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Abstract

In this thesis we consider two major fields in which machine learning is ap-
plied to human voice: language and speaker recognition. For both we provide 
an overview of the whole recognition chain, from the acoustic signal to the 
classifier, and we present applications of neural networks for classification.

In particular, since language and speaker systems share some techniques, 
the initial part of this thesis is an overview of the common approaches 
to the recognition problem. We first analyze state-of-the-art techniques to 
pre-process the speech signal, to extract its relevant features and to rep-
resent them by means of statistical models. We then focus on the working 
principles of neural networks, and on several different methods for their 
training and regularization.

Within the context of language recognition, we propose a neural net-
work architecture to classify i-vectors, which are modelled on the basis of 
the recently presented Stacked Bottleneck Neural Network (SBN) features. 
Comparing this solution to a Gaussian Linear classifier, we show that the 
former performs lightly better than the latter.

For speaker recognition, we focus on the pairwise approach, which con-
sists in establishing whether a pair of i-vectors belongs to the same-speaker 
or to the different-speaker class. In particular, we present a Siamese neural 
network architecture, which performs the binary classification of a pair of 
i-vectors. We propose different techniques to share its layer weights. The 
obtained architecture improves the scores of a previously proposed Siamese 
network, but it does not provide better performance with respect to sys-
tems that implement Probabilistic Linear Discriminant Analysis (PLDA) or 
Pairwise Support Vector Machines (PSVM) techniques.
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Chapter 1 
Introduction

In the last years a growing interest towards speech technologies has 
pervaded both industries and scientific community. Virtual assistants, con-
versational human-machine interfaces, more human-like speech synthesis, 
audio surveillance, voice biometric authentication, audio indexing, all of 
these are examples that audio is and will become a substantial segment of 
technology. One of the reason of this success is due to machine learning and 
to the possibilities that it offers to build more and more intelligent systems. 
Furthermore, the increasing availability of data and computational power 
allows training more effective and accurate systems.

Three main fields on which research is focusing are speech, speaker and 
language recognition. Speech recognition develops automatic systems that en-
able the recognition of spoken language, and its transcription to text. Since it 
is a required step for voice user interfaces, this technology has many commer-
cial applications, like mobile virtual assistants, audio typing and domotics.

Speaker recognition is the automatic process to predict the identity of 
the speaker of a given utterance. This technology can be adopted in a wide 
range of applications: authentication procedures, forensic activities, tele-
phone-based services, and speaker diarization.

Language Recognition is the automatic process that tries to identify the 
language spoken in a given utterance. Many applications are possible for 
this technology, like spoken language translation, emergency call routing, 
surveillance and security information distillation or as front-end for lan-
guage-dependent speech recognizers.

In this thesis, we focus on language and speaker recognition. For both 
we provide a good overview of the whole recognition chain, starting from 
the processing of the audio signal up to the actual classification, and the 
final answer regarding the identity of the person or the language. Since 
language and speaker recognition share some problems, and rely on similar 
techniques, the initial part of this thesis presents the common approaches to 
the recognition problem. In particular, we describe state-of-the-art methods 
to pre-process the speech signal, to extract its relevant features and to rep-
resent them by means of statistical models. Given audio samples of different 
duration, these techniques are able to represent them with low-dimensional, 
fixed dimension, vectors, called i-vectors.
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The main objective of this thesis is to apply the artificial neural network 
framework to the classification problem of both speaker and language recog-
nition. A neural network is a computing architecture including many simple 
processing elements, which are highly interconnected. Providing input data 
and the expected outputs, the network is able to learn patterns by adjusting 
the weights of the connections between its elements.

Within the context of language recognition, we will introduce a recent 
technique to extract features from the audio signal: the Stacked Bottle-
neck Neural Network (SBN) framework. We will then propose a neural 
network architecture to classify these features, and to identify the language  
of the given spoken utterances.

For speaker recognition, we focus on a pairwise approach for classifica-
tion, which consists in establishing whether a pair of i-vectors belongs to 
the same-speaker or to the different-speaker class. Thus, instead of per-
forming a multiclass classification (1-to-many-speakers), we perform binary 
classification of i-vector pairs. We will introduce state-of-the-art models, 
which execute pairwise classification, namely Probabilistic Linear Discri-
minant Analysis (PLDA) or Pairwise Support Vector Machines (PSVM). 
Furthermore, we will present a Siamese neural network architecture, which 
performs the binary classification of pairs of i-vectors. This architecture 
has two sub-networks, that share the weights, and learns an internal rep-
resentation of the i-vectors, that aims at enhancing speaker discrimination. 
An objective cost function between these representations is minimized, and 
after training, the Siamese network is able to return a classification predic-
tion for an input pair of i-vectors. We will propose different architectures 
and techniques to share the weights of the network.

The outline of this thesis is the following:

• Chapter 2 describes the preliminary processing of the audio signal 
and the techniques to extract the features, enhancing meaningful 
information, and discarding the redundant one.

• Chapter 3 presents statistical techniques to model the distribution 
of the acoustic features. In particular, the Gaussian Mixture Model 
will be introduced together with methods for creating background 
models, and for compensating speaker and channel variability.

• Chapter 4 introduces the working principles of neural networks and 
several different methods for their training and regularization.

• Chapter 5 deals with language recognition. It describes the SBN 
features, and presents the experimental results obtained for classifi-
cation with different neural network architectures.

• Chapter 6 focuses on speaker recognition. It introduces state-of-the-
art pairwise classifiers and the Siamese neural network architecture. 
Then it presents the experimental results obtained with different 
Siamese architectures.
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Chapter 2 
Feature extraction

For any ASR system, the starting point to analyze speech utterances 
is a front-end processing that is used to transform the acoustic signal in 
a set of features. It is fundamental that this set is a good representation 
of the signal. So the features are chosen with the purpose of emphasizing 
the discriminative information and suppress the statistical redundancies 
or the useless information [1].

For example in the case of speaker recognition, an ideal feature set [2] would:

• have large variability between different speakers, but small variabili-
ty within the same speaker

• be robust against noise and distortion
• contain frequent and natural characteristics of the speech
• be easy to evaluate
• be difficult to fake
• not be affected by variations of the speaker’s voice due to health 

conditions or the fact that a long time has passed
• have a relative small number of features

If the last point is not respected, one falls into the problem known as the 
curse of dimensionality. In fact sometimes traditional statistical models (e.g. 
Gaussian mixture model) can’t handle data with high-dimensionality [2]. 
Furthermore if the number of features grows, the number of training samples 
to reliably estimate the density also grows, but potentially in an exponential 
way. So the condition to have a low number of features is fundamental.

Front-end processing generally consists of three steps.
The first step for feature extraction is to digitize the signal and to convert 

it from a continuous signal in time and amplitude to a discrete signal in time 
and amplitude as well. After this, the signal can be processed by a machine.

Next, sspeech activity detection is required to remove the portions of the 
signal of silence. In these portions the value of the audio signal is not equal 
to zero because of noise, so some sort of strategy is needed to distinguish 
speech and non-speech signal.

In the third step the relevant information for our task has to be selected 
and enhanced. To handle the fact that the audio signal is not stationary, 
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2.1 | Analog-to-digital conversion

a short-term analysis must be performed. Then the final features are ex-
tracted to form a vector of coefficients. The sample utterances converted 
to feature vectors will then be used for model training, which will be dealt 
with in the next chapter.

Often  a post-processing step is added to the feature extraction chain, to 
perform a preliminary channel compensation and noise attenuation. Since 
the recognition system can operate with utterances coming from different 
channels, it is important to attenuate the channel effects, that typically mod-
ify the spectrum (e.g. limiting the band or changing the shape). For these 
reasons, different techniques can be applied to make the system more robust.

2.1  | Analog-to-digital conversion
The systems that digitalize audio signals use time sampling and ampli-

tude quantization to encode an analog waveform with continuous values to 
a discrete signal with finite amplitude values in time.

The Nyquist theorem provides sufficient conditions that allow the orig-
inal waveform to be reconstructed from a set of discrete samples without 
any loss of information. In particular, the theorem states that a signal can 
be recovered without loss of any information provided that the sampling 
frequency is at least twice the highest signal frequency

In practice to respect the theorem, the input signal has to be low-pass 
filtered, in order to have the maximum frequency equals to half the chosen 
sampling frequency. Since the human voice mainly includes frequencies that 
are below 4 KHz, telephone applications sample audio signals at a frequen-
cy of 8KHz. In this way there are no consistent losses of intelligibility, even 
if there are some losses of naturalness.

Unlike the sampling process, quantization introduces a measuring error. 
With uniform quantization, the continuous possible amplitude values of a 
time sample are mapped to a finite number of quantization levels of the 
same size. As with any analog measurement, since the resolution of the sys-
tem is finite, the accuracy is limited and an error is introduced.

y(t) yS(k) yQ(k)

fS 

Sampler QuantizerLow-pass
filter

< Figure 2.1: 
Analog-to-Digital 
converter schema
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2.1 | Analog-to-digital conversion

Hereafter we analyze more in detail the various steps to digitalize a 
speech signal.

Sampling
Sampling can be written as the multiplication of the input signal by a 

periodic impulse train:

where  is the input signal,  is the sampled signal and the impuls-
es  are distant from each other of the sampling interval .

Since the Fourier transform of a periodic train of impulses is still a peri-
odic train of impulses

and the multiplication in the time domain corresponds to the convo-
lution in the frequency domain, we get that the Fourier transform of the 
sampled signal is

where  is the Fourier transform of  and  is the Fourier 
transform of .

If  is bandlimited to , the replicas do not overlap and so there is 
no aliasing. In this work we will consider a sampling frequency equal to 8 kHz.

< (2.1) 

< (2.2) 

< (2.3) 

< Figure 2.2: 
Schema to illustrate  
the process of sampling  
a bandlimited signal 
On the left there are 
the signals in the time 
domain and on the 
right in the frequency 
domain. 
A) Input signal 
B) Spectrum of the 
input signal 
C) Sampling signal 
D) Spectrum of the 
sampling signal 
E) Sampled input signal 
F) Spectrum of the 
sampled input signal
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Quantization
The audio signal amplitudes are not uniformly distributed, but statisti-

cally there are more samples with low amplitude. So a uniform quantization 
would not perform well and a logarithmic quantization is preferred. In prac-
tice we realize the process of companding, that is to compress the dynamic 
range of the signal and then linear-quantize it. To simplify the computation 
and to solve the problem that the logarithm is not defined in zero, functions 
like A-law (for American communication nets) and μ-law (for European 
communication nets) are applied [3]. These are piece-wise linear approxi-
mations of the logarithm.

By applying this sort of quantization, samples with low amplitude are rep-
resented with greater precision (more bits). Furthermore the signal-to-noise 
ratio (SNR) is less sensitive to changes of the input signal dynamic range.

In particular telephone speech samples are represented on 8 bits. The 
µ-law and A-law algorithms map 13-14 bit linear samples to 8-bit logarithmic 
samples. Thus, we get a 64 kbit/s bitstream for a signal sampled at 8 kHz.

Filtering
From sampling and quantization we obtain the digitized signal , 

which is characterized by a drop in the power at higher frequencies. This 
property is caused by the glottal voice source [2]. Therefore the signal 
spectrum is flatten by means of a first order pre-emphasis filter with the 
following transfer function [4]

where usually a is chosen equals to 0.95.
In time domain, the output of the pre-emphasizer is
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2.2  | Voice activity detection
Voice activity detection (VAD) is a technique used to discriminate the 

segments of an audio signal that contain speech from the ones that con-
tain only noise. This is especially important for signals recorded in noisy 
environments, because VAD can enhance the quality of the speech signal 
identifying the segments of interest. Usually the segments that according to 
the VAD decision are not speech segments are ignored.

One of the most simple solutions is to use the signal energy to locate the 
speech segments [2]. In particular, the signal is divided in frames, the frame 
energy is computed, and the VAD decision threshold is set close to the max-
imum energy, considering a tolerance. The disadvantage of this approach is 
that the whole utterance has to be processed to set the decision threshold.

Instead, a real-time solution is the Long-Term Spectral Divergence 
(LTSD) technique [5]. The most relevant information to locate the speech 
is assumed to remain on the time-varying signal spectrum magnitude. The 
algorithm is based on the estimation of the Long-Term Spectral Envelope 
(LTSE) and on the computation of the LSTD between the speech and the 
noise, which is used to evaluate the decision rule.

Energy-based VAD is very popular due to its simplicity, but it’s also sen-
sitive to environmental noise. Some form of pre-process to enhance the signal 
can be performed, however in [6] a more robust solution has been proposed, 
which is described by the following steps:

• Mel-Frequency Cepstral Coefficients (Section 2.3) are extracted from 
the original noisy signal.

• The signal is enhanced to increase the energy contrast between the 
speech and non-speech segments. In particular, the spectral subtrac-
tion technique is used, whose details can be found in [6].

• The frame energies of the enhanced signal are computed.
• The lowest and highest energy frames are selected, considering a 

fixed percentage. The former are considered the non-speech frames, 

Speech
enhancement

Noisy
signal MFCC

Noise
estimation

Frame
dropping

Feature
extraction

VAD

< Figure 2.4: 
Voice activity detection 
is used to identify the 
non-speech frames that 
are dropped
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and the latter the speech ones. Using this method, two subsets of 
reliable labelled frames are built.

• Two Gaussian Mixture Models (Section 3.1) are trained using the 
MFCCs of the subsets’ frames. Thus, the parameters of the speech 
and non-speech models are obtained.

• Computing the likelihood ratio using the models, all the frames are 
labelled as speech or non-speech. In particular, given the speech mod-
el parameters , the non-speech model parameters , 
and a feature vector , the likelihood ratio is

2.3  | Mel-Frequency Cepstral Coefficients 
After the conversion of the signal from analog to digital and the removal 

of non-speech portions of the signal, the next phase consist of extracting 
the distinctive features.

The Mel-Frequency Cepstral Coefficients (MFCC) were introduced 
by Davis and Mermelstein in [1] and they are one of the most common 
representations of the acoustic signal in speech recognition. In particular 
MFCCs provide a short-term representation of the power spectrum of the 
acoustic signal. They combine the advantages of the cepstrum with a fre-
quency scale based on ear’s critical bands.

Bogert et al. defined the cepstrum as the inverse Fourier transform of the 
log magnitude spectrum of a signal and it was developed to separate convolut-
ed signals [7]. Thus by applying the cepstrum operator it is possible to sepa-
rate the excitation signal from the vocal tract signal in the speech production 
model. In fact, the speech signal is given by the excitation signal, produced by 
the lungs and approximated by a white noise, passed through the vocal tract, 
which according to its shape assigns various formants to the signal spectrum.

Human ear can perceive a range of frequencies from 20 Hz to 20 kHz, but 
the resolution in this range is not uniform. At low frequencies, the ear can 
distinguish differences of frequency more easily than at high frequencies. 
This non-uniform frequency analysis performed by the basilar membrane 
can be modelled with a set of bandpass filters, with narrower bands for low 
frequencies and wider bands for high frequencies. These bands, called crit-
ical bands, are used in psychoacoustic to quantify the ability of the human 
ear to distinguish between individual frequency tones. In particular the 
Mel scale is a perceptual scale of pitches judged by listeners to be equal in 
distance from one another.

< (2.6) 
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2.3.1 MFCCs computation

The system to extract MFCCs from the signal can be outlined as a chain 
of different processes which are illustrated by the Figure < Figure 2.6 and described 
more in detail in the following sections.

Framing
The speech signal is a slowly time varying signal [4]: if it is analyzed in 

a short period of time (between 5 and 100 ms), it is quasi stationary; but if 
we consider a longer period of time (on the order of 1/5 sec or more), the 
signal depends on the speech sounds being spoken.

Therefore, the first step towards MFCC extraction consists in splitting 
the acoustic signals into frames. These are usually 10 ms long. In this period 
of time the signal can be considered stationary.

∆ fC

fC
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pl
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Frequency0

1

< Figure 2.5: 
Representation of the 
bandpass filters based 
on critical bands

Windowing DFTFraming
Speech
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< Figure 2.6: 
System to compute 
MFCCs
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< Figure 2.7: 
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< Figure 2.8: 
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The framing operation can be written as

where  is the frame size (i.e. the number of samples in a frame),  is the 
size of the shift, T is the number of frames within the entire signal. So for ex-
ample the first frame, , includes the speech samples .

Windowing
A framing process like the one described above causes distortions of 

the spectrum due to the discontinuities introduced between two successive 
frames. To extract a frame this way is equivalent to the multiplication of 
the signal by a rectangular window. Since the Fourier transform of a rec-
tangular window is a sinc function, in the spectrum of the framed signal are 
introduced non-zero values, commonly called spectral leakage, around the 
frequencies of the original signal. Leakage can prevent from distinguishing 
two neighbouring frequencies or can also obscure the weaker ones.

To solve this problem we can use a window function  that minimizes 
the discontinuities between successive frames:

One of the most used window function is the Hamming window

Typically the value  is chosen equal to 0.54.

Furthermore to avoid losing the information of the samples near the 
borders frame, the frames are overlapped, i.e. the shift between consecutive 
frames is smaller than the frame length. In this case it is chosen . 
In this way, the samples that are near the end of the frame will be in the 
middle of the next frame and their information will not be lost.

< (2.7) 

< (2.8) 

< (2.9) 
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< Figure 2.9: 
Hamming window



11

2.3 | Mel-Frequency Cepstral Coefficients 

Fourier Transform
The next step to compute the audio features is to calculate the Discrete 

Fourier Transform (DFT) of the windowed frame. This can be done using 
the Fast Fourier Transform (FFT), that decomposes the signal into its 
frequency components.

Usually the phase of the Fourier Transform is ignored, because it is be-
lieved to be of little perceptual importance [2]. Whereas the envelop of the 
magnitude spectrum is the most informative part of the spectrum because it 
contains the information about the resonance properties of the vocal tract.

Mel-frequency spectrum
Psychoacoustic studies show that the human auditory system can be 

effectively modeled as a filter bank. Therefore the most simple model to ex-
tract features from the spectrum is a bandpass filter bank to get the energy 
of neighbouring frequencies. Furthermore in order to consider the human 
critical bands, the filter bank’s bands are chosen according to the Mel scale. 
In this way the low frequencies are represented with higher resolution be-
cause a larger number of narrower filters is assigned to them.

In most implementations the shape of the filters is triangular.
There are different formulas to convert frequencies from the hertz scale 

to the mel scale. A popular one is the following

where f denotes the real frequency (hertz) and m denotes the perceived 
frequency (mels). There are also other approximations that consider linear 
and logarithmic segments with 1000 Hz as turning point.

Given the mel-frequency bands, the DFT values can be grouped together 
in these bands and weighted by the triangular function. The energy for each 
frequency band can be calculated as

where  is the energy of the i-th band,  and  are respectively its 
lower and upper bound and  is the number of bands (e.g. usually ).

The mel-frequency spectrum is defined as [7]

< (2.10) 

< (2.11) 

< (2.12) 

< (2.13) 
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where  is the triangular weighting function for the i-th filter and

is a normalizing factor. This is needed to obtain a flat mel-spectrum from 
a flat input Fourier spectrum.

Log warping
Following the computation of the Mel-frequency power spectrum, a loga-

rithmic transformation is applied to mimic the human perception of loudness.

Discrete Cosine Transform
Finally to compute the MFCCs we apply the inverse DFT to the log 

Mel-frequency spectrum. Since applying the IDFT is in general complex, 
the Discrete Cosine Transform is performed instead.

Therefore the p-th MFCC for frame k is given by [7]

If we don’t use filters with triangular shape to evaluate the energy of the 
mel-frequency bands, we obtain a simpler formula

Cepstral parameters have decreasing variance as their indices grow, so 
high index parameters carry less information and they can be discarded. 
Usually, the number of cepstral parameters  used is between 12 and 24. 
Furthermore the cepstral parameter  is discarded because it contains 
the same information given by , the total energy of the frame

< (2.14) 
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< Figure 2.10: 
Mel spectrum

< (2.15) 

< (2.16) 
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2.3.2 MFCCs and derivatives

The processing described above doesn’t include any time evolution infor-
mation in the MFCCs. To represent the dynamic nature of speech, cepstral 
derivatives are taken into account. In particular the first order derivative of 
cepstral coefficients, called Delta coefficients, and the second order deriva-
tive, called Delta-Delta coefficients, are included in the feature set.

These parameters can be calculated through an approximation of the 
temporal derivative of MFCCs. One possibility is to use a polynomial ex-
pression over a certain number of successive frames.

where G is a gain used to obtain a similar variance between the set of 
MFCCs and the set of differential parameters and N is half the size of the 
window used to approximate the derivative.

With a similar procedure, the differential energy can be computed as

The second order derivative can be evaluated in the same way.

Finally the set of mel-frequency cepstral coefficients and their first and 
second order derivatives can be combined to form the features vector

2.4  | Shifted Delta Coefficients
MFCCs allow capturing the short-term speech dynamics and give good 

results for speaker recognition. Shifted Delta Cepstral (SDC) [8][9] are more 
useful, instead, for language recognition because they allow capturing the 
dynamics of a wider time interval. This characteristics allows SDC features 
to improve the performance of the model (Chapter 3).

In particular, SDC feature vectors are obtained by stacking delta cepstra 
evaluated in different speech frames. The SDC vector is characterized by 4 pa-
rameters: N is the number of cepstral coefficients computer for each frame, d 
is the time delay for delta computations, k is the number of blocks whose delta 
coefficients are stacked, and P is the time shift between consecutive blocks 
(Figure < Figure 2.11). Given time t, the SDC coefficients are computed as follows

< (2.18) 

< (2.19) 

< (2.20) 
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2.4 | Shifted Delta Coefficients

where  is the j-th coefficient at time t.

< (2.21) 

< Figure 2.11: 
Schema of the 
computation of the  
SDC feature vector

+ − + − + −
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Chapter 3 
Statistical modeling

In order to model a certain language (or speaker), we use statistical models 
that try to describe the distribution of the acoustic features, extracted from 
audio samples of this language (or speaker). Therefore, the feature vector can 
be interpreted as a realization of a random variable. For each language (or 
speaker) we estimate a model which describes accurately the realizations. In 
particular, during the training the model parameters are evaluated by means 
of a sufficient wide set of audio samples. One of the most popular models is 
the Gaussian Mixture Model which we will consider in this work.

We are interested in computing the likelihood ratio between the hypothesis 
that an utterance is from the considered language (or speaker), which is the 
target, and the hypothesis that it is of another language (or speaker), which is 
the non-target. For this reason it is important not only to model correctly the 
target, but also to be able to model the non-target population. The proposed 
solution is to estimate a generic target-independent model, called Universal 
Background Model. Then the UBM is adapted to the specific target models.

Furthermore we will introduce some techniques to compensate for the 
effects due to variabilities that are not language (or speaker)specific, like 
channel effects. Indeed these variabilities can have negative consequences on 
the recognition. In particular, we will consider the technique of Joint Factor 
Analysis, which has been successfully used in the past, and also the more 
recent i-vector technique.

3.1  | Gaussian Mixture Model
The Gaussian distribution, also known as normal distribution, is a com-

monly used model in many engineering and scientific applications, because 
it has very good computational properties, and it can approximate many 
real-world data. Furthermore by combining a sufficient number of Gauss-
ian distributions with the right parameters, we obtain a Gaussian Mix-
ture Model (GMM) is a stochastic model that allows accurately estimating  
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3.1 | Gaussian Mixture Model

almost any distribution. Due to these important characteristics, GMM are 
widely used both in language and speaker recognition.

3.1.1 Gaussian mixture distribution

The probability density function for a single, Gaussian distributed, con-
tinuous random variable  can be written in the form

where  and  are its mean and variance, respectively.
For a D-dimensional normal random vector , the multi-

variate Gaussian distribution can be defined as

where  is a D-dimensional mean vector and  is a  covariance matrix.

Gaussian distributions are unimodal, however more complex distribu-
tions with multiple local maxima can be approximated by Gaussian mix-
tures, that are linear combinations of Gaussians and can be defined as

where K is the number of Gaussians and  is the prior probability 
of picking the k-th Gaussian component. In particular each Gaussian 

 is a component of the mixture, characterized by a mean  
and a covariance . The parameters  are called the mixture weights and 
must satisfy the following constraints:

< (3.1) 

< (3.2) 
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< (3.3) 

< (3.4) 
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3.1 | Gaussian Mixture Model

With a sufficient number of Gaussians, characterized by the right means 
and covariances, and combined with the right coefficients, it is possible to 
approximate almost any distribution with an arbitrary accuracy [10]. Indeed 
from a set of samples  of a random variable , it is possible to 
approximate the p.d.f. of  with a Gaussian Mixture Model  characterized by

In the case of speaker recognition, for example,  is the feature vector 
for a given frame at time t and the GMM are used to approximate the 
acoustic distribution of the speaker frames.

Usually the covariance of the GMM is assumed to be diagonal (i.e. the 
axis of the hyper-ellipsis are restricted in the same direction of the coor-
dinate axes) to simplify the computation and to reduce overfitting of the 
training population [2]. Furthermore Gaussian mixtures with a sufficient 
number of components and diagonal covariances, are capable of modelling 
the correlations among feature vectors as well as full covariance GMMs with 
less Gaussians. Moreover the inaccuracy introduced by diagonal covariance 
matrices can be compensated considering more Gaussian components [11].

A possible approach to estimate the GMM parameters  from a training 
data set is the Maximum Likelihood Estimation (MLE).

3.1.2 Maximum Likelihood Estimation

For a given parametric family of probability distributions,  with 
parameters , the ML method finds the values of  that maximize the 
likelihood function , i.e. the values of the parameters that make the 
observed data the most probable [3][12]
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< (3.5) 

< (3.6) 



18

3.1 | Gaussian Mixture Model

To simplify the problem, the logarithm of the likelihood is taken, so the 
products are transformed into sums

In the case of the Gaussian mixture, the logarithm of the likelihood 
function is given by

However in this case there is no closed-form analytical solution [10]. The 
problem can be solved using iterative methods, for example the Expec-
tation-Maximization (EM) algorithm. This is an iterative procedure that 
allows estimating the parameters of a probabilistic model in presence of 
latent variables.

Therefore, in our case we have to write a formulation of the Gaussian mix-
ture that explicitly involves latent variables [10][13]. We introduce a K-di-
mensional binary random variable  that satisfies  and . 
This means that in a realization of  only one element  is equal to 1 and 
all the others are zero. Furthermore these realizations can be considered as 
K possible states of  that are mutually exclusive.

We can write the marginal distribution of  in terms of the mixing coef-
ficients  as

and the distribution of  as

Since only one of the K possible states is active, the conditional distribu-
tion of  given the state  is

which can be rewritten as

The marginal distribution of  can be obtained by summing the joint 
distribution over all the possible states of , with the joint distribution 
given by 

< (3.7) 

< (3.8) 

< (3.9) 

< (3.10) 

< (3.11) 

< (3.12) 

< (3.13) 
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Using (eq< (3.10) and (eq< (3.12) we obtain

which has the same form of the Gaussian mixture model (eq< (3.5).
Therefore, we can interpret the GMM as a latent variable model where 

a latent vector  is associated to each different data point .
The EM procedure requires the computation of the latent variable pos-

terior distribution given the data. Applying Bayes theorem we have

We can see  as the prior probability of  and  as the corre-
sponding posterior probability once we have observed . The last one is also 
called responsibility because it gives the probability that the data point  
was produced by the k-th Gaussian component.

The Expectation-Maximization (EM) algorithm is an iterative technique 
that is used to compute the maximum likelihood estimates of model’s pa-
rameters, with the model depending on latent variables (or missing data). In 
particular the EM algorithm alternates an Expectation (E) step and a Maxi-
mization (M) step, until the convergence of the parameters’ values is reached:

• E step: given the data and the current parameters values, we esti-
mate the missing data using the conditional expectation

< (3.14) 

< (3.15) 
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• M step: using the estimates of the previous step, the parameters are 
updated maximizing the likelihood function

It can be demonstrated [10] that for Gaussian mixtures the conditions 
which have to be satisfied at a maximum of the log-likelihood function 
are the followings

where

This can be interpreted as the expected number of points associated to 
the k-th Gaussian.

We can observe that the mean of the k-the Gaussian  is calculated 
as the weighted mean of all the data points. The weight factor of each  
is , i.e. the responsibility of the k-th Gaussian to have generated the 
data point . In the same way the covariance of the k-the Gaussian  is 
estimated over all the data points and each one of these has a weighting 
factor given by the responsibility. Finally the mixing weight  is the aver-
age responsibility of the k-th Gaussian for the generation of the data points.

Summarizing, the EM procedure for GMM parameter estimation con-
sists of the following steps:

1. The means , covariances  and mixing weights  are initialized 
randomly and the log-likelihood is evaluated.

2. E step: we evaluate the responsibilities of each  associated to the data 
point , using the current parameters values , with (eq< (3.15)

3. M step: using these responsibilities, the parameters are updated with 
(eq< (3.18), (eq< (3.19) and (eq< (3.20)

< (3.17) 

< (3.18) 

< (3.19) 

< (3.20) 

< (3.21) 

< (3.22) 

< (3.23) 
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4. We evaluate the log-likelihood

until the convergence of the likelihood. If the convergence criterion is 
not passed, we return to step 2.

Using these iterations we are able to estimate the parameters of a Gauss-
ian mixture distribution of the features extracted from the audio input.

3.2  | Universal Background Model  
and MAP adaptation

Giving a test utterance as input to the front-end processing, the output 
we get is a set of feature vectors  where  is the feature vec-
tor for the frame at time . To model a language (or a speaker) we 
can then model the acoustic features assuming that these can be represent-
ed by a GMM distribution  with parameters .

The goal of a speaker verification or language detection system is to 
establish whether a test utterance belongs to an hypothesized speaker or 
language respectively or whether it doesn’t. The hypothesized speaker and 
language are also called target. Thus, we define two hypothesis

 :  comes from the target
 :  does not come from the target

where S is for same and D is for different.
To make the decision we want to be able to compute the following like-

lihood ratio [14]

 

< (3.24) 

< (3.25) 

< (3.26) 

< (3.27) 
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where  is the distribution of the acoustic features for the given 
target, and similarly  is the distribution for the non-targets.  is a 
predefined decision threshold.

The hypothesis  can be represented by the model  that character-
izes the target in the features space. Whereas  can be represented by the 
model  that characterizes the non-targets in the same features space. 
Furthermore often the logarithm of the likelihood ratio is considered

We already showed how to estimate the model and evaluate its log-like-
lihood for a set of feature vectors. Thus we can train the model  using 
speech utterances from the target. Unlike this model, which is well defined, 
the definition of the non-target model  is more complex because it has 
to potentially represent all the non-targets. There are two main approaches 
to deal with this problem. The first is to train a set of non-target models 

, called background models, and then to combine their likeli-
hoods with some function  (e.g. average or maximum):

Many researches have been performed to understand which is the right 
size and composition of the background models set, and for example in [14] 
it was shown that for better performances the background set must be spe-
cific for the target.

The second approach is to train a GMM using a large set of speech 
samples gathered from several speakers or languages. The resulting model 
is called Universal Background Model (UBM). Since this is not dependent 
on any specific speaker or language, it can be interpreted as a model of 
the acoustic characteristics shared among different speakers/languages. The 
UBM can be trained with the EM algorithm (Section 3.1.2). Thus we obtain

The number of available target feature vectors is usually quite limited. 
Therefore ML solutions are not very reliable and tend to overfit the training 
utterances. It was shown in [15] that a much better model  can be esti-
mated by adapting the UBM to the specific target speaker or language. In 
particular, better models can be obtained by replacing the ML estimation 
by a Maximum-a-Posteriori (MAP) adaptation.

The MAP estimation is similar to the Maximum Likelihood one, but 
it takes into account the prior distribution  of the parameters that we 
want to estimate

< (3.28) 

< (3.29) 

< (3.30) 

< (3.31) 
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Typically, the adaptation involves only the UBM mean. A successful 
variant of MAP adaptation is known as relevance MAP. Relevance MAP 
requires estimating the posterior responsibilities  for a set of enrollment 
utterances 

where  are the UBM parameters and K is the 
number of Gaussian components.

The adaptation is then obtained from the weighted sum of the  and 
from the UBM means. The weighting factor is data dependent: if the num-
ber of training data is high, the adapted parameters will be influenced more 
by the new statistics and viceversa. The adapted means can be computed 
with the following formula [14]:

where

The relevance parameter r, and accordingly the data-dependent coeffi-
cient , is used to control the effect of the enrollment utterances on the 
adapted model compared to the UBM [2].

< (3.32) 

< (3.33) 

< (3.34) 

< (3.35) 

< (3.36) 
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3.3  | Joint Factor Analysis
The GMM-UBM method allows evaluating both the non-target model, 

which we assume to be the UBM, and the target model, which is obtained 
by relevance MAP adaptation of the UBM, considering the target’s speech 
utterances. However, we have to consider the problem of variability. Indeed 
the same speaker may pronounce the same utterance in different ways, or 
the speech signal may be recorded after passing through different channels. 
These conditions determine variations in the utterance samples of a same 
speaker. Thus to accurately model the speaker we have to take into account 
the intersession variability. This can be defined as the possible variability 
between several utterances coming from the same target (i.e. hypothesized 
speaker or language) but in different recordings.

Factor analysis models provide a technique to perform MAP adaptation 
of the speaker taking into account the intersession variability. In the follow-
ing sessions we will introduce three MAP methods: classical MAP, eigen-
voice MAP and eigenchannel MAP. The first two techniques are used for 
speaker variability and the third one for channel effects. Then we will show 
Joint Factor Analysis (JFA), which is a method to consider both speaker 
and channel variabilities.

3.3.1 Alignment statistics

Before showing the factor analysis methods, we need to introduce some 
definitions that will be used in the following sections.

Given a set of observations  for the speaker s, we need 
to evaluate the alignment of  over the components of the GMM. In 
other words we have to associate each observation to a single component of 
the GMM. We denote  as the mean of the i-th mixture component and 

 as the set of observations associated to this component. To compute 
the alignments, the full GMM should be used in the likelihood evaluations, 
however it is more convenient to compute an approximation of the likeli-
hood using the Baum-Welch statistics [16].

The zero-order, first-order and centered first-order statistics are defined as

< (3.37) 

< (3.38) 

< (3.39) 
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and the second-order, and centered second-order statistics as

where  are the responsibilities given by (eq< (3.32).
Using these statistics the log-likelihood for a GMM supervector is given by

Finally, it is useful to define the following matrices of the stacked sta-
tistics in order to vectorize computations.  is a block-diagonal matrix 
of size  composed by matrices  of size .  and  
are matrices given by stacking respectively  and  vectors.  
and  are the block-diagonal matrices whose elements are respectively 

 and  matrices.

3.3.2 Classical MAP

Let  be the UBM supervector, which is a  vector obtained con-
catenating the mixture components’ means , where C is the num-
ber of components and F is the dimension of the acoustic feature vectors. 
For a given speaker s, we can consider the following supervector [17]

where  is a diagonal matrix with dimensions  and  is a CF 
vector of speaker-dependent hidden variables with normal distribution

It is possible to show that the latent variable model of (eq< (3.43) is similar 
to the model used in relevance MAP.

Omitting for simplicity the reference to s, let  and  be the stacked 
Baum-Welch statistics defined in Section 3.3.1. We can compute the joint 
likelihood of the observed data X and the latent variables  as follows

< (3.40) 

< (3.41) 

< (3.42) 

< (3.43) 

< (3.44) 

< (3.45) 



26

3.3 | Joint Factor Analysis

where  is a block-diagonal matrix whose elements are the UBM covari-
ance matrices. Thus the posterior of  can be evaluated as

By inspection of (eq< (3.45) we can assume that the posterior of  is Gaussian

where the mean and the precision matrix are

Therefore the adapted GMM is given by

Defining  we obtain

which as the same form as (eq< (3.33).

3.3.3 Eigenvoice MAP

The eigenvoice MAP model represents a supervector as

where  is a matrix with dimension , with , and  
is a normal distributed hidden vector of size . Compared to the 
classical MAP, the adaptation is performed in a subspace of considera-
bly smaller dimension ( ), without losing too much accuracy. Indeed it 
is assumed that the variability between the different speakers is mainly 
confined in this smaller subspace. Furthermore, the eigenvoice method is 
more efficient when the enrollment data is sparse because it requires the 
estimation of a smaller latent variable.

In particular let  and  be the mean and covariance of the supervec-
tors for the UBM. Since most of the eigenvalues of  equal zero, the speak-
er-dependent supervectors can be contained in a low-dimensional space, 
which is known as eigenspace. Furthermore the eigenvoices are defined as 
the eigenvectors of  corresponding to non-zero eigenvalues [18].

 

< (3.46) 

< (3.47) 

< (3.48) 

< (3.49) 

< (3.50) 

< (3.51) 

< (3.52) 
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It is possible to compute the posterior of  in a similar way to the one 
proposed for classical MAP

where mean and precision matrix are given by

3.3.4 Eigenchannel MAP

The models presented so far do not explicitly model the channel effects. 
Even if there are some techniques which perform a compensation of the 
channel effects directly in the feature space, successful methods use factor 
analysis, and perform model compensation.

Let h be a given recording and s a given speaker. The GMM supervector 
can be written as the sum of two components [19][20]:  is a speaker-de-
pendent component and  is a channel-dependent component

It is assumed that the speaker component and the channel component lie 
in different and orthogonal subspaces of the supervector space.

A popular technique for channel compensation is eigenchannel adapta-
tion, which defines the channel component as follows

where  is a  low rank matrix, with , and  is 
an hidden vector with normal distribution, which represents the channel  

< (3.53) 

< (3.54) 

< (3.55) 

< (3.56) 
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effects. This method assumes that the channel component lies in a subspace 
of small dimension.

Therefore, a supervector is given by

Similarly to the previous models, the posterior of  is given by

with

3.3.5 JFA model

Finally, Joint Factor Analysis (JFA) is a combination of these three 
modelling techniques that takes into account both speaker and session var-
iability. In particular, putting together (eq< (3.43), (eq< (3.52) and (eq< (3.58), the model 
can be formalized as [16]

where  is the eigenvoice matrix that defines the speaker subspace and 
 is the eigenchannel matrix that defines the session subspace. Moreover,  

is the UBM supervector (speaker- and session-independent),  represents 
speaker-dependent factors and  channel factors. The term  is 
used to represent residual variability and  are called common factors.

During training it is possible to estimate the subspaces ( , , ) with 
labelled data, and to compute the speaker and session factors for a given 
utterance of a target, by means of the posterior distributions ((eq< (3.47), (eq< (3.53), 
(eq< (3.59)) and the EM algorithm.

3.4  | I-vectors
The JFA modelling is an effective technique for the use of low-dimension-

al vectors, however experiments have shown that the channel factors do not 
contain only channel effects, but also speaker information [21]. Therefore, 

< (3.58) 

< (3.59) 

< (3.60) 

< (3.61) 

< (3.62) 
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a similar method has been proposed which contemplate a single subspace, 
called total variability space [22]. This contains both speaker and channel 
variability, which are not distinguished in this model. It is possible to rep-
resent a given utterance in this subspace with an hidden vector, called total 
factors vector. The total variability space is low-dimensional, and maintains 
the proved advantages of JFA.

An utterance supervector can be modelled as

where  is the speaker and channel dependent supervector,  is the 
UBM supervector,  is a low rank matrix with size , and  is 
an hidden variable with normal distribution . Variable  represents 
a GMM in the total variability space. Its posterior distribution is Gaussian 
and its mean corresponds to the i-vector.

 matrix training is similar to eigenvoice matrix training, with the distinc-
tion that in the latter the utterances of a speaker are assumed to be actually 
spoken by the same speaker, while in the former they are considered as be-
longing to different speakers. In other words in the eigenvoice MAP we assume 
that the utterances of a speaker share the same hidden vectors, whereas in the 
i-vector technique each utterance is considered to have its own hidden vector.

The posterior of  is given by

where the mean is

and the precision matrix is

< (3.63) 

< (3.64) 

< (3.65) 

< (3.66) 
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Chapter 4 
Artificial neural networks

Artificial Neural Networks (ANN) are essential deep learning models, 
and very useful computational tools. The aim of an ANN is to approximate 
a function , which, for example, classifies an input x, mapping it to the 
category y:  [12]. In particular the ANN learns the parameters  
which give the best approximation of the function:  where f is the 
function applied by the network on the input x to obtain the output y.

The term networks refers to the fact that ANN are composed by various 
nodes grouped in layers, and can be represented by a directed graph of 
these nodes. The term neural refers to the fact that the network of nodes 
was loosely inspired by the human neurons and how they are connected.

The number of layers determines the depth of the network, and because 
of this terminology ANNs can be deep learning models, a specific subfield 
of machine learning.

4.1  | Artificial intelligence, machine  
learning and deep learning

Artificial intelligence is a field of computer science born in the 1950s to 
answer the question “could a computer think like a human?”. The aim of 

Artificial intelligence

Machine learning

Deep learning

< Figure 4.1: 
Artificial intelligence, 
machine learning and 
deep learning
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artificial intelligence is to automate intellectual tasks usually performed by 
humans and to give cognitive functions to machines, such as learning and 
problem solving [23]. Artificial intelligence is a broad field which includes 
many approaches, including the ones in which rules are coded by hand, and 
the most recent ones in which the rules are automatically learned.

Machine learning covers the latter approach. The rules to perform a giv-
en task are not coded by programmers, but are learnt automatically from a 
sufficiently large set of data. Machine learning introduces a new program-
ming paradigm. The classical way of programming is to write the rules (the 
code), and to give input data that will be processed, according to the rules, 
to obtain the answers. The machine learning paradigm instead requires as 
input pairs of data and expected anwers, and produces as results the rules, 
which can then be applied to process new data.

The procedure to find the rules is called training: many relevant data 
must be presented to the system, a statistical structure can be eventually 
found, which corresponds to the rules to automate the desired task.

Three elements are needed for machine learning:

• Input data. For example, in language recognition the input data are 
recordings of people speaking different languages.

• Expected output. For instance, the label of the language spoken in 
each spoken segment.

• A way to measure the accuracy of the algorithm. The accuracy is 
measured as the “distance” between the output of the system and the 
given expected output.

The measure of accuracy is used as feedback to adjust the parameters 
of the system ( ) to enhance the system performance. This procedure is 
essentially what is called learning.

In order to get closer to the expected output, the input data are trans-
formed in more meaningful representations. For example, having white and 
black points on a plane, the task could be to give the likely colour of a point 
given its coordinates. In this case, the input data are the coordinates of the 
points, the expected output their colours and the measure of accuracy could 
be the percentage of correctly classified points. A meaningful representation 

< Figure 4.2: 
Machine learning  
as a new programming 
paradigm

Answers Rules
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of the data is one that allows to easily separate white and black points. Thus a 
change of coordinates (like the one depicted in Figure < Figure 4.3) can be performed. 
Therefore the black points can be identified by the simple rule “if ”.

A machine learning algorithm can be used to automatically find such mean-
ingful transformation, which can be coordinate changes, linear projections, 
translations, non-linear operations, and so on. The feedback signal is used as a 
guide to find the most useful representation of the input data for the given task.

One of the possible machine learning techniques is deep learning, where 
the algorithm can learn different levels of representations: the deeper is the 
layer of the network, the more meaningful is the representation which can be 
learnt. The layers can be thought as filters that incrementally extract more 
relevant information. Thus, the input data are transformed by each layer, 
and gradually purified to better perform the task of the system (Figure < Figure 4.4).
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4.2  | Working principles of neural networks 
Neural networks perform a mapping of inputs to targets. A good map-

ping is found out during training if the network is exposed to many exam-
ples of inputs and targets. In particular, the network performs the mapping 
by means of sequential data transformations realized in the layers.

A layer transforms the data depending on its weights, also called param-
eters. During training, the weights are learnt having as objective the most 
accurate mapping between inputs and targets.

To adjust the weights of the layers, it is necessary to control the output 
of the network, and to measure how much the predictions of the network 
are different from the expected target. To compute this difference, the loss 
function (also called objective function) is evaluated (Figure < Figure 4.5). If the 
distance score between predictions and target, which is called loss score, is 
high, the accuracy is low and the weights will be adjusted.

The loss score is used as feedback signal to adjust the weights: these 
are slightly moved in a direction that will cause a decrement of the loss 
score for the current example. The weights update is performed by the 
optimizer (Figure < Figure 4.5).

At the beginning, the weights of the network are initialized randomly. 
Thus the predictions will usually be distant from the target. Then, every 
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example is processed by the network, and the weights adjusted to make the 
loss score decrease. This cycle is executed a sufficient number of times to 
have the loss function minimized, and to obtain a trained network that will 
produce predictions close enough to the expected outputs.

As it has been said, the aim of a network is to approximate a function  
with a function f that allows mapping the inputs to the targets. With more 
than one layer, the function f can be written as a chain of the specific functions 
of each layer . For example, the function of a network with three layers is

During training, the weights  are adjusted to make  close enough 
to . The training data are the examples x associated with the labels 

. Thus, given the input x, the output layer of the network should re-
turn a value close to y. However, the value returned by the previous layers is 
not specified by the training data, thus the learning algorithm has to establish 
how to parameterize these layers so that the overall network function is a good 
approximation of . Since the training data does not provide the expected 
output values of these layers, they are called hidden layers (Figure < Figure 4.6).

One of the reasons that make deep learning very powerful is that all 
the layers of representation are learnt jointly: if one weight is adjusted, 
automatically all the other weights that depend on it will be updated. The 
overall training depends on a single feedback signal, thus every change in 
the model aims to get closer to the end goal.

Each layer is composed by a given number of units (Figure < Figure 4.6), or 
nodes, that implement a vector-to-scalar function. Indeed, each unit re-
ceives input from all the units of the previous layer, and computes its out-
put scalar, also called activation value. For each node a function is defined 
that establishes how the output of the node itself has to be computed, and 
which is its activation function.

< (4.1) 
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< Figure 4.6: 
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4.3  | Neural network architecture
An ANN can be represented by a directed graph (Figure < Figure 4.6)

where I, N and O are respectively the sets of input, internal and output 
nodes and E is the set of edges [13]. The nodes are grouped in layers, which 
can have different widths (which correspond with the number of nodes of 
the layer). The input nodes receive the data to be processed, and the output 
nodes return the result of the computation. Every node of the sets N and O 
has a set of parent nodes as defined by the connections given by the edges. 
Furthermore, each node of a hidden layer receives input from all the nodes of 
the previous layer and gives the output to all the nodes of the successive layer.

A node of the network is denoted as , and it has associated the input 
values , the activation value , and the output value . An edge of the 
network is denoted as , and it connects the nodes  and . Each edge 
has associated a weight .

4.3.1 Single node

The node is the building block of the neural network. It receives as input a 
vector of values, performs a computation, and returns an output value. The 
computation is a weighted sum of the input values with the weights of the 
edges and a bias term. Thus, given the input vector , 
the set of corresponding weights , and the bias , 
the activation value of the j-th node is

Instead of using the activation value, which is a linear function, a non-lin-
ear function  is applied to . Then the output value for a node is

where  is the activation function of the node.

< (4.2) 

< (4.3) 

< (4.4) 
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4.3.2 Network function

If we consider a network, the nodes’ outputs of a layer are again com-
bined by the nodes of the successive layer. In the usual architecture, the 
layers are fully-connected: this means that every node of a layer takes as 
inputs all the results of the nodes of the previous layer. In other words, each 
node of a k-th layer is connected with an edge to all the nodes of the k-1-th 
layer, and its activation is a weighted sum of all their outputs. Thus, the 
activation of the j-th node of the k-th layer can be written as

where k identifies the layer,  is the number of nodes of the k-1-th 
layer and  identifies the node of the layer (with  being the 
total number of nodes of the current layer). For each node, the activation 
function  is then applied to the activation value.

If we consider a neural network with one hidden layer (Figure < Figure 4.8), the 
overall network function is

where the vector of biases has been grouped with the weights in the 
matrix W.

Therefore, a neural network model is a non-linear function which takes 
as input the data X and the parameters W, and returns as output the set Y.

4.3.3 Activation functions

According to the task that the network has to solve, a convenient type 
of activation functions has to be properly used. A large number of functions 

< (4.5) 

< (4.6) 
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exists, and we show below the main ones for the purposes of this work.

Sigmoid
For binary classification, the activation function of the output layer is 

usually a sigmoid function, given by

Since the value produced by this function is between 0 and 1, the out-
put of the network can be interpreted as a probability. Thus the result is 
the probability that the input belongs to one class or the other. Moreover, 
when the argument is very positive or very negative, the function tends 
to saturate to 0 or 1 [12]. This means that it becomes insensitive to small 
changes for inputs above 2 or below -2, for example. This property makes 
the function work better to clearly distinguish the predictions.

The fact that the function doesn’t change significantly for small changes 
of the argument can also be a disadvantage, because it raises the problem 
of vanishing gradients. This means that the gradients become smaller and 
smaller, so that the network can’t learn very well.

The sigmoid function can be applied not only on the activations of the 
output nodes, but also on the activations of the hidden nodes.

ReLU
An activation function that can also be used for the hidden nodes is the 

Rectified Linear Unit (ReLU) [24][25], which is written as

Unlike the previous one, this function doesn’t tend to flatten for very high 
or very low input values. However, since the range of ReLU is , this also 
means that this function can make the activations become higher and higher.

Even if ReLU is a non-linear function, it is composed by two linear pieces 
(piecewise linear), thus the network model will be easier to optimize with 
gradient-based methods, and it can generalize well [12].

< (4.7) 
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Since the ReLU brings to 0 all negative values, the network will have 
sparse activations. For example if we consider a network initialized with 
random weights, ReLU will yield almost half of the nodes to be 0. This fact 
makes the network easier to compute. On the other side, many nodes won’t 
react to changes in the network, because every negative value is brought to 0.

Another advantage of ReLU is that, in comparison with sigmoid and 
tanh functions, it is less computationally expensive.

Tanh
Another activation function widely used is tanh:

It is essentially a sigmoid scaled between -1 and 1. Thus all previously 
mentioned properties are still valid.

Softmax
The softmax function is only used in the output layer for multiclass clas-

sification tasks. This function can take as input a vector of real numbers, 
and returns a vector that encodes a probability distribution, i.e. all the 
values of the vector will be in the range 0 and 1, and the sum of them will 
be 1 [26]. For a vector of dimensionality D, the softmax function is given by

< Figure 4.10: 
ReLU function
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4.4  | Training
Training a neural network essentially means to set the weights  and 

biases  for each layer. This is done choosing the values of these parame-
ters that minimize the loss score. We will refer to  for both weights and 
biases, since a bias can be considered as a weight of an additional node 
with input fixed to 1.

Various optimization methods can be used to minimize the loss score, 
like the stochastic gradient descent (page 46). The basic idea is that we 
initialize the weights randomly, and we iteratively update the weights in a 
direction that improves the accuracy of the model.

Each iteration is composed by two main steps:

• Forward propagation: given inputs from dataset and the current 
weights of the network, the final output is computed;

• Backward propagation: having the output, it is possible to compute 
the loss score, and to update the weights proceeding from the output 
layer to the input layer.

As we previously introduced, the forward propagation can be performed 
by means of the following equations:

where  is the output value of the j-th node of the k-th layer. Com-
puting the values from the first to the last layer, it is possible to obtain the 
values  of the output layer.

Now we have to evaluate the loss score and efficiently propagate back-
ward the error to update the weights.

4.4.1 Loss function

Since our aim is to have output values as close as possible to the target 
values, we need a metric to evaluate if the system is improving or not its 
accuracy on the training data each time we change the weights. This com-
putation is performed by the loss function, also called cost function.

Squared errors
The sum of the squared residuals over all the training cases is a often 

used function to evaluate the distance between the target value t and the 

< (4.11) 

< (4.12) 
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model’s output value y. It can be written as

where n is the index of the training case considered. The factor is needed 
to simplify the derivative which will be computed next.

Cross entropy
Another common function is the cross entropy loss, which is also called 

the negative log likelihood. In particular for softmax neurons, the most ap-
propriate cost function is the negative log probability of the correct answer. 
The equation is

where n is the number of the classes between which the model has to do 
the classification. Furthermore  and  are probability distributions.

A model which does a correct classification assigns a probability of 1 to 
the right class, and a probability of 0 to the others. The negative log func-
tion gives a value of 0 for a probability of a correct classification example 
(no loss), whereas it gives a value of infinite for a probability of a wrong 
one (infinite loss) (Figure < Figure 4.12).

The cross entropy function has a good property: it has a big gradient if 
the target value is 1, and the output of the model is almost 0.

Geometric interpretation
If we consider a linear neuron and a squared error function, it is possible 

to visualize the error surface in a 3D space, with the weights on the horizon-
tal axis and the error on the vertical axis. The shape of the error surface is 
a quadratic bowl. The aim of the training is to find the point at the bottom 
of the bowl. This point gives the weights which minimize the error.

For multi-layer non-linear neural networks the error surface becomes 
more complex. However, if the weights are not too big, the error surface is 
still smooth, but it may have many local minima.

< (4.13) 

< (4.14) 
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4.4.2 Gradient descent

The minimum of the loss function can’t be found analytically. Instead, 
iterative methods are used, like the gradient descent algorithm or other 
extensions or variants of this. As the name says, the gradient descent is 
a method to find the minimum of a function taking iterative steps in the 
direction of the negative gradient, which is computed at the current point. 
This means that we are moving on the error surface following the direction 
along the steepest slope.

Since we are in the weights space, at each iteration we update the weights 
according to the gradient descent algorithm. However, the amount of the 
step doesn’t depend only on the magnitude of the gradient, but this is mul-
tiplied by the learning rate . For an higher learning rate, the step will be 
bigger, and viceversa. Thus, the updated weights are given by

It’s important to set a convenient value for the learning rate. Indeed, if  
is too high, the steps will be too big, and the minimum can be lost, whereas 
if it is too low, the steps will be too small, and more time will be needed to 
find the minimum. Sometimes it can be useful to start with an high learning 
rate, and then decrease it as the training iterations proceed.
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w2 E
< Figure 4.13: 
Representation of  
the error surface
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w1 
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Gradient descent on  
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< (4.15) 
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In each dimension  of the weights space, the gradient gives the com-
ponent of the slope in that dimension. This component is expressed as the 
partial derivative of the loss function with respect to the weights, which is 
computed by means of the backpropagation algorithm.

Backpropagation algorithm
The partial derivative of the loss can be computed [27] applying two 

times the chain rule

where we temporarily omit the index of the layer k and the index of 
the iteration t.

Let the backpropagation error be

The partial derivative of the activation value can be computed as

In fact the activation value  is simply the sum of all the outputs from 
the nodes of the previous layer i multiplied by the weights.

Therefore we have

Now we can proceed to compute . The partial derivative of  with 
respect to  depends on the activation function of the node j. The partial 
derivative of the loss function with respect to  depends on the chosen loss 
function. It can be rewritten as

Since

we have

Putting (eq< (4.17) and (eq< (4.22) together, we obtain

< (4.16) 

< (4.17) 

< (4.18) 

< (4.19) 

< (4.20) 

< (4.21) 

< (4.22) 

< (4.23) 
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We can notice that it is sufficient to have the errors  of the nodes of the 
layer  (where the layer 0 is the input layer, and the numbers grow towards 
the output) in order to compute  for a node of layer L. Indeed, the aim of 
the backpropagation algorithm is the computation of the updated weights by 
propagating backward the error of the output layer through the entire network.

Thus, the function (eq< (4.15) to update the weights becomes

and

Backpropagation for a linear neuron
We consider the simplest example of learning: a linear neuron with squared 

error measure. The output z of the node is the weighted sum of the inputs .

To learn the weights of the model we have to minimize the error summed 
over all training cases. To measure the loss we use the squared difference 
between the target output and the estimated output and we sum these re-
siduals over all the n training cases:

We can differentiate to get the error derivatives with respect to the 
weights. To do this, we use the chain rule:

Thus we can update a weight  in proportion to the partial derivatives 
of the error, summed over all training cases. We obtain the batch delta rule:

Backpropagation for a sigmoid neuron
Now we consider a sigmoid neuron. The output of the node is computed 

as it follows:

< (4.24) 

< (4.25) 

< (4.26) 

< (4.27) 

< (4.28) 

< (4.29) 

< (4.30) 

< (4.31) 
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Similarly to the computation that we have done previously, we compute the 
derivative of the error with respect to the weights by means of the chain rule:

Even to compute the partial derivative of the output we can use the 
chain rule in the following way

where

and

because

Thus we obtain

and

The quantity to update the weights for a sigmoid neuron is

4.4.3 Optimizer

The backpropagation algorithm is an efficient way to compute the error 
derivative with respect to each weight for a single training case. For a whole 
learning procedure, we still need to specify how often and how much to update 
the weights. Since the neural networks may have a large number of weights, 
and for training we need to process a large number of data, it is essential to 
use a fast optimization algorithm which updates the weights efficiently.

< (4.32) 

< (4.33) 

< (4.34) 

< (4.35) 

< (4.36) 

< (4.37) 

< (4.38) 

< (4.39) 
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In general we can update the weights choosing one of the following strategies:

• Full batch: all the error derivatives computed for all the training 
cases of the dataset are averaged together to get the updating step.
Let  be the training set of the input-output 
pairs. The loss function  gives the distance between the output 
computed by the model and the expected output. The average cost 
function is , and it can be evaluated like the average of all the 
errors  computed on the training set [28]:

The problem with this approach is that if we have very bad initial 
weights, it takes a lot of time to adjust them because we have to 
process the entire dataset at every iteration.

• Online: the weights are updated after each training case. Thus the 
derivative of the error is computed on . This strategy can cause 
the weights values to oscillate rather than taking a good direction 
toward convergence.

• Mini-batch: we take a small random set of the training samples, we 
compute the error derivatives, and we sum them to get the update 
quantity for the weights.

Mini-batch learning is the strategy typically used for training big neural 
networks on large dataset, and is the one chosen in this work.

Furthermore, it is important to set a good learning rate. Also in this case 
different strategies are available:

• Fixed learning rate: its value is chosen by hand, and it remains the 
same for all the training procedure.

• Adapting learning rate: its value can be adapted automatically by 
evaluating the trend of the loss score: if it is oscillating, then the 
learning rate is reduced; whereas if the progress is steady, the learn-
ing rate can be increased.

• Separate adapting learning rate: it might be reasonable to have dif-
ferent learning rates for each edge of the network to update faster 
some weights, and slower some other ones.

• Alternative strategy to steepest descent: sometimes the direction of 
the current steepest descent in the error surface is not on the way 
to the minimum.

Now we introduce three optimizers that are widely used, which are 
known to be stable and reliable. These implement different strategies to 
update the weights during training.

< (4.40) 
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Stochastic Gradient Descent
The stochastic gradient descent (SGD) algorithm [28][29] is an algorithm 

that apply backpropagation with an online strategy: the adjustment of the 
weights is done after each training example. In particular a single example 

 is randomly (hence the name stochastic) chosen from the training 
set at every iteration t and the error  is computed based on the distance 
between the output of the network and the expected target value . Then 
the weights are updated using the derivative of  evaluated by means of 
the backpropagation algorithm:

Since the error is not averaged over a set of training cases, it’s a noisy 
estimate, and the updates of the weights don’t proceed smoothly down the 
error surface, but there are many oscillations (Figure < Figure 4.15). Furthermore 
the reached minimum may not be the global minimum, because of the oscil-
lations. However, usually a point good enough for practical applications is 
reached, and SGD is a technique much faster than batch gradient descent. 
Another advantage of SGD is that it can handle more efficiently sets with 
redundant data. Moreover, the oscillations can be a way to avoid being 
stuck in local minima: indeed usually a local minimum for an entire dataset 
isn’t a local minimum for a single training sample.

Mini-batch gradient descent
Mini-batch gradient descent [30] is a good compromise between full batch 

and online learning. Indeed the training samples are divided in batches. For 
each iteration the error is averaged over a batch, and the weights updated. 
Thus the rule to adjust the weights becomes

where m is the index of training sample in the current batch.
This method reduces the oscillations of the weights’ updates leading to 

a more stable convergence. Furthermore, the forward step to compute the 
output of the model over all the samples of the batch can be performed with 

< (4.41) 

< Figure 4.15: 
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vectorization techniques: this allows increasing the efficiency of the gradient 
evaluation. A common size for a mini-batch is between 50 and 256, and it 
depends on the application.

Gradient descent with momentum
Gradient descent doesn’t work very well if the error surface has an elon-

gated shape, like the one in Figure < Figure 4.17. In a case like this one, it would be 
better to have a slower learning on the vertical axis and a faster learning 
on the horizontal axis. One way to smooth out the oscillations is to use the 
momentum technique [27][31], which evaluates the update of the weights 

 considering also the previous one. Thus the update rule is

and

where  is a parameter called momentum factor with a range between 
0 and 1. This factor weights the contribution of the previous update to 
the current one. We can think of the gradient term as an acceleration and 

 as a velocity multiplied by a friction term . Thus, this rule deter-
mines how the point is moving down the error surface.

In presence of many up and down oscillations, these will be averaged to a 
low value, whereas if the updates proceed in the same direction, the average 
value will remain high.

Batch gradient descent

Mini-batch gradient descent

Stochastic gradient descent

< Figure 4.16: 
Full batch gradient 
descent, stochastic 
gradient descent and 
mini-batch gradient 
descent comparison

< (4.43) 

< (4.44) 
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RMSprop
Another problem of the gradient descent is to choose a convenient learn-

ing rate, because an high learning rate may cause to overshoot the min-
imum, and a low one may cause a very slow training. Furthermore, this 
problem is emphasized by the fact that the magnitude of the gradients can 
be highly variable, and as a consequence their oscillations, making difficult 
to find the minimum. One solution is proposed by the Root Mean Square 
Propagation (RMSprop) algorithm [32].

For each weight, a running average MS of the magnitudes of recent gra-
dients is computed as

where  is a parameter typically chosen equal to 0.9. In this case the 
update rule becomes

Sometimes the parameter  is added to avoid division by 0. Divid-
ing by the root of the running average helps to smooth out the oscillations 
enhancing the learning quality and speed. Indeed, an higher learning rate 
can be used to get faster training without diverging.

Adam
An algorithm which puts together the advantages of momentum and 

RMSprop is the Adaptive Moment Estimation (shortened as Adam) algo-
rithm [33]. This methods keeps not only the average of past squared gradi-
ents, like the RMSprop method, but also the average of the past gradients, 
similarly to the momentum technique. To perform Adam algorithm, the 
following equations can be applied:

where  is the first moment estimate and  is the second moment 
estimate. Then the bias-corrected estimates are computed as

with  and  being  and  to the power t.

< (4.45) 

< (4.46) 

< (4.47) 

< (4.48) 

< (4.49) 

< (4.50) 
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Finally the weight update rule is given by

The parameters ,  and  are respectively the step size and the exponen-
tial decay rates for the moment estimates (that have to be in the range ). 
The default settings proposed are , ,  and .

4.5  | Regularization
In addition to an effective and optimized training algorithm, we have 

also to ensure that the trained model generalizes well, that is it will make 
good predictions for data not seen during training. At the beginning of the 
training, the loss on both training and test data decreases, relevant patterns 
can still be learned and the model is underfitting (Figure < Figure 4.18). After some 
iterations, the number of which depends from case to case, the loss on the 
training decreases, but the loss on the test increases: this means that the 
model is learning patterns which are specific of the training samples, but 
not relevant as general regularities. In this case the model is overfitting 
(Figure < Figure 4.18). The training data contains not only the characteristics that 
the model should learn but also accidental characteristics caused by sam-
pling errors (i.e. characteristics present in the dataset just because of the 
particular chosen samples). An overfitting model is learning both kinds of 
characteristics. Therefore, when it will be used to make new predictions on 
unseen data, it will also search for the accidental characteristics and thus it 
will make mistakes. A good model  should not be too complex, and at the 
same time, it should fit well a wide set of cases.

< (4.51) 

< Figure 4.18: 
A) Underfitting 
B) Proper generalization 
C) Overfitting
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Different ways to reduce overfitting are the followings:

• To get more data: increasing the number of samples, the model will 
naturally learn only the patterns that are present in most data

• To reduce the model’s capacity: limiting the number of layers, or 
nodes per layer, the information that the model can learn is reduced. 
The more parameters the model has, the more it will be able to 
learn accidental characteristics. However, the capacity has to be high 
enough to avoid underfitting. Therefore, it is necessary to do some 
trials to find the right capacity, starting from a low number of pa-
rameters, and then gradually increasing it. This method works best 
with cross-validation, where the dataset is divided in three subsets, 
training, validation and test, and the number of parameters are ad-
justed using the validation data.

• Early stopping: the performances during the iterations are super-
vised, and training is stopped before the model overfits (Figure < Figure 4.19). 
Indeed, if we don’t let the weights become high, the capacity of the 
model will be limited.

• Weight penalties: different types of penalties are used to scale down 
the weights to limit the capacity of the model.

• Weight constraints: some constraints are imposed to prevent the 
weights from growing beyond some predefined thresholds.

• Dropout: a given percentage of nodes are randomly selected. Their 
activations are not forwarded, and weight updates are not applied in 
the backward step. The network becomes less sensitive to the specif-
ic weights of neurons. This enhances the network generalization, by 
learning more internal representations.

• Noise: adding noise to the weights or to the activation values, the 
model is made less sensitive to small variations of the inputs, thus its 
robustness is increased.

Typically there isn’t a single correct method, but a combination of differ-
ent methods is used. In the following sections we introduce the main three 
methods that have been used for this work.
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4.5.1 Weight penalties

The capacity of the model can be controlled by limiting the size of the 
weights. This is done by adding a penalty to the loss function E which pre-
vents the weights from getting too big. The regularized loss function is [12]

where  is an hyperparameter whose value determines the contribution 
of the regularization term : if  equals to 0, no regularization is applied, 
whereas the larger  is, the more regularization is applied, and thus the 
more the model will be kept simple.

For different forms of  term we have different types of regularization:

• L1 regularization:  is proportional to the absolute value of the 
weights;

• L2 regularization:  is proportional to the square value of the 
weights. This method is sometimes called weight decay.

L2 regularization
The regularized loss function is given by

Then, the derivative of the error becomes

This derivative is equal to 0 when

It is noticeable that at the minimum of the loss function, we have large 
weights if we have also big error derivatives. The network model will not 
use weights which are not necessary. In other words, only the parameters 
that make a significant contribution to the reduction of the loss function are 
preserved, the others are limited [12].

This type of regularization improves generalization because it helps prevent-
ing that the network fits the accidental characteristics. Furthermore, the regu-
larized model will have less variations in the outputs when the inputs change.

L1 regularization
The regularized loss function is given by

< (4.52) 

< (4.53) 

< (4.54) 

< (4.55) 

< (4.56) 
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The derivative of the error becomes

Unlike L2 technique, the regularization term does not depend on the 
magnitude of each weight, but only on the sign of it. It can be demonstrat-
ed that L1 regularization may cause the weights to become sparse for large 
enough  [12]. This property is useful for feature selection, where a subset 
of the available features has to be chosen.

4.5.2 Dropout

Dropout [34][35] is a regularization technique that consists of randomly 
setting to zero a percentage of the nodes of the network at each iteration 
of the gradient descent. During a training iteration, each remaining node 
should perform well even without the dropped nodes. This forces the nodes 
to represent the same patterns with different representations.

The percentage of dropped nodes has to be set to obtain a good compro-
mise between an overfitting model and a model that can generalize proper-
ly. Usually it is set between 0.2 and 0.5, but it may vary from case to case.

Dropout can be thought as a method of training the ensemble of differ-
ent subnetworks created by removing input or hidden nodes from the origi-
nal network (Figure < Figure 4.20) [12]. In particular the subnetworks are not trained 
independently, but each one inherits some parameters from a parent model. 
This dependence makes possible to represent a huge amount of networks 
with a feasible computational memory.

To implement dropout, only the random selection of nodes has to be 
developed. Indeed, a dropped node has an activation set to 0, thus it does 
not contribute to the loss function. Instead, during test the predictions are 
computed with an average network of all the possible subnetworks. This is 
implemented by scaling the weights, modified by the dropout, by 1 minus 
the percentage of dropped nodes. This model is then used as a normal net-
work without dropout [36]. A more efficient way to train with dropout has 
also been introduced in [37]: it is called fast dropout.

< (4.57) 

< Figure 4.20: 
Dropout

Base network

x2 x1 

h2 h2 
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4.5.3 Noise

Adding noise to the inputs of a network is equivalent to performing a 
regularization imposing weight penalties [38][39]. Indeed, if we add Gauss-
ian noise to the inputs, we will have a noise added to the outputs whose 
variance is amplified by the squared weight (Figure < Figure 4.21). This additive 
noise makes a contribution to the loss function which can be considered as 
a regularization term added to the loss of the system without noise.

Furthermore, adding noise to the weights is another way of restricting 
the capacity of a network. However, this is not equivalent to imposing 
weight penalties, and in some type of networks it may also work better. 
Adding noise to the weights is a method for improving the stability of the 
learned function [12]. Indeed, the weights are encouraged to move to regions 
of the weight space where small variations of the weights themselves result 
in small changes of the output.

wi 
ji

< Figure 4.21:  
Noise propagating  
in a node
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Chapter 5 
Language recognition

Language Recognition is the automatic process that tries to identify 
the language spoken in a given utterance. This technology is used in a 
wide range of applications: spoken language translation, multilingual speech 
recognition, emergency call routing, surveillance and security information 
distillation, or as front-end for language-dependent speech recognizers.

This chapter will present the main components of a whole language rec-
ognition system. First we will introduce the possible approaches to language 
recognition based on the intrinsic characteristics of languages. The next 
section will present data and metrics provided by the National Institute of 
Standards and Technology (NIST), which encourages the scientific research, 
and offers competitions to evaluate the current state of technology. Then, we 
will show an overview of the whole system, and a deeper analysis of its main 
components: the feature extractor and the classifier. Finally, we will present 
the experiments performed in this work, based on a neural network classifier.

5.1  | Language characterization
As it often happens, the human ability to accomplish a certain task is 

the primary source of inspiration. Humans can distinguish different lan-
guage by means of two broad classes of cues: prelexical information and 
lexical semantic knowledge [40]. Among the prelexical information we have 
phonetic repertoire, phonotactics, rhythm, and intonation. As part of the 
lexical semantic knowledge we have the vocabulary, the meaning of the 
words, and the grammar. These two classes are both useful to the determi-
nation of the spoken language of a given content, however the lexical one is 
the most important only if the person knows the language of the test utter-
ance. On the contrary, if the person doesn’t know it, he will rely more on 
the prelexical class to understand at least the broad language group (e.g., 
tonal versus non-tonal languages).
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The several language cues that are part of these two classes can be ordered 
according to their level of knowledge abstraction, as shown in Figure < Figure 5.1 [41].

Depending on the cues which are considered, it is possible to implement 
different language recognition systems based on: acoustic-phonetic, phono-
tactic, prosodic and lexical approaches. We now briefly introduce these ap-
proaches, but in this work we will focus on the acoustic-phonetic approach.

Acoustic-phonetic approach
Acoustic phonetics science studies the physical properties of speech. 

The sound signal is analyzed in time and frequency domain, measuring for 
example the amplitude, the duration, the fundamental frequency and the 
formants. These properties can be related to the linguistic concepts of phone 
and phoneme. The phone is the smallest elementary sound in a speech signal 
and the phoneme is the smallest unit sound of speech which is semantically 
significant [3]. A phone can be interpreted as a phoneme realization. Differ-
ent phonemes can distinguish one word from another in a given language. 
For example in English the words “pat” and “bat” sound similar, but the 
different phonemes /p/ and /b/ differentiate the meaning of the two words.

Although the human speech production system can generate a wide 
range of sounds, in each language there is a limited number of sounds that 
recur. In particular the majority of languages has approximately 30 pho-
nemes. The set of used phonemes changes between different languages, even 
if some phonemes may appear in more than one language. Thus, different 
languages can be distinguished based on the fact that they have different 
acoustic-phonetic distributions.

For example, in [41] Czech and Portuguese languages were considered for 
an experiment on their phone distributions. Different speakers utterances 
from the two languages were mapped to a shared set of symbols from the 
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for language recognition
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International Phonetic Alphabet (IPA). Figure < Figure 5.2 shows the histograms of 
the phones’ occurrences with polar plots. The three diagrams of the first row 
represent the utterance mapping of three Czech speakers, while the three of 
the second row represent mappings for Portuguese speakers. The three utter-
ances have a different content, but the plots have a similar distribution, while 
there are evident differences among the plots of the two languages. So we can 
visually verify that different languages have a different phonetic repertoire.

Phonotactic approach
Phonotactics is the study of the phonological rules that establish the 

permitted combinations of phonemes. For example, it defines the possible 
consonants and vowels sequences, and also some constraints, like having 
some phonemes at the beginning or the end of a word.

The phonotactic rules differ from one language to another, while the 
phonetic repertoire can be more similar between different languages.

For the purpose of language recognition, the phone sequences of different 
languages are predicted and compared by means of the n-gram model [26]. 
This approach computes the probability of a phoneme given the sequence of 
the previously spoken phonemes. However, instead of considering the entire 
history, the sequence is approximated by the last phonemes. In particular, a 
n-gram is a sequence which takes into account the last n phonemes.

0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°

< Figure 5.2: 
Polar histograms 
showing the phone 
distributions of Czech 
(A-C) and Portuguese 
(D-F) utterances for 
three different native 
speakers. The same 
language utterances 
have different contents
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For example, in [41] the bigram models of seven languages were built 
using the GlobalPhone database. Then, the accuracy of the models to pre-
dict phone sequences belonging to the seven languages was computed. The 
metrics adopted was the perplexity [26]. The perplexity is the inverse prob-
ability of the test set, normalized by the number of words. For a test set 

 the perplexity of a bigram model is

For low perplexity the bigram model matches better the phone sequence 
and viceversa. As it is shown in Table < Table 5.1, the bigram model of a language 
can better predict phone sequences of the same language.

Prosodic approach
The prosodic aspects of speech don’t concern characteristics at the pho-

nemes level, but at larger time units level. The prosodic features are pitch, 
rhythm, stress, duration and intonation [3].

Different languages have different prosody constraints. Pitch variations 
can be led by lexical and syntactic conventions in some languages. For ex-
ample, some words in Japanese have a fall of the pitch in correspondence 
of some phonemes. Rhythm can depend on syllables as in Italian (sylla-
ble-timed languages), stress as in English (stress-timed languages) or mora 
as in Japanese (mora-timed languages). Tone variations can distinguish 
different words in tonal languages, such as Mandarin Chinese [41].

Even if prosodic features are important characteristics of the languages, 
they are less informative than the acoustic-phonetic or phonotactic features 
in the distinction of different languages. They are mostly reliable to dif-
ferentiate broad classes of languages, but not specific ones. Therefore, this 
approach has not yet become successful.

< (5.1) 

< Table 5.1: 
Perplexity measured 
between 7 languages 
arbitrarily selected 
from the GlobalPhone 
database based on 
bigram models

Test languages
Bigram model

CZ FR GE KO PO SW TU

Czech (CZ) 16 318 356 491 383 273 555

French (FR) 456 15 115 452 155 200 335

German (GE) 586 163 15 451 447 190 370

Korean (KO) 605 582 549 16 509 548 554

Portuguese (PO) 717 321 382 490 17 450 565

Swedish (SW) 416 424 162 506 584 16 670

Turkish (TU) 985 212 214 362 429 310 13
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Lexical approach
Morphology is the study of the way words are formed in a certain lan-

guage and syntax is the study of the structure of a sentence, so the ways in 
which words are connected.

Obviously a list of words or a model of the possible sequences of words 
(n-gram) can be useful to identify a language, because each one has a specific 
vocabulary and set of syntactic rules. Indeed lexical approach was implement-
ed by Large Vocabulary Continuous Speech Recognition (LVCSR) systems. 
However, by considering again the analogy of the human capacity to recognize 
languages, we can point out that it is excessive to learn an entire language 
with the only purpose of distinguishing it from the others [41]. So the cost 
of these systems is not entirely justified. Furthermore it has been shown that 
LVCSR systems are sensitive to background noise, channel effects, accents, 
and more [42]. As a consequence, these systems are less used than others.

5.2  | NIST LRE17 dataset  
and performance metrics

The National Institute of Standards and Technology (NIST) is a physical 
sciences laboratory whose mission is to promote innovation and competitive-
ness between the industries. Its interests embrace a wide field of science and 
technology, from nanomaterials to global communication networks. Since 
1996 NIST offers a series of competitions in the language recognition field 
to evaluate the current state of technology, and to search for new promis-
ing ideas. For this reason it provides a dataset of utterances from different 
languages, and imposes standard experimental protocols and performance 
metrics, which are both been used in this work. In particular we refer to 
the NIST 2017 Language Recognition Evaluation Plan (NIST LRE17) [43].

5.2.1 Dataset

A part of the dataset used in this work consists of the data provided by 
NIST LRE17, and another part comes from a variety of sources that we 
will briefly mention.

The data provided for NIST LRE17 are the following sets [43]:

• LRE data from previous year evaluations
• Fisher corpus
• Switchboard corpora
• LRE17 development set
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Furthermore, other data are added with the aim to have many diverse 
channels, and a larger amount of data [44]. Thus part of the KALAKA-3 
database, part of the Al Jazeera Dialectal Speech Corpus and IARPA Babel 
Program data were used. Furthermore, part of the data were also augment-
ed. Reverberated speech and noise were mixed to the clean data to have 
an imposed SNR. Artificial room impulse responses were generated. Finally 
different noise sources were added with various SNR values: real stationary 
noises (like fans) and real transient noises (like ambient of city, library, 
office, etc.), babbling noises created mixing various speech segments and 
other ones artificially generated with transformations of white noise.

Since in the dataset provided by NIST many segments were considerably 
long, two versions of dataset were assembled. The first one, referred to as 
full, contains the segments without alterations. For the second one, speech 
segments lasting more than 40 seconds were cut into shorter segments of 
various lengths. This second version of the dataset is called cuts.

5.2.2 Performance metrics

In this work, the scores to evaluate the performance of the system are 
the metrics required for NIST LRE17 [43]. The cost function is calculated 
considering pairs of target-language ( ) and non-target-language ( ). It 
is needed to compute false rejects (i.e. missed detections) on the former and 
false alarms on the latter. These quantities are then combined using the 
following linear function

where  is the cost of a missed detection,  is the cost of a false 
alarm and  is the a priori probability of a certain target language. 
The values of these parameters are fixed, and defined in Table < Table 5.2.

Since  is not easy to interpret, it is normalized by the default 
cost . This is the cost which could be obtained if every segment 
would be declared to match the target language.

and

< (5.2) 

< Table 5.2: 
Cost parametersParameter ID CMiss CFA PTarget

1 1 1 0.5

2 1 1 0.1

< (5.3) 

< (5.4) 
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Thus combining (eq< (5.2), (eq< (5.3) and (eq< (5.4) we obtain the following cost function

where  is given by

In addition to the cost computed for the pairs, we consider also the av-
erage cost for the system which can be computed as

where  is the number of target languages. Using the two sets of cost 
parameters defined in Table < Table 5.2 to compute  we obtain two values of , 
and the final value for the average cost function is computed as their average:

5.3  | System description
Given a speech segment, the task of the system considered in this work 

is to determine which is the most likely language spoken in that segment. 
The candidate languages are limited to the closed set defined in Table < Table 5.3.

< (5.5) 

< (5.6) 

< (5.7) 

< (5.8) 

Language 
cluster Target language Language code

Arabic Egyptian Arabic, Iraqi Arabic, Levantine 
Arabic, Maghrebi Arabic

ara-arz, ara-acm, ara-apc, 
ara-ary

Chinese Mandarin, Min Nan zho-cmn, zho-nan

English British English, General American English eng-gbr, eng-usg

Slavic Polish, Russian qsl-pol, qsl-rus

Iberian
Caribbean Spanish, European Spanish, 
Latin American Continental Spanish, 

Brazilian Portuguese

spa-car, spa-eur, spa-lac, 
por-brz

< Table 5.3: 
LRE17 target languages
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The output of the system is a vector containing 14 values, one for each 
language, which represent the log-likelihood scores for the corresponding 
languages.

Given a target language model , we can compute the log-likelihood 
score for an observation  as

and obtain the posterior probability by means of the Bayes’ theorem

where  is the number of target languages and  is the a priori 
probability for the i-th language.

To accomplish this task we used a system based on the acoustic-phonetic 
approach. Thus, the aim is to extract the acoustic characteristics from the 
audio sample, and then to classify them in one of 14 language classes. In par-
ticular, the system used in this work is composed by different subsystems:

• Stacked Bottleneck Neural network (SBN) feature extractor. These 
features substitute the MFCCs and derivatives (described in Section 
2.3.2) because they take better into account the context of the sam-
ples. SBN features are introduced in the following Section 5.4.

• I-vector modelling (Section 3.4).
• One or more classifiers used in parallel. The main classifiers are a 

Gaussian linear classifier and a neural network, whose details are 
briefly introduced in Section 5.5.

• Calibration and fusion of the scores returned by the classifiers. The 
first stage is used to adjust the individual scores making sure that 
they are consistently meaningful across the input data. The second 
stage is used to enhance the capability of the different subsystems to 
recognize complementary features.

5.4  | Stacked Bottleneck features
The Stacked Bottleneck Neural network (SBN) framework to extract 

features has been proposed by the colleagues of Brno, with whom we par-
ticipated to the NIST LRE 2017 [44].

A bottleneck layer of a neural network is an hidden layer which has a 

< (5.9) 

< (5.10) 
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number of nodes significantly lower than the near layers. The information 
that comes from larger layers is compressed in the bottleneck layer, and 
then expanded to proceed to the next larger layer. Using a bottleneck layer, 
the noise of the information is lowered and the system is more robust. Fur-
thermore the risk of overfitting is attenuated.

A bottleneck (BN) feature vector is the representation of the informa-
tion extracted from the output of the bottleneck layer [45]. In other words, 
instead of considering the output of the entire NN, we take an intermedi-
ate transformation of the input vector. The NN is still trained for its final 
purpose, but then we will ignore all the layers following the bottleneck and 
consider the latter as the output of the NN. The features thus obtained are 
a representation of the information which has been compressed and trans-
formed in a non-linear way.

A stacked bottleneck (SBN) feature vector is obtained by a cascade of 
two such neural networks [45]. The BN vectors outgoing from the first NN 
are stacked in time and then sampled at 5 different time frames. These are 
the input for the following NN, which accomplishes an operation similar to 
the first NN. The final SBN feature vector is the output of the bottleneck 
layer of the second NN.

By stacking the BN vectors of the first NN, it is possible to retain the 
information about the context of a feature vector.

It has been proved [46] that training the NNs with data coming from one 
language at a time, the SBN feature vector obtained is monolingual, and the 
features are particularly tied to the single language. Whereas training the 
NNs on several languages simultaneously, the features extracted are more 
generic and perform better in the multilingual recognition task. Indeed in 
this case the NN is able to extract features in a more independent way from 
the single language and the acoustic space covered from the features is wider.

The block softmax technique is used for training the last layer to map 
the inputs to the different languages. The output layer is divided into parts 
corresponding to the set of target languages. During training, only the part 
which corresponds to the language of the input vector data is activated. 

< Figure 5.3: 
Network with a 
bottleneck layer

< Figure 5.4: 
Stacked bottleneck 
network
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On the contrary, the technique using a single softmax maps the input to a 
large layer which is composed by the concatenation of all the possible lan-
guage-phoneme couples. A bigger effort is employed to distinguish similar 
phonemes that belong to different languages, and the performance is affect-
ed. For this reason the block softmax approach works better.

We report the specifications of the feature extractors developed in [44] 
for the data vectors that we will use in this work.

Input features
To compute the input features for the NN the audio signal is processed 

with a filter bank having 24 bands, which are defined according to the Mel 
scale. Then the logarithm is applied to the outputs of the filter bank, and 2 
fundamental frequency coefficients are added to these 24 values. The result-
ing feature vector is subtracted by the mean. The coefficients are signals in 
the time domain. Hamming window followed by DCT is performed to extract 
6 parameters for each value. The result is a feature vector of size .

Neural network architecture
Both NN are feed-forward neural networks with hidden layers of size 

1500 and bottleneck layer of size 30 or 80. The outputs of the bottleneck 
layer of the first NN are sampled at times , , , , , where 
 is the current frame index. These 5 frames are stacked together, and are 

used as input for the second NN, which has the same architecture of the 
first (if not specified differently in the following). The final features are the 
outputs of the bottleneck layer of the second NN.

Three architectures are used to extract different types of SBN features:

• FSH-30: the network is trained on the Fisher English corpus. The 
first NN has a layer configuration given by 3 hidden layers, and a bot-
tleneck with size 80 directly connected to the output layer. The sec-
ond NN has the same configuration, but the bottleneck has size 30.

• FSH-80: the network is trained on the Fisher English corpus. The 
first NN has a layer configuration given by 2 hidden layers, a bottle-
neck of size 80, and 1 hidden layer before the output.

• BabelML17-80: the network is trained on 17 languages from BABEL 
project. The architecture is the same as FSH-80, but the network is 
trained in multilingual mode with block softmax.

Phone state
posteriors for L1

Bottleneck Bottleneck

Phone state
posteriors for L2

Phone state
posteriors for LM

Phone state
posteriors for L1

Phone state
posteriors for L2

Phone state
posteriors for LM

A B

< Figure 5.5: 
Schema of different 
output layer for 
multilingual training 
A) Block softmax 
B) One softmax
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Figure < Figure 5.6 reports a scheme for the entire feature extractor.

5.5  | Classifiers
Since the aim of this work is to classify feature vectors of various lan-

guages, we considered a simple Gaussian linear classifier as reference sys-
tem, and we tested different architectures of neural networks.

5.5.1 Gaussian linear classifier

We can assume that the i-vector point estimates for each language l are 
generated by a random variable

where  is the mean vector which depends on the language l and  is 
the precision matrix. Instead of working with the covariance matrix, it is 
more convenient to use the precision matrix:

Furthermore, we assume that the precision matrix is shared among all 
the language distributions.

Applying Maximum-Likelihood estimation on the dataset, we can get 
the parameters of the model which are the ones that maximize the log-like-
lihood. In other words, we can find the model under which the dataset is 
more likely to be generated. Thus given the language l, the class-conditional 
log-likelihood of  is written as

where k is a constant which depends on the data.

< Figure 5.6: 
Schema of SBN  
feature extractor
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5.5.2 Neural network

The basic architecture for the neural networks with which we experiment-
ed is a feed-forward network. As input it receives an i-vector, and outputs a 
vector with the probabilities that the input belongs to each target language. 
Different number of layers and nodes have been tested to find the best net-
work. Furthermore, various regularization approaches have been tested.

5.6  | Experimental results
We started from the most basic neural network, composed by an input 

layer, a single hidden layer of 400 nodes with ReLU activation function, 
and an output layer with softmax activation function. We chose categorical 
crossentropy as loss function, and Adam as optimizer. We performed a set 
of experiments changing some parameters, we picked up the network with 
the best results, and then we did another set of experiments using the best 
network. Using this protocol, we were able to progressively enhance the 
network without losing the meaning of the variations.

All the scores that will be reported were obtained training the networks 
with data from the cuts set, in which the maximum length of the audio 
segments is 40s. We also experimented with the full set, but the results 
were always worse.

The results for the first set of experiments are shown in Table < Table 5.4. In 
particular, the reported values are the minimum error rate and the corre-
sponding epoch. Both performance metrics for development data and for 
evaluation data are presented.

The best network is the one with one hidden layer and 800 nodes. Thus 
small gradual variations in the parameters are applied to this network to 
improve it. In particular the number of layers is increased by 1 at each test. 
Furthermore, dropout with different amounts is applied on each one of the 

< Table 5.4: 
Results for networks 
with one layer and 
different number  
of nodes

Architecture
Development Evaluation

 [%] epoch  [%] epoch

1 layer with 400 nodes 6.07 7 22.64 26

1 layer with 800 nodes 5.68 48 22.38 41

1 layer with 1600 nodes 5.90 4 22.48 47

1 layer with 2400 nodes 5.74 5 22.77 48

1 layer with 3200 nodes 6.34 4 23.41 3
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hidden layers to regularize the network. In fact, we can notice from Table < Table 5.4 
that the error rates on the evaluation data are higher than the ones on the 
development data, which means that the network is overfitting.

From the results of Table < Table 5.5 we can notice that a dropout of 0.5 is im-
proving the performances of the network, thus in the next test we trained 
networks with this percentage of dropout, and different number of layers 
and nodes. The results are shown in Table < Table 5.6.

Furthermore, we did another test on the network with 2 layers and 800 
nodes adding dropout also on the input layer. The error rates are presented 
in Table < Table 5.7.

Architecture Dropout
Development Evaluation

 [%] epoch  [%] epoch

2 layers with 800 nodes 0 6.23 29 24.25 35

2 layers with 800 nodes 0.2 6.12 39 22.84 6

2 layers with 800 nodes 0.5 5.55 17 21.73 21

3 layers with 800 nodes 0 6.50 18 24.23 1

3 layers with 800 nodes 0.2 6.12 42 23.64 35

3 layers with 800 nodes 0.5 5.66 42 21.97 21

4 layers with 800 nodes 0 6.61 33 24.80 24

4 layers with 800 nodes 0.2 6.31 18 23.52 3

4 layers with 800 nodes 0.5 6.12 44 22.63 6

5 layers with 800 nodes 0.5 7.46 49 22.97 6

6 layers with 800 nodes 0.5 9.18 36 23.08 8

7 layers with 800 nodes 0.5 10.63 16 23.73 16

8 layers with 800 nodes 0.5 12.08 28 24.21 12

< Table 5.5: 
Results for different 
percentages of dropout 
in networks with 
different number  
of layers

< Table 5.6: 
Results for a fixed 
percentage of dropout 
on networks with 
different number of 
layers and nodes

Architecture Dropout
Development Evaluation

 [%] epoch  [%] epoch

2 layers with 400 nodes 0.5 5.74 20 21.51 4

3 layers with 400 nodes 0.5 5.57 46 21.65 5

4 layers with 400 nodes 0.5 6.04 34 21.72 20

5 layers with 400 nodes 0.5 6.53 50 22.17 33

2 layers with 1600 nodes 0.5 5.44 32 22.23 2

3 layers with 1600 nodes 0.5 5.60 34 22.32 34

4 layers with 1600 nodes 0.5 7.13 32 22.54 6

5 layers with 1600 nodes 0.5 8.85 22 23.45 7
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Decreasing the number of nodes from 800 to 400 the error rate also de-
creases from 21.73 to 21.51. Moreover, adding the initial dropout decreases 
the error rate from 21.73 to 20.99. Putting these configurations together, and 
varying some parameters we did the tests shown in the following Table < Table 5.8.

We also tried to train networks with layers having different number of 
nodes. The results are presented in Table < Table 5.9, and the architecture is indi-
cated by the number of nodes of each layer in square brackets. For example, 
[800] [400] represents a network with one layer of 800 nodes followed by one 
layer of 400 nodes.

Mixing various number of nodes did not perform well, thus we discarded 
this test.

So far the activation function used for the hidden nodes was the ReLU 
function. For the following set of experiments (Table < Table 5.10) different activa-

< Table 5.7: 
Results for different 
percentages of dropout 
on the input layer

Architecture Dropout Initial 
dropout

Development Evaluation

 [%] epoch  [%] epoch

2 layers with 800 nodes 0.5 0.1 5.27 48 20.99 4

2 layers with 800 nodes 0.5 0.2 5.79 50 20.99 9

2 layers with 800 nodes 0.5 0.3 7.70 47 21.47 7

2 layers with 800 nodes 0.5 0.4 10.49 44 22.31 34

Architecture Dropout Initial 
dropout

Development Evaluation

 [%] epoch  [%] epoch

2 layers with 400 nodes 0.5 0.1 5.44 48 20.82 18

2 layers with 400 nodes 0.5 0.2 6.23 44 20.81 16

3 layers with 400 nodes 0.5 0.1 5.87 44 21.30 26

3 layers with 400 nodes 0.5 0.2 7.24 50 20.94 23

4 layers with 400 nodes 0.5 0.1 6.45 44 21.38 24

4 layers with 400 nodes 0.5 0.2 8.63 50 21.57 23

< Table 5.8: 
Results for different 
percentages of initial 
dropout in networks 
with various numbers 
of layers

Architecture Dropout Initial 
dropout

Development Evaluation

 [%] epoch  [%] epoch

[800] [400] 0.5 0 5.63 21 21.76 8

[400] [800] 0.5 0 5.68 35 21.94 24

[800] [400] [800] 0.5 0 5.79 47 22.22 3

[400] [800] [400] 0.5 0 5.49 50 21.86 6

[400] [800] [400] 0.5 0.2 7.49 45 21.12 22

< Table 5.9: 
Results for networks 
having layers with 
different number  
of nodes 
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tion functions were tested. Furthermore, we tried also to apply L2 regulari-
zation because the network was still overfitting, and we obtained the results 
shown in Table < Table 5.11. For the experiment results reported in Table < Table 5.10 and 
Table < Table 5.11, the network had a dropout of 0.5 on the hidden layers, and an 
initial dropout of 0.2.

Architecture Activation 
function

Development Evaluation

 [%] epoch  [%] epoch

2 layers with 400 nodes ReLU 6.23 44 20.81 16

2 layers with 400 nodes tanh 9.70 50 21.18 39

2 layers with 400 nodes sigmoid 8.01 50 20.58 18

< Table 5.10: 
Results for networks 
with different activation 
functions

Architecture L2 regu-
larization

Development Evaluation

 [%] epoch  [%] epoch

2 layers with 400 nodes 0 6.23 44 20.81 16

2 layers with 400 nodes 1E-04 6.61 48 20.87 12

2 layers with 400 nodes 1E-03 11.48 49 21.30 11

< Table 5.11: 
Results for networks 
with different amounts 
of L2 regularization
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Network with ReLU 
activation function  
(first row in Table < Table 5.10) 
A) Raw data 
B) Calibrated data
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So far the best network has 2 hidden layers with 400 sigmoidal nodes, a 
dropout of 0.5 on the hidden layers, and a dropout of 0.2 on the input layer. 
The error rate of such network is 20.58 %. We then tried different number 
of layers, and various percentages of dropout and regularization. Since no 
significant improvement was measured, we don’t report all these results for 
brevity, but only the two most relevant.

In the first test (Table < Table 5.12) we added a random noise with normal distri-
bution to the input vector, that changed at each epoch. The aim of adding 
the noise was to perform a simple data augmentation, and to regularize the 
network. However, the network took many more epochs to converge, in fact 
the error rate had many small oscillations (as it is shown in Figure < Figure 5.10), 
and the final result wasn’t remarkable.
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A) Network with tanh 
activation function 
(second row  
in Table < Table 5.10) 
B) Network with 
sigmoid activation 
function (third row  
in Table < Table 5.10) 
Both graphs report 
calibrated data
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to 0.001 (third row  
in Table < Table 5.11) 
Both graphs report 
calibrated data
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In the second test (Table < Table 5.13) we setup an architecture with a bottleneck 
in the center. In particular, we had four layers with 400 (or 800) nodes, one 
small layer with 40 nodes, and other four layers with 400 (or 800) nodes. 
Thus, the information from the previous larger layers was compressed to 
pass through the bottleneck, and then expanded to the following layers. In 
this way, the unnecessary features are discarded, and the risk of overfitting 
is attenuated. However, also in this case the result was disappointing.

For the next phase of experiments, a preprocessing was applied to the 
input data. We started again with a basic network, and we made small 
changes on the resulting best configurations. During the first set of tests 
we used a simple architecture with one layer just changing the number of 
nodes (Table < Table 5.14).

< Table 5.12: 
Results for different 
networks with  
noisy inputs

Architecture Regulari-
zation

Development Evaluation

 [%] epoch  [%] epoch

2 layers with 400 nodes noise 17.87 106 21.58 18

4 layers with 400 nodes noise 24.34 196 25.58 196

6 layers with 400 nodes noise 25.74 198 26.62 198
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< Figure 5.10: 
Network with 2 layers 
of 400 nodes and noisy 
inputs (first row  
in Table < Table 5.12) 
A) Raw data 
B) Calibrated data

Architecture
Development Evaluation

 [%] epoch  [%] epoch

4x[400] [40] 4x[400] 6.86 26 24.41 34

4x[800] [40] 4x[800] 6.80 45 24.45 14

< Table 5.13: 
Results for networks 
with a bottleneck layer
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As we can notice from the results, the error rates are very close. Therefore, 
for the following tests we considered a wide range of configurations with dif-
ferent number of layers and nodes, different activation functions and different 
techniques of regularization. The results shown below are the most meaning-
ful ones. They were obtained with layer having 400 nodes. For brevity we 
omit the tests with networks having layers with a larger number of nodes.

We report below the results for the test with different number of layers 
(Table < Table 5.15).

Also in this case we can notice that the network is overfitting, thus in the 
following test we applied some dropout to regularize the network (Table < Table 5.16).

Architecture
Development Evaluation

 [%] epoch  [%] epoch

1 layers with 400 nodes 13.17 47 19.51 9

1 layers with 800 nodes 11.86 50 19.48 11

1 layers with 1600 nodes 10.60 49 19.74 3

1 layers with 2400 nodes 9.64 48 19.64 3

1 layers with 3200 nodes 8.96 49 19.78 4

< Table 5.14: 
Results for networks 
with different number 
of nodes 
(preprocessed data)

< Table 5.15: 
Results for networks 
with different number 
of layers 
(preprocessed data)

Architecture
Development Evaluation

 [%] epoch  [%] epoch

2 layers with 400 nodes 7.13 43 19.48 7

4 layers with 400 nodes 6.99 39 19.94 3

6 layers with 400 nodes 7.24 50 20.32 2

8 layers with 400 nodes 7.60 46 20.40 8

10 layers with 400 nodes 8.44 50 20.71 3

Architecture Dropout Initial 
dropout

Development Evaluation

 [%] epoch  [%] epoch

2 layers with 400 nodes 0.2 0 8.69 49 19.23 7

2 layers with 400 nodes 0.2 0.1 13.93 47 20.15 3

2 layers with 400 nodes 0.2 0.2 16.53 49 20.57 1

2 layers with 400 nodes 0.5 0 13.58 49 19.04 7

2 layers with 400 nodes 0.5 0.1 15.85 25 19.87 7

2 layers with 400 nodes 0.5 0.2 17.24 25 20.46 2

< Table 5.16: 
Results for networks 
with different 
percentages of dropout 
applied to the hidden 
layers and to the  
input layer 
(preprocessed data)
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We can notice that dropout is regularizing the network, and the evalua-
tion scores are closer to the development ones. Compared to the case with-
out preprocessing of the data (Table < Table 5.8), the initial dropout is worsening 
the recognition. We hypothesize that the preprocessing is returning input 
vectors with more meaningful information and less noise. Thus, randomly 
dropping out input nodes is no more helpful.

Then we experimented with different activation functions and different 
regularizations. The results are summarized in Table < Table 5.17 and Table < Table 5.18.

In Table < Table 5.18, all the networks have nodes with ReLU activation, and a 
dropout on the hidden layers equal to 0.5.

Therefore the best network we obtained has 2 hidden layers with 400 
nodes and ReLU activation, dropout of 0.5 applied to the hidden layers, and 
L2 regularization with amount 0.0001.

Finally, we compare this result with the ones reported in [44] for a 
Gaussian linear classifier, and for a neural network.

We can conclude that the neural network proposed in this work perform 
slightly better than the previous classifiers.

Architecture Dropout
Acti-
vation 

function

Development Evaluation

 [%] epoch  [%] epoch

2 layers with 400 nodes 0.5 ReLU 13.58 49 19.04 7

2 layers with 400 nodes 0.5 tanh 15.19 41 19.23 7

2 layers with 400 nodes 0.5 sigmoid 15.33 45 19.46 7

< Table 5.17: 
Results for networks 
with different activation 
functions 
(preprocessed data)

Architecture Regularization
Development Evaluation

 [%] epoch  [%] epoch

2 layers with 400 nodes L2 1e-4 15.60 38 18.95 7

2 layers with 400 nodes L2 1e-3 16.91 7 19.41 7

2 layers with 400 nodes L2 1e-4 + noise 17.54 1 20.83 2

< Table 5.18: 
Results for networks 
with different types 
and amounts of 
regularization 
(preprocessed data)

Classifier Dataset  [%]

Gaussian linear classifier full 19.55

Previous neural network cuts 19.90

Actual neural network cuts 18.95

< Table 5.19: 
Results obtained in 
[44] for two different 
classifiers and result for 
the network proposed  
in this work
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Chapter 6 
Speaker recognition

Speaker recognition is the automatic process aiming at assessing the 
identity of the speaker of a given utterance. This technology can be adopted 
in a wide range of applications: authentication procedures, forensic activi-
ties, audio indexing, telephone-based services, and speaker diarization.

This chapter will present the main components of a whole system of 
speaker recognition. We first introduce different approaches to speaker rec-
ognition. We then describe specifically the components of the system on 
which we focused in this work. Next section will introduce state-of-the-art 
classifiers, and a Siamese architecture for neural network that we will use for 
classification of pairs of i-vectors. Then, we will describe the dataset compo-
sition, and the error rate measure that has been used for the experiments. 
Finally, we will present a set of experiments performed with the aim of im-
proving the speaker recognition performance using a Siamese architecture.

6.1  | Introduction
Just like fingerprint, face and retina, human voice has physiological char-

acteristics closely linked to an individual. The uniqueness of a speaker voice 
is due to physical characteristics, but also to acquired characteristics. The 
physical characteristics are differences in shape and size of the voice produc-
tion organs (for example vocal tract or larynx). The acquired characteristics 
are attributable to the different manner of speaking of each person, such as 
a particular accent, rhythm, intonation or vocabulary. Part of these charac-
teristics are used by state-of-the-art speaker recognition systems.

Speaker recognition can be categorized in two main branches: speaker 
identification and speaker verification [47].

The task of a speaker identification system is to identify if a given ut-
terance belongs to one among a given set of pre-enrolled speakers. This is 
a multiclass classification problem, where each member of the enrolled set 
represents a class. If the speaker of the test utterance is known to belong 
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to the enrolled group, it’s a closed-set problem, otherwise it’s an open-set 
problem, which is more difficult to deal with. A speaker identification pro-
cess includes two main steps: enrollment and recognition (Figure < Figure 6.1). In 
the former step, training utterances are given, and an acoustic model for 
each speaker is estimated. This process is performed offline. For recognition, 
a test utterance is given, which is compared with all the enrolled models, 
and an estimate of the speaker’s identity is returned.

In speaker verification, the speaker declares his identity, and the task 
of the system is to validate the claimed identity. This is a binary classifi-
cation problem, where the claimed speaker model is compared to an im-
postor model (or background model), and the returned response is an ac-
ceptance or rejection of the claim with a given confidence measure. While 
in speaker identification a 1-to-N comparison is performed, in speaker 
verification the comparison is 1-to-1. Usually, a speaker verification pro-
cess includes three main phases: impostor modelling, speaker enrollment, 
and evaluation (Figure < Figure 6.2). The impostor model is trained offline with 
utterances from many different speakers. The enrolled speaker models are 
obtained by adapting the UBM. During evaluation, the claimed speaker 
model and the impostor model are compared and a score is returned. The 
final decision is obtained using a threshold: if the score exceeds the thresh-
old, the speaker is accepted and viceversa.
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< Figure 6.1: 
Speaker identification 
system
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A speaker recognition system can be text-dependent or text-independ-
ent. In the first case, the speaker utterance is known in advance. For en-
rollment, a verification system asks the speaker to pronounce, one or more 
times, a specific phrase. The user has to pronounce this “passphrase” for 
future authentications. For a text-independent system, instead, the content 
of the speaker utterance is unknown.

In this work we will focus on text-independent speaker verification.

6.2  | System description
The whole speaker recognition system is composed by the following parts:

• Feature extraction: the speech signal is digitized and reduced to a set 
of feature vectors, in which the relevant information is emphasized 
and the redundant one discarded (Chapter 2).

• I-vector modelling: statistical models are used to estimate the dis-
tribution of the features (Section 3.4). For each enrolled speaker, we 
aim at building a unique “voiceprint”.

• Classifier: the model obtained from the test utterance and a target 
model are compared to give a score. In particular, in Section 6.3 we 
will consider different pairwise classification approaches.
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The enrollment dataset of NIST 2012 SRE has been used for training the 
neural networks. Since we adopt the pairwise approach, given a set of n i-vec-
tors, the number of pairs in the training set would be . However to make the 
training computationally feasible we use a strategy described in Section 6.4.

Feature extraction was performed as follows [48]: each segment of the 
dataset was submitted to Voice Activity Detection, then was framed in 
intervals of 10 ms, and 19 MFCC coefficients were extracted using a 25 ms 
sliding Hamming window. Short time mean and variance normalization was 
performed on the resulting vector, with a sliding window of 3s. Then, by 
stacking 18 cepstral coefficients, their 19 first derivatives, and their 8 second 
derivatives, a final 45 dimension feature vector was obtained.

The hyper-parameters of the UBM, and the i-vector model were trained 
using the NIST SRE 2004-2010 datasets, the data from the Switchboard II 
(Phases 2 and 3), and the data from the Switchboard Cellular (Parts 1 and 
2). Thus in total the used utterances were 66140. The i-vector dimension 
was set to 400.

6.3  | Classifiers
Given a test utterance, the classifier has to determine whether this utter-

ance belongs to a target speaker. This task can be solved with two different 
approaches. The first one consists in training the classifier in a one-versus-all 
scheme, where the different speakers are considered as different classes. For 
example, to discriminate between segments spoken by the target and seg-
ments spoken by different speakers we can train a different SVM for each tar-
get [49]. This technique, however, requires many utterances of each speaker to 
effectively train the classifier, but usually we only have a few of them. Indeed, 
we could only have the utterance spoken during the first user’s enrollment.

For this reason, a more effective approach is training the classifier in a 
pairwise mode, i.e., using as input pairs of speech segments rather than a 
single one. The classifier will then determine whether two speech segments 
belong to the same speaker or to different speakers. Thus, a multiclass clas-
sification problem is transformed to a binary classification problem where 
the two classes are same-speaker and different-speaker.

In this section we present four different pairwise classifiers.

6.3.1 Probabilistic Linear Discriminant Analysis

Probabilistic Linear Discriminant Analysis (PLDA) [50][51] is a gen-
erative model that can be used for i-vectors comparison. In particular, it 
assumes that an i-vector can be generated by the following model
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where  is the i-vector for the utterance r,  and  are latent variables 
which represent the speaker identity and the channel effects, respectively, 
and  is the residual noise. As in the JFA model, matrices  and  restrict 
the speaker and channel factors to lie in small subspaces. It is also assumed 
that segments of the same speaker have in common the same latent variable 

. Latent variables  and  are assumed to obey prior distributions. , 
 and the hyper-parameters of these distributions are estimated maximiz-

ing the likelihood of the observed i-vectors.
The Gaussian PLDA (GPLDA) assumes that the latent variables have 

Gaussian distribution

This is the simplest PLDA technique and thus it can fails to accurately 
model i-vectors (as shown in [51]). A more complex model, called heavy-
tailed PLDA (HTPLDA), has been proposed, which assumes that the priors 
have Student’s t-distribution

However this approach is computationally expensive. It was shown in 
[52] that GPLDA and HTPLDA achieve comparable performances with an 
appropriate pre-processing of the i-vectors by a simple length normaliza-
tion. Being GPLDA faster, it is usually preferred.

Two-covariance model
The two-covariance model [53] is a simplification of GPLDA in which 

the speaker and channel subspaces extend to the entire i-vector space. In 
particular an i-vector is modelled as

< (6.1) 

< (6.2) 

< (6.3) 

< (6.4) 

< (6.5) 

< (6.6) 

< (6.7) 

< (6.8) 
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where  is the speaker factor and  is the factor which takes into account 
the channel effects and the residual noise. Furthermore, the speaker’s prior 
and the distribution of  given the speaker are assumed to be Gaussians

where  is the between-speaker covariance matrix,  is the with-
in-speaker covariance matrix and  is the model which generates (eq< (6.8). 
Let  be a set of i-vectors of a speaker. The posterior of  
given  is also Gaussian

with parameters

Given an enrollment i-vector  and a test i-vector  (whose roles are 
interchangeable), we want to verify if they are from the same speaker, i.e., 
we want to compute the log-likelihood ratio between the same-speaker hy-
pothesis ( ) and the different-speaker hypothesis ( )

With various steps illustrated in [54], the likelihood can be obtained as

with

Furthermore to make evident the role of the i-vectors, (eq< (6.15) can be 
rewritten as

< (6.9) 

< (6.10) 

< (6.11) 

< (6.12) 

< (6.13) 

< (6.14) 

< (6.15) 

< (6.16) 

< (6.17) 

< (6.18) 
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where

Since the two-covariance model is a particular case of PLDA, the model 
parameters ,  and  can be obtained using the EM algorithm [51].

6.3.2 Pairwise SVM

To introduce the pairwise SVM approach [55][56] we consider (eq< (6.18) and 
we describe how it is possible to discriminatively train the model param-
eters , ,  and  without explicitly modelling the i-vector distributions. 
In particular, since (eq< (6.18) is non-linear, we need a transformation  which 
allows to write this function as the dot-product of the model parameters 
and the expanded i-vectors pairs .

By means of the Frobenius inner product, we can express a bilinear 
form as , where  is a column vec-
tor composed by the stacked columns of A. Therefore, (eq< (6.18) becomes

Then we can introduce

and expand the i-vector pairs

Thus we can rewrite the scoring function as the following dot-product

< (6.19) 

< (6.20) 

< (6.21) 

< (6.22) 

< (6.23) 

< (6.24) 
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where , ,  and  are the contribution to the final score given by 
the different components of .

Representing a trial with the expanded vector , we can estimate 
 with a Support Vector Machine (SVM). This is a linear discriminative 

classifier, which estimates the hyperplane that best separates two given 
classes. In particular, the best hyperplane is the one that has the larg-
est distance from the nearest data points of each class (Figure < Figure 6.3). Even 
though SVM is a linear classifier, it can perform a non-linear classification 
by means of the kernel trick, which allows computing the hyperplane with-
out explicitly expand the features.

In our case, the two classes that we want to discriminate are same-speak-
er (target) and different-speaker (non-target) and the data point are pairs 
of i-vectors. The hyperplane can be obtained by

where n is the number of training patterns , which have labels 
,  is the regularization factor and the term  

is the hinge loss function.
Since the training patterns are given by all possible i-vector pairs, their 

number can grow to the order of hundred of millions, making the training 
impossible. However in [55][56] a fast scoring technique has been introduces, 
which uses a primal solver and allows evaluating the loss function and its 
gradient without expanding the i-vectors, making training feasible even for 
large training datasets.

< Figure 6.3: 
The best hyperplane is 
the one that maximizes 
the margin between  
the classes

Separating
Hyperplane

Support Vectors

Marg
in

< (6.25) 
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6.3.3 Cosine distance

A simple scoring technique that directly uses the i-vectors has been pro-
posed in [22]. It consists in performing the cosine distance in the pairwise 
i-vector space. For two i-vectors  and , the cosine distance score is

A value of c close to 1 means that the i-vectors are from the same speaker, 
whereas a value close to -1 means they are from different speakers. The ad-
vantage of this technique is that the adapted supervector does not need to be 
estimated in an enrollment step. In this case, the factor analysis is used just 
for feature extraction, rather than for modeling speaker and channel factors.

As shown in [52], the classification performance increases using nor-
malized i-vectors. In particular, we can normalize an i-vector by dividing 
it by the L2-norm

6.3.4 Siamese neural network

The problem of comparing two patterns and evaluating their similarity 
is solved in [57] with a Siamese neural network. This architecture receives 
two input patterns, and returns a value that represents the similarity of 
the inputs. Thus, given two i-vectors as inputs, the network should learn a 
metric to evaluate the probability that the utterances belong to the same 
speaker [58][59][60]. Furthermore, during training the network can learn a 
representation of the i-vectors that makes more effective the computation of 
the distance metric. In particular, it must learn to assign a distance value 
close to 0 to i-vector pairs of the same speaker, and close to 1 otherwise.

Considering for example the approach of the previous Section 6.3.3, a 
Siamese network could learn the cosine distance of two i-vectors. Indeed, 
the score in (eq< (6.26) is the dot-product of two normalized i-vectors. This 
dot-product can be performed with this sequence of operations: an ele-
ment-wise product of the i-vectors followed by the sum of the product’s 
elements. Thus, we consider a Siamese network which has only one layer 
to evaluate the combination of the inputs, and we provide two normalized 
i-vectors as inputs. If the learnt combination was reduced to a simple sum, 
the metric computed by the network would be the cosine distance. If the 
network, instead, computed a weighted sum of the components of the prod-
uct vector, it would potentially learn a better metric.

< (6.26) 

< (6.27) 
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In particular, the architecture of a Siamese neural network consists of 
two identical sub-networks, whose outputs are combined by a loss module 
(Figure < Figure 6.4). The sub-networks share the weights w. They extract the hid-
den representations  and . These representations are merged by the loss 
module, which computes the distance . Finally, the elements of the 
distance are combined together by a single node with sigmoid activation, 
which returns a value between 0 and 1 representing the similarity of the input 
i-vectors.

Different functions can be used for computing . As explained pre-
viously, we are interested in the cosine distance. Thus the operation performed 
in the merge layer is the element-wise product of the hidden representations

where  for hidden representations with size N. The obtained 
distance approximates the cosine distance.

The architecture of the two sub-networks can have different configura-
tions. The basic one is composed by an input layer, having the size of the 
i-vector, and a layer with N nodes, having ReLU activation function. The 
output of the sub-network is the hidden representation, with size N. More 
complex sub-networks can be devised with different number of layers, with 
various number of nodes, and other activation functions.

Since we consider a binary classification problem, and the output node 
has a sigmoid activation function, the loss function that we use is binary 
cross-entropy [10]. The output of the sigmoid node can be interpreted as 
the probability that the input belongs to a certain class. Thus, the binary 
cross-entropy can be computed as

Shared
Weights

SUB1

Merge Layer

SUB2

h1 h2 

< Figure 6.4: 
Siamese neural network

< (6.28) 
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where t is a categorical label that represents the target, and y is the 
output of the sigmoid node.

In order to obtain good accuracy, it’s important that the input feature 
vectors are normalized [61]. In particular, L2-normalization of the i-vectors 
(eq< (6.27) is relevant for the Siamese network to approximate the cosine dis-
tance, and for making the learning process stable.

6.4  | Dataset
In a pairwise classification approach, the training samples are all the pos-

sible combinations of i-vectors in the dataset. This means that given a set of 
n i-vectors, the number of pairs in the training set would be . A solution to 
this problem is to reduce this set by selecting the pairs that are most signifi-
cant for training. These can be selected by considering the scores returned by 
a PLDA model [48]. Indeed, we can reasonably assume that the probabilities 
returned by the Siamese network and the PLDA scores are correlated. Thus, 
we can select a subset of i-vector pairs, depending on how much they are easy 
or difficult to classify by the PLDA, in order to create a balanced dataset.

In particular, we first score all the possible pairs with the PLDA, then we 
divide them in sets. Let T be the number of pairs of i-vectors from the same 
speaker (or true pairs). The pairs of i-vectors from different speakers (or 
negative pairs) can be split in two groups: one with the  pairs having 
the highest PLDA score, and one with all the remaining pairs. The elements 
in the first group are the different-speaker pairs difficult to classify by the 
PLDA, whereas the elements of the second group are different-speaker pairs 
easily detected. In our experiments, the constant M has been set to 40.

Since we use mini-batch optimization, it is important creating balanced 
batches. The best strategy that we have found is to randomly select the 
samples with the following proportions:  same-speaker,  difficult differ-
ent-speaker and  easy different-speaker [61]. In this way the neural net-
work is able to learn how to discriminate accurately pairs belonging to any 
group: same-speaker, difficult different-speaker and easy different-speaker 
pairs. Furthermore, the overfitting is reduced.

< (6.29) 
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6.5  | Evaluation scores
The scores produced by a classifier allow to assign labels to samples. 

However depending on the output of the classifier, the decision is not im-
mediate. This is the case of a binary classifier which returns continuous 
values between 0 and 1. The output can be interpreted as the probability 
p that the input sample belongs to the positive or to the negative class. 
Thus a threshold  is needed to decide if the sample is positive, i.e. , 
 or negative, i.e. . It may happen that a positive sample is classified 
as negative and viceversa: this is a case of misclassification. To have as few 
misclassifications as possible is important to perform an accurate calibra-
tion, which is the process of choosing the threshold. Depending on the value 
of the threshold some kind of mistakes can be made more likely than others. 
Furthermore a type of error can be more costly in a certain application. 
Therefore the calibration is an essential process in a recognition system.

Given a threshold and a sample score, there are four possible classifica-
tion outcomes [62]:

• True positive: the sample is positive and is classified as positive
• False positive: the sample is negative and is classified as positive
• True negative: the sample is negative and is classified as negative
• False negative: the sample is positive and is classified as negative

For a good tradeoff of the classification errors, we are interested in eval-
uating the probability of false negatives, i.e., when a target is misclassified 
as impostor, and the probability of false positives, i.e., when an impostor 
is misclassified as target. These probabilities are called False Reject Rate 
(FRR) and False Accept Rate (FAR) and can be calculated as

Using different values of the threshold , we have different tradeoffs be-
tween FAR and FRR. For example, if  increases, also FRR increases and 
FAR decreases. In this case, the classifier will less likely accept an impostor, 

True class

P N

Predicted 
class

P True Positive False Positives

N False Negatives True Negatives

< Table 6.1: 
Confusion matrix

< (6.30) 

< (6.31) 
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but it will also more likely reject a true speaker.
The tradeoff point that we will consider in this work is the Equal Error 

Rate (EER), which is given by

This is a relevant value because it is shown [63] that optimizing the clas-
sifier using the EER as objective, we have an improvement of all error rates 
at different thresholds. Furthermore, EER can also be used for comparing 
different classifiers.

6.6  | Experimental results
For the experiments on the neural network, we started with the archi-

tecture proposed in [61]: a Siamese neural network with two sub-networks 
having an input of size 400 (like the dimension of the i-vectors), and a dense 
hidden layer with 2048 nodes and ReLU activation function. A dropout of 
0.4 is applied during training. Each sub-network returns a representation of 
size 2048. Then, the element-wise product of these two vectors is computed 
in the merge layer. Finally, a sigmoid node produces the output score. The 
loss function that has been used is the binary cross-entropy, and the opti-
mizer is RMSprop, with a learning rate of 0.001. The batches size for the 
gradient update have been set to 1024 samples, including 512 same-speaker 
pairs, 256 different-speaker pairs with high PLDA scores, and 256 differ-
ent-speaker pairs with low PLDA scores. 51376 batches are processed to 
complete an epoch. The input samples are L2-normalized because it allows 
the neural network to approximate the cosine distance. With a network of 
this type, we obtained an EER of 4.22 %. The aim of the following experi-
ments is to improve this result.

For the first set of experiments, we incremented the number of layers of 
the sub-networks to understand whether a more complex architecture could 
improve the hidden representations.

< (6.32) 

Sub-network 
architecture L2 regularization

Training Test

EER epoch EER epoch

2 layers 0 0.06% 4 35.82% 2

3 layers 0 2.21% 2 27.99% 1

4 layers 0 4.37% 1 30.18% 1

2 layers 1E-03 49.69% 2 49.60% 3

< Table 6.2: 
Results for networks 
with different numbers 
of layers in the  
sub-network
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As Table < Table 6.2 shows, adding layers caused overfitting, thus we applied L2 
regularization, but the network was not able to learn. Therefore, we started 
the training without L2 regularization, and we applied the regularization 
after one epoch. In Table < Table 6.3 are presented the results for networks with 2 
layers in the sub-network.

As we can notice from Figure < Figure 6.5 the L2 regularization applied from the 
first epoch onwards increase a lot the EER, but it also helps to stabilize 
the learning. Applying the regulation starting from the second epoch, the 
EER decreases, the learning is more stable with respect to learning without 
regularization, but the learning process gets stuck and the EER does not 
decrease. Changing the activation function to tanh, the EER does not grow 
significantly. Indeed when the argument is very positive or very negative, 
the tanh function tends to saturate to -1 or +1. Although we had improve-
ments with tanh, the performance is not satisfactory if compared with the 
4.22% reference EER.

In another experiment, we applied L2-normalization to the output rep-
resentations of the sub-networks. In order to preserve the network weights to 
assume negligible values, we used tanh as activation function of the nodes.

L2 
regularization 
(1st epoch)

L2 
regularization 
(next epochs)

Activation Dropout
Training Test

EER epoch EER epoch

0 1E-03 ReLU 0.4 0.12% 1 32.94% 1

0 1E-04 ReLU 0.4 0.12% 1 8.47% 8

0 1E-05 ReLU 0.4 0.10% 1 6.75% 5

0 1E-04 tanh 0.4 0.10% 1 4.69% 1

0 1E-04 tanh 0 0.13% 1 5.10% 1

< Table 6.3: 
Results for networks 
trained without 
regularization during 
the first epoch and 
with different rates of 
regularization for the 
following epochs
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< Figure 6.5: 
A) EER for the network 
with 2 layers in the  
sub-network. Comparison 
for different strategies  
of regularization 
Blue: first row in  
Table < Table 6.3 
Red: fourth row in  
Table < Table 6.2 
Green: first row in  
Table < Table 6.2 
B) EER for the network  
of fourth row in Table < Table 6.3
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As shown in Table < Table 6.4 this normalization improved the baseline EER.
Adding a layer with 128 nodes between the merge layer and the output 

node improved the performance as reported in Table < Table 6.5.

For the next set of experiments, we changed the computation performed 
by the merge layer. Rather than performing an element-wise product, the 
squared sum and the product of the sub-network representations were com-
puted, and then concatenated before going to the sigmoid output node 
(Figure < Figure 6.6A), allowing the final node to evaluate more information.

However, dropout applied to this architecture was not feasible because 
the learning was unstable causing the training EER to be higher than the 
EER of the test. We solved this problem applying the dropout only to the 
representations used to compute the product (Figure < Figure 6.6B).

Sub-network 
architecture 

h1 and h2 
normalization Activation

Training Test

EER epoch EER epoch

1 layer l2-norm tanh 0.04% 9 3.84% 18

< Table 6.4: 
Results for a network 
with L2-normalized 
representations

Sub-network 
architecture 

Layer after 
merge layer Activation

Training Test

EER epoch EER epoch

1 layer 128 nodes ReLU 0.02% 4 3.97% 11

< Table 6.5: 
Results for a network 
with a layer of 128 
nodes added before  
the output node

< Figure 6.6: 
A) Siamese network 
with a merge layer 
which concatenates 
the squared sum 
and the product of 
the sub-network’s 
representations. 
Dropout is applied 
directly on the single 
layer of the sub-network 
B) Dropout is 
applied only on the 
representations that  
are multiplied

Shared
Weights

Shared
Weights

Concatenate

SUB1 SUB2

h1 h1 h2 h2 

Concatenate

SUB1 SUB2

h1 h1 h2 h2 

Dropout Dropout

A B
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From the results of Table < Table 6.6 we can notice a good improvement of the 
EER. Thus, we performed other tests with this merge configuration, tanh 
as activation function of the nodes, and no L2 regularization, obtaining an 
EER equal to 3.30%, the best result so far (Table < Table 6.7).

Table < Table 6.8 presents the results that have been obtained by changing the 
architecture of the sub-network while maintaining this merging technique. 
In Table < Table 6.9, instead, we show the results obtained adding layers of different 
size after the merge.

Dropout 
before 
product

Activation L2 
regularization Optimizer

Training Test

EER epoch EER epoch

0.4 ReLU 0 RMSprop 0.02% 10 5.95% 14

0.4 tanh 0 RMSprop 0.08% 5 3.48% 2

0.4 tanh 1E-05 RMSprop 0.65% 7 4.63% 9

0.4 tanh 0 Adam 0.02% 17 3.61% 7

< Table 6.6: 
Results for networks 
with dropout 
applied only to the 
representations that are 
multiplied. Different 
activation functions, 
regularizations and 
optimizers are used

Dropout 
before 
product

Optimizer h1 and h2 
normalization other specs

Training Test

EER epoch EER epoch

0.4 RMSprop l2-norm none 0.00% 13 3.30% 5

0.4 Adam l2-norm none 0.01% 13 3.43% 6

0.4 RMSprop l2-norm
layer with 
128 nodes 
after merge

0.03% 5 3.91% 1

0.4 RMSprop l2-norm sum of 
squares 0.02% 9 3.66% 7

< Table 6.7: 
Results for  
networks with  
L2-normalization  
applied to the 
sub-network’s 
representations

< Table 6.8: 
Results for networks 
with different  
sub-network 
architectures

Sub-network architecture 
Training Test

EER epoch EER epoch

1 layer with 512 nodes 0.00% 24 3.45% 3

1 layer with 1024 nodes 0.00% 17 3.35% 6

1 layer with 4096 nodes 0.02% 5 3.30% 6

2 layers with 512 nodes 0.02% 15 5.36% 2

2 layers with 1024 nodes 0.01% 15 4.37% 7

3 layers with 1024 nodes 0.03% 5 5.70% 7
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Since the results were similar to the previous ones, we did not continue 
experimenting on this line. We built another architecture adding a different 
sub-network to process the representations of the first sub-network (Figure < Figure 6.7). 
We will refer to this architecture as post-network. In particular, we use three 
post-networks which share their weights. The representation  is the input 
of the first post-network, the representation  is the input of the second 
post-network and the sum of both representations is the input of the third 
post-network. Then we compute the sum and difference of the output rep-
resentations of the post-networks. Our aim is to avoid overfitting. Indeed, 
without the third post-network, which uses  as input, the post-network 
could learn  and  focused on the training data. In Table < Table 6.10 we present 
the results for these experiments. The configuration of the sub-network is: a 
single layer with 2048 nodes, tanh activation function, and 0.4 dropout rate.

< Table 6.9: 
Results for networks 
with a layer positioned 
after the merge layer

Layer after merge layer
Training Test

EER epoch EER epoch

1024 nodes 0.03% 5 3.73% 1

512 nodes 0.03% 5 3.81% 1

256 nodes 0.03% 8 3.76% 1

64 nodes 0.03% 5 3.89% 1

32 nodes 0.03% 5 3.63% 1

< Figure 6.7: 
Neural network with two 
different sub-networks 
which share the weights: 
SUB and POST. The 
representations returned 
by the POST  
sub-networks are 
merged with sum  
and difference

Shared
Weights

Shared
Weights

Shared
Weights

POST1 POST2

SUB1 SUB2

POST3

h1 

h1 

h2 

h2 

g1 g2 g3
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From Table < Table 6.10 we can notice that we improved the EER using more 
layers, but we did not reach a result better than 3.30%.

Finally, we removed the top sub-network, and we used as inputs of the 
post-networks the i-vectors. For example, the input of the first post-net-
work is i-vector , rather than its representation . However, as shown in 
Table < Table 6.11, the results were disappointing.

In conclusion, the best network obtained has a sub-network with 1 layer 
of 2048 nodes and tanh activation function. The merge is done by concate-
nating the squared sum and the product of the sub-network representations. 
A dropout of 0.4 is applied only on the representations used to compute the 
product. Furthermore, L2-normalization is performed on the representa-
tions before the merge layer. The optimizer is RMSprop and the activation 
of the output node is the sigmoid function. Using this architecture we ob-
tained an EER equal to 3.30%. Comparing this result with the one reached 
by other techniques, the proposed architecture improve the cosine distance, 
and the previous Siamese network, but it does not improve the performance 
of the state-of-the-art PLDA and PSVM.

Post-network architec-
ture

Post-network 
dropout

Training Test

EER epoch EER epoch

1 layer with 2048 nodes 0.4 0.06% 16 13.21% 22

1 layer with 1024 nodes 0.4 0.55% 6 15.19% 6

1 layer with 512 nodes 0.4 1.70% 9 14.99% 9

2 layers with 1024 nodes 0.4 1.01% 7 8.62% 6

2 layers with 512 nodes 0.4 1.60% 7 10.64% 5

3 layers with 1024 nodes 0.4 0.91% 5 7.16% 5

3 layers with 512 nodes 0.4 3.02% 6 9.22% 3

4 layers with 1024 nodes 0.4 5.38% 2 9.63% 2

4 layers with 512 nodes 0.4 8.36% 13 12.28% 3

2 layers with 512 nodes 0.2 0.26% 11 6.18% 7

3 layers with 1024 nodes 0.2 0.09% 6 5.46% 10

< Table 6.10: 
Results for networks 
with different  
post-network 
architectures

< Table 6.11: 
Results for networks 
with different  
post-network 
architectures and 
dropout rates

Post-network architecture Post-network 
dropout

Training Test

EER epoch EER epoch

3 layers with 1024 nodes 0 0.24% 5 17.07% 1

3 layers with 512 nodes 0 0.15% 9 12.36% 1

3 layers with 1024 nodes 0.2 0.03% 21 15.27% 13

3 layers with 1024 nodes 0.4 0.05% 39 9.01% 31
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Technique EER

Cosine distance 5.30%

Previous Siamese network 4.22%

Actual Siamese network 3.30%

PLDA 3.22%

PSVM 3.01%

< Table 6.12: 
Comparison with EER 
obtained with  
state-of-the-art 
techniques and the 
Siamese network 
proposed in this work
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Chapter 7 
Conclusion

In this thesis, we presented an overview of the language and speaker rec-
ognition systems. In particular, we were interested in understanding the en-
tire process for having more awareness about the characteristics of the input 
vectors that are provided to the classifier. Since the main objective was to 
achieve improvements for neural network classifiers, we also analyzed the 
working principles of neural networks, their training algorithms, and different 
techniques for their regularization.

As far as language recognition is concerned, we proposed a neural network 
classifier as part of a system submitted to the NIST 2017 Language Recogni-
tion Evaluation. We started from a basic architecture, and we experimented 
many different architectures on both the original and augmented versions of 
the dataset. Since we had to deal with overfitting problems, even with simple 
and small architectures, we applied different methods of regularization. The 
best results were obtained with pre-processed data, leading to an 18.95% 
equal error rate. One of the most important sources of errors that we observed 
was the mismatch between the training and test data. Indeed, splitting the 
train dataset in two parts, and performing training and testing with these 
two subsets, we obtained an equal error rate of 5.7%. This was confirmed by 
performing the same experiment on the test dataset, for which we obtained 
an equal error rate of 14.9% using the same network architecture. These char-
acteristics of the data caused the network to not perform well on the test set.

In the context of speaker recognition, we presented the Siamese neural 
network architecture to perform binary classification of i-vector pairs. The 
aim was to reach an error rate closer to the one achieved by state-of-the-art 
PLDA and PSVM techniques. We experimented different sub-network con-
figurations, types of regularization, and activation functions. We proposed a 
merging technique that consisted in computing the concatenation of squared 
sum and product of the sub-network representations (similar to Euclidean dis-
tance). Although a good EER of 3.30% has been obtained, the performance 
was not better than PLDA. Adding a second sub-network and by merging the 
representations by means of sum and difference did not provide better results.

Since in the current system, feature extraction, i-vector modelling, and 
classification are independent steps, future work could be devoted to a system 
that is trained to joint optimize these components.
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