Volterra
memory are used to estimate the channel while using generalized cross validation and no

regularization parameter in the penalized least squares approach.

Setup of the measurement:
- number of samples: 1e5 samples
- memory system: [15, 3, 1]
- signal-to-noise range: -30 dB to 50 dB
- spectrum: OFF
- filter shape: ON
- filter shape = ’gauss’
- filter order = 3
- filter roll - off: 0.1
- filter bandwidth: 0.2 GHz
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MSE vs SNR[dB]

MSE Pls
MSE Pls (GCV)

104 ' '

102

108
-30 -20 10 0 10 20 30 40 50

SNR[dB]

Fig 3.8: Comparison between a penalized least squares approach without a generalized
cross validation and a penalized least squares approach with generalized cross validation

implementation.

The result shows the same behavior for low values of SNR, after that, the performance
of the penalized least squares approach with a generalized cross validation shows better

performance.



31

Chapter 4

Simulation Results

This chapter discusses the different simulation results obtained in the performance test of
the ordinary least squares (OLS) approach in comparison with the penalized least squa-
res (PLS). Then, a performance test for the polarization demultiplexer with an acquired

signal from the HHI laboratory is implemented.

The following simulations display the difference between the ordinay least squares (OLS)
approach and the penalized least squares (PLS) approach, this difference becomes clear
in the presence of a noisy environment and short data sets. The lower the signal to noise
ratio SNR parameter, the greater it is the divergence in the accuracy while obtaining
the correct kernel coefficients for both approaches. In general terms, the (PLS) approach
provides a more accurate estimation than the (OLS) approach in low SNR regimes.
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4.1 Simulation Setup

The simulation setup consists in a coherent transmission system constituted by inter-

connecting the transmitter and the receiver of the transceiver for analog coherent optics
CFP2 - ACO property of the HHI laboratory.

|:> TL

DP -1Q - Mod

CFP2 - ACO

Ix
Qx
Rfout —]

Coh - FrontEnd

ly

Qy

B

LO

Fig 4.1: Scheme of the set - up to apply in the simulations

The transmitter, which is positioned in the top of the figure 4.1, consists in four radio

frequency signals (I and 3 components of both polarizations X and Y) entering an array

of driver amplifiers marked in green at figure 4.1. Then, the different signal components
(Iy, Qqu, 1, and @) are coupled together at the dual polarization 1Q modulator DP - 1Q)

- Modulator.

The receiver, which is positioned at the bottom of the figure 4.1, consists on a coherent

- front end module explained in section 2.1.3 to be finally decoulped into the four com-

ponents to be amplify by an array of driver amplifiers marked in green in figure 4.1 at the

receiver.
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4.2 Dependency of PLS estimation with the bandwidth
and roll-off

In order to check the performance of the PLS approach in relation to the bandwidth and
the roll-off parameters of the input signal, a simulation test is proposed. Let us consider
a filtered input signal by a raised cosine with a fixed value for the bandwidth and roll-off
parameters. The vector h, explained in the section 3.2 can be estimated as the sampled
version of the filter shape used to filter the input of the system or as the spectrum shape
calculated in relation to the autocorrelation function of the input signal of the system
with itself. The transfer functions of each p-order H, are explained in section 3.4.1.2 Let’s

see some illustrations to show the differences:

The setup of the simulation consists in:

- filter bandwidth: 0.5 GHz

- filter shape: ’raisedcosine’

- filter order: 3

- roll-off: 0.1

-SNR : 30 dB

- physical center frequency: 193.1 THz / 1553.599 nm

100 Spectrum Shape roll-off = 0.1 , bandwidth = 0.5 Filter Shape roll-off = 0.1, bandwidth = 0.5
T T T T T T T T T T

100

C —

-100 | 1 -100

Power [dBW]
: 8

S

Power [dBW]
‘ 8
8

&
5
3
&
S
3

-400 1 -400

-500 1 -500

600 L H\MM il ‘m . . . . . m‘ alils “U‘\‘hn I 600 . . . . .
05 -04 03 02 01 0 0.1 0.2 03 0.4 05 0.3 0.2 -0.1 0 0.1 0.2 0.3
Frequency Frequency

&
3
3

Fig 4.2: Spectrum shape of the input signal. Fig 4.3: Filter shape.

In figure 4.2, there is the spectrum shape estimated by the penalized least squares ap-

proach in the setup simulation case. In the figure 4.3, the penalized least squares approach
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will use the filter shape applied in the transmission, without any spectrum estimation.

Let’s study the behavior in terms of mean squared error MSE measurements depending
on the bandwidth, roll - off, generalized cross validation (section 3.5.2) and filter shape

or spectrum operation mode.

The setup of the simulation consists in:
- number of samples: 1e5 sampes
- Voltera memory = [15, 3, 1]
- generalized cross validation (gcv): OFF
- filter shape: ON
- filter shape = ’raisedcosine’
- filter order = 3
- spectrum shape: OFF
- error parameter: Mean Squared Error (MSE)
- variables: signal bandwidth (GHz) and roll-off

Mean squared error is defined as:

~

MSE = (1/n)> (Y =Y)?

Where Y corresponds to the predicted values with the kernel estimation and Y corre-
sponds to the measured and n corresponds to the number of samples.
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MSE vs Bandwidth type =filter , lambda =no

10
roll - off =0
roll - off =0.25
roll - off =0.5
roll - off =0.75
roll - off =1

10-4 | | |
0.1 0.2 0.3 0.4 0.5

bandwidth

Fig 4.4: Mean squared error (MSE) vs singal bandwidth for different values of roll - off
without using generalized cross validation and using the filter shape for the transfer

function estimation in the penalized least squares approach.

As a general trend the MSE decreases with the rise of the signal bandwidth. The higher
the signal bandwidth, the higher the level of information about the input signal which
leads to better regularization functions. Then, the graph does not show significant corre-
lation of the MSE with respect to the roll - off factor.
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The setup of the simulation consists in:
- number of samples: 1e5 samples
- Voltera memory = [15, 3, 1]
- generalized cross validation (gev): ON
- filter shape: ON
- filter shape = ’raisedcosine’
- filter order = 3
- spectrum shape: OFF
- error parameter: Mean Squared Error (MSE)
- variables: signal bandwidth (GHz) and roll-off

_MSE vs Bandwidth type =filter , lambda =yes

10
roll - off =0
roll - off =0.25
roll - off =0.5
5 roll - off =0.75
10°¢ roll - off =1 1

MSE

10-4 | | |
0.1 0.2 0.3 0.4 0.5

bandwidth

Fig 4.5: Mean squared error (MSE) vs signal bandwidth for different values of roll - off
using generalized cross validation and using the filter shape for the transfer function

estimation in the penalized least squares approach.
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It can be appreciated in the case of high values of bandwidth, the mean squared error
MSE tends to settled around a constant MSE error parameter. Even though there is not a
significant difference between the use of generalized cross validation or not in the penalized

least squares for the filter shape mode.

The setup of the simulation consists in:
- number of samples: 1e5 samples
- Voltera memory = [15, 3, 1]
- generalized cross validation (gcv): OFF
- filter shape: OFF
- filter shape = ’raisedcosine’
- filter order = 3
- spectrum shape: ON
- error parameter: Mean Squared Error (MSE)
- variables: sing bandwidth (GHz) and roll-off

M%E vs Bandwidth type =spectrum, lambda =no
1074 T ' ' . _

roll - off =0
roll - off =0.25
roll - off =0.5
roll - off =0.75
roll - off =1

107 ' ' '
0.1 0.2 0.3 0.4 0.5

bandwidth

Fig 4.6: Mean squared error (MSE) vs signal bandwidth for different values of roll - off
without using generalized cross vadilation and using the spectrum for the transfer

function estimation in the penalized least squares approach.
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As a general tendency the MSE decreases with the rise of the bandwidth.

The setup of the simulation consists in:
- number of samples: 1e5
- kernels memory = [15, 3, 1]
- generalized cross validation: ON
- filter shape: OFF
- filter shape = ’raisedcosine’
- filter order = 3
- spectrum: ON
- error parameter: Mean Squared Error (MSE)
- variables: bandwidth (GHz) and roll-off

M$JE vs Bandwidth type =spectrum , lambda =yes

10
roll - off =0
roll - off =0.25
roll - off =0.5
roll - off =0.75
roll - off =1

10-4 | | |
0.1 0.2 0.3 0.4 0.5

bandwidth

Fig 4.7: Mean squared error (MSE) vs bandwidth for different values of roll - off using

generalized cross vadilation and using the spectrum for the transfer function estimation.

As a conclusion, the MSE decreases with the rise of the signal bandwidth. This fact is due
to the nature of the regularization function, the higher the signal bandwidth the higher

the signal information.
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4.3 Penalized Least Squares Simulation

In order to study the pre-distorrion performance of the penalized least squares approach
against the ordinary least squares approach, a simulation case is set up. The study ca-
se proposes an arbitrary nonlinear system, a negative exponential channel to study the

estimation performance.

The setup of the simulation consists in:
- number of samples: 1e5 samples
- Voltera memory = [15, 3, 1]
- filter shape: ON
- filter shape = ’raisedcosine’
- filter order = 3
- filter roll - off = 0.1
- filter bandwidth = 0.5 GHz
- variables: signal to noise ratio SNR
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1 Channel
m= Original
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Fig 4.8: Representation of the original channel, LS estimation and PLS estimation for a
SNR = 30 dB setup.

The previous figure 4.8 displays the different values of the Kernel’s coefficients, for a
system of this memory = [15, 3 ,1]. It can be appreciated that under good SNR regimes
(SNR = 30 dB) the penalized least squares estimation (PLS) gives us a better estimation
(MSEp;s = 3.66e-08) than the ordinary least squares estimation (OLS) (MSEp.s =
4.59e-05). Even though both estimations are good enough to be able to follow the original
shape of the standard channel.
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1 Channel
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Fig 4.9: Representation of the original channel, LS estimation and PLS estimation for a
SNR = 15 dB setup.

The previous figure 4.9 shows the different values of the kernels, for a system of this
memory = [15, 3 ,1]. It can be noticed that under bad SNR regimes (SNR = 15 dB)
the penalized least squares estimation (PLS) gives us a better estimation (MSFEprs =
3.25e-08) than the ordinary least squares (OLS) estimation (M SFEo.s = 4.59e-02). In
this case, the visual representation of the ordinary least squared is missing the track of
the standard channel’s shape while the penalized least squares keeps track of the standard
channel.
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Fig 4.10: Representation of the original channel, LS estimation and PLS estimation for a
SNR = 0 dB setup.

As the signal to noise parameter diminishes, the performance of the ordinary least squares
(OLS) deteriorates while the performance of the penalized least squares (PLS) still keeps

track of the standard channel.
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The setup of the following simulation consists on:

- number of samples: 1e5 samples
- Voltera memory: [15, 3, 1]
- signal to noise ratio range: - 30dB to 50 dB
- filter shape: ON
- filter order = 3
- filter bandwidth: 0.2 GHz
- filter order: 3
- filter roll-off: 0.1
- filter shape: *Gauss’

MSE vs SNR[dB]

1020 ' '

MSE Ls
MSE Pls (GCV)

1010
10‘0-

10°

MSE

100 |

1007

10710 :
-30 -20 10 0 10 20 30 40 50

SNR[dB]

Fig 4.11: Mean squared error (MSE) error parameter for LS estimation and PLS
estimation in a -30 dB to 50 dB range of SNR.

It can be recognized that the penalized least squares shows advantage against the least

squares in both environments, in high SNR regimes and low SNR regimes.
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4.4

Digital Signal Processing (DSP)
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Dispersion

>
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Fig 4.12: Flow chart of the digital signal processing (DSP).

This is the flow chart of a typical coherent DSP, the modules in figure 4.12 that are mar-
ked in green correspond to the modified modules object of this thesis. The rest of the
modules are provided by the HHI library.

Before the flow chart, the first step is to sample and digitalize the received analog signals
from the photodiodes of the coherent receptor (ADC). Then, it will be a chromatic di-
spersion (CD) compensation module (not required in the simulation setup). Then, the
next problem the digital signal processing (DSP) faces is that the sampling rate clock at
the receiver is asynchronous to the transmitter clock. The system is not sampling at the

optimum pulse height, and the two clocks are not phase locked.

4.4.1 Clock Phase Recovery
ADC Chromatic Clock Phase Polarization Carrier Carrier S
ymbol
» D . T - : —»  Frequency Phase ;
Ispersion Recovery Demultiplexer Recovery Recovery Detection

Fig 4.13: Clock Phase Recovery in Digital Signal Processing scheme.

After chromatic dispersion (CD) compensation,since there is not adaptiver equalizer in
the setup to avoid removing channel effects that are useful in the pre-distortion process.
It is necessary to acquire the clock phase of the data stream. The clock recovery algorithm
finds the symbol clock frequency, selects the optimum sampling point and resamples the

data accordingly (2 sa/s).
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4.4.2 Polarization Demultiplexer

ADC Chromatic Clock Phase Polarization Carrier Carrier s
ymbol
bi : L ; > Frequency Phase ' g ;
—> ispersion Recovery Demultiplexer Recove Recove Detection

Fig 4.14: Polarization Demultiplexer in Digital Signal Processing scheme.

The purpose of this module is to implement a polarization demultiplexer; the main goal
is not to alter the signal, for this reason there is not an adaptive equalizer in the dsp. In
order to be able to pre-distort the signal, it cannot be equalized anyhow before; otherwise,
the pre-distortion estimation will not work because all the effects of the channel would

have been removed from the signal.

A performance test has been applied. The test consists in applying several polarization
rotations to the signal, then check if the polarization demultiplexer is able to track and
correct the rotation phases.

4.4.2.1 Cross - correlation Polarization Demultiplexer

After acquiring the right symbol clock, there are two signals (one for each polarization),
but with mixed data due to the rotated state of polarization (SOP). The two polarization
modes exchange energy through the mode coupling process during propagation, caused

by the external perturbation due to bending or temperature variations.

The demultiplexer was performed such that the expected cross-correlation of the two po-
larizations is minimized [16]. The polarization rotation is estimated by determining the
minimum value of the cross-correlation between the two complex inputs to the demulti-

plexer (E,, E,) as a function of a polarization rotation phase [17] [18].
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This can be calculated in parallel with a finite number of spaced values of 6 on the interval
—7/4 < 0 < m/4, since:

< E.(0)E,(0)" >= cos®(0) < E,E; > —sin®(0) < EyE, > +sin(0)cos(0) < |E,[*~|E,|* >
(4.1)
Then the optimal value of 0, is determined as the angle that minimizes the previous

expression. Then, the Stokes polarization rotation is described as follows:

R [ cos(Oopt) sm(ﬁopt)]

—sin(Oopt) 08 (Gopt)

Important results of the cross - correlation polarization demultiplexer can be appreciated
in the comparative graphs 4.15 and 4.16 that study as well as the penalty error vector
magnitude (EVM) to be applied in relationship with the signal-to-noise ratio (SNR).

The error vector magnitude (EVM) describes the vector errors between the received con-
stellation and the ideal constellation. In this case, the reference vectors are those that join
the origin with the ideal positions of the constellation points and the error vector, which
are those vectors from the ideal position of the constellation diagram to the points of the

received constellation.
o7\ Aerror
EVM(%) = | —————x100
A?“eference

Where Ac,,o, is the module of the error vector and A,cterence is the module of the highest

power point in the reference signal constellation.
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EVM Output [%] vs SNR [dB] correlation demultiplexer

EVMOutputX
EVMOutputY | 4

10 15 20 25 30 35 40 45 50
SNR [dB]

Fig 4.15: The output Error Vector Magnitude (EVM) of both polarization X and Y in

relationship with SNR for the cross - correlation polarization demultiplexing.

There is a negative trend in the EVM Error Vector Magnitude as the SNR increases.
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EVM Penalty [%] vs SNR [dB] correlation demultiplexer

EVM Penalty X
EVM Penalty Y

I
T
1

EVM Penalty [%]
W

0 1 1 1 1
10 15 20 25 30 35 40 45 50

SNR [dB]
Fig 4.16: Error Vector Magnitude (EVM) penalty of both polarizations X and Y in

relationship with SNR for the cross - correlation polarization demultiplexing.

The EVM penalty has been computed as the difference between the EVM of the output
and the EVM of the input.
EVJV[PENALTY(%) - EVMoutput(%) - EV—/\-[mput(%)

There is a high EVM penalty for low values of SNR. Then, as the SNR increases the EVM

penalty tends to decline.
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4.4.2.2 State of Polarization (SOP) demultiplexer

This section presents a technique for polarization demultiplexing of arbitrary complex-

modulated signals. The technique uses the data in Stokes space [19][20].

Stokes parameters

In order to apply the necessary correction in terms of polarization rotation it is interesting
to work with Jones parameters. In order to translate Stokes vector into a Jones vector it
is critical to understand that the fourth - dimensional Stokes vector can be projected onto
a three - dimensional vector leaving out the intensity (S,). However, the Jones vector is

still constituted of two - dimensional parameter.

The computation of the Stokes parameters Sy, S, So, S3 from the signal field Ex in the

X polarization and the Fy in the Y polarization is represented in the following equations:
SO = ExE;(— + EyE;;

S) = ExEy — Ey E5
Sy = FExEy + ExEy
Sy = jExEy — jEYEy
The relationship of the Stokes parameters Sy, Si, S2, S3 to intensity I and polarization

ellipse coordinates in shown below.
So=1

Sy = Ipcos(20)cos(2¢)
Sy = Ipsin(26)cos(2¢)
Ss = Ipsin(2e¢)

Where I, p, 20 and 2¢ are fourth - dimensional coordinates. Then, leaving out of the
system the parameter I which stands for the intensity, a three - dimensional coordinates
are left. Finally, applying the following transformations it can be obtaind the two - di-

mensional coordinates of the Stokes vector.

S- S
20 = atan =2 % = atan——>
S St + 53
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Lens - like objects

The lens-like object defines an ellipsoid which normal vector contains the average of the
polarization states of transmission [19]. This ellipsoid is defined by three axis, in this case,
the shortest axis corresponds to a normal vector pointing to the polarization states of
transmission . This ellipsoid and its normal vector can be found from least squares fit of

the data including symbols and transitions.

Poincaré Sphere

The Poincaré sphere, which was proposed by Jules Henri Poincaré in 1891-1892 [21], is
a favorable approach to represent polarized light. This approach is a technique based on
coordinates: each point on the sphere corresponds to a certain state of polarization SOP.
Because a state of polarization SOP is represented by a point in the sphere, a evolution

of polarization can be tracked as a continuous path on the Poincaré sphere.

S3

Fig 4.17: Poincaré Sphere

Where the intersection of the Poincaré sphere with +955 in figure 4.17 stands for a right
circular polarization (RC) and the intersection with -S3 in figure 4.17 denotes left circular

polarization (LC).
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Then, the intersection of the Poincaré sphere with +5; (+y in figure 4.17) stands for
horizontal polarization (H) and the intersection with -S; stands for vertical polarization
(V). Finally, the intersection of the Poincaré sphere with +Ss (+z in figure 4.17) stands
for a +45 ° linear polarization and the intersection with -S; stands for a -45 °© linear

polarization.

Method

The idea is to rotate the lens-like object into the 5555 plane so that the normal vector is
aligned with the S; axis (+z in figure 4.17) of the Poincaré sphere, which represents the
horizontal and vertical polarization, which are, ideally, the initial polarizations for the X

and Y components.

In order to rotate the ellipsoid where the states of polarization lie into the plane S555. The
algorithm should apply the sequential rotation, first around the Sz axis of the Poincaré
sphere. Then, around the S5 axis of the Poincaré to finally lie the states of polarization
ellipsoid into the SyS3 plane. (the rotation algorithm is the contribution of this thesis to
the SOP demultilpexer).
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SOP before - separation

@
SA

Fig 4.18: state of polarization (SOP) before rotation.

It can be appreciated that all the different states of polarization lying in a ellipsoid or
lens-like structure in the figure 4.18. The ideal case, is when the normal vector of the
plane is aligned with the S, (4+x in figure 4.17) axis of the Poincaré sphere, this is, the
plane should be lying in the 5553 plane. Otherwise, the algorithm has to correct the vector

position.



4. Stmulation Results 53

SOP after pol - separation

1.5 y

0.5

S3 [a.u.]

Fig 4.19: state of polarization (SOP) after rotation.

Finally, the two polarizations are demultiplexed into a vertical and horizontal polarizati-

ons.

The following figures 4.20 and 4.21 display important results from the polarization de-
multiplexing in Stokes space. The results consist on a performance test in terms of error
vector magnitude (EVM) as well as the penalty EVM in relationship to the signal-to-noise
ratio SNR as mentioned in section 4.4.2.1.
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EVM Output [%] vs SNR [dB] SOP demultiplexer

35

EVMOutputX
EVMOutputY

10 15 20 25 30 35 40 45 50
SNR [dB]

Fig 4.20: the output Error Vector Magnitude (EVM) of both polarization X and Y in
relationship with SNR for the polarization demultiplexing in Stokes space.

There is a negative trend in the Error Vector Magnitude EVM as the signal-to-noise SNR

rises.
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0.045 EVM Penalty [%] vs SNR [dB] SOP demultiplexer
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Fig 4.21: Error Vector Magnitude (EVM) penalty of both polarizations X and Y in
relationship with SNR for the polarization demultiplexing in Stokes space.

EVMPENALTY(%) = EVMoutput(%) - EVA{mput(%)

Even though the overall EVM penalty is very smallki, there is a higher EVM penalty for
low values of SNR. Then, as the SNR increases, the EVM penalty tends to decrease.
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4.4.2.3 Performance Comparison

EVM Output [%] vs SNR [dB] correlation demultiplexer EVM Output [%] vs SNR [dB] SOP demultiplexer

EVMOutputX EVMOutputX
EVMOutputY | - EVMOutputY | |

0 . . . . . N n 0 . . . .
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50

SNR [dB] SNR [dB]
(a) (b)

Fig 4.22: Output Error Vector Magnitude (EVM) comparison between the cross
correlation (a) and the state of polarization SOP (b) demultiplexing approach.
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Fig 4.23: Error Vector Magnitude (EVM) penalty comparison between the cross -
correlation (a) and the state of polarization SOP (b) demultiplexing approach.

The EVM penalty has been computed as the difference between the EVM of the output
signal and the EVM of the input signal.
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In comparison with the previous cross - correlation approach, the EVM penalty percen-
tage is significantly lower in the state of polarization SOP approach. For this reason, the
state of polarization SOP demultiplexing method is applied for the different simulations

and experiments in this thesis.

4.4.3 Carrier Frequency Recovery
ADC Chromatic Clock Phase Polarization CETuLEL Oy Symbol
> . ] T > : —» Frequency Phase P> ymbe
Dispersion Recovery Demultiplexer Recovery Recovery Detection

Fig 4.24: Carrier Frequency Recovery Digital Signal Processing scheme

This module enables the removal of the frequency offset or residual frequency error due to
misalignment between the transmitter laser and the local oscillator in the receiver, which

effect is represented by the addition of phase noise.

4.4.4 Carrier Phase Recovery

ADC | Chromatic Clock Phase | | Polarization CETuLCL O Symbol
! ! L : —»  Frequency Phase LA

—»| Dispersion Recovery Demultiplexer Recovery Recovery Detection

Fig 4.25: Carrier Phase Recovery in Digital Signal Processing scheme

This module analysis the performance of different carrier phase estimation algorithms such
as blind phase search (averaging block based) or Viterbi sliding window (sliding window
averaging) working at 2 sa/s. The Viterbi sliding window has been applied for this thesis.

This is the scheme in the adaptation of the carrier phase recovery module.
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slg

Carrier Phase Estimation

sig

Decimate

CPE BlindPhaseSearch

sigTemp

t2 ?
sig_cpe

Fig 4.26: Schematic of carrier phase estimation working at 2sps

This is the scheme of the modified version of the carrier phase estimation module working
at 2 sa/s. The module CPE BlindPhaseSearch is provided by the HHI library is a carrier

phase estimation based on Viterbi sliding window (sliding window averaging).

Once the signal arrives to the Carrier Phase Estimation it is divided in two branches.
On one hand, the signal is decimated to enter the CPE BlindPhaseSearch module that
works at 1sa/s. On the other hand, the right branch in the figure 4.26 corresponds to the
original signal without decimation (sig). The left branch of the figure 4.26 corresponds to
the phase estimations upsampled (sigTemp). Finally, the two branches are multiplied and
then the phase is corrected (sig cpe).

The performance of this module has been tested as a whole dsp in the experiment.
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Chapter 5

Experiment

This chapter explains the experimental setup in the HHI laboratory. This scenario is used
to test the performance of the regularization algorithm in penalized least squares approach

for nonlinear system identification.

Experiment procedure

The experiment procedure is the following:

First, an input signal is transmitted to be received without using digital pre-distortion at

the transmitter of the coherent system, the received signal is named as measured.

Then, the input signal, the received signal (measured) and the Volterra memory are used

to estimate the Kernel coefficients of the channel for future pre-distortion.

Next, the same input signal will be pre-distorted by the previously calculated Kernel co-

efficients at the transmitter level. The received signal is named as simulated.

Finally, there is a comparison between the non pre-distorted received signal (measured)

and the pre-distorted received signal (simulated).
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Fig 5.1: Schematic of the experiment setup.

The experiment consists in a coherent transmission system set by interconnecting the

transmitter module and the receiver module of the transceiver CFP2 - ACO module of

the HHI laboratory.
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5.1 Experiment schematic setup
sample rate = 64 Gsa/s 50 Gsa/s
DRIVER
Coherent
DAC M;M Receiver Scope
64 Gsa/s 32 Gsa/s
Bind Carrier Carrier Clock SOP .
Elgt?maetlizn Frame Phase | Frequency | Phase Po Rezs ample Cgrrzrgtjion T
Sync Recovery Offset Recovery DEMUX sps

pls (gcv) estimation
pls (without gcv) estimation
Is estimation

Fig 5.2: Complete scheme of the experimental system setup.

The described setup in figure 5.2 shows applied to test the performance of the penalized
Kernel estimator. The figure 5.1 is included in the top branch in figure 5.2. The green
marked modules in the bottom branch of figure 5.2 correspond to the modified modules
for the purpose of this thesis, the rest of the modules and instrumentation are provided
by the HHI library and HHI laboratory.

First, the system generates a PDM - 16QAM at 16 GBaud symbol rate and 20 GHz
bandwidth signal. The generated signal is passed through a digital to analog converter
(DAC), then each component of each polarization (I, @, I,, @) is amplified by the
driver amplifier to be modulated by a DP - IQ - Mod.

The acquired or measured signal by the oscilloscope (end of the top branch in the figure
5.2) is processed by the digital signal processing modified in this thesis; this digital signal
processing is presented in the bottom branch of the figure 5.2. The first step of the digital
signal processing consists on a hybrid correction module, which applies an orthogonali-
zation procedure in order to compensate for a quadrature and in-phase imbalance in the
optical coherent receiver, this module is provided by the HHI library. Then the signal is
resampled to a sample rate of 32 Gsa/s (2 sa/s).
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After that, the signal goes through a state of polarization (SOP) demultiplexer which has
been modified in this thesis, followed by a clock phase recovery module from the HHI
library. Once the signal has been demultiplexed, both polarizations go through a carrier
frequency offset module of the HHI library; its main goal is to compensate the frequency
offset. Then, the carrier phase estimation module has been updated to perform at two
samples per symbol, it is applied to estimate and recover the phase by using the Viterbi

sliding window.

At this point, the only thing missing is the synchronization between the measured signal
and the reference signal in order to be able to perform an estimation of the kernel coeffi-
cients. Since the reference signal has a sample rate of 64 Gsa/s, the current digital signal
process (bottom branch of figure 5.2) should upsample to 64 Gsa/s from the previous
sample rate 32 Gsa/s.

Once at the Kernel estimator module (regularization function for the penalized least squa-
res correspond to this thesis contribution), the Kernel estimator requires different para-
meters such as; the input signal, the output signal and memory of the different Volterra
orders to be able to estimate the system. Here, there are the options of using ordinary
least squares (Is) approach, penalized least squares (pls) approach or the penalized least

squares (pls) with generalized cross validation (gcv).
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5.2 Parameters setup of the experiment

The setup of the experiment consists in the following system parameters:

- modulation format: PDM - 16QAM

- pulse shape: ’root raised cosine’

- roll-off factor: 0.1

- laser wavelenght: 1550.1 nm / 193.4 THz

- Volterra memory: [200, 6, 6]

- number of symbols: 2% symbols (DAC)

- number of samples: 2!7 samples (DAC)

- symbol rate: 16 GBaud

- oscilloscope IDN: TEKTRONIX, DPO72004, CF:91.1CT
- channel bandwidth: 20.0 GHz

- channel deskew: 0.00, -0.02, 0.05, -0.021 ns

Where channel deskew stands for the compensation of the relative delay differences of
the four paths, the largest delay in the paths is considered the reference. The cause of
this delays is the different physical lengths of the cables (optical and electrical) from the

receiver hybrid to the scope.
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5.3 Digital Signal Processing (DSP)

This section corresponds to the modified digital signal processing shown in the bottom
branch of the figure 5.2. First, the received signals from the photodiodes of the coherent
receiver are sampled at 32 Gsa/s.

Periodogram Mean-Square Spectrum Estimate
Frequency resolutionA f = 5.00e-01 GHz orA X = 4.01e-03 hm

X-POL
Y-POL |

Normalized power [dB]
)
(3,

@
o
T

&
(3]
T

25 20 <15 -10 -5 0 5 10 15 20
Frequency [GHz]

Fig 5.3: Spectrum of the X and Y component of the signal at the oscilloscope.

The measured signal spectrum corresponds to the signal acquired at the oscilloscope (at
the end of the top branch shown in the figure 5.2), it can be recognized the root raised
cosine shape with background noise. It can be observed that the signal power is attenuated
in the surroundings of the band of interest as well as frequencies components beyond the
channel bandwidth 20 GHz due to the bandwidth of the oscilloscope.
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Received signal constellation diagram
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Fig 5.4: Constellation diagram of the received signal before dsp.

The received constellation at the input of the digital signal processing chain is shown in
figure 5.4. Due to different path gains, the constellations are not fully circular but there

is an IQ imbalance, specially in the case of the X polarization that has an ellipse shape.
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5.3.1 Hybrid Correction

The hybrid correction module is intended to compensate the IQ) imbalance mentioned

before.

Constellation before hybrid correction

X POL

0.2

quadrature
quadf‘ature

-0.2 -0.1 0 0.1 0.2
inphase inphase

Fig 5.5: Constellation diagram before hybrid correction (2 sa/s).

After the hybrid correction module, the amplitudes of I and Q have been compensated,
specially the case of the X polarization. Instead of being an ellipse, it has taken a circular

or balanced shape.
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Constellation after hybrid correction

X POL

quadrature
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Fig 5.6: Constellation Diagram after hybrid correction (2sps).

5.3.2  Polarization Demultiplexer

One of the goals of this thesis is to finish a polarization demultiplexer module based on
state of polarization which is property of the HHI institute. The main function of an
equalizer is to reverse the effects of the channel upon the signal, in our case there is not
adaptive equalizer.

The idea is to maintain the channel effects for the pre-distortion module to take those
effects into account. In order to be able to pre-distort the signal, it cannot be equalized

anyhow before, otherwise the pre-distortion estimation will not work.
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5.3.2.1 Polarization Demultiplexer Results

The previous section 4.4.2 has tested the efficiency of both approaches taken into account,
the cross - correlation algorithm and the state of polarization algorithm. The results
prove state of polarization to be more efficient. Let us consider the results of the state of

polarization demultiplexer algorithm in a laboratory experiment setup.
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Fig 5.7: state of polarization before demultiplexer view 1.
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SOP before - separation
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Fig 5.8: state of polarization before demultiplexer view 2.

The polarization demultiplexer is able extract the lens-like ellipsoid and its normal vec-
tor where all the state of polarization points concentrate. In the figure 5.8, it can be

appreciated the lens-like ellipsoid and its normal vector painted in blue.
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SOP after pol - separation
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Fig 5.9: state of polarization after demultiplexer view 1.

The contribution of this thesis comes with the extraction of the phase angles and the
appliance of the sequential rotation; first around the S3 axis, then around the S, axis to
finally lie the states of polarization ellipsoid into the 5553 plane.
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SOP after pol - separation
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Fig 5.10: state of polarization after demultiplexer view 2.

The demultiplexer is able to rotate the len-like ellipsoid in a way in which the normal
vector is pointing towards the S1 axis which represents the horizontal or vertical polari-
zation. The figure 5.10 shows the decomposition of the mixed polarization X, Y. It is a
elimination of the crosstalk between polarizations by rotation of a state of polarization
SOP lens-like ellipsoid.
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5.3.3 Clock Phase Recovery

Since there is not adaptive equalizer in the experimental setup, a clock phase recovery
module is needed to extract the timing information from data to allow the receiving pro-

cess to take place.

Constellation diagram after clock - recovery
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Fig 5.11: Constellation Diagram after clock phase recovery (1sa/s).

The figure 5.11 displays the three rings levels corresponding to the 16 - QAM energy
levels. In this case, the constellation plot shows a signal at 1sa/s, the symbol samples are

taken and the transition samples are left.
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5.3.4 Carrier Frequency Offset

Constellation diagram after CFR
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Fig 5.12: Constellation Diagram after carrier frequency offset (1sa/s).

Carrier frequency offset compensation removes rotations in phase of the constellation due

to the frequency offset. Even though this effect cannot be seen in the constellation diagram.
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5.3.5 Carrier Phase Recovery

Constellation diagram after CPR
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Fig 5.13: Counstellation Diagram after carrier phase recovery (1sa/s).

After the carrier phase estimation most of the phase noise has been compensated. Finally,
the cluttering that form the circular shape has been removed and only the actual points
of the constellation are left.

The carrier phase recovery module has been modified to be able to work at two samples

per symbol in order to run the setup at 32 Gsa/s as shown in the schematic (thesis con-
tribution).

Among the several carrier phase recovery algorithms for optical coherent systems such as
blind phase search, Viterbi sliding window and Viterbi block. The Viterbi sliding window
approach has been applied in the digital signal processing of this thesis.
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5.3.6 Bind Frame Synchronization

In order to estimate the kernel coefficients, both signals, the estimated signal and refe-

rence signal have to be synchronized, this is the goal of this module in the schematic.

The measured signal corresponds to the signal read in the oscilloscope and processed by
the modified digital signal processing (bottom branch shown in the figure 5.2) and the

reference signal corresponds to the signal loaded to the DAC.

Measured

SCOPE (4 sps)

Reference

DAC (4 sps)

> time

t o t frame

Fig 5.14: Blind frame synchronization scheme.

After the synchronization process, the starting time frame of both signals is common.
Then, the signals are cropped to match the same frame size depending of the number of

samples taken into account in the measurement process.
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5.3.7 EVM Results

The error vector magnitude shows a good performance of the digital signal processing
branch shown in the figure 5.2. The error vector magnitude (EVM) describe the vector
errors between the received constellation and the ideal constellation. In this case, it is

calculated as:

Constellation diagram after BER
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EVM normalization method: "average’

Fig 5.15: Constellation diagram.

The crosses plotted in the figure 5.16 represent the ideal position of the constellation
points, while the circles represent the centers of gravity. It can be seen that all the crosses
lay inside the circles, resulting in a EVM average parameter of 16% which means a decent

recovery through dsp.
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5.4 Results

This is experiment procedure:

We want to receive a signal transmitted without digital pre-distortion (measured), the
receiver should not have adaptive equalizer. Then the Kernel coefficients of the channel
are estimated by using the transmitted signal, the received signal (measured) and the

Volterra memory.

After identifying the Kernel coefficients of the system, the same transmitted signal is
pre-distorted using the already identified Kernel coefficients, thus a new received signal is
generated (simulated). Finally, the performance is tested by comparison of the simulated
signal and the previously measured signal for each component 1., @, 1, and ), this are

the results:

Tx

WITHOUT PRE-DISTORTION ——— Measured

Volterra memory

TX PRE-DISTORTION ——— Simulated

pls (gcv)
pls (without gcv)
Is

Fig 5.16: Experiment procedure schematic.

The setup of the experiment consists in the following system parameters:
- modulation format: PDM - 16QAM

- pulse shape: Root Raised Cosine

- roll-off: 0.1

- laser wavelenght: 1550.1 nm / 193.4 THz

- number of symbols: 2! symbols (DAC)

- number of samples: 2'7 samples (DAC)

- reduced number of samples: ~2'° samples

- symbol rate: 16 GBaud

- oscilloscope IDN: TEKTRONIX, DP0O72004, B030945
- channel bandwidth: 20.0 GHz

- channel deskew: 0.00, -0.02, 0.05, -0.021 ns
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Fig 5.17: Experiment results for penalized least squares (pls) (a) and least squares (ls)

(b)-

The previous figure 5.17 shows the error parameter MSE between the simulated signal and
the measured signal while using the penalized least squares approach figure 5.17 (a) with
generalized cross validation and filter operation mode (section 4.2) and the least squares
approach figure 5.17 (b) for the Kernel coefficients identification.

As it is explained in section 3.3.1, the ordinary least squares is an linear inverse problem,
under a small amount of samples it does not converge to a unique solution. In order to
test the performance of the penalized least squares in comparison with the least squares,
different experiments have been taken into account while varying the number of samples

for estimation.
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Fig 5.18: Experimental results for different number of samples estimation. Error

parameters: mean squared error MSE (a), maximum squared error (b).

The comparison consists in estimating the mean squared error figure 5.18 a) and maxi-

mum squared error figure 5.18 b) MSE for the penalized least squares against the ordinary

least squares. The experimental results show a slight advantage in the performance of the

penalized least squares, especially in the case of very low number of samples used in the

estimation.

Even though the positive results of the simulations, for this particular case, the penalized

least squares approach has not shown a significant advantage in performance in comparison

with the least squares approach.
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Chapter 6

Conclusion

6.1 Context

In the market of coherent optical communications systems, it is wildly common the ad-
option of polarization division multiplexing (PDM) assisted by digital signal processing
(DSP). One of the current problems and main limitation in the coherent optical fiber

transmission are the nonlinear effects.

The proposed solution aims to diminish the nonlinear effects of the transmitter component
in the communication system by pre-distorting the signal at the coherent transmitter.

Opening the possibility in this way of achieving reliable higher capacity communications.

6.2 Problem

The increasing demand of higher capacity leads to higher spectral efficiency. One way to
achieve this is through high cardinality modulations. However, the use of such modulation
formats implies changes in the optical system.

Changes such as employing coherent detection and digital signal processing (DSP) in the
optical receiver in order to meet the quality component requirements for high cardinality

modulations.

The digital signal processing chain needs a further improvement, in particular the digital

nonlinear pre-distortion. The performance of the different algorithms applied for digital
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nonlinear pre-distortion (ordinal least squares) do not perform well under short data set

or/and under low SNR regime.

In order to soften the quality components requirement of high cardinality modulations,

the performance of current digital nonlinear pre-distortion must be optimized.

6.3 Thesis Approach

Literature provides us with different solutions to this problem. One such solution is the
use of penalized least squares, which is based on adding a term of penalty or smoothness
to the previous approach (ordinary least squares) [13]. This regularization or penalization

function contains a priori information of the signal.

The thesis contribution consists in the design and Matlab implementation of a regularizati-
on algorithm for the penalized least squares approach. The thesis proposes a regularization
method based on the spectrum shape of the input signal or the filter shape used in the
input signal generation to be able to acquire good estimations under noisy and short data

in coherent receiver.

Thanks to the spectrum shape of the signal, the regularization method can penalize those

components that do not correspond to the signal.

The approach has been tested for a PDM- 16QAM, pulse shape root raised cosine,
roll - off 0.1, bandwidth 20 GHz at 16 GBauds while using the CFP2 - ACO tran-
sceiver property of the HHI.

In addition, a generalized cross validation has been implemented in Matlab to provide an

optimum regularization parameter [13] [14].
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6.4 Validation procedure

The validation procedure of the implemented algorithms by this thesis is the following:
First, a simulation of the Matlab algorithms in a control environment with arbitrary
nonlinearities is implemented. Then, an experimental setup at the HHI laboratory is used

in order to obtain empirical results.

Simulation

As an initial test for the validity of the algorithms proposed in this thesis, the following
Matlab simulations were considered. First, a simulation testing the performance of the
regularization method implemented in the penalized least squares for different bandwidth

and roll-off values of the input signal spectrum shape.

Next, a simulation verifying the improvement of the generalized cross validation in the
penalized least squares. The simulation tests the mean squared error MSE obtained by
both approaches in a large SNR range. Then, a simulation checking the improvement of
the penalized least squares against the ordinary least squares. The analyzed error para-

meter is the mean squared error MSE in regard to SNR.

Finally, a simulation comparing the performance of the two studied approaches for the
polarization demultiplexer (cross - correlation and state of polarization (SOP)). The error

parameter evaluated is the vector error magnitude EVM with respect to SNR.

Experiment

The experiment at the HHI laboratory give us insights about the observed performance.
First, the experiment aims to test the performance of the penalized least squares against

the ordinary least squares while providing factual results.

For each signal component (Ix, Iy, Qx, Qy), a performance comparison between the ob-
served signal without digital pre-distortion and the pre-distorted signal by both methods

is presented.

Lastly, the same experiment setup is taken into account while varying the number of

samples of the data set for the comparison between the two methods estimation.
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6.4.1 Results

The results from the experiment setup show a performance comparison found on the mean
squared error MSE, the comparison between the pre-distorted signal by the kernel coeffi-
cients and the measured non-predistorted signal in the lab. It does not show improvement

in the performance of the penalized least squares in contrast to the least squares.

The results have been used to compare the performance of the penalized least squares in
opposition to least squares algorithm with a varying number of samples per estimation.

Once more, the results show a minor enhancement in the penalized least square approach.

To conclude, even though the simulation results were promising, the experimental result

does not present a convincing improvement in this specific case.

6.5 Results Discussion

As a conclusion, the laboratory results do not reveal a significant improvement in the case
of penalized least squares against ordinary least squares. It proves that the performance
of the ordinary least squares is good enough even in short data set or even in low signal

to noise ratio regimes (SNR).
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6.6 Summary

This thesis goal was the design and Matlab implementation of a regularization method in
the penalized least squares approach. The design of the regularization algorithm consists
in the information of the input signal shape in order to penalized the components foreing
to the signal.

As a form of testing the regularization algorithm, a set of simulations and experiment
have been deployed. As an overall conclusion, the simulation results of the regularization
algorithm in penalized least squares for a simulated controlled environment with arbitrary

nonlinearities were very favorable.

The simulation results show how the implemented regularization technique in the pena-
lized least squares clearly outperform the ordinary least squares. However, in the case of
the experiment in the HHI laboratory, the empirical results of the regularization method

do not seem to have such a positive impact for this specific scenario.

Further study must be considered.

6.7 Future research

The research of this thesis can be extended, the implementation of adaptive regularization
algorithms for least squares could be considered. Even though, the literature on adaptive
regularization is rather limited, due to the fact that generic time-variant regularization

leads to cubic computational complexity.
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Chapter 7

Appendices

7.1 Appendix A - Mach - Zehnder Modulator (MZM)

Phase modulation depends on the wavelength, the electrode length [.; and the change in
the effective refractive index An.ss. The following figure shows a phase modulator, where
the back blocks represent the electrode (voltage u(t)) and the orange block represents the

waveguide.

electro-optic substrate
u(t)
N |

Ein(t) —| —> Eout(t)

_______m

Fig 7.1: Phase Modulator

There is a need for the specification of the parameter V. which corresponds to the necessary

voltage to produce a phase shift of 7.

A
5&(15) = %Aneff.lel ~ u(t)

)

Eou(t) = Eip(1)e?*Y = By, (t)e! Ve
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electro-optic substrate

ut(t)

E

E

Ein(t) \ Eout(t)
—> § —>

u2(t)

[

Fig 7.2: Mach - Zehnder Modulator (MZM)

Then, two phase modulators can be marged in parallel while using an interferometric
structure. The input light is divided into two branches, the branches experience different

phase shifts. Finally, the two paths are recombined.

The result is a range of constructive and destructive interferences.

Eout@) _ 1, soit) | jestt)
Bty 2 )

7.2  Appendix B - Computation of the Matrix 7,

In the regularization process of the penalized least squares. In order to compute the matrix
T, the position of the different permutations of an specific index have to be found. The
approach of this algorithm is to use the sum of the elements of the index in order to

identify the permutation of that index, for instance:

SUM =

>

)

Il
N NN~ R R O O O
N~ O N~ O N~k O

>

)

Il
O NN~ O =2 O O O
SO = O N O O N = O
O W N W O~ N = O
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In order to avoid confusing permutations such as [1,1] = 2 and [2,0] = 2, in case of having
the two equal elements of the index, the sum of them will be zero as presented in the
second matrix above. Then the sum of the elements will be computed as in the third

matrix.

7.3 Appendix C - Linear inverse problems

Literature defines an linear inverse problem as a problem which does not meet all the
requirements to be considered a well - posed problem.

Au=f (7.1)

Ae L(HF) (7.2)

Where H,F correspond to Hilbert spaces.
The requirements for a well - posed problem are:

1) for all f € F has solution u, € H.
2) for all f € F solution is unique.

3) solution u, depends continuously on the data.

If one of the three previous requirements is not satisfied, then the presented problem

is an linear inverse problem.
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