
POLITECNICO DI TORINO
Master of Science in Ingegneria Informatica (Computer Engineering)

Master Thesis

Test scripting language selection for
web-based automated testing

Advisors:
PhD. Maurizio Morisio
PhD. Riccardo Coppola

Candidate:
Santiago Agudelo Ibarra

December 2018

To my beloved wife and my parents: Finally, we did it

2

Acknowledgements

I thank my family for the patience they have given me over the years. To my beloved
wife, who has been an unconditional support in the realization of this work. And finally,
but no less important, I thank my friends and colleagues for the countless collaborations
to get this master’s degree forward.

3

Summary

In the first part of this thesis, a comparison of the Selenium IDE and Selenium WebDriver
automation tools (Java and C#) for different types of web applications is presented, in
order to show the benefits of automated testing when each of the tools is used in different
types of web applications. Next, a classification of the web applications is made according
to the testing levels, giving, as a result, the separation of the applications in three groups:
small, medium and large application. Finally, through the proposed methodology for the
automation of the tests, the suitable automation tool can be selected according to the
knowledge achieved by the tester and the type of application to be tested.

Keywords: Selenium IDE, Selenium WebDriver, Java, C#, Web application, Test au-
tomation, Test methodology.

4

Contents

List of Figures 8

List of Tables 9

1 Introduction 10
1.1 Limitations of Software Testing . 11
1.2 Motivation . 11
1.3 Thesis objectives . 13

1.3.1 Main objective . 13
1.3.2 Specific objectives . 13

1.4 Structure of the thesis . 14

2 Background 15
2.1 Definition of Testing . 15
2.2 Test Strategies . 17
2.3 Testing Types . 17

2.3.1 Black Box Testing . 19
2.3.2 White Box Testing . 19

2.4 Testing Levels . 20
2.4.1 Unit Testing . 20
2.4.2 Integration Testing . 21
2.4.3 System Testing . 22
2.4.4 Acceptance Testing . 23

2.5 Test Automation . 23
2.5.1 Benefits and challenges of automated software testing 25
2.5.2 Approaches to Test Automation 26

2.6 Considered automation testing tools . 29
2.6.1 Selenium IDE . 29
2.6.2 Selenium WebDriver . 29

3 Methodology 31
3.1 Comparison of programming languages . 31
3.2 Classification of web applications . 32
3.3 Description of the methodology . 33

3.3.1 Stage I: Analysis for automation 34

5

3.3.2 Stage II. Test analysis . 36
3.3.3 Stage III. Automation . 36
3.3.4 Stage IV. Execution and stabilization 36
3.3.5 Stage V. Results report . 37

4 Description of the case studies 40
4.1 Small application . 40
4.2 Medium application . 40
4.3 Large application . 42
4.4 Implementation of the methodology in the selected applications 43

4.4.1 Stage I: Analysis for automation 44
4.4.2 Stage II: Test analysis . 44
4.4.3 Stage III: Automation . 45
4.4.4 Stage IV: Execution and stabilization 45
4.4.5 Stage V: Results report . 45

5 Results 47
5.1 Selenium IDE . 47

5.1.1 Add-ons . 48
5.2 Java Selenium WebDriver . 49

5.2.1 Maven . 49
5.2.2 JUnit . 49

5.3 C# Selenium WebDriver . 51
5.3.1 NuGet Package . 53
5.3.2 NUnit . 53

5.4 Page Object pattern . 55
5.5 Test execution . 56
5.6 Analysis of the results . 57

5.6.1 Environment installation and configuration complexity 57
5.6.2 Learning curve . 58
5.6.3 Creation time of the test scenarios 62
5.6.4 Lines of code . 64
5.6.5 Execution time . 67
5.6.6 Number of errors . 69
5.6.7 Successful execution . 69
5.6.8 Code maintainability . 70

5.7 Selection of the automation tool . 70

6 Conclusions and Future Work 73

A Automation Scripts 75
A.1 Selenium IDE . 75
A.2 Selenium Java WebDriver . 77
A.3 Selenium C# WebDriver . 82
A.4 Scripts . 87

6

A.5 Description of the test cases . 87

Bibliography 90

7

List of Figures

2.1 V Model. 17
2.2 Black Box Testing. 19
2.3 White Box Testing. 19
2.4 Testing Levels. 21
2.5 Evolution of software test automation [27]. 26
2.6 Selenium IDE workflow. 29
2.7 Selenium WebDriver architecture. 30

3.1 Stages and main activities of the proposed methodology. 34

4.1 Add task functionality for the small application. 41
4.2 Overview functionality for the medium application. 42
4.3 Dashboard functionality for the large application. 43

5.1 Script in Selenium IDE for the small application. 48
5.2 Class diagram of the medium application in Java. 50
5.3 Pom.xml for the medium application. 51
5.4 Test Suite in Java for the medium application. 52
5.5 Class diagram of the large application in C#. 53
5.6 NuGet Package for the three applications. 54
5.7 Test Suite in C# for the small application. 55
5.8 Answers of respondents to Question 1. 59
5.9 Answers of respondents to Question 2. 60
5.10 Answers of respondents to Question 3. 60
5.11 Answers of respondents to Question 4. 61
5.12 Answers of respondents to Question 5. 61
5.13 Comparison of the creation time for the small application. 63
5.14 Comparison of the creation time for the medium application. 63
5.15 Comparison of the creation time for the large application. 64
5.16 Comparison of the lines of code for the small application. 65
5.17 Comparison of the lines of code for the medium application. 66
5.18 Comparison of the lines of code for the large application. 67
5.19 Comparison of the lines of code for the small application. 68
5.20 Comparison of the lines of code for the medium application. 68
5.21 Comparison of the lines of code for the large application. 69

8

List of Tables

2.1 Black box and white box testing techniques. 18

3.1 Syntax differences between Java and C# when Selenium is used. 31
3.2 Differences between Selenium WebDriver with Java and C#. 32
3.3 Research questions for the survey. 33

5.1 Measures to take during test execution. 57
5.2 Test Cases by script. 58
5.3 Number of errors for tool/application. 69
5.4 Automation tool to use according to the application size and the program-

ming language knowledge. 72

A.2 Test Case for the small application. 87
A.3 Test Cases for the medium application. 87
A.4 Test Cases for the large application. 89

9

Chapter 1

Introduction

Software, as many knows, it’s a key ingredient in many of the devices and systems that
are in our society. It’s found in smart watches, ovens, cars, DVD players, cell phones and
even more complex things as airplanes, spaceships, air control systems, among others.
The origin of the errors in the software began with the development of the same. This is
not the case where we start with a perfect product and invent ways to spoil it. But the
only way that errors enter into a program is when they are introduced by the author.
Nowadays, there is no way to develop an error-free program, even if we did not discover
them during development or in tests does not mean that they are not there. A quote
from Alan Perlis [1], the first winner of the Turing award, describes in a better way the
message in the previous paragraph:

“There are two ways to write error-free programs; only the third one works.”

The previous sentence tells us that there is no way to develop error-free software. So, how
do we guarantee that the produced software meets its requirements? How to guarantee
that an error will not cause a failure in the program while it’s in the middle of a very
important operation such as a transaction in a bank’s management system? We cannot
guarantee that, but, with the use of tests, we can ensure a certain level of reliability.
Software testing is one of the areas of software engineering that has gained most of the
interest, increasing in this waythe amount of the researches being carried out. Some define
the evidence as a source that provides information about the quality of the product or
service. But strictly speaking, testing a program is trying to make it fail [2]. That is the
main objective of the tests: find the maximum number of possible execution failures.
In literature, authors differ in the categorization of the different types of tests. Some
categorizations are made depending on the size of the software to be tested, the maturity
of the testing process itself, and the testing strategy chosen, among others. Moreover the
number of different types of tests vary as much as the different development approaches.
But, regardless of the categorization of the considered tests, any software strategy must
incorporate a planning stage, that will include the design of the test cases, the execution
of the tests and a evaluation of the data being collected during the execution.

10

1 – Introduction

1.1 Limitations of Software Testing
Any non-trivial software will have errors. It’s clear that performing a few tests is not
enough to prove that a system is completely error-free. There are several reasons why it’s
impossible to prove that. For example, consider a program that draws a quadrangle and
accepts four points as input where the coordinates of the point are limited between 1 and
10. In this case, 104(10 × 10 ways to draw a point and therefore (10 × 10)2 ways to draw
a line). There are four lines, therefore (104)4 = 1016 entries of four lines are possible.
Assuming that a tester tests 1000 input combinations per second and works 24 hours a
day and 365 days a year. The tester could test all possible input combinations at

1016

103 = 1013 seconds

At 3.14 × 107 seconds per year,

1013

3.14 × 107 = 3.171 × 105 years

It would be needed to perform all possible tests. This makes it clear that the program
output for all possible input combinations cannot be verified in a reasonable time. Another
limitation is that the code can hide faults. Suppose that an expression is written as x+x,
where it should be x×x, using x = 2 as input, the correct result is produced and the tester
could assume that the system contains no faults. Consider the following code fragment
[3]:

int scale(int j) {
j = j – 1; //should be j = j + 1
j = j / 30000;
return j;

}

From the 65,536 possible values for j only 40 values will produce an incorrect result:
-30000, -29999, -27000, -26999, -24000, -23999, -21000, -20999, -18000, -17999, -15000,
-14999, -12000, -11999, -9000, -8999, -6000, -5999, -3000,-2999, 2999, 3000, 5999, 6000,
8999, 9000, 11999, 12000, 14999, 15000, 17999, 18000, 20999, 21000, 23999, 24000, 26999,
27000, 29999, 30000. None of these values is a boundary of j. If all possible values except
these 40 were used, then even a nearly exhaustive test would not reveal the error. Nor-
mally the tests uses the requirements as a reference point, so when the requirements are
incorrect or incomplete, incorrect tests are produced. Omissions are also not revealed if
implementation-based testing is used since the missing code cannot be tested. Errors in
the tests can also lead to incorrect test results.

1.2 Motivation
Producing software with an insufficient level of quality can be a terrible business. Ac-
cording to the public Standish Group in its 2015 report (Chaos Report), 52% of software

11

1 – Introduction

development projects do not meet the objectives set and 19% of them are considered a
failure. Only 29% achieve success. It is no longer enough for a specific application or pro-
gram to be functionally complete, according to its purpose, but it must also satisfy other
aspects in terms of security, performance, accessibility, maintainability, etc. Therefore,
the goal of any organization that is dedicated to the software industry, should be to pro-
duce quality software, that is, create efficiently the software that fullfill the requirements.
As exposed above, software quality should be an obligatory requirement and more and
more companies are considering, within the development process, quality assurance activ-
ities. These activities include a wide variety of tasks, the establishment of solid technical
methods, metrics, analysis, and reports, well-planned software tests, reviews, etc. Those
responsibles for all these activities aim to identify, document and communicate the possi-
ble deviations observed during the development process in order to make the appropriate
decisions. They provide clarity about the state and the maturity of the product that is
being developed.
One of the most important parts that make up the tasks of a quality assurance system is
software testing. There are unit, integration, functional, performance, etc. tests. Some of
them, by their nature, are susceptible to be automated, this means that they are executed
by a machine or computer (usually called a robot) instead of the tester itself.
Currently, the automation of tests is a fundamental step to improve the quality of develop-
ment. Every time the applications become more complex, the requirements are changing,
more functionalities are been adding or modifying, etc., what resuts in different versions
and in a reliability decrement of the quality of the final developed software. In these cases,
the automation of tests becomes important and represents a clear advantage for dealing
with the process of execution of the tests.
Currently, there are many tools that allow to generate and execute scripts, small programs
for interacting with a given application, simulating the actions that could be performed
in the application, among other functionalities. These tools help to increase productivity
in terms of the number of tests performed, the scope of each of them (many combina-
tions can be tested) and the reproducibility of the tests (we make sure that the tests
are always done in the same way). These automatic tests do not replace the traditional
tester (a physical person who performs the tests manually), but help to perform tedious
and repetitive tasks, being necessary a more technical profile, since it requires to possess
knowledge in different programming languages, databases, the architecture of web sys-
tems, etc.
Within the tests of web applications, one of the most used tools for functional testing
automation is Selenium. Selenium is an open-source framework that has an important
community behind it, and that allows navigation through a web application as a user
would. The tool processes a script that describes the steps that must be performed dur-
ing the test execution: open the browser, go to a specific URL, analyze text displayed on
the screen, access a specific link, enter data, etc.
Selenium has evolved to offer a complete API for different programming languages. With
the classes and methods that it provides, the scripts that represent each of the automated
tests are created. Currently, the tool supports the main web browsers, such as Firefox,
Chrome, Internet Explorer, Safari, etc. Within the programming languages in which one

12

1 – Introduction

can work with the Selenium API, better known as Selenium WebDriver, we focused our
work in the Java and C# languages, since they are the two most used today, and although
they are very similar, we are interested in finding the differences of each of them, to know
which of them may be the best choice to perform automated tests, depending on the
knowledge that the tester has in programming.
The automation tools (as Selenium IDE) use simple structures for the creation of the test
cases. Nevertheless, the use of robust programming languages (such as Java and C#) for
the automation of web tests, allow potentiating some functionalities to efficiently con-
solidate the processes of Quality Assurance. This requires, on the part of the functional
analyst, the knowledge of the languages, patterns and good practices of programming.
These additional requirements translate into longer testing times and execution costs. For
this reason, it is necessary to know and identify the advantages and disadvantages of the
different languages and choose the one that allows having a balance between the learning
curve, the execution times, and the analyst programming knowledge.

1.3 Thesis objectives

1.3.1 Main objective

The main objective of this thesis is to develop a methodology for selecting the appropriate
automation tool for the creation of automated test scripts using Selenium IDE or Selenium
WebDriver (Java and C#).

1.3.2 Specific objectives

• Compare Selenium IDE scripts written in its own native language, with Java and
C# test automation programming languages using metrics related to the learning
curve, test scenarios creation time, code maintainability and execution times.
The following tasks are defined to achieve this objective:

- Definition of metrics to make the comparison of programming languages
- Creation of a survey to know what is the learning curve of the programming
languages.

- Execution of the automated tests to know the execution times in each of the
languages.

• Determine a metric-based criteria for the selection of the appropriate programming
language for a group of applications.
The following tasks are defined to achieve this objective:

- Perform the categorization of the web applications within the groups.

• Implement and validate the methodology in different case studies
The following tasks are defined to achieve this objective:

13

1 – Introduction

- Selection of three case studies for the implementation of the proposed automa-
tion methodology.

- Implementation of the automation of tests in Selenium IDE, Java and C#, in
the case studies.

1.4 Structure of the thesis
The thesis is composed of 6 chapters. Chapter 2 gives a brief description of the definition
of testing, the test strategies, types, and levels. Moreover, the definition of test automa-
tion can be found, benefits and challenges of test automation, and automation testing
tools used in this thesis. And finally, the existing automated testing approaches are pre-
sented. Chapter 3 describes the analysis of the proposed methodology, beginning with a
comparison of Java and C#. Then, it’s shown the classification of web applications used
within the methodology, and finally, in the last two sections, the proposed methodology is
presented and developed. Chapter 4 presents the three selected case studies for the devel-
oping of the automated tests, through the implementation of the proposed methodology
First a brief description of each of the applications is given and then it’s detailed how the
methodology was implemented in each of the stages. Chapter 5 describes the configura-
tion used for each automation tool and the results with their respective analysis. Finally,
Chapter 6 presents the conclusion of this document and future work.

14

Chapter 2

Background

In this chapter, all the theoretical framework and the related work of the thesis is shown.
In section 2.1, the definitions of testing are described. In section 2.2, all the test strategies
are described. In section 2.3, the testing types and its techniques are described. In section
2.4, the testing levels are described. In section 2.5, the definitions of test automation are
described. In section 2.6, the considered automation testing tools are described.

2.1 Definition of Testing
The meaning adopted generally in literature for the term testing, refers to the dynamic
approach. The Guide to the Software Engineering Body of Knowledge (SWEBOK) [4]
defines the software test as:

“Software testing consists of the dynamic verification that a program provides expected
behaviors on a finite set of test cases, suitably selected from the usually infinite

execution domain.”

This definition mentions several aspects that are important to highlight:

• Dynamic Verification: Implies that the program must be executed for the input
data.

• Static Verification: It’s based on the systematic review of artifacts such as the
code and the documents with the specifications and the design. Static techniques
are very effective for the prevention of defects. It has been pointed out in repeated
sources in literature that these techniques constitute the main source of error de-
tection. Myers [5] indicates that from 30% to 70% of all defects found at the end of
the testing process can be detected with these techniques. Other authors state that
it reaches 90% [6].

• The expected behavior: It must be possible to decide when the observed out-
put of the execution of the program is acceptable or not. The observed behavior
can be checked against the user’s expectations, against a specification or against
anticipated behavior by implicit requirements or reasonable expectations.

15

2 – Background

• A finite set of test cases: The test should be done on a set, finite and limited,
of possible test cases. A test case is a set of input values, expected results, pre-
conditions and post-conditions of execution, developed with a particular objective
[7].

• Properly selected: The selection of test cases should maximize the effectiveness
of the test.

• The infinite domain of execution: It states that the test requirements have no
limit.

The main difference between the first two techniques mentioned above is that in the
static technique an analysis is made without ever executing the application, while in
the dynamic technique the application has to be executed, in addition, the default cost
is cheaper in static techniques. However, this does not imply replacing or eliminating
dynamic techniques, which are essential for the validation of the application. In [4], it’s
stated that the static approach is not strictly part of the testing, although it complements,
studying under the area of quality, even if the definition given for testing is generic: Testing
is an activity carried out to evaluate the quality of the product and improve it, identifying
defects and problems. Myers [5] defines:

• Testing or Computer Testing: “The process of executing a program with the
intent of finding errors”.

• Software Testing: “Software testing is a process, or a series of processes, designed
to make sure computer code does what it was designed to do and, conversely, that
it does not do anything unintended”.

The guidance for the validation of software for the industry of the FDA6, V.2 [8] estab-
lishes that the Software Test implies “running software products under known conditions
with defined inputs and documented outcomes that can be compared to their predefined
expectations”. It is defined as one of the many verification activities that are carried out
with the purpose of confirming that the output of the development accomplishes with its
entry requirements. Among the other verification activities, it includes static approaches.
It also warns that the terms Verification, Validation, and Testing have been used as
equivalents in literature. In [7], testing is defined as:

“The process of operating a system or component under specified conditions, observing
or recording the results, and making an evaluation of some aspect of the system or

component.”

Kaner makes an important distinction when defining testing as:

“A technical investigation done to expose quality-related information about the product
under test.”

Its goal should not be merely to find faults by provoking failures; the horizon must be
extended, allowing the tests to serve as a learning mechanism for the system under test
[9], through the deep knowledge of the application, such as the establishment of critical
paths, allowed roles, functionalities more prone to fail, etc.

16

2 – Background

2.2 Test Strategies
Generally, the first step in a testing process is to create a test strategy that specifies the
details of the testing procedure and help to organize all the testing process. As Shiva
Kumar’s says in the handbook of testing [10], the intention of a test strategy is to:

• Provide a framework and a focus for improvement efforts, and to

• Provide a means for assessing progress.

All the requirements, system design and acceptance criteria are merged into the testing
strategy document. Additionally, a description of the testing is needed along with no-
tations of objectives, scope, and other conditions. A testing strategy document should
also cover the project scope that is the description of what is to be and how is to be
tested, how exhaustive the test must be and how much testing is needed [10]. The test
objectives, it’s the list of all test in order of importance. The features and functions to be
tested, if there is an exception, it should be mentioned including the reasons for exclusion.
The testing approach that describes the types and levels of testing to be conducted. The
testing process with a detailed description of the steps in testing is shown in figure 2.1).

Requirement Analysis

Functional Speci ication

High Level Design

 Detailed Design/

Program Speci ication

Code

User Acceptance

 Testing

System Testing

Integration Testing

Unit Testing

System Test Plan

Integrated Test

 Plan

Unit Test Plan

V
er

i
ic

at
io

n
 P

h
as

es

V
al

id
ad

it
o

n
 P

h
as

es

Figure 2.1: V Model.

2.3 Testing Types
Software tests can be divided into black box and white box based on the approach taken.
The following sections describe the black box testing approach (section 2.3.1) and white
box testing approach (section 2.3.2). In addition, some test techniques of each approach
are mentioned, which are listed in table 2.1.

17

2 – Background

Test perspective Techniques Principle

Black box testing

Equivalent partition The entry domain of the program
under test is divided into data par-
titions with common characteris-
tics (positive numbers, negative
numbers, etc.).

Analysis of limit values The limit values (minimum and
maximum), of each entry data in
the program, are chosen as test
data.

Comparison test Independent versions of the pro-
gram to be tested are devel-
oped, using the same specifica-
tions. Each version is exercised
with the same test cases (selected
by another testing technique). If
the results of the tests are differ-
ent, the differences between the
versions are analyzed in order to
determine the failure cause.

Test of the orthogonal table An orthogonal table of test cases
is created. In this table, the test
cases are uniformly dispersed in
the input domaind.

White box testing
Path testing Each independent execution path

in a program is tested at least
once. A path is a way through
which the execution proceeds
through a function from its begin-
ning to the end.

Condition testing All the logical conditions of the
program under test are tested.
Each clause of each condition of
the program under test must be
exercised with both values (true
and false).

Loop testing The correct construction of the
loops is tested (simple, nested,
concatenated and unstructured
loops).

Table 2.1: Black box and white box testing techniques.

18

2 – Background

2.3.1 Black Box Testing

In black box testing, the knowledge of the internal structure of the System under Test
(SUT) code is not needed (see figure 2.2). The test cases are obtained from specifications
and the program passes the test if the obtained output corresponds to the expected
output. This type of tests is also known as functional or behavioral tests, focusing on
obtaining sets of input conditions that fully exercise the functional requirements of a
program [11].

Test Case Input Test Case Output

No Knowledge

Application
Code

?

Figure 2.2: Black Box Testing.

Black box testing tries to find the following categories of errors [11]:

• Incorrect or absent functions.

• Interface errors.

• Errors in data structures or access to external databases.

• Performance errors.

• Initialization and termination errors.

2.3.2 White Box Testing

In white box testing, the tester needs to know the internal structure of the software and
can modify it (if required), see figure 2.3. In this test approach, also called structural
tests, the test cases are obtained from the internal structure of the software code under
test and the test passes only if the results are correct [11].

Test Case Input Test Case Output

Full Knowledge

Application Code

Figure 2.3: White Box Testing.

Using white box testing, the test cases that fullfill any of the following functions can be
obtained [11]:

19

2 – Background

• Exercise all the independent paths of each module at least once.

• Exercise all logical decisions on their true and false paths.

• Execute all loops in their limits and with their operational limits.

• Exercise the internal data structures to ensure their validity.

2.4 Testing Levels
The testing process is involved in each stage of the software life cycle, but the tests
carried out at each level of the software’s development are different, since they have
different objectives. Traditionally, the most common types of testing are unit testing,
integration testing, system testing and acceptance testing [12] [13].

• Unit testing: evaluates the software with respect to the implementation.

• Integration testing: evaluates the software with respect to the design of the subsys-
tems.

• System testing: evaluates the software with respect to the design of the architecture.

• Acceptance testing: evaluates the software with respect to the requirements.

Depending on the type of system to be tested, some of the given cataegorizations of the
test levels or even others may be taken; it also depends on the focus of the tests that
are taken. The two fundamental testing activities are the unit test (tests the parts of
the system) and the system test (test the system as a whole) [14], see figure 2.4. Some
levels of tests are described in the following sections. In section 2.4.1 the Unit Testing
is described. In section 2.4.2 the Integration Testing is described. In section 2.4.3 the
System Testing is described. In section 2.4.4 the Acceptance Testing is described.

2.4.1 Unit Testing

Unit tests, also called component tests, are responsible for testing, individually, sub-
programs, subroutines or procedures in a program [2]. It means, instead of testing the
program as a whole, small blocks of the program are tested. The purpose of this type of
tests is to compare the functioning of a unit with a certain functional specification that
defines the unit. There are different types of units that can be tested [15]:

• Individual functions or methods within an object.

• Object classes that have various attributes and methods.

• Compound components formed by different objects or functions. These components
have a defined interface that serves to access their functionality.

The individual functions or methods are the simplest type of unit and their tests are a
set of calls to these routines with different input parameters.

20

2 – Background

Acceptance

System

Integration

Unit

Figure 2.4: Testing Levels.

2.4.2 Integration Testing

Once the components or units were defined and tested individually, they have to be
integrated to form the system. Integration tests are a technique that allows us, at the same
time that we build the system with the components, to carry out tests to detect errors that
arise due to integration and interaction of the individual units [15] [16]. The integration
of the system involves identifying groups of components that provide some functionality
of the system and integrate them by adding code to make them work together. Some
possible problems that can arise from the integration of the components or modules are:
loss of data in one interface, one component can have an adverse and inadvertent effect
over another, global data structures can present problems, among others. The integration
tests verify not only that the components work correctly together, but also that they
are called correctly and they transfer the correct data at the precise time through their
interfaces [15]. The integration of the components can be incremental or non-incremental.
In the non-incremental approach, called big bang, all the modules are combined in advance
and the entire program is tested as a whole. This type of integration has the disadvantage
that many errors can be found at the same time, which is a great challenge when it comes
to correcting them, since it is difficult to isolate the causes and locate where those errors
come from by having the entire program under test [11]. In incremental integration, as
opposed to non-incremental integration, the program is constructed by small increments
or segments in which errors are easier to locate and correct [11]. There are two types of
incremental integration: top-down integration and bottom-up integration.

Top-down integration

In this type of incremental integration, first the skeleton of the complete system is de-
veloped and then the components are added. In other words, the components are in-
tegrated by advancing down the control hierarchy, starting with the main component.

21

2 – Background

Then, subordinate components are added to the main component. The incorporation of
the subordinate components can be done by two ways: depth-first or width-first. The
top-down depth-first integration, integrates all the components of a main control path
of the system structure. The selection of the main path is done arbitrarily and depends
on the characteristics of the system [11]. The top-down width-first integration, integrates
all the components directly subordinated to each level, moving through the structure
horizontally [11].

Bottom-up integration

In the ascending integration, the system is built and tested starting with the components
of the lowest levels of the program structure, for instance, the components are integrated
from bottom to top following the hierarchy of control [11]. Due to the way in which the
components are integrated, the required functionality of the subordinate components is
always available, so it’s not necessary to take care of backups.

2.4.3 System Testing

According to Sommervile [14], system tests involve integrating two or more system com-
ponents and testing them as an integrated system. In an iterative development process,
this type of tests is responsible for testing an increment in the system. In a waterfall pro-
cess, the system testing is responsible for testing the entire system. Pressman [11] states
that the test of the system (referring to a system that is incorporated to other elements
such as hardware, information, etc.) is constituted by a series of tests whose objective
is fundamental in the system. Each test has a different purpose, but all tests work to
verify that all the elements of the system have been properly integrated and perform the
appropriate functions in a correct way.

Regression Testing

Each time we add a new component as part of an integration test, the software changes.
New data flow paths are established, new inputs and outputs can occur and a new con-
trol logic is invoked. In other words, the integration and testing of a new component
can change the interactions of already tested components and, these changes can cause
problems with components that previously worked perfectly. These problems mean that,
when integrating a new component, it’s necessary to re-run the tests to verify previous
increments, as well as the new tests required to verify the newly added component. It’s
known as regression testing to the process of re-executing a subset of existing tests in
order to make sure that the changes have not entered errors or some other undesired
effect. Not only a regression testing have to be performed when integrating a new compo-
nent, but also every time that a major change in the software is made, e.g., by correcting
errors that have been discovered by a test [11] [17]. According to Pressman [11], the set
of regression testing contains three different kinds of test cases:

• A representative sample of tests that exercises all the functions of the software.

22

2 – Background

• Additional tests that focus on software features that are likely to be affected by the
change.

• Tests that focus on the software components that have been changed.

As the integration test progresses, the number of regression tests may grow too. For this
reason, the set of regression tests should be designed to include only those tests that
address one or more kinds of errors in each of the main functions of the program. It’s not
practical or efficient to re-run each test of each function of the program after a change
[11].

2.4.4 Acceptance Testing

The customer must test the system for acceptance which is done after the defects of the
system testing are corrected. In acceptance testing, the customer tests that the system
works correctly and verifies that the requirements are fullfilled [18]. Automated software
testing is fundamental in the field of software engineering. An organization can implement
the process in order to improve the quality of software (QoS) according to the standards
and in this way, the efficient of the product can be increased. The software test automation
is proved to be the strongest weapon in the complex field of effective software testing [19].

2.5 Test Automation

In literature, many definitions of test automation exist, but perhaps the most fitting one
is [20]:

“Automation is the integration of testing tools into the test environment in such a
manner that the test execution, logging, and comparison of results are done with little

human intervention.”

From the definition above, we can understand that the automation is not just to execute
some test cases, but also a complete process that helps in the support and side activities of
testing as much as possible, although the most common understanding of test automation
is just related to the execution of the test cases. There are so many things that can be
automated: for instance test data generation, system configuration, simulation, analysis
of the results, recording activities and communicating test results [21]. Automated testing
is an independent process, for that reason can cover all types of testing (functional, re-
gression, concurrency, etc.), all testing phases and generally, if a test can be run manually
then the test can be automated [22]. Automated testing differs from manual testing, for
instance, in the following ways [22]:

• It improves manual testing by automating tests that are difficult to perform man-
ually.

• It’s in itself software development, it means, there are some artifacts from the
application architecture that could be used when the scripts are created.

23

2 – Background

• It does not replace the need for the analytical skills of the manual testers, the
knowledge of the test strategy and the understanding of the testing techniques.

• It cannot be clearly separated from manual testing. In contrast, both automated
testing and manual testing are intertwined and complement each other.

Many manual tests can be converted into automated tests but they often must be adjusted
to fit to automation [22]. The objective of automated testing is also defined in literature
as [22]:

“The overall objective of AST is to design, develop, and deliver an automated test and
retest capability that increases testing efficiencies; if implemented successfully, it can

result in a substantial reduction in the cost, time, and resources associated with
traditional test and evaluation methods and processes for software intensive systems.”

In order to run the automation tests, there are many tools that helps to automate the
testing process. Nevertheless the testing tool is not the only variable for automation,
because the tester also must know which is the aspect of the test to be developed and the
impact of performing automation [22]. In this context, the automation tools may support
various aspects of the test. Below a possible classification for these tools is given [7]:

• Administration of the tests and the testing process: tools for the administration of
the tests, for the tracking of incidents, for the management of the configuration and
for the administration of requirements.

• Static tests: tools to support the review process, tools for static analysis and mod-
eling tools.

• Specification of the tests: tools for the design of the tests and for the preparation
of test data.

• Execution of the tests: test case execution tools, unit testing tools, comparators,
covering measurement tools, security tools.

• Performance and monitoring: dynamic analysis, load and stress, performance, and
monitoring tools.

For the automation of the functional tests, the execution tools of the capture and repro-
duction tests are specially suitable. These tools allow the tester to capture and record
tests, then edit, modify and reproduce them in different environments. Tools that record
the user interface at the component level and not bitmaps are more useful. During the
recording the actions taken by the tester are captured, automatically creating a script
in some high-level language. Then the tester modifies the script to create a reusable and
maintainable test. This script becomes the baseline and then is reproduced in a new
version, against which it is compared. In general, these tools are accompanied by a com-
parator, which automatically compares the output at the moment of executing the script
with the recorded output [23].

24

2 – Background

2.5.1 Benefits and challenges of automated software testing

With respect to the software agenda, automated tests have a fundamental advantage:
time is saved, which means that it reduces the risk of delay of the programmed, improves
quality and reduces short and long-term costs. Greater the automation effort, greater the
advantages obtained. Although the automation tools are not going to solve all the testing
problems, many benefits with proper implmentation can be achieved.
According to Berner [24], the manual execution of tests is inefficient and prone to errors,
due to the execution in multiple ocassions of the same test case, allowing that the tester
can inject some errors due to the repetition, while the automated execution of the test
increases the efficiency in such a way that it reduces the work of the testers and it’s less
likely to inject errors into the input data, therefore in the test. The automated execu-
tion of test cases also helps to reduce the cost because it decreases human participation.
According to Pettichord [24], Fewster [25], Kaner et al. [17], and Rice [26] between the
common benefits and challenges of Automated Software Testing (AST) are the following:

Benefits:

• Run more tests more often.

• Perform tests which would be difficult or impossible to do manually.

• Better use of resources.

• Consistency and repeatability of tests.

• Reuse of tests.

• Earlier time to market.

• Increased confidence.

Challenges:

• Unrealistic expectations. Managers may believe that Automated Software Testing
can solve their problems and improve quality.

• Poor testing practice.

• Expectation that automated tests will find a lot of new bugs.

• False sense of security.

• Maintenance.

• Technical problems.

• Organizational issues.

25

2 – Background

2.5.2 Approaches to Test Automation

The functional tests that are launched against the graphical user interface, historically,
have been one of the areas that most have been tried to automate. Throughout the
history of this part of the automation of tests, full of emotions, sorrows, and joys, we
can find numerous approaches and strategies, as an example of how this area of software
quality has evolved over time, always trying to save time. In 2012, Hunt [27] proposed
to classify of the functional test automation approaches into generations. Currently, we
can distinguish 5 generations of functional test automation strategies that are launched
against a graphical user interface, which are: record and playback, scripting, data-driven
scripts, keyword-driven and scriptless (see figure 2.5).

Figure 2.5: Evolution of software test automation [27].

Record and Playback

The first functional test automation tools uses this approach: record the test cases from
the interactions of the tester with the graphical interface of the application to be tested.
Then, the tools allow to reproduce those test cases. From these recorded actions, the
tool itself generates code (so-called scripts) to rerun the test cases. As drawback of this
first approach, we can highlight, on the one hand, that each automated test case includes
both the actions to be taken and the test data, making difficult to reuse the test case
and reducing its maintainability. If we want to automate another similar test case but
with different input data, we will have to create a new case. On the other hand, many
tools that follow this approach are based on identifiers or labels of the graphical interface
elements. If for example we have automated a series of test cases of an application, and
the name of any of the elements of the application graphical interface changes (changes
the name of a button, a form, etc.), in the next version, the test case would not work, and
the version must be fixed or a new one must be created. Some features of this approach
are:

26

2 – Background

• An unstructured way of automation.

• Very low development costs.

• No planning is required.

Examples of tools that use this approach would be the Selenium IDE framework [28],
Sikuli [29], EyeAutomate [30] or Test Complete [31].

Scripting

In this approach, scripts are programmed directly in the programming language, and that
will call the execution of the test cases. This method is more robust, more flexible and
allows reusing the code of test cases, but it must also have to take into account that the
elaboration of scripts is more complex and requires that the team that develops the tests
have a high knowledge of programming and be more specialized. Some features of this
approach are:

• Helps to perform repetitive tasks and allows you to have the ability to call other
common functions that have important functionalities of the business.

• Programming costs increase slightly in relation to record and playback.

• Planning is required up to a point.

• Knowledge of scripting language is required.

Tools like UISpec4J [32] would be included in this generation.

Data-Driven Test Automation

This approach separates the automation of tests into two parts: the automation script
and the data (both the input and the expected output data after the execution of the
test cases). The test data is stored in a separate file, which is read by the script. Each
script can be used with different data, encouraging reuse and increasing test coverage.
Some features of this approach are:

• The scripts are programmed in a structured way.

• The development costs required are relatively high compared to the previous ap-
proaches due to the parameterization efforts and programming.

• More planning is needed.

• The data is stored in data tables or external files (for instance, Excel, Access, SQL
Server, etc.).

• The maintenance of the scripts is low.

• Recommended to be used in the testing of positive and negative data if required.

Among others, the Jameleon framework [33] supports this type of scripts.

27

2 – Background

Keyword-Driven Test Automation

This approach goes one step further than the previous one. In this approach the test data
leads the testing instead of the script. Associated with the test data, keyword sequences
will be used to indicate which actions must be followed in each case. When an automated
test case is executed, it will read the test data and call the script according to the previous
selected keywords. In the event that there is a change, it’s not necessary to update the
entire test case, only the elements that use the keywords should be changed. Some features
of this approach are:

• The development costs are high since more efforts are needed for the planning and
development of the tests.

• High programming skills are required.

• The initial planning and management efforts are very high.

• The maintenance cost is low.

• You need a framework or libraries to be able to implement it.

The Test Complete tool [31] also supports this type of testing.

Scriptless

It’s based on the evolution of the automation of tests by keywords and it does not need
to create a script to automate the tests. To build a test case, this method uses objects
predefined by the test tool. These objects represent elements of the graphical interface
of the application and simple actions. The tester has to select the objects and actions
through different menus, sort them and fill their properties for each test case. As they
are predefined objects, there is no need to invest time to build them therefore the time
to prepare the test cases is reduced. This approach has several benefits: the test cases
are reusable and the tools are easy to use since it’s assumed that the tester does not
see the code that is produced and does not interact with it. Also, since there is no need
to program the tests, tools of this type can be used by non-technical people. Even so,
we must be careful with this last point: although any person can, a priori, develop test
cases using this approach, it’s still necessary to have knowledge of how the application
is made and what is to be obtained. Another advantage of this approach regarding to
the maintainability of the test cases is that if the elements of the application change,
only the data model of the used objects must be changed, keeping the initial code. As
a drawback, it should be noted that these methods are limited in functionality to the
objects that the tool offers by default. To solve this problem, some tools allow adding
extensions, but often these extensions can be complicated and require knowledge about
programming languages and about the test tool itself.
Tools such as Certify fromWorksoft [34] and the Qualitia framework from Zensoft Services
[35] support the scriptless approach.

28

2 – Background

2.6 Considered automation testing tools

The following automation tools are considered within this thesis:

• Selenium IDE

• Microsoft Visual Studio Community 2015 (Selenium WebDriver).

• Eclipse JEE Oxygen (Selenium WebDriver).

The tools mentioned above are described in the following sub-sections.

2.6.1 Selenium IDE

Selenium is an extension mainly of the Mozilla Firefox internet browser (see figure 2.6),
but it can also work with Chrome. Selenium runs inside the browser in JavaScript and
controls the browser by giving it commands. Selenium based its operation on two features
[28]:

Figure 2.6: Selenium IDE workflow.

• Automation by capturing the actions: this indicates that the application allows
recording the action performed by the user in contact with the browser and then
reproduce it, being able to parameterize the entry data. Although the record and
playback tool is an important functionality of Selenium and it’s easy to use, gener-
ally, the scripts must be modified [36].

• Programming with the Selenium native language: it’s also possible to program all
the actions performed by the application.

However, it should be noted that the Selenium is released under the Apache 2.0 license,
and thus a free and open-source project, it has language bindings for several different
programming languages, like Java and C#.

2.6.2 Selenium WebDriver

Selenium WebDriver is a flexible and powerful tool that uses specific native implemen-
tations for each browser, thus avoiding the limitations that implies the use of JavaScript
code to direct the actions on the System under Test (SUT). Also, it maintains a common
access interface that allows a script written in a high-level language (such as Java or C#),

29

2 – Background

Selenium
Language Bindings

Java

Ruby

C#

Python

JavaScrip

JSON Wire

Protocol

Browser
Drivers

FirefoxDriver

ChromeDriver

SafariDriver

OperaDriver

EdgeDriver

Real
Browser

Firefox Browser

Chrome Browser

Safari Browser

Opera Browser

Edge Browser

HTTP Over HTTP Server

HTTP Over HTTP Server

Figure 2.7: Selenium WebDriver architecture.

to simulate different actions on a page, transparently to any browser in which they are
executed (see figure 2.7).
If we compare the two versions of Selenium, Selenium IDE and Selenium WebDriver, it
can be observed that:

• Selenium WebDriver overcomes the limitations of the IDE when simulating the
different actions that a user performs in the browser, during the execution of a
certain web application. Now, Selenium is more powerful when using native com-
mands from each browser and eliminating the use of JavaScript instructions, with
the restrictions that it implies.

• WebDriver isolates the programmer from the particularities of each browser. Se-
lenium IDE could present different behaviors depending on the browser used to
execute the tests. Some tests that worked correctly on Firefox, can not do it in the
same way in other browsers, and vice versa. Now, with the existing native imple-
mentation of the main browsers, API users are isolated from the particularities of
the use of each browser.

• The library that offers Selenium WebDriver is more complex and more powerful.
The WebDriver API is available for several high-level languages (Java, C#, Ruby,
Python, among others) and is object-oriented, which facilitates its versatility and
integration.

• Selenium WebDriver supports the testing of mobile applications. By using IPhone
Driver / Android Driver automatic testson mobile applications can be run in dif-
ferent simulators/emulators.

Thanks to the above mentioned advantages, Selenium WebDriver has established itself
as an industrial standard de-facto for testing web applications.

30

Chapter 3

Methodology

This chapter describes the proposed methodology that is performed for the creation
of the automated tests in this thesis. The proposed methodology can be modified and
adapted according to the type of test to be performed. In section 3.1, the comparison of
programming languages is described. In section 3.2, the classification of web applications
is described. And finally, in section 3.3, the methodology is presented and explained.

3.1 Comparison of programming languages
In the comparison of this section, Selenium IDE will be not taken into account in the
comparison, because this is not a language itself, it’s simply an IDE with its own native
language, which has many disadvantages [28] compared to other programming languages
more robusts as Java and C#. There is no major difference between Java and C# when
comparing them at the level of automation, there are just some syntactical differences as
shown in table 3.1.

Java C#
WebDriver to create the
browser instance.

IWebDriver to create the
browser instance.

WebElement to find out
the elements in the web
application.

IWebElement to find out
the elements in the web
application.

@FindBy annotation is
used in Page Objects to
specify the object loca-
tion strategy.

[FindBy] annotation is
used in Page Objects to
specify the object loca-
tion strategy.

Table 3.1: Syntax differences between Java and C# when Selenium is used.

At the level of automation, there are also other differences are mentioned in table 3.2.
Although Java is most widely used, it’s very difficult to find a big difference to choose
one or another language.

31

3 – Methodology

Basis for comparison Java C#
Online help Plenty of websites are

available for that we just
need to use google.

Less online help avail-
able as compared to
Java.

IDE Eclipse is widely used for
Java coding.

Visual Studio is used for
C# coding.

Framework JUnit NUnit
Report We just need to use ANT

to generate Test Execution
Report.

Manual efforts are re-
quired to create a Test
Execution Report in it.

Table 3.2: Differences between Selenium WebDriver with Java and C#.

Survey

To compare the languages, it was used a survey for determining which language (between
Java and C#), is more commonly used for automation in the industry, and determine if
one of the two can be easier to learn with respect to the other. The main objectives of
the survey was to find out what is the most common language used by QA testers when
it comes to automating the tests and knowing what is the perception of them when they
had to learn it. The research questions for the survey are presented in table 3.3 and the
results of the survey are presented in 5.6.2. It was selected www.surveymonkey.com as the
tool for conducting the survey. An online link was generated by this tool for accessing
the questionnaire. As it is an online survey, it was tried to reach as many professionals as
possible, which resulted in getting 63 respondents in total. The position and the company
information obtained from the respondents is used to find the valid responses for the
survey. The respondent should be a tester or similar, to make his response as a valid
response.

3.2 Classification of web applications

There are many ways to classify a web application, for instance, according to its architec-
ture, its content or its technology, nevertheless none of these classifications are useful at
the time of testing. For that reason, after doing the analysis for finding a way to classify
the applications, it was decided to create a classification that would serve to validate
the proposed automated testing methodology. The classification is not based on the web
application to which will perform the tests instead is based on existing testing levels,
which are: Unit testing, integration testing, system testing and acceptance testing [37].
These levels were presented and explained in section 2.4. The tests in the fourth-level
(Acceptance testing) shouldn’t be automated, because the tests are performed by the
user, and the user needs to see and have the control of the application, to be sure that
it’s working as expected. Therefore this level of testing should not be automated, since
it’s not performed directly by the tester, but is performed only by the user. However
sometimes it can be done in the company of the tester, for getting the user perception

32

3 – Methodology

Number of Question Research questions Motivation

Question 1
Which of the following
programming languages
do you know?

Know which of the
programming languages
is best known for
performing automation

Question 2
What is your cumulative
programming experience
in this (these) language(s)?

Know the experience of
people in the use of the
language

Question 3
How long have you been
using an IDE for C# or
Java programming?

Know the experience of
people in the use of an
IDE

Question 4

What framework do you
use to create your automated
test scripts? You can choose
more than one option.

Identify the most used
software automation
framework when creating
scripts

Question 5
What programming language
do you think that you learn
faster?

Know the language that
is perceived to have a
lower learning curve

Table 3.3: Research questions for the survey.

about the application and to know if the user finds an issue. Inside the methodology,
the applications considered are divided into three categories, depending on the types of
testing that are applied to them. Those applications that contain only unit testing, will
be considered as small applications, because the unit tests, are the smallest tests that can
be done to an application, it means, the unit tests are tests of the smallest level according
to the same application. Those applications that contain only integration testing, will be
considered as medium applications, because the integration tests, are the medium tests
that can be done to an application, it means, the integration tests are mid-level tests
with respect to the same application. And finally, those applications that contain only
system testing, will be considered as large applications, because the system tests, are the
large tests that can be done to an application, it means, the system tests are tests of the
highest level with respect to the same application. It’s important to clarify that although
the highest level is the acceptance testing, these are not considered because they are usu-
ally performed by the user and not directly by the tester. In chapter 4, three applications
are shown following this classification, where the small is a web application where the
automation is to perform a unit testing. The medium is a web application where the
automation is to perform an integration testing, and the large is a web application where
the automation is to perform a regression testing (part of the system testing).

3.3 Description of the methodology

The complexity of the tasks that must be developed for an automated test to be useful is
such that it deserves to be treated as a project in itself. In this section, the methodological

33

3 – Methodology

process followed to perform automated tests is presented, which can be modified and
adapted according to the type of automated test to be performed. The process is divided
in five sequential stages, with the peculiarity that the fourth stage is iterative. These
stages and their main activities are shown in figure 3.1 and they are described in the
following subsections.

Figure 3.1: Stages and main activities of the proposed methodology.

In the following subsections, the main activities of the five phases in the proposed method-
ology are presented. The section 3.3.1 describes the stage I, named analysis for automa-
tion. The section 3.3.2 describes the stage II, named test analysis. The section 3.3.3
describes the stage III, named automation. The section 3.3.4 describes the stage IV,
named execution and stabilization, and finally, the section 3.3.5 describes the stage V,
named results report.

3.3.1 Stage I: Analysis for automation

In stage I, the following activities are described: analysis of the application, the definition
of the tests, definition of the test procedures, and organization of the tests.

34

3 – Methodology

Analysis of the application

It’s necessary to evaluate if the effort invested in the automation of the tests is profitable
in the face of the benefit obtained. It’s not advisable to carry out automation when
changes are foreseen since the life of the automated test is very short. The objective when
automating a test is that it has a life of several executions so that the time spent in
automation is profitable compared to the time gained when executing the tests manually.
In cases in which the execution of the tests extends a lot in time, and the tests to be
automated are few, the time invested in the automation of them will not be recovered. It is
possible that the tests to be performed in an application need to be executed on different
deployment environments (different browsers, application servers, software versions). In
this case, even if the number of tests is reduced (and it can be thought that it is not optimal
to automate them), its execution must be repeated several times so it can compensate
for its automation. So taking into account these points and once seen if automation is
recommended, the next step is to define the tests to automate.

Definition of the tests

Test cases cost time and money, the set of test cases that many testers choose are those
that meet coverage goals, such as source code coverage, code declarations or ticket cov-
erage. In this phase, the testers are more interested in the execution paths, sequences of
code declarations that represent a flow of the application, looking for the set of scenarios
that will guarantee to find most of the errors. In addition, the test scenarios can ensure
that the software works according to the specified requirements.

Definition of the tests procedures

The objective of this activity is to define the suites and scripts that will make up the
automated tests. From the functional cycles and functionalities selected for the tests,
the suites and scripts, that will execute them, are specified. Defining the suites implies
defining the scripts that compose them and specifying possible execution dependencies
between them. For each script the scenarios to be performed and their verifications must
be defined.

Organization of tests

After defining the test scenarios and test procedures, it must be defined the order of
execution of the tests; this is very important in the automation, because in this method-
ology, all the test scenarios will be executed sequentially, it means, using the same driver
(without having to sign off, close the driver, open the driver, sign in), in this way the time
execution is shorter and the next test scenario only start its own test, from the endpoint
of execution of the previous test, minimizing the execution time and resources. The test
may lose independence in this way, whence all the scenarios must be defined very well,
in order to be clear about each of them.

35

3 – Methodology

3.3.2 Stage II. Test analysis

In stage II, are described the following activities: analysis of the size of the tests, and
definition of the automation tool.

Analysis of the size of the tests

The size of the tests is decided according to the classification presented in section 3.2.

Selection of the automation tool

The main idea of this thesis is compare some of the test automation programming lan-
guages to be able to define the correct automation tool according to the application to
be automated, therefore, for the application of the methodology, the automation of the
applications will be carried out in the three languages that have been mentioned in the
course of this thesis. Which are: Selenium IDE, Selenium Java WebDriver and Selenium
C# WebDriver. The results are shown in table 5.4.

3.3.3 Stage III. Automation

In stage III, are described the following activities: configuration of the automation envi-
ronment, and creation of the scripts.

Configuration of the automation environment

The objective is to configure the environment of the application that is going to be tested
in order to execute the suites correctly and document this configuration. In this activity,
all the data that the applications used in order to execute correctly the suites, must be
configured. It’s important to document this configuration in sufficient detail.

Creation of the scripts

The objective of this activity is to create the suites together with their corresponding
scripts. This activity consists in assembling each one of the suites with the corresponding
functional cycle to be automated. The tests are recorded or encoded, obtaining, as a result,
the scripts that make up the suites. The correct operation of each script is verified.

3.3.4 Stage IV. Execution and stabilization

In stage IV, are described the following activities: generation of random data, execution
of scripts, and stabilization of scripts.

Generation of random data

The objective of this activity is to generate the data for the execution of the tests. If it’s
a small application, the data should be generated using the black box testing techniques
[38]. If it’s a medium application, the tester must analyze and decide the best option

36

3 – Methodology

to choose, either using black box techniques or generating data randomly. If it’s a large
application the most advisable thing is to generate the data randomly. When data is
generated randomly, it’s taken from the application to be tested, so it must be verified
that there is enough data within the application to be able to perform the tests.

Execution of scripts

The objective of this activity is to execute a complete test of the suites corresponding
to the functional cycle and verify its correct operation. This activity also consists in
carrying out the complete test of the functional cycle in the environment prepared for
that purpose. In case of a malfunction, the necessary adjustments must be made. The
behavior of the suites as a whole is verified.

Stabilization of scripts

The objective of this activity is to verify the correct behavior of the scripts in the test-
ing environment and prepare the suites and scripts generated for the validation. In this
activity, scripts are tested and eventually adjusted for proper operation in the testing
environment. It’s validated by comparing the tests that are expected to be automated
with the tests that the scripts perform. To do a correct stabilization, the scripts must be
executed several times in order to verify that the scripts are able to run more than once.

3.3.5 Stage V. Results report

In stage V, are described the following activities: report of bugs, test execution report,
documentation of the tests, and learned lessons.

Report of bugs

In this section, the most common types of defects in programming will be presented. It
will show a classification according to the degree of severity and the classification that
will be used in the report of bugs. The severity of a bug can be determined based on
the damage caused to the operation of the system. It’s important to mention that the
degree of severity of a bug varies depending on the software type where it is presented.
For example, a catastrophic defect for a nuclear system means that the failure can result
in deaths or environmental damage; while a catastrophic defect for a database system
means that the failure can cause loss of valuable data. That is why there is not a standard
that defines a classification of this type, but in each system is determined the degree of
severity of the defects based on the context in which it’s applied. An example of this
classification of bugs according to their degree of severity is shown below [39]:

• Catastrophic: bugs that can cause several serious damages. Example: security
problems.

• Major: bugs that can cause serious consequences such as the loss of important
data.

37

3 – Methodology

• Minor: bugs that can cause small or insignificant consequences. Example: display
the results in a different format than expected.

• No effect: Bugs of this type may not cause an impediment in the execution of the
system, but may lead to a different and generally avoidable interpretation. Example:
simple typographical errors in the documentation.

The bugs found during the execution of the automation test must be reported for correc-
tion and to follow a good practice of the QA process, the following fields are present:

• An identification number

• A clear, concrete and short title

• Explain clearly what the problem is, what was the expected result vs the obtained
result

• Reporter

• Assigned user

• Version

• The environment where the bug was found

• Component/module over which the fault was detected

• Platform and Operating System

• Browser

• Priority of the correction

• The severity of the bug

• If it’s necessary to attach evidence (screenshots, logs, documents, etc.) or any com-
plimentary material that helps the developer to solve the bug

• State in which the bug is located, to indicate if it can be reviewed by the developer,
has already been solved or has not yet been reviewed

Test execution report

A final report of the project must be made including the methodology followed throughout
the project, the number of automated test scenarios, the executions carried out, the
percentage of coverage of the tests, the improvements made on the system and the errors
found during the execution of tests. In addition, a compilation of all the information and
test artifacts created throughout the project must be carried out.

38

3 – Methodology

Documentation of the tests

Documentation of the tests carried out must be done, even if it’s short, it must indicate the
new functionalities added to the project, with a little explanation of how the funcionalities
works and it’s useful, some images can be inserted to explain better the changes, like a
user documentation.

Learned lessons

Finally, it is good to analyze internally within the team that has made the tests, what
were the lessons learned, the mistakes made during the execution of the project and all
the information that may be relevant for the improvement of the testing process.

39

Chapter 4

Description of the case studies

In the following subsections, the application of the proposed methodology will be analyzed
in three different case studies categorized as small, medium or large. The criteria for
making such a classification was described in section 3.2. An explanation of each of the
case studies can be found, in order to have a better understanding of the operation of the
applications and the automation of the tests carried out.

4.1 Small application

The tests that must be done in the small application named Scheduler, will be only unit
tests. The test consist in the creation of a new button, which opens a new screen to add
tasks (TS1s) and it can be seen in figure 4.1. The most important thing in the creation
of the tasks is the output format, where the two valid formats are XML and JSON. In
addition, the execution frequency of the task also can be chosen as follows: Perform the
task only once or do it within a specic time period. The file is generated as a result of
the data typed in the form, and this data is taken directly from the database and sent
according to the delivery mechanism selected by the user. The email can be selected to
send the information directly to a provided mail address, or save the file in an FTP server,
where all the necessary data will have to be given so that the application can perform
the automatic login to the server and store the file.

4.2 Medium application

Redmine is a tool for project management that among other funcionalities, allows users of
different projects to track and organize them. It’s also possible to optimize the operation
of the application by adding functionalities to it. It includes an incident tracking system
with bug tracking. The figure 4.2, shows a little overview of the application. In this
application, we are only interested in the integration of the following tabs:

• Login (TS1m): It’s used to initialize the session into the application.

• Overview (TS2m): As its name says, this tab is responsible to show an overview of

40

4 – Description of the case studies

Figure 4.1: Add task functionality for the small application.

all the tickets created for the project, for the QA process, only the first three are
used; which are bug, task, and fix.

• New ticket (TS3m): In this tab, we can create a new ticket (same of a bug for QA
process) and add all the important information to be able to reproduce and solve
it.

• Search ticket (TS4m): It’s a functionality to search for all the tickets created in
the application. It’s possible to search using the ticket number, the description, the
subject or the tracker.

41

4 – Description of the case studies

• Time tracking (TS5m): This tab allows (by default) to see a table with all the
tickets assigned to a user, and if a specific ticket is chosen, the spent time in it
during a given day can be added.

Figure 4.2: Overview functionality for the medium application.

The followed process to do the automation of the test scenarios was in a first time to take
the data of the tickets in the overview tab. Next create a new ticket where the tracker
is equal to bug, task, or fix. And finally, look for the ticket created and add some spent
time to that ticket.

4.3 Large application
Edere is an application to create medical studies through a workflow. The idea is to create
from scratch a new workflow with several stages, these stages are the workflow that the
study should continue in order to be completed, but not all the users can edit the study,
that is why users must be created, add roles, pages, and functions, to determine the
functionalities to which a user has access (security tab). If you do not want to create the
workflow from scratch, there is the possibility to make an import of one or more workflows
using the import tab. In addition, the user can search the studies applying different types
of filters using the Browse & Search tab. Additionally, in the dashboard tab (see figure
4.3), by default the user can see all the medical studies that are assigned to him, and
then he can choose one to follow the whole process and finish the workflow; this is only
done if the user has the necessary permissions to add the corresponding information,
and perform the approval of each of the workflow tasks. The description of each tab is
explained below:

• Login (TS1l): It’s used to initialize the session into the application.

42

4 – Description of the case studies

• Security (TS2l): This tab allows to create and manage all the permissions of the
application users.

• Workflow (TS3l): It’s a functionality to create and manage the progress of the
medical studies.

• Metadata (TS4l): Allows to create and manage the functions and sets inside the
application. The functions and sets can be added or attached to a workflow.

• Import (TS5l): As its name says, the functionality of this tab consists in import
external workflows within the application, since they contain a file with the correct
extension.

• Browse & Search (TS6l): It’s used to search the studies inside the application,
allowing the user to use different filters in the search.

• Dashboard (TS7l): This tab is the first screen that the user see when the application
is opened and allows to have an overview of all the projects, these are separated
in two different tables, the one lets to see the projects assigned to the current user
and the second to see all the other projects.

Figure 4.3: Dashboard functionality for the large application.

4.4 Implementation of the methodology in the selected ap-
plications

Following the methodology, the automation tests for the three applications are analyzed
according to each proposed stage, as is shown below.

43

4 – Description of the case studies

4.4.1 Stage I: Analysis for automation

In the following subsections, it’s described the analysis for automation made for each
application.

Small Application

There were some changes in the sprint for this application, but the majority of the tests
were minors or did not suggest furher benefits, therefore during the analysis, the changes
were discarded for automation, and just the add task funcionality was defined. This task
is useful because a file is generated automatically, and although the interface to create
the task is not likely or is not expected to change in time, the file structure will change,
adding new features inside the file, for that reason, the filemust be generated several times
in upcoming changes, as long as we review the structure of the file, and it is a work that
is done manually.

Medium Application

The goal with this application is to test all the functionalities within some tabs, it means,
the integration of the different modules of the tabs, for which integration tests will be
carried out. The tests consists in the life cycle of a ticket. It was decided to automate these
tests because this are the most important features in the application and other changes
can impact their behavior and furthermore each time that a regresson test is done, it’s
likely that these tests must be executed. The procedure to be followed in is basically to
create the ticket, search the ticket and then insert some work time to the ticket, it means
that the number of the ticket that is created automatically by the application, it’s very
important to perform the other tasks.

Large Application

In this project, there was a document for the regression testing previously created between
the client and the tester. Initially the test scenarios and procedures were defined and the
regression was performed manually. It was decided to automate these tests because the
regression had to be performed every two or three months, and the test was almost
always the same. Having the regression testing in an automated way will help to reduce
the execution time and to perform the tests several times, if necessary.

4.4.2 Stage II: Test analysis

As can be seen from the description of the applications, the tests performed for the small
application are unit testing, for the medium application are Integration Testing between
the modules of the application, and for the large application the performed tests are
Regression Testing. As already mentioned, the tools used to perform the automation,
were Selenium IDE, Selenium Java and Selenium C#, for getting some metrics to be able
to decide which is the best automation tool to use, depending on the type of application.

44

4 – Description of the case studies

4.4.3 Stage III: Automation

For the three applications, a test enviroment used only by the testers was selected. Also,
the creation of the scripts was performed using the same logical sequence, but obviously,
the syntaxes and the commands changed depending of the language. For Selenium IDE
some considerations were taken: additional extensions and a Javascript code were used in
order to implement decisions (if/else) and to get the execution time, respectively. Also, it
was used another extension to store all the constants into variables at the beginning and
just to use the variables to type the data. In this context, only one script was created
for the small appplication in Selenium IDE, five scripts for the medium application, and
seven scripts for the large application. Regarding to the languages Java and C#, it was
necessary to create a project using Eclipse and Visual Studio respectively, in this case the
scrips created increased because three classes were necessary to manage the driver, the
test suite and other additional methods. To point out, it was implemented the page object
pattern, whereby each script in Selenium IDE, will have an additional class in these two
languages, just to implement the pattern, it means, a total of five classes were created for
the small application, thirteen classes for the medium application, and seventeen classes
for the large application.

4.4.4 Stage IV: Execution and stabilization

All the three automation techniques (in the three applications) were executed using its
own test environment and were executed several times to be sure that the automation
was stable, all the elements were reached with the locators inside the automation and the
logical implemented was correct for the tests performed. During the execution, all the
bugs that were found, were immediately reported using the test rail application.

4.4.5 Stage V: Results report

In this stage, four reports are generated, where each one had a different objective. The first
one is the report of bugs used for indicating the bugs found. For the small application none
bug was encountered. For the medium application one bug was encountered, and for the
large application five bugs were encountered. The second one is the report of test execution
that indicates all the summary of the test performed, in this report is also included the
test performed manually. For the small application, there are only two additional test
scenarios that are “delete” and “edit” a task. For the medium application, there are
another additional test scenarios that will not be explained in this thesis. Additionally, in
this document, it’s included the finding and suggestions encountered during these tests,
where a finding is defined as an error that was inside the application but was no part of
the tests performed, and a suggestion, is just an improvement or a change that can be
done to the application, but it’s not mandatory because the user can coexist with the
error. For the small application, the tests are performed during a project that is working
using the Scrum framework, so it’s necessary to update all the documentation related
to the test performed, such documentation is more like a user documentation, where
the new funcionalties and how they work, are inidicated. For the medium and large
applications, the documentation of the projects is updated indicating the changes and

45

4 – Description of the case studies

reporting the scripts created, and giving the path where these scripts can be reached.
Finally, in the fourth report, for the small application, the lessons learned during the
project were shared with the team. In order to improve the testing process, an email was
sent to the participants of the project, for recording the lessons learned and implementing
them during the next sprint. For the medium and large applications, there was not a
document for the lessons learned.

46

Chapter 5

Results

Before the execution of the scripts, the enviroment tests must be set up according to the
automation tool to be used for the tests and the programming language. Therefore, in
the first part of this chapter the relevant aspects for the configuration of the enviroment
tests are given, including a brief description of the automation tools, the requiered ex-
tensions and framewoks, in order to introduce the reader and allow him to have a better
understanding of their functionalities. In the second part of this chapter, the results of the
execution of automation and the analysis of the results for each tool are shown. The tools
used for automating the test scenarios were: Selenium IDE, Selenium java WebDriver,
and Selenium C# WebDriver.

5.1 Selenium IDE

As explained in the section 2.6, Selenium IDE is an extension of the Internet browser
"Mozilla Firefox". This is a software for automation of processes or tasks for the internet
browser, it’s based on the capture of actions and programming with the native language
of Selenium. As it’s described in chapter 4, it was used to create the automated test
scripts for the three applications each one with a different complexity grade. Implementing
automated tests for the small application in Selenium IDE (see Figure 5.1) was a quite
easy if know the logic of decision structure (if/else), but the implementation of the other
two test suites was more difficult.
The logic of if/else decision structure can be added to Selenium with an add-on. Also,
it’s important to say that Selenium executes its commands one after the other and it’s
no possible to call a method or another instruction in a different file. Thereby, the imple-
mentation of the test scenarios for all the applications was done in the IDE, nevertheless
there were some limitations or difficulties that increased the creation time of automation
scripts. Additionally, the test scenarios were created to be executed sequentially, i.e., the
execution of test cases is based on the outcome of the previous one whose execution has
already been completed. In order to accomplish the last feature in Selenium IDE, it must
execute the test using the “Play entire test suite” button or execute each test case sepa-
retly, but it implies going manually to the screen where this test case starts.

47

5 – Results

Figure 5.1: Script in Selenium IDE for the small application.

The software specifications of the Selenium tools are detailed below:

Feature Description
Browser Mozilla Firefox 52.0.1.
Selenium IDE 2.9.1

5.1.1 Add-ons

There are some add-ons that can be installed in Firefox, in order to do easier the au-
tomation, the most important and useful extensions are detailed below.

• Firebug 2.0.19: Firebug allows to analyze the HTML code of the page that the
browser is showing at that moment, allowing to locate each of the elements of the
web page, selecting them with the mouse cursor.

• Firepath 0.9.7.1.1: Firepath is an add-on that adds an important function to
Firebug, allowing to locate elements in a web page through its XPath route.

• SelBlocks 2.1.1: SelBlocks allows to use structure commands in Selenium IDE,
such as if, else, while, etc.

• Low Control 1.0.4.1: Low Control allows to use jump commands in Selenium
IDE, such as goto, label, gotoIf, etc.

48

5 – Results

• Stored Variables 2.0.1: Stored Variables allows to create and manage variables
in Selenium IDE.

From the add-ons mentioned above, Firebug and Firepath add-ons are also useful for
automation using Selenium WebDriver.

5.2 Java Selenium WebDriver

In figure 5.2 the class diagram of the medium application can be seen. This diagram
shows how this case study was implemented using Java Selenium WebDriver.
The software specifications for the Java Selenium WebDriver and some tools used, are
detailed below.

Feature Description
Driver GeckoDriver 0.18.0
Java IDE Eclipse Oxygen.3a Release (4.7.3a)
Maven 3.3.9
Junit 4.0
Selenium WebDriver 3.8.1

5.2.1 Maven

Maven is mainly a compilation tool for java projects that can generate different types of
binaries. Normally, the default output of a Java project is a JAR file. Maven provides
plugins and phases of the lifecycle to generate different types of binary artifacts for Java
projects. A JAR project combines all source classes together with the required project
resources in a single field. This JAR file can be distributed for using it elsewhere [40]. The
idea above described can be complicated to understand but Maven makes the work easier,
since it provides a pom.xml file where the dependencies can be added. The dependencies
are all external JARs that are need to run the project, and adding these dependencies
into the file, maven add automatically the JARs to the project, for in the opposite way, if
the depency need to be removed, Maven also remove the JARs automatically. Maven also
has some advantages when a project need to be moved (imported) from one computer
to another. In this case after creating a new maven project an importing it, maven will
add automatically all the JARs from the dependencies. For the reasons mentioned above,
Maven is used as a tool for adding the dependencies into the automation projects created
in this thesis. For a better understanding of the tool and the use of dependencies, in figure
5.3 an example is given.

5.2.2 JUnit

JUnit is a framework for writing and executing automated tests for Java applications.
Among its advantages, JUnit allows to insert assertions (Similar to Selenium IDE), which
facilitate the comparison of one value with another using a condition, for veryfing the
result. Also, the scenarios or test cases in suites can be grouped in order to have a

49

5 – Results

Figure 5.2: Class diagram of the medium application in Java.

better organization of the tests [41]. In figure 5.4, the structure and the characteristics
of the TestSuite.java class for the medium application are described followed by a brief
description of each one. This class allows to run the complete test suite using the JUnit
Framework.

• RunWith: It’s an annotation where the Suite.class is indicated, this main class

50

5 – Results

Figure 5.3: Pom.xml for the medium application.

contains the classes inside the suite.

• SuiteClasses: Add a reference to JUnit test classes where are indicated all the
classes that will be executed. The classes should have a Test annotation.

• Test: It’s an annotation in a method, all the code inside this method will be exe-
cuted as a JUnit test.

• BeforeClass: It’s a setUp() function that is executed at the beginning of all test
cases.

• AfterClass: It’s a tearDown() function that is executed after all test cases have
finished.

5.3 C# Selenium WebDriver

In figure 5.5 the class diagram of the large application can be seen. This diagram shows
how this case study was implemented using C# Selenium WebDriver.

51

5 – Results

Figure 5.4: Test Suite in Java for the medium application.

The software specifications for the C# Selenium WebDriver and some tools used, are
detailed below.

Feature Description
Driver: GeckoDriver 0.18.0

Visual Studio: Microsoft Visual Studio Community 2015. Version 14.0.25431.01
Update 3.

Nunit: 3.10.1
Selenium WebDriver: 3.14.0

52

5 – Results

Figure 5.5: Class diagram of the large application in C#.

5.3.1 NuGet Package

NuGet is an extension of Visual Studio that makes it easier to add, remove and update
references to libraries and tools in Visual Studio projects that use the .NET Framework.
When a library or tool is added, NuGet copies the files to the solution and makes auto-
matically makes the changes that are necessary for the project, such as adding references
and changing the file app.config or web.config. When a library is deleted, NuGet deletes
the files and reverses the changes it made to the project. NuGet provides a quick and easy
way to add features to an existing application as long as these features are integrated into
source code control. In figure 5.6 an example of the use of references in NuGet is shown.

5.3.2 NUnit

NUnit is an open source framework for writing and executing automated test cases for
supporting all .NET languages. In order to develop automated tests using NUnit, a frame-
work and text editor are required. Nevertheless, the text editor can be replaced by an
integrated development environment, for a more convenient work.
In figure 5.7, the structure and the characteristics of the TestSuite.cs class for the large
application are described followed by a brief description of each one. This class allows to

53

5 – Results

Figure 5.6: NuGet Package for the three applications.

run the complete test suite using the NUnit Framework.

• [TestFixture()]: It’s an attribute where you indicate the class that contains the
tests.

• [OneTimeSetUp]: It’s an attribute to identify a function that is executed once in
the beginning of all test cases.

• [Test]: It’s an attribute in a method inside a Test Fixture class, all inside this
method will be executed as a NUnit test.

• [OneTimeTearDown]: It’s an attribute to identify a function that is executed
once after all test cases have finished.

54

5 – Results

Figure 5.7: Test Suite in C# for the small application.

5.4 Page Object pattern

Page Object is a design pattern that is very popular in test automation thanks to the
possibility of reducing the code duplication and to enhance the test maintenance. A Page
Object is an independent object-oriented class that serves as an interface to a page of
the test. In this context, the test uses the methods of the interface whenever they need
to interact with the UI of that page. Since the UI changes are located just in one place,
commonly in the page, the tests don’t need to be changed [28]. When Page Object pattern
is used, all Page Object can be encapsulated into functional classes that will contain all

55

5 – Results

elements and functions which the Page Object is providing. Selenium handles the locating
of the elements what allows to perform the actions with the found elements. A web element
is an interface that provides all actions that the user can do with elements. This interface
is provided by Selenium being the most useful one the function click. Web element is a
very general unit and it can represent any element of DOM (Document Object Model):
Selenium also provides other interfaces for special HTML elements, like inputs, selects,
etc. It’s important to know that the role of Selenium WebDriver in functional testing is
to perform the user interaction with the tested application. As a summary, these are the
best practices for working with Page Objects [42]:

• The HTML structure of the page is defined only in one place; so the change in the
HTML code will affect the page class of the test.

• Page Objects expose services to developers, in other words, provide methods to
interact with the page.

• These methods should return again other Page Objects. This encourages the test
developers to interact rather with the services than with the implementation. As a
result, they are able to control which tests will fail, it means better maintainability.

• Page Objects do not have to represent the whole website, they can be just part of
it.

5.5 Test execution

In order to judge the effectiveness and efficiency of the current testing practices, they need
to be quantified and measured. To do this, a relevant set of metrics should be collected
during the test execution. These metrics are going to be used as an indication of the
current quality of the software product. The table 5.1 contains the selected metrics that
are measured during the test execution.
There are some other metrics to take into account, but those metrics aren’t measured in
the execution time, so they will be shown during the analysis of the results. The browser
used to do the test execution was Mozilla Firefox in order to be able to compare the
IDE results with the WebDriver results. The automation for the three applications were
performed by using three different tools: Selenium IDE, Selenium Java WebDriver and
Selenium C# WebDriver.

The characteristics of the computer were all tests were performed are shown below:

Feature Description
Operating System: Windows 7 Home Premium. Service Pack 1.
System type: 64-bit Operating System
Processor: Intel Core i7-2670QM 2.20GHz
Memory RAM: 6 GB

56

5 – Results

Concept Description Motivation

Execution time

Time that the tool takes
to execute a test, this is
important because there
are different tools and
each tool can have different
requirements to execute a
test.

Since large test suites can
take significant time to
execute, each test case should
be measured in terms of time.
As mentioned by Hayes this
can also be useful in order to
find performance problems
[43].

Number of errors Number of errors
found during the execution.

Testing is about find errors
and correct them and
generally, the quality of a
project is measure having
into account the number
of errors.

Successful execution

The fact that the execution
has finished completely and
all the test cases are in
state “Passed”.

This is important because
sometimes the automated
tests are not completely
stables, it means, that even
the execution finished
successfully, it can be failed
during another execution.

Table 5.1: Measures to take during test execution.

5.6 Analysis of the results

Three Test Suites were created during this thesis. Each Test Suite contained its own
script and each script is equivalent to a tab of the application, each tab is composed by a
series of test cases, which are shown in table 5.2 and the name of each test is indicated in
Appendix A.5. Following the directives of the proposed methodology for the automation
of the tests, some metrics are considered as criteria for the selection of the best automation
tool.

5.6.1 Environment installation and configuration complexity

Selenium IDE is quite easy to install and configure because it works as an extension of
Mozilla Firefox and in case to need an extension, it can be installed in the same way as the
IDE. After that, the IDE is configured to start the automation. Selenium Java WebDriver
work just installing an IDE that enables to codify in Java. For the tests, Eclipse and JUnit
were used. The first one only needs to be downloaded without any additional configuration
in its IDE while the second one is configured using Maven, in order to facilites the addition
of the diferent required dependencies. Selenium C# WebDriver works just with installing
the Visual Studio IDE. It takes some time to install it. In this case, the references as
added as Nunit. After that, C# is configured to start the automation. As noticed, the

57

5 – Results

Test Suite Test Script Test Case
Small Application AddTask 1

Medium Application

Login 1
Overview 2
NewTicket 2
SearchTicket 1
TimeTracking 3

Large Application

Login 1
Security 11
Workflow 3
Metadata 7
Import 1
Browse & Search 23
Dashboard 35

Table 5.2: Test Cases by script.

installation and configuration of the enviroments do not represent a hard task for the
tester, specially Selenium IDE, since it works as a Firefox extension and takes less than
five minutes to be ready, just having a Firefox browser in your machine, so you don’t
need to install other different tools.

5.6.2 Learning curve

When it comes to choose a tool to perfom the automation of the tests, some key factors
must be taken into account even more when the automators may not have a deeper
knowledge in programming languages or in some cases, they have the basis knowledge of
object-oriented programming. One of these key factors is the learning curve of the tool,
which in the projects means a saving of time and resources during the implementation. To
estimante the learning curve, a survey was conducted to investigate (i) what is the most
common language used by automation testers when it comes to automating the tests and
(ii) what is their perception during the learning process. In this section, the analyisis of
the survey results provide the first key factor for the selection of the automation tool.
The learning curve of Selenium IDE was not taken into account for the survey, because
it’s not a programming language and even it’s easy to learn.

Question 1. Which of the following programming languages do you know?

The 32% of the respondents knew Java, the 28% knew C# and the 40% answered that
they knew both languages (see figure 5.8). This trend is similar to the one presented
by the IEEE in its top programming languages review [44], according to IEEE, Java
ist more popular than C# and maybe this is because the former one is an open-source
multiplatform, while the latter requieres the IDE of Visual Studio, which works mainly
on Windows operating systems. For other operating systems as Linux, other IDEs as
MonoDevelop could be used.

58

5 – Results

Figure 5.8: Answers of respondents to Question 1.

Question 2. What is your cumulative programming experience in this (these)
language(s)?

36% of the respondents answered that they have less than six months of expertise in the
programming language, the 34% have at least one year of expertise and the last 30% have
more than two years of knowledge of the programming language (see figure 5.9).

Question 3. How long have you been using an IDE for C# or Java program-
ming?

More than half of the respondents (56%) has less than six months working on an IDE.
The answers of the remaining 44% of the responders are equally divided: 22% of the
responders works on an IDE since one year while the other works since two years as
showed in figure 5.10.

Question 4. What framework do you use to create your automated test scripts?
You can choose more than one option.

According to the survey, the programming language more used to automation testing
with 29% is C#. Java is used by 23% of the asked people while Selenium IDE is used by
21%. The other 27% percent of respondents are used another programming language to
create their scripts (see figure 5.11). To be noticed, this question revealed that although
Java is better known, automators use more C# for the creation of scripts.

59

5 – Results

Figure 5.9: Answers of respondents to Question 2.

Figure 5.10: Answers of respondents to Question 3.

Question 5. What programming language do you think that you learn faster?

48% of the respondents answered that C# is easier to learn than Java. 40% answered
that Java is easier to learn than C#. And just the 12% agreed that both have the same

60

5 – Results

Figure 5.11: Answers of respondents to Question 4.

complexity level (see figure 5.12).

Figure 5.12: Answers of respondents to Question 5.

Although Java seems to be the most popular language within the QAs, the majority of
them use C# (Question 4) motivated in most of the cases, in one hand, by the easier

61

5 – Results

high-level syntax and in the other hand by the fact that a QA is not used to programming
(Question 5).

5.6.3 Creation time of the test scenarios

A second key factor is the creation time of the test scenarios. After create all them for
each application, the following can be concluded for this factor: Time taken to create the
test scripts on Selenium Java and C# are bigger than Selenium IDE for all cases. This
is not a surprise since in Selenium IDE only the script need to be created and executed.
For Java and C#, Page Object pattern was used and additional classes were created.
In figure 5.13 the creation time of the test cases TS1s to TS2s for the small application is
showed. As a remark TS1s was measured without taking into account the required time for
the tests management (creation of the Test Suite, drivers and additional required methods
for the performance of the tests). As a consequence, an additional Test Scenario was
included named TS2s, for measuring exclusively the spent time in the tests management.
In this context, TS2s is not a test, it allows to compare Selenium IDE with Java and C#
in terms of the creation time of the required Tests Suite, drivers, and additional methods.
As can be observed in figure 5.13, the creation time assigned to Selenium IDE is equal
to zero (the IDE manage automatically the execution of the scripts), while the times for
Java and C# are different to zero and similars.
Some conclusions can be taken out from the creation time: The time spent for the creation
of the tests scripts for the small application using Selenium IDE is equivalent to one
working day while using Java and C# took 2 and 2.1 working days, respectively. A
working day is here understood as a eight hours period. Regarding the tests management,
although it can be handled in a single file, it’s not recommendable, since what is sought
is to have a maintainable code, therefore, the classes must be independent in order to
better manage the test. The above tell us that the final times depends strongly on the
management stage even more than on the time spent in the scripts.
In figure 5.14, the creation time of the test cases TS1m to TS6m for the medium applica-
tion are shown. It can be observed that the difference between Java and C# is still very
small. For TS1m and TS4m, the creation time of the scripts are very similar for the three
tools due to the simplicity of the test to be performed. It means complex structures within
the code are not required. Regarding TS2m, the test to be performed is more complex,
a cycle with several nested ifs had to be created and all the functionality of all possible
paths must be verified. These actions are hard to control in Selenium IDE, hence the
creation times in this tool were bigger than in Java and C#, with which the same actions
can be handled easily. As a remark, TS1m to TS5m were measured without taking into
account the required time for the tests management (creation of the Test Suite, drivers
and additional required methods for the performance of the tests). As a consequence, an
additional Test Scenario was included called TS6m, for measuring exclusively the spent
time in the tests management. In this context, TS6m in the medium application is equiva-
lent to TS2s in the small application. In addition, as some tests have a higher complexity,
it’s observed that the creation time of the scripts using Selenium IDE is not longer the
half of the spent times in Java and C#. However, the creation time of the Selenium IDE
(9.1 working days) scripts is still smaller than Java and C# (11.2 and 11.3 working days

62

5 – Results

Figure 5.13: Comparison of the creation time for the small application.

respectively). To highlight, the change in the code is a hard task in Selenium IDE since it
is difficult to find the line, even by the person who created the script, neverthless in Java
and C#, thanks to Page Object pattern, the script can be changed easily. This matter is
going to be analyzed deeply in another section.

Figure 5.14: Comparison of the creation time for the medium application.

63

5 – Results

In figure 5.15, the creation time of the test cases TS1l to TS8l for the large application
are shown. It can be observed that the difference between Java and C# is still very small.
For TS1l and TS5l, the creation time of the scripts are very similar for the three tools
due to the simplicity of the test to be performed. It means complex structures within the
code are not required. As a remark, TS1l to TS7l were measured without taking into
account the required time for the tests management (creation of the Test Suite, drivers
and additional required methods for the performance of the tests). As a consequence, an
additional Test Scenario was included called TS8l, for measuring exclusively the spent
time in the tests management. In this context, TS8l in the large application is equivalent
to TS2s in the small application. In addition, as some tests have a higher complexity,
it’s observed that the creation time of the scripts using Selenium IDE is not longer the
half of the spent times in Java and C#. However the creation time of the Selenium IDE
(24.8 working days) scripts is still smaller than Java and C# (42.2 and 42.3 working days
respectively).

Figure 5.15: Comparison of the creation time for the large application.

5.6.4 Lines of code

The third key factor is relating with the total number of code lines written for the creation
of the scripts. Since Page Object pattern is used, for each test script created in Selenium
WebDriver a total of two classes for each language were generated, one for executing the
test and another for creating the page objects to reach the web page elements and that’s
the main reason for the results. Additionaly, other classes were created for managing the
driver and the execution of the test scenarios. In this context, it is expected, as it can
be observed in the following figures (5.16, 5.17, and 5.18) that the lines number of the

64

5 – Results

scripts codified in Java and C# is always bigger than the number of lines in Selenium
IDE. Comparing the lines of code of Java and C#, the number of lines is similar within
the three applications, nevertheless the lines number of the scripts in C# is smaller than
Java for the small and large application. The difference is however negligible. In figure
5.16, the lines number of the test scripts created for the small application using the three
tools are exposed. Regarding TS1s, the corresponding number of lines for Selenium IDE
is almost 2.5 smaller in comparison to Java and C#. Here we can point an important
observation out: Although the difference in the lines number in Selenium IDE is significant
with respect to Java and C#, the same difference (2.5 times) was not observed in the
creation time of the scripts, this fact can be explained as follows; in one hand, for creating
a complex code structure in Selenium IDE such as if/else and loops, the complexity level is
higher, on the other hand, the programming languages, use brackets, indenters increasing
the number of code lines. Selenium IDE does not allow to leave white spaces within
commands, which makes the code hard to understand and to require an addition time for
analysing it. Moreover, the use of Page Object pattern increases two times the number
of script lines for Java and C# with respect of Selenium IDE scripts. In this context,
TS2s is not a test, the scripts represents the code lines codified for the test management
(creation of the Test Suite, drivers and additional required methods for the performance
of the tests). Since Selenium IDE does it automatically, the number of lines is equal
to zero, while the number of lines for Java and C# are different to zero and similars.
However, these times are negligible.

Figure 5.16: Comparison of the lines of code for the small application.

In figure 5.17, the lines number of the test scripts created for the medium application
using the three tools are exposed. Regarding TS4m, the corresponding number of lines
for Selenium IDE is almost 8 times smaller in comparison to Java and C#. Here we

65

5 – Results

can point an important observation out: Although the difference in the lines number in
Selenium IDE is significant with respect to Java and C#, the same difference (8 times)
was not observed in the creation time of the scripts, this fact can be explained as follows;
in one hand, for creating a complex code structure in Selenium IDE such as if/else and
loops, the complexity level is higher, on the other hand, the programming languages, use
brackets, indenters increasing the number of code lines. Selenium IDE does not allow
to leave white spaces within commands, which makes the code hard to understand and
to require an addition time for analysing it. Moreover, the use of Page Object pattern
increases two times the number of script lines for Java and C# with respect of Selenium
IDE scripts. In this context, TS6m is not a test, the scripts represents the code lines
codified for the test management. TS6m in the medium application is equivalent to TS2s

in the small application. Since Selenium IDE does it automatically, the number of lines
is equal to zero, while the number of lines for Java and C# are different to zero and
similars. However, these times are negligible.

Figure 5.17: Comparison of the lines of code for the medium application.

In figure 5.18, the lines number of the test scripts created for the large application using
the three tools are exposed. To be noticed, the difference between the large and medium
applications is not so evident, this fact also can be easily explained as follows: Java and C#
are programming languages and Page Object pattern was used, therefore it was possible
reuse the common methods invoking them in the respective object class, meaning that a
method can be called several times while it implemation was made only once. However,
in Selenium IDE, it was not possible, so the commands had to be written again. In
this context, TS8l is not a test, the scripts represents the code lines codified for the test
management. TS8l in the large application is equivalent to TS2s in the small application.
Since Selenium IDE does it automatically, the number of lines is equal to zero, while the

66

5 – Results

number of lines for Java and C# are different to zero and similars. However, these times
are negligible.

Figure 5.18: Comparison of the lines of code for the large application.

5.6.5 Execution time

Another key factor is the execution time. It was measured in such a way that can truly
represent the time to complete the entire test suite. So the following considerations were
taken into account: The test suites for each tool were run five times and all the execu-
tion time were taken right after to had turned the computer on to guarantee that the
application to be tested was the only programm demanding resources. In the following
figures (5.19, 5.20, and 5.21), it can be observed that the there is a remarkable difference
between the tools. For Selenium IDE, the execution of the test cases always demand more
time. Meanwhile, for Java and C#, the test cases programmed using the second language
spent less time during their execution. For the medium and large application, the trend
is the same; the execution times are shorter in C# than in Java. Also can be concluded
that as the application grows, the gap in the execution time will increase.
In figure 5.19, the measured times (seconds) for each of the five executions for the small
application are shown. In average, the execution time of the test suites in Selenium IDE,
Java and C# are 32.46, 9.56, and 9.31 seconds, respectively. The difference between the
automation tools in this case is negligible.
The figure 5.20 shows the results for the medium application. In average, the execution
time of the test suites in Selenium IDE, Java and C# are 105.88, 76.81, and 71.14 sec-
onds, respectively. Althoug Selenium IDE is still slower than the other two tools, in this
application a difference between C# and Java could be noted. C# has a shorter average

67

5 – Results

Figure 5.19: Comparison of the lines of code for the small application.

Figure 5.20: Comparison of the lines of code for the medium application.

execution time.
Finally, In figure 5.21, the execution times for each execution of the test suite of the large
application are shown. In average, the execution time of the test suites in Selenium IDE,
Java and C are 1656.06, 1356.46, and 1231.05 seconds, respectively. Once again C# seems
to be faster than the other tools and suitable for large projects. The registered difference
increased to 125 seconds (a little more than two minutes).

68

5 – Results

Figure 5.21: Comparison of the lines of code for the large application.

5.6.6 Number of errors

A further key factor is the number of errors. Since the same logic and methodology were
followed for automating the tests in the three tools, the same number of errors were
found for each of the automation tools used in each of the applications. For a better
understanding refer to the table 5.3.

Selenium IDE Selenium Java Selenium C#
Small application 0 0 0
Medium application 1 1 1
Large application 5 5 5

Table 5.3: Number of errors for tool/application.

5.6.7 Successful execution

The successful execution of test is also considered as a key factor. Sometimes, the exe-
cution can fail, because the locators are very weak, it means that with the same locator
it’s not able to find the element in different executions, so it is important to be sure that
a strong locator was created and it’s advisable always try to find the elements using the
locators in the order presented below [28]:

1. Id

2. ClassName

69

5 – Results

3. LinkText

4. PartialLinkText

5. CssSelector

6. Xpath

In the execution, it was found that the main error was related to the not found locators.
The rules were followed as described above and it was found that if the locator failed, it
failed in all the tools and a new locator must be found. In general, the three tools showed
an “Element locator not found” through a message or an exception. After solving these
problems, the applications were executing successfully in the three tools.

5.6.8 Code maintainability

The last key factor is related with the code maintainability defined as the effort required to
do a change in the scripts. How it was explained in the Line of Codes and Creation time
of the test scenarios subsections, for Java and C# was used the Page Object pattern.
From the Selenium documentation [28], it’s known that the patterns help to enhance
the test maintenance, because the UI changes are just located in one place, doing the
maintainability of the code very fast and inexpensive. As it was mentioned in the last
sections, java and C# use Page Object pattern while in Selenium IDE it’s not possible
to use it, therefore the scripts were created using the Selenium IDE editor, which makes
a change in the UI difficult to find and perform (more expensive). On the other hand,
there are situations in which a method can be used several times during the execution of
the test, that is, the functionality is encapsulated in a single method, and when there is a
change that affects this method, the change would only have to be done once, whereas in
Selenium IDE, the change would have to be made every time over the lines of the scripts
that are going to use it, as it happened in the implementation of the large application,
where was possible to reuse several methods, it means, the larger the application, the
more possibilities that part of the code can be reused.

5.7 Selection of the automation tool
The different key factors included in the last sections will enable to select the suitable tool
for automating the tests of a project with specific requirements. In this section, the testers
can find a suggestion of the best tool for each one according to the relevance of each factor
in the projects. First some limitations and advantages of each tool are giving, in order
to reflect the experience of managing each one. Selenium IDE, for instance, is easy to
install and the automation scripts are easily created, even extra extensions can be added
for having robust scripts like with the programming languages. Nevertheless it has some
limitations when it comes to code maintainability and execution times. This last aspect is
essential when choosing Selenium IDE for small applications without and expected growth
in the future, otherwise, there could be a re-process in the migration process. Regarding
to Java anc C#, they are very similar programming languages, both allow to use patterns

70

5 – Results

or other libraries to have an organized code, easy to execute and maintain. However, from
the proposed key factors, there are some differences that can help to a QA to decide what
language to choose. Mainly, it was observed that based on the testers experience, C#
seems to have an easier syntax and based on the recorded execution times, C# is able
to perform the execution in less time even when the application becomes larger. In table
5.4, it’s presented in detail what tool should be used in relation with the size of the
application (creation time, line of codes, execution time, and code maintainability) and
the learning curve of the tester. From the table the following remarks can be exposed:

• If the tester or project fullfills the following requirements: No basic knowledge of
object-oriented programming, it’s a small application (small in the context of this
thesis), the tester should use Selenium IDE, in this way the tester will learn faster
about test automation and to identify the elements of a web page. There is however
one risk, if the project grows, automation must be migrated to a programming
language. On the contrary, if the tester has the basic knowledge of object-oriented
programming, the most advisable thing is to use a language such as Java or C#, in
this way the tester can take advantage of his knowledge and make an automation
that can be very useful towards the future, a more maintainable and easier to
understand for an external person to the project, and although the creation time
of the scripts is greater, the real benefits will be seen when making a change within
the code or the application grow.

• If the tester or project fullfills the following requirements: No basic knowledge of
object-oriented programming, it’s a medium application (medium in the context of
this thesis), the tester should use a language like C#, since it’s perceived to be much
easier to learn and the times of execution are a bit smaller, on the contrary, if he
possesses the basic knowledge of object-oriented programming, it would be better
to perform the automation in the language that the person feels most comfortable
with, or if there is some automation previously done in one of these two languages,
the ideal would be to use that language, since the code can be reused, for example
for the creation of the driver and the structure of the Test Suite management.

• If the tester or project fullfills the following requirements: No basic knowledge of
object-oriented programming, it’s a medium application (medium in the context
of this thesis), the tester should use a language like C#, since it’s perceived to be
much easier to learn and execution times are somewhat smaller, and in comparison
with Java, in C# less code line could be needed. On the contrary, if he possesses
the basic knowledge of object-oriented programming, it would be better to perform
the automation in the language that he feels most comfortable, or if there is some
automation previously done in one of these two languages, the ideal would be to
use that language, since the code can be reused, for example, for the creation of the
driver and the structure of the Test Suite management.

71

5 – Results

Selenium IDE
Knowledge

Java
Knowledge

C#
Knowledge

Language
to use

Small

! ! ! C#
! ! % Java
! % ! C#
% ! ! C#
! % % Selenium IDE

Application % ! % Java
% % ! C#
% % % Selenium IDE

Medium

! ! ! C#
! ! % Java
! % ! C#
% ! ! C#
! % % C#

Application % ! % Java
% % ! C#
% % % C#

Large

! ! ! C#
! ! % Java
! % ! C#
% ! ! C#
! % % C#

Application % ! % Java
% % ! C#
% % % C#

Table 5.4: Automation tool to use according to the application size and the programming
language knowledge.

72

Chapter 6

Conclusions and Future Work

The most relevant conclusions obtained in this thesis regarding the research carried out,
the methodology used to solve the problem and the results obtained are listed below.

• The proposed methodology allowed to classify, according to the testing level and in a
general way, the applications subject to testing in three types of applications: Small
applications where unit testing is carried out, medium applications where integra-
tion testing is carried out, and large applications where system testing (regression
testing) is carried out.

• Regarding the automation tool, the majority of people knows Java, but C# is
more used and is perceived as easier to learn. Through a survey, an experimental
learning curve for the two programming languages was built. The survey reveled
that although Java is the most popular language, the tester preferred to uses C# in
their projects, motivated mainly for the fact, that C# has an syntax and structure
easier to be learnt and understood.

• Contrary to what many people think, Selenium IDE (plus other extensions) can
be used to create complex scripts, using advanced programming structures such
as if/else or loops. As a drawback, using Selenium IDE can represent a higher
complexity when it comes to the creation, understanding and management of the
scripts, even in small applications.

• Regarding the creation time it was observed for the three case studies chosen for
automation revealed important differences in two of the three tools. It was observed
that the spent time to create the test scripts on Selenium Java and C# is bigger than
the spent one in Selenium IDE in all the case studies. This makes sense, because
in Selenium IDE, the script is only created and executed, while in Java and C#,
the Page Object pattern was used, increasing the time due to its developing. In
Selenium Java and Selenium C# the creation time of the scripts is practically the
same, being the difference negligible.

• Regarding the lines of code it was observed for the three case studies chosen for
automation revealed important differences in two of the three tools. It was observed

73

6 – Conclusions and Future Work

that the number of code lines used to create the test scripts are bigger in Java and
C# in comparison with Selenium IDE. As in the creation time of the scripts, the
Page Object pattern also affects the lines of code that should be written in the tests,
because for each test script created in Selenium IDE, we have two classes created
in the other two languages, one for executing the test and the other for creating the
objects to reach the web page elements.

• Regarding the execution time it was observed for the three case studies chosen
for automation revealed important differences in the three tools. Initially it was
observed how the execution time is greater for the implementation made with Se-
lenium IDE, however, as the size of the application increased, it was also observed
that among the other two languages, there is also a difference in the time of execu-
tion, being in all cases greater the time for Selenium IDE. The execution with Java
showed that it was faster with respect to Selenium IDE, and finally, the execution
time with C# was the fastest. The execution time plays an important role as a
selection factor specially when the application size grows.

The following points describe some proposals for future work:

• Conduct the comparison of test automation tools for applications on mobile devices;
tools based on Selenium web drivers such as AndroidDriver, iOSDriver, Selendroid
or Appium.

• Make the comparison using more programming languages supported by Selenium
web driver, such as Ruby or Python.

• Include other tools than Selenium web driver, to try to make a more complete
comparison between the main tools of test automation.

74

Appendix A

Automation Scripts

For the automation of the test scenarios, three different tools were used in each of the
three case studies: Small, medium and large applications. In this section, one script of
the medium application is shown in order to recognize the differences of each automation
tool. Inside the script named NewTicket, there are two test cases that allow to create a
ticket and verify that the ticket was created correctly.

A.1 Selenium IDE
In Selenium IDE, we just have one script and it’s shown below.

Command Target Value
1 storeEval new Date().getTime() startTimeNewTicket
2 clickAndWait link=New ticket
3 storeEval [’Bug’, ’Task’, ’Fix’] tracker
4 storeEval new Array(); priorityArray
5 storeEval new Array(); versionArray
6 storeEval new Array(); typeArray
7 storeEval new Array(); ticketTypeArray
8 storeEval storedVars[’tracker’].length sizeTracker
9 store javascript{Math.floor(Math.random()*storedVars[’sizeTracker’]);} randomTracker
10 storeEval storedVars[’tracker’][storedVars[’randomTracker’]] trackerLabel
11 select //*[@id=’issue_tracker_id’] ${trackerLabel}
12 storeEval new Date().getTime() dateTime
13 storeEval "Subject field test Automation-".concat(storedVars[’dateTime’]) subject
14 storeEval "Description field test Automation-".concat(storedVars[’dateTime’]) description
15 storeXpathCount //*[@id=’issue_priority_id’]/option numOptionsPriority
16 store 1 i
17 while storedVars[’i’] <= storedVars[’numOptionsPriority’]
18 storeValue //*[@id=’issue_priority_id’]/option[${i}] priorityAux
19 storeEval storedVars[’priorityArray’].push(storedVars[’priorityAux’])
20 storeEval ${i} + 1 i
21 endWhile
22 store javascript{Math.floor(Math.random()*storedVars[’numOptionsPriority’]);} randomPriority
23 storeEval storedVars[’priorityArray’][storedVars[’randomPriority’]] priority
24 storeXpathCount //*[@id=’issue_fixed_version_id’]/option numOptionsVersion
25 store 1 i
26 while storedVars[’i’] <= storedVars[’numOptionsVersion’]
27 storeValue //*[@id=’issue_fixed_version_id’]/option[${i}] versionAux
28 storeEval storedVars[’versionArray’].push(storedVars[’versionAux’])
29 storeEval ${i} + 1 i
30 endWhile
31 store javascript{Math.floor(Math.random()*storedVars[’numOptionsVersion’]);} randomVersion
32 storeEval storedVars[’versionArray’][storedVars[’randomVersion’]] version
33 gotoIf storedVars[’trackerLabel’] == "Task" endIfType
34 storeXpathCount //*[@id=’issue_priority_id’]/option numOptionsType
35 store 1 i
36 while storedVars[’i’] <= storedVars[’numOptionsType’]
37 storeValue //*[@id=’issue_custom_field_values_1’]/option[${i}] typeAux

75

A – Automation Scripts

38 storeEval storedVars[’typeArray’].push(storedVars[’typeAux’])
39 storeEval ${i} + 1 i
40 endWhile
41 store javascript{Math.floor(Math.random()*storedVars[’numOptionsType’]);} randomType
42 storeEval storedVars[’typeArray’][storedVars[’randomType’]] type
43 label endIfType
44 gotoIf storedVars[’trackerLabel’] == "Bug" || storedVars[’trackerLabel’] == "Task" endIfTicketType
45 storeXpathCount //*[@id=’issue_custom_field_values_8’]/option numOptionsTicketType
46 store 1 i
47 while [c]@l@storedVars[’i’] <= storedVars[’numOptionsTicketType’]
48 storeValue //*[@id=’issue_custom_field_values_8’]/option[${i}] ticketTypeAux
49 gotoIf storedVars[’ticketTypeAux’] == "" || storedVars[’ticketTypeAux’] == "null" endIfTicketTypeAux
50 storeEval storedVars[’ticketTypeArray’].push(storedVars[’ticketTypeAux’])
51 label endIfTicketTypeAux
52 storeEval ${i} + 1 i
53 endWhile
54 storeEval ${numOptionsTicketType} - 1 numOptionsTicketType
55 store javascript{Math.floor(Math.random()*storedVars[’numOptionsTicketType’]);} randomTicketType
56 storeEval storedVars[’ticketTypeArray’][storedVars[’randomTicketType’]] ticketType
57 label endIfTicketType
58 type id=issue_subject ${subject}
59 type id=issue_description ${description}
60 select id=issue_status_id index=0
61 select id=issue_priority_id value=${priority}
62 storeSelectedLabel id=issue_priority_id priority
63 select id=issue_assigned_to_id ${currentUser}
64 select id=issue_fixed_version_id value=${version}
65 storeSelectedLabel id=issue_fixed_version_id version
66 gotoIf storedVars[’trackerLabel’] == "Task" endIfSelectType
67 select id=issue_custom_field_values_1 ${type}
68 label endIfSelectType
69 storeValue //*[@id=’issue_start_date’] startDate

70 storeEval
d = new Date(storedVars[’startDate’]); d.setMonth(d.getMonth() + 1);
d = d.getFullYear() + ’-’ + (’0’ + (d.getMonth() + 1)).slice(-2) + ’-’
+ (’0’ + d.getDate()).slice(-2);

dueDate

71 type //*[@id=’issue_due_date’] ${dueDate}
72 store javascript{Math.floor(Math.random() * 9) + 1;} randomHours
73 type id=issue_estimated_hours ${randomHours}
74 gotoIf storedVars[’trackerLabel’] == "Bug" || storedVars[’trackerLabel’] == "Task" endIfSelectTicketType
75 select //*[@id=’issue_custom_field_values_8’] ${ticketType}
76 label endIfSelectTicketType
77 click //*[’watchers_inputs’]/label[contains(.,’${currentUser}’)]/input
78 clickAndWait css=#issue-form > input[name="commit"]
79 //CHECK NEW TICKET
80 verifyAttribute id=flash_notice@class flash notice
81 storeText //*[@id=’flash_notice’] numberTicketCreatedAux
82 storeEval storedVars[’numberTicketCreatedAux’].split(" "); ticketArrayAux
83 storeEval storedVars[’ticketArrayAux’][1].split(’#’); ticketArray
84 storeEval storedVars[’ticketArray’][1] numberTicketCreated

85 verifyText //*[@id=’content’]/h2 ${trackerLabel}
#${numberTicketCreated}

86 verifyText //div[@class=’subject’]/div/h3 ${subject}
87 verifyText //*[@id=’content’]/div[3]/p/a[1] ${currentUser}
88 verifyText //div[@class=’status attribute’]/div[2] New
89 verifyText //div[@class=’priority attribute’]/div[2] ${priority}
90 verifyText //div[@class=’assigned-to attribute’]/div[2]/a ${currentUser}
91 verifyText //div[@class=’fixed-version attribute’]/div[2]/a ${version}
92 gotoIf storedVars[’trackerLabel’] == "Task" endIfVerifyType
93 verifyText //div[@class=’cf_1 attribute’]/div[2] ${type}
94 label endIfVerifyType
95 verifyText //div[@class=’start-date attribute’]/div[2] ${startDate}
96 verifyText //div[@class=’due-date attribute’]/div[2] ${dueDate}
97 verifyText //div[@class=’estimated-hours attribute’]/div[2] ${randomHours}.00 h
98 gotoIf storedVars[’trackerLabel’] == "Bug" || storedVars[’trackerLabel’] == "Task" endIfVerifyTicketType
99 verifyText //*[@id=’content’]/div[3]/div[2]/div[2]/div[2]/div/div[2] ${ticketType}
100 label endIfVerifyTicketType
101 verifyText //div[@class=’description’]/div[2]/p ${description}
102 storeEval new Date().getTime() endTimeNewTicket
103 storeEval (${endTimeNewTicket} - ${startTimeNewTicket}) / 1000 scriptExecutionTimeNT
104 echo ${scriptExecutionTimeNT} seconds on New Ticket tab

76

A – Automation Scripts

A.2 Selenium Java WebDriver

In Java, there are two classes, the first one is named NewTicket and is the test to be
executed using Java programming language.

1 package test;
2
3 import java.text.DateFormat;
4 import java.text.SimpleDateFormat;
5 import java. util .ArrayList;
6 import java. util .Calendar;
7 import java. util .Date;
8 import org.junit .Test;
9 import pageObjects.NewTicketPage;

10 import utility .GlobalMethods;
11
12 public class NewTicket {
13 private GlobalMethods global;
14 private NewTicketPage newTicketPage;
15
16 @Test
17 public void testNewTicket() throws Exception {
18 global = new GlobalMethods();
19 newTicketPage = new NewTicketPage();
20 Long startTimeNewTicket = global.getTime();
21
22 //Data Entry
23 final String initialDescription = "Description field test Automation−";
24 final String initialSubject = "Subject field test Automation−";
25 String currentUser = global.getCurrentUser();
26
27 //Variables
28 String [] tracker = {"Bug","Task","Fix"};
29 ArrayList<String> priorityArray = new ArrayList<String>();
30 ArrayList<String> versionArray = new ArrayList<String>();
31 ArrayList<String> typeArray = new ArrayList<String>();
32
33 // CREATE NEW TICKET
34 newTicketPage.clickNewTicketLink();
35 Integer sizeTracker = newTicketPage.getTrackerSize(tracker);
36 Integer randomTracker = global.generateRandomNumber(sizeTracker, true);
37 global .setTrackerLabel(tracker[randomTracker]);
38 newTicketPage.selTracker(tracker[randomTracker]);
39 String dateTime = String.valueOf(global.getTime());
40 String subject = initialSubject + dateTime;
41 String description = initialDescription + dateTime;
42 Integer numOptionsPriority = newTicketPage.getNumOptionsPriority();
43
44 for(int i = 1; i <= numOptionsPriority; i++) {
45 String priorityAux = newTicketPage.getOptionPriority(i);
46 priorityArray.add(priorityAux);
47 }
48 Integer randomPriority = global.generateRandomNumber(numOptionsPriority, true);
49 String priority = priorityArray.get(randomPriority);
50 Integer numOptionsVersion = newTicketPage.getNumOptionsVersion();
51
52 for(int i = 1; i <= numOptionsVersion; i++) {
53 String versionAux = "";
54 try {
55 versionAux = newTicketPage.getOptionFixedVersion(i);
56 }
57 catch(org.openqa.selenium.StaleElementReferenceException ex) {
58 versionAux = newTicketPage.getOptionFixedVersion(i);
59 }
60 versionArray.add(versionAux);
61 }
62 Integer randomVersion = global.generateRandomNumber(numOptionsVersion, true);
63 String version = versionArray.get(randomVersion);
64 String type = "";
65
66 if (tracker [randomTracker] == "Bug" || tracker[randomTracker] == "Fix") {
67 Integer numOptionsType = newTicketPage.getNumOptionsPriority();
68
69 for(int i = 1; i <= numOptionsType; i++) {
70 String typeAux = newTicketPage.getOptionType(i);
71 typeArray.add(typeAux);
72 }
73 Integer randomType = global.generateRandomNumber(numOptionsType, true);
74 type = typeArray.get(randomType);
75 }
76 newTicketPage.txtIssueSubject(subject);

77

A – Automation Scripts

77 newTicketPage.txtDescription(description);
78 newTicketPage.selIssueStatus();
79 priority = newTicketPage.getPrioritySelected();
80 newTicketPage.selIssueAssignedTo(currentUser);
81 newTicketPage.selIssueFixedVersion(version);
82
83 if (tracker [randomTracker] == "Bug" || tracker[randomTracker] == "Fix") {
84 newTicketPage.selIssueType(type);
85 }
86 String startDate = newTicketPage.getIssueStartDate();
87 Date date = new Date();
88 Calendar calendar = Calendar.getInstance();
89 calendar.setTime(date);
90 calendar.add(Calendar.MONTH, 1);
91 date = calendar.getTime();
92 DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
93 String dueDate = dateFormat.format(date);
94 Integer randomHours = global.generateRandomNumber(9, false);
95 newTicketPage.txtIssueEstimatedHours(String.valueOf(randomHours));
96 newTicketPage.clickSelectUser(currentUser);
97 newTicketPage.clickCreateissue();
98
99 // CHECK NEW TICKET

100 newTicketPage.verifyIssueCreation();
101 String numberTicketCreatedAux = newTicketPage.getNumberTicketCreatedAux();
102 String [] ticketArrayAux = numberTicketCreatedAux.split(" ");
103 String [] ticketArray = ticketArrayAux[1].split("#");
104 String numberTicketCreated = ticketArray[1];
105 newTicketPage.verifyTicketCreated(tracker[randomTracker], numberTicketCreated);
106 global .setNumberTicketCreated(numberTicketCreated);
107 newTicketPage.verifySubject(subject);
108 global .setSubject(subject) ;
109 newTicketPage.verifyCurrentUser(currentUser);
110 newTicketPage.verifyNewWord();
111 newTicketPage.verifyPriority(priority) ;
112 global . setPriority (priority) ;
113 newTicketPage.verifyCurrentUserTable(currentUser);
114 newTicketPage.waitForVersion();
115 newTicketPage.verifyVersion(version);
116 global .setVersion(version);
117
118 if (tracker [randomTracker] == "Bug" || tracker[randomTracker] == "Fix") {
119 newTicketPage.verifyType(type);
120 global .setType(type);
121 }
122 newTicketPage.verifyStartDate(startDate);
123 global .setStartDate(startDate);
124 newTicketPage.verifyDueDate(dueDate);
125 global .setDueDate(dueDate);
126 newTicketPage.verifyRandomHours(String.valueOf(randomHours));
127 global .setRandomHours(String.valueOf(randomHours));
128 global .setRandomTracker(randomTracker);
129 newTicketPage.verifyDescription(description);
130 Long endTimeNewTicket = global.getTime();
131 System.out.println("New Ticket execution time was: " + global.getTimeExecution(startTimeNewTicket,

endTimeNewTicket));
132 }
133 }

The second one is named NewTicketPage and consists in the UI elements with their
locators and the actions (methods) performed that are called from the NewTicket class
using Java programming language, it means, it’s the implementation of the Page Object
Pattern.

1 package pageObjects;
2
3 import static org. junit .Assert.assertEquals;
4 import static org. junit .Assert. fail ;
5 import org.openqa.selenium.By;
6 import org.openqa.selenium.WebDriver;
7 import org.openqa.selenium.support.ui.Select;
8 import testSuite.TestSuite;
9

10 public class NewTicketPage {
11 private WebDriver driver = TestSuite.driver;
12 private StringBuffer verificationErrors = new StringBuffer();
13
14 private By newTicketLink = By.linkText("New ticket");
15 private By trackerSel = By.xpath("//∗[@id='issue_tracker_id']");

78

A – Automation Scripts

16 private By versionOptions = By.xpath("//∗[@id='issue_fixed_version_id']/option");
17 private By priorityOptions = By.xpath("//∗[@id='issue_priority_id']/option");
18 private By ticketTypeOptions = By.xpath("//∗[@id='issue_custom_field_values_8']/option");
19 private By issueSubject = By.id("issue_subject");
20 private By issueDescription = By.id("issue_description");
21 private By issueStatus = By.id("issue_status_id");
22 private By issueAssignedTo = By.id("issue_assigned_to_id");
23 private By issueFixedVersion = By.id("issue_fixed_version_id");
24 private By issueType = By.id("issue_custom_field_values_1");
25 private By issueStartDate = By.xpath("//∗[@id='issue_start_date']");
26 private By issueDueDate = By.xpath("//∗[@id='issue_due_date']");
27 private By issueEstimatedHours = By.id("issue_estimated_hours");
28 private By createIssue = By.cssSelector("#issue−form > input[name=\"commit\"]");
29 private By confirmationMessage = By.id("flash_notice");
30 private By numberTicketField = By.xpath("//∗[@id='content']/h2");
31 private By subjectField = By.xpath("//div[@class='subject']/div/h3");
32 private By currentUserField = By.xpath("//∗[@id='content']/div[3]/p/a[1]");
33 private By newField = By.xpath("//div[@class='status attribute']/div[2]");
34 private By priorityField = By.xpath("//div[@class='priority attribute']/div [2] ") ;
35 private By currentUserTableField = By.xpath("//div[@class='assigned−to attribute']/div[2]/a");
36 private By versionField = By.xpath("//div[@class='fixed−version attribute']/div[2]/a");
37 private By typeField = By.xpath("//div[@class='cf_1 attribute']/div[2]");
38 private By startDateField = By.xpath("//div[@class='start−date attribute']/div[2]");
39 private By dueDateField = By.xpath("//div[@class='due−date attribute']/div[2]");
40 private By randomHoursField = By.xpath("//div[@class='estimated−hours attribute']/div[2]");
41 private By descriptionField = By.xpath("//div[@class='description']/div[2]/p");
42
43
44 public void clickNewTicketLink() {
45 driver .findElement(newTicketLink).click();
46 }
47
48 public int getTrackerSize(String [] tracker) {
49 return tracker .length;
50 }
51
52 public void selTracker(String trackerLabel) {
53 new Select(driver .findElement(trackerSel)).selectByVisibleText(trackerLabel);
54 }
55
56 public String getOptionPriority(Integer numOption) {
57 return driver .findElement(By.xpath("//∗[@id='issue_priority_id']/option[" + numOption + "]")).getAttribute("value");
58 }
59
60 public int getNumOptionsVersion() {
61 String dueDate = dateFormat.format(date);
62 }
63
64 public String getOptionFixedVersion(Integer numOption) {
65 return driver .findElement(By.xpath("//∗[@id='issue_fixed_version_id']/option[" + numOption +

"]")).getAttribute("value");
66 }
67
68 public int getNumOptionsPriority() {
69 return (Integer) driver.findElements(priorityOptions).size();
70 }
71
72 public String getOptionType(Integer numOption) {
73 return driver .findElement(By.xpath("//∗[@id='issue_custom_field_values_1']/option[" + numOption +

"]")).getAttribute("value");
74 }
75
76 public int getNumOptionsTicketType() {
77 return (Integer) driver.findElements(ticketTypeOptions).size();
78 }
79
80 public String getOptionTicketType(Integer numOption) {
81 return driver .findElement(By.xpath("//∗[@id='issue_custom_field_values_8']/option[" + numOption +

"]")).getAttribute("value");
82 }
83
84 public void txtIssueSubject(String subject) {
85 driver .findElement(issueSubject).clear () ;
86 driver .findElement(issueSubject).sendKeys(subject);
87 }
88
89 public void txtDescription(String description) {
90 driver .findElement(issueDescription).clear () ;
91 driver .findElement(issueDescription).sendKeys(description);
92 }
93
94 public void selIssueStatus () {
95 new Select(driver .findElement(issueStatus)).selectByIndex(0);
96 }
97
98 public String getPrioritySelected () {

79

A – Automation Scripts

99 return driver .findElement(issueStatus).getText();
100 }
101
102 public void selIssueAssignedTo(String currentUser) {
103 new Select(driver.findElement(issueAssignedTo)).selectByVisibleText(currentUser);
104 }
105
106 public void selIssueFixedVersion(String version) {
107 new Select(driver .findElement(issueFixedVersion)).selectByValue(version);
108 }
109
110 public void selIssueType(String type) {
111 new Select(driver.findElement(issueType)).selectByVisibleText(type);
112 }
113
114 public String getIssueStartDate() {
115 return driver .findElement(issueStartDate).getAttribute("value");
116 }
117
118 public void txtIssueDueDate(String dueDate) {
119 driver .findElement(issueDueDate).clear();
120 driver .findElement(issueDueDate).sendKeys(dueDate);
121 }
122
123 public void txtIssueEstimatedHours(String randomHours) {
124 driver .findElement(issueEstimatedHours).clear();
125 driver .findElement(issueEstimatedHours).sendKeys(randomHours);
126 }
127
128 public void clickSelectUser (String currentUser) {
129 driver .findElement(By.xpath("//∗['watchers_inputs']/label[contains(.,' " + currentUser + "')]/input")). click () ;
130 }
131
132 public void clickCreateissue () {
133 driver .findElement(createIssue). click () ;
134 }
135
136 public void verifyIssueCreation() {
137 try {
138 assertEquals("flash notice" , driver .findElement(confirmationMessage).getAttribute("class"));
139 } catch (Error e) {
140 verificationErrors .append(e.toString());
141 }
142 }
143
144 public String getNumberTicketCreatedAux() {
145 return driver .findElement(confirmationMessage).getText();
146 }
147
148 public void verifyTicketCreated(String trackerLabel, String numberTicketCreated) {
149 try {
150 assertEquals(trackerLabel + " #" + numberTicketCreated, driver.findElement(numberTicketField).getText());
151 } catch (Error e) {
152 verificationErrors .append(e.toString());
153 }
154 }
155
156 public void verifySubject(String subject) {
157 try {
158 assertEquals(subject, driver.findElement(subjectField).getText());
159 } catch (Error e) {
160 verificationErrors .append(e.toString());
161 }
162 }
163
164 public void verifyCurrentUser(String currentUser) {
165 try {
166 assertEquals(currentUser, driver.findElement(currentUserField).getText());
167 } catch (Error e) {
168 verificationErrors .append(e.toString());
169 }
170 }
171
172 public void verifyNewWord() {
173 try {
174 assertEquals("New", driver.findElement(newField).getText());
175 } catch (Error e) {
176 verificationErrors .append(e.toString());
177 }
178 }
179
180 public void verifyPriority (String priority) {
181 try {
182 assertEquals(priority, driver.findElement(priorityField).getText());
183 } catch (Error e) {
184 verificationErrors .append(e.toString());

80

A – Automation Scripts

185 }
186 }
187
188 public void verifyCurrentUserTable(String currentUser) {
189 try {
190 assertEquals(currentUser, driver.findElement(currentUserTableField).getText());
191 } catch (Error e) {
192 verificationErrors .append(e.toString());
193 }
194 }
195
196 public void waitForVersion() throws InterruptedException {
197 for (int second = 0;; second++) {
198 if (second >= 60) fail("timeout");
199 try { if (driver .findElement(versionField).isDisplayed())
200 break; } catch (Exception e) {}
201 Thread.sleep(1000);
202 }
203 }
204
205 public void verifyVersion(String version) {
206 try {
207 assertEquals(version, driver.findElement(versionField).getText());
208 } catch (Error e) {
209 verificationErrors .append(e.toString());
210 }
211 }
212
213 public void verifyType(String type) {
214 try {
215 assertEquals(type, driver.findElement(typeField).getText());
216 } catch (Error e) {
217 verificationErrors .append(e.toString());
218 }
219 }
220
221 public void verifyStartDate(String startDate) {
222 try {
223 assertEquals(startDate, driver.findElement(startDateField).getText());
224 } catch (Error e) {
225 verificationErrors .append(e.toString());
226 }
227 }
228
229 public void verifyDueDate(String dueDate) {
230 try {
231 assertEquals(dueDate, driver.findElement(dueDateField).getText());
232 } catch (Error e) {
233 verificationErrors .append(e.toString());
234 }
235 }
236
237 public void verifyRandomHours(String randomHours) {
238 try {
239 assertEquals(randomHours + ".00 h", driver.findElement(randomHoursField).getText());
240 } catch (Error e) {
241 verificationErrors .append(e.toString());
242 }
243 }
244
245 public void verifyDescription(String description) {
246 try {
247 assertEquals(assertEquals(description, driver.findElement(descriptionField).getText());
248 } catch (Error e) {
249 verificationErrors .append(e.toString());
250 }
251 }
252
253 public void verifyErrors () {
254 String verificationErrorString = verificationErrors .toString() ;
255
256 if (! "" .equals(verificationErrorString)) {
257 fail (verificationErrorString) ;
258 }
259 }
260 }

81

A – Automation Scripts

A.3 Selenium C# WebDriver

In C#, there are two classes, the first one is named NewTicket and is the test to be
executed using C# programming language.

1 using RedMine.src.main.utility;
2 using RedMine.src.main.pageObjects;
3 using System;
4 using System.Collections.Generic;
5 using OpenQA.Selenium;
6
7 namespace RedMine.src.test.test {
8 public class NewTicket {
9 private GlobalMethods global;

10 private NewTicketPage newTicketPage;
11
12 public void testNewTicket() {
13 global = new GlobalMethods();
14 newTicketPage = new NewTicketPage();
15 long startTimeNewTicket = global.getTime();
16
17 //Data Entry
18 String initialDescription = "Description field test Automation−";
19 String initialSubject = "Subject field test Automation−";
20 String currentUser = global.getCurrentUser();
21
22 //Variables
23 String [] tracker = { "Bug", "Task", "Fix" };
24 List<String> priorityArray = new List<String>();
25 List<String> versionArray = new List<String>();
26 List<String> typeArray = new List<String>();
27
28
29 // CREATE NEW TICKET
30 newTicketPage.clickNewTicketLink();
31 int sizeTracker = newTicketPage.getTrackerSize(tracker);
32 int randomTracker = global.generateRandomNumber(sizeTracker, true);
33 global .setTrackerLabel(tracker[randomTracker]);
34 newTicketPage.selTracker(tracker[randomTracker]);
35 String dateTime = global.getTime().ToString();
36 String subject = initialSubject + dateTime;
37 String description = initialDescription + dateTime;
38 int numOptionsPriority = newTicketPage.getNumOptionsPriority();
39
40 for(int i = 1; i <= numOptionsPriority; i++) {
41 String priorityAUx = newTicketPage.getOptionPriority(i);
42 priorityArray.Add(priorityAUx);
43 }
44 int randomPriority = global.generateRandomNumber(numOptionsPriority, true);
45 String priority = priorityArray[randomPriority].ToString();
46 int numOptionsVersion = newTicketPage.getNumOptionsVersion();
47
48 for(int i = 1; i <= numOptionsVersion; i++) {
49 String versionAux = "";
50
51 try {
52 versionAux = newTicketPage.getOptionFixedVersion(i);
53 }
54 catch (StaleElementReferenceException e) {
55 versionAux = newTicketPage.getOptionFixedVersion(i);
56 }
57 versionArray.Add(versionAux);
58 }
59 int randomVersion = global.generateRandomNumber(numOptionsVersion, true);
60 String version = versionArray[randomVersion].ToString();
61 String type = "";
62
63 if (tracker [randomTracker] == "Bug" || tracker[randomTracker] == "Fix") {
64 int numOptionsType = newTicketPage.getNumOptionsPriority();
65
66 for(int i = 1; i <= numOptionsType; i++) {
67 String typeAux = newTicketPage.getOptionType(i);
68 typeArray.Add(typeAux);
69 }
70 int randomType = global.generateRandomNumber(numOptionsType, true);
71 type = typeArray[randomType].ToString();
72 }
73 newTicketPage.txtIssueSubject(subject);
74 newTicketPage.txtDescription(description);
75 newTicketPage.selIssueStatus();
76 priority = newTicketPage.getPrioritySelected();

82

A – Automation Scripts

77 newTicketPage.selIssueAssignedTo(currentUser);
78 newTicketPage.selIssueFixedVersion(version);
79
80 if (tracker [randomTracker] == "Bug" || tracker[randomTracker] == "Fix") {
81 newTicketPage.selIssueType(type);
82 }
83 String startDate = newTicketPage.getIssueStartDate();
84 String dueDate = DateTime.Now.AddMonths(1).ToString("yyyy-MM-dd");
85 newTicketPage.txtIssueDueDate(dueDate);
86 int randomHours = global.generateRandomNumber(9, false);
87 newTicketPage.txtIssueEstimatedHours(randomHours.ToString());
88 newTicketPage.clickSelectUser(currentUser);
89 newTicketPage.clickCreateissue();
90
91 // CHECK NEW TICKET
92 newTicketPage.verifyIssueCreation();
93 String numberTicketCreatedAux = newTicketPage.getNumberTicketCreatedAux();
94 String [] ticketArrayAux = numberTicketCreatedAux.Split(' ');
95 String [] ticketArray = ticketArrayAux[1].Split('#');
96 String numberTicketCreated = ticketArray[1];
97 newTicketPage.verifyTicketCreated(tracker[randomTracker], numberTicketCreated);
98 global .setNumberTicketCreated(numberTicketCreated);
99 newTicketPage.verifySubject(subject);

100 global .setSubject(subject) ;
101 newTicketPage.verifyCurrentUser(currentUser);
102 newTicketPage.verifyNewWord();
103 newTicketPage.verifyPriority(priority) ;
104 global . setPriority (priority) ;
105 newTicketPage.verifyCurrentUserTable(currentUser);
106 newTicketPage.verifyVersion(version);
107 global .setVersion(version) ;
108
109 if (tracker [randomTracker] == "Bug" || tracker[randomTracker] == "Fix") {
110 newTicketPage.verifyType(type);
111 global .setType(type);
112 }
113 newTicketPage.verifyStartDate(startDate);
114 global .setStartDate(startDate);
115 newTicketPage.verifyDueDate(dueDate);
116 global .setDueDate(dueDate);
117 newTicketPage.verifyRandomHours(randomHours.ToString());
118 global .setRandomHours(randomHours.ToString());
119 global .setRandomTracker(randomTracker);
120 newTicketPage.verifyDescription(description);
121 long endTimeNewTicket = global.getTime();
122 Console.WriteLine("New Ticket execution time was: " + global.getTimeExecution(startTimeNewTicket,

endTimeNewTicket));
123 }
124 }
125 }

The second one is named NewTicketPage and consists in the UI elements with their
locators and the actions (methods) performed that are called from the NewTicket class
using C# programming language, it means, it’s the implementation of the Page Object
Pattern.

1 using OpenQA.Selenium;
2 using RedMine.src.test.testSuite ;
3 using System;
4 using OpenQA.Selenium.Support.UI;
5 using System.Diagnostics;
6 using System.Text;
7 using NUnit.Framework;
8
9 namespace RedMine.src.main.pageObjects {

10 class NewTicketPage {
11 private IWebDriver driver = TestSuite.driver;
12 private StringBuilder verificationErrors = new StringBuilder();
13
14 private By newTicketLink = By.LinkText("New ticket");
15 private By trackerSel = By.XPath("//∗[@id='issue_tracker_id']");
16 private By versionOptions = By.XPath("//∗[@id='issue_fixed_version_id']/option");
17 private By priorityOptions = By.XPath("//∗[@id='issue_priority_id']/option");
18 private By ticketTypeOptions = By.XPath("//∗[@id='issue_custom_field_values_8']/option");
19 private By issueSubject = By.Id("issue_subject");
20 private By issueDescription = By.Id("issue_description");
21 private By issueStatus = By.Id("issue_status_id");
22 private By issueAssignedTo = By.Id("issue_assigned_to_id");
23 private By issueFixedVersion = By.Id("issue_fixed_version_id");

83

A – Automation Scripts

24 private By issueType = By.Id("issue_custom_field_values_1");
25 private By issueStartDate = By.XPath("//∗[@id='issue_start_date']");
26 private By issueDueDate = By.XPath("//∗[@id='issue_due_date']");
27 private By issueEstimatedHours = By.Id("issue_estimated_hours");
28 private By createIssue = By.CssSelector("#issue−form > input[name=\"commit\"]");
29 private By confirmationMessage = By.Id("flash_notice");
30 private By numberTicketField = By.XPath("//∗[@id='content']/h2");
31 private By subjectField = By.XPath("//div[@class='subject']/div/h3");
32 private By currentUserField = By.XPath("//∗[@id='content']/div[3]/p/a[1]");
33 private By newField = By.XPath("//div[@class='status attribute']/div[2]");
34 private By priorityField = By.XPath("//div[@class='priority attribute']/div[2]") ;
35 private By currentUserTableField = By.XPath("//div[@class='assigned−to attribute']/div[2]/a");
36 private By versionField = By.XPath("//div[@class='fixed−version attribute']/div[2]/a");
37 private By typeField = By.XPath("//div[@class='cf_1 attribute']/div[2]");
38 private By startDateField = By.XPath("//div[@class='start−date attribute']/div[2]");
39 private By dueDateField = By.XPath("//div[@class='due−date attribute']/div[2]");
40 private By randomHoursField = By.XPath("//div[@class='estimated−hours attribute']/div[2]");
41 private By ticketTypeField = By.XPath("//∗[@id='content']/div[3]/div[2]/div[2]/div[2]/div/div[2]");
42 private By descriptionField = By.XPath("//div[@class='description']/div[2]/p");
43
44
45 public void clickNewTicketLink() {
46 driver .FindElement(newTicketLink).Click();
47 }
48
49 public int getTrackerSize(String [] tracker) {
50 return tracker .Length;
51 }
52
53 public void selTracker(String trackerLabel) {
54 new SelectElement(driver.FindElement(trackerSel)).SelectByText(trackerLabel);
55 }
56
57 public String getOptionPriority(int numOption) {
58 return driver .FindElement(By.XPath("//∗[@id='issue_priority_id']/option[" + numOption +

"]")).GetAttribute("value");
59 }
60
61 public int getNumOptionsVersion() {
62 return (int)driver.FindElements(versionOptions).Count;
63 }
64
65 public String getOptionFixedVersion(int numOption) {
66 return driver .FindElement(By.XPath("//∗[@id='issue_fixed_version_id']/option[" + numOption +

"]")).GetAttribute("value");
67 }
68
69 public int getNumOptionsPriority() {
70 return (int)driver.FindElements(priorityOptions).Count;
71 }
72
73 public String getOptionType(int numOption) {
74 return driver .FindElement(By.XPath("//∗[@id='issue_custom_field_values_1']/option[" + numOption +

"]")).GetAttribute("value");
75 }
76
77 public int getNumOptionsTicketType() {
78 return (int)driver.FindElements(ticketTypeOptions).Count;
79 }
80
81 public String getOptionTicketType(int numOption) {
82 return driver .FindElement(By.XPath("//∗[@id='issue_custom_field_values_8']/option[" + numOption +

"]")).GetAttribute("value");
83 }
84
85 public void txtIssueSubject(String subject) {
86 driver .FindElement(issueSubject).Clear();
87 driver .FindElement(issueSubject).SendKeys(subject);
88 }
89
90 public void txtDescription(String description) {
91 driver .FindElement(issueDescription).Clear();
92 driver .FindElement(issueDescription).SendKeys(description);
93 }
94
95 public void selIssueStatus () {
96 new SelectElement(driver.FindElement(issueStatus)).SelectByIndex(0);
97 }
98
99 public String getPrioritySelected () {

100 return driver .FindElement(issueStatus).Text;
101 }
102
103 public void selIssueAssignedTo(String currentUser) {
104 new SelectElement(driver.FindElement(issueAssignedTo)).SelectByText(currentUser);
105 }

84

A – Automation Scripts

106
107 public void selIssueFixedVersion(String version) {
108 driver .FindElement(issueFixedVersion)).SelectByValue(version);
109 }
110
111 public void selIssueType(String type) {
112 new SelectElement(driver.FindElement(issueType)).SelectByText(type);
113 }
114
115 public String getIssueStartDate() {
116 return driver .FindElement(issueStartDate).GetAttribute("value");
117 }
118
119 public void txtIssueDueDate(String dueDate) {
120 driver .FindElement(issueDueDate).Clear();
121 driver .FindElement(issueDueDate).SendKeys(dueDate);
122 }
123
124 public void txtIssueEstimatedHours(String randomHours) {
125 driver .FindElement(issueEstimatedHours).Clear();
126 driver .FindElement(issueEstimatedHours).SendKeys(randomHours);
127 }
128
129 public void clickSelectUser (String currentUser) {
130 driver .FindElement(By.XPath("//∗['watchers_inputs']/label[contains(.,'" + currentUser + "')]/input")).Click();
131 }
132
133 public void clickCreateissue () {
134 driver .FindElement(createIssue).Click();
135 }
136
137 public void verifyIssueCreation() {
138 try {
139 Assert.AreEqual("flash notice" , driver .FindElement(confirmationMessage).GetAttribute("class"));
140 }
141 catch (Exception e) {
142 verificationErrors .Append(e.ToString());
143 }
144 }
145
146 public String getNumberTicketCreatedAux() {
147 return driver .FindElement(confirmationMessage).Text;
148 }
149
150 public void verifyTicketCreated(String trackerLabel, String numberTicketCreated) {
151 try {
152 Assert.AreEqual(trackerLabel + " #" + numberTicketCreated, driver.FindElement(numberTicketField).Text);
153 }
154 catch (Exception e) {
155 verificationErrors .Append(e.ToString());
156 }
157 }
158
159 public void verifySubject(String subject) {
160 try {
161 Assert.AreEqual(subject, driver.FindElement(subjectField).Text);
162 }
163 catch (Exception e) {
164 verificationErrors .Append(e.ToString());
165 }
166 }
167
168 public void verifyCurrentUser(String currentUser) {
169 try {
170 Assert.AreEqual(currentUser, driver.FindElement(currentUserField).Text);
171 }
172 catch (Exception e) {
173 verificationErrors .Append(e.ToString());
174 }
175 }
176
177 public void verifyNewWord() {
178 try {
179 Assert.AreEqual("New", driver.FindElement(newField).Text);
180 }
181 catch (Exception e) {
182 verificationErrors .Append(e.ToString());
183 }
184 }
185
186 public void verifyPriority (String priority) {
187 try {
188 Assert.AreEqual(priority, driver.FindElement(priorityField).Text);
189 }
190 catch (Exception e) {
191 verificationErrors .Append(e.ToString());

85

A – Automation Scripts

192 }
193 }
194
195 public void verifyCurrentUserTable(String currentUser) {
196 try {
197 Assert.AreEqual(currentUser, driver.FindElement(currentUserTableField).Text);
198 }
199 catch (Exception e) {
200 verificationErrors .Append(e.ToString());
201 }
202 }
203
204 public void verifyVersion(String version) {
205 try {
206 Assert.AreEqual(version, driver.FindElement(versionField).Text);
207 }
208 catch (Exception e) {
209 verificationErrors .Append(e.ToString());
210 }
211 }
212
213 public void verifyType(String type) {
214 try {
215 Assert.AreEqual(type, driver.FindElement(typeField).Text);
216 }
217 catch (Exception e) {
218 verificationErrors .Append(e.ToString());
219 }
220 }
221
222 public void verifyStartDate(String startDate) {
223 try {
224 Assert.AreEqual(startDate, driver.FindElement(startDateField).Text);
225 }
226 catch (Exception e) {
227 verificationErrors .Append(e.ToString());
228 }
229 }
230
231 public void verifyDueDate(String dueDate) {
232 try {
233 Assert.AreEqual(dueDate, driver.FindElement(dueDateField).Text);
234 }
235 catch (Exception e) {
236 verificationErrors .Append(e.ToString());
237 }
238 }
239
240 public void verifyRandomHours(String randomHours) {
241 try {
242 Assert.AreEqual(randomHours + ".00 h", driver.FindElement(randomHoursField).Text);
243 }
244 catch (Exception e) {
245 verificationErrors .Append(e.ToString());
246 }
247 }
248
249 public void verifyDescription(String description) {
250 try {
251 Assert.AreEqual(description, driver.FindElement(descriptionField).Text);
252 }
253 catch (Exception e) {
254 verificationErrors .Append(e.ToString());
255 }
256 }
257
258 public void verifyErrors () {
259 String verificationErrorString = verificationErrors .ToString();
260
261 if (! "" .Equals(verificationErrorString)) {
262 Debug.Fail(verificationErrorString) ;
263 }
264 }
265 }
266 }

The red lines indicate only a syntax difference, mainly between Java and C#, because
for the native language of Selenium IDE, the syntax is different from any programming
language. A real difference in the code can be seen in line 70 of Selenium IDE, 87 to 93 of
Java (NewTicket.java file), and 84 of C# (NewTicket.cs file). In these lines of code, the
described functionality consist in adding a month to the current date. It can be noted

86

A – Automation Scripts

that such addition is easier to be done in C#, while in Java several lines of code are
needed, and in Selenium IDE, JavaScript language is used so the logic must be written
in one line, what makes it more difficult.

A.4 Scripts
In the following link, all the scripts created during this thesis can be found, for the small,
medium and large application in the three automation tools, Selenium IDE, Java and
C#. They are going to be available at least until 31/12/2019, after that the scripts can
be requested to santip176@hotmail.com.

https://www.dropbox.com/s/0obdi2go111ebgs/Automation%20Scripts.zip?dl=0

A.5 Description of the test cases
In the tables A.2, A.3, and A.4, the name of all the test cases that were automated in
this thesis are shown. In the table A.2, the test case for the small application is shown.
In the table A.3. the test cases for the medium application are shown, and in the table
A.4, the test cases for the large application are shown.

Test Script Test Case
AddTask Add new task

Table A.2: Test Case for the small application.

Test Script Test Case
Login Login

Overview Get the current user
Tickets overview

NewTicket Create a new ticket
Verify the creation of the new ticket

SearchTicket Search a ticket

TimeTracking
Add a new time
Verify the time added
Verify the total time

Table A.3: Test Cases for the medium application.

Test Script Test Case
Login Login

Security

Add a new role
Delete a role
Add a new user

87

A – Automation Scripts

Assign role to user
Modify a user
Delete a user
Add pages to role
Remove pages to role
Add functions to role
Remove functions to role

Workflow
Delete workflow
Search workflow
Publish workflow

Metadata

Create metadata numeric type
Create metadata multiple choice type
Create metadata multiple choice with dependencies type
Delete a metadata
Create a set
Add a metadata to a set
Delete a set

Import Import file with workflows

Browse & Search

Search using special characters
Search using blank space
Search a project with the complete name
Search a project with a word of the project
Search a project with a word of the procedure
Search a procedure with the complete name
Search a procedure with a word of the procedure
Filter by update year
Filter by update month
Filter by discipline
Filter by category
Filter by subcategory
Filter by product year
Export project through the export button
Export project through the export AC button
See properties to procedure
See properties to image
Export project through the export icon
Export project through the export AC icon
Filter by show only my content
Filter by completed workflow
See all pages through pagination
See more data through items dropdown

Dashboard

Filter by product title of the section one
Filter by project title of the section one
Filter by current workflow task stage of the section one

88

A – Automation Scripts

Filter by product title of the section two
Filter by project title of the section two
Filter by current workflow task stage of the section two
Filter by current assigned user of the section two
Pass procedures to next step
Edit file through task properties
Download file through task properties
Replace file through task properties
Reassign task
Search the project by partial name of the project
Search the project by complete name of the project
Search the project by partial task stage
Search the project by complete task stage
Search the project by creation date
Search the project by assigned user
Search the project by task due day
Search the project by due date
Search the project filtering by show all assignments
Search the project filtering by show my assignations
Search using special characters
Search using blank space
Order by due date
Order by project name
Order by task stage
Order by creation date
Order by assigned user
Order by task due day
Filter by all content
Filter by pass due
Filter by due this week
Filter by next week
Filter by due soon
Edit the project from option pencil
Validate the option edit pencil
Download file through button windows main
Assign the task of the option task stage
Assign the project of the option assigned user

Table A.4: Test Cases for the large application.

89

Bibliography

[1] Alan J. Perlis. “Epigrams on Programming”. In: (1982).
[2] Bertrand Meyer. “Seven Principles of Software Testing”. In: Computer 41 (2008),

pp. 99–101. issn: 0018-9162.
[3] Robert V. Binder. Testing object-oriented systems: models, and tools. Addison-

Wesley Longman Publishing Co., Inc., 1999. isbn: 0-201-80938-9.
[4] Pierre Bourque, R. E Fairley, and IEEE Computer Society. Guide to the software

engineering body of knowledge. 3rd ed. 2014. isbn: 0-7695-5166-1.
[5] Glenford J. Myers, Tom Badgett, and Corey Sandler. The Art of Software Testing.

2nd. John Wiley & Sons, Inc., 2004. isbn: 0-471-46912-2.
[6] Robert L. Glass. Facts and Fallacies of Software Engineering”. 1st. Addison Wesley,

2002. isbn: 0-321-11742-5.
[7] IEEE Standard Glossary of Software Enginnering Terminology. Institute of Elec-

trical and Electronics Engineers, 1990. isbn: 1-55937-067-X.
[8] “General Principles of Software Validation; Final Guidance for Industry and FDA

Staff”. In: (2002).
[9] Cem Kaner. “The Ongoing Revolution in Software Testing”. In: (2004).
[10] Shiva Kumar. “An Effective Handbook for Implementing Software Test Strategies”.

In: (2001).
[11] Roger S. Pressman. Software engineering: a practitioner’s approach. 7th ed. New

York: McGraw-Hill Higher Education, 2010. isbn: 978-0-07-337597-7.
[12] Stefan J. Galler and Bernhard K. Aichernig. “Survey on test data generation

tools: An evaluation of white- and gray-box testing tools for C#, C++, Eiffel,
and Java”. In: International Journal on Software Tools for Technology Transfer
(2014), pp. 727–751. issn: 1433-2779, 1433-2787.

[13] Mian Asbat Ahmad. “New Strategies for Automated Random Testing”. PhD thesis.
York, England: The University of York, York, 2013.

[14] Ian Sommerville. Software Engineering. 7th ed. Addison Wesley, 2004. isbn: 978-0-
321-21026-5.

[15] Erich Gamma and Kent Beck. “Junit A Cook’s Tour”. In: 4 (1999).

90

BIBLIOGRAPHY

[16] Andreas Leitner et al. “Reconciling Manual and Automated Testing: The AutoTest
Experience”. In: 2007 40th Annual Hawaii International Conference on System
Sciences (HICSS’07). Waikoloa, HI, USA: IEEE, 2007.

[17] Cem Kaner. “Pitfalls and Strategies in Automated Testing”. In: (1997).
[18] John Watkins. Testing IT: An Off-the-Shelf Software Testing Process. 2001. isbn:

0-521-79546-X.
[19] E. Miller. “Advanced methods in automated software test”. In: Proceedings. Con-

ference on Software Maintenance 1990. San Diego, CA, USA: IEEE Comput. Soc.
Press, 1990. isbn: 978-0-8186-2091-1.

[20] Shivprasad Koirala and Sham Sheikh. Software testing interview questions. Com-
puter science series. Hingham, Mass: Infinity Science Press, 2008. isbn: 978-1-
934015-24-7.

[21] James Bach. Agile Test Automation. 2003.
[22] Elfriede Dustin, Thom Garrett, and Bernie Gauf. Implementing Automated Software

Testing: How to lower costs while raising quality. 1st. Pearson Education, Inc, 2009.
isbn: 978-0-321-58051-1.

[23] Elfriede Dustin, Jeff Rashka, and John Paul. Automated software testing: Intro-
duction, management, and performance. 1st. Addison-Wesley Longman Publishing
Co., Inc., 1999. isbn: 0-201-43287-0.

[24] Stefan Berner, Roland Weber, and Rudolf K Keller. “Observations and Lessons
Learned from Automated Testing”. In: 2005, pp. 571–579.

[25] Mark Fewster and Dorothy Graham. “Software Test Automation: Effective Use of
Test Execution Tools. Published by Addison-Wesley, Harlow, Essex, U.K., 1999.
ISBN: 0-201-33140-3, 574 pages”. In: Software Testing, Verification and Reliability
(1999). issn: 0960-0833, 1099-1689.

[26] Randall W Rice. “Surviving the Top Ten Challenges of Software Test Automation”.
In: 2003.

[27] David Hunt. Software Test-on-Demand - A Smarter Way. 2012.
[28] Selenium Project. Selenium Documentation. Copyright 2008–2012. url: http://

docs.seleniumhq.org/docs/ (visited on 10/16/2018).
[29] Raimund Hocke. Sikuli. Copyright 2017. url: http://sikulix.com/ (visited on

10/16/2018).
[30] Auqtus AB. Eye Automate. Copyright 2018. url: http://www.eyeautomate.com/

(visited on 10/16/2018).
[31] SmartBear Software. Test Complete Features. Copyright 2018. url: https : / /

smartbear.com/product/testcomplete/features/ (visited on 10/16/2018).
[32] UISpec4J. 2014. url: http : / / github . com / UISpec4J / UISpec4J (visited on

10/16/2018).
[33] Christian Hargraves. Jameleon - An automated testing tool. Copyright 2003–2008.

url: http://jameleon.sourceforge.net/ (visited on 10/16/2018).

91

http://docs.seleniumhq.org/docs/
http://docs.seleniumhq.org/docs/
http://sikulix.com/
http://www.eyeautomate.com/
https://smartbear.com/product/testcomplete/features/
https://smartbear.com/product/testcomplete/features/
http://github.com/UISpec4J/UISpec4J
http://jameleon.sourceforge.net/

BIBLIOGRAPHY

[34] Worksoft Certify. Copyright 2018. url: http://www.worksoft.com/products/
worksoft-certify (visited on 10/16/2018).

[35] Qualitia. Copyright 2018. url: http : / / www . qualitiasoft . com/ (visited on
10/16/2018).

[36] Viktor Zigo. Xpather. Copyright 2005–2009. url: http://xpath.alephzarro.com/
(visited on 10/16/2018).

[37] Mike Cohn. Succeeding with Agile: Software Development Using Scrum. 1st. Addison
Wesley Professional, 2009. isbn: 0-321-57936-4.

[38] Hui Liu and Hee Beng Kuan Tan. “Covering code behavior on input validation in
functional testing”. In: Information and Software Technology 51 (2009), pp. 546–
553. issn: 09505849.

[39] Pankaj Jalote Vipindeep V. “List of Common Bugs and Programming Practices to
avoid them”. In: (2005).

[40] Raghuram Bharathan. Apache Maven Cookbook. 2015. isbn: 1-78528-612-9.
[41] JUnit. JUnit. Copyright 2002–2018. url: http://www.junit.org/junit4/ (visited

on 10/16/2018).
[42] Selenium. Page Objects. 2015. url: http://github.com/SeleniumHQ/selenium/

wiki/PageObjects (visited on 10/16/2018).
[43] Linda Hayes. “Automated Testing Handbook”. In: (1999).
[44] IEEE Spectrum. The 2018 Top Programming Languages. Copyright 2018. url:

http://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-
languages (visited on 10/16/2018).

92

http://www.worksoft.com/products/worksoft-certify
http://www.worksoft.com/products/worksoft-certify
http://www.qualitiasoft.com/
http://xpath.alephzarro.com/
http://www.junit.org/junit4/
http://github.com/SeleniumHQ/selenium/wiki/PageObjects
http://github.com/SeleniumHQ/selenium/wiki/PageObjects
http://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
http://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages

	List of Figures
	List of Tables
	Introduction
	Limitations of Software Testing
	Motivation
	Thesis objectives
	Main objective
	Specific objectives

	Structure of the thesis

	Background
	Definition of Testing
	Test Strategies
	Testing Types
	Black Box Testing
	White Box Testing

	Testing Levels
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing

	Test Automation
	Benefits and challenges of automated software testing
	Approaches to Test Automation

	Considered automation testing tools
	Selenium IDE
	Selenium WebDriver

	Methodology
	Comparison of programming languages
	Classification of web applications
	Description of the methodology
	Stage I: Analysis for automation
	Stage II. Test analysis
	Stage III. Automation
	Stage IV. Execution and stabilization
	Stage V. Results report

	Description of the case studies
	Small application
	Medium application
	Large application
	Implementation of the methodology in the selected applications
	Stage I: Analysis for automation
	Stage II: Test analysis
	Stage III: Automation
	Stage IV: Execution and stabilization
	Stage V: Results report

	Results
	Selenium IDE
	Add-ons

	Java Selenium WebDriver
	Maven
	JUnit

	C# Selenium WebDriver
	NuGet Package
	NUnit

	Page Object pattern
	Test execution
	Analysis of the results
	Environment installation and configuration complexity
	Learning curve
	Creation time of the test scenarios
	Lines of code
	Execution time
	Number of errors
	Successful execution
	Code maintainability

	Selection of the automation tool

	Conclusions and Future Work
	Automation Scripts
	Selenium IDE
	Selenium Java WebDriver
	Selenium C# WebDriver
	Scripts
	Description of the test cases

	Bibliography

