
POLITECNICO DI TORINO
Corso di Laurea Magistrale
in Ingegneria del Cinema
e dei Mezzi di Comunicazione

TESI DI LAUREA MAGISTRALE

Neural Networks
for Language and Speaker Recognition

Cinzia Ferrero

Relatori | prof. Pietro Laface
 Sandro Cumani

Settembre 2018

III

I’m sorry, my responses are limited.
You must ask the right questions.

Isaac Asimov | I, Robot

IV

Abstract

In this thesis we consider two major fields in which machine learning is ap-
plied to human voice: language and speaker recognition. For both we provide
an overview of the whole recognition chain, from the acoustic signal to the
classifier, and we present applications of neural networks for classification.

In particular, since language and speaker systems share some techniques,
the initial part of this thesis is an overview of the common approaches
to the recognition problem. We first analyze state-of-the-art techniques to
pre-process the speech signal, to extract its relevant features and to rep-
resent them by means of statistical models. We then focus on the working
principles of neural networks, and on several different methods for their
training and regularization.

Within the context of language recognition, we propose a neural net-
work architecture to classify i-vectors, which are modelled on the basis of
the recently presented Stacked Bottleneck Neural Network (SBN) features.
Comparing this solution to a Gaussian Linear classifier, we show that the
former performs lightly better than the latter.

For speaker recognition, we focus on the pairwise approach, which con-
sists in establishing whether a pair of i-vectors belongs to the same-speaker
or to the different-speaker class. In particular, we present a Siamese neural
network architecture, which performs the binary classification of a pair of
i-vectors. We propose different techniques to share its layer weights. The
obtained architecture improves the scores of a previously proposed Siamese
network, but it does not provide better performance with respect to sys-
tems that implement Probabilistic Linear Discriminant Analysis (PLDA) or
Pairwise Support Vector Machines (PSVM) techniques.

V

To my family

Acknowledgements
I would like to thank professor Pietro Laface and Sandro Cumani for

their guidance. Thanks to them I learnt many concepts and techniques con-
cerning language and speaker recognition.

Thanks to my parents for always supporting me unconditionally. Thanks
to Fabio for always encouraging me and for helping me to design the graph-
ic of this work. Thanks to Adam for being near me and for inspiring me to
reach higher goals. Thanks to Arek, Margherita, my grandparents and all
my family for supporting me.

Thanks to Luana, my friends and colleagues for sharing many moments
and experiences during these years of studies.

VI

Contents

Abstract ... IV

Chapter 1 - Introduction ... 1

Chapter 2 - Feature extraction ... 3

2.1 | Analog-to-digital conversion ... 4
2.2 | Voice activity detection ... 7
2.3		|	Mel-Frequency	Cepstral	Coefficients .. 8

2.3.1 MFCCs computation .. 9
2.3.2 MFCCs and derivatives .. 13

2.4		|	Shifted	Delta	Coefficients .. 13

Chapter 3 - Statistical modeling ..15

3.1 | Gaussian Mixture Model ... 15
3.1.1 Gaussian mixture distribution .. 16
3.1.2 Maximum Likelihood Estimation ... 17

3.2 | Universal Background Model and MAP adaptation 21
3.3 | Joint Factor Analysis ... 24

3.3.1 Alignment statistics .. 24
3.3.2 Classical MAP .. 25
3.3.3 Eigenvoice MAP ... 26
3.3.4 Eigenchannel MAP ... 27
3.3.5 JFA model .. 28

3.4 | I-vectors .. 28

VII

Chapter 4 - Artificial neural networks ...30

4.1		|	Artificial	intelligence,	machine	learning	and	deep	learning 30
4.2 | Working principles of neural networks ... 33
4.3 | Neural network architecture ... 35

4.3.1 Single node ... 35
4.3.2 Network function .. 36
4.3.3 Activation functions ... 36

4.4 | Training ... 39
4.4.1 Loss function .. 39
4.4.2 Gradient descent .. 41
4.4.3 Optimizer ... 44

4.5 | Regularization .. 49
4.5.1 Weight penalties ... 51
4.5.2 Dropout .. 52
4.5.3 Noise .. 53

Chapter 5 - Language recognition ..54

5.1 | Language characterization ... 54
5.2 | NIST LRE17 dataset and performance metrics ... 58

5.2.1 Dataset ... 58
5.2.2 Performance metrics ... 59

5.3 | System description .. 60
5.4 | Stacked Bottleneck features .. 61
5.5		|	Classifiers .. 64

5.5.1 Gaussian linear classifier .. 64
5.5.2 Neural network ... 65

5.6 | Experimental results .. 65

Chapter 6 - Speaker recognition ..73

6.1 | Introduction ... 73
6.2 | System description .. 75
6.3		|	Classifiers .. 76

6.3.1 Probabilistic Linear Discriminant Analysis .. 76
6.3.2 Pairwise SVM ... 79
6.3.3 Cosine distance ... 81

VIII

6.3.4 Siamese neural network .. 81
6.4 | Dataset .. 83
6.5 | Evaluation scores ... 84
6.6 | Experimental results .. 85

Chapter 7 - Conclusion ..92

References ..93

1

Chapter 1
Introduction

In the last years a growing interest towards speech technologies has
pervaded both industries and scientific community. Virtual assistants, con-
versational human-machine interfaces, more human-like speech synthesis,
audio surveillance, voice biometric authentication, audio indexing, all of
these are examples that audio is and will become a substantial segment of
technology. One of the reason of this success is due to machine learning and
to the possibilities that it offers to build more and more intelligent systems.
Furthermore, the increasing availability of data and computational power
allows training more effective and accurate systems.

Three main fields on which research is focusing are speech, speaker and
language recognition. Speech recognition develops automatic systems that en-
able the recognition of spoken language, and its transcription to text. Since it
is a required step for voice user interfaces, this technology has many commer-
cial applications, like mobile virtual assistants, audio typing and domotics.

Speaker recognition is the automatic process to predict the identity of
the speaker of a given utterance. This technology can be adopted in a wide
range of applications: authentication procedures, forensic activities, tele-
phone-based services, and speaker diarization.

Language Recognition is the automatic process that tries to identify the
language spoken in a given utterance. Many applications are possible for
this technology, like spoken language translation, emergency call routing,
surveillance and security information distillation or as front-end for lan-
guage-dependent speech recognizers.

In this thesis, we focus on language and speaker recognition. For both
we provide a good overview of the whole recognition chain, starting from
the processing of the audio signal up to the actual classification, and the
final answer regarding the identity of the person or the language. Since
language and speaker recognition share some problems, and rely on similar
techniques, the initial part of this thesis presents the common approaches to
the recognition problem. In particular, we describe state-of-the-art methods
to pre-process the speech signal, to extract its relevant features and to rep-
resent them by means of statistical models. Given audio samples of different
duration, these techniques are able to represent them with low-dimensional,
fixed dimension, vectors, called i-vectors.

2

The main objective of this thesis is to apply the artificial neural network
framework to the classification problem of both speaker and language recog-
nition. A neural network is a computing architecture including many simple
processing elements, which are highly interconnected. Providing input data
and the expected outputs, the network is able to learn patterns by adjusting
the weights of the connections between its elements.

Within the context of language recognition, we will introduce a recent
technique to extract features from the audio signal: the Stacked Bottle-
neck Neural Network (SBN) framework. We will then propose a neural
network architecture to classify these features, and to identify the language
of the given spoken utterances.

For speaker recognition, we focus on a pairwise approach for classifica-
tion, which consists in establishing whether a pair of i-vectors belongs to
the same-speaker or to the different-speaker class. Thus, instead of per-
forming a multiclass classification (1-to-many-speakers), we perform binary
classification of i-vector pairs. We will introduce state-of-the-art models,
which execute pairwise classification, namely Probabilistic Linear Discri-
minant Analysis (PLDA) or Pairwise Support Vector Machines (PSVM).
Furthermore, we will present a Siamese neural network architecture, which
performs the binary classification of pairs of i-vectors. This architecture
has two sub-networks, that share the weights, and learns an internal rep-
resentation of the i-vectors, that aims at enhancing speaker discrimination.
An objective cost function between these representations is minimized, and
after training, the Siamese network is able to return a classification predic-
tion for an input pair of i-vectors. We will propose different architectures
and techniques to share the weights of the network.

The outline of this thesis is the following:

• Chapter 2 describes the preliminary processing of the audio signal
and the techniques to extract the features, enhancing meaningful
information, and discarding the redundant one.

• Chapter 3 presents statistical techniques to model the distribution
of the acoustic features. In particular, the Gaussian Mixture Model
will be introduced together with methods for creating background
models, and for compensating speaker and channel variability.

• Chapter 4 introduces the working principles of neural networks and
several different methods for their training and regularization.

• Chapter 5 deals with language recognition. It describes the SBN
features, and presents the experimental results obtained for classifi-
cation with different neural network architectures.

• Chapter 6 focuses on speaker recognition. It introduces state-of-the-
art pairwise classifiers and the Siamese neural network architecture.
Then it presents the experimental results obtained with different
Siamese architectures.

3

Chapter 2
Feature extraction

For any ASR system, the starting point to analyze speech utterances
is a front-end processing that is used to transform the acoustic signal in
a set of features. It is fundamental that this set is a good representation
of the signal. So the features are chosen with the purpose of emphasizing
the discriminative information and suppress the statistical redundancies
or the useless information [1].

For example in the case of speaker recognition, an ideal feature set [2] would:

• have large variability between different speakers, but small variabili-
ty within the same speaker

• be robust against noise and distortion
• contain frequent and natural characteristics of the speech
• be easy to evaluate
• be difficult to fake
• not be affected by variations of the speaker’s voice due to health

conditions or the fact that a long time has passed
• have a relative small number of features

If the last point is not respected, one falls into the problem known as the
curse of dimensionality. In fact sometimes traditional statistical models (e.g.
Gaussian mixture model) can’t handle data with high-dimensionality [2].
Furthermore if the number of features grows, the number of training samples
to reliably estimate the density also grows, but potentially in an exponential
way. So the condition to have a low number of features is fundamental.

Front-end processing generally consists of three steps.
The first step for feature extraction is to digitize the signal and to convert

it from a continuous signal in time and amplitude to a discrete signal in time
and amplitude as well. After this, the signal can be processed by a machine.

Next, sspeech activity detection is required to remove the portions of the
signal of silence. In these portions the value of the audio signal is not equal
to zero because of noise, so some sort of strategy is needed to distinguish
speech and non-speech signal.

In the third step the relevant information for our task has to be selected
and enhanced. To handle the fact that the audio signal is not stationary,

4

2.1 | Analog-to-digital conversion

a short-term analysis must be performed. Then the final features are ex-
tracted to form a vector of coefficients. The sample utterances converted
to feature vectors will then be used for model training, which will be dealt
with in the next chapter.

Often a post-processing step is added to the feature extraction chain, to
perform a preliminary channel compensation and noise attenuation. Since
the recognition system can operate with utterances coming from different
channels, it is important to attenuate the channel effects, that typically mod-
ify the spectrum (e.g. limiting the band or changing the shape). For these
reasons, different techniques can be applied to make the system more robust.

2.1 | Analog-to-digital conversion
The systems that digitalize audio signals use time sampling and ampli-

tude quantization to encode an analog waveform with continuous values to
a discrete signal with finite amplitude values in time.

The Nyquist theorem provides sufficient conditions that allow the orig-
inal waveform to be reconstructed from a set of discrete samples without
any loss of information. In particular, the theorem states that a signal can
be recovered without loss of any information provided that the sampling
frequency is at least twice the highest signal frequency

In practice to respect the theorem, the input signal has to be low-pass
filtered, in order to have the maximum frequency equals to half the chosen
sampling frequency. Since the human voice mainly includes frequencies that
are below 4 KHz, telephone applications sample audio signals at a frequen-
cy of 8KHz. In this way there are no consistent losses of intelligibility, even
if there are some losses of naturalness.

Unlike the sampling process, quantization introduces a measuring error.
With uniform quantization, the continuous possible amplitude values of a
time sample are mapped to a finite number of quantization levels of the
same size. As with any analog measurement, since the resolution of the sys-
tem is finite, the accuracy is limited and an error is introduced.

y(t) yS(k) yQ(k)

fS

Sampler QuantizerLow-pass
filter

< Figure 2.1:
Analog-to-Digital
converter schema

5

2.1 | Analog-to-digital conversion

Hereafter we analyze more in detail the various steps to digitalize a
speech signal.

Sampling
Sampling can be written as the multiplication of the input signal by a

periodic impulse train:

where is the input signal, is the sampled signal and the impuls-
es are distant from each other of the sampling interval .

Since the Fourier transform of a periodic train of impulses is still a peri-
odic train of impulses

and the multiplication in the time domain corresponds to the convo-
lution in the frequency domain, we get that the Fourier transform of the
sampled signal is

where is the Fourier transform of and is the Fourier
transform of .

If is bandlimited to , the replicas do not overlap and so there is
no aliasing. In this work we will consider a sampling frequency equal to 8 kHz.

< (2.1)

< (2.2)

< (2.3)

< Figure 2.2:
Schema to illustrate
the process of sampling
a bandlimited signal
On the left there are
the signals in the time
domain and on the
right in the frequency
domain.
A) Input signal
B) Spectrum of the
input signal
C) Sampling signal
D) Spectrum of the
sampling signal
E) Sampled input signal
F) Spectrum of the
sampled input signal

TIME DOMAIN FREQUENCY DOMAIN

A
m

pl
itu

de

Time
A

A
m

pl
itu

de

Frequency

Anti-aliasing filter

B
fS /2

E

A
m

pl
itu

de

Time

C

A
m

pl
itu

de

Time

fS
1

D

A
m

pl
itu

de

FrequencyfS 2 fS 3 fS

fS 2 fS 3 fS
F

A
m

pl
itu

de

Frequency

6

2.1 | Analog-to-digital conversion

Quantization
The audio signal amplitudes are not uniformly distributed, but statisti-

cally there are more samples with low amplitude. So a uniform quantization
would not perform well and a logarithmic quantization is preferred. In prac-
tice we realize the process of companding, that is to compress the dynamic
range of the signal and then linear-quantize it. To simplify the computation
and to solve the problem that the logarithm is not defined in zero, functions
like A-law (for American communication nets) and μ-law (for European
communication nets) are applied [3]. These are piece-wise linear approxi-
mations of the logarithm.

By applying this sort of quantization, samples with low amplitude are rep-
resented with greater precision (more bits). Furthermore the signal-to-noise
ratio (SNR) is less sensitive to changes of the input signal dynamic range.

In particular telephone speech samples are represented on 8 bits. The
µ-law and A-law algorithms map 13-14 bit linear samples to 8-bit logarithmic
samples. Thus, we get a 64 kbit/s bitstream for a signal sampled at 8 kHz.

Filtering
From sampling and quantization we obtain the digitized signal ,

which is characterized by a drop in the power at higher frequencies. This
property is caused by the glottal voice source [2]. Therefore the signal
spectrum is flatten by means of a first order pre-emphasis filter with the
following transfer function [4]

where usually a is chosen equals to 0.95.
In time domain, the output of the pre-emphasizer is

No Companding
µ-Law

A-Law

En
co

de
d

Si
gn

al
 (

dB
FS

)

Linear Signal (dBm0)

0

-60

-10

-20

-60

-40

-50

10 -70-60-50-40-30-20-100 -80

< Figure 2.3:
Companding of μ-law
and A-law functions

< (2.4)

< (2.5)

7

2.2 | Voice activity detection

2.2 | Voice activity detection
Voice activity detection (VAD) is a technique used to discriminate the

segments of an audio signal that contain speech from the ones that con-
tain only noise. This is especially important for signals recorded in noisy
environments, because VAD can enhance the quality of the speech signal
identifying the segments of interest. Usually the segments that according to
the VAD decision are not speech segments are ignored.

One of the most simple solutions is to use the signal energy to locate the
speech segments [2]. In particular, the signal is divided in frames, the frame
energy is computed, and the VAD decision threshold is set close to the max-
imum energy, considering a tolerance. The disadvantage of this approach is
that the whole utterance has to be processed to set the decision threshold.

Instead, a real-time solution is the Long-Term Spectral Divergence
(LTSD) technique [5]. The most relevant information to locate the speech
is assumed to remain on the time-varying signal spectrum magnitude. The
algorithm is based on the estimation of the Long-Term Spectral Envelope
(LTSE) and on the computation of the LSTD between the speech and the
noise, which is used to evaluate the decision rule.

Energy-based VAD is very popular due to its simplicity, but it’s also sen-
sitive to environmental noise. Some form of pre-process to enhance the signal
can be performed, however in [6] a more robust solution has been proposed,
which is described by the following steps:

• Mel-Frequency Cepstral Coefficients (Section 2.3) are extracted from
the original noisy signal.

• The signal is enhanced to increase the energy contrast between the
speech and non-speech segments. In particular, the spectral subtrac-
tion technique is used, whose details can be found in [6].

• The frame energies of the enhanced signal are computed.
• The lowest and highest energy frames are selected, considering a

fixed percentage. The former are considered the non-speech frames,

Speech
enhancement

Noisy
signal MFCC

Noise
estimation

Frame
dropping

Feature
extraction

VAD

< Figure 2.4:
Voice activity detection
is used to identify the
non-speech frames that
are dropped

8

2.3 | Mel-Frequency Cepstral Coefficients

and the latter the speech ones. Using this method, two subsets of
reliable labelled frames are built.

• Two Gaussian Mixture Models (Section 3.1) are trained using the
MFCCs of the subsets’ frames. Thus, the parameters of the speech
and non-speech models are obtained.

• Computing the likelihood ratio using the models, all the frames are
labelled as speech or non-speech. In particular, given the speech mod-
el parameters , the non-speech model parameters ,
and a feature vector , the likelihood ratio is

2.3 | Mel-Frequency Cepstral Coefficients
After the conversion of the signal from analog to digital and the removal

of non-speech portions of the signal, the next phase consist of extracting
the distinctive features.

The Mel-Frequency Cepstral Coefficients (MFCC) were introduced
by Davis and Mermelstein in [1] and they are one of the most common
representations of the acoustic signal in speech recognition. In particular
MFCCs provide a short-term representation of the power spectrum of the
acoustic signal. They combine the advantages of the cepstrum with a fre-
quency scale based on ear’s critical bands.

Bogert et al. defined the cepstrum as the inverse Fourier transform of the
log magnitude spectrum of a signal and it was developed to separate convolut-
ed signals [7]. Thus by applying the cepstrum operator it is possible to sepa-
rate the excitation signal from the vocal tract signal in the speech production
model. In fact, the speech signal is given by the excitation signal, produced by
the lungs and approximated by a white noise, passed through the vocal tract,
which according to its shape assigns various formants to the signal spectrum.

Human ear can perceive a range of frequencies from 20 Hz to 20 kHz, but
the resolution in this range is not uniform. At low frequencies, the ear can
distinguish differences of frequency more easily than at high frequencies.
This non-uniform frequency analysis performed by the basilar membrane
can be modelled with a set of bandpass filters, with narrower bands for low
frequencies and wider bands for high frequencies. These bands, called crit-
ical bands, are used in psychoacoustic to quantify the ability of the human
ear to distinguish between individual frequency tones. In particular the
Mel scale is a perceptual scale of pitches judged by listeners to be equal in
distance from one another.

< (2.6)

9

2.3 | Mel-Frequency Cepstral Coefficients

2.3.1 MFCCs computation

The system to extract MFCCs from the signal can be outlined as a chain
of different processes which are illustrated by the Figure < Figure 2.6 and described
more in detail in the following sections.

Framing
The speech signal is a slowly time varying signal [4]: if it is analyzed in

a short period of time (between 5 and 100 ms), it is quasi stationary; but if
we consider a longer period of time (on the order of 1/5 sec or more), the
signal depends on the speech sounds being spoken.

Therefore, the first step towards MFCC extraction consists in splitting
the acoustic signals into frames. These are usually 10 ms long. In this period
of time the signal can be considered stationary.

∆ fC

fC

A
m

pl
itu

de

Frequency0

1

< Figure 2.5:
Representation of the
bandpass filters based
on critical bands

Windowing DFTFraming
Speech
signal

Log warping Mel-frequency
spectrumDCT

MFCC

< Figure 2.6:
System to compute
MFCCs

S U V
< Figure 2.7:
Waveform of a speech
signal composed by a
part of silence (S), a
part of unvoiced signal
(U) and a part
of voiced signal (V)

< Figure 2.8:
Splitting of the audio
signal into
overlapping frames

Na Ma

Na Ma

Na

10

2.3 | Mel-Frequency Cepstral Coefficients

The framing operation can be written as

where is the frame size (i.e. the number of samples in a frame), is the
size of the shift, T is the number of frames within the entire signal. So for ex-
ample the first frame, , includes the speech samples .

Windowing
A framing process like the one described above causes distortions of

the spectrum due to the discontinuities introduced between two successive
frames. To extract a frame this way is equivalent to the multiplication of
the signal by a rectangular window. Since the Fourier transform of a rec-
tangular window is a sinc function, in the spectrum of the framed signal are
introduced non-zero values, commonly called spectral leakage, around the
frequencies of the original signal. Leakage can prevent from distinguishing
two neighbouring frequencies or can also obscure the weaker ones.

To solve this problem we can use a window function that minimizes
the discontinuities between successive frames:

One of the most used window function is the Hamming window

Typically the value is chosen equal to 0.54.

Furthermore to avoid losing the information of the samples near the
borders frame, the frames are overlapped, i.e. the shift between consecutive
frames is smaller than the frame length. In this case it is chosen .
In this way, the samples that are near the end of the frame will be in the
middle of the next frame and their information will not be lost.

< (2.7)

< (2.8)

< (2.9)

Na -1

A
m

pl
itu

de

Samples0

1

< Figure 2.9:
Hamming window

11

2.3 | Mel-Frequency Cepstral Coefficients

Fourier Transform
The next step to compute the audio features is to calculate the Discrete

Fourier Transform (DFT) of the windowed frame. This can be done using
the Fast Fourier Transform (FFT), that decomposes the signal into its
frequency components.

Usually the phase of the Fourier Transform is ignored, because it is be-
lieved to be of little perceptual importance [2]. Whereas the envelop of the
magnitude spectrum is the most informative part of the spectrum because it
contains the information about the resonance properties of the vocal tract.

Mel-frequency spectrum
Psychoacoustic studies show that the human auditory system can be

effectively modeled as a filter bank. Therefore the most simple model to ex-
tract features from the spectrum is a bandpass filter bank to get the energy
of neighbouring frequencies. Furthermore in order to consider the human
critical bands, the filter bank’s bands are chosen according to the Mel scale.
In this way the low frequencies are represented with higher resolution be-
cause a larger number of narrower filters is assigned to them.

In most implementations the shape of the filters is triangular.
There are different formulas to convert frequencies from the hertz scale

to the mel scale. A popular one is the following

where f denotes the real frequency (hertz) and m denotes the perceived
frequency (mels). There are also other approximations that consider linear
and logarithmic segments with 1000 Hz as turning point.

Given the mel-frequency bands, the DFT values can be grouped together
in these bands and weighted by the triangular function. The energy for each
frequency band can be calculated as

where is the energy of the i-th band, and are respectively its
lower and upper bound and is the number of bands (e.g. usually).

The mel-frequency spectrum is defined as [7]

< (2.10)

< (2.11)

< (2.12)

< (2.13)

12

2.3 | Mel-Frequency Cepstral Coefficients

where is the triangular weighting function for the i-th filter and

is a normalizing factor. This is needed to obtain a flat mel-spectrum from
a flat input Fourier spectrum.

Log warping
Following the computation of the Mel-frequency power spectrum, a loga-

rithmic transformation is applied to mimic the human perception of loudness.

Discrete Cosine Transform
Finally to compute the MFCCs we apply the inverse DFT to the log

Mel-frequency spectrum. Since applying the IDFT is in general complex,
the Discrete Cosine Transform is performed instead.

Therefore the p-th MFCC for frame k is given by [7]

If we don’t use filters with triangular shape to evaluate the energy of the
mel-frequency bands, we obtain a simpler formula

Cepstral parameters have decreasing variance as their indices grow, so
high index parameters carry less information and they can be discarded.
Usually, the number of cepstral parameters used is between 12 and 24.
Furthermore the cepstral parameter is discarded because it contains
the same information given by , the total energy of the frame

< (2.14)

Hi

i

Li

A
m

pl
itu

de

Frequency0

1

-th band

Nf -1

< Figure 2.10:
Mel spectrum

< (2.15)

< (2.16)

< (2.17)

13

2.4 | Shifted Delta Coefficients

2.3.2 MFCCs and derivatives

The processing described above doesn’t include any time evolution infor-
mation in the MFCCs. To represent the dynamic nature of speech, cepstral
derivatives are taken into account. In particular the first order derivative of
cepstral coefficients, called Delta coefficients, and the second order deriva-
tive, called Delta-Delta coefficients, are included in the feature set.

These parameters can be calculated through an approximation of the
temporal derivative of MFCCs. One possibility is to use a polynomial ex-
pression over a certain number of successive frames.

where G is a gain used to obtain a similar variance between the set of
MFCCs and the set of differential parameters and N is half the size of the
window used to approximate the derivative.

With a similar procedure, the differential energy can be computed as

The second order derivative can be evaluated in the same way.

Finally the set of mel-frequency cepstral coefficients and their first and
second order derivatives can be combined to form the features vector

2.4 | Shifted Delta Coefficients
MFCCs allow capturing the short-term speech dynamics and give good

results for speaker recognition. Shifted Delta Cepstral (SDC) [8][9] are more
useful, instead, for language recognition because they allow capturing the
dynamics of a wider time interval. This characteristics allows SDC features
to improve the performance of the model (Chapter 3).

In particular, SDC feature vectors are obtained by stacking delta cepstra
evaluated in different speech frames. The SDC vector is characterized by 4 pa-
rameters: N is the number of cepstral coefficients computer for each frame, d
is the time delay for delta computations, k is the number of blocks whose delta
coefficients are stacked, and P is the time shift between consecutive blocks
(Figure < Figure 2.11). Given time t, the SDC coefficients are computed as follows

< (2.18)

< (2.19)

< (2.20)

14

2.4 | Shifted Delta Coefficients

where is the j-th coefficient at time t.

< (2.21)

< Figure 2.11:
Schema of the
computation of the
SDC feature vector

+ − + − + −

15

Chapter 3
Statistical modeling

In order to model a certain language (or speaker), we use statistical models
that try to describe the distribution of the acoustic features, extracted from
audio samples of this language (or speaker). Therefore, the feature vector can
be interpreted as a realization of a random variable. For each language (or
speaker) we estimate a model which describes accurately the realizations. In
particular, during the training the model parameters are evaluated by means
of a sufficient wide set of audio samples. One of the most popular models is
the Gaussian Mixture Model which we will consider in this work.

We are interested in computing the likelihood ratio between the hypothesis
that an utterance is from the considered language (or speaker), which is the
target, and the hypothesis that it is of another language (or speaker), which is
the non-target. For this reason it is important not only to model correctly the
target, but also to be able to model the non-target population. The proposed
solution is to estimate a generic target-independent model, called Universal
Background Model. Then the UBM is adapted to the specific target models.

Furthermore we will introduce some techniques to compensate for the
effects due to variabilities that are not language (or speaker)specific, like
channel effects. Indeed these variabilities can have negative consequences on
the recognition. In particular, we will consider the technique of Joint Factor
Analysis, which has been successfully used in the past, and also the more
recent i-vector technique.

3.1 | Gaussian Mixture Model
The Gaussian distribution, also known as normal distribution, is a com-

monly used model in many engineering and scientific applications, because
it has very good computational properties, and it can approximate many
real-world data. Furthermore by combining a sufficient number of Gauss-
ian distributions with the right parameters, we obtain a Gaussian Mix-
ture Model (GMM) is a stochastic model that allows accurately estimating

16

3.1 | Gaussian Mixture Model

almost any distribution. Due to these important characteristics, GMM are
widely used both in language and speaker recognition.

3.1.1 Gaussian mixture distribution

The probability density function for a single, Gaussian distributed, con-
tinuous random variable can be written in the form

where and are its mean and variance, respectively.
For a D-dimensional normal random vector , the multi-

variate Gaussian distribution can be defined as

where is a D-dimensional mean vector and is a covariance matrix.

Gaussian distributions are unimodal, however more complex distribu-
tions with multiple local maxima can be approximated by Gaussian mix-
tures, that are linear combinations of Gaussians and can be defined as

where K is the number of Gaussians and is the prior probability
of picking the k-th Gaussian component. In particular each Gaussian

 is a component of the mixture, characterized by a mean
and a covariance . The parameters are called the mixture weights and
must satisfy the following constraints:

< (3.1)

< (3.2)

-1

-1
0

0

1

1

1

4

3

2

x

y

z
< Figure 3.1:
Multivariate Gaussian
distribution

< (3.3)

< (3.4)

17

3.1 | Gaussian Mixture Model

With a sufficient number of Gaussians, characterized by the right means
and covariances, and combined with the right coefficients, it is possible to
approximate almost any distribution with an arbitrary accuracy [10]. Indeed
from a set of samples of a random variable , it is possible to
approximate the p.d.f. of with a Gaussian Mixture Model characterized by

In the case of speaker recognition, for example, is the feature vector
for a given frame at time t and the GMM are used to approximate the
acoustic distribution of the speaker frames.

Usually the covariance of the GMM is assumed to be diagonal (i.e. the
axis of the hyper-ellipsis are restricted in the same direction of the coor-
dinate axes) to simplify the computation and to reduce overfitting of the
training population [2]. Furthermore Gaussian mixtures with a sufficient
number of components and diagonal covariances, are capable of modelling
the correlations among feature vectors as well as full covariance GMMs with
less Gaussians. Moreover the inaccuracy introduced by diagonal covariance
matrices can be compensated considering more Gaussian components [11].

A possible approach to estimate the GMM parameters from a training
data set is the Maximum Likelihood Estimation (MLE).

3.1.2 Maximum Likelihood Estimation

For a given parametric family of probability distributions, with
parameters , the ML method finds the values of that maximize the
likelihood function , i.e. the values of the parameters that make the
observed data the most probable [3][12]

 1

 2

 3

 4

-2

-2

-1-1 0

0

1

1

2

2
x

y

z < Figure 3.2:
Gaussian mixture

< (3.5)

< (3.6)

18

3.1 | Gaussian Mixture Model

To simplify the problem, the logarithm of the likelihood is taken, so the
products are transformed into sums

In the case of the Gaussian mixture, the logarithm of the likelihood
function is given by

However in this case there is no closed-form analytical solution [10]. The
problem can be solved using iterative methods, for example the Expec-
tation-Maximization (EM) algorithm. This is an iterative procedure that
allows estimating the parameters of a probabilistic model in presence of
latent variables.

Therefore, in our case we have to write a formulation of the Gaussian mix-
ture that explicitly involves latent variables [10][13]. We introduce a K-di-
mensional binary random variable that satisfies and .
This means that in a realization of only one element is equal to 1 and
all the others are zero. Furthermore these realizations can be considered as
K possible states of that are mutually exclusive.

We can write the marginal distribution of in terms of the mixing coef-
ficients as

and the distribution of as

Since only one of the K possible states is active, the conditional distribu-
tion of given the state is

which can be rewritten as

The marginal distribution of can be obtained by summing the joint
distribution over all the possible states of , with the joint distribution
given by

< (3.7)

< (3.8)

< (3.9)

< (3.10)

< (3.11)

< (3.12)

< (3.13)

19

3.1 | Gaussian Mixture Model

Using (eq< (3.10) and (eq< (3.12) we obtain

which has the same form of the Gaussian mixture model (eq< (3.5).
Therefore, we can interpret the GMM as a latent variable model where

a latent vector is associated to each different data point .
The EM procedure requires the computation of the latent variable pos-

terior distribution given the data. Applying Bayes theorem we have

We can see as the prior probability of and as the corre-
sponding posterior probability once we have observed . The last one is also
called responsibility because it gives the probability that the data point
was produced by the k-th Gaussian component.

The Expectation-Maximization (EM) algorithm is an iterative technique
that is used to compute the maximum likelihood estimates of model’s pa-
rameters, with the model depending on latent variables (or missing data). In
particular the EM algorithm alternates an Expectation (E) step and a Maxi-
mization (M) step, until the convergence of the parameters’ values is reached:

• E step: given the data and the current parameters values, we esti-
mate the missing data using the conditional expectation

< (3.14)

< (3.15)

1

0 10.5

0.5

0

1

0 10.5

0.5

0

1

0 10.5

0.5

0

A B C

< Figure 3.3:
A) Samples from the
joint distribution.
The three states of z
are represented by
the colours red,
green and blue
B) Samples from the
marginal distribution
C) Same samples of B.
The colours represent
the value of the
responsibilities
associated to
the data point

< (3.16)

20

3.1 | Gaussian Mixture Model

• M step: using the estimates of the previous step, the parameters are
updated maximizing the likelihood function

It can be demonstrated [10] that for Gaussian mixtures the conditions
which have to be satisfied at a maximum of the log-likelihood function
are the followings

where

This can be interpreted as the expected number of points associated to
the k-th Gaussian.

We can observe that the mean of the k-the Gaussian is calculated
as the weighted mean of all the data points. The weight factor of each
is , i.e. the responsibility of the k-th Gaussian to have generated the
data point . In the same way the covariance of the k-the Gaussian is
estimated over all the data points and each one of these has a weighting
factor given by the responsibility. Finally the mixing weight is the aver-
age responsibility of the k-th Gaussian for the generation of the data points.

Summarizing, the EM procedure for GMM parameter estimation con-
sists of the following steps:

1. The means , covariances and mixing weights are initialized
randomly and the log-likelihood is evaluated.

2. E step: we evaluate the responsibilities of each associated to the data
point , using the current parameters values , with (eq< (3.15)

3. M step: using these responsibilities, the parameters are updated with
(eq< (3.18), (eq< (3.19) and (eq< (3.20)

< (3.17)

< (3.18)

< (3.19)

< (3.20)

< (3.21)

< (3.22)

< (3.23)

21

3.2 | Universal Background Model and MAP adaptation

4. We evaluate the log-likelihood

until the convergence of the likelihood. If the convergence criterion is
not passed, we return to step 2.

Using these iterations we are able to estimate the parameters of a Gauss-
ian mixture distribution of the features extracted from the audio input.

3.2 | Universal Background Model
and MAP adaptation

Giving a test utterance as input to the front-end processing, the output
we get is a set of feature vectors where is the feature vec-
tor for the frame at time . To model a language (or a speaker) we
can then model the acoustic features assuming that these can be represent-
ed by a GMM distribution with parameters .

The goal of a speaker verification or language detection system is to
establish whether a test utterance belongs to an hypothesized speaker or
language respectively or whether it doesn’t. The hypothesized speaker and
language are also called target. Thus, we define two hypothesis

 : comes from the target
 : does not come from the target

where S is for same and D is for different.
To make the decision we want to be able to compute the following like-

lihood ratio [14]

< (3.24)

< (3.25)

< (3.26)

< (3.27)

22

3.2 | Universal Background Model and MAP adaptation

where is the distribution of the acoustic features for the given
target, and similarly is the distribution for the non-targets. is a
predefined decision threshold.

The hypothesis can be represented by the model that character-
izes the target in the features space. Whereas can be represented by the
model that characterizes the non-targets in the same features space.
Furthermore often the logarithm of the likelihood ratio is considered

We already showed how to estimate the model and evaluate its log-like-
lihood for a set of feature vectors. Thus we can train the model using
speech utterances from the target. Unlike this model, which is well defined,
the definition of the non-target model is more complex because it has
to potentially represent all the non-targets. There are two main approaches
to deal with this problem. The first is to train a set of non-target models

, called background models, and then to combine their likeli-
hoods with some function (e.g. average or maximum):

Many researches have been performed to understand which is the right
size and composition of the background models set, and for example in [14]
it was shown that for better performances the background set must be spe-
cific for the target.

The second approach is to train a GMM using a large set of speech
samples gathered from several speakers or languages. The resulting model
is called Universal Background Model (UBM). Since this is not dependent
on any specific speaker or language, it can be interpreted as a model of
the acoustic characteristics shared among different speakers/languages. The
UBM can be trained with the EM algorithm (Section 3.1.2). Thus we obtain

The number of available target feature vectors is usually quite limited.
Therefore ML solutions are not very reliable and tend to overfit the training
utterances. It was shown in [15] that a much better model can be esti-
mated by adapting the UBM to the specific target speaker or language. In
particular, better models can be obtained by replacing the ML estimation
by a Maximum-a-Posteriori (MAP) adaptation.

The MAP estimation is similar to the Maximum Likelihood one, but
it takes into account the prior distribution of the parameters that we
want to estimate

< (3.28)

< (3.29)

< (3.30)

< (3.31)

23

3.2 | Universal Background Model and MAP adaptation

Typically, the adaptation involves only the UBM mean. A successful
variant of MAP adaptation is known as relevance MAP. Relevance MAP
requires estimating the posterior responsibilities for a set of enrollment
utterances

where are the UBM parameters and K is the
number of Gaussian components.

The adaptation is then obtained from the weighted sum of the and
from the UBM means. The weighting factor is data dependent: if the num-
ber of training data is high, the adapted parameters will be influenced more
by the new statistics and viceversa. The adapted means can be computed
with the following formula [14]:

where

The relevance parameter r, and accordingly the data-dependent coeffi-
cient , is used to control the effect of the enrollment utterances on the
adapted model compared to the UBM [2].

< (3.32)

< (3.33)

< (3.34)

< (3.35)

< (3.36)

3

-3
-4 -2 0 2

2

1

0

-1

-2

3

-3
-4 -2 0 2

2

1

0

-1

-2

UBM
Adapted model

UBM
Adapted model

A B

< Figure 3.4:
A) Example of GMM
adaptation. Only the
means are adapted
B) All parameters
are adapted

24

3.3 | Joint Factor Analysis

3.3 | Joint Factor Analysis
The GMM-UBM method allows evaluating both the non-target model,

which we assume to be the UBM, and the target model, which is obtained
by relevance MAP adaptation of the UBM, considering the target’s speech
utterances. However, we have to consider the problem of variability. Indeed
the same speaker may pronounce the same utterance in different ways, or
the speech signal may be recorded after passing through different channels.
These conditions determine variations in the utterance samples of a same
speaker. Thus to accurately model the speaker we have to take into account
the intersession variability. This can be defined as the possible variability
between several utterances coming from the same target (i.e. hypothesized
speaker or language) but in different recordings.

Factor analysis models provide a technique to perform MAP adaptation
of the speaker taking into account the intersession variability. In the follow-
ing sessions we will introduce three MAP methods: classical MAP, eigen-
voice MAP and eigenchannel MAP. The first two techniques are used for
speaker variability and the third one for channel effects. Then we will show
Joint Factor Analysis (JFA), which is a method to consider both speaker
and channel variabilities.

3.3.1 Alignment statistics

Before showing the factor analysis methods, we need to introduce some
definitions that will be used in the following sections.

Given a set of observations for the speaker s, we need
to evaluate the alignment of over the components of the GMM. In
other words we have to associate each observation to a single component of
the GMM. We denote as the mean of the i-th mixture component and

 as the set of observations associated to this component. To compute
the alignments, the full GMM should be used in the likelihood evaluations,
however it is more convenient to compute an approximation of the likeli-
hood using the Baum-Welch statistics [16].

The zero-order, first-order and centered first-order statistics are defined as

< (3.37)

< (3.38)

< (3.39)

25

3.3 | Joint Factor Analysis

and the second-order, and centered second-order statistics as

where are the responsibilities given by (eq< (3.32).
Using these statistics the log-likelihood for a GMM supervector is given by

Finally, it is useful to define the following matrices of the stacked sta-
tistics in order to vectorize computations. is a block-diagonal matrix
of size composed by matrices of size . and
are matrices given by stacking respectively and vectors.
and are the block-diagonal matrices whose elements are respectively

 and matrices.

3.3.2 Classical MAP

Let be the UBM supervector, which is a vector obtained con-
catenating the mixture components’ means , where C is the num-
ber of components and F is the dimension of the acoustic feature vectors.
For a given speaker s, we can consider the following supervector [17]

where is a diagonal matrix with dimensions and is a CF
vector of speaker-dependent hidden variables with normal distribution

It is possible to show that the latent variable model of (eq< (3.43) is similar
to the model used in relevance MAP.

Omitting for simplicity the reference to s, let and be the stacked
Baum-Welch statistics defined in Section 3.3.1. We can compute the joint
likelihood of the observed data X and the latent variables as follows

< (3.40)

< (3.41)

< (3.42)

< (3.43)

< (3.44)

< (3.45)

26

3.3 | Joint Factor Analysis

where is a block-diagonal matrix whose elements are the UBM covari-
ance matrices. Thus the posterior of can be evaluated as

By inspection of (eq< (3.45) we can assume that the posterior of is Gaussian

where the mean and the precision matrix are

Therefore the adapted GMM is given by

Defining we obtain

which as the same form as (eq< (3.33).

3.3.3 Eigenvoice MAP

The eigenvoice MAP model represents a supervector as

where is a matrix with dimension , with , and
is a normal distributed hidden vector of size . Compared to the
classical MAP, the adaptation is performed in a subspace of considera-
bly smaller dimension (), without losing too much accuracy. Indeed it
is assumed that the variability between the different speakers is mainly
confined in this smaller subspace. Furthermore, the eigenvoice method is
more efficient when the enrollment data is sparse because it requires the
estimation of a smaller latent variable.

In particular let and be the mean and covariance of the supervec-
tors for the UBM. Since most of the eigenvalues of equal zero, the speak-
er-dependent supervectors can be contained in a low-dimensional space,
which is known as eigenspace. Furthermore the eigenvoices are defined as
the eigenvectors of corresponding to non-zero eigenvalues [18].

< (3.46)

< (3.47)

< (3.48)

< (3.49)

< (3.50)

< (3.51)

< (3.52)

27

3.3 | Joint Factor Analysis

It is possible to compute the posterior of in a similar way to the one
proposed for classical MAP

where mean and precision matrix are given by

3.3.4 Eigenchannel MAP

The models presented so far do not explicitly model the channel effects.
Even if there are some techniques which perform a compensation of the
channel effects directly in the feature space, successful methods use factor
analysis, and perform model compensation.

Let h be a given recording and s a given speaker. The GMM supervector
can be written as the sum of two components [19][20]: is a speaker-de-
pendent component and is a channel-dependent component

It is assumed that the speaker component and the channel component lie
in different and orthogonal subspaces of the supervector space.

A popular technique for channel compensation is eigenchannel adapta-
tion, which defines the channel component as follows

where is a low rank matrix, with , and is
an hidden vector with normal distribution, which represents the channel

< (3.53)

< (3.54)

< (3.55)

< (3.56)

Speaker space

Channel space

c

s

M
< Figure 3.5:
Speaker and channel
subspaces

< (3.57)

28

3.4 | I-vectors

effects. This method assumes that the channel component lies in a subspace
of small dimension.

Therefore, a supervector is given by

Similarly to the previous models, the posterior of is given by

with

3.3.5 JFA model

Finally, Joint Factor Analysis (JFA) is a combination of these three
modelling techniques that takes into account both speaker and session var-
iability. In particular, putting together (eq< (3.43), (eq< (3.52) and (eq< (3.58), the model
can be formalized as [16]

where is the eigenvoice matrix that defines the speaker subspace and
 is the eigenchannel matrix that defines the session subspace. Moreover,

is the UBM supervector (speaker- and session-independent), represents
speaker-dependent factors and channel factors. The term is
used to represent residual variability and are called common factors.

During training it is possible to estimate the subspaces (, ,) with
labelled data, and to compute the speaker and session factors for a given
utterance of a target, by means of the posterior distributions ((eq< (3.47), (eq< (3.53),
(eq< (3.59)) and the EM algorithm.

3.4 | I-vectors
The JFA modelling is an effective technique for the use of low-dimension-

al vectors, however experiments have shown that the channel factors do not
contain only channel effects, but also speaker information [21]. Therefore,

< (3.58)

< (3.59)

< (3.60)

< (3.61)

< (3.62)

29

3.4 | I-vectors

a similar method has been proposed which contemplate a single subspace,
called total variability space [22]. This contains both speaker and channel
variability, which are not distinguished in this model. It is possible to rep-
resent a given utterance in this subspace with an hidden vector, called total
factors vector. The total variability space is low-dimensional, and maintains
the proved advantages of JFA.

An utterance supervector can be modelled as

where is the speaker and channel dependent supervector, is the
UBM supervector, is a low rank matrix with size , and is
an hidden variable with normal distribution . Variable represents
a GMM in the total variability space. Its posterior distribution is Gaussian
and its mean corresponds to the i-vector.

 matrix training is similar to eigenvoice matrix training, with the distinc-
tion that in the latter the utterances of a speaker are assumed to be actually
spoken by the same speaker, while in the former they are considered as be-
longing to different speakers. In other words in the eigenvoice MAP we assume
that the utterances of a speaker share the same hidden vectors, whereas in the
i-vector technique each utterance is considered to have its own hidden vector.

The posterior of is given by

where the mean is

and the precision matrix is

< (3.63)

< (3.64)

< (3.65)

< (3.66)

30

Chapter 4
Artificial neural networks

Artificial Neural Networks (ANN) are essential deep learning models,
and very useful computational tools. The aim of an ANN is to approximate
a function , which, for example, classifies an input x, mapping it to the
category y: [12]. In particular the ANN learns the parameters
which give the best approximation of the function: where f is the
function applied by the network on the input x to obtain the output y.

The term networks refers to the fact that ANN are composed by various
nodes grouped in layers, and can be represented by a directed graph of
these nodes. The term neural refers to the fact that the network of nodes
was loosely inspired by the human neurons and how they are connected.

The number of layers determines the depth of the network, and because
of this terminology ANNs can be deep learning models, a specific subfield
of machine learning.

4.1 | Artificial intelligence, machine
learning and deep learning

Artificial intelligence is a field of computer science born in the 1950s to
answer the question “could a computer think like a human?”. The aim of

Artificial intelligence

Machine learning

Deep learning

< Figure 4.1:
Artificial intelligence,
machine learning and
deep learning

31

4.1 | Artificial intelligence, machine learning and deep learning

artificial intelligence is to automate intellectual tasks usually performed by
humans and to give cognitive functions to machines, such as learning and
problem solving [23]. Artificial intelligence is a broad field which includes
many approaches, including the ones in which rules are coded by hand, and
the most recent ones in which the rules are automatically learned.

Machine learning covers the latter approach. The rules to perform a giv-
en task are not coded by programmers, but are learnt automatically from a
sufficiently large set of data. Machine learning introduces a new program-
ming paradigm. The classical way of programming is to write the rules (the
code), and to give input data that will be processed, according to the rules,
to obtain the answers. The machine learning paradigm instead requires as
input pairs of data and expected anwers, and produces as results the rules,
which can then be applied to process new data.

The procedure to find the rules is called training: many relevant data
must be presented to the system, a statistical structure can be eventually
found, which corresponds to the rules to automate the desired task.

Three elements are needed for machine learning:

• Input data. For example, in language recognition the input data are
recordings of people speaking different languages.

• Expected output. For instance, the label of the language spoken in
each spoken segment.

• A way to measure the accuracy of the algorithm. The accuracy is
measured as the “distance” between the output of the system and the
given expected output.

The measure of accuracy is used as feedback to adjust the parameters
of the system () to enhance the system performance. This procedure is
essentially what is called learning.

In order to get closer to the expected output, the input data are trans-
formed in more meaningful representations. For example, having white and
black points on a plane, the task could be to give the likely colour of a point
given its coordinates. In this case, the input data are the coordinates of the
points, the expected output their colours and the measure of accuracy could
be the percentage of correctly classified points. A meaningful representation

< Figure 4.2:
Machine learning
as a new programming
paradigm

Answers Rules

Classical
programming

Rules Data Data Answers

Machine
learning

32

4.1 | Artificial intelligence, machine learning and deep learning

of the data is one that allows to easily separate white and black points. Thus a
change of coordinates (like the one depicted in Figure < Figure 4.3) can be performed.
Therefore the black points can be identified by the simple rule “if ”.

A machine learning algorithm can be used to automatically find such mean-
ingful transformation, which can be coordinate changes, linear projections,
translations, non-linear operations, and so on. The feedback signal is used as a
guide to find the most useful representation of the input data for the given task.

One of the possible machine learning techniques is deep learning, where
the algorithm can learn different levels of representations: the deeper is the
layer of the network, the more meaningful is the representation which can be
learnt. The layers can be thought as filters that incrementally extract more
relevant information. Thus, the input data are transformed by each layer,
and gradually purified to better perform the task of the system (Figure < Figure 4.4).

x

y

x

y

x

y

A B C

< Figure 4.3:
A) Raw data
B) Change of coordinates
C) Better representation

Layer 1 Layer 2 Layer 3

Layer 1
representations

Original
input

Layer 2
representations

Layer 3
representations

Layer 4

0

9

1
2
3
4
5
6
7
8

Layer 4
representations
(final output)

< Figure 4.4:
Representations learnt
by the model.
The deeper is the layer,
the more filtered
are the representations

33

4.2 | Working principles of neural networks

4.2 | Working principles of neural networks
Neural networks perform a mapping of inputs to targets. A good map-

ping is found out during training if the network is exposed to many exam-
ples of inputs and targets. In particular, the network performs the mapping
by means of sequential data transformations realized in the layers.

A layer transforms the data depending on its weights, also called param-
eters. During training, the weights are learnt having as objective the most
accurate mapping between inputs and targets.

To adjust the weights of the layers, it is necessary to control the output
of the network, and to measure how much the predictions of the network
are different from the expected target. To compute this difference, the loss
function (also called objective function) is evaluated (Figure < Figure 4.5). If the
distance score between predictions and target, which is called loss score, is
high, the accuracy is low and the weights will be adjusted.

The loss score is used as feedback signal to adjust the weights: these
are slightly moved in a direction that will cause a decrement of the loss
score for the current example. The weights update is performed by the
optimizer (Figure < Figure 4.5).

At the beginning, the weights of the network are initialized randomly.
Thus the predictions will usually be distant from the target. Then, every

Loss function

Weights

Weight
update

Layer

Layer

Input X

Predictions
Y’

True targets
Y

Optimizer

Weights

Loss score

< Figure 4.5:
Schema of the
functioning of
a neural network

34

4.2 | Working principles of neural networks

example is processed by the network, and the weights adjusted to make the
loss score decrease. This cycle is executed a sufficient number of times to
have the loss function minimized, and to obtain a trained network that will
produce predictions close enough to the expected outputs.

As it has been said, the aim of a network is to approximate a function
with a function f that allows mapping the inputs to the targets. With more
than one layer, the function f can be written as a chain of the specific functions
of each layer . For example, the function of a network with three layers is

During training, the weights are adjusted to make close enough
to . The training data are the examples x associated with the labels

. Thus, given the input x, the output layer of the network should re-
turn a value close to y. However, the value returned by the previous layers is
not specified by the training data, thus the learning algorithm has to establish
how to parameterize these layers so that the overall network function is a good
approximation of . Since the training data does not provide the expected
output values of these layers, they are called hidden layers (Figure < Figure 4.6).

One of the reasons that make deep learning very powerful is that all
the layers of representation are learnt jointly: if one weight is adjusted,
automatically all the other weights that depend on it will be updated. The
overall training depends on a single feedback signal, thus every change in
the model aims to get closer to the end goal.

Each layer is composed by a given number of units (Figure < Figure 4.6), or
nodes, that implement a vector-to-scalar function. Indeed, each unit re-
ceives input from all the units of the previous layer, and computes its out-
put scalar, also called activation value. For each node a function is defined
that establishes how the output of the node itself has to be computed, and
which is its activation function.

< (4.1)

OutputsInputs

Hidden LayersInput Layer Output Layer

< Figure 4.6:
Artificial neural
network architecture

35

4.3 | Neural network architecture

4.3 | Neural network architecture
An ANN can be represented by a directed graph (Figure < Figure 4.6)

where I, N and O are respectively the sets of input, internal and output
nodes and E is the set of edges [13]. The nodes are grouped in layers, which
can have different widths (which correspond with the number of nodes of
the layer). The input nodes receive the data to be processed, and the output
nodes return the result of the computation. Every node of the sets N and O
has a set of parent nodes as defined by the connections given by the edges.
Furthermore, each node of a hidden layer receives input from all the nodes of
the previous layer and gives the output to all the nodes of the successive layer.

A node of the network is denoted as , and it has associated the input
values , the activation value , and the output value . An edge of the
network is denoted as , and it connects the nodes and . Each edge
has associated a weight .

4.3.1 Single node

The node is the building block of the neural network. It receives as input a
vector of values, performs a computation, and returns an output value. The
computation is a weighted sum of the input values with the weights of the
edges and a bias term. Thus, given the input vector ,
the set of corresponding weights , and the bias ,
the activation value of the j-th node is

Instead of using the activation value, which is a linear function, a non-lin-
ear function is applied to . Then the output value for a node is

where is the activation function of the node.

< (4.2)

< (4.3)

< (4.4)

w1 x1

x2

x3

+1

w2

w3

yΣ a

b

h z

< Figure 4.7:
Single node schema

36

4.3 | Neural network architecture

4.3.2 Network function

If we consider a network, the nodes’ outputs of a layer are again com-
bined by the nodes of the successive layer. In the usual architecture, the
layers are fully-connected: this means that every node of a layer takes as
inputs all the results of the nodes of the previous layer. In other words, each
node of a k-th layer is connected with an edge to all the nodes of the k-1-th
layer, and its activation is a weighted sum of all their outputs. Thus, the
activation of the j-th node of the k-th layer can be written as

where k identifies the layer, is the number of nodes of the k-1-th
layer and identifies the node of the layer (with being the
total number of nodes of the current layer). For each node, the activation
function is then applied to the activation value.

If we consider a neural network with one hidden layer (Figure < Figure 4.8), the
overall network function is

where the vector of biases has been grouped with the weights in the
matrix W.

Therefore, a neural network model is a non-linear function which takes
as input the data X and the parameters W, and returns as output the set Y.

4.3.3 Activation functions

According to the task that the network has to solve, a convenient type
of activation functions has to be properly used. A large number of functions

< (4.5)

< (4.6)

OutputsInputs

M0

wj,i
(1)

 wj,i
(2)

x1

x0

z0

z1

y1

xM

M1
zM

M2
yM

< Figure 4.8:
Network diagram

37

4.3 | Neural network architecture

exists, and we show below the main ones for the purposes of this work.

Sigmoid
For binary classification, the activation function of the output layer is

usually a sigmoid function, given by

Since the value produced by this function is between 0 and 1, the out-
put of the network can be interpreted as a probability. Thus the result is
the probability that the input belongs to one class or the other. Moreover,
when the argument is very positive or very negative, the function tends
to saturate to 0 or 1 [12]. This means that it becomes insensitive to small
changes for inputs above 2 or below -2, for example. This property makes
the function work better to clearly distinguish the predictions.

The fact that the function doesn’t change significantly for small changes
of the argument can also be a disadvantage, because it raises the problem
of vanishing gradients. This means that the gradients become smaller and
smaller, so that the network can’t learn very well.

The sigmoid function can be applied not only on the activations of the
output nodes, but also on the activations of the hidden nodes.

ReLU
An activation function that can also be used for the hidden nodes is the

Rectified Linear Unit (ReLU) [24][25], which is written as

Unlike the previous one, this function doesn’t tend to flatten for very high
or very low input values. However, since the range of ReLU is , this also
means that this function can make the activations become higher and higher.

Even if ReLU is a non-linear function, it is composed by two linear pieces
(piecewise linear), thus the network model will be easier to optimize with
gradient-based methods, and it can generalize well [12].

< (4.7)

a

1.0

0.5

0.0
8-8 6420-2-4-6

h(a) < Figure 4.9:
Sigmoid function

< (4.8)

38

4.3 | Neural network architecture

Since the ReLU brings to 0 all negative values, the network will have
sparse activations. For example if we consider a network initialized with
random weights, ReLU will yield almost half of the nodes to be 0. This fact
makes the network easier to compute. On the other side, many nodes won’t
react to changes in the network, because every negative value is brought to 0.

Another advantage of ReLU is that, in comparison with sigmoid and
tanh functions, it is less computationally expensive.

Tanh
Another activation function widely used is tanh:

It is essentially a sigmoid scaled between -1 and 1. Thus all previously
mentioned properties are still valid.

Softmax
The softmax function is only used in the output layer for multiclass clas-

sification tasks. This function can take as input a vector of real numbers,
and returns a vector that encodes a probability distribution, i.e. all the
values of the vector will be in the range 0 and 1, and the sum of them will
be 1 [26]. For a vector of dimensionality D, the softmax function is given by

< Figure 4.10:
ReLU function

a

8

0

6

4

2

8-8 6420-2-4-6

h(a)

< (4.9)

< Figure 4.11:
Tanh function

a

1.0

-1.0

0.5

-0.5

1 2-2 0-1 3

h(a)

< (4.10)

39

4.4 | Training

4.4 | Training
Training a neural network essentially means to set the weights and

biases for each layer. This is done choosing the values of these parame-
ters that minimize the loss score. We will refer to for both weights and
biases, since a bias can be considered as a weight of an additional node
with input fixed to 1.

Various optimization methods can be used to minimize the loss score,
like the stochastic gradient descent (page 46). The basic idea is that we
initialize the weights randomly, and we iteratively update the weights in a
direction that improves the accuracy of the model.

Each iteration is composed by two main steps:

• Forward propagation: given inputs from dataset and the current
weights of the network, the final output is computed;

• Backward propagation: having the output, it is possible to compute
the loss score, and to update the weights proceeding from the output
layer to the input layer.

As we previously introduced, the forward propagation can be performed
by means of the following equations:

where is the output value of the j-th node of the k-th layer. Com-
puting the values from the first to the last layer, it is possible to obtain the
values of the output layer.

Now we have to evaluate the loss score and efficiently propagate back-
ward the error to update the weights.

4.4.1 Loss function

Since our aim is to have output values as close as possible to the target
values, we need a metric to evaluate if the system is improving or not its
accuracy on the training data each time we change the weights. This com-
putation is performed by the loss function, also called cost function.

Squared errors
The sum of the squared residuals over all the training cases is a often

used function to evaluate the distance between the target value t and the

< (4.11)

< (4.12)

40

4.4 | Training

model’s output value y. It can be written as

where n is the index of the training case considered. The factor is needed
to simplify the derivative which will be computed next.

Cross entropy
Another common function is the cross entropy loss, which is also called

the negative log likelihood. In particular for softmax neurons, the most ap-
propriate cost function is the negative log probability of the correct answer.
The equation is

where n is the number of the classes between which the model has to do
the classification. Furthermore and are probability distributions.

A model which does a correct classification assigns a probability of 1 to
the right class, and a probability of 0 to the others. The negative log func-
tion gives a value of 0 for a probability of a correct classification example
(no loss), whereas it gives a value of infinite for a probability of a wrong
one (infinite loss) (Figure < Figure 4.12).

The cross entropy function has a good property: it has a big gradient if
the target value is 1, and the output of the model is almost 0.

Geometric interpretation
If we consider a linear neuron and a squared error function, it is possible

to visualize the error surface in a 3D space, with the weights on the horizon-
tal axis and the error on the vertical axis. The shape of the error surface is
a quadratic bowl. The aim of the training is to find the point at the bottom
of the bowl. This point gives the weights which minimize the error.

For multi-layer non-linear neural networks the error surface becomes
more complex. However, if the weights are not too big, the error surface is
still smooth, but it may have many local minima.

< (4.13)

< (4.14)

10

0.2 0.4 1.0

8

6

4

2

0.80.60

Predicted probability

Lo
g

lo
ss

< Figure 4.12:
Log loss when the true
label is equal to 1

41

4.4 | Training

4.4.2 Gradient descent

The minimum of the loss function can’t be found analytically. Instead,
iterative methods are used, like the gradient descent algorithm or other
extensions or variants of this. As the name says, the gradient descent is
a method to find the minimum of a function taking iterative steps in the
direction of the negative gradient, which is computed at the current point.
This means that we are moving on the error surface following the direction
along the steepest slope.

Since we are in the weights space, at each iteration we update the weights
according to the gradient descent algorithm. However, the amount of the
step doesn’t depend only on the magnitude of the gradient, but this is mul-
tiplied by the learning rate . For an higher learning rate, the step will be
bigger, and viceversa. Thus, the updated weights are given by

It’s important to set a convenient value for the learning rate. Indeed, if
is too high, the steps will be too big, and the minimum can be lost, whereas
if it is too low, the steps will be too small, and more time will be needed to
find the minimum. Sometimes it can be useful to start with an high learning
rate, and then decrease it as the training iterations proceed.

w2

w2 E
< Figure 4.13:
Representation of
the error surface

w2

w1

< Figure 4.14:
Gradient descent on
the error surface

< (4.15)

42

4.4 | Training

In each dimension of the weights space, the gradient gives the com-
ponent of the slope in that dimension. This component is expressed as the
partial derivative of the loss function with respect to the weights, which is
computed by means of the backpropagation algorithm.

Backpropagation algorithm
The partial derivative of the loss can be computed [27] applying two

times the chain rule

where we temporarily omit the index of the layer k and the index of
the iteration t.

Let the backpropagation error be

The partial derivative of the activation value can be computed as

In fact the activation value is simply the sum of all the outputs from
the nodes of the previous layer i multiplied by the weights.

Therefore we have

Now we can proceed to compute . The partial derivative of with
respect to depends on the activation function of the node j. The partial
derivative of the loss function with respect to depends on the chosen loss
function. It can be rewritten as

Since

we have

Putting (eq< (4.17) and (eq< (4.22) together, we obtain

< (4.16)

< (4.17)

< (4.18)

< (4.19)

< (4.20)

< (4.21)

< (4.22)

< (4.23)

43

4.4 | Training

We can notice that it is sufficient to have the errors of the nodes of the
layer (where the layer 0 is the input layer, and the numbers grow towards
the output) in order to compute for a node of layer L. Indeed, the aim of
the backpropagation algorithm is the computation of the updated weights by
propagating backward the error of the output layer through the entire network.

Thus, the function (eq< (4.15) to update the weights becomes

and

Backpropagation for a linear neuron
We consider the simplest example of learning: a linear neuron with squared

error measure. The output z of the node is the weighted sum of the inputs .

To learn the weights of the model we have to minimize the error summed
over all training cases. To measure the loss we use the squared difference
between the target output and the estimated output and we sum these re-
siduals over all the n training cases:

We can differentiate to get the error derivatives with respect to the
weights. To do this, we use the chain rule:

Thus we can update a weight in proportion to the partial derivatives
of the error, summed over all training cases. We obtain the batch delta rule:

Backpropagation for a sigmoid neuron
Now we consider a sigmoid neuron. The output of the node is computed

as it follows:

< (4.24)

< (4.25)

< (4.26)

< (4.27)

< (4.28)

< (4.29)

< (4.30)

< (4.31)

44

4.4 | Training

Similarly to the computation that we have done previously, we compute the
derivative of the error with respect to the weights by means of the chain rule:

Even to compute the partial derivative of the output we can use the
chain rule in the following way

where

and

because

Thus we obtain

and

The quantity to update the weights for a sigmoid neuron is

4.4.3 Optimizer

The backpropagation algorithm is an efficient way to compute the error
derivative with respect to each weight for a single training case. For a whole
learning procedure, we still need to specify how often and how much to update
the weights. Since the neural networks may have a large number of weights,
and for training we need to process a large number of data, it is essential to
use a fast optimization algorithm which updates the weights efficiently.

< (4.32)

< (4.33)

< (4.34)

< (4.35)

< (4.36)

< (4.37)

< (4.38)

< (4.39)

45

4.4 | Training

In general we can update the weights choosing one of the following strategies:

• Full batch: all the error derivatives computed for all the training
cases of the dataset are averaged together to get the updating step.
Let be the training set of the input-output
pairs. The loss function gives the distance between the output
computed by the model and the expected output. The average cost
function is , and it can be evaluated like the average of all the
errors computed on the training set [28]:

The problem with this approach is that if we have very bad initial
weights, it takes a lot of time to adjust them because we have to
process the entire dataset at every iteration.

• Online: the weights are updated after each training case. Thus the
derivative of the error is computed on . This strategy can cause
the weights values to oscillate rather than taking a good direction
toward convergence.

• Mini-batch: we take a small random set of the training samples, we
compute the error derivatives, and we sum them to get the update
quantity for the weights.

Mini-batch learning is the strategy typically used for training big neural
networks on large dataset, and is the one chosen in this work.

Furthermore, it is important to set a good learning rate. Also in this case
different strategies are available:

• Fixed learning rate: its value is chosen by hand, and it remains the
same for all the training procedure.

• Adapting learning rate: its value can be adapted automatically by
evaluating the trend of the loss score: if it is oscillating, then the
learning rate is reduced; whereas if the progress is steady, the learn-
ing rate can be increased.

• Separate adapting learning rate: it might be reasonable to have dif-
ferent learning rates for each edge of the network to update faster
some weights, and slower some other ones.

• Alternative strategy to steepest descent: sometimes the direction of
the current steepest descent in the error surface is not on the way
to the minimum.

Now we introduce three optimizers that are widely used, which are
known to be stable and reliable. These implement different strategies to
update the weights during training.

< (4.40)

46

4.4 | Training

Stochastic Gradient Descent
The stochastic gradient descent (SGD) algorithm [28][29] is an algorithm

that apply backpropagation with an online strategy: the adjustment of the
weights is done after each training example. In particular a single example

 is randomly (hence the name stochastic) chosen from the training
set at every iteration t and the error is computed based on the distance
between the output of the network and the expected target value . Then
the weights are updated using the derivative of evaluated by means of
the backpropagation algorithm:

Since the error is not averaged over a set of training cases, it’s a noisy
estimate, and the updates of the weights don’t proceed smoothly down the
error surface, but there are many oscillations (Figure < Figure 4.15). Furthermore
the reached minimum may not be the global minimum, because of the oscil-
lations. However, usually a point good enough for practical applications is
reached, and SGD is a technique much faster than batch gradient descent.
Another advantage of SGD is that it can handle more efficiently sets with
redundant data. Moreover, the oscillations can be a way to avoid being
stuck in local minima: indeed usually a local minimum for an entire dataset
isn’t a local minimum for a single training sample.

Mini-batch gradient descent
Mini-batch gradient descent [30] is a good compromise between full batch

and online learning. Indeed the training samples are divided in batches. For
each iteration the error is averaged over a batch, and the weights updated.
Thus the rule to adjust the weights becomes

where m is the index of training sample in the current batch.
This method reduces the oscillations of the weights’ updates leading to

a more stable convergence. Furthermore, the forward step to compute the
output of the model over all the samples of the batch can be performed with

< (4.41)

< Figure 4.15:
Full batch gradient
descent and stochastic
gradient descent
comparison

Batch gradient descent

Stochastic gradient descent

< (4.42)

47

4.4 | Training

vectorization techniques: this allows increasing the efficiency of the gradient
evaluation. A common size for a mini-batch is between 50 and 256, and it
depends on the application.

Gradient descent with momentum
Gradient descent doesn’t work very well if the error surface has an elon-

gated shape, like the one in Figure < Figure 4.17. In a case like this one, it would be
better to have a slower learning on the vertical axis and a faster learning
on the horizontal axis. One way to smooth out the oscillations is to use the
momentum technique [27][31], which evaluates the update of the weights

 considering also the previous one. Thus the update rule is

and

where is a parameter called momentum factor with a range between
0 and 1. This factor weights the contribution of the previous update to
the current one. We can think of the gradient term as an acceleration and

 as a velocity multiplied by a friction term . Thus, this rule deter-
mines how the point is moving down the error surface.

In presence of many up and down oscillations, these will be averaged to a
low value, whereas if the updates proceed in the same direction, the average
value will remain high.

Batch gradient descent

Mini-batch gradient descent

Stochastic gradient descent

< Figure 4.16:
Full batch gradient
descent, stochastic
gradient descent and
mini-batch gradient
descent comparison

< (4.43)

< (4.44)

< Figure 4.17:
The green line
represents the gradient
descent without
momentum and the blue
one with momentum

48

4.4 | Training

RMSprop
Another problem of the gradient descent is to choose a convenient learn-

ing rate, because an high learning rate may cause to overshoot the min-
imum, and a low one may cause a very slow training. Furthermore, this
problem is emphasized by the fact that the magnitude of the gradients can
be highly variable, and as a consequence their oscillations, making difficult
to find the minimum. One solution is proposed by the Root Mean Square
Propagation (RMSprop) algorithm [32].

For each weight, a running average MS of the magnitudes of recent gra-
dients is computed as

where is a parameter typically chosen equal to 0.9. In this case the
update rule becomes

Sometimes the parameter is added to avoid division by 0. Divid-
ing by the root of the running average helps to smooth out the oscillations
enhancing the learning quality and speed. Indeed, an higher learning rate
can be used to get faster training without diverging.

Adam
An algorithm which puts together the advantages of momentum and

RMSprop is the Adaptive Moment Estimation (shortened as Adam) algo-
rithm [33]. This methods keeps not only the average of past squared gradi-
ents, like the RMSprop method, but also the average of the past gradients,
similarly to the momentum technique. To perform Adam algorithm, the
following equations can be applied:

where is the first moment estimate and is the second moment
estimate. Then the bias-corrected estimates are computed as

with and being and to the power t.

< (4.45)

< (4.46)

< (4.47)

< (4.48)

< (4.49)

< (4.50)

49

4.5 | Regularization

Finally the weight update rule is given by

The parameters , and are respectively the step size and the exponen-
tial decay rates for the moment estimates (that have to be in the range).
The default settings proposed are , , and .

4.5 | Regularization
In addition to an effective and optimized training algorithm, we have

also to ensure that the trained model generalizes well, that is it will make
good predictions for data not seen during training. At the beginning of the
training, the loss on both training and test data decreases, relevant patterns
can still be learned and the model is underfitting (Figure < Figure 4.18). After some
iterations, the number of which depends from case to case, the loss on the
training decreases, but the loss on the test increases: this means that the
model is learning patterns which are specific of the training samples, but
not relevant as general regularities. In this case the model is overfitting
(Figure < Figure 4.18). The training data contains not only the characteristics that
the model should learn but also accidental characteristics caused by sam-
pling errors (i.e. characteristics present in the dataset just because of the
particular chosen samples). An overfitting model is learning both kinds of
characteristics. Therefore, when it will be used to make new predictions on
unseen data, it will also search for the accidental characteristics and thus it
will make mistakes. A good model should not be too complex, and at the
same time, it should fit well a wide set of cases.

< (4.51)

< Figure 4.18:
A) Underfitting
B) Proper generalization
C) Overfitting

A B C

50

4.5 | Regularization

Different ways to reduce overfitting are the followings:

• To get more data: increasing the number of samples, the model will
naturally learn only the patterns that are present in most data

• To reduce the model’s capacity: limiting the number of layers, or
nodes per layer, the information that the model can learn is reduced.
The more parameters the model has, the more it will be able to
learn accidental characteristics. However, the capacity has to be high
enough to avoid underfitting. Therefore, it is necessary to do some
trials to find the right capacity, starting from a low number of pa-
rameters, and then gradually increasing it. This method works best
with cross-validation, where the dataset is divided in three subsets,
training, validation and test, and the number of parameters are ad-
justed using the validation data.

• Early stopping: the performances during the iterations are super-
vised, and training is stopped before the model overfits (Figure < Figure 4.19).
Indeed, if we don’t let the weights become high, the capacity of the
model will be limited.

• Weight penalties: different types of penalties are used to scale down
the weights to limit the capacity of the model.

• Weight constraints: some constraints are imposed to prevent the
weights from growing beyond some predefined thresholds.

• Dropout: a given percentage of nodes are randomly selected. Their
activations are not forwarded, and weight updates are not applied in
the backward step. The network becomes less sensitive to the specif-
ic weights of neurons. This enhances the network generalization, by
learning more internal representations.

• Noise: adding noise to the weights or to the activation values, the
model is made less sensitive to small variations of the inputs, thus its
robustness is increased.

Typically there isn’t a single correct method, but a combination of differ-
ent methods is used. In the following sections we introduce the main three
methods that have been used for this work.

< Figure 4.19:
Early stopping. A good
situation is to stop where
there is the red point

of epochs

Underfitting

Validation error

Training error Overfitting

Er
ro

r

51

4.5 | Regularization

4.5.1 Weight penalties

The capacity of the model can be controlled by limiting the size of the
weights. This is done by adding a penalty to the loss function E which pre-
vents the weights from getting too big. The regularized loss function is [12]

where is an hyperparameter whose value determines the contribution
of the regularization term : if equals to 0, no regularization is applied,
whereas the larger is, the more regularization is applied, and thus the
more the model will be kept simple.

For different forms of term we have different types of regularization:

• L1 regularization: is proportional to the absolute value of the
weights;

• L2 regularization: is proportional to the square value of the
weights. This method is sometimes called weight decay.

L2 regularization
The regularized loss function is given by

Then, the derivative of the error becomes

This derivative is equal to 0 when

It is noticeable that at the minimum of the loss function, we have large
weights if we have also big error derivatives. The network model will not
use weights which are not necessary. In other words, only the parameters
that make a significant contribution to the reduction of the loss function are
preserved, the others are limited [12].

This type of regularization improves generalization because it helps prevent-
ing that the network fits the accidental characteristics. Furthermore, the regu-
larized model will have less variations in the outputs when the inputs change.

L1 regularization
The regularized loss function is given by

< (4.52)

< (4.53)

< (4.54)

< (4.55)

< (4.56)

52

4.5 | Regularization

The derivative of the error becomes

Unlike L2 technique, the regularization term does not depend on the
magnitude of each weight, but only on the sign of it. It can be demonstrat-
ed that L1 regularization may cause the weights to become sparse for large
enough [12]. This property is useful for feature selection, where a subset
of the available features has to be chosen.

4.5.2 Dropout

Dropout [34][35] is a regularization technique that consists of randomly
setting to zero a percentage of the nodes of the network at each iteration
of the gradient descent. During a training iteration, each remaining node
should perform well even without the dropped nodes. This forces the nodes
to represent the same patterns with different representations.

The percentage of dropped nodes has to be set to obtain a good compro-
mise between an overfitting model and a model that can generalize proper-
ly. Usually it is set between 0.2 and 0.5, but it may vary from case to case.

Dropout can be thought as a method of training the ensemble of differ-
ent subnetworks created by removing input or hidden nodes from the origi-
nal network (Figure < Figure 4.20) [12]. In particular the subnetworks are not trained
independently, but each one inherits some parameters from a parent model.
This dependence makes possible to represent a huge amount of networks
with a feasible computational memory.

To implement dropout, only the random selection of nodes has to be
developed. Indeed, a dropped node has an activation set to 0, thus it does
not contribute to the loss function. Instead, during test the predictions are
computed with an average network of all the possible subnetworks. This is
implemented by scaling the weights, modified by the dropout, by 1 minus
the percentage of dropped nodes. This model is then used as a normal net-
work without dropout [36]. A more efficient way to train with dropout has
also been introduced in [37]: it is called fast dropout.

< (4.57)

< Figure 4.20:
Dropout

Base network

x2 x1

h2 h2

y

53

4.5 | Regularization

4.5.3 Noise

Adding noise to the inputs of a network is equivalent to performing a
regularization imposing weight penalties [38][39]. Indeed, if we add Gauss-
ian noise to the inputs, we will have a noise added to the outputs whose
variance is amplified by the squared weight (Figure < Figure 4.21). This additive
noise makes a contribution to the loss function which can be considered as
a regularization term added to the loss of the system without noise.

Furthermore, adding noise to the weights is another way of restricting
the capacity of a network. However, this is not equivalent to imposing
weight penalties, and in some type of networks it may also work better.
Adding noise to the weights is a method for improving the stability of the
learned function [12]. Indeed, the weights are encouraged to move to regions
of the weight space where small variations of the weights themselves result
in small changes of the output.

wi
ji

< Figure 4.21:
Noise propagating
in a node

54

Chapter 5
Language recognition

Language Recognition is the automatic process that tries to identify
the language spoken in a given utterance. This technology is used in a
wide range of applications: spoken language translation, multilingual speech
recognition, emergency call routing, surveillance and security information
distillation, or as front-end for language-dependent speech recognizers.

This chapter will present the main components of a whole language rec-
ognition system. First we will introduce the possible approaches to language
recognition based on the intrinsic characteristics of languages. The next
section will present data and metrics provided by the National Institute of
Standards and Technology (NIST), which encourages the scientific research,
and offers competitions to evaluate the current state of technology. Then, we
will show an overview of the whole system, and a deeper analysis of its main
components: the feature extractor and the classifier. Finally, we will present
the experiments performed in this work, based on a neural network classifier.

5.1 | Language characterization
As it often happens, the human ability to accomplish a certain task is

the primary source of inspiration. Humans can distinguish different lan-
guage by means of two broad classes of cues: prelexical information and
lexical semantic knowledge [40]. Among the prelexical information we have
phonetic repertoire, phonotactics, rhythm, and intonation. As part of the
lexical semantic knowledge we have the vocabulary, the meaning of the
words, and the grammar. These two classes are both useful to the determi-
nation of the spoken language of a given content, however the lexical one is
the most important only if the person knows the language of the test utter-
ance. On the contrary, if the person doesn’t know it, he will rely more on
the prelexical class to understand at least the broad language group (e.g.,
tonal versus non-tonal languages).

55

5.1 | Language characterization

The several language cues that are part of these two classes can be ordered
according to their level of knowledge abstraction, as shown in Figure < Figure 5.1 [41].

Depending on the cues which are considered, it is possible to implement
different language recognition systems based on: acoustic-phonetic, phono-
tactic, prosodic and lexical approaches. We now briefly introduce these ap-
proaches, but in this work we will focus on the acoustic-phonetic approach.

Acoustic-phonetic approach
Acoustic phonetics science studies the physical properties of speech.

The sound signal is analyzed in time and frequency domain, measuring for
example the amplitude, the duration, the fundamental frequency and the
formants. These properties can be related to the linguistic concepts of phone
and phoneme. The phone is the smallest elementary sound in a speech signal
and the phoneme is the smallest unit sound of speech which is semantically
significant [3]. A phone can be interpreted as a phoneme realization. Differ-
ent phonemes can distinguish one word from another in a given language.
For example in English the words “pat” and “bat” sound similar, but the
different phonemes /p/ and /b/ differentiate the meaning of the two words.

Although the human speech production system can generate a wide
range of sounds, in each language there is a limited number of sounds that
recur. In particular the majority of languages has approximately 30 pho-
nemes. The set of used phonemes changes between different languages, even
if some phonemes may appear in more than one language. Thus, different
languages can be distinguished based on the fact that they have different
acoustic-phonetic distributions.

For example, in [41] Czech and Portuguese languages were considered for
an experiment on their phone distributions. Different speakers utterances
from the two languages were mapped to a shared set of symbols from the

Syntax
phrases, grammar

Words
vocabulary, morphology

Prosodic
duration, pitch, intonation

Phonotactics
sequence of sounds

Acoustic Phonetics
spectrum, phone inventory

Le
xi

ca
l

P
re

le
xi

ca
l

A
bs

tr
ac

tio
n

le
ve

l

< Figure 5.1:
Levels of cues used
for language recognition

56

5.1 | Language characterization

International Phonetic Alphabet (IPA). Figure < Figure 5.2 shows the histograms of
the phones’ occurrences with polar plots. The three diagrams of the first row
represent the utterance mapping of three Czech speakers, while the three of
the second row represent mappings for Portuguese speakers. The three utter-
ances have a different content, but the plots have a similar distribution, while
there are evident differences among the plots of the two languages. So we can
visually verify that different languages have a different phonetic repertoire.

Phonotactic approach
Phonotactics is the study of the phonological rules that establish the

permitted combinations of phonemes. For example, it defines the possible
consonants and vowels sequences, and also some constraints, like having
some phonemes at the beginning or the end of a word.

The phonotactic rules differ from one language to another, while the
phonetic repertoire can be more similar between different languages.

For the purpose of language recognition, the phone sequences of different
languages are predicted and compared by means of the n-gram model [26].
This approach computes the probability of a phoneme given the sequence of
the previously spoken phonemes. However, instead of considering the entire
history, the sequence is approximated by the last phonemes. In particular, a
n-gram is a sequence which takes into account the last n phonemes.

0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°

< Figure 5.2:
Polar histograms
showing the phone
distributions of Czech
(A-C) and Portuguese
(D-F) utterances for
three different native
speakers. The same
language utterances
have different contents

0180

30

60120

300240

150

330210

90

270

30

60120

300240

50

3310

A

0180

30

60120

300240

150

330210

90

270

B

Czech

0180

30

60120

300240

150

330210

90

270

C

0180

30

60120

300240

150

330210

90

270

D

0180

30

60120

300240

150

330210

90

270

E

Portuguese

0180

30

60120

300240

150

330210

90

270

F

57

5.1 | Language characterization

For example, in [41] the bigram models of seven languages were built
using the GlobalPhone database. Then, the accuracy of the models to pre-
dict phone sequences belonging to the seven languages was computed. The
metrics adopted was the perplexity [26]. The perplexity is the inverse prob-
ability of the test set, normalized by the number of words. For a test set

 the perplexity of a bigram model is

For low perplexity the bigram model matches better the phone sequence
and viceversa. As it is shown in Table < Table 5.1, the bigram model of a language
can better predict phone sequences of the same language.

Prosodic approach
The prosodic aspects of speech don’t concern characteristics at the pho-

nemes level, but at larger time units level. The prosodic features are pitch,
rhythm, stress, duration and intonation [3].

Different languages have different prosody constraints. Pitch variations
can be led by lexical and syntactic conventions in some languages. For ex-
ample, some words in Japanese have a fall of the pitch in correspondence
of some phonemes. Rhythm can depend on syllables as in Italian (sylla-
ble-timed languages), stress as in English (stress-timed languages) or mora
as in Japanese (mora-timed languages). Tone variations can distinguish
different words in tonal languages, such as Mandarin Chinese [41].

Even if prosodic features are important characteristics of the languages,
they are less informative than the acoustic-phonetic or phonotactic features
in the distinction of different languages. They are mostly reliable to dif-
ferentiate broad classes of languages, but not specific ones. Therefore, this
approach has not yet become successful.

< (5.1)

< Table 5.1:
Perplexity measured
between 7 languages
arbitrarily selected
from the GlobalPhone
database based on
bigram models

Test languages
Bigram model

CZ FR GE KO PO SW TU

Czech (CZ) 16 318 356 491 383 273 555

French (FR) 456 15 115 452 155 200 335

German (GE) 586 163 15 451 447 190 370

Korean (KO) 605 582 549 16 509 548 554

Portuguese (PO) 717 321 382 490 17 450 565

Swedish (SW) 416 424 162 506 584 16 670

Turkish (TU) 985 212 214 362 429 310 13

58

5.2 | NIST LRE17 dataset and performance metrics

Lexical approach
Morphology is the study of the way words are formed in a certain lan-

guage and syntax is the study of the structure of a sentence, so the ways in
which words are connected.

Obviously a list of words or a model of the possible sequences of words
(n-gram) can be useful to identify a language, because each one has a specific
vocabulary and set of syntactic rules. Indeed lexical approach was implement-
ed by Large Vocabulary Continuous Speech Recognition (LVCSR) systems.
However, by considering again the analogy of the human capacity to recognize
languages, we can point out that it is excessive to learn an entire language
with the only purpose of distinguishing it from the others [41]. So the cost
of these systems is not entirely justified. Furthermore it has been shown that
LVCSR systems are sensitive to background noise, channel effects, accents,
and more [42]. As a consequence, these systems are less used than others.

5.2 | NIST LRE17 dataset
and performance metrics

The National Institute of Standards and Technology (NIST) is a physical
sciences laboratory whose mission is to promote innovation and competitive-
ness between the industries. Its interests embrace a wide field of science and
technology, from nanomaterials to global communication networks. Since
1996 NIST offers a series of competitions in the language recognition field
to evaluate the current state of technology, and to search for new promis-
ing ideas. For this reason it provides a dataset of utterances from different
languages, and imposes standard experimental protocols and performance
metrics, which are both been used in this work. In particular we refer to
the NIST 2017 Language Recognition Evaluation Plan (NIST LRE17) [43].

5.2.1 Dataset

A part of the dataset used in this work consists of the data provided by
NIST LRE17, and another part comes from a variety of sources that we
will briefly mention.

The data provided for NIST LRE17 are the following sets [43]:

• LRE data from previous year evaluations
• Fisher corpus
• Switchboard corpora
• LRE17 development set

59

5.2 | NIST LRE17 dataset and performance metrics

Furthermore, other data are added with the aim to have many diverse
channels, and a larger amount of data [44]. Thus part of the KALAKA-3
database, part of the Al Jazeera Dialectal Speech Corpus and IARPA Babel
Program data were used. Furthermore, part of the data were also augment-
ed. Reverberated speech and noise were mixed to the clean data to have
an imposed SNR. Artificial room impulse responses were generated. Finally
different noise sources were added with various SNR values: real stationary
noises (like fans) and real transient noises (like ambient of city, library,
office, etc.), babbling noises created mixing various speech segments and
other ones artificially generated with transformations of white noise.

Since in the dataset provided by NIST many segments were considerably
long, two versions of dataset were assembled. The first one, referred to as
full, contains the segments without alterations. For the second one, speech
segments lasting more than 40 seconds were cut into shorter segments of
various lengths. This second version of the dataset is called cuts.

5.2.2 Performance metrics

In this work, the scores to evaluate the performance of the system are
the metrics required for NIST LRE17 [43]. The cost function is calculated
considering pairs of target-language () and non-target-language (). It
is needed to compute false rejects (i.e. missed detections) on the former and
false alarms on the latter. These quantities are then combined using the
following linear function

where is the cost of a missed detection, is the cost of a false
alarm and is the a priori probability of a certain target language.
The values of these parameters are fixed, and defined in Table < Table 5.2.

Since is not easy to interpret, it is normalized by the default
cost . This is the cost which could be obtained if every segment
would be declared to match the target language.

and

< (5.2)

< Table 5.2:
Cost parametersParameter ID CMiss CFA PTarget

1 1 1 0.5

2 1 1 0.1

< (5.3)

< (5.4)

60

5.3 | System description

Thus combining (eq< (5.2), (eq< (5.3) and (eq< (5.4) we obtain the following cost function

where is given by

In addition to the cost computed for the pairs, we consider also the av-
erage cost for the system which can be computed as

where is the number of target languages. Using the two sets of cost
parameters defined in Table < Table 5.2 to compute we obtain two values of ,
and the final value for the average cost function is computed as their average:

5.3 | System description
Given a speech segment, the task of the system considered in this work

is to determine which is the most likely language spoken in that segment.
The candidate languages are limited to the closed set defined in Table < Table 5.3.

< (5.5)

< (5.6)

< (5.7)

< (5.8)

Language
cluster Target language Language code

Arabic Egyptian Arabic, Iraqi Arabic, Levantine
Arabic, Maghrebi Arabic

ara-arz, ara-acm, ara-apc,
ara-ary

Chinese Mandarin, Min Nan zho-cmn, zho-nan

English British English, General American English eng-gbr, eng-usg

Slavic Polish, Russian qsl-pol, qsl-rus

Iberian
Caribbean Spanish, European Spanish,
Latin American Continental Spanish,

Brazilian Portuguese

spa-car, spa-eur, spa-lac,
por-brz

< Table 5.3:
LRE17 target languages

61

5.4 | Stacked Bottleneck features

The output of the system is a vector containing 14 values, one for each
language, which represent the log-likelihood scores for the corresponding
languages.

Given a target language model , we can compute the log-likelihood
score for an observation as

and obtain the posterior probability by means of the Bayes’ theorem

where is the number of target languages and is the a priori
probability for the i-th language.

To accomplish this task we used a system based on the acoustic-phonetic
approach. Thus, the aim is to extract the acoustic characteristics from the
audio sample, and then to classify them in one of 14 language classes. In par-
ticular, the system used in this work is composed by different subsystems:

• Stacked Bottleneck Neural network (SBN) feature extractor. These
features substitute the MFCCs and derivatives (described in Section
2.3.2) because they take better into account the context of the sam-
ples. SBN features are introduced in the following Section 5.4.

• I-vector modelling (Section 3.4).
• One or more classifiers used in parallel. The main classifiers are a

Gaussian linear classifier and a neural network, whose details are
briefly introduced in Section 5.5.

• Calibration and fusion of the scores returned by the classifiers. The
first stage is used to adjust the individual scores making sure that
they are consistently meaningful across the input data. The second
stage is used to enhance the capability of the different subsystems to
recognize complementary features.

5.4 | Stacked Bottleneck features
The Stacked Bottleneck Neural network (SBN) framework to extract

features has been proposed by the colleagues of Brno, with whom we par-
ticipated to the NIST LRE 2017 [44].

A bottleneck layer of a neural network is an hidden layer which has a

< (5.9)

< (5.10)

62

5.4 | Stacked Bottleneck features

number of nodes significantly lower than the near layers. The information
that comes from larger layers is compressed in the bottleneck layer, and
then expanded to proceed to the next larger layer. Using a bottleneck layer,
the noise of the information is lowered and the system is more robust. Fur-
thermore the risk of overfitting is attenuated.

A bottleneck (BN) feature vector is the representation of the informa-
tion extracted from the output of the bottleneck layer [45]. In other words,
instead of considering the output of the entire NN, we take an intermedi-
ate transformation of the input vector. The NN is still trained for its final
purpose, but then we will ignore all the layers following the bottleneck and
consider the latter as the output of the NN. The features thus obtained are
a representation of the information which has been compressed and trans-
formed in a non-linear way.

A stacked bottleneck (SBN) feature vector is obtained by a cascade of
two such neural networks [45]. The BN vectors outgoing from the first NN
are stacked in time and then sampled at 5 different time frames. These are
the input for the following NN, which accomplishes an operation similar to
the first NN. The final SBN feature vector is the output of the bottleneck
layer of the second NN.

By stacking the BN vectors of the first NN, it is possible to retain the
information about the context of a feature vector.

It has been proved [46] that training the NNs with data coming from one
language at a time, the SBN feature vector obtained is monolingual, and the
features are particularly tied to the single language. Whereas training the
NNs on several languages simultaneously, the features extracted are more
generic and perform better in the multilingual recognition task. Indeed in
this case the NN is able to extract features in a more independent way from
the single language and the acoustic space covered from the features is wider.

The block softmax technique is used for training the last layer to map
the inputs to the different languages. The output layer is divided into parts
corresponding to the set of target languages. During training, only the part
which corresponds to the language of the input vector data is activated.

< Figure 5.3:
Network with a
bottleneck layer

< Figure 5.4:
Stacked bottleneck
network

First stage network Context
+/‒ 10

10
5

G
lo

ba
l m

ea
n

an
d

va
ria

nc
e

no
rm

al
iz
at

io
n

B
ot

tle
ne

ck
 o

ut
pu

ts

Second stage network

0
-5

-10

63

5.4 | Stacked Bottleneck features

On the contrary, the technique using a single softmax maps the input to a
large layer which is composed by the concatenation of all the possible lan-
guage-phoneme couples. A bigger effort is employed to distinguish similar
phonemes that belong to different languages, and the performance is affect-
ed. For this reason the block softmax approach works better.

We report the specifications of the feature extractors developed in [44]
for the data vectors that we will use in this work.

Input features
To compute the input features for the NN the audio signal is processed

with a filter bank having 24 bands, which are defined according to the Mel
scale. Then the logarithm is applied to the outputs of the filter bank, and 2
fundamental frequency coefficients are added to these 24 values. The result-
ing feature vector is subtracted by the mean. The coefficients are signals in
the time domain. Hamming window followed by DCT is performed to extract
6 parameters for each value. The result is a feature vector of size .

Neural network architecture
Both NN are feed-forward neural networks with hidden layers of size

1500 and bottleneck layer of size 30 or 80. The outputs of the bottleneck
layer of the first NN are sampled at times , , , , , where
 is the current frame index. These 5 frames are stacked together, and are

used as input for the second NN, which has the same architecture of the
first (if not specified differently in the following). The final features are the
outputs of the bottleneck layer of the second NN.

Three architectures are used to extract different types of SBN features:

• FSH-30: the network is trained on the Fisher English corpus. The
first NN has a layer configuration given by 3 hidden layers, and a bot-
tleneck with size 80 directly connected to the output layer. The sec-
ond NN has the same configuration, but the bottleneck has size 30.

• FSH-80: the network is trained on the Fisher English corpus. The
first NN has a layer configuration given by 2 hidden layers, a bottle-
neck of size 80, and 1 hidden layer before the output.

• BabelML17-80: the network is trained on 17 languages from BABEL
project. The architecture is the same as FSH-80, but the network is
trained in multilingual mode with block softmax.

Phone state
posteriors for L1

Bottleneck Bottleneck

Phone state
posteriors for L2

Phone state
posteriors for LM

Phone state
posteriors for L1

Phone state
posteriors for L2

Phone state
posteriors for LM

A B

< Figure 5.5:
Schema of different
output layer for
multilingual training
A) Block softmax
B) One softmax

64

5.5 | Classifiers

Figure < Figure 5.6 reports a scheme for the entire feature extractor.

5.5 | Classifiers
Since the aim of this work is to classify feature vectors of various lan-

guages, we considered a simple Gaussian linear classifier as reference sys-
tem, and we tested different architectures of neural networks.

5.5.1 Gaussian linear classifier

We can assume that the i-vector point estimates for each language l are
generated by a random variable

where is the mean vector which depends on the language l and is
the precision matrix. Instead of working with the covariance matrix, it is
more convenient to use the precision matrix:

Furthermore, we assume that the precision matrix is shared among all
the language distributions.

Applying Maximum-Likelihood estimation on the dataset, we can get
the parameters of the model which are the ones that maximize the log-like-
lihood. In other words, we can find the model under which the dataset is
more likely to be generated. Thus given the language l, the class-conditional
log-likelihood of is written as

where k is a constant which depends on the data.

< Figure 5.6:
Schema of SBN
feature extractor

G
lo

ba
l m

ea
n

an
d

va
ria

nc
e

no
rm

al
iz
at

io
n

First stage network Context
+/‒ 10

10
5

DCT 0-5Hamming

G
lo

ba
l m

ea
n

an
d

va
ria

nc
e

no
rm

al
iz
at

io
n

B
ot

tle
ne

ck
 o

ut
pu

ts

Second stage network

0
-5

-10

< (5.11)

< (5.12)

< (5.13)

65

5.6 | Experimental results

5.5.2 Neural network

The basic architecture for the neural networks with which we experiment-
ed is a feed-forward network. As input it receives an i-vector, and outputs a
vector with the probabilities that the input belongs to each target language.
Different number of layers and nodes have been tested to find the best net-
work. Furthermore, various regularization approaches have been tested.

5.6 | Experimental results
We started from the most basic neural network, composed by an input

layer, a single hidden layer of 400 nodes with ReLU activation function,
and an output layer with softmax activation function. We chose categorical
crossentropy as loss function, and Adam as optimizer. We performed a set
of experiments changing some parameters, we picked up the network with
the best results, and then we did another set of experiments using the best
network. Using this protocol, we were able to progressively enhance the
network without losing the meaning of the variations.

All the scores that will be reported were obtained training the networks
with data from the cuts set, in which the maximum length of the audio
segments is 40s. We also experimented with the full set, but the results
were always worse.

The results for the first set of experiments are shown in Table < Table 5.4. In
particular, the reported values are the minimum error rate and the corre-
sponding epoch. Both performance metrics for development data and for
evaluation data are presented.

The best network is the one with one hidden layer and 800 nodes. Thus
small gradual variations in the parameters are applied to this network to
improve it. In particular the number of layers is increased by 1 at each test.
Furthermore, dropout with different amounts is applied on each one of the

< Table 5.4:
Results for networks
with one layer and
different number
of nodes

Architecture
Development Evaluation

 [%] epoch [%] epoch

1 layer with 400 nodes 6.07 7 22.64 26

1 layer with 800 nodes 5.68 48 22.38 41

1 layer with 1600 nodes 5.90 4 22.48 47

1 layer with 2400 nodes 5.74 5 22.77 48

1 layer with 3200 nodes 6.34 4 23.41 3

66

5.6 | Experimental results

hidden layers to regularize the network. In fact, we can notice from Table < Table 5.4
that the error rates on the evaluation data are higher than the ones on the
development data, which means that the network is overfitting.

From the results of Table < Table 5.5 we can notice that a dropout of 0.5 is im-
proving the performances of the network, thus in the next test we trained
networks with this percentage of dropout, and different number of layers
and nodes. The results are shown in Table < Table 5.6.

Furthermore, we did another test on the network with 2 layers and 800
nodes adding dropout also on the input layer. The error rates are presented
in Table < Table 5.7.

Architecture Dropout
Development Evaluation

 [%] epoch [%] epoch

2 layers with 800 nodes 0 6.23 29 24.25 35

2 layers with 800 nodes 0.2 6.12 39 22.84 6

2 layers with 800 nodes 0.5 5.55 17 21.73 21

3 layers with 800 nodes 0 6.50 18 24.23 1

3 layers with 800 nodes 0.2 6.12 42 23.64 35

3 layers with 800 nodes 0.5 5.66 42 21.97 21

4 layers with 800 nodes 0 6.61 33 24.80 24

4 layers with 800 nodes 0.2 6.31 18 23.52 3

4 layers with 800 nodes 0.5 6.12 44 22.63 6

5 layers with 800 nodes 0.5 7.46 49 22.97 6

6 layers with 800 nodes 0.5 9.18 36 23.08 8

7 layers with 800 nodes 0.5 10.63 16 23.73 16

8 layers with 800 nodes 0.5 12.08 28 24.21 12

< Table 5.5:
Results for different
percentages of dropout
in networks with
different number
of layers

< Table 5.6:
Results for a fixed
percentage of dropout
on networks with
different number of
layers and nodes

Architecture Dropout
Development Evaluation

 [%] epoch [%] epoch

2 layers with 400 nodes 0.5 5.74 20 21.51 4

3 layers with 400 nodes 0.5 5.57 46 21.65 5

4 layers with 400 nodes 0.5 6.04 34 21.72 20

5 layers with 400 nodes 0.5 6.53 50 22.17 33

2 layers with 1600 nodes 0.5 5.44 32 22.23 2

3 layers with 1600 nodes 0.5 5.60 34 22.32 34

4 layers with 1600 nodes 0.5 7.13 32 22.54 6

5 layers with 1600 nodes 0.5 8.85 22 23.45 7

67

5.6 | Experimental results

Decreasing the number of nodes from 800 to 400 the error rate also de-
creases from 21.73 to 21.51. Moreover, adding the initial dropout decreases
the error rate from 21.73 to 20.99. Putting these configurations together, and
varying some parameters we did the tests shown in the following Table < Table 5.8.

We also tried to train networks with layers having different number of
nodes. The results are presented in Table < Table 5.9, and the architecture is indi-
cated by the number of nodes of each layer in square brackets. For example,
[800] [400] represents a network with one layer of 800 nodes followed by one
layer of 400 nodes.

Mixing various number of nodes did not perform well, thus we discarded
this test.

So far the activation function used for the hidden nodes was the ReLU
function. For the following set of experiments (Table < Table 5.10) different activa-

< Table 5.7:
Results for different
percentages of dropout
on the input layer

Architecture Dropout Initial
dropout

Development Evaluation

 [%] epoch [%] epoch

2 layers with 800 nodes 0.5 0.1 5.27 48 20.99 4

2 layers with 800 nodes 0.5 0.2 5.79 50 20.99 9

2 layers with 800 nodes 0.5 0.3 7.70 47 21.47 7

2 layers with 800 nodes 0.5 0.4 10.49 44 22.31 34

Architecture Dropout Initial
dropout

Development Evaluation

 [%] epoch [%] epoch

2 layers with 400 nodes 0.5 0.1 5.44 48 20.82 18

2 layers with 400 nodes 0.5 0.2 6.23 44 20.81 16

3 layers with 400 nodes 0.5 0.1 5.87 44 21.30 26

3 layers with 400 nodes 0.5 0.2 7.24 50 20.94 23

4 layers with 400 nodes 0.5 0.1 6.45 44 21.38 24

4 layers with 400 nodes 0.5 0.2 8.63 50 21.57 23

< Table 5.8:
Results for different
percentages of initial
dropout in networks
with various numbers
of layers

Architecture Dropout Initial
dropout

Development Evaluation

 [%] epoch [%] epoch

[800] [400] 0.5 0 5.63 21 21.76 8

[400] [800] 0.5 0 5.68 35 21.94 24

[800] [400] [800] 0.5 0 5.79 47 22.22 3

[400] [800] [400] 0.5 0 5.49 50 21.86 6

[400] [800] [400] 0.5 0.2 7.49 45 21.12 22

< Table 5.9:
Results for networks
having layers with
different number
of nodes

68

5.6 | Experimental results

tion functions were tested. Furthermore, we tried also to apply L2 regulari-
zation because the network was still overfitting, and we obtained the results
shown in Table < Table 5.11. For the experiment results reported in Table < Table 5.10 and
Table < Table 5.11, the network had a dropout of 0.5 on the hidden layers, and an
initial dropout of 0.2.

Architecture Activation
function

Development Evaluation

 [%] epoch [%] epoch

2 layers with 400 nodes ReLU 6.23 44 20.81 16

2 layers with 400 nodes tanh 9.70 50 21.18 39

2 layers with 400 nodes sigmoid 8.01 50 20.58 18

< Table 5.10:
Results for networks
with different activation
functions

Architecture L2 regu-
larization

Development Evaluation

 [%] epoch [%] epoch

2 layers with 400 nodes 0 6.23 44 20.81 16

2 layers with 400 nodes 1E-04 6.61 48 20.87 12

2 layers with 400 nodes 1E-03 11.48 49 21.30 11

< Table 5.11:
Results for networks
with different amounts
of L2 regularization

40

10 20 50

30

20

10

40300

Epoch

Er
ro

r
ra

te

dev
eval

40

10 20 50

30

20

10

40300

Epoch

Er
ro

r
ra

te

A B

< Figure 5.7:
Network with ReLU
activation function
(first row in Table < Table 5.10)
A) Raw data
B) Calibrated data

69

5.6 | Experimental results

So far the best network has 2 hidden layers with 400 sigmoidal nodes, a
dropout of 0.5 on the hidden layers, and a dropout of 0.2 on the input layer.
The error rate of such network is 20.58 %. We then tried different number
of layers, and various percentages of dropout and regularization. Since no
significant improvement was measured, we don’t report all these results for
brevity, but only the two most relevant.

In the first test (Table < Table 5.12) we added a random noise with normal distri-
bution to the input vector, that changed at each epoch. The aim of adding
the noise was to perform a simple data augmentation, and to regularize the
network. However, the network took many more epochs to converge, in fact
the error rate had many small oscillations (as it is shown in Figure < Figure 5.10),
and the final result wasn’t remarkable.

40

10 20 50

30

20

10

40300

Epoch
Er

ro
r

ra
te

dev
eval

40

10 20 50

30

20

10

40300

Epoch

Er
ro

r
ra

te

A B

< Figure 5.8:
A) Network with tanh
activation function
(second row
in Table < Table 5.10)
B) Network with
sigmoid activation
function (third row
in Table < Table 5.10)
Both graphs report
calibrated data

dev
eval

A B

40

10 20 50

30

20

10

40300

Epoch

Er
ro

r
ra

te

40

10 20 50

30

20

10

40300

Epoch

Er
ro

r
ra

te

< Figure 5.9:
A) Network with L2
regularization equals to
0.0001 (second row
in Table < Table 5.11)
B) network with L2
regularization equals
to 0.001 (third row
in Table < Table 5.11)
Both graphs report
calibrated data

70

5.6 | Experimental results

In the second test (Table < Table 5.13) we setup an architecture with a bottleneck
in the center. In particular, we had four layers with 400 (or 800) nodes, one
small layer with 40 nodes, and other four layers with 400 (or 800) nodes.
Thus, the information from the previous larger layers was compressed to
pass through the bottleneck, and then expanded to the following layers. In
this way, the unnecessary features are discarded, and the risk of overfitting
is attenuated. However, also in this case the result was disappointing.

For the next phase of experiments, a preprocessing was applied to the
input data. We started again with a basic network, and we made small
changes on the resulting best configurations. During the first set of tests
we used a simple architecture with one layer just changing the number of
nodes (Table < Table 5.14).

< Table 5.12:
Results for different
networks with
noisy inputs

Architecture Regulari-
zation

Development Evaluation

 [%] epoch [%] epoch

2 layers with 400 nodes noise 17.87 106 21.58 18

4 layers with 400 nodes noise 24.34 196 25.58 196

6 layers with 400 nodes noise 25.74 198 26.62 198

30

20

10

50

40

0

Epoch

Er
ro

r
ra

te

dev
eval

50 100 200

30

20

10

150 50 100 200150

50

40

0

Epoch

Er
ro

r
ra

te

A B

< Figure 5.10:
Network with 2 layers
of 400 nodes and noisy
inputs (first row
in Table < Table 5.12)
A) Raw data
B) Calibrated data

Architecture
Development Evaluation

 [%] epoch [%] epoch

4x[400] [40] 4x[400] 6.86 26 24.41 34

4x[800] [40] 4x[800] 6.80 45 24.45 14

< Table 5.13:
Results for networks
with a bottleneck layer

71

5.6 | Experimental results

As we can notice from the results, the error rates are very close. Therefore,
for the following tests we considered a wide range of configurations with dif-
ferent number of layers and nodes, different activation functions and different
techniques of regularization. The results shown below are the most meaning-
ful ones. They were obtained with layer having 400 nodes. For brevity we
omit the tests with networks having layers with a larger number of nodes.

We report below the results for the test with different number of layers
(Table < Table 5.15).

Also in this case we can notice that the network is overfitting, thus in the
following test we applied some dropout to regularize the network (Table < Table 5.16).

Architecture
Development Evaluation

 [%] epoch [%] epoch

1 layers with 400 nodes 13.17 47 19.51 9

1 layers with 800 nodes 11.86 50 19.48 11

1 layers with 1600 nodes 10.60 49 19.74 3

1 layers with 2400 nodes 9.64 48 19.64 3

1 layers with 3200 nodes 8.96 49 19.78 4

< Table 5.14:
Results for networks
with different number
of nodes
(preprocessed data)

< Table 5.15:
Results for networks
with different number
of layers
(preprocessed data)

Architecture
Development Evaluation

 [%] epoch [%] epoch

2 layers with 400 nodes 7.13 43 19.48 7

4 layers with 400 nodes 6.99 39 19.94 3

6 layers with 400 nodes 7.24 50 20.32 2

8 layers with 400 nodes 7.60 46 20.40 8

10 layers with 400 nodes 8.44 50 20.71 3

Architecture Dropout Initial
dropout

Development Evaluation

 [%] epoch [%] epoch

2 layers with 400 nodes 0.2 0 8.69 49 19.23 7

2 layers with 400 nodes 0.2 0.1 13.93 47 20.15 3

2 layers with 400 nodes 0.2 0.2 16.53 49 20.57 1

2 layers with 400 nodes 0.5 0 13.58 49 19.04 7

2 layers with 400 nodes 0.5 0.1 15.85 25 19.87 7

2 layers with 400 nodes 0.5 0.2 17.24 25 20.46 2

< Table 5.16:
Results for networks
with different
percentages of dropout
applied to the hidden
layers and to the
input layer
(preprocessed data)

72

5.6 | Experimental results

We can notice that dropout is regularizing the network, and the evalua-
tion scores are closer to the development ones. Compared to the case with-
out preprocessing of the data (Table < Table 5.8), the initial dropout is worsening
the recognition. We hypothesize that the preprocessing is returning input
vectors with more meaningful information and less noise. Thus, randomly
dropping out input nodes is no more helpful.

Then we experimented with different activation functions and different
regularizations. The results are summarized in Table < Table 5.17 and Table < Table 5.18.

In Table < Table 5.18, all the networks have nodes with ReLU activation, and a
dropout on the hidden layers equal to 0.5.

Therefore the best network we obtained has 2 hidden layers with 400
nodes and ReLU activation, dropout of 0.5 applied to the hidden layers, and
L2 regularization with amount 0.0001.

Finally, we compare this result with the ones reported in [44] for a
Gaussian linear classifier, and for a neural network.

We can conclude that the neural network proposed in this work perform
slightly better than the previous classifiers.

Architecture Dropout
Acti-
vation

function

Development Evaluation

 [%] epoch [%] epoch

2 layers with 400 nodes 0.5 ReLU 13.58 49 19.04 7

2 layers with 400 nodes 0.5 tanh 15.19 41 19.23 7

2 layers with 400 nodes 0.5 sigmoid 15.33 45 19.46 7

< Table 5.17:
Results for networks
with different activation
functions
(preprocessed data)

Architecture Regularization
Development Evaluation

 [%] epoch [%] epoch

2 layers with 400 nodes L2 1e-4 15.60 38 18.95 7

2 layers with 400 nodes L2 1e-3 16.91 7 19.41 7

2 layers with 400 nodes L2 1e-4 + noise 17.54 1 20.83 2

< Table 5.18:
Results for networks
with different types
and amounts of
regularization
(preprocessed data)

Classifier Dataset [%]

Gaussian linear classifier full 19.55

Previous neural network cuts 19.90

Actual neural network cuts 18.95

< Table 5.19:
Results obtained in
[44] for two different
classifiers and result for
the network proposed
in this work

73

Chapter 6
Speaker recognition

Speaker recognition is the automatic process aiming at assessing the
identity of the speaker of a given utterance. This technology can be adopted
in a wide range of applications: authentication procedures, forensic activi-
ties, audio indexing, telephone-based services, and speaker diarization.

This chapter will present the main components of a whole system of
speaker recognition. We first introduce different approaches to speaker rec-
ognition. We then describe specifically the components of the system on
which we focused in this work. Next section will introduce state-of-the-art
classifiers, and a Siamese architecture for neural network that we will use for
classification of pairs of i-vectors. Then, we will describe the dataset compo-
sition, and the error rate measure that has been used for the experiments.
Finally, we will present a set of experiments performed with the aim of im-
proving the speaker recognition performance using a Siamese architecture.

6.1 | Introduction
Just like fingerprint, face and retina, human voice has physiological char-

acteristics closely linked to an individual. The uniqueness of a speaker voice
is due to physical characteristics, but also to acquired characteristics. The
physical characteristics are differences in shape and size of the voice produc-
tion organs (for example vocal tract or larynx). The acquired characteristics
are attributable to the different manner of speaking of each person, such as
a particular accent, rhythm, intonation or vocabulary. Part of these charac-
teristics are used by state-of-the-art speaker recognition systems.

Speaker recognition can be categorized in two main branches: speaker
identification and speaker verification [47].

The task of a speaker identification system is to identify if a given ut-
terance belongs to one among a given set of pre-enrolled speakers. This is
a multiclass classification problem, where each member of the enrolled set
represents a class. If the speaker of the test utterance is known to belong

74

6.1 | Introduction

to the enrolled group, it’s a closed-set problem, otherwise it’s an open-set
problem, which is more difficult to deal with. A speaker identification pro-
cess includes two main steps: enrollment and recognition (Figure < Figure 6.1). In
the former step, training utterances are given, and an acoustic model for
each speaker is estimated. This process is performed offline. For recognition,
a test utterance is given, which is compared with all the enrolled models,
and an estimate of the speaker’s identity is returned.

In speaker verification, the speaker declares his identity, and the task
of the system is to validate the claimed identity. This is a binary classifi-
cation problem, where the claimed speaker model is compared to an im-
postor model (or background model), and the returned response is an ac-
ceptance or rejection of the claim with a given confidence measure. While
in speaker identification a 1-to-N comparison is performed, in speaker
verification the comparison is 1-to-1. Usually, a speaker verification pro-
cess includes three main phases: impostor modelling, speaker enrollment,
and evaluation (Figure < Figure 6.2). The impostor model is trained offline with
utterances from many different speakers. The enrolled speaker models are
obtained by adapting the UBM. During evaluation, the claimed speaker
model and the impostor model are compared and a score is returned. The
final decision is obtained using a threshold: if the score exceeds the thresh-
old, the speaker is accepted and viceversa.

Scores

Speaker
Model 2

Speaker
Model N

Speaker
Model 1

Training
Utterances

Offline

Enrollm
ent

Evaluation

Online

Feature
Extraction

Test
Utterance

Speaker
Identity

Pattern
Matching

Feature
Extraction

< Figure 6.1:
Speaker identification
system

75

6.2 | System description

A speaker recognition system can be text-dependent or text-independ-
ent. In the first case, the speaker utterance is known in advance. For en-
rollment, a verification system asks the speaker to pronounce, one or more
times, a specific phrase. The user has to pronounce this “passphrase” for
future authentications. For a text-independent system, instead, the content
of the speaker utterance is unknown.

In this work we will focus on text-independent speaker verification.

6.2 | System description
The whole speaker recognition system is composed by the following parts:

• Feature extraction: the speech signal is digitized and reduced to a set
of feature vectors, in which the relevant information is emphasized
and the redundant one discarded (Chapter 2).

• I-vector modelling: statistical models are used to estimate the dis-
tribution of the features (Section 3.4). For each enrolled speaker, we
aim at building a unique “voiceprint”.

• Classifier: the model obtained from the test utterance and a target
model are compared to give a score. In particular, in Section 6.3 we
will consider different pairwise classification approaches.

B
ackground
M

odel
Training

Evaluation
Enrollm

ent

Decision
(accept/reject)

Offline

Online

Feature
Extraction

Test
Utterance

Pattern
Matching

Claimed Speaker
Model

Claimed identity

Training
Utterances

Feature
Extraction

Background
Utterances

Imposter
Model

Speaker
Model 2

Speaker
Model N

Speaker
Model 1

Feature
Extraction

< Figure 6.2:
Speaker verification
system

76

6.3 | Classifiers

The enrollment dataset of NIST 2012 SRE has been used for training the
neural networks. Since we adopt the pairwise approach, given a set of n i-vec-
tors, the number of pairs in the training set would be . However to make the
training computationally feasible we use a strategy described in Section 6.4.

Feature extraction was performed as follows [48]: each segment of the
dataset was submitted to Voice Activity Detection, then was framed in
intervals of 10 ms, and 19 MFCC coefficients were extracted using a 25 ms
sliding Hamming window. Short time mean and variance normalization was
performed on the resulting vector, with a sliding window of 3s. Then, by
stacking 18 cepstral coefficients, their 19 first derivatives, and their 8 second
derivatives, a final 45 dimension feature vector was obtained.

The hyper-parameters of the UBM, and the i-vector model were trained
using the NIST SRE 2004-2010 datasets, the data from the Switchboard II
(Phases 2 and 3), and the data from the Switchboard Cellular (Parts 1 and
2). Thus in total the used utterances were 66140. The i-vector dimension
was set to 400.

6.3 | Classifiers
Given a test utterance, the classifier has to determine whether this utter-

ance belongs to a target speaker. This task can be solved with two different
approaches. The first one consists in training the classifier in a one-versus-all
scheme, where the different speakers are considered as different classes. For
example, to discriminate between segments spoken by the target and seg-
ments spoken by different speakers we can train a different SVM for each tar-
get [49]. This technique, however, requires many utterances of each speaker to
effectively train the classifier, but usually we only have a few of them. Indeed,
we could only have the utterance spoken during the first user’s enrollment.

For this reason, a more effective approach is training the classifier in a
pairwise mode, i.e., using as input pairs of speech segments rather than a
single one. The classifier will then determine whether two speech segments
belong to the same speaker or to different speakers. Thus, a multiclass clas-
sification problem is transformed to a binary classification problem where
the two classes are same-speaker and different-speaker.

In this section we present four different pairwise classifiers.

6.3.1 Probabilistic Linear Discriminant Analysis

Probabilistic Linear Discriminant Analysis (PLDA) [50][51] is a gen-
erative model that can be used for i-vectors comparison. In particular, it
assumes that an i-vector can be generated by the following model

77

6.3 | Classifiers

where is the i-vector for the utterance r, and are latent variables
which represent the speaker identity and the channel effects, respectively,
and is the residual noise. As in the JFA model, matrices and restrict
the speaker and channel factors to lie in small subspaces. It is also assumed
that segments of the same speaker have in common the same latent variable

. Latent variables and are assumed to obey prior distributions. ,
 and the hyper-parameters of these distributions are estimated maximiz-

ing the likelihood of the observed i-vectors.
The Gaussian PLDA (GPLDA) assumes that the latent variables have

Gaussian distribution

This is the simplest PLDA technique and thus it can fails to accurately
model i-vectors (as shown in [51]). A more complex model, called heavy-
tailed PLDA (HTPLDA), has been proposed, which assumes that the priors
have Student’s t-distribution

However this approach is computationally expensive. It was shown in
[52] that GPLDA and HTPLDA achieve comparable performances with an
appropriate pre-processing of the i-vectors by a simple length normaliza-
tion. Being GPLDA faster, it is usually preferred.

Two-covariance model
The two-covariance model [53] is a simplification of GPLDA in which

the speaker and channel subspaces extend to the entire i-vector space. In
particular an i-vector is modelled as

< (6.1)

< (6.2)

< (6.3)

< (6.4)

< (6.5)

< (6.6)

< (6.7)

< (6.8)

78

6.3 | Classifiers

where is the speaker factor and is the factor which takes into account
the channel effects and the residual noise. Furthermore, the speaker’s prior
and the distribution of given the speaker are assumed to be Gaussians

where is the between-speaker covariance matrix, is the with-
in-speaker covariance matrix and is the model which generates (eq< (6.8).
Let be a set of i-vectors of a speaker. The posterior of
given is also Gaussian

with parameters

Given an enrollment i-vector and a test i-vector (whose roles are
interchangeable), we want to verify if they are from the same speaker, i.e.,
we want to compute the log-likelihood ratio between the same-speaker hy-
pothesis () and the different-speaker hypothesis ()

With various steps illustrated in [54], the likelihood can be obtained as

with

Furthermore to make evident the role of the i-vectors, (eq< (6.15) can be
rewritten as

< (6.9)

< (6.10)

< (6.11)

< (6.12)

< (6.13)

< (6.14)

< (6.15)

< (6.16)

< (6.17)

< (6.18)

79

6.3 | Classifiers

where

Since the two-covariance model is a particular case of PLDA, the model
parameters , and can be obtained using the EM algorithm [51].

6.3.2 Pairwise SVM

To introduce the pairwise SVM approach [55][56] we consider (eq< (6.18) and
we describe how it is possible to discriminatively train the model param-
eters , , and without explicitly modelling the i-vector distributions.
In particular, since (eq< (6.18) is non-linear, we need a transformation which
allows to write this function as the dot-product of the model parameters
and the expanded i-vectors pairs .

By means of the Frobenius inner product, we can express a bilinear
form as , where is a column vec-
tor composed by the stacked columns of A. Therefore, (eq< (6.18) becomes

Then we can introduce

and expand the i-vector pairs

Thus we can rewrite the scoring function as the following dot-product

< (6.19)

< (6.20)

< (6.21)

< (6.22)

< (6.23)

< (6.24)

80

6.3 | Classifiers

where , , and are the contribution to the final score given by
the different components of .

Representing a trial with the expanded vector , we can estimate
 with a Support Vector Machine (SVM). This is a linear discriminative

classifier, which estimates the hyperplane that best separates two given
classes. In particular, the best hyperplane is the one that has the larg-
est distance from the nearest data points of each class (Figure < Figure 6.3). Even
though SVM is a linear classifier, it can perform a non-linear classification
by means of the kernel trick, which allows computing the hyperplane with-
out explicitly expand the features.

In our case, the two classes that we want to discriminate are same-speak-
er (target) and different-speaker (non-target) and the data point are pairs
of i-vectors. The hyperplane can be obtained by

where n is the number of training patterns , which have labels
, is the regularization factor and the term

is the hinge loss function.
Since the training patterns are given by all possible i-vector pairs, their

number can grow to the order of hundred of millions, making the training
impossible. However in [55][56] a fast scoring technique has been introduces,
which uses a primal solver and allows evaluating the loss function and its
gradient without expanding the i-vectors, making training feasible even for
large training datasets.

< Figure 6.3:
The best hyperplane is
the one that maximizes
the margin between
the classes

Separating
Hyperplane

Support Vectors

Marg
in

< (6.25)

81

6.3 | Classifiers

6.3.3 Cosine distance

A simple scoring technique that directly uses the i-vectors has been pro-
posed in [22]. It consists in performing the cosine distance in the pairwise
i-vector space. For two i-vectors and , the cosine distance score is

A value of c close to 1 means that the i-vectors are from the same speaker,
whereas a value close to -1 means they are from different speakers. The ad-
vantage of this technique is that the adapted supervector does not need to be
estimated in an enrollment step. In this case, the factor analysis is used just
for feature extraction, rather than for modeling speaker and channel factors.

As shown in [52], the classification performance increases using nor-
malized i-vectors. In particular, we can normalize an i-vector by dividing
it by the L2-norm

6.3.4 Siamese neural network

The problem of comparing two patterns and evaluating their similarity
is solved in [57] with a Siamese neural network. This architecture receives
two input patterns, and returns a value that represents the similarity of
the inputs. Thus, given two i-vectors as inputs, the network should learn a
metric to evaluate the probability that the utterances belong to the same
speaker [58][59][60]. Furthermore, during training the network can learn a
representation of the i-vectors that makes more effective the computation of
the distance metric. In particular, it must learn to assign a distance value
close to 0 to i-vector pairs of the same speaker, and close to 1 otherwise.

Considering for example the approach of the previous Section 6.3.3, a
Siamese network could learn the cosine distance of two i-vectors. Indeed,
the score in (eq< (6.26) is the dot-product of two normalized i-vectors. This
dot-product can be performed with this sequence of operations: an ele-
ment-wise product of the i-vectors followed by the sum of the product’s
elements. Thus, we consider a Siamese network which has only one layer
to evaluate the combination of the inputs, and we provide two normalized
i-vectors as inputs. If the learnt combination was reduced to a simple sum,
the metric computed by the network would be the cosine distance. If the
network, instead, computed a weighted sum of the components of the prod-
uct vector, it would potentially learn a better metric.

< (6.26)

< (6.27)

82

6.3 | Classifiers

In particular, the architecture of a Siamese neural network consists of
two identical sub-networks, whose outputs are combined by a loss module
(Figure < Figure 6.4). The sub-networks share the weights w. They extract the hid-
den representations and . These representations are merged by the loss
module, which computes the distance . Finally, the elements of the
distance are combined together by a single node with sigmoid activation,
which returns a value between 0 and 1 representing the similarity of the input
i-vectors.

Different functions can be used for computing . As explained pre-
viously, we are interested in the cosine distance. Thus the operation performed
in the merge layer is the element-wise product of the hidden representations

where for hidden representations with size N. The obtained
distance approximates the cosine distance.

The architecture of the two sub-networks can have different configura-
tions. The basic one is composed by an input layer, having the size of the
i-vector, and a layer with N nodes, having ReLU activation function. The
output of the sub-network is the hidden representation, with size N. More
complex sub-networks can be devised with different number of layers, with
various number of nodes, and other activation functions.

Since we consider a binary classification problem, and the output node
has a sigmoid activation function, the loss function that we use is binary
cross-entropy [10]. The output of the sigmoid node can be interpreted as
the probability that the input belongs to a certain class. Thus, the binary
cross-entropy can be computed as

Shared
Weights

SUB1

Merge Layer

SUB2

h1 h2

< Figure 6.4:
Siamese neural network

< (6.28)

83

6.4 | Dataset

where t is a categorical label that represents the target, and y is the
output of the sigmoid node.

In order to obtain good accuracy, it’s important that the input feature
vectors are normalized [61]. In particular, L2-normalization of the i-vectors
(eq< (6.27) is relevant for the Siamese network to approximate the cosine dis-
tance, and for making the learning process stable.

6.4 | Dataset
In a pairwise classification approach, the training samples are all the pos-

sible combinations of i-vectors in the dataset. This means that given a set of
n i-vectors, the number of pairs in the training set would be . A solution to
this problem is to reduce this set by selecting the pairs that are most signifi-
cant for training. These can be selected by considering the scores returned by
a PLDA model [48]. Indeed, we can reasonably assume that the probabilities
returned by the Siamese network and the PLDA scores are correlated. Thus,
we can select a subset of i-vector pairs, depending on how much they are easy
or difficult to classify by the PLDA, in order to create a balanced dataset.

In particular, we first score all the possible pairs with the PLDA, then we
divide them in sets. Let T be the number of pairs of i-vectors from the same
speaker (or true pairs). The pairs of i-vectors from different speakers (or
negative pairs) can be split in two groups: one with the pairs having
the highest PLDA score, and one with all the remaining pairs. The elements
in the first group are the different-speaker pairs difficult to classify by the
PLDA, whereas the elements of the second group are different-speaker pairs
easily detected. In our experiments, the constant M has been set to 40.

Since we use mini-batch optimization, it is important creating balanced
batches. The best strategy that we have found is to randomly select the
samples with the following proportions: same-speaker, difficult differ-
ent-speaker and easy different-speaker [61]. In this way the neural net-
work is able to learn how to discriminate accurately pairs belonging to any
group: same-speaker, difficult different-speaker and easy different-speaker
pairs. Furthermore, the overfitting is reduced.

< (6.29)

84

6.5 | Evaluation scores

6.5 | Evaluation scores
The scores produced by a classifier allow to assign labels to samples.

However depending on the output of the classifier, the decision is not im-
mediate. This is the case of a binary classifier which returns continuous
values between 0 and 1. The output can be interpreted as the probability
p that the input sample belongs to the positive or to the negative class.
Thus a threshold is needed to decide if the sample is positive, i.e. ,
 or negative, i.e. . It may happen that a positive sample is classified
as negative and viceversa: this is a case of misclassification. To have as few
misclassifications as possible is important to perform an accurate calibra-
tion, which is the process of choosing the threshold. Depending on the value
of the threshold some kind of mistakes can be made more likely than others.
Furthermore a type of error can be more costly in a certain application.
Therefore the calibration is an essential process in a recognition system.

Given a threshold and a sample score, there are four possible classifica-
tion outcomes [62]:

• True positive: the sample is positive and is classified as positive
• False positive: the sample is negative and is classified as positive
• True negative: the sample is negative and is classified as negative
• False negative: the sample is positive and is classified as negative

For a good tradeoff of the classification errors, we are interested in eval-
uating the probability of false negatives, i.e., when a target is misclassified
as impostor, and the probability of false positives, i.e., when an impostor
is misclassified as target. These probabilities are called False Reject Rate
(FRR) and False Accept Rate (FAR) and can be calculated as

Using different values of the threshold , we have different tradeoffs be-
tween FAR and FRR. For example, if increases, also FRR increases and
FAR decreases. In this case, the classifier will less likely accept an impostor,

True class

P N

Predicted
class

P True Positive False Positives

N False Negatives True Negatives

< Table 6.1:
Confusion matrix

< (6.30)

< (6.31)

85

6.6 | Experimental results

but it will also more likely reject a true speaker.
The tradeoff point that we will consider in this work is the Equal Error

Rate (EER), which is given by

This is a relevant value because it is shown [63] that optimizing the clas-
sifier using the EER as objective, we have an improvement of all error rates
at different thresholds. Furthermore, EER can also be used for comparing
different classifiers.

6.6 | Experimental results
For the experiments on the neural network, we started with the archi-

tecture proposed in [61]: a Siamese neural network with two sub-networks
having an input of size 400 (like the dimension of the i-vectors), and a dense
hidden layer with 2048 nodes and ReLU activation function. A dropout of
0.4 is applied during training. Each sub-network returns a representation of
size 2048. Then, the element-wise product of these two vectors is computed
in the merge layer. Finally, a sigmoid node produces the output score. The
loss function that has been used is the binary cross-entropy, and the opti-
mizer is RMSprop, with a learning rate of 0.001. The batches size for the
gradient update have been set to 1024 samples, including 512 same-speaker
pairs, 256 different-speaker pairs with high PLDA scores, and 256 differ-
ent-speaker pairs with low PLDA scores. 51376 batches are processed to
complete an epoch. The input samples are L2-normalized because it allows
the neural network to approximate the cosine distance. With a network of
this type, we obtained an EER of 4.22 %. The aim of the following experi-
ments is to improve this result.

For the first set of experiments, we incremented the number of layers of
the sub-networks to understand whether a more complex architecture could
improve the hidden representations.

< (6.32)

Sub-network
architecture L2 regularization

Training Test

EER epoch EER epoch

2 layers 0 0.06% 4 35.82% 2

3 layers 0 2.21% 2 27.99% 1

4 layers 0 4.37% 1 30.18% 1

2 layers 1E-03 49.69% 2 49.60% 3

< Table 6.2:
Results for networks
with different numbers
of layers in the
sub-network

86

6.6 | Experimental results

As Table < Table 6.2 shows, adding layers caused overfitting, thus we applied L2
regularization, but the network was not able to learn. Therefore, we started
the training without L2 regularization, and we applied the regularization
after one epoch. In Table < Table 6.3 are presented the results for networks with 2
layers in the sub-network.

As we can notice from Figure < Figure 6.5 the L2 regularization applied from the
first epoch onwards increase a lot the EER, but it also helps to stabilize
the learning. Applying the regulation starting from the second epoch, the
EER decreases, the learning is more stable with respect to learning without
regularization, but the learning process gets stuck and the EER does not
decrease. Changing the activation function to tanh, the EER does not grow
significantly. Indeed when the argument is very positive or very negative,
the tanh function tends to saturate to -1 or +1. Although we had improve-
ments with tanh, the performance is not satisfactory if compared with the
4.22% reference EER.

In another experiment, we applied L2-normalization to the output rep-
resentations of the sub-networks. In order to preserve the network weights to
assume negligible values, we used tanh as activation function of the nodes.

L2
regularization
(1st epoch)

L2
regularization
(next epochs)

Activation Dropout
Training Test

EER epoch EER epoch

0 1E-03 ReLU 0.4 0.12% 1 32.94% 1

0 1E-04 ReLU 0.4 0.12% 1 8.47% 8

0 1E-05 ReLU 0.4 0.10% 1 6.75% 5

0 1E-04 tanh 0.4 0.10% 1 4.69% 1

0 1E-04 tanh 0 0.13% 1 5.10% 1

< Table 6.3:
Results for networks
trained without
regularization during
the first epoch and
with different rates of
regularization for the
following epochs

9

1

8

7

6

5

4

3

2

0

Epoch

EE
R
 [%

]

test
train

91 8765432

30

20

10

71 65432

50

40

0

Epoch

EE
R
 [%

]

A B

with pretrain
without pretrain

without regularization

< Figure 6.5:
A) EER for the network
with 2 layers in the
sub-network. Comparison
for different strategies
of regularization
Blue: first row in
Table < Table 6.3
Red: fourth row in
Table < Table 6.2
Green: first row in
Table < Table 6.2
B) EER for the network
of fourth row in Table < Table 6.3

87

6.6 | Experimental results

As shown in Table < Table 6.4 this normalization improved the baseline EER.
Adding a layer with 128 nodes between the merge layer and the output

node improved the performance as reported in Table < Table 6.5.

For the next set of experiments, we changed the computation performed
by the merge layer. Rather than performing an element-wise product, the
squared sum and the product of the sub-network representations were com-
puted, and then concatenated before going to the sigmoid output node
(Figure < Figure 6.6A), allowing the final node to evaluate more information.

However, dropout applied to this architecture was not feasible because
the learning was unstable causing the training EER to be higher than the
EER of the test. We solved this problem applying the dropout only to the
representations used to compute the product (Figure < Figure 6.6B).

Sub-network
architecture

h1 and h2
normalization Activation

Training Test

EER epoch EER epoch

1 layer l2-norm tanh 0.04% 9 3.84% 18

< Table 6.4:
Results for a network
with L2-normalized
representations

Sub-network
architecture

Layer after
merge layer Activation

Training Test

EER epoch EER epoch

1 layer 128 nodes ReLU 0.02% 4 3.97% 11

< Table 6.5:
Results for a network
with a layer of 128
nodes added before
the output node

< Figure 6.6:
A) Siamese network
with a merge layer
which concatenates
the squared sum
and the product of
the sub-network’s
representations.
Dropout is applied
directly on the single
layer of the sub-network
B) Dropout is
applied only on the
representations that
are multiplied

Shared
Weights

Shared
Weights

Concatenate

SUB1 SUB2

h1 h1 h2 h2

Concatenate

SUB1 SUB2

h1 h1 h2 h2

Dropout Dropout

A B

88

6.6 | Experimental results

From the results of Table < Table 6.6 we can notice a good improvement of the
EER. Thus, we performed other tests with this merge configuration, tanh
as activation function of the nodes, and no L2 regularization, obtaining an
EER equal to 3.30%, the best result so far (Table < Table 6.7).

Table < Table 6.8 presents the results that have been obtained by changing the
architecture of the sub-network while maintaining this merging technique.
In Table < Table 6.9, instead, we show the results obtained adding layers of different
size after the merge.

Dropout
before
product

Activation L2
regularization Optimizer

Training Test

EER epoch EER epoch

0.4 ReLU 0 RMSprop 0.02% 10 5.95% 14

0.4 tanh 0 RMSprop 0.08% 5 3.48% 2

0.4 tanh 1E-05 RMSprop 0.65% 7 4.63% 9

0.4 tanh 0 Adam 0.02% 17 3.61% 7

< Table 6.6:
Results for networks
with dropout
applied only to the
representations that are
multiplied. Different
activation functions,
regularizations and
optimizers are used

Dropout
before
product

Optimizer h1 and h2
normalization other specs

Training Test

EER epoch EER epoch

0.4 RMSprop l2-norm none 0.00% 13 3.30% 5

0.4 Adam l2-norm none 0.01% 13 3.43% 6

0.4 RMSprop l2-norm
layer with
128 nodes
after merge

0.03% 5 3.91% 1

0.4 RMSprop l2-norm sum of
squares 0.02% 9 3.66% 7

< Table 6.7:
Results for
networks with
L2-normalization
applied to the
sub-network’s
representations

< Table 6.8:
Results for networks
with different
sub-network
architectures

Sub-network architecture
Training Test

EER epoch EER epoch

1 layer with 512 nodes 0.00% 24 3.45% 3

1 layer with 1024 nodes 0.00% 17 3.35% 6

1 layer with 4096 nodes 0.02% 5 3.30% 6

2 layers with 512 nodes 0.02% 15 5.36% 2

2 layers with 1024 nodes 0.01% 15 4.37% 7

3 layers with 1024 nodes 0.03% 5 5.70% 7

89

6.6 | Experimental results

Since the results were similar to the previous ones, we did not continue
experimenting on this line. We built another architecture adding a different
sub-network to process the representations of the first sub-network (Figure < Figure 6.7).
We will refer to this architecture as post-network. In particular, we use three
post-networks which share their weights. The representation is the input
of the first post-network, the representation is the input of the second
post-network and the sum of both representations is the input of the third
post-network. Then we compute the sum and difference of the output rep-
resentations of the post-networks. Our aim is to avoid overfitting. Indeed,
without the third post-network, which uses as input, the post-network
could learn and focused on the training data. In Table < Table 6.10 we present
the results for these experiments. The configuration of the sub-network is: a
single layer with 2048 nodes, tanh activation function, and 0.4 dropout rate.

< Table 6.9:
Results for networks
with a layer positioned
after the merge layer

Layer after merge layer
Training Test

EER epoch EER epoch

1024 nodes 0.03% 5 3.73% 1

512 nodes 0.03% 5 3.81% 1

256 nodes 0.03% 8 3.76% 1

64 nodes 0.03% 5 3.89% 1

32 nodes 0.03% 5 3.63% 1

< Figure 6.7:
Neural network with two
different sub-networks
which share the weights:
SUB and POST. The
representations returned
by the POST
sub-networks are
merged with sum
and difference

Shared
Weights

Shared
Weights

Shared
Weights

POST1 POST2

SUB1 SUB2

POST3

h1

h1

h2

h2

g1 g2 g3

90

6.6 | Experimental results

From Table < Table 6.10 we can notice that we improved the EER using more
layers, but we did not reach a result better than 3.30%.

Finally, we removed the top sub-network, and we used as inputs of the
post-networks the i-vectors. For example, the input of the first post-net-
work is i-vector , rather than its representation . However, as shown in
Table < Table 6.11, the results were disappointing.

In conclusion, the best network obtained has a sub-network with 1 layer
of 2048 nodes and tanh activation function. The merge is done by concate-
nating the squared sum and the product of the sub-network representations.
A dropout of 0.4 is applied only on the representations used to compute the
product. Furthermore, L2-normalization is performed on the representa-
tions before the merge layer. The optimizer is RMSprop and the activation
of the output node is the sigmoid function. Using this architecture we ob-
tained an EER equal to 3.30%. Comparing this result with the one reached
by other techniques, the proposed architecture improve the cosine distance,
and the previous Siamese network, but it does not improve the performance
of the state-of-the-art PLDA and PSVM.

Post-network architec-
ture

Post-network
dropout

Training Test

EER epoch EER epoch

1 layer with 2048 nodes 0.4 0.06% 16 13.21% 22

1 layer with 1024 nodes 0.4 0.55% 6 15.19% 6

1 layer with 512 nodes 0.4 1.70% 9 14.99% 9

2 layers with 1024 nodes 0.4 1.01% 7 8.62% 6

2 layers with 512 nodes 0.4 1.60% 7 10.64% 5

3 layers with 1024 nodes 0.4 0.91% 5 7.16% 5

3 layers with 512 nodes 0.4 3.02% 6 9.22% 3

4 layers with 1024 nodes 0.4 5.38% 2 9.63% 2

4 layers with 512 nodes 0.4 8.36% 13 12.28% 3

2 layers with 512 nodes 0.2 0.26% 11 6.18% 7

3 layers with 1024 nodes 0.2 0.09% 6 5.46% 10

< Table 6.10:
Results for networks
with different
post-network
architectures

< Table 6.11:
Results for networks
with different
post-network
architectures and
dropout rates

Post-network architecture Post-network
dropout

Training Test

EER epoch EER epoch

3 layers with 1024 nodes 0 0.24% 5 17.07% 1

3 layers with 512 nodes 0 0.15% 9 12.36% 1

3 layers with 1024 nodes 0.2 0.03% 21 15.27% 13

3 layers with 1024 nodes 0.4 0.05% 39 9.01% 31

91

6.6 | Experimental results

Technique EER

Cosine distance 5.30%

Previous Siamese network 4.22%

Actual Siamese network 3.30%

PLDA 3.22%

PSVM 3.01%

< Table 6.12:
Comparison with EER
obtained with
state-of-the-art
techniques and the
Siamese network
proposed in this work

92

Chapter 7
Conclusion

In this thesis, we presented an overview of the language and speaker rec-
ognition systems. In particular, we were interested in understanding the en-
tire process for having more awareness about the characteristics of the input
vectors that are provided to the classifier. Since the main objective was to
achieve improvements for neural network classifiers, we also analyzed the
working principles of neural networks, their training algorithms, and different
techniques for their regularization.

As far as language recognition is concerned, we proposed a neural network
classifier as part of a system submitted to the NIST 2017 Language Recogni-
tion Evaluation. We started from a basic architecture, and we experimented
many different architectures on both the original and augmented versions of
the dataset. Since we had to deal with overfitting problems, even with simple
and small architectures, we applied different methods of regularization. The
best results were obtained with pre-processed data, leading to an 18.95%
equal error rate. One of the most important sources of errors that we observed
was the mismatch between the training and test data. Indeed, splitting the
train dataset in two parts, and performing training and testing with these
two subsets, we obtained an equal error rate of 5.7%. This was confirmed by
performing the same experiment on the test dataset, for which we obtained
an equal error rate of 14.9% using the same network architecture. These char-
acteristics of the data caused the network to not perform well on the test set.

In the context of speaker recognition, we presented the Siamese neural
network architecture to perform binary classification of i-vector pairs. The
aim was to reach an error rate closer to the one achieved by state-of-the-art
PLDA and PSVM techniques. We experimented different sub-network con-
figurations, types of regularization, and activation functions. We proposed a
merging technique that consisted in computing the concatenation of squared
sum and product of the sub-network representations (similar to Euclidean dis-
tance). Although a good EER of 3.30% has been obtained, the performance
was not better than PLDA. Adding a second sub-network and by merging the
representations by means of sum and difference did not provide better results.

Since in the current system, feature extraction, i-vector modelling, and
classification are independent steps, future work could be devoted to a system
that is trained to joint optimize these components.

93

References

[1] S. Davis, and P. Mermelstein, “Comparison of parametric representa-
tions for monosyllabic word recognition in continuously spoken sen-
tences” IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. 28, pp. 357–366 (1980).

[2] T. Kinnunen, and H. Li, “An overview of text-independent speaker
recognition: From features to supervectors” Speech communication, vol.
52, no. 1, pp. 12–40 (2010).

[3] X. Huang, A. Acero, and H.-W. Hon, “Spoken language processing:
A guide to theory, algorithm, and system development” Upper Saddle
River, NJ: Prentice Hall PTR (2001).

[4] L. Rabiner, and B. H. Juang, “Fundamentals of Speech Recognition”
Upper Saddle River, NJ, USA: Prentice-Hall, Inc. (1993).

[5] J. Ramirez, J. Segura, C. Benítez, A. de la Torre, and A. Rubio, “Effi-
cient voice activity detection algorithms using long-term speech infor-
mation” Speech Comm. 42 (3–4), 271–287 (2004).

[6] T. Kinnunen, and P. Rajan, “A practical, self-adaptive voice activity
detector for speaker verification with noisy telephone and microphone
data” IEEE International Conference on Acoustics, Speech and Signal
Processing, Vancouver, pp. 7229-7233 (2013).

[7] L. R. Rabiner, and R. W. Schafer, “Introduction to Digital Speech
Processing” Foundations and Trends in Signal Processing, vol 1, no
1–2, pp 1–194 (2007).

[8] P. A. Torres-Carrasquillo, D. A. Reynolds, E. S. M. A. Kohler, R. J.
Greene, and J. J. R. Deller, “Approaches to language identification
using Gaussian Mixture Models and shifted delta cepstral features”
Proceedings of ICSLP 2002, pp. 89–92 (2002).

[9] W. Campbell, P. A. Torres-Carrasquillo, and D. Reynolds, “Language
recognition with support vector machines” Proceedings of Odyssey: The
Speaker and Language Recognition Workshop, pp. 41–44, ISCA (2004).

[10] C. M. Bishop, “Pattern Recognition and Machine Learning” Springer
(2007).

[11] D. Reynolds and R. Rose, “Robust text-independent speaker identifi-
cation using gaussian mixture speaker models” Speech and Audio Pro-
cessing, IEEE Transactions on, vol. 3, pp. 72–83 (1995).

[12] I. Goodfellow, Y. Bengio and A. Courville, “Deep Learning” MIT Press
(2016).

94

[13] S. Cumani, “Speaker and Language Recognition Techniques”, PhD the-
sis, Politecnico di Torino (2012).

[14] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted gaussian mixture models,” Digital Signal Processing, vol.
10, pp. 19–41 (2000).

[15] J. L. Gauvain, and C. H. Lee, “Maximum a posteriori estimation for
multivariate gaussian mixture observations of markov chains,” Speech
and Audio Processing, IEEE Transactions on, vol. 2, pp. 291–298 (1994).

[16] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Speaker and
session variability in gmm-based speaker verification” Audio, Speech,
and Language Processing, IEEE Transactions on, vol. 15, pp. 1448–
1460 (2007).

[17] P. Kenny, “Joint factor analysis of speaker and session variability: The-
ory and algorithms” Tech. Rep. CRIM-06/08-13, CRIM (2005).

[18] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling with
sparse training data,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 13, no. 3, pp. 345–354 (2005).

[19] P. Kenny, M. Mihoubi, and P. Dumouchel, “New map estimators for
speaker recognition” Proceedings of EUROSPEECH 2003, pp. 2964–
2967 (2003).

[20] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint factor
analysis versus eigenchannels in speaker recognition,” IEEE Trans. Au-
dio, Speech, Lang. Process, pp. 1435–1447 (2007).

[21] N. Dehak, “Discriminative and generative approches for long- and
short-term speaker characteristics modeling: Application to speak-
er verification,” Ph.D. dissertation, École de Technologie Supérieure,
Montreal, QC, Canada (2009).

[22] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front–
end factor analysis for speaker verification,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 19, no. 4, pp. 788–798 (2011).

[23] F. Chollet, “Deep Learning with Python” Manning Publications Co.
(2018).

[24] M. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. Le, P. Nguyen,
A. Senior, V. Vanhoucke, J. Dean, and G. Hinton, “On rectified linear
units for speech processing” 38th International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Vancouver (2013).

[25] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models” International Conference on
Machine Learning (ICML) (2013).

[26] D. Jurafsky, and J. H. Martin, “Speech and Language Processing” Eng-
lewood Cliffs, NJ, USA: Prentice-Hall (2000).

[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Neurocomputing:
Foundations of research,” ch. Learning Representations by Back-propa-
gating Errors, pp. 696–699, Cambridge, MA, USA: MIT Press (1988).

[28] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.

95

Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition” Neural Computation 1(4), 541–551 (1989).

[29] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop”
In Neural networks: Tricks of the trade, pp. 9–48. Springer (2012).

[30] S. Ruder, “An overview of gradient descent optimization algorithms”
arXiv:1609.04747 (2016).

[31] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the impor-
tance of initialization and momentum in deep learning” Proceedings of
the 30th International Conference on Machine Learning (ICML-13)
(S. Dasgupta and D. Mcallester, eds.), vol. 28, pp. 1139–1147, JMLR
Workshop and Conference Proceedings (2013).

[32] T. Tieleman, and G. Hinton, “Lecture 6.5 — RmsProp: Divide the gra-
dient by a running average of its recent magnitude” Coursera: Neural
Networks for Machine Learning (2012).

[33] D. P. Kingma, and J. Ba, “Adam: a Method for Stochastic Optimization”
International Conference on Learning Representations, pp. 1–13 (2015).

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, pp. 1929–1958 (2014).

[35] S. Wager, S. Wang, and P. S. Liang, “Dropout training as adaptive
regularization” Advances in Neural Information Processing Systems 26
(C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, eds.), pp. 351–359, Curran Associates, Inc. (2013).

[36] D. Yu, and L. Deng, “Automatic speech recognition – A deep learning
approach” Springer (2015).

[37] S. Wang, and C. Manning, “Fast dropout training” Proceedings of the
30th International Conference on Machine Learning (ICML-13), pp.
118–126 (2013).

[38] C. M. Bishop, “Regularization and complexity control in feed-forward
networks” Proceedings International Conference on Artificial Neural
Networks ICANN’95, vol. 1, pp. 141–148 (1995).

[39] C. M. Bishop, “Training with noise is equivalent to Tikhonov regulari-
zation” Neural Computation, 7(1), 108–116 (1995).

[40] J. Zhao, H. Shu, L. Zhang, X. Wang, Q. Gong, and P. Li, ‘‘Cortical
competition during language discrimination,’’ NeuroImage, vol. 43, pp.
624–633 (2008).

[41] H. Li, B. Ma, and K. A. Lee, “Spoken language recognition: from fun-
damentals to practice” Proceedings of the IEEE, vol. 101, no. 5, pp.
1136-1159 (2013).

[42] G. Saon, and J.-T. Chien, “Large-Vocabulary Continuous Speech Rec-
ognition Systems: A Look at Some Recent Advances” IEEE Signal
Processing Magazine, vol. 29, no. 6, pp. 18-33 (2012).

[43] NIST 2017 Language Recognition Evaluation Plan.
[44] P. Matějka, O. Plchot, O. Novotný, S. Cumani, A. Lozano-Diez, J.

Slavicek, M. Diez, F. Grézl, O. Glembek, K. V. Mounika, A. Silnova,

96

L. Burget, L. Ondel, S. Kesiraju, and J. Rohdin, “BUT-PT System de-
scription for NIST LRE 2017” BUT Speech Processing Group (2017).

[45] P. Matějka, L. Zhang, T. Ng, S. H. Mallidi, O. Glembek, J. Ma, and B.
Zhang, “Neural network bottleneck features for language identification”
Proceedings of the IEEE Odyssey: The Speaker and Language Recogni-
tion Workshop, Joensu, Finland (2014).

[46] R. Fér, P. Matějka, F. Grézl, O. Plchot, K. Veselý, and J. H. Černocký,
“Multilingually trained bottleneck features in spoken language recog-
nition” Computer Speech & Language, vol. 46, no. Supplement C, pp.
252 – 267 (2017).

[47] K. S. Rao, and S. Sarkar, “Robust Speaker Recognition in Noisy Envi-
ronments” Springer (2014).

[48] S. Cumani, and P. Laface, “Large scale training of pairwise support
vector machines for speaker recognition,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 22, no. 11, pp. 1590–1600 (2014).

[49] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Support vector
machines using GMM supervectors for speaker verification” IEEE Sig-
nal Processing Letters, vol. 13, pp. 308–311 (2006).

[50] S. J. D. Prince, and J. H. Elder, “Probabilistic linear discriminant
analysis for inferences about identity” 11th International Conference
on Computer Vision, pp. 1–8 (2007).

[51] P. Kenny, “Bayesian speaker verification with heavy–tailed priors” Key-
note presentation, Odyssey 2010, The Speaker and Language Recogni-
tion Workshop (2010). Available at http://www.crim.ca/perso/patrick.
kenny/kenny_Odyssey2010.pdf

[52] D. Garcia-Romero, and C. Y. Espy-Wilson, “Analysis of i–vector length
normalization in speaker recognition systems” Proc. Of Interspeech
2011, pp. 249–252 (2011).

[53] N. Brümmer and E. de Villiers, “The speaker partitioning problem”
Proc. Odyssey 2010, pp. 194–201 (2010).

[54] S. Cumani, N. Brümmer, L. Burget, P. Laface, O. Plchot, and V. Vasi-
lakakis, “Pairwise discriminative speaker verification in the i-vector
space” IEEE transactions on audio, speech, and language processing,
vol. 21 n. 6, pp. 1217-1227 (2013).

[55] S. Cumani, N. Brümmer, L. Burget, and P. Laface, “Fast discrimina-
tive speaker verification in the i–vector space” Proceedings of ICASSP
2011 (2011).

[56] L. Burget, O. Plchot, S. Cumani, O. G. P. Matějka, and N. Brümmer,
“Discriminatively trained Probabilistic Linear Discriminant Analysis
for speaker verification” Proceedings of ICASSP 2011 (2011).

[57] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
Verification using a “Siamese” Time Delay Neural Network” Proceedings
of the 6th International Conference on Neural Information Processing
Systems, pp. 737-744 (1994).

[58] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric

97

discriminatively, with application to face verification” Proceedings of
the 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 539–546, IEEE Computer Society (2005).

[59] R. Hadsell, S. Chopra, and Y. Lecun, “Dimensionality reduction by
learning an invariant mapping” Proc. Computer Vision and Pattern
Recognition Conference, IEEE Press (2006).

[60] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks
for one–shot image recognition” (2015).

[61] F. Tuveri, “Factor analysis and neural networks for speaker recogni-
tion” Thesis, Politecnico di Torino (2016).

[62] T. Fawcett, “An introduction to roc analysis” Pattern Recogn. Lett.,
vol. 27, pp. 861–874 (2006).

[63] N. Brümmer, “Measuring, refining and calibrating speaker and lan-
guage information extracted from speech” PhD thesis, University of
Stellenbosch (2010).

