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Abstract

Complex networks are recent case of study because the growing of Internet and
the online social platforms (e.g. Instagram, Facebook, LinkedIn) that together with
the always-on connectivity and availability of the mobile, has created the possibility
of a rapid dissemination of information. In this work the interest is on epidemic
processes on very large networks in the form of databases that have real and ir-
regular structures. Hence with a well-known activation process called Bootstrap
percolation we can understand the process of diffusion. Bootstrap percolation con-
sists on activate a node only if it has at least r active neighbours. The purpose of
this thesis is so to create a C++ program which can read common databases, load
informations in a graph structure and then test bootstrap percolation and some
variants on it (all done as new). Specifically are done simulations with bootstrap
percolation starting from initial single and double seed of infection. Then we move
on a modified version of the program that permits actions like disinfection and
re-infection in the case of double initial seed. The main goal is to see the average
trend of infections changing the starting point, so the initial seed (low, high, sin-
gle, double and equal, etc.) and changing internal function parameters (threshold,
neighbour threshold, limit in changes of infection, number of nodes, etc.). All these
results are obtained experimentally and are very variable from simulation to simu-
lation. We have tried to search not one shot behaviours but the common ones using
different databases for the same simulation (also a synthetic one) to show that are
really common results when we talk about Scale-free networks.
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Chapter 1

Introduction

1.1 Complex networks

In recent years the research community has accumulated a large set of evidence
for the emergence of complex and heterogeneous connectivity patterns in a wide
range of biological and socio-technical systems. This situations can be described
by dynamical processes, so an evolution in time of a network, to simulate many
fundamental phenomena occurring in a various kind of complex systems like bio-
logical networks (e.g., neural, ecological, biochemical), technological networks (e.g.,
transportation, communication, energy) and social networks (e.g., group of people,
Internet). A network is a set of nodes connected by links G=(V,E) and a very
general and abstract representation is shown in figure 1.1.

Figure 1.1: Graphical representation of a generic network.

For this reasons the study of complex networks become relevant, so networks
with no-trivial topological features that do not occur in simple networks like lattices
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1 — Introduction

(regular structure, grid) but often occur in graph modelling of real systems. To
understand a graphical comparison is shown in figure 1.2.
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(a) Lattice network (grid). (b) Complex network.

Figure 1.2: Graphical comparison between lattice and complex network.

Such features include a heavy tail in the degree distribution, a high clustering
coefficient, assortativity or disassortativity among vertices, community structure,
and hierarchical structure. Now are explained better all these characteristics. The
degree tell us the number of links connected to a node in a certain network, and the
degree distribution is the probability that a node selected uniformly at random has
a certain number of links. The heavy tail distribution is a characteristic that brings
to a tail heavier than the exponential, so we have value of degree far from the mean
of the distribution with non-zero probability (higher degree). Better explanation
looking the figure 1.3.

flx)

Exponential
@ "Heavy Tailed”

V

Figure 1.3: Comparison between exponential and heavy tailed.

X

A real example is visible looking the figure 1.5 in which a little group of nodes
have a very high degree. The clustering coefficient is a measure of degree to which
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1.1 — Complex networks

nodes tends to cluster together. In our case the experiments are done on social
network and the evidence tells us that nodes tend to create tightly knit groups, so
high density of ties that brings to high clustering coefficient. Assortativity is the
trend of nodes to attach to similar ones, similar in some way (can be with respect
to the degree), and disassortativity means the contrary. It can happen to have in-
stead community structure, so internally to a complex network nodes can be easily
grouped in sets densely connected. Two possible case are non-overlapping commu-
nity in which we have sparse connections between formed groups, and overlapping
community in which this characteristic is not present. Example in figure 1.4.

(a) Non-overlapping community
structure. (b) Overlapping community struc-
ture.

Figure 1.4: Graphical representation of the two cases of community structure.

Lastly there is the hierarchical structure in which nodes can be placed in some
way at different level, above, below or at the same level, given very often by the
degree evaluation in social networks.

Two well-known and much studied classes of complex networks are scale-free net-
works and small-world networks [8], whose discovery and definition are canonical
case-studies in the field, both are characterized by power-law degree distribution.
Power law is a general term, but focusing on degree distribution means that a high
number of nodes have a low degree and a small percentage have a very high de-
gree. An example of power law is shown in figure 1.5 that is the case of the Orkut
database used in next chapters for main simulations.

Instead examples of these networks are shown in figure 1.6.

In a network with a scale-free degree distribution, some vertices have a degree
that is orders of magnitude larger than the average, these vertices are often called
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Figure 1.5: Power law degree distribution of Orkut network [2].

(a) Scale-free network. (b) Small world network.

Figure 1.6: Graphical representation of two very studied classes of complex network.

hubs. This type of network grows exponentially linking preferentially to a hub node,
so we are in a situation in which "the rich becomes ever richer'. The presence of
these hubs is the base for the small-world network and the effect of "6 degrees of
separation' [9], that is the theory according to which two random individuals are
in mean connected by 6 levels of knowledge. In this sense the hubs have the role
to link certain areas of the graph that otherwise they would not be connected.
The small-world phenomenon is so based on the fact that the diameter of the
corresponding graph of social connections is not much larger than six (6 degrees of
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1.2 — Epidemic process on graphs

separation). The diameter is by definition the longest path of the shortest paths
between any two nodes in the network. To create a small-world is demonstrated
that the addition, on a regular graph, of only a small number of long-range links
can create this phenomenon. Doing this the average number of edges between any
two vertices is very small and the clustering coefficient stays large. A wide variety
of graphs exhibits this kind of property, e.g. random graphs, scale-free networks
and real world networks like World Wide Web.

Focusing on these last years it is evident that the social networks have a fast
growing, for example Facebook and Instagram. The structure of the network is
obviously random because every person that subscribes on the social can follow
or become friend of every page or person that it want, so they are creating a
completely random network. Internally some particular characteristics are found,
for example the higher "directional" degree of famous people, or famous company,
etc., and the presence of directed (with pages on Facebook or with a generic page on
Instagram) and undirected links (with friends on Facebook or with a generic page on
Instagram). The famous pages play the role similar to hubs, in both social networks,
because have obviously higher degree (even if we talk about "directional” degree).
In structures like these are done the simulations, in the form of databases and
supposing all undirected links (directed and undirected features explained better
in next section).

1.2 Epidemic process on graphs

A widely studied case of dynamical process is the epidemic process that is a process,
so a set of activities, that spreads some information in the general form of the
term (e.g., signals, ideas, social media contents, trends, fake news). Physicists,
mathematicians, epidemiologists, computer engineers and social scientists share a
common interest in studying epidemic spreading and rely on similar models for the
description of their particular processes.

The analysis of an epidemic process requires the development of a network
framework, that produce results of conceptual and practical relevance. So the
simulation take place over a graph representing the system structure. A graph is
a discrete mathematical structure that are of interest in mathematics, topology, in
certain chapters of computer technology and in engineering fields. A graph data
structure consists in a finite (and possibly mutable) set of vertices, nodes, or points,
together with a set of unordered pairs of these vertices for an undirected graph or
a set of ordered pairs for a directed graph. These pairs are known as edges, arcs,
or lines for an undirected graph and as arrows, directed edges, directed arcs, or
directed lines for a directed graph, shown in figure 1.7.

The vertices may be part of the graph structure, or may be external entities
represented by integer indices or references. A graph data structure may also
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(a) Undirected graph. (b) Directed graph.

Figure 1.7: Graphical representation of a directed and undirected graph.

associate to each edge some edge value, such as a symbolic label or a numeric
attribute (cost, capacity, length, weight, etc.). In the simulations we are talking
about undirected graphs, initially unitary weight in all the edges and we have
nodes (devices or data points on a larger network) with certain characteristics. The
processes modify over time the internal state of nodes and spread across the network
following the edges (links between nodes) of the graph. The spreading mechanism
is controlled also by different algorithms that are described in subsequent chapters.

1.3 A particular case of study: Bootstrap perco-
lation

This work is started with the analysis of a special case of epidemic process, that is
bootstrap percolation process. Initially a random set of nodes are already infected,
the seed, that can be chosen deterministically or random (in this case of study is
chosen always random). From this initial seed you try to spread the infection and
go searching for ’inactive’ nodes not already infected. It is possible to see a visual
example in figure 1.8.

This is a threshold-based] epidemic process, so the nodes are not infected at the
first try but they have a threshold 7 (integer, r>2) and each edge exerts an influence
equal to one (weight, information stored in the edges), so a node can be infected
only when has at least r infected neighbours. Then the nodes that have to do
infection are successively removed from the ’active’ set until the system stabilizes,
and the order in which this removal occurs make no difference on the final stable
state.

10



1.3 — A particular case of study: Bootstrap percolation

(a) Initial seed (blue). (b) Spreading of infection.

Figure 1.8: Graphical example of bootstrap percolation on a random graph.

Bootstrap percolation can be interpreted as a cellular automaton (a discrete
model studied in computer science, theoretical biology, etc.), resembling Conway’s
Game of Life [6], in which live cells die when they have too few live neighbours.
This is a "zero-player game", meaning that its evolution is determined by its initial
state, requiring no further input. The manner to interacts with the Game of Life is
by creating an initial configuration and observing how it evolves, or, for advanced
players, by creating patterns with particular properties. However, unlike Conway’s
Life, cells that become dead never become alive again in this case. Another view
is an epidemic model in which inactive cells are considered as infected and active
cells with too many infected neighbours become infected themselves. So in this
particular case when a node become infected cannot return in the previous state,
so we are in the case of time-fix network and permanent decision.

Bootstrap percolation has a rich story because has been proposed initially in
the area of statistical physics and has been primarily studied over the year in the
case of regular structures like lattice, grids, trees, etc., most notably in a series
of papers by Balogh and Bollobds. More recently, bootstrap percolation has been
investigated also in the field of random graphs, like in my reference paper, that
is the starting point for my work. Random graph is the general term to refer to
probability distributions over graphs, and may be described simply by a probability
distribution or by a random process which generates them (lies between graph the-
ory and probability theory). A probability distribution is a mathematical function
that provides the probabilities of occurrence of different possible outcomes in an
experiment. From a mathematical perspective random graphs are used to answer
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1 — Introduction

and find typical properties of complex networks that needs to be modelled.

1.4 Next chapters

In this work the interest is on epidemic processes occurring on very large graphs
that have real and irregular structures, trying different techniques of infection with
time-fix networks, in the case of permanent decision (Bootstrap percolation) and
not permanent decision. These cases are tested with different databases, not only
with Orkut, to show that is possible to obtain some general results from these
simulations. In next chapters some theory on G(n,p) graphs is explained, also
with the edge-based reformulation for G(n,M) [4] in which bootstrap percolation is
applied. It is also included a brief theory on Barabasi-Albert model, because our
databases are constructed following this model, and a more technical description
of bootstrap percolation. Then all the details on the developed C++ program, the
algorithms and the structures used. Lastly the most important one, a chapter with
all the simulations done and the discussion of the results.

A work that can be done following the purposes of this thesis is to focus the
attention on time-varying networks. This case is complex and interesting because
is closer to real case studies given by the fact that social networks are in continuous
change.

12



Chapter 2

Theory

2.1 Theory on G(n,p) graphs

Talking about real network structures, we need a mathematical abstraction, this al-
low to work analytically with simplified reality. We can have deterministic topolog-
ical structure in which properties and topological characteristics are deterministic,
and random topological structure defined by a random process.

The G(n,p) model is a classical model for random graphs, introduced by Erdos
and Renyi into ’50 [5] (Binomial model, Erdos-Renyi model), each possible edge of
the graph exists with probability p independently (undirected graph with no loops).
This model has two deterministic parameters: n, number of vertices, p, probability
of existence of each potential edge (can be fixed or variable), and the outcome is
random with many possible samples. An example of G(n,p) graph is showed in
figure 2.1. (add details to explain the example)

So the structure is random and depends on the realization but we can still
characterize its topological properties probabilistically.

We have some simple properties of the G(n,p) graphs [7]. The number of dif-

ferent graphs that can be created is |S| = 2(2), this binomial coefficient because
each edge can or cannot be present. The probability to generate a specific G(n,p)
graph with n vertices, depends on the given set of edges E = ei,e2,e3,..,¢e,,, and
is P(togenerateE) = p!Pl(1 — p)(2)*E All graphs are equiprobable when p = 1/2.
If we want to know how many edges a G(n, p) graph has we can use the random
variable M and the distribution is P(M = m) = (gél))pm(l - p)(g)fm. For the
expect value of M instead E[M]| = (g)p = [n(n — 1)p]/2.

Any vertex of the graph has certain characteristics, a common one is the degree,
so the number of edges that exit from the node. Each potential edge exists with
probability p, G(n, p) has on average (Z) p edges, so we can obtain the distribution of

the degree D in this manner P[D = k] = (”gl)pk(l —p)" 1k with k =0,1,...,.n—1
13
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Figure 2.1: Example of a G(n,p) graph with n=1000 and p=1.5/1000 [7].

and the expected value is E[D] = (n — 1)p. When we talk about graphs with large
%ﬁ)]ke*Ew], for large n and k << n.

So we are interested on topological properties of G(n,p), that can be satisfied
by all the graph or a subset, satisfied probabilistically. We look at the asymptotic
behaviour when n is very large, so while n—o0 the all structure of the graph depends
on p, that can be fixed and not variable with n or can be function of n (p(n)) and
so varies with n.

number of nodes the formulation become p; ~

This model is mentioned but not used in this work, it is anyway the basic theory
needed to go further and understand the process globally.

2.2 Theory on Barabasi-Albert model

This is an algorithm for random graphs based on PA (Preferential Attachment)
mechanism [3]. This model permits to construct a Scale-free network, so the type
of real networks that are studied in this paper. The principal characteristic of a real
network, focusing on social networks, is that there are always nodes that tends to be
more "famous" with respect to others. This translated algorithmically means nodes
with an high degree and so high connection. The PA exploits this characteristic of
"Rich gets richer” to construct synthetically the network. An example showed in
figure 2.2.

14



2.2 — Theory on Barabasi-Albert model

Figure 2.2: Example of a network constructed with BA model.

The process consists initially to have a small clique of nodes interconnected,
then at each step a node is added with a degree m and interconnected with edges
to random nodes. The interconnection is completely random in the set of nodes
already present in the network but some are more likely, with a probability pro-
portional to their degrees. It is possible to reach different results choosing different
values for m, so increasing this value we obtain behaviours like in figure 2.3.

m=1

-

Figure 2.3: Example of behaviours changing the value m.

To obtain the Preferential definition we consider a graph G=(V,E) at the time
t=1, 2, etc. with d,(t) that is the degree of vertex u at time t. Considering the
arrival of a new vertex at time t it is possible to note that brings m edges (value
decided a priori, for example m=2). Hence it is possible to obtain this formula:

15



2 — Theory

pu(t) = Z:Z:/(gu O d;r(;) in which p,(t) is the probability for a vertex u of being

incident to a new edge at time t and 2mt is the number of edges in the graph at time
t. The vertex u is inserted at time ¢, and initially d,(t,) = m, so by construction
older nodes are the best nodes in terms of greater degree. The power law arises
because the training process follow the PA principle, but not all the power law
phenomena can be explained by PA. As we have said older nodes are the ones
that can exhibit higher degree and new nodes have no chance of being "popular".
Moreover nodes can create edges only at the instant in which a node enter for the
first time in the network and no further evolutions of the network are permitted.
These last considerations are some limitations of the BA model.

2.3 Theory on Bootstrap percolation

In bootstrap percolation the nodes start with an own integer threshold r>2, and
we start by choosing uniformly at random the initial seed of nodes A(0) that have
a certain cardinality a.

We proceed with this particular epidemic process by set all these initial nodes as
‘active’ (from standard terminology provided by Erdos-Rényi graphs) by means of
a variable, so we can also say that these nodes are ’infected’ (other terminology that
can be used). In the program while the nodes are chosen randomly these are added
sequentially into a stack, a data structure that works as LIFO (Last In First Out),
and all their edges are set as 'usable’, meaning that by these edges we can try to
spread the infection in the next steps of the algorithm through the graph reaching
the ’inactive’ nodes. An inactive node can become active if at least r neighbours
are active, and when a node is active it never revert to the state of inactive, so
the set of active nodes grows monotonically. This is useful for the observation of
the distribution of infected nodes. However an used edge can be reused by another
node to ’infect back’ a node that have already used the same edge for the same
purpose. This "error" does not matter since it has no impact on the percolation
process.

The process evolves automatically through generations with this algorithm try-
ing to infect other vertices using all the edges of the nodes present in the stack,
so the first generation is composed of all the vertices activated by the initial seed,
the second generation of active nodes is made of all the node activated by the joint
effect of the seed and the first generation nodes, etc. When all the edges of an
active node are 'used’ the node is removed from the active set, and when a new
node is found and turned to active it is added to the active set.

The process stops when all the nodes of the stack are investigated, so when the
stack results empty, and in this manner we include also the case in which an empty
generation is obtained and the case of all nodes active.

However, by doing this, the generations remain simply a theoretical aspect and
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2.3 — Theory on Bootstrap percolation

we can practically forget about these, because what we have adopted is a reformu-
lation of the bootstrap percolation (with respect of what was initially proposed) in
which we change the time scale by introducing a virtual (discrete) time step ¢>N,
such that a single active node is 'explored’ at each time step. By doing so we obtain
a process equivalent to the original one but with an algorithm more generic and
reusable.

Hence for this formulation we need to introduce some notation [4]. The set
A(t) is the set of nodes active at time ¢, another set Z(t) < A(t) is the set of
used vertices, which is the subset of active vertices, of cardinality ¢, explored up
to time ¢ The first initialized set is the A(0), so the seed set, and the set of
used vertices is initialized to the empty set Z(0)=void. Each node have a counter
Mi(t)<N initialized to 0 at time ¢=0 (these counters are independent from node to
node). At time t=1 we arbitrarily choose a node z(1)<A(0) and we try to spread
the infection to its edges, incrementing by one the counter of all its neighbours. In
our case, programmatically, we simply do a pop from the stack so we choose the
last node pushed in, that is the same in terms of results, because is also random
the last node. By doing so we use node z(1) and it is added to the set of used
nodes Z(1)=z(1). We continue recursively in this manner and at each time t we
pop from the stack an active node that as not been already used. Every time we
increase the Mi(t) of a node we check if this is an inactive node, denoted with
AA(t), that can become active for effect of the distributed marks at time ¢. Such
newly activated vertices are added to the set of active nodes: A(t)=A(t-1)+AA(t).
Note that no vertices can be activated at time 1, because r>2. The process stops
when Z(t)=A(t), so when all active nodes has been used.

Practically, we have used for our program the FEdge-base reformulation G(n,
M). For this reformulation, looking at the edges point of view, we can add also
this notation: when a node becomes active, all edges connecting this node to other
nodes which are still not active are denoted as ’usable’, and added to the set B
of usable edges. At a given time step t, one usable edge is selected uniformly at
random from B(?-1), adding one mark to the endpoint that was inactive (when the
edge become usable), only if this endpoint is still inactive. The selected edge is
then removed from B(%). Set B(0) is initialized with the edges connecting seeds to
non-seeds. Following this construction at most one node can become active at each
time instant ¢, and having A(t) we can write A(t)<=a+t.

The dynamics of the epidemic process are determined by the behaviour of the
number A(t) of active nodes, so active nodes which have not been already used,
hence radically from the random seed chosen initially and its cardinality a. Note
that we assume r>2 because the case in which a node can be infected by just a
single neighbour is degenerate and lead us to the trivial fact that a single seed is
enough to infect the entire connected component it belongs to. Therefore this is of
no interest because many real systems are connected by construction.
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Chapter 3

Description of the program

3.1 How to build the basic structure and details

We have to prepare our C++ program to store and create step by step a connected
graph looking all the links/edges present in a generic database. Initially we have
tested all the functionality with the Orkut database. These databases are gener-
ically made by a list of couple of numbers spaced, the couple together is the link
to create and the single numbers are the identifiers of the nodes to connect (e.g.,
3 2, 7 10). The program can read line by line from databases structured in this
manner (that are the common ones) and save all the data in appropriate classes,
constructing step by step our graph structure.

For this structure I have created three classes: Node, Edge and Graph.

The Node class have its features inside such as identifier number (unique number
readable from the database), flag to signal the infection (0 -> not infected, or 1 ->
infected), threshold for the infection, colour, information on neighbourhood colours,
and for last contains the pointers to the next node and to the first edge in the node
list, that is the list of neighbours. Furthermore to speed up the simulation it has
been added in the node structure a further pointer to the last edge connected to
the chain. In this manner it is avoided the scan of all the list of edges to add a
new one. This trick is very relevant because we work with huge databases as Orkut
that can have nodes with more than 30k connections.

The FEdge class is structured similar to a node, so have some features inside like
state, weight, and have two pointers, one to the next edge in a certain node list
and the other to the connected node.

Finally the Graph class contains only the pointers to the head node and to the
tail node, to simplify some low level operations done internally in the program and
to speed up the simulation.

Graphically we have the kind of structure showed in figure 3.1.

Now are described better the main features. The identifier number is used to
identify uniquely a node in the graph, when a specific node number is read for

19



3 — Description of the program

Figure 3.1: Graphical representation of graph structure.

the first time from the database a specific Node element is created and connected
suitably. Furthermore the pointer to this new node is saved in the nodesArray
vector, that have the dimension of the graph, this is useful to reach the element
with a complexity of O(1) in a second moment, without scan all the graph. Hence
in this manner the complexity is lower, but mostly the time needed to search for a
specific node number is very short, this is a hinge point for our simulations.

Next important characteristic of a node is the infection flag, that allow us to
understand if a node is already infected (value 1) or not (value 0). A node can
be infected if it is part of the initial seed that start to spread the infection or can
become infected by effect of spreading mechanism, only if it is reached the infection
threshold.

The infected threshold is set normally at value 2 for the majority of simulations.
This means that are needed two infected neighbours that spread their infection to
the inspected node.

The colour instead is not used for initial simulations because we fall in the case
of initial single seed. Subsequently it is used in the case of double seed to check
what colour succeed to spread its infection.

It is possible to say something more about the state of an edge. It can assume
values 0—not usable, initial condition in which the infection not yet passed through,

20



3.2 — Construct the initial seed

1—usable, so a node that is connected to this ready for inspection and then try
to spread infection through it if get infected and 2—used if an infected node has
spread through this link.

For last we have the weight that remains of value 1 and it represent how much
an edge counts for infection. An example to understand is an edge with weight 2
that can infect alone a node reaching in one shot the infection threshold.

3.2 Construct the initial seed

Talking about initial seed we have created a function that can choose randomly a
node one by one from the total number of nodes present in the graph and add these
to the seed, this is done simply adding to the stack of integer infectedStack. In the
stack we have saved in this manner all the nodes initially infected, the active set,
setting in their nodes class the infected flag equal 1 and the threshold of infection
already equal to the maximum value. Moreover for all the nodes added to the
stack, the usable flag in all their edges is set to 1, the meaning is that we can
inspect the edges of a node trying to spread the infection, and then the node is
popped from the stack. This discussion is valid when we talk about single initial
seed, the configuration used for the first experiments, so it is enough to think about
coloured and not coloured nodes for these cases.

In fact we have done also a second function that initialize a double seed. The
method for this one is the same, so we generate one by one a random number
in the node’s set but also randomly the node is marked as colour 1 (1-RED) or
colour 2 (2—BLACK) thanks to the infected flag that can assume three values (also
0—WHITE, no infection). As we have done previously these node are added all
in the infectedStack, the active set, ready to be inspected to try the spreading of
infection, and all their variables are set opportunely, like we have explained before.

I have constructed two different functions for the double seed. The first one
is "'not an equo function" in the sense that are found all the seeds of the colour
1, so added in the infectedStack, and then are found the seeds of the colour 2, so
added in queue and extracted first because the structure of the stack. The second
one instead is an "equo function" because choose randomly seeds of colour 1 and 2
and consequently fill the infectedStack mixing colours, so the effect of the stack is
overshadowed when I do pop.
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3 — Description of the program

3.3 Spread the infection with Bootstrap percola-
tion mechanism

3.3.1 Bootstrap percolation on single seed

Now we can talk about the functions that spread the epidemic.

The first is named simply epidemicProcess, a basic function that is characterized
by the use of a single seed with a given amount of repetitions to provide a better
study of the epidemic process and understand in mean how it works. For this
function we have permanent decision in terms of infection, so if a node is infected
cannot be disinfected in some manner. This single seed is changed with a higher
value every time we finish the given repetitions, because we want to see the trend
of infection changing these parameters. Hence to run correctly the function needs
the vector containing all the seeds to test and the variable containing the number of
repetitions to run for every seed. In this manner we obtain not a one shot simulation
but average values that are very useful in terms of average behaviour (so we are
talking about Montecarlo method). For every repetition, while we have nodes in
the infectedStack, we pop from the stack and we try to propagate the infection
throw neighbours of actual node under test. Remember that a generic node can
be already infected because is part of the seed or can be infected if the number
of infections on it exceed the infectionThreshold. If a node is infected with this
procedure is pushed into the infectedStack, ready to be analyzed at next step. This
procedure is done continuously until we have the empty infectedStack condition.
The results that we have are the number of infected nodes for every repetitions,
but more important the average number of infections looking all the repetitions,
very useful to plot this parameter with respect to the initial seed used to show the
average behaviour.

3.3.2 Bootstrap percolation on double seed

A natural evolution is the same function but with double initial seed, named epi-
demicProcessDouble. Also in this function we have permanent decision. This epi-
demic function works in the same manner as before, the difference is that now
we can infect with two different colours (for example in our simulations RED and
BLACK), so for the infection we have not the infectionThreshold but a so called
neighboursThreshold that works in different manner. When a node is popped from
the infectionStack we look for all its neighbours trying to spread the infection to
them. Every neighbour can be infected by a colour only if in its neighbourhood the
specific colour reaches or exceeds the neighboursThreshold when compared to the
other colour. If yes the actual neighbour node in exam is infected by the specific
colour, if no the node remains WHITE so no infection. The results that we want
are the same of the previous function, so average number of infected nodes (given
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3.4 — Spread the infection with a modified version of Bootstrap percolation mechanism

by subsequent repetitions) with respect to the initial seeds. The difference is that
now we have two trend of the two colours.

3.4 Spread the infection with a modified version
of Bootstrap percolation mechanism

Next step was to remain in the case of double seed, but with a change of imple-
mentation that bring not to a permanent decision about the infection, so more
realistic and interesting case. This change is related to our interest on real cases
like opinions in a social network or ideas, something that is not static but can
change with the time maybe by a cultural or external influence. This is translated
in a modification of the last epidemic function we talked about, so this new func-
tion is called epidemicProcessDoubleMod. The skeleton of the algorithm remains
the same but obviously we have to take into account more all the cases of disin-
fection and reinfection with a different colour. Hence if a node is white can be
coloured, then can change colour, return white and can also return coloured, all is
always dependent by the neighbourhood and the change occur if the rules of the
neighbourThreshold are reached. Since the decision to infect a node with a colour
or disinfect is not permanent, when a change in a node happens, the mentioned
node is scanned and all the neighbours are pushed into the infectedStack to be
subsequently re-analyzed because the change happens also in their neighbourhood.
Thinking about the termination condition of empty infectedStack we can realize
that is almost never reached because the continuous changes that bring to re-fill
the stack, so we have to add another variable that can stop the process in a suitable
manner. For this purpose a new variable called limit is insert in every node counting
all the changes that a specific node suffered. When for a generic node this variable
reach a specific value the mentioned node cannot return in the stack and this bring
the function, after a certain amount of time and steps, to the principal termination
condition we talked about. The simulations were done testing different possible
values for the limit. Tests were done first with the mazimum degree as upper limit,
because working with networks characterized by hubs this value it is very high. It
was possible to see that using this value the simulations give us optimum results in
terms of behaviour but in too much time, so not completely good. To search for a
compromise in results and time we have seen that using the average degree as limit
value are obtainable same results in much less time.

To run this function is needed like before the vector containing all the initial
seed of infection to use and the number of repetitions to test each single seed. For
this case the use of the seeds is a little different because is doubled, so are created
two different initial seed distinguishable by the colour set internally to nodes.

Furthermore to lighten up the algorithm and speed up the simulations other two
variables are used internally to every node to count the number of red and black
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3 — Description of the program

neighbours, neighRed and neighBlack, so not every time is necessary to scan all the
neighbourhood. This long scan is in any case present, but only when a change in a
node happens and we have to reach all the neighbours to push one by one into the
stack to re-check the neighbourhood.

3.4.1 Synthetic graph

In this section it is explained how to run an epidemic process on a synthetic graph, so
not a real one but constructed from zero. The trick is to not construct the database
and then read line by line like before but immediately construct the graph that we
want. Obviously the construction must be accordant to a Scale-free network so
it is used the BA model explained in theory. Hence it was created the function
syntheticBAGraph to which is passed the initialClique and the number of m of
initial edge that a new node have when starts to be part of the network. Internally
was set a parameter numNodes that tell us how much nodes we want inside the
network. The hinge point of the function is the probability Vector in which all node
numbers are repeated inside as many time as they gain a new edge, so initially
m times. This is done because the PA (Preferential Attachment) principle, so in
this manner we can link with more probability to a hubs because the repetitions.
Through this procedure it is possible to create the graph/network that we want.
At the start the initialClique is fully connected and new nodes are generated with
casual identifier in the set of numNodes. These nodes are connected suitably at
random with other nodes already present and the created connection are added to
the probability Vector to increase the probabilities of future connections and create
hubs.
Next step was simply to run on this synthetic graph our previous algorithms.
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Chapter 4

Simulation details and results

The created functions has been used to simulate different cases of epidemic pro-
cesses, not all with bootstrap percolation mechanism. The main used database is
the Orkut one, a part of an old social network designed by Google on 2004. In-
ternally we have for every line of database a couple of number referring to users
connected.

4.1 Bootstrap percolation

4.1.1 Single initial seed

The first simulations was done on the Orkut database, using the function epi-
demicProcess, so the basic one. The results are showed in figure 4.1.

As we can see from the figure the choice of seeds is appropriate because we can
reach almost total infection. Looking the effect of the seeds from 70 to 100 we can
say that are completely superfluous, complete infection is already reached at seed
60.

Analyzing the first part of the graph, from very low seed to 18, we can see that
the spreading of infection grows very fast in an exponential way and we are able
to infect practically half of the entire network structure. This is what we expect
by a network structured like this, social network are placed in the set of scale-free
networks, so some nodes are strongly connected to the network with many edges
and touching these nodes initially leads to an obvious huge spreading of infection.

Next behaviour that we can notice is a little drop of infection at seed 20, this is
not significant but show us that choosing every time a random initial seed we can
fall also in this case. Simply what happens is that we have chosen for this seed in
average nodes poor connected that brings to less spreading of infection, compared
to the previous case in which we have less initial node in our seed but these are
more connected.
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Figure 4.1: Simulation results of a bootstrap percolation on Orkut network, single
initial seed, permanent decision, infection threshold=2, 50 repetitions per seed.

After this drop the curve of infection continue to grow up like before for a short
distance, so with an exponential or better super linear behaviour, for the same
previous motivations.

Then the slope change and become linear because it has been reached almost
the 3/4 of total infection. Through more connected nodes the infection has been
spreaded and remain only other nodes we can say "more difficult to reach" because
of their low connection. Hence the slope of infection is slowed down in the interval
from seed 25 to seed 50.

In the end we can observe a flat behaviour at practically 100% of infection due
to the fact that the infection has reached all the possible nodes. The nodes excluded
by the infection process can be isolated nodes, so with no connections, nodes with
only one connection, so no possibility to raise the basic infection threshold due to
network structure issues, and consequently all the parts of network isolated by this
kind of nodes. These last particular nodes act as a bottleneck.

The nodes for the initial seed are chosen with a pseudo-random number gen-
erator, so if we start again all the simulation taking the results of all the average
infection values we will obtain the same trend as the figure 4.1. Therefore to do a
further averaging we have used in the program the srand() function that allows to
change the seed used by the pseudo-random number generator algorithm.

Doing this for three times more randomness and smoother curves was obtained
as showed in figure 4.2. It was also avoided in this manner the drop of infection
occurred before at seed 20.
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Figure 4.2: Simulation results of a bootstrap percolation on Orkut network, single
initial seed, permanent decision, infection threshold = 2, 50 repetitions per seed,
average of 3 level of randomness
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Figure 4.3: Simulation results of a bootstrap percolation on Orkut network, single
initial seed, permanent decision, infection threshold = 2, "one shot" with initial
seed 60.
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4 — Simulation details and results

Next thing showed is a "one shot" simulation in which it is done only one repeti-
tion of one seed that can reach at the end the total infection (initial seed 60 used).
This is showed with respect to a discrete time set as the number of extractions done
from the infectedStack. The values of infection was stored every 25000 extractions.
The graphical result is visible in figure 4.3.

4.1.2 Double initial seed

Now are showed instead the results of bootstrap percolation done over two initial
seeds. The function used is the epidemicProcessDouble. The results are visibile in
figure 4.4.
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Figure 4.4: Simulation results of a bootstrap percolation on Orkut network, double
initial seed, permanent decision, infection threshold = 2, 50 repetitions per seed,
seed with equo function

As we can see the infection for both colours grows almost linear with respect
to the increasing of initial seed. In reality the graph is only stretched and the
behaviour is also in this case exponential. The curves have the same behaviour and
infects with equal probability the network, characteristic visible from the graphic
contention. It is noticeable a spike at seed 90 for the red curve with respect to
the black but it is not relevant because the randomness. In fact after this we can
see another time a certain stabilization. The two curves goes to an almost total
infection, we reach with seed 150 a 94% on the total number of nodes. Increasing
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4.2 — Modified Bootstrap percolation with double initial seed

more the values of initial seed surely it is not possible to reach 100% of infection
now. The fact is that we have double seed and the rules of infection are changed,
so spreading and touching a node one time or two times is not sufficient. Now
we start to follow the rule of the neighbourThreshold, so unless one colour raise or
exceeds this value with respect to the other colour in the neighbourhood of a node
it cannot be infected.

4.2 Modified Bootstrap percolation with double
initial seed

Another more complex simulation was done using the function epidemicProcess-
DoubleMod. This function is characterized instead by a double initial seed and
not permanent decision for what concern the infection, so change are permitted
continuously.

Talking about this particular case we have initial BLACK and RED equal seeds,
so the infection is carried on for these two colours. Internally to this simulation were
done two variants: the first one with the use of the initialSeed Not Equo function and
the second with the initialSeed Equo function. Results are showed in figure 4.5 and
figure 4.6 so it is possible to compare and explain the differences.

4.2.1 Initial double seed with the "not equo function"

In figure 4.5 we have shown the results of the first variant in which the initial seeds
are the same but they are not distributed equally for what concern the position in
the infectedStack.

From the simulation we can observe that the behaviour of the red and black
curve are practically the same initially and then starts to step away one from each
other, this is caused by the internal structure of the function used to initialize the
seeds.

The explanation is that all the seeds infected are initially pushed into the stack
waiting to be analyzed but this function put at first all the red seeds and then all
the black ones. In this manner it begins to infect starting from black seeds because
the pop mechanism offered by the stack, so more probability to infect with the
black colour.

Initially the two curves have almost the same behaviour because we can come
up against black seed as red seed and looking the neighbourhood we can infect by
one colour new nodes with the same probability for red and black. The difference
between the two colours is visible when a black node with a high degree so high
connected succeeds to infect first with its colour a part of a network that is com-
pletely white. For this type of event the probability for black nodes to hit is higher
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Figure 4.5: Simulation results of a bootstrap percolation on Orkut network, dou-
ble and equal initial seed, not permanent decision, neighbour threshold = 2, 50
repetitions per seed, seed with not equo function.

because from the stack continuously are extracted black nodes first and then after
all the black seeds the red ones.

Also the fact that we are in not permanent decision cannot change nothing
about this trend in which black nodes win. The only thing that we can notice
about is what we see at seed 200, from here are visible some oscillations but the
trend remains the same anyway. Therefore the percentage of red infected nodes go
down as the percentage of infected black nodes go up, and looking at long run (seed
1000) in which all the possible continuous changes of infection colour or disinfection
happens the behaviour remains the same.

4.2.2 Initial double seed with the "equo function"

Now is explained instead the second variant of the same simulation showed in figure
4.6.

The peculiarity of the second variant is that the seeds are assigned in equal
random manner, so in the stack we have the possibility to put first a red or a black
seed with equal probability and so on in this manner. This procedure stops when
all the seeds are assigned to the respective colours.

This change on the assignment of seeds do not change the first part of the
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Figure 4.6: Simulation results of a bootstrap percolation on Orkut network, dou-
ble and equal initial seed, not permanent decision, neighbour threshold = 2, 50
repetitions per seed, seed with equo function.

infection in which both colours raise a certain level of infection together, like before
in an exponential manner. The difference on the trend take place when most of
the high connected nodes are infected and happens that a certain colour can touch
a white "marginal" area of the social network. As we can notice initially the red
curve of infection predominate on the black one, that go down in the same manner
because the portion of network that they contend is the same probably. The same
portion is always the last because at seed 200 we can say that we are almost at the
maximum infection looking the percentage, almost 60% and 40% for respectively
the red and the black colour.

After this point there is a specular oscillation between the infections caused by
the possibility to change the state of infection in this area in which nodes are not
well connected, so a little change of infection can bring to a consistent change.

Thanks to this we have the graphic competition showed in figure 4.6 in which
sometimes the infection is won by the reds and sometimes by the blacks. At long
run was tested with a large seed of 1000 and as you can see the behaviour remains
the same.

31



4 — Simulation details and results

4.2.3 Same experiment but changing the neighbourThresh-
old

Now it is repeated the same experiment as before but changing a parameter that
influence the infection, the neighbourThreshold. The results of the simulation are
showed in figure 4.7.
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Figure 4.7: Simulation results of a bootstrap percolation on Orkut network, dou-
ble and equal initial seed, not permanent decision, neighbour threshold = 3, 50
repetitions per seed, seed with equo function.

We are in the same case as before but here all the results of simulation are
stretched. This is due by the fact that now a node have a lower probability to be
infected or we can say that are needed more neighbours infected because neigh-
bourThreshold=3. As before we have an exponential increase of infection but in a
bigger range of seeds until seed 300. Then we have a little linear increase of infec-
tion until seed 450. This behaviour is almost the same as we can notice before but
in the previous case is all pressed until seed 180 because the lower value of neigh-
bourThreshold. Hence it is possible to see in the figure that the main difference is
that to reach the maximum possible infection we need an higher initial seed. Here
is around seed 450 instead previously was around seed 200. It follows the graphic
competition like the first case with the same explanation.
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4.2.4 Initial double seed with the "equo function" and dif-
ferent database
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Figure 4.8: Simulation results of a bootstrap percolation on Catster-Dogster net-
work, double and equal initial seed, not permanent decision, neighbour threshold
= 2, 50 repetitions per seed, seed with equo function.

All these previous simulations are done with the Orkut database as we can
notice. Now the results obtained using Catster-Dogster database [1] are showed,
to prove that these are general for every social database. The mentioned one is a
network contains family links between cats and cats, cats and dogs, as well as dogs
and dogs from the social websites catster.com and dogster.com (also included are
cat-cat and dog-dog friendships).

In figure 4.8 are showed the results of the last simulation done before with
Orkut, the second variant of epidemicProcessDouble Mod with initialSeed Equo now
done with Catster-Dogster. This database is not large as the Orkut, it has less
nodes (about 623,776) and less edges (about 15,699,276), but is structured in the
same manner meaning that is a Scale-free network. Hence we expect the same
behaviour.

As you can see the result is the same, so exponential grow of infection for both
colours and then they contend the same and last part of the network, subject to
constant changes. Can be a weak unique part as a multitude of little parts in which
a colour cannot predominate permanently, that is why the fluctuation.
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Therefore it can be affirmed that this is a general result if the simulation takes
place on social networks or anyway networks structured in Scale-free manner.

4.2.5 Initial different double seed with the "equo function"
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Figure 4.9: Simulation results of a bootstrap percolation on Orkut network, double
and not equal initial seed, not permanent decision, neighbour threshold = 2, 50
repetitions per seed, seed with equo function.

Another variant tested is the one in which it is maintained all like before, so
the second variant with the difference of not equal initial seeds. For this simulation
we are returned to Orkut database and the seed’s rule is: seedyuer = 3/4 * seed,.eq.
The results are visible in figure 4.9.

From what we can notice initially the behaviour of the two curves of infections
seems to be almost the same, so for a little time, until they reach both together
almost the 20% of infection, the growth is exponential. At 20% of infection there is
a breaking point in which the red colour with higher initial seed starts to get better
and continue the exponential growth of its infection. The black colour instead
starts to suffer consequently about this aspect, all caused by a significant difference
in the initial seed. In this situation the red infection have a higher probability to
raise faster the high connected nodes, so it spreads very fast because the absence of
a "worthy rival" with enough infection power and no fluctuations between the two
competitors happen. This behaviour remains unchanged also in long run.
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4.2.6 Initial double seed on a synthetic graph

Another test that was done is to repeat the experiment with double seed and equo
function on a synthetic network, constructed like explained in the technical part.
The number of nodes present in this network are the same as Orkut (3072441),
useful for comparison reasons. For what concern the edges cannot be the same
because the fixed construction mechanism of PA (Preferential Attachment), so they
can be less or more depending which values of m is chosen. Hence what we expect
is more or less a similar behaviour as Orkut, depending on the choice of m and
initialClique. In figure 4.10, figure 4.11 and figure 4.12 it is possible to see the
resulting simulations with different values of initialClique and m.
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Figure 4.10: Simulation results of a bootstrap percolation on a synthetic network,
double and equal initial seed, not permanent decision, neighbour threshold = 2, 50
repetitions per seed, seed with equo function, m=3 and initialCligue=4.

These three simulations was done with increasing values of m and consequently
initialCligue. How it is immediately possible to notice for all simulations is that
we have the usual behaviour in which the two colours try to contend the majority
of infection. Hence the result that we can see graphically is the same as previous
simulations done with real databases. Also some spikes of infection are possible like
in figure 4.10 because the infection mechanism is random and there is a probability
that also with low seed we can touch high connected nodes and infect much more
than we expect. Looking to the results we observe a not total infection in figure
4.10 because number of edges created (numNodes*m*2) is not sufficient to spread
everywhere also using initial seed 1000. Instead in next two simulations increasing
the values m and initialClique it is possible to reach in both cases practically the
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Figure 4.11: Simulation results of a bootstrap percolation on a synthetic network,
double and equal initial seed, not permanent decision, neighbour threshold = 2, 50
repetitions per seed, seed with equo function, m=4 and initial Clique=>5.
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Figure 4.12: Simulation results of a bootstrap percolation on a synthetic network,
double and equal initial seed, not permanent decision, neighbour threshold = 2, 50
repetitions per seed, seed with equo function, m=>5 and initial Clique=6.
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90-93%. Same results as real databases. A particularity of a synthetic graph is
that it is constructed with a fixed mechanism. So observing the results at first
impression it is possible to say that it is not present the initial part on the graph in
which the infection is spreaded exponentially thanks to very high connected nodes.
Hence probably there are hubs which are the most connected of the network like
previous simulations, but the the hierarchy of degree is constructed in a pyramidal
way so the effect of spreading infection in hubs is not drastic as before. Instead
what we can really say is that using same parameters as Orkut, so same number of
nodes and edges, we can obtain same results and a 100% of infection, as it possible
to observe in figure 4.13.
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Figure 4.13: Simulation results of a bootstrap percolation on a synthetic network,
double and equal initial seed, not permanent decision, neighbour threshold = 2, 50
repetitions per seed, seed with equo function, m=19 and initialClique=20.

Only in this case we can reach total infection because we construct the database
with a well-know method and all the nodes are connected properly with no isolated
nodes or strange behaviours.
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