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Abstract

Goal-oriented dialogue systems are designed to help people in daily life to
accomplish various tasks, such as restaurant reservation, movie ticket book-
ing. Such systems assist user through a series of conversations, therefore it
is important to keep track of the user goal. Dialogue State Tracking (DST)
is such a component that extracts the user goal at each user turn by inter-
preting the user utterance. DST encodes the user goal as a set of dialogue
states, i.e. slot-value pairs. The dialogue states are then used by the dialogue
system to issue the corresponding API call to the backend database, in such
a manner to accomplish the tasks.

Many state-of-the-art DST approaches operate on a predefined ontology, per-
forming classification over a full candidate-value list, i.e. all slots and their
corresponding values. However, such method is infeasible or impractical in
the real-world system. First, oftentimes the backend database is maintained
by service providers, and exposed through some external APIs, it is infea-
sible that DST can access to all the possible values for all slots. Second,
even the entire database is available, the values may keep changing over time
or simply countless, for example the showtimes in a theatre changes every
once in a while, or the number of movies in an online streaming website
can be huge. In addition, the model size of these systems is proportional
to the number of slots, with an ever-increasing number of slots, it leads to
the performance deficit, and it also requires the model to perform constantly
updating or re-training. Furthermore, dialogue systems need to support an
increasing number of services, as a consequence DST may encounter unseen
slots. A DST that is built under such an approach can only label them as
unknown without further classification.

In this work, we present a Schema-Guided approach based on pretrained
BERT model to address the zero-shot state tracking challenge. In particular,
we attend to a special setting where target slot value can be found as word
segments in the dialogue context. We construct the input sequence as a pair
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of sentences where the former is the dialogue context consists of preceding
system utterance (if exists) and current user utterance, and the latter is the
description of a slot in natural language, such description is obtained through
the guided schema. Our model consists of BERT as the encoder, a classi-
fication module and a span prediction module. We decouple the dialogue
state tracking problem into a Next Sentence Prediction like task and a Ques-
tion Answering task. Each input sequence is encoded by BERT to obtain
contextualized sentence-level and token-level representations. The sentence-
level representation is then used by the classification module to produce a
Boolean value indicating whether the value of the described slot is present
in the dialogue context. Likewise, the token-level representations are used
by the span prediction module to generate the start and end positions for
this slot value. In the end, the dialogue state update mechanism derives the
output. Such procedure iterates over all the input sequences at each conver-
sation turn, yield the final outputs.

Empirical evaluation shows the proposed model achieves better performance
than the baseline model. Rather than treating the slots as labels, the model
extracts slot value from the dialogue context by interpreting the semantics
of the slots. Thanks to BERT’s contextualized representation, it allows our
approach to be effective. Furthermore, it demonstrates transfer learning with
language models has become an integral part of many language understand-
ing problems.

ii



Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Goal-oriented Dialogue Systems . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Objective . . . . . . . . . . . . . . . . . . . . 1
1.3 Task Description . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State-of-the-art 3
2.1 Word Embedding . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 GloVe . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 fastText . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 ELMo . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Dialogue State Tracking . . . . . . . . . . . . . . . . . . . . . 21

3 Dataset 24
3.1 Dataset Overview . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . 29

4 Approach 32
4.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Encoding Module . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Classification Module . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Span Prediction Module . . . . . . . . . . . . . . . . . . . . . 35
4.5 Dialogue State Update Mechanism . . . . . . . . . . . . . . . 36

iii



5 Experimental Setup 37
5.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Framework and Libraries . . . . . . . . . . . . . . . . . . . . . 38
5.4 Execution Environment . . . . . . . . . . . . . . . . . . . . . . 39

6 Results and Discussion 40
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Conclusion and Future Works 45
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

References 47

iv



List of Figures

2.1 Two model architectures introduced by Mikolov et al. The
CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given
the current word [13]. . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Weighting function f with α = 3/4 [18]. . . . . . . . . . . . . . 12
2.3 Model architecture of the Transformer [26]. . . . . . . . . . . . 16
2.4 Scaled Dot-Product Attention (left). Multi-Head Attention

(right) consists of several attention layers running in parallel
[26]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 As we encode the word ”it”, one attention head is focusing
most on ”the animal”, while another is focusing on ”tired” –
in a sense, the model’s representation of the word ”it” bakes
in some of the representation of both ”animal” and ”tired” [1]. 18

2.6 BERT input representation [6]. . . . . . . . . . . . . . . . . . 19
2.7 Illustrations of Fine-tuning BERT on Different Tasks [6]. . . . 20
2.8 An illustration of the transfer learning process [23, 15]. . . . . 21

3.1 Example dialogue. . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Example schema for a digital wallet service [20]. . . . . . . . . 28
3.3 An example of the same dialogue shown in Figure 3.1 after

data preprocessing. Each turn is corresponding to a single
service and an active intent. Text is composed of system ut-
terance and user utterance. Slots represents the dialogue state
update, while belief represents the constant slot value pairs
from previous turn. . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Architecture of proposed model, it consists of a BERT encoder,
a classification module and a span prediction module. Each
element in the input sequence is constructed as the sum of its
corresponding token, segment and position embeddings. . . . . 33

4.2 Input representation for the proposed model. . . . . . . . . . . 34

v



5.1 The characteristics of Legion cluster. . . . . . . . . . . . . . . 39

6.1 Model performance on dev combined set per all services, ser-
vices seen in the training, and services unseen in the training. 41

6.2 Confusion matrix for the classification module. . . . . . . . . . 43

vi



List of Tables

2.1 Co-occurrence probabilities for target words ice and steam
with selected context words from a 6 billion token corpus.
Only in the ratio does noise from non-discriminative words
like water and fashion cancel out, so that large values (much
greater than 1) correlate well with properties specific to ice,
and small values (much less than 1) correlate well with prop-
erties specific of steam [18]. . . . . . . . . . . . . . . . . . . . 10

2.2 Test set comparison of ELMo enhanced neural models with
state-of-the-art single model baselines across six benchmark
NLP tasks. The performance metric varies across tasks – ac-
curacy for SNLI and SST-5; F1 for SQuAD, SRL and NER;
average F1 for Coref [19]. . . . . . . . . . . . . . . . . . . . . . 15

3.1 Schema-Guide Dialogue dataset statistics [20]. . . . . . . . . . 29
3.2 No. of dialogues belongs to each domain in SGD dataset. In

the first column, it indicates the number of unique services
for the domain in Train and Dev datasets combined. In the
fourth column, it indicates the number of such unique services
in the Train dataset only. In the last column, it indicates the
number of such unique services in the Dev dataset only [20]. . 30

4.1 All input sequences of a conversation turn, where S is the
complete set of slots at the turn. . . . . . . . . . . . . . . . . . 32

6.1 Model performance on dev combined set. . . . . . . . . . . . . 40
6.2 Model performance per domain. Domains marked with ‘*’ are

those for which the service in the dev set is not present in the
training set. Hotel domain marked with ‘**’ has one unseen
and one seen service. For other domains, the service in the
dev set was also seen in the training set. . . . . . . . . . . . . 42

6.3 Classification module performance on the entire dev sets. . . . 44

vii



Chapter 1

Introduction

1.1 Goal-oriented Dialogue Systems

Goal-oriented dialogue systems are designed to help people in daily life to
accomplish various tasks, such as restaurant reservation, movie ticket book-
ing. Such systems assist user through a series of conversations, therefore it is
important to keep track of the user goal. Dialogue State Tracking (DST) is
such a component that extracts the user goal at each user turn by interpret-
ing the user utterance. DST encodes the user goal as a set of dialogue states,
i.e. slot-value pairs. The dialogue states are then used by the dialogue sys-
tem to issue the corresponding API call to the backend database, in such a
manner to accomplish the tasks. Which API/service to be triggered depends
on Intent Classification, a component that detects the user’s intention, while
it is out of the scope of this work. For what concerns this work, we focus on
the DST problem.

1.2 Motivation and Objective

Many state-of-the-art DST approaches operate on a predefined ontology, per-
forming classification over a full candidate-value list, i.e. all slots and their
corresponding values. However, such method is infeasible or impractical in
real-world systems. First, oftentimes the backend database is maintained
by service providers, and exposed through some external APIs, it is infea-
sible that DST can access to all the possible values for all slots. Second,
even the entire database is available, the values may keep changing over time
or simply countless, for example the showtimes in a theatre changes every
once in a while, or the number of movies in an online streaming website
can be huge. In addition, the model size of these systems is proportional
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to the number of slots, with an ever-increasing number of slots, it leads to
the performance deficit, and it also requires the model to perform constantly
updating or re-training. Furthermore, dialogue system need to support an
increasing number of services, as a consequence DST may encounter unseen
slots. A DST that is built under such an approach can only label them as
unknown without further classification.

Recently, in the 8th Dialogue System Technology Challenge, Google intro-
duced a Schema-Guided Dialogue State tracking task whose goal is to develop
dialogue state tracking model suitable for large scale dialogue systems, with
a focus on zero-shot generalization to new APIs. This task provides a new
dataset, namely the Schema-Guided Dialogue (SGD) dataset [20] containing
16k multi-domain dialogues across 17 domains in train and development sets.
It is the largest corpus of annotated task-oriented dialogues, especially, eval-
uation sets contain many unseen domains and services. Consequently slots
which are not present in the training set ideally serve the purpose to test the
model’s ability to generalize in zero-shot setting. We are highly motivated by
this challenge, our objective is to build a DST able to perform zero-shot di-
alogue state tracking, utilizing the knowledge acquired in training and apply
to the unseen slots at test time.

1.3 Task Description

In this work, we present our proposed approach to address the zero-shot state
tracking challenge. In particular, we attend to a special setting where target
slot value can be found as word segments in the dialogue context. The task we
perform in this work is described as follows: at each user turn, the propose
DST model extracts the dialogue state update from the dialogue context
consists of the current user utterance and preceding system utterance. The
state update is considered to be the difference between the slot values present
in the current turn and the ones present in the previous user turn (if exists).
Related work is introduced in the following chapter.
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Chapter 2

State-of-the-art

In this chapter, we conduct literature review on the background knowledge.
First, we review some state-of-the-art models from word embedding to lan-
guage modeling. Then, we introduce the concept of transfer learning, a key
factor to recent success in NLP. Finally, we briefly report the related work
on dialogue state tracking for goal-oriented dialogue systems.

2.1 Word Embedding

How to present words is the first and arguably most important thing we
need to deal with in natural language processing (NLP) world, as words
are the input in almost all the NLP tasks. The quality of the representa-
tions is essentially a key factor to downstream tasks in various NLP research.

In traditional NLP works, words are treated as discrete symbols, in other
words one-hot vectors, it’s a simple and robust approach. However, the fun-
damental limitation of this technique is the lack of notion of similarity, every
vector is orthogonal to another one.

“You shall know a word by the company it keeps”

— J.R.Firth

Underlying the idea popularized by Firth in 1950s: a word’s meaning is char-
acterized by the words frequently co-occur, words represented by distributed
vectors on the other hand, makes similarity measure trivial as each value in
a vector captures a dimension of the word’s meaning, so that similar words
eventually have similar vectors. In the following section, 3 models will be
discussed, namely Word2Vec [13], GloVe [18] and fastText [3].
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2.1.1 Word2Vec

Introduced by Mikolov et al. in 2013, word2vec is a framework for learn-
ing word embeddings. It demonstrates how high-quality word embeddings
can be learned from huge datasets with billions of words through a shal-
low network in a computationally efficient way. Two model architectures
are proposed, Continuous Bag-of-Words (CBOW) and continuous Skip-gram
[13]. In addition, Negative Sampling training strategy and the subsampling
of the frequent words significantly accelerate the whole learning process and
improve the quality of the vectors as well [12].

Figure 2.1: Two model architectures introduced by Mikolov et al. The
CBOW architecture predicts the current word based on the context, and
the Skip-gram predicts surrounding words given the current word [13].

CBOW

CBOW is built upon the idea that a word is to be predicted from its sur-
rounding context words.

Consider following example sentence:

“The cat jumped over the puddle”

4



CBOW model aims to predict the word “jumped” from its context “The”,
“cat”, “over”, “the”, “puddle”.

First, the input sentence can be represented by one-hot vectors x(i), and
the output is represented as y. Then we created two matrices, V ∈ Rn×|V |

and U ∈ R|V |×n, where n is an arbitrary number which defines the size of out
embedding space. V is the input word matrix such that i-th column of V is
the n-dimensional embedded vector for word wi when it is an input word.
Likewise, U is the output word matrix such that j-th column of U is the
n-dimensional embedded vector for word wj when it is an output word. In
fact we learn these two vectors for every word wi, i.e. the input vector vi and
the output vector ui. The model works in following steps:

1. We generate one-hot vector for input context words with size m: (x(c−m),
..., x(c−1), x(c+1), ..., x(c+m) ∈ R|V |)

2. We get embedded word vectors for the context (vc−m = Vx(c−m), ...,
vc+m = Vx(c+m) ∈ R|n|)

3. Average these vectors we get v̂ = vc−m+...+vc+m

2m
∈ R|n|

4. We can then generate a score vector z = U v̂ ∈ R|V |

5. Convert the score to probabilities ŷ = softmax(z) ∈ R|V |

6. We expect our generated probabilities ŷ ∈ R|V | to match the true prob-
abilities y ∈ R|V |, which is also the one-hot vector of the actual word.

We use cross-entropy to be the objective function for the model to learn the
two matrices, i.e V and U .

H(y, ŷ) = −
|V |X
j=1

yj log ŷj

As the output is an one-hot vector, the loss function can be simplified

H(y, ŷ) = −yi log ŷi

Let c be the index of the correct word, its one-hot vector is 1 thus if the
prediction is perfect we have yc = 1, the loss is calculated as H(y, ŷ) =
−1 log 1 = 0. In other words, if the prediction is correct, there is no loss. To
the contrary, if the prediction goes very bad that yc = 0.01, then we have the
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loss H(y, ŷ) = −1 log 0.01 ≈ 4.605 to be very high. Thus we can formalize
the optimization objective as:

minimize J = − logP (wc|wc−m, ..., wc−1, wc+1, ..., wc+m)

= − logP (uc|v̂)

= − log
exp(uTc v̂)P|V |
j=1 exp(uTj v̂)

= −uTc v̂ + log

|V |X
j=1

exp(uTj v̂)

We use stochastic gradient descent to update all relevant word vectors uc and
vj.

Skip-gram

Skip-gram, instead, is built upon the idea that surrounding words are able
to be generated given the center word.

Thus consider the same example, skip-gram model aims to predict the con-
text words “The”, “cat”, “over”, “the”, “puddle” given the word “jumped”.
The input one-hot vector can be represented as x, so do the output vectors as
y(j). Similarly, we define V and U the same as in CBOW. The model works
the way as follows [5]:

1. We generate one-hot vector for input center word x ∈ R|V |

2. We get embedded word vector for the center word vc = Vx ∈ R|n|

3. Generate a score vector z = Uvc

4. Convert the score to probabilities ŷ = softmax(z), so we have ŷc−m, ...,
ŷc−1, ŷc+1, ..., ŷc+m as the probabilities for each context word.

5. We expect our generated probabilities to match the true probabilities
yc−m, ..., yc−1, yc+1, ..., yc+m which are one-hot vectors for the actual
output.
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We can formalize the optimization objective as:

minimize J = − logP (wc−m, ..., wc−1, wc+1, ..., wc+m|wc)

= − log
2mY

j=0,j 6=m

P (wc−m+j|wc)

= − log
2mY

j=0,j 6=m

P (wc−m+j|vc)

= − log
2mY

j=0,j 6=m

exp(uTc−m+jvc)P|V |
k=1 exp(uTk vc)

= −
2mX

j=0,j 6=m

uTc−m+jvc + 2m log

|V |X
k=1

exp(uTk vc)

We compute the gradients with respect to unknown parameters at each iter-
ation and update them via stocastic gradient descent.

Negative Sampling

Observe that the loss function J for CBOW and Skip-gram are computa-
tionally expensive because of the softmax normalization, where we have to
sum over all |V | scores. Negative sampling is the technique to approximate
it in a computationally efficient way. The main idea is to turn the softmax
normalization to logistic regression, train a true pair (the center word and its
context) versus several noise pairs (the center word paired with some random
word). Let P (D = 1|w, c) denotes the probability that a pair of word and
context (w, c) is a true pair, likewise, P (D = 0|w, c) be the probability that
(w, c) is a noise pair. We model P (D = 1|w, c) with the sigmoid function:

P (D = 1|w, c, θ) = σ(vTc vw) =
1

1 + e(−vTc vw)

The corresponding objective function is then to maximize the probability
of a word and context being a true pair if it indeed is, and maximize the
probability of a word and a random word being a false pair as well. We take
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a maximum likelihood approach of these two probabilities.

θ = argmax
θ

Y
(w,c)∈D

P (D = 1|w, c, θ)
Y

(w,c)∈D̃

P (D = 0|w, c, θ)

= argmax
θ

Y
(w,c)∈D

P (D = 1|w, c, θ)
Y

(w,c)∈D̃

(1− P (D = 1|w, c, θ))

= argmax
θ

X
(w,c)∈D

logP (D = 1|w, c, θ) +
X

(w,c)∈D̃

log (1− P (D = 1|w, c, θ))

= argmax
θ

X
(w,c)∈D

log
1

1 + exp(−uTwvc)
+

X
(w,c)∈D̃

log (1− 1

1 + exp(−uTwvc)
)

= argmax
θ

X
(w,c)∈D

log
1

1 + exp(−uTwvc)
+

X
(w,c)∈D̃

log
1

1 + exp(uTwvc)

Such optimization is the same as minimizing the negative log likelihood:

J = −
X

(w,c)∈D

log
1

1 + exp(−uTwvc)
−

X
(w,c)∈D̃

log
1

1 + exp(uTwvc)

where D̃ are the noise pairs that we can generate on the fly by random sam-
pling.

For CBOW the new objective function for observing the center word uc given
the context vector (̂v) = vc−m+...+vc+m

2m
would be

− log σ(uTc · v̂)−
KX
k=1

log σ(−ũTk · v̂)

For Skip-gram the new objective function for observing the context word
c−m + j given center word c word be

− log σ(uTc−m+j · vc)−
KX
k=1

log σ(−ũTk · vc)

{ũk|k = 1...K} are sampled from the noise distribution Pn(w), as per the
author, the unigram distribution raised to the 3/4rd power makes the best
approximation.
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Subsampling of Frequent Words

In addition, we also observe that frequent words such as “a”, “the”” eas-
ily appear hundreds of millions of times, while they usually provide much
less information than the rare words do. To counter the imbalance between
rare and frequent words, the subsampling approach is applied: each word wi
in the training set is discarded with a probability

P (wi) = 1−

s
t

f(wi)

where f(wi) is the frequency of word wi and t is the chosen threshold, typ-
ical value is around 10−5. Such setup significantly subsamples the words
whichever occur greater than t while preserving the ranking of the frequen-
cies. It accelerates the training, furthermore it improves the representation
quality of the rare words.

2.1.2 GloVe

In spite of the success in capturing fine-grained semantic, shallow window-
based models like word2vec suffer from the disadvantage of their insufficiency
in global word co-occurrences statistics usage. Pennington et al. proposed
GloVe, a log-bilinear regression model combines the advantages of both global
matrix factorization and local context window methods. In a way that train-
ing only non-zero elements in a word-word matrix rather than the entire
sparse one, the crucial insight is that ratios of co-occurrence probabilities
can encode meaning components.

Co-occurrence Matrix

We construct a word-word co-occurrence matrix by collecting the statistics
over the entire corpus. Let X denote the matrix, where Xij is the num-
ber of times that word j being the context of word i. Let Xi =

P
kXik

be the number of times that any word k being the context of word i. And
Pij = P (wj|wi) =

Xij

Xi
is the probability of j appearing in the context of word

i.

GloVe model

GloVe model use the global statistics of word co-occurrence in a corpus, con-
sider the example shown in Table 2.1, suppose word i = ice, word j = steam
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Probability and Ratio k = solid k = gas k = water k = fashion
P(k—ice) 1.9*E-4 6.6*E-5 3.0*E-4 1.7*E-5
P(k—steam) 2.2*E-05 7.8*E-4 2.2*E-3 1.8*E-5
P(k—ice)/P(k—steam) 8.9 8.5*E-2 1.36 0.96

Table 2.1: Co-occurrence probabilities for target words ice and steam with
selected context words from a 6 billion token corpus. Only in the ratio does
noise from non-discriminative words like water and fashion cancel out, so that
large values (much greater than 1) correlate well with properties specific to
ice, and small values (much less than 1) correlate well with properties specific
of steam [18].

are of our interest. Their relationship can be examined by checking the ratio
of their co-occurrence probabilities with probe words. If a word related to ice
but not steam, we expect the ratio Pik/Pjk to be large, for example k = solid.
Vice versa, a small ratio to be expect for word relate to steam but not ice,
like k = gas. And for words either related to both, or related to none, the
ratio is close to 1, such as k = water or k = fashion.

We can describe above argument in a formal way.

F (wi, wj, w̃k) =
Pik
Pjk

where w ∈ Rd are word vectors and w̃ ∈ Rd are separate context word vectors.

Consider the vector difference of two target words, we can modify the left
hand side of the equation by taking the dot product.

F (wi, wj, w̃k) = F (wi − wj, w̃k) = F ((wi − wj)
T w̃k) =

F (wT
i w̃k)

F (wT
j w̃k)

=⇒ F (wT
i w̃k)

F (wT
j w̃k)

=
Pik
Pjk

Meanwhile the probability can be found by co-occurrence matrix.

F (wT
i w̃k) = Pik =

Xik

Xi

Then we can solve F by taking the logarithm.

wT
i w̃k = log(Pik) = logXik − logXi

10



Notice the term logXi is independent of k, then we can introduce a bias
term to modify the equation.

wT
i w̃k + bi + b̃k = logXik

Compare to the original formulation, this is much simpler. While it becomes
ill-conditioned if Xik = 0, therefore we can start the word co-occurrence count
from 1 instead of 0, introduce a shift in the logarithm logXik → log (1 + Xik).

For the objective function, a weighted least squares regression model is pro-
posed here, the weighting function f(Xij) takes the co-occurrence frequency
into consideration.

J =
VX

i,j=1

f(Xij)(w
T
i w̃k + bi + b̃k − logXik)

2

In particluar, the weigthing function depicted in Figure 2.2 follows below 3
properties:

1. f(0) = 0.

2. f(x) should not decrease so that rare co-occurrences are not overweighted.

3. f(x) should be relatively small for large value of x, so that frequent
co-occurrences are not overweighted.

The author find a class of weighting function works well that can be param-
eterized as

f(x) =

(
(x/xmax)

α if x < xmax

1 otherwise.

where they assign α the value of 3/4 after empirical evaluation.

2.1.3 fastText

But, is it really a good idea to represent each word of the vocabulary as
a distinct vector? In 2015, Bojanowski et al. proposed fastText, a model
that learns representations for character n-grams and represents words as
the sum of the n-gram vectors. They argue such representations take word
morphology into consideration, rare or unseen words during training can be
easily computed, result in an improved performance.
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Figure 2.2: Weighting function f with α = 3/4 [18].

Subword model

As presented in word2vec skip-gram model, each word uses a distinct vector
representation, whereas in subword model, each word w is represented by a
bag of characters n-gram. And the word itself is also included in the n-gram
set. For instance, the word where represented by character n-gram when n
= 3:

<wh, whe, her, ere, re>, <where>

Let gw ⊂ {1, ..., G} denote the set of n-grams appearing in word w, we
associate a vector representation zg to each n-gram g. Then the word w is
represented by the sum of vector representations of its n-gram. Thus the
scoring function can be obtained.

s(w, c) =
X
g∈gw

zTg vc

This model allows representations sharing among words, such a robust and
reliable approach can easily handle rare words and out-of-vocabulary words.
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2.2 Language Model

Regardless of the widespread use, one major limitation of aforementioned
embeddings is handling polysemy. The meaning of a word may change upon
its context, however, for context-free embeddings, there is only one single
representation for a word. In this section, we will introduce two language
models, ELMo [19] and BERT [6], whose contextual word representations
are the perfect solution.

2.2.1 ELMo

ELMo is a deep contextualized word representation introduced by Peters
et al., it models both complex characteristics of word use (e.g., syntax and
semantics), and how these uses vary across linguistic contexts (i.e., to model
polysemy). ELMo word representations are functions of the entire input
sentence. A two-layer, bi-directional, LSTM [9] based language model with
character convolutions is pre-trained on a large text corpus, a weighted sum of
the hidden states that extracted from each layer in the biLM is then computed
to obtain the embedding for each word in the sentence. ELMo representations
can be easily added to existing models and significantly improve the state of
the art across a broad range of challenging NLP problems, including question
answering, textual entailment and sentiment analysis.

Bidirectional Language Model

Given a sequence of N tokens, (t1, t2, ..., tN), a forward language model com-
putes the probability of token tk given history (t1, t2, ..., tk−1), whereas a
backward language model computes the probability of token tk given its fu-
ture context (tk+1, tk+2, ..., tN).

p(t1, t2, ..., tN) =
NY
k=1

p(tk|t1, t2, ..., tk−1)

p(t1, t2, ..., tN) =
NY
k=1

p(tk|tk+1, tk+2, ..., tN)

A bidirectional language model (biLM) combines both a forward and back-
ward language model. The formulation below jointly maximize the log like-
lihood of both directions.
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NX
k=1

( log p(tk|t1, t2, tk−1; Θx, ~ΘLSTM ,Θs)

+ log p(tk|tk+1, tk+2, tN ; Θx, ~ΘLSTM ,Θs))

where Θx represents token representation and Θs represents softmax layer in
the LSTMs.

ELMo

ELMo is a task specific combination of the intermediate layer representa-
tions in the biLM. For each token tk in a L-layer biLM, its representation
can be computed as:

Rk = {xLMk ,~hLMk,j ,
~hLMk,j |j = 1, ..., L}

= {hLMk,j |j = 0, ..., L}

where hLMk,0 is the token layer and hLMk,j = [~hLMk,j ,
~hLMk,j ] are each biLM layer.

To use ELMo in any downstream model, a task specific weighting of all
biLM layers can be computed:

ELMotaskk = E(Rk,Θ
task) = γtask

LX
j=0

staskj hLMk,j

where stask are softmax-normalized weights and the scalar parameter γtask

allows the task model to scale the entire ELMo vector.

Simply adding ELMo to existing architectures across six benchmark NLP
tasks: question answering, textual entailment, semantic role labelling, coref-
erence resolution, named entity extraction, and sentiment analysis, we can
observe 6 - 20% performance improvement, as shown in Table 2.2.

2.2.2 BERT

Nevertheless, because of the unidirectional nature of standard language mod-
els, the power of pre-trained representations are still limited. Introduced by
Devlin et al., BERT alleviates the unidirectionality constraint by using a
masked language model, thus it allows the model to see the context from
both direction, such innovation leads to a great leap forward in NLP world.
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Task Previous SOTA ELMo Improvement

SQuAD 84.4 85.8 4.7 / 24.9%
SNLI 88.6 88.7 0.7 / 5.8%
SRL 81.7 84.6 3.2 / 17.2%
Coref 67.2 70.4 3.2 / 9.8%
NER 91.93 92.22 2.06 / 21%
SST-5 53.7 54.7 3.3 / 6.8%

Table 2.2: Test set comparison of ELMo enhanced neural models with state-
of-the-art single model baselines across six benchmark NLP tasks. The per-
formance metric varies across tasks – accuracy for SNLI and SST-5; F1 for
SQuAD, SRL and NER; average F1 for Coref [19].

Transformer

BERT makes use of the encoder of Transformer [26], an encoder-decoder [24]
model enhanced with self attention [2] mechanism introduced by Vaswani et
al, the architecture is shown in Figure 2.3. For what concerns BERT is the
encoder part, it is composed of N = 6 identical layers. Each layer has 2
sub-layers, the first is a multi-head self-attention mechanism and the second
is a fully connected feedforward network. A residual connection [7] at each
of the two sub-layers, followed by layer normalization.

We can view an attention function as mapping a query and a set of key-value
pairs to an output, where the query, keys, values, and output are all vectors.
The output is computed as a weighted sum of the values, where the weight
assigned to each value is computed by a compatibility function of the query
with the corresponding key.

The author name the attention as scaled dot-product attention, which can
be formalized as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where the input queries and keys are of dimension dk, and values of dimen-
sion dv.

Not only perform a single attention function, they actually project the queries,
keys and values h times with different, learned linear projections to dk, dk
and dv dimensions, respectively. On each of the projection, the attention is
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Figure 2.3: Model architecture of the Transformer [26].
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performed in parallel yielding dv dimensional output values. These values are
then concatenated and projected again to obtain the final output, as shown
in Figure 2.4.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i )

where WQ
i ∈ Rdmodel × dk, W

K
i ∈ Rdmodel × dk, W

V
i ∈ Rdmodel × dv.

Figure 2.4: Scaled Dot-Product Attention (left). Multi-Head Attention
(right) consists of several attention layers running in parallel [26].

Multi-head attention allows the model to jointly attend to information from
different representation subspaces at different positions, as depicts in Fig-
ure 2.5.

BERT

BERT’s model architecture is a multi-layer bidirectional Transformer en-
coder. Two model sizes are reported, let L denote the number of transformer
block, H be the hidden size, and self attention heads as A:

• BERTBASE: L=12, H=768, A=12, parameters 110M;
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Figure 2.5: As we encode the word ”it”, one attention head is focusing most
on ”the animal”, while another is focusing on ”tired” – in a sense, the model’s
representation of the word ”it” bakes in some of the representation of both
”animal” and ”tired” [1].
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• BERTLARGE: L=24, H=1024, A=16, parameters 340M.

The input representations is the sum of the corresponding token, segment,
and position embeddings, it is illustrated in Figure 2.6. Both single sentence
and a pair of sentences are accepted, while every sequence always starts with
a special classification token [CLS], and uses token [SEP] as the separator.

Figure 2.6: BERT input representation [6].

Bidirectional conditioning would allow each word to see itself indirectly,
which makes prediction trivial, how does BERT work? BERT achieve bidi-
rectionality by using a mask language model. In particular, during the pre-
training, 15% of the tokens are randomly masked. Then the task becomes
predicting the masked words given context in both direction. To illustrate
in more details, the masking procedure follows:

• 80% of the time: replace the word with [MASK] token, e.g. my dog is
hairy → my dog is [MASK].

• 10% of the time: replace the word with a random word, e.g. my dog is
hairy → my dog is apple.

• 10% of the time: keep the word unchanged, e.g. my dog is hairy→ my
dog is hairy.

This forces BERT to keep a distribution contextual representation for every
input token so to perform the prediction task.

In addition, in order to train the model for understanding the relationship
between two sentences, BERT is also trained with a next sentence prediction
task which requires the model to predict if the second sentence is the next
sentence of the first one. Such task is very beneficial to downstream task
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such as Question Answering (QA) and Natural Language Inference (NLI).

Fune-turning stage for BERT is pretty straightforward. For each task, sim-
ply plug task specific inputs and output onto BERT and fine-tuning all the
parameters end to end, as is shown in Figure 2.7.

Figure 2.7: Illustrations of Fine-tuning BERT on Different Tasks [6].

2.3 Transfer Learning

Transfer learning can be defined as a means to extract knowledge from a
source setting and apply it to a different target setting [22], an illustration
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is in Figure 2.8.

Figure 2.8: An illustration of the transfer learning process [23, 15].

As deep learning models are usually data-hungry whereas getting enough
labeled data for supervise learning is oftentimes infeasible. Thus use a lan-
guage model that is pre-trained using a large corpus as basis and fine-tune
such model for specific task becomes the default approach across various
NLP tasks. Like what we described in earlier section, ELMo and BERT well
present such concept.

2.4 Dialogue State Tracking

The goal of dialogue state tracking is to keep track of the user goal, so that
dialogue systems accomplish task according to the user’s needs. The initial
motivation for dialogue state tracking came from the uncertainty such as ho-
mophones in speech recognition [28], as well as to provide a comprehensive
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input to a downstream dialogue policy component deciding the next system
action. Proposed belief tracking models have ranged from rule-based [27],
to generative [25]. and discriminative [8]. The common drawback of such
approaches is that they rely on hand-crafted features and complex domain-
specific lexicons (besides the ontology), and are difficult to extend and scale
to new domains.

To overcome these problems, Mrksic et al. propose a Neural Belief Tracking
framework which utilize pre-trained word vectors to learn the semantics of
user utterance and dialogue context [14]. Zhong et. al use global modules to
share parameters between estimators for different slots, use local modules to
learn slot-specific features, so to improve the performance on rare states [33].
Ren et al. propose StateNet that generates a representation for dialogue
history and compares the distances between this representation and value
vectors in the candidate set [21]. However, these approaches often require
a predefined domain ontology, which makes it impractical for dialogue sys-
tems that operate over real-world services having a large number and fairly
dynamic set of possible values.

To address these concerns, Wu et al. propose a TRAnsferable Dialogue
statE generator that generates dialogue states from utterances using a copy
mechanism, facilitating knowledge transfer when predicting (domain, slot,
value) triplets not encountered during training [30]. On the other hand,
Chao and Lane focus on a specific condition, where the ontology is unknown
to the state tracker, but the target slot value can be located in the dialogue
context, they use BERT as dialogue context encoder to extract the value [4].
To the best of our knowledge, it is the most similar setting and approach to
ours, whereas the difference lies on the inputs.

For what concerns schema-guided dialogue state tracking challenge, Rastogi
et al. propose a baseline model [20] inspired by BERT-DST [4], two kinds of
embeddings are obtained separately, an embedded representation of intents
and slots using each service schema and the representation of user utterance
and preceding system utterance. The utterance and schema embeddings are
then used together to predict the dialogue state through a set of projection.
Meanwhile the best performed model is proposed by Ma et al., their frame-
work consists of a machine reading comprehension module based on XLNet
[32] for non-categorical slot prediction and a RoBERTa [10] based model
with hand-craft features for categorical slot prediction [11]. They encode
the full dialogue history as well as natural language description of slots and
intents. Moreover, data augmentation by back translation between English
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and Chinese significantly improve the overall performance.
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Chapter 3

Dataset

In this chapter, we describe the dataset. First, we give the information about
the schema-guided dataset in all aspects. Then we go into the details of data
pre-processing, explaining how we reconstruct the dialogue structure.

3.1 Dataset Overview

Schema-Guided Dialogue dataset, to the best of our knowledge, is the largest
publicly available corpus of annotated task-oriented dialogues. There are
more than 16000 dialogues spanning over 26 services within 16 domains in
the training set (the detailed statistics is in Table 3.1). Furthermore, many
unseen services and domains are in the evaluation sets, consequently slots
which are not present in the training set ideally serve the purpose to test the
model’s ability to generalize in zero-shot settings.

The dataset consists of conversations between a virtual assistant and a user,
these conversations can be categorized into two types: single-domain and
multi-domain dialogues. The single domain dialogues associate with inter-
actions in a single service from one domain, whereas in the multi-domain
dialogues, interactions possibly span two or more different services across
different domains. Furthermore, the transfer of dialogue state values from
one service to another is also involved as long as it is necessary, for instance,
if a user asks for a restaurant reservation and then asks for the direction, the
dialogue state of location slot in navigation service is already initialized by
the one for restaurant service.

Dialogue Representation
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The dialogue is represented by a set of turns, where each turn contains either
a user or a system utterance. The annotations of a turn are grouped into
frames, each frame is corresponding to a single service, an example is shown
in Figure 3.1. Hence, in the single-domain dialogues, each turn contains ex-
actly one frame, however, multiple frames may exist in a turn within the
multi-domain dialogues.

Each dialogue is a json object contains the following fields.

• dialogue id : an unique identifier for a dialogue.

• services : a list of services present in the dialogue.

• turns : a list of annotated system or user utterances.

Each turn contains following fields.

• speaker : the speaker of the turn, either “USER” or “SYSTEM”.

• utterance : the utterance in natural language.

• frames : a list of frames, each consists of annotations for a single
service.

Each frame contains different field according to its speaker.

• service : the name of service corresponding to the frame.

• slots : a list of slot spans in the utterance, each consists of:

· slot : the name of the slot.

· start : the index of the starting character.

· exclusive end : the index of the character just after the ending
character.

• actions(system turns only): a list of actions, each consists of:

· act : the type of action.

· slot(optional): the name of the slot for the action.

· value(optional): a list of values assigned to the slot.

• state(user turns only): the dialogue state till current turn, it consists
of:
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· active intent : the intent corresponding the service.

· requested slots : a list of slots requested by the user.

· slot values : a dictionary of slot-value pairs.

Schema Representation

In addition of the dialogues, each service used in the dataset provides a
schema listing the supported intents and slots along with their descriptions
in natural language, an example is shown in Figure 3.2. Each schema consists
of following fields.

• service name : a unique service name.

• description : a natural language description of the tasks supported
by the service.

• slots : a list of slots/attributes in the service, each consists of:

· name: the name of the slot.

· description: a natural language description of the slot.

· is categorical : a Boolean value.

· possible values : list of possible values of the slot.

• intents : a list of intents/tasks in the service, each consists of:

· name: the name of the intent.

· description: a natural language description of the intent.

· is transactional : a Boolean value.

· required lots : a list of slot names whose values must be provided
before making a call to the service.

· optional lots : a dictionary mapping slots and their default values.
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Figure 3.1: Example dialogue.
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Figure 3.2: Example schema for a digital wallet service [20].
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Dataset Statistics

The overall statistics of the train and dev sets are given in Table 3.1. In
the train set, the single domain dialogues have an average of 15.3 turns
whereas 23 turns on an average for the multi-domain dialogues. The detailed
distribution of dialogues in the train and dev sets among different domains
is given in Table 3.2. Note that Alarm domain is only present in the dev set,
meanwhile in Banks, Events, Flights, Hotels, Media, Movies, Restaurants,
and Services domains, the services in train set are different than those in the
dev set. This is to test the generalization of models on unseen domains and
services, in a more former way, this is the zero-shot dialogue state tracking
task. The number in parenthesis indicates the unique services belonging to
the corresponding domain.

Train Dev

Single-
domain

Multi-
domain

Combined
Single-
domain

Multi-
domain

Combined

No. of dialogues 5403 10739 16142 836 1646 2482
No. of turns 82588 247376 329964 11928 36978 48726
Avg. turns per dialogue 15.286 23.035 20.441 14.268 22.356 19.632
Avg. tokens per turn 9.778 9.741 9.751 9.85 9.603 9.664
Total unique tokens 16353 25459 30352 6803 10533 12719
Total domains 14 16 16 16 15 16
Total services 24 26 26 17 16 17
Total no. of slots 201 214 214 134 132 136

Table 3.1: Schema-Guide Dialogue dataset statistics [20].

3.2 Data Pre-processing

It is necessary to carry out data manipulation in order to proceed. We
reconstruct the original dialogues into a set of conversation turns. Every
conversation turn consists of an user utterance and its preceding system ut-
terance as the dialogue context. And each turn is corresponding to a single
service and an active intent. That being said, there are turns associated with
multiple services exist in multi-domain dialogues, in such case more than one
conversation turn will be generated, whereby each of them consists of the
same text but different service, and they also share the same dialogue id and
turn id, while can be differentiate by the id. The service item is used as a
key word for retrieving the natural language description from the schema for
slot whichever belongs to it, so to form the input sequence. Other annota-
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Train Dev

Single-
domain

Multi-
domain

Combined
Single-
domain

Multi-
domain

Combined

Alarm (1) NA NA NA 37 NA 37 (1)
Banks (2) 207 520 727 (1) 42 252 294 (1)
Buses (2) 310 1970 2,280 (2) 44 285 329 (1)
Calendar (1) 169 1433 1,602 (1) NA NA NA
Events (2) 788 2721 3,509 (1) 73 345 418 (1)
Flights (3) 985 1762 2,747 (2) 94 297 391 (1)
Homes (1) 268 579 847 (1) 81 99 180 (1)
Hotels (4) 457 2896 3,353 (3) 56 521 577 (2)
Media (2) 281 832 1,113 (1) 46 133 179 (1)
Movies (2) 292 1325 1,617 (1) 47 94 141 (1)
Music (2) 394 896 1,290 (2) 35 161 196 (1)
RentalCars (2) 215 1370 1,585 (2) 39 342 381 (1)
Restaurants (2) 367 2052 2,419 (1) 73 263 336 (1)
RideSharing (2) 119 1584 1,703 (2) 45 225 270 (1)
Services (4) 551 1338 1,889 (3) 44 157 201 (1)
Travel (1) NA 1871 1,871 (1) 45 238 283 (1)
Weather (1) NA 951 951 (1) 35 322 357 (1)

Table 3.2: No. of dialogues belongs to each domain in SGD dataset. In the
first column, it indicates the number of unique services for the domain in
Train and Dev datasets combined. In the fourth column, it indicates the
number of such unique services in the Train dataset only. In the last column,
it indicates the number of such unique services in the Dev dataset only [20].

tions including slots and belief. Slots represents the dialogue state update,
whereas belief represents the constant slot values of previous and current
turns. Figure 3.1 and Figure 3.3 depict the same dialogue before and after
data pre-processing. Consequently, the processed data are then tokenized
and converted to tensors that can be used by BERT, the details is discussed
in the next chapter.
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Figure 3.3: An example of the same dialogue shown in Figure 3.1 after data
preprocessing. Each turn is corresponding to a single service and an active
intent. Text is composed of system utterance and user utterance. Slots
represents the dialogue state update, while belief represents the constant
slot value pairs from previous turn.
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Chapter 4

Approach

In this chapter, we describe in full details the proposed model, first the overall
architecture is introduced, followed by all the individual modules.

4.1 Model Overview

The proposed model architecture is illustrated in Figure 4.1, it consists of a
pretrained multilingual BERTBASE as the encoder and a classification module
and a span prediction module. The input sequence is a pair of sentences
where the former is the dialogue context, and the latter is the description
of a slot in natural language. At each turn, all slots from the service that
current dialogue context belongs to, their respective descriptions will be used
to construct the input sequence one after another, as it is shown in Table 4.1.

Sequence A Sequence B
Input Sequences dialogue context slots description (∀s ∈ S)

Table 4.1: All input sequences of a conversation turn, where S is the complete
set of slots at the turn.

The proposed model is inspired by two tasks, namely BERT for Next Sen-
tence Prediction and BERT for Question Answering. We decouple the dia-
logue state tracking problem into a Next Sentence Prediction like task and a
Question Answering task. Each input sequence is encoded by the encoding
module to obtain contextualized sentence-level and token-level representa-
tions. The sentence-level representation is then used by the classification
module to produce a Boolean value indicating whether the value of the de-
scribed slot is present in the dialogue context. Likewise, the token-level
representations are used by the span prediction module to generate the start
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Figure 4.1: Architecture of proposed model, it consists of a BERT encoder,
a classification module and a span prediction module. Each element in the
input sequence is constructed as the sum of its corresponding token, segment
and position embeddings.
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and end positions for the slot value. In the end, the dialogue state update
mechanism derives the output. Such procedure iterates over all the input
sequences at each conversation turn, yield the final outputs.

4.2 Encoding Module

We use BERT as the encoder in our proposed model to obtain contextual-
ized representations. To comply with BERT input format, the elements in
the input sequence are first tokenized, then summed by their corresponding
segment and position embeddings to form the input representation, as shown
in Figure 4.2.

Figure 4.2: Input representation for the proposed model.

Let X = [x0, ..., xn, xn+1, ..., xm] denotes the entire input token sequence, in
which [x0, ..., xn] belongs to dialogue context, whereas [xn+1, ..., xm] belongs
to slot description, the corresponding embedding of each token xi in BERT
embedding layer is presented as

ei = Etoken(xi) + Esegment(i) + Eposition(i), ∀i ∈ [0, ..., n, ...,m] (4.1)

where Etoken(xi) is the WordPiece [31] embedding for token xi, Esegment(i) ∈
{EA, EB} is the segement embedding whose value depends on whether token
xi is an element of dialogue context or an element of slot description, and
Esegment(i) is the position embedding whose value is the absolute position in
the sequence, i.e. equal to the value of i.

We obtain the last hidden state at BERT output layer, the contextualized
representations

uCLS, [t1, ..., tn, ..., tm] = BERT ([e0, ..., em]) (4.2)

where the first output token uCLS is the sentence-level representation, and
remaining ones [t1, ..., tm] are token-level representations.
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uCLS is then passed to classification module, whereas [t1, ..., tn] are feed into
span prediction module for the subsequent tasks respectively.

4.3 Classification Module

We use a classification module to perform a binarized Next Sentence Predic-
tion like task, it trains the model to learn the relation between the dialogue
context and the described slot.

The input is initialized by contextualized sentence-level embedding uCLS

from encoding module, a linear layer is used to obtain the state score, soft-
max is then applied to produce a probability distribution. The classification
module predicts the state value to be either 1 or 0 that indicates whether
the value of the described slot is present in the dialogue text.

z = Wcls uCLS + bcls = [zpresent, znot present] (4.3)

p = softmax(z) = [ppresent, pnot present] (4.4)

state = argmax(p) (4.5)

4.4 Span Prediction Module

We use span prediction module to perform question answering task, work in
a reading comprehension setting whereby the question is the slot description,
while the answer may be found in the dialogue context. In such a way to
obtain the slot value by means of start and end positions.

The input are contextualized token-level representations ti from encoding
module, and linearly projected to obtain start and end span scores. Soft-
max is then applied respectively to produce the probability distribution over
all input tokens. The span prediction module outputs two values indicating
start span and end span of the slot value.

[αi, βi] = Wspan ti + bspan, ∀i ∈ [1, 2, ..., n] (4.6)

pα = softmax(αi) (4.7)

35



pβ = softmax(βi) (4.8)

start = argmax(pα) (4.9)

end = argmax(pβ) (4.10)

4.5 Dialogue State Update Mechanism

We deploy a dialogue state update mechanism to combine the outputs from
classification and span prediction modules. Whenever the predicted state
takes value 1, the corresponding start and end spans will be the final output,
otherwise such spans are disregard and the default padding span will be as-
signed as final output, in our case [-100, -100].

This procedure is applied to every input sequence, thus all input sequences
iterate such process, yield a number of outputs for each conversation turn.
To be specific, the number is equal to the number of slots available in the
service that current dialogue context belongs to.

Algorithm 1 Dialogue State Update for each input sequence
Input:

1. Target slot state value: state;
2. Target slot start and end span: [start, end]

Output:
Target slot value: output

if state == 1 then
return output = [start, end]

else
return output = [-100, 100]

end if
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Chapter 5

Experimental Setup

In this chapter, we first analyze the post-processed, ready-executed data,
followed by the implementation details, next we brief the framework and
libraries used in the code development, and finally introduce the execution
environment.

5.1 Data Analysis

As reported in dataset chapter, there are total 26 services and 214 slots in
the training set, so every service has an average of 8 slots. Given the method
in approach chapter how we construct the input sequences, every conversa-
tion turn will produce about 8 input sequences. However, in each turn, not
all the slot values exist in the dialogue context, sometimes none of the slot
values present as well. It leads to an imbalanced data, actually, after data
pre-processing, we have a total number of 1601356 input data, 1477493 out
of 1601356 associated without any slot, only 123863 inputs are associated
with slot value. It means for the prediction of state value in the classification
module, more than 92% of its ground truth outputs are 0, only less than 8%
should produce the value of 1.

To handle the imbalanced problem in classification, one possible solution
is to introduce a weighted sampling strategy

1. Oversampling the minority class

2. Undersampling the dominant class

Both have its own drawback: the former may increases the possibility of
overfitting whereas the latter potentially discard useful information since it
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does not iterate over all the samples.

In our approach, instead of weighted sampling, we introduce a weighted loss
function [16].

loss(x, class) = weight[class]

 
−x[class] + log

 X
j

exp(x[j])

!!

where class is the ground truth, j ∈ [0, ..., C] for all the possible values, in
our case j ∈ [0, 1].

According to the distribution in the training set, we assign a rescaling weight
to each class which is inverse to its size. To penalize more if a prediction to
a minority class is wrong, in a sense of introducing the bias to coincide with
actual situation in our input data.

5.2 Implementation details

We use pretrained BERT-base-multilingual-cased model, which has 12 layers,
hidden size 768, 12 multi-attention heads, total 110M parameters, it is trained
on cased text in the top 104 languages with the largest Wikipedias. We use
weighted cross-entropy loss function for state prediction in the classification
module, and cross-entropy loss function for span prediction. Meanwhile in
the training, according to the ground truth value of state, whenever it is
equal to 0 the corresponding span loss is set to be 0 as well. The total loss is
the sum of state loss and span loss. We apply Adam optimization to update
all layers in the model with an initial learning rate of 5e−5. A dropout rate
of 0.1 is applied to encoding module’s sentence-level output. Batch size is
set to 32, at training time, inputs are randomly chosen from the whole input
data, whereas at evaluation, inputs are taken sequentially.

5.3 Framework and Libraries

The code is developed in pytorch [17], the pretrained BERT model is down-
loaded from PyTorch-Transformers [29], a library of state-of-the-art pre-
trained models for Natural Language Processing (NLP) maintained by hug-
gingface team.
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5.4 Execution Environment

The training is executed on Legion cluster in HPC @ POLITO. The HPC
@ POLITO supercomputing initiative, managed by DAUIN (Department of
Automation and Computer Science of the Polytechnic of Turin) provides
high-performance computing resources and technical support for academic
and teaching research. The service is aimed both at internal research groups
and at institutions and entities outside the Polytechnic. LEGION was born
to be modular and grow over time well beyond the size of a single rack
cabinet, this system is currently the most recent among those available in
HPC @ POLITO. It is an InfiniBand cluster of over 21 TFLOPS with the
characteristics listed in Figure 5.1.

Figure 5.1: The characteristics of Legion cluster.
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Chapter 6

Results and Discussion

We evaluate the proposed model performance with following metrics:

• Average Goal Accuracy: average accuracy of predicting the value of a
slot for a turn correctly.

• Joint Goal Accuracy: average accuracy of predicting the value of all
the slots for a turn correctly.

6.1 Results

Performance on SGD dataset

Table 6.1 presents the performance of our proposed model compared to the
baseline model on the dev set of the entire(combined) dataset. In general our
model outperforms the baseline model for both average goal accuracy and
joint goal accuracy. And as expected, the performance on seen services are
better than unseen services, it is shown in Figure 6.1.

Model Avg GA Joint GA

Baseline 0.694 0.383
Our Model 0.826 0.415

Table 6.1: Model performance on dev combined set.

Performance on different domains

Table 6.2 presents the model performance on different domains. Likewise,
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Figure 6.1: Model performance on dev combined set per all services, services
seen in the training, and services unseen in the training.
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the performance for each domain largely depends on the presence of services
in the training set. Among unseen services, high out-of-vocabulary rate for
slots in Flights and Movies results to a poor performance.

Domain Average GA Joint GA
Flights* 0.793 0.192
Movies* 0.529 0.266
Buses 0.838 0.315
Music 0.647 0.355
Banks* 0.800 0.359
Media* 0.668 0.363
Hotels** 0.838 0.376
Events 0.800 0.383
RentalCars 0.817 0.386
Alarm* 0.633 0.419
Restaurants* 0.902 0.432
Services* 0.863 0.436
Homes 0.908 0.535
RideSharing 0.889 0.649
Weather 0.948 0.759
Travel 0.965 0.804

Table 6.2: Model performance per domain. Domains marked with ‘*’ are
those for which the service in the dev set is not present in the training set.
Hotel domain marked with ‘**’ has one unseen and one seen service. For
other domains, the service in the dev set was also seen in the training set.

6.2 Discussion

To further investigate, we would like to check the performance for individual
modules. Recall that at every turn, the output for a given slot is either the
estimation from span prediction module, or a default padding value, accord-
ing to its corresponding state value. i.e. the output of classification module.
Therefore by checking the performance of classification module allow us to
understand where the bottleneck is.

As discussed in section data analysis earlier, the input data is imbalanced
in training set, such imbalanced distribution remains in dev set, therefore
accuracy is not a good metrics for evaluation, because the majority class 0 is
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92%, even if the classifier simply outputs 0, without any learning process it
achieves 92% accuracy, which makes no sense as the model would not predict
any slot value at all. Instead, we use precision, recall and f1 score to evaluate
the performance of this classifier. We calculate the confusion matrix first, it
is shown in Figure 6.2.

Figure 6.2: Confusion matrix for the classification module.

Then we can calculate the metrics according to following formula

Precision =
tp

tp + fp

Recall =
tp

tp + fn

F1 = 2 · precision · recall

precision + recall

Table 6.3 presents the result, the classifier achieves a low precision score only
at 0.320, a relatively good recall score at 0.955, leads to 0.480 for F1 measure.
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Precision Recall F1

0.320 0.955 0.480

Table 6.3: Classification module performance on the entire dev sets.

A classifier with high recall but low precision indicates it often wrongly clas-
sifies a negative sample as positive, though it is able to identify most of the
positive samples. In our case, it reveals the classification module mistakenly
treat the slot whose value not present in the dialogue as present. Therefore,
in order to improve the joint accuracy for the whole system, we need to fur-
ther study the classification module, help it better correlate a dialogue and
the described slot.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

We present our proposed approach, a Schema-Guided, BERT-based dialogue
state tracker, to address the zero-shot dialogue state tracking challenge.
Rather than treating the slots as labels, the model extracts slot value from
the dialogue context by interpreting the semantics of the slots. Without any
domain specific parameters, the model size is consistent no matter how many
slots exist. Thanks to pretrained BERT model, the evaluation results prove
its contextualized representation outputs allow our approach to be effective.
Further, it demonstrates transfer learning with language models has become
an integral part of many language understanding problems.

7.2 Future Works

Nevertheless, a lot of work need to be done to further improve the perfor-
mance. Needless to say, the first is to work on the classification module.
Besides, we would like to highlight another three out of many for our future
work.

Long-range dependency as mentioned in the task description, our model
is applied to a special setting where the target slot value can be found as word
segment in the dialogue context. Since the input sequence only consists of
dialogue context within the current conversation turn, in the case where slot
value mentioned beyond current turn, such setup inevitably miss shots. One
possible solution is to encode the whole dialogue history instead of current
turn. Another solution we consider is to introduce a so-called system belief
to the model, which is essentially a dictionary contains slot-value pairs we
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encountered along the conversation. Then we can modify the output layer in
the classification module, add one value indicates the target slot presented
in the system belief. So that we can perform another classification over all
the slots presented in such belief to decide the final output.

Slot transfer this is another area we need to dive into for the performance
improvement. In multi domain dialogues, slot value in a service maybe ini-
tialized already by another slot in previous service. For example, after user
requests the restaurant reservation, he may also asks for the direction, in
such case the value of destination slot in navigation service is actually ini-
tialized by the value of address slot in restaurant service. Thus our model
is unable to capture the value span if the address is beyond current turn.
Similar system belief methodology mentioned earlier can be used to tackle
this problem.

Integration with intent detection last but not least, we also consider
developing a joint model to perform intent detection and dialogue state track-
ing simultaneously. Such integration also worth the effort.
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