
POLITECNICO DI TORINO

Master degree in Computer Engineering

Master Degree Thesis

Quantifying the figures of merit of
MAC architectures for Deep

Learning Accelerators

Supervisors:
Prof. Andrea Calimera
Dr. Valerio Tenace

Candidate
Ignacio Goldman

Academic Year 2018

Contents

Summary viii

Acknowledgements xi

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Organization . 3

2 Background 4
2.1 Deep Learning . 4
2.2 Computer Vision . 5
2.3 Convolutional Neural Networks . 6

2.3.1 Definition . 6
2.3.2 Layers . 7
2.3.3 Architectures . 9

2.4 Multipliers . 10
2.4.1 Approximate . 10
2.4.2 Inferential . 11

2.5 Ristretto . 11

3 NVDLA 12
3.1 Introduction . 12
3.2 Architecture . 13

3.2.1 Convolution Pipeline . 15
3.2.2 Post-Convolution Pipeline . 17

3.3 Interfaces & Connections . 18
3.3.1 CSB interface . 19
3.3.2 Interrupt interface . 19
3.3.3 System Data Interfaces . 19

3.4 Implementations . 20

ii

3.5 Configurability . 20

4 NVDLA hardware framework 22
4.1 Introduction . 22
4.2 NVDLA Framework . 23

4.2.1 RTL build . 23
4.2.2 Compilation & Simulation . 24
4.2.3 Testing . 26
4.2.4 Synthesis . 27

4.3 MAC Framework . 28
4.3.1 Input data for MAC testbench 28
4.3.2 Compilation & Simulation . 28
4.3.3 Synthesis . 29
4.3.4 Switching Activity . 29

5 NVDLA software framework 30
5.1 Introduction . 30
5.2 Software Tools . 30
5.3 Virtual Platform . 32
5.4 Configuration . 33

5.4.1 VP . 33
5.4.2 Buildroot . 34
5.4.3 Software Insertion . 34

5.5 Testing . 35
5.5.1 Compilation . 35
5.5.2 Runtime . 35

6 MAC architectures 38
6.1 NVDLA MAC unit . 38

6.1.1 MAC with Booth multipliers 39
6.1.2 MAC optimized architecture 41

6.2 Approximate and Inferential MAC Architectures 42
6.3 Inaccurate MAC optimizations . 42
6.4 SystemC . 44

6.4.1 Interfacing . 46
6.4.2 Custom multipliers in SystemC 47
6.4.3 Quantization . 48
6.4.4 Configuring the MAC . 48

iii

7 Results 49
7.1 Inference Results . 49

7.1.1 MNIST . 49
7.1.2 CIFAR . 50

7.2 Inference Scores . 51
7.3 MAC Error . 53

7.3.1 Introduction . 53
7.3.2 NVDLA vs Approx 16-bits . 53
7.3.3 NVDLA 16-bits vs 8-bits . 54
7.3.4 NVDLA vs Approx vs Inference 8-bits 55
7.3.5 MAC error at hardware framework 56

7.4 Synthesis . 58
7.4.1 16-bits vs 8-bits architectures 58
7.4.2 NVDLA, approx and inference at 8-bits 59

8 Conclusion and Future works 62

9 Files 64

Bibliography 65

Appendices 66
.1 CNN LeNet . 67
.2 Convolution Core Stages . 70
.3 Modelsim Adaption . 72
.4 Script flow NVDLA framework . 73
.5 After simulation results_generator.pl script 74
.6 After simulation compare.pl script . 76
.7 Gitignore file configuration . 77
.8 NVDLA MAC cell description . 78
.9 Approximate multiplier SystemC . 82

iv

List of Figures

2.1 Relation between AI, ML and DL . 4
2.2 Spatial domain preservation of an input image. Extracted from [8]. . 6
2.3 Low, Mid and High level filters. Source: https://devblogs.nvidia.com/

deep-learning-computer-vision-caffe-cudnn/ 7
2.4 Filtering operation . 7
2.5 ReLU used in Activation Layers . 8
2.6 Max Pooling function . 8
2.7 Standard multiplier (left), Approximate multiplier (right). Extracted

from [6]. 10
2.8 Larger multipliers from smaller ones. Extracted from [6] 11

3.1 NVDLA core. Source: https://github.com/nvdla/doc. 13
3.2 Convolution Pipeline. Source: https://github.com/nvdla/doc. 15
3.3 Interfaces and Connections of NVDLA. Source: https://github.com/

nvdla/doc. 18
3.4 Different configurations of the accelerator. Source: https://github.com/

nvdla/doc. 20

4.1 Pre-built code example of accelerator module. Source: https://github.com/
nvdla/doc. 23

4.2 GoogleNet testbench waves . 26

5.1 NVDLA Software tools. Source: https://github.com/nvdla/doc. . . . 31
5.2 NVDLA Virtual Platform. Source: https://github.com/nvdla/doc. . . 32
5.3 Prediction results . 36

6.1 CMAC stage architecture . 38
6.2 MAC cell architecture . 39
6.3 Booth Multiplier architecture . 40
6.4 NVDLA MAC cell Architecture . 41
6.5 Multipliers with/without converters 42
6.6 NV_NVDLA_cmac.h . 45

v

6.7 calculation_fp16 . 45

7.1 Label’s scores, "2" as input digit . 51
7.2 Label’s scores, "9" as input digit . 52
7.3 Area [um2] and Power [mW] comparison between 16-bits and 8-bits

architectures . 58
7.4 Area comparison between 8-bits architectures 59
7.5 Area [um2] and Power [mW] comparison between 16-bits and 8-bits

architectures . 60

1 CDMA. Source: https://github.com/nvdla/doc. 70
2 CBUF. Source: https://github.com/nvdla/doc. 70
3 CSC. Source: https://github.com/nvdla/doc. 70
4 CMAC. Source: https://github.com/nvdla/doc. 71
5 CACC. Source: https://github.com/nvdla/doc. 71
6 Pre-built code example of accelerator module 73

vi

List of Tables

7.1 MNIST Inference results using different multiplicators. 49
7.2 CIFAR10 Inference results using different multiplicators 50
7.3 Inference results including the reduced version of the approximate MAC 60

vii

Summary

Artificial intelligence is moving ahead at a staggering speed in applications and is
spreading rapidly in many aspects of daily life such as face and gesture recognition,
vision, autonomous cars, remote sensing and robots, agriculture, augmented reality,
and bio-metrics, just to name a few.

The potential is even greater since modern approaches of artificial intelligence,
such as Machine Learning or Deep Learning, can be applied onto smaller devices such
as smartphones or even smaller ones like embedded systems with severe performance
constraints. One of the main problems of these new approach to artificial intelligence
is the resource usage. Convolutional Neural Networks (CNNs), for instance, need
high amounts of data to work, thus implying heavyweight computations during the
training phase, as well as during inference stages.

For these reasons, many companies and research groups are working on new ded-
icated hardware solutions for accelerating CNN operations. In particular, NVIDIA
has released, and it is still working on, an open source architecture of a CNN ac-
celerator called NVDLA. This architecture has some interesting points such as that
a convolution pipeline working with 16-bits floating point operations (also referred
to as the full-precision implementation), and a high reconfigurability and modular-
ity. Indeed, modules and cores are fully-independent between them, so they can be
removed, replaced, or modified as needed.

Taking advantage of those characteristics, the main objective of this thesis is to
analyze and compare the figures of merit of the NVDLA architecture under differ-
ent working conditions. Tested configurations include a full-precision 16-bit, and
a reduced 8-bit implementation. Comparisons have been carried out in terms of
area, power, and speed for each configuration. More in detail, the investigation
has been done taking into account the most important component of a CNN, the
convolutional module, where more than 90% of the operations are represented by
matrix-vector multiplications, or multiply-and-accumulate (MAC) operations.

Therefore, to improve the yields of the NVDLA, two inaccurate multiplier archi-
tectures geared towards efficient mathematical operations were also included in the
analyses. Preliminary results suggest that although inaccurate multipliers introduce
errors in MAC operations, this error is not sufficient enough to affect the prediction

viii

results. In other words, trading accuracy for area and power saving is possible and
the prediction accuracy does not vary abruptly.

The work has been carried out on the basis of two work platforms. A hard-
ware platform where the accelerator is described in Verilog and in another software
platform described in SystemC.

The first one, allows to fully-modify each block of the architecture, run single
layer simulations of CNN such as Googlenet or AlexNet and synthesize the model to
obtain detailed information in terms of area, power, and speed of the architecture.
It’s also the access point to dump the model to an FPGA.

Otherwise, the software platform is optimal for faster and more complex simu-
lations such as complete inferences of real CNN models. Accelerators descriptions
(HDL and SystemC) are directly related between them, since modules have the
same logical/behavioral description both in hardware as in software. For instance,
if the multiplicator is described as a booth multiplier in Verilog, the same behavior
is replicated in SystemC.

NVDLA open source provides many scripts for different applications such as
RTL model automatic builds, hardware compilation, simulation, and synthesis. RTL
models and synthesis are generated without problems, no errors appears with tools.
Otherwise, compilation and simulation is done through a Synopsys Tool called VCS.
Due the absence of this tool, the accelerator has been adapted to Modelsim. So, a
specific environment has been created to automatically correct and modify many files
for the compilation of NVDLA in Modelsim. Different RTL models can be inserted in
this environment and should compile with little or no modification. Googlenet and
AlexNet single layer simulations have been run using a default NVDLA without
internal modifications. Data-flow, of features and weights, inside the convolution
core particularly inside the MAC, has been extracted to use them later.

All these works mentioned above has been done at hardware platform level,
specifically they are the NVDLA hardware platform possibilities. The other half of
the platform is called MAC hardware platform and are detailed below.

The NVDLA multiply-and-accumulate unit has been extracted and used as a
base for generating custom MAC units using different multiplicators.

NVDLA has described it’s multiplicator in a standard way (dot symbol between
two inputs). Obviously, is an accurate multiplier, it not introduces error. Otherwise,
inaccurate multipliers has been tested inside the NVDLA MAC unit. It is thought
that even if an error is introduced in multiplication, it is not enough to change the
outcome of a prediction.

Thus, 8-bits and 16-bits MAC architectures using every multiplier has been gen-
erated. Using the extracted data-flow, every MAC has been simulated to check the
correctness of the architecture, tested with a single layer Googlenet and AlexNet
test-bench. Every architecture has been synthesized and compared in terms of area,

ix

power, and speed and then the netlist has been used for a deeper analysis of the
power consumption calculating the switching activity for every circuit.

The software framework has been used for fully-layer and more complete infer-
ences simulations. NVDLA software runs inside a Virtual Platform environment
with its own kernels and Linux version. Once the NVDLA software has been in-
stalled inside the platform, the platform was able to compile the accelerator and run
inferences. For running inferences inside the accelerator, compilation and run-time
tools must be configured. Compilation tools converts pretrained CNNs models into
loadable files for NVDLA, while the run-time tools loads it into the accelerator with
an image for an inference.

In hardware framework, several architectures have been generated and tested.
The same architectures have been generated for the software environment in Sys-
temC language.

The architectures has been tested using a LeNet as CNN model to predict hand-
written digits (accomplished with a MNIST dataset) and vehicles and animals (CI-
FAR10).

The accelerator quantifies the incoming 32-bits data (or 64-bits) generated by
software tool such as TensorFlow and Caffe down to 16-bits as maximum since the
accelerator pipeline possibles data-types are FP16, INT16 and INT8. Despite of this,
for a handwritten digits prediction using a LeNet neural network and the MNIST
dataset, the prediction accuracy is 98.5%, similar value of inferences without data
quantization [7].

If MAC unit is reduced to 8-bits, the accuracy of prediction still at 98.5% but
comparing the architectures in terms of area, power, and speed, working at 8-bits
has several advantages: 70.6% reduction in terms of area (comparison between 16-
bits and 8-bits MAC units), 84% less power consumption and is able to work up to
1GHz frequency.

Which multiplicator unit is convenient? It is possible to trade accuracy with
power using inaccurate multipliers inside a CNN? The performance of the inferential
multiplier in terms of prediction accuracy is not as it was expected, it has an accuracy
of 68% while the approximate multiplier has an accuracy of 98.5%, same value of
using the NVDLA multiplicator. When comparing the MAC modules, when the
approximate multiplier is inserted, it has 24.1% less area and a minimal reduction in
power consumption in comparison with the NVDLA MAC module with the NVDLA
multiplier. Hence, another optimization in MAC unit is possible using inaccurate
multipliers without loosing accuracy in predictions results.

x

Acknowledgements

I would like to express gratitude to thank Professor Andrea Calimera, who after
having one of his courses has given me the opportunity to work at Electronics Design
Automation laboratories of Politecnico Di Torino.

They deserve my thanks also Valerio Tenace for continuously following me with
my work, helping me whenever I need it, and Roberto Rizzo, with whom I have
worked a large part of the thesis.

xi

Chapter 1

Introduction

1.1 Motivation
Artificial Intelligence is spreading rapidly in many aspects of daily life. Smartphones
and all types of computers are using techniques for identifying objects, recognizing
voice or face, intelligent marketing and statistics just to name a few.

Approaches for reaching artificial intelligence are evolving and improving in terms
of performance every year. For instance, Machine Learning, widely used technique
for Computer Vision is being overcome in terms of performance with Deep Learning
structures.

Machine Learning approach needs a feature extraction step before training the
model, Deep Learning algorithms automatically reach this task with backpropaga-
tion techniques. Thus, the advantages of using Deep networks are: higher perfor-
mances since the features are set on their own, and no human error is introduced
with the cost of higher number of computations. To obtain better performances
with Deep Neural models, a high amount of images is needed for training it.

Convolutional neural networks used in deep learning execute a high amount of
computations whence sometimes to train a model are needed from weeks to months,
not always arriving to the expected results. To increase the training and inference
speed, many companies are improving the performances of CNNs at software or
hardware level. NVIDIA has developed an open source hardware accelerator called
NVDLA for accelerating deep learning operations.

The accelerator is highly configurable, so different models can be generated
trading-off performance and savings. Starting from a full version based on per-
formance and speed without taking into account area and power consumption the
accelerator can be reduced down to a scalable small version for being programmed
into Field Programmable Gate Arrays. This version is also suitable for smaller
devices such as smartphones or embedded systems due the complexity reduction.

1

1 – Introduction

NVDLA can be shaped, so every internal module can be modified or replaced
with a custom one. This allows the user to test custom hardware architectures in
real inferences of CNN in terms of prediction accuracy, area, power and delay.

1.2 Objective
TensorFlow, Caffe and Pytorch are some of the deep learning frameworks used for
training and testing deep neural networks. Graphics Processing Unit (GPU) is
usually the hardware to solve deep neural operations. GPUs are general purpose ar-
chitectures used for many tasks. Otherwise, NVDLA is a single purpose accelerator
used for increasing the performance when solving deep neural networks operations.
Therefore, one of the main differences between them is that NVDLA pipeline data-
types are FP16, INT16 or INT8, reducing the precision of data for faster operations
and/or hardware reductions in terms of area, power and delay (data-type of GPUs
are commonly FP64 or FP32). The first objective of this work is to compare in-
ferences results using the accelerator and other software platforms (such as Caffe)
running in regular GPUs and analyze how a reduction in precision affects to final
inferences results.

In Convolutional Neural Networks, more than the 90% of the computations are
done in convolutional layers [5]. The key operation is the multiply-and-accumulate
(MAC): multiplications between inputs activations and weights ending up in a sum
using an accumulator. The MAC unit is composed by a set of “n” multipliers
depending on the parallelism, so the multiplication is crucial in deep learning appli-
cations.

Special architectures of multiplicators such as an approximate multiplicator [6]
and an inference multiplicator [7] trade accuracy for area and power. The second
objective is to insert these inaccurate multipliers into the accelerator and compare
them in terms of precision. If the accuracy of predictions do not vary drastically,
smaller and less power hungry architectures can be generated from these multipliers.

2

1 – Introduction

1.3 Organization
Chapter 2 introduces background concepts such as Deep Learning, Computer Vision,
Convolutional Neural Networks, and inaccurate multipliers architectures.

Chapter 3 contains a study of the accelerator architecture, interfaces, pipeline,
and more.

Chapter 4 describes the Hardware Framework from the set-up up to its usability
and tests. This section is divided in two: an NVDLA Framework where is possible to
compile, test and synthesize the full accelerator architecture and a MAC framework
where the same operations can be applied to the MAC unit specifically.

Chapter 5 is related to the Software Framework. A description of the accelerator
in SystemC language is provided for faster and larger simulations. This chapter
contains information starting from the set-up of the virtual environment needed up
to inferences with custom MAC architectures with the different multiplicators units.

Chapter 6 describes the architectures of each multiplier both in software and in
hardware and how to correctly interface them with the accelerator.

Chapter 7 describes the results obtained in terms of the accuracy, area, power
and speed of each architecture.

Chapter 8 summarizes the most general results of the thesis and raises possible
future work that could be done, based on the work done in this document.

Chapter 9 contains the links to all the files and platforms in which you have
worked.

3

Chapter 2

Background

2.1 Deep Learning
Artificial Intelligence is defined as the ability of a computer or electronic device to
perceive its environment and takes actions that maximize its chance of success at
some goal. It is related with the ability of computers to reason as humans.

Machine Learning is one of the moderns approach of artificial intelligence. Con-
sidered as a subfield of Machine learning, Deep Learning has algorithms inspired in
the structure and behavior of human brain. The relation between these concepts is
shown in figure 2.1.

Figure 2.1: Relation between AI, ML and DL

4

2 – Background

With Machine Learning algorithms it is possible to identify patterns in images.
The result of identifying pattern is for instance, predict if a certain object is a cat or
a dog, if a person is crossing or not a street in case of an autonomous cars or block
the access to a person to a certain area using face recognition.

ML techniques need a set of images to extract it’s features. Feature extraction
is a programmer/human task. After the feature extraction, the model start being
intelligent to new incoming images at input, the model start predicting them.

Otherwise, in Deep Learning, features are extracted directly from the input data
using backpropagation techniques. In the training step of the network, using back-
propagation technique, it is possible to adjust weights of each kernel via it’s gradi-
ents.

In Deep Learning, the feature extraction is not a human task, there are generated
by the network by itself.

Deep Learning approach has greater performances rather than Machine Learning
when the amount of training data is large, the accuracy of the network improves.
Another advantage is that the human work of setting the features is replaced by
an own adjustment of weights due backpropagation. The trade-off is the high com-
putational cost. Thus, the disadvantage of Deep Learning is the large amount of
computations that are needed to train a network.

2.2 Computer Vision
Computers can easily solve mathematical problems such as equations, task that for
humans sometimes results difficult. Otherwise, for a human, it is simple to recognize
if an object is a cat or a bird, humans are trained from early ages to put labels to
objects to differentiate them.

Computer Vision is the science of extracting information of images, giving the
ability to computers of differentiate objects, recognize patters. Is the field dedicated
to give the computers the ability of processing, analyzing, and understanding im-
ages as the human being. Nowadays is used in autonomous cars, face and gesture
recognition, image search, machine vision, character recognition, remote sensing and
robots, agriculture, augmented reality, biometrics, forensics, industrial quality in-
spection, geoscience, medical image analysis, pollution monitoring, process control,
security and surveillance, transport.

5

2 – Background

2.3 Convolutional Neural Networks

2.3.1 Definition
Convolutional Neural Networks (CNN or ConvNet) are related with human neurons
due the structure and behavior. They are mostly used in computer vision for image
recognition due their ability to detect patterns. A CNN is composed of a set of
layers connected one with each other in a sequential way: the output of a layer is
the input of the following one and so on. Main layers are: convolutional, pooling,
activation, normalization, fully connected and softmax and they are combined in
different ways, depending of the network. There are several architectures used for
different tasks. Some recognized networks architectures are: LeNet, AlexNet, VGG,
GoogleNet, ResNet (later, some architectures are explained in details).

Inputs of CNNs are images. The image passes through several filters, preserving
the spatial structure, until a fully connected layer where a prediction is generated.
For example, using a LeNet architecture, pretrained with a MNIST dataset, this
network receives a handwritten number as input (from 0 to 9) and the output of
the network is a prediction about which number could be. Figure 2.2 shows how
the input image proceeds through different layers and how the spatial structure is
preserved until the fully-connected layer.

Figure 2.2: Spatial domain preservation of an input image. Extracted from [8].

Firsts convolutional layers of a CNN are usually low level filters. They are capable
to detect borders, edges, lines, curves of input images. In a general way, they can
detect simple images compositions. In the last layers of a CNN, the featured image
pass thought high level filters that are capable to detect more complex compositions
like eyes, bodies, beaks and more (in case that the network is trained to detect
animals). Figure 2.3 shows the difference between filters used in different layers of a
CNN. How filters values are generated? The answer is backpropagation. After being

6

2 – Background

initialized, at training step, the input image prediction result is compared with the
label of the image and gradients are corrected with backpropagation techniques.

Figure 2.3: Low, Mid and High level filters. Source: https://devblogs.nvidia.com/
deep-learning-computer-vision-caffe-cudnn/

2.3.2 Layers
Convolutional layer

This layer is composed of a set of filters (also called kernels). An input feature map
is convolved by each filter and an output feature map is generated. Given an input
image, suppose a CNN with a convolutional layer composed with 16 filters. There
will be 16 outputs images.

Which is the operation between the input image and the filter? How the output
image is generated? suppose an input image of 5x5 pixels where the pixel is rep-
resented as a numerical value from 0 to 256 (8-bits). The same for kernels (filter)
but consider them of size 3x3. To understand the convolution operation, first is de-
fined the filter operation. A filtering operation is a multiplication and accumulation
between pixels of input and weight. Figure 2.4 shows a filter operation between
them.

Figure 2.4: Filtering operation

7

2 – Background

Defined the filtering operation, a convolution operation occurs when passing the
filter through the whole image. The result is an output image with the following
size:

OutWidth = imgWidth− filWidth

stride
+ 1 (2.1)

Activation layer

After a convolutional layer, there’s an activation layer (usually a ReLU) where all
negatives numbers change to zero. The purpose of this layer is to introduce nonlin-
earity to a system that basically has just been computing linear operations during
the convolutional layers. Is a way of data discretization and the prediction accuracy
have better results. Figure 2.5 shows the ReLU mathematical function. For negative
inputs the output goes to zero while if the input is positive the output is equal to
it.

Figure 2.5: ReLU used in Activation Layers

Pooling layer

In pooling layer, the input feature suffers a shrink, a down-sampling. The most
common pooling functions are: max, min, or average while max pooling is the most
used technique. Figure 2.6 shows an example of using max-pooling resize to a 4x4
input image. From each colored block is extracted the max value so the image is
reduced to 2x2.

Figure 2.6: Max Pooling function

8

2 – Background

Once it is known that the image has a certain feature (while passing through a
convolutional layer), its exact location is not important as its relative location. For
this reason, down-sampling do not affect in performance and provides advantages
such as less computation due the reduction of spatial dimension and control over-
fitting. A symptom of overfitting is having a model that gets 100% or 99% on the
training set, but only 50% on the test data.

Fully-connected layer

Takes as input the last feature map (after passing through all filters of CNN) and
outputs a probability. It looks at the output of previous layer and determines which
features most correlate to a class.

2.3.3 Architectures
The CNN architecture used is LeNet. The network is described in a prototxt file.
The description of each layer type, connections and parameters are described in this
file. A pretrained model is used in NVDLA. The file generated after the training
step of the network is a caffemodel file and contains information about the weights
(kernels) of each layer.

LeNet

This CNN combined with MNIST dataset is used to predict handwritten digits.
According to [9] the error is 0.9%. Also, this network can be used also combined
with CIFAR10 dataset for predicting animals and vehicles. LeNet has a precision of
76.27% when working with CIFAR10. 1 The network architecture layer by layer is:

Conv → Pool→ Conv → Pool→ InnerP → ReLU → InnerP → FullyConnected

Detailed information about each layer can be found in appendix .1.

1https://github.com/BIGBALLON/cifar-10-cnn

9

2 – Background

2.4 Multipliers
NVDLA Multiply and Accumulate unit contains standard multipliers, without in-
accuracies. In Verilog, an accurate multiplier is described as a booth multiplier or
basically with a “*” between two inputs.

The objective is replacing it with inaccurate multipliers without losing prediction
accuracy. Inaccurate multipliers generate multiplications introducing a certain error
that should not be significant if the final prediction result still correct.

2.4.1 Approximate
According to [6] the core of this inaccurate multiplier is a 2x2 multiplier with a
reduced architecture. Instead of throwing a 4-bit results, last bit output is not
considered 0. Figure 2.7 shows the difference at gate-level between an accurate
(standard) multiplier and this inaccurate multiplier version.

Figure 2.7: Standard multiplier (left), Approximate multiplier (right). Extracted
from [6].

Mathematically, the 2x2 inaccurate multiplier is defined with the following equa-
tions:

out0 = a0 ∧ b0 (2.2)
out1 = (a0 ∧ b1) ∨ (a1 ∧ b0) (2.3)

out2 = a1 ∧ b1 (2.4)
out3 = 0 (2.5)

Largers multipliers such as 4-bits or 8-bits inputs, can be generated combining
them. Figure 2.8 shows an example of a 4x4 input multiplier generated with the
2x2 as base.

Each 2x2 multiplier produces partial products for then being added together.
This architecture have several benefits such as an average power savings of

31.78% to 45.4% with an average error of 1.39% to 3.32%. The max error mag-
nitude is 22.22% and its remain constant for larger multiplier architectures.

10

2 – Background

Figure 2.8: Larger multipliers from smaller ones. Extracted from [6]

2.4.2 Inferential
Machine learning techniques mimic the human brain in a certain way, which works as
a statical inference engine, solving problems based on past experiences. The author
explains in [7] as an example, how a person usually multiply a number by 100.
Instead of doing an arithmetic operation, the human simply adds two zeros to the
other number when multiplied. Thus, this is the basis of the inferential multiplier:
the traditional logical function of the multiplier is replaced by an inferential way of
solving the problem.

For that, an initial RTL model, before the synthesis is trained for extracting a
classification tree which is described again in a RTL model (for then being synthe-
sized). This is called ML-driven synthesis and can be applied in the design stage of
other logic circuits.

Resuming, the inferential multiplier is a tree-based multiplier that works like an
inference engine. Comparing it with a classical radix-4 multiplier, it has average
accuracy of 76%, with a reduction of area of 22% and 2x latency reduction.

2.5 Ristretto
It is a tool that has been used in a first step, to generate a quantized pre-trained
model of a CNN. The compilation of the same was not possible due to the limitations
of the compiler of the accelerator (software framework compiler). It is a compiler
that is still in process and many commands still do not recognize them. Beyond that,
it is a tool that allows to check whether it is feasible or not to reduce the data-type
since it makes an analysis of the accuracy of the quantization of the model.

To install Ristretto, is recommended to follow this tutorial: Ristretto installation.

11

https://gist.github.com/nikitametha/c54e1abecff7ab53896270509da80215

Chapter 3

NVDLA

3.1 Introduction
Deep learning inferences are being more accurate than machine learning ones when
the training dataset is large [1]. The problem of Deep Convolutional Networks is
that the number of computations increase drastically due the required large amount
of data for training.

NVDLA Accelerator is an open source hardware architecture to address these
computational demands, solving commons inference operations as convolution, ac-
tivation, pooling, and normalization at higher performances. Other advantages of
NVDLA are:

• Provides a scalable version for FPGA.

• Highly configurable.

The high configurability allow the programmer to generate it own version of
the accelerator only with the required blocks or add custom blocks into the entire
architecture. NVIDIA describes this accelerator in two ways:

• Hardware description: in Verilog, RTL form useful for synthesis, single-layer
simulations and accurate power calculations.

• Software description: in SystemC for inference simulations and complete CNN
simulations

12

3 – NVDLA

3.2 Architecture
The aim of the accelerator is to solve CNN inferences faster, accelerating their main
operations: convolution, activation, pooling, and normalization. For each one it has
an specific module:

• Convolution core: for convolution operations.

• Single Data Point operations (SDP): for activation operations.

• Planar Data operations (PDP): for pooling operations.

• Multi-Plane operations (CDP): for normalization.

• Reshape and Bridge DMA: for memory and reshape operations.

Figure 3.1 shows the complete NVDLA core structure:

Figure 3.1: NVDLA core. Source: https://github.com/nvdla/doc.

13

3 – NVDLA

Blocks inside the core work independently one with each other. If a system does
not need a certain block, it can be removed entirely without affecting the rest. The
independence between blocks generate two ways of work with the core:

• Independent, an external scheduler starts/ends different modules without re-
lating its operations and data.

• Fused, pipelined activities and data connection between blocks.

For instance, if NVDLA is working in independent mode within a convolutional
layer, this operation ends with a writting in memory. Otherwise, if NVDLA is
working in fused mode, the output data of the convolution module moves towards
the SDP block, for activation operations. Between blocks, the core provides small
FIFOs to pass data between them when working in this mode.

Architecturally is built in as a pipeline. The full pipeline is as follows:

• CDMA: convolution DMA.
• CBUF: convolution buffer.
• CSC: convolution sequence controller.
• CMAC: convolution MAC array.
• CACC: convolution accumulator.
• SDP: single data processor.
• SDP_RDMA: single data processor, read DMA.
• PDP: planar data processor.
• PDP_RDMA: planar data processor, read DMA.
• CDP: channel data processor.
• CDP_RDMA: channel data processor, read DMA.
• BDMA: bridge DMA.
• RUBIK: reshape engine.

14

3 – NVDLA

3.2.1 Convolution Pipeline
The first five stages of the convolution core belong to the “convolution pipeline”.
Figure 3.2 shows its structure.

Figure 3.2: Convolution Pipeline. Source: https://github.com/nvdla/doc.

The inputs of the convolution pipeline are: the data extracted from the image
(feature map) and the weights of the kernel related to the convolutional layer which
is being processed. First convolutional layer receives the image as input and then the
feature map are always being modified by each layer while weights remains constant
since it’s a pretrained model (data read from .caffemodel file).

It can be configured in a standard convolution mode (called direct convolution)
or in optimized modes such as image-input (used at the 1st convolution layer),
Winograd convolution and Batching option(optimized techniques). Other optimiza-
tion feature is called sparse weight compression and optimizes fetching operations
of weights from memory.

Atomic-C and Atomic-K are the parameters used to determine the number of
MAC units. Specifically, the multiplication between them: Atomic-C * Atomic-K.
For example, setting Atomic-C=16 and Atomic-k=64 generates a hardware archi-
tecture with 1024 MAC units. It is fundamental to consider the neural network
structure and convolutional layer parameters. Suppose an input feature data chan-
nel equal to 8 and a weights data channel equal to 16. Thus, 128 MAC are required.
If Atomics are set to 16 and 64, only 128 of 1024 MACs would be used, achieving
a performance of 12.5% . All previous configurations are loaded before each layer
execution.

CSB master does not belong to the convolution pipeline, it is not a pipeline stage.
It configures each NVDLA sub-units registers using a ping pong synchronization
technique (explained in detail in interfaces and interconnection section). The stages

15

3 – NVDLA

of the convolution pipeline are:

• CDMA: Between the memory interface and the convolution core there’s a
buffer (RAM) reserved for weights and input storage. It s optimal to avoid
repeated accesses to system memory. This unit is dedicated to fetch data
from the internal SRAM (or external DRAM) and store it in the buffer. This
operation usually is accompanied by a conversion operation of input feature
data depending the convolution mode (direct, Winograd, image-input). the
information about the conversion is sent to the sequence controller (CSC).
Figure 1 shows the architecture of this block.

• CBUF: Is a 512Kb SRAM memory composed by 16 32KB banks of two 512-
bit-wide and 256-entry two-port SRAMs. Data is pre-allocated in this block
before the convolution operation. Figure 2 shows the architecture of this block.

• CSC: CDMA works as an interface between the SRAM memory and the con-
volution buffer. The convolution sequence controller has the same purpose
between the buffer and the CMAC. It’s composed by two data loaders, one
for feature map and other for weights respectively, and they are configured ac-
cording the convolution mode, by the signal coming from CDMA stage. Figure
3 shows the architecture of this block.

• CMAC: It is composed by a configurable number of MAC cells for parallel
multiply-and-accumulate calculations. The input feature map is the same for
all cells, varying the kernel weights. In other words, each MAC cell operates
with a particular kernel generating its partial sums.
Internally, each MAC cell generates a parallel multiply-and-accumulate calcu-
lation due the variable number of multiplicator units working in parallel. All
the multiplications are added together and the output of the MAC is finally
the partial sum between the feature data and the weight.Figure 4 shows the
architecture of this block.

• CACC: In the last pipeline stage, partial sums are accumulated by the convo-
lution accumulator. After the accumulation the result is rounded/saturated.
When working at INT8 the accumulative sum is stored in 34 bits and trun-
cated to 32. For INT16 the accumulative sum is stored in 48 bits and truncated
to 32. Otherwise at FP16 the accumulative sum is stored in 44 bits (8-bits
exponent, 38-bits signed decimal) and truncated to FP32. Figure 5 shows the
architecture of this block.

16

3 – NVDLA

3.2.2 Post-Convolution Pipeline
• SDP: core dedicated to post-processing operations. The allowed operations

are: bias addition, non-linear functions and batch normalization. All of them
are widely used after a convolution layer. The bias addition operation traduced
with the following mathematical formula: y = x + bias. Non-linear allowed
functions are: ReLU, Sigmoid and Hyperbolic and they are used to accomplish
activation layers.
Besides the post process operation, SDP also performs format conversion.
After a convolution layer, output data has higher data-types than the commons
data-types of NVDLA pipeline (FP16, INT16, INT8) thus a conversion is
necessary.

• PDP: core dedicated to accomplish pooling functions. NVDLA support max,
min, and average pooling. Neighboring input elements within a plane are sent
to a non-linear function to compute one output element. Figure 2.6 shows a
graphical example of a max-pooling function.

• CDP:Core dedicated to local response normalization.

• RUBIK:Is the data reshape core. Splitting, slicing, and merging of data are
some of the functions that this core is capable to do.

• BDMA: images and processed results are stored in a external DRAMmemory.
Bandwidth and latency of this memory are insufficient to fully utilize NVDLA.
Bridge DMA is the core dedicated to move data between memories.

17

3 – NVDLA

3.3 Interfaces & Connections
Figure 3.3 shows the NVDLA core, the external blocks and its interfaces and con-
nections.

Figure 3.3: Interfaces and Connections of NVDLA. Source: https://github.com/
nvdla/doc.

The CPU oversees scheduling operations; sends signals to certain blocks (for
instance convolutional or SDP) to start the execution. When the block ends it’s
respond with an interrupt signal to the CPU. The process repeats until the inference
of the entire network in complete. The interfaces between the accelerator and the
CPU are: Configuration Space Bus (CSB) and interrupt interface (IRQ).

18

3 – NVDLA

3.3.1 CSB interface
Host systems configure NVDLA registers via this interface. It uses a “ping-pong”
Synchronization mechanism.

“ping-pong” Synchronization mechanism: Every subunit of the accelerator
has its own registers (status, configuration and more). For instance, a CNN com-
posed with a convolutional layer followed with an activation layer. The workflow,
at register configuration level is the following:

1. CPU program NVDLA via CSB the convolutional unit.

2. Execution.

3. Finish execution, IRQ signal from NVDLA to CPU.

4. CPU program NVDLA via CSB the activation unit (SDP).

5. Execution.

Every sub-unit of NVDLA has a set of configuration and control registers du-
plicated. This duplicated-register architecture is the key of the mechanism. When
a subunit is executing using the configuration of the first set of registers, the CPU
is allowed to program the second set. So, CPU reprogramming latency do not affect
to NVDLA performance.

3.3.2 Interrupt interface
NVDLA hardware includes a 1-bit level-driven interrupt. The interrupt line is as-
serted when a task has been completed or when an error occurs.

3.3.3 System Data Interfaces
The accelerator accesses to external data through two data interfaces: DBBIF and
SRAMIF. DBBIF is the interface with the external memory while SRAMIF is the in-
terface with an optional external SRAM memory. Both uses AXI4 interface protocol
and has a configurable data bus from 32 up to 512 bits.

19

3 – NVDLA

3.4 Implementations
Depending on the application, the accelerator can be configured in different ways.
NVIDIA has released two versions: a large one based on performance and a small
based on savings.

Large accelerator, also called full or headed, has primary emphasis on high per-
formance and versatility, it can resolve many tasks at once and include an optional
second memory interface.

Small one has good fit for cost-sensitive connected Internet of Things (IoT)
devices, AI and automation-oriented systems that have well-defined tasks for which
cost, area, and power are the primary drivers. It can handle only one task at a time,
and as such, sacrificing system performance while NVDLA is operating is generally
not a strong concern. This generates inexpensive context switches so there’s no
need of an additional microcontroller (headless). This version does not include the
optional second memory interface.

3.5 Configurability
Setting different parameters, will conclude in different versions of the NVDLA RTL
and synthesis description with differences in performance, area, power, etc. Figure
3.4 shows different configuration examples:

Figure 3.4: Different configurations of the accelerator. Source:
https://github.com/ nvdla/doc.

Each parameter affects a certain or a group of blocks of NVDLA. For example,
setting the data type will affect the entire pipeline while Winograd feature only

20

3 – NVDLA

affects to CMAC block. Most of the parameters have been mentioned in section
3.2.1.

21

Chapter 4

NVDLA hardware framework

4.1 Introduction
NVIDIA describes the accelerator in two different ways:

• Hardware description: using Verilog as HDL language, in a RTL form useful
single-layer simulations and synthesis to obtain information of the module (or
sub-modules) in terms of area, energy and speed.

• Software description: in SystemC for faster simulations. Instead of a single
layer, a complete CNN can be simulated.

Moreover, the hardware framework is divided into two parts:

• NVDLA: different RTL versions of the accelerator are generated varying cer-
tain parameters, proceeding with single-layer simulations for testing. Finally,
a synthesis of the models to obtain information about area, power and speed.
Compilation and simulation build tools of NVDLA are in VCS (Synopsis tool),
thus lot of modifications has been done to adapt it to Modelsim. The top unit
in this environment is the accelerator.

• MAC: a separated environment for synthesis with custom scripts (not the
NVDLA provided ones), pre and post-synthesis simulations of each MAC mod-
ule and switching activity calculations are the main tasks of this section. The
top unit in this environment is the MAC one.

22

4 – NVDLA hardware framework

4.2 NVDLA Framework
NVDLA Hardware framework files can be downloaded and used by the following
link https://github.com/IgnacioGoldman

4.2.1 RTL build
NVIDIA provides a hardware description of the accelerator. The peculiarity is
that files can not be directly compiled, they are not described entirely. Before the
compilation, a build step is needed. Figure 4.1 shows an instance of a Verilog file of
a NVDLA module that is not fully-described.

Figure 4.1: Pre-built code example of accelerator module. Source:
https://github.com/ nvdla/doc.

The final architecture of a module will depend on a certain amount of parameters
such as CMAC_ATOMC that can be configured before the build. For instance, with
Atomic-C and Atomic-K it is possible to determinate the number of MAC units of
the accelerator thus, the RTL build files bases on these parameters to generate the
final verilog with the amount of modules needed and the correct bit-widths.

Previous lines of codes belong to the MAC unit, but all the modules are described
in this way. The commands for building an RTL model are the following:

1. cd hardware_framework/NVDLA

2. make rtl

23

https://github.com/IgnacioGoldman/NVDLA_repo/tree/master/hardware_framework/NVDLA

4 – NVDLA hardware framework

The resulting architecture is saved at hw/outdir. The execution command has
two variables: vmod and a spec file. vmod is the directory where all the Verilog files,
plus libraries and memories of the accelerator are located while the spec file contains
all the configuration parameters as number of MACs, widths, throughput of blocks,
data-type, Winograd mode and other special features are enabled or disabled. This
file is crucial for the final accelerator size and performance.

The most common errors in this step can be: in paths or with perl modules. To
solve the first type is a matter of modifying the file tree.make which contains all
paths to java, gcc, python, and more. Then, the missing perl modules have to be
installed.

4.2.2 Compilation & Simulation
The customized RTL model generated in previous step is inserted inside the NVDLA
hardware framework to be compiled, simulated, and synthesized it. For insert-
ing the RTL model, the vmod generated directory should be copied into con-
tainer_NVDLA_RTL/NVDLA/outdir/nv_full.

Then, for compilate and simulate the model, the default command is make sim-
ulate. For a custom compilation and simulation, some parameters should be config-
ured:

• TESTBENCH=<name>. Provided testbenches given by NVDLA are suffi-
cient to prove different MACs. They are located at /verif/traces/traceplayer/.
Some interesting’s testbenches are the Googlenet and AlexNet convolution
layers since they simulate originals CNN layers.

• WAVES=-c. Adding this parameter generates a console level simulation with-
out showing waves which is faster.

• MAC=<nvdla, approx, inference>. Specify the mac unit to be used. MAC
units are described in the following chapters.

• SYNTH=<0 or 1>. Set in 1 for a post-synthesis simulation.

NVDLA open source uses VCS (tool of Synopsys) for testbench verification. The
simulation environment has been moved into Modelsim due the absence of this tool.

When running the commandmake simulate, the script automatically solves many
incompatibilities migrating verilog files to systemVerilog. From line 4 to 7 at .3
there’s an extraction of the script that shows the file adaption. The rest of the
errors appears due other reasons. Many files have been modified at specific lines for
correcting those errors thus in a second stage of the script, original files of the RTL
containing errors, are replaced with the same ones, but corrected. All correct files

24

4 – NVDLA hardware framework

can be located at https://github.com/IgnacioGoldman/. From lines 9 to 11 at .3
there’s an extraction of the script that shows the files replacing.

After Modelsim adaptation step, the NVDLA should compile without errors,
so the compilation and simulation can be started. Before that, inputs files are
formatted when running the inp_txn_to_hexdump.pl script.

For every simulation there are related three inputs files. The script
inp_txn_to_hexdump.pl converts those files into a readable format for the accel-
erator. First two files are called: image.dat and weight.dat and they contain the
image and kernels data. There’s a third one called input.txt, containing all the
configurations of NVDLA.

Sequentially, CSB master reads the input.txt that starts with two load oper-
ations (weights and data are loaded into the memory). The rest of the oper-
ations are related to the configuration of the accelerator registers. The follow-
ing link directs to the files related to the single-layer testbench of a Googlenet
https://github.com/IgnacioGoldman/.

After a compilation and simulation of a CNN layer in the NVDLA hardware
framework, a transcript file is generated. This file contains information about:
write/read of NVDLA registers, write/read of NVDLA internal and external memo-
ries, inputs and outputs of every Multiply and Accumulate unit are displayed, inputs
and outputs of every multiplicator unit are displayed.

This information is collected with “$display” operations. At MAC level, every
time the output changes it values show the it’s values also with the inputs that are
entering to the module at this moment. MAC unit has a pipeline of 3 stages so for
being clear, those inputs are not directly related with the output. In other words,
the inputs generate an output after three rising edge clocks. After the transcript is
generated, there are several scripts to calculate the relative error of MAC operation
and multiplication operation. Those errors are used to ensure that every MAC is
working as they are expected to work. .4

25

https://github.com/IgnacioGoldman/NVDLA_repo/tree/master/hardware_framework/NVDLA/files_without_errors
https://github.com/IgnacioGoldman/NVDLA_repo/tree/master/hardware_framework/NVDLA/verif/traces/traceplayer/googlenet_conv2_3x3_int16

4 – NVDLA hardware framework

4.2.3 Testing
Figure 4.2 shows the main accelerator connections with: external memory (violet)
and CSB master (orange) and some inputs to MAC units (green). Blue signals are
related to the accelerator clock.

With the figure, it can be deduced the flow of operations that occur when running
a testbench. In particular, it is Googlenet’s single-layer testbench.

Observe that the process is as follows:

1. CBS configures the registers corresponding to each stage of the pipeline
(csb2nvdla_wdat).

2. The accelerator begins to bring data from the memory
(nvdla_core2cvsram_r_rdata).

3. The accelerator operates with the data (green signals).

4. The output feature data is saved again in memory
(nvdla_core2cvsram_w_wdata).

Figure 4.2: GoogleNet testbench waves

26

4 – NVDLA hardware framework

4.2.4 Synthesis
For running a synthesis the command is make synth. Errors appears, specifically
in file config.sh that contains all the configurations for the synthesis. The following
modifications has been applied to this file:

• Changes in erroneous tools paths.

• Export TOP_NAMES=<module name>. For synthesizing only the mac unit:
NV_NVDLA_CMAC_CORE_mac. Any module can be synthesized sepa-
rately, indeed it is recommended to synthesize the accelerator partitions sep-
arately.

• Export TARGET_LIB and LINK_LIB with own libraries
CMOS045_SC_14_CORE_LS_nom_1.10V_25C.dc.

27

4 – NVDLA hardware framework

4.3 MAC Framework
The MAC module has been separated from the whole NVDLA architecture for fast
simulations, accurate synthesis results using own scripts and switching activity cal-
culation of the post-synthesis circuit. In the following paragraphs the functionalities
that this environment allows are explained.

4.3.1 Input data for MAC testbench
When a layer simulation occurs (in previous framework) the NVDLA read the input
data from weights and feature files and operates with them until the MAC cells.
Running testbenches of real layers in the complete NVDLA architecture allows to
generate a file with the correct data-flow inside NVDLA MAC cells.

In other words, after running each single-layer testbench the following files have
been obtained: fc_layer.txt, googlenet_layer.txt, alexnet_layer.txt. They contain
the exact data-flow of a real CNN, but only for the MAC unit testbenches. Thus,
running the command:

• Make testbench TESTBENCH=<value> BITS=<value>

The script format_tb_MAC.pl format the data into two files called data_file.txt
and weight_file.txt for being used in this environment.

4.3.2 Compilation & Simulation
The command for compile is:

• make compile UNIT=<mac_architecture>

After modifying the MAC architecture ensure that there’s not any error in com-
pilation step with previous command.

Once testbench has been generated and mac architecture compiles without errors,
a simulation can be executed. The command is:

• make simulate TESTBENCH=<testbench> BITS=<bits> UNIT=<mac>

For instance, running make simulate TESTBENCH=<googlenet> BITS=<8>
UNIT=<approx_int8>means using and configuring the accelerator with a GoogleNet
single-layer testbench and the approximate 8-bits MAC unit.

How the results of a testbench are checked? How is it verified that the MAC
is working as it should? A transcript file is generated after the simulation con-
taining information about inputs and outputs of the MAC. Thus, a script called
results_generator.pl generate two files: exact_result.txt and MAC_result.txt con-
taining as indicated by their names, the exact MAC results and the approximate

28

4 – NVDLA hardware framework

MAC result generated by the accelerator (or also exact if an accurate multiplier is
used).

Previous generated files are the inputs of a script called compare.pl which com-
pare the relative error of the exact MAC with the approximate one. Both scripts
codes can be found at .5 and .6 with detailed explanations.

4.3.3 Synthesis
For synthesizing a certain MAC unit, the procedure is the following:

1. Set the MAC unit to be synthesized in file logicSynthesis/core_settings.tcl
modifying the 3rd line.

2. Set correctly the source file in file logicSynthesis/synthesis.tcl

3. run make synthesis

All the results of the synthesis including reports and the netlist are saved in saves
directory.

4.3.4 Switching Activity
For an accurate power consumption calculation, a set of scripts have been configured
in the environment to calculate the switching activity of a certain MAC unit. The
command for running a switching activity is make switching_activity.

29

Chapter 5

NVDLA software framework

5.1 Introduction
NVIDIA provides a software description of the accelerator (in SystemC language)
useful for complete CNN inferences. While in the hardware description there are
single layer testbenches, in this platform it is possible to run a full CNN network
with an image as input and check the prediction results. As in hardware description,
modules of software NVDLA are fully-modifiable.

5.2 Software Tools
The software associated with NVDLA is divided into two parts:

• Compilation tools: converts a CNN model (stored in a .prototxt file) in
combination with its pre-trained weights (stored in a .caffemodel file) into a
loadable file capable of running on NVDLA. It is smart enough to pro-actively
recognize those neural network operations that are not suitable for the NVDLA
implementation and report back to the application.

• Runtime environment: run-time software to load and execute neural net-
works into NVDLA. The loadable file generated in compilation step in combi-
nation with an input image are the inputs of the runtime environment, being
the prediction the result.

The runtime environment must run inside a Virtual Platform while for compi-
lation tools this is not necessary. Figure 5.1 shows the general flow of NVDLA
software.

Before running the accelerator software, User Mode Driver (UMD) and Kernel
Mode Driver (KMD) kernels must be installed inside the virtual platform. UMD

30

5 – NVDLA software framework

Figure 5.1: NVDLA Software tools. Source: https://github.com/nvdla/doc.

provides standard Application Programming Interface (API) for processing loadable
images, binding input and output tensors to memory locations, and submitting
inference jobs to KMD. KMD is main entry point; receives an inference job in
memory, selects from multiple available jobs for execution (if on a multi-process
system) and submits it to the core engine scheduler.

NVDLA provides examples of these kernels at /prebuilt/linux. Kernel files are
opendla.ko and drm.ko and for testing, these kernels are sufficient, but it is possible
to compile and generate custom kernels. Using custom kernels inferences it is pos-
sible to arrive to higher accuracies in predictions due bugs corrections and modify
them freely for showing necessary information such as the registers writting and
reading or score of each class when predicting.

31

5 – NVDLA software framework

5.3 Virtual Platform
The virtual platform is based on GreenSoCs QBOX, co-simulator with QEMU and
SystemC. QEMU is a free and open-source hosted hypervisor that performs hard-
ware virtualization. In this case, QEMU is an ARMv8 emulator. Figure 5.2 shows
how the software version of the accelerator is embedded inside the virtual platform.

Figure 5.2: NVDLA Virtual Platform. Source: https://github.com/nvdla/doc.

32

5 – NVDLA software framework

5.4 Configuration
In the following section is described the whole installation process of the virtual
platform and the accelerator software inside of it. The process is divided into three
different configurations: virtual platform configuration, buildroot configuration and
NVDLA software insertion.

5.4.1 VP
1. Clone the VP repository and move into the directory.

2. Type the following command: git submodule update –init –recursive. Many
modules will throw errors, probably all of them starting from the dtc module.
To solve them type:

(a) gedit ∼/.gitconfig
(b) Configure the file such as .7.

3. Install the required tools and libraries with the following command: sudo apt-
get install g++ cmake libboost-dev python-dev libglib2.0-dev libpixman-1-dev
liblua5.2-dev swig libcap-dev libattr1-dev

4. SystemC 2.3.0 version is required (fails with 2.3.1 and 2.3.2). Follow the next
tutorial for the installation 1

5. Clone the NVDLA hardware inside the virtual platform

6. Move into the hw directory and run make to set up the environment paths.

7. Run tools/bin/tmake -build cmod_top to build a generic SystemC version of
the accelerator.

8. Move again into the virtual platform directory and type
cmake -DCMAKE_INSTALL_PREFIX=build -DSYSTEMC_PREFIX=
/usr/local/systemc-2.3.0/ -DNVDLA_HW_PREFIX=/home/ignacio/vp/hw
-DNVDLA_HW_PROJECT=nv_full for cmake build under the vp repository
directory.

9. git submodule update –init –recursive

10. make

1http://rkrara.blogspot.it/2012/12/install-systemc-230-on-linux.html

33

5 – NVDLA software framework

11. make install

At this point, the virtual platform should be correctly installed with a standard
version of the accelerator.

5.4.2 Buildroot
Buildroot is a tool used to generate embedded Linux systems through cross com-
pilation. It is composed by a set of scripts that make easy the process of building
a bootable Linux. It can be downloaded from https://buildroot.org/download.html.
Once downloaded, the following steps should be done:

1. Decompress it and move into the buildroot directory.

2. Run the following command: make qemu_aarch64_virt_defconfig

3. Then, make menuconfig

5.4.3 Software Insertion
Clone the software repository inside the virtual platform directory. Then, compile
kernel modules:

1. UMD compilation

(a) In UMD directory, export TOP=<path to umd>
(b) Then, export TOOLCHAIN_PREFIX==<search path in buildroot>/bin/

aarch64-linux-gnu-
(c) make

2. KMD compilation, move into KMD directory and type make KDIR=<path
to buildroot>/buildroot-2017.11-rc1/output/build/linux-4.13.3/ ARCH=arm64
CROSS_COMPILE=<path to buildroot>/buildroot-2017.11-rc1/output/host/
bin/aarch64-linux-gnu-

3. Move the generated kernels opendla.ko and drm.ko to the /prebuilt/linux di-
rectory.

34

5 – NVDLA software framework

5.5 Testing
This part of the document is useful also as a tutorial to use the NVDLA software
correctly. Up to here, all the required tools have been installed and configured. So,
a LeNet with a set of MNIST images is used for testing. These files can be found
at thesis repository in the following link IgnacioGoldman Github.

The process is divided into two parts:

• Loadable file generation.

• Running loadable in NVDLA.

5.5.1 Compilation
The convolutional neural network model plus the pre-trained weights file are the
inputs to the compiler. The first one described as a prototxt file and the second one
as a caffemodel file. This stage does not necessarily have to be executed within the
virtual platform. The commands are:

• Change directory up to sw/prebuilt/linux.

• ./nvdla_compiler –prototxt <prototxt_file> –caffemodel <caffemodel_file>

The resulting loadable file “default.nvdla” should be generated.

5.5.2 Runtime
SystemC model of the accelerator has been generated before when running tool-
s/bin/tmake -build cmod_top at the hardware environment. If modifications were
introduced in the architecture, it must be recompiled using the same command.
Then, change directory to virtual platform and login into the kernel using the fol-
lowing command:

• export SC_SIGNAL_WRITE_CHECK=DISABLE && ./build/bin/
aarch64_toplevel -c conf/aarch64_nvdla.lua. ’root’ for the account and ’nvdla’
for the password.

Once inside the virtual platform, software files are mounted and kernels should
be compiled, all in one with the following command:

• mount -t 9p -o trans=virtio r /mnt && cd /mnt/sw/prebuilt/linux/ && export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/mnt/sw/prebuilt/linux/ &&
insmod drm.ko && insmod opendla.ko

35

https://github.com/IgnacioGoldman/NVDLA_repo/tree/master/software_framework/CNN_pretrained_models

5 – NVDLA software framework

To run a single inference the command is the following: ./nvdla_runtime –
loadable default.nvdla –image ../../regression/images/testSample/img_1.jpg –rawdump.

Inputs of the runtime command are the loadable and a random image. As the
loadable used is a LeNet trained with handwritten digits, the input image is also a
digit.Then, to run multiples inferences, a simple one-line script is done:

• n=0; while [[$n -lt 1]]; do ./nvdla_runtime –loadable default.nvdla –image
../../regression/images/testSample/img_$((n+1)).jpg –rawdump && cat out-
put.dimg » result.txt && echo “” » results.txt; n=$((n+1)); done

An inference in this environment takes approximately 2 minutes and increases
the duration while the neural network is more complex. An inference in programs
of the type of tensorflow or caffe takes some milliseconds.

The following image shows how the environment shows the results after inference.

Figure 5.3: Prediction results

Each line represents the result of each inference and each columns is related to
each class. For instance, the line 0 0 1 0 0 0 0 0 0 means that the prediction result
is number two, while line 1 0 0 0 0 0 0 0 0 is number 0.

After running the runtime command two files are generated. results.txt shows the
result of the predictions in a list form while scores_results.txt include the scores of
each class when predicting. An example of both files after running a single inference
can be seen in the following link Google Drive link.

To automate the process of checking results the predictions file have been com-
pared with a golden file using a script. Furthermore, the scores of each prediction are
useful to understand how each multiplier affects differently to each MAC operation,

36

https://drive.google.com/drive/folders/1ItRa6G2o6GdoEdoxXD2cYRCyOcN9LtDs?usp=sharing

5 – NVDLA software framework

and how the MAC operation affects to the final prediction. The values of the scores
are inserted in an excel file "prediction_behavior.xlsx" which shows the behavior of
each architecture.

37

Chapter 6

MAC architectures

6.1 NVDLA MAC unit
NVDLA CMAC stage of the convolution pipeline has been described in 3.2.1 section.
In the following section is described the MAC cell internally to understand the be-
havior and correctly generate other architectures with different types of multipliers.
Figure 6.1 shows the CMAC pipeline stage, containing multiples MAC cells. Many
of the figures displayed in this chapter are a simplified version of them. For a full
comprehension check the Verilog files at https://github.com/IgnacioGoldman.

Figure 6.1: CMAC stage architecture

38

https://github.com/IgnacioGoldman/NVDLA_repo/tree/master/hardware_framework/NVDLA/mac_units/nvdla_mac/cmac

6 – MAC architectures

NVDLA still in continuous development, therefore, the architecture of the multiply-
and-accumulate unit has undergone changes, improvements and optimizations dur-
ing the course of the thesis.

6.1.1 MAC with Booth multipliers
It is the architecture of the MAC cell during the first release of the accelerator. The
operation is explained in the following lines.

In stages prior to the convolution, the accelerator organizes the data in memory
in a particular way. The image and weights are stored in memory in a private
format called cube format, which consist in divide the full data-set into small cubes
of 32-bytes data aligning them in weights, height and channel.

From the point of view of the CMAC stage, it is enough to understand that
each clock cycle a single cube of image and kernels enter inside of the CMAC. In
other words, in a clock cycle, a cube of the input image enters to every MAC cell
and a cube of each kernel enter inside each MAC cell. Thus, each MAC cell works
generating the partial results of each kernel.

The package (small cube of image and kernel) incoming to a MAC cell , is
decomposed in each atomic FP16 data (INT16 or INT8, depending the data-type)
and stored in a set of registers. Then, each pair of registers (respective to image and
kernel) enter into set of booth multipliers working in parallel. The result of each
multiplication are finally added together in a third stage with a tree adder. The
figure 6.2 graphically describes the process.

Figure 6.2: MAC cell architecture

39

6 – MAC architectures

Booth Multiplier

Optimized hardware that multiplies two signed binary numbers in two’s complement
notation using an algorithm different to the traditional way of solving multiplication
by the human being. Takes as input both 16-bit weight and feature data and uses
one as a source data and the other for encoding. Then, the source data is shifted
accordingly the encoder 1 and all the results are added in a Design-Ware tree adder.
A figure of the booth multiplier is shown at 6.3.

Figure 6.3: Booth Multiplier architecture

The multiplier booth has its inputs to 16-bits. So what happens if the accelerator
is configured to work at 8-bits? Would 16-bit multipliers be used for operations at
8? The answer is yes, but the booth would solve two multiplications in a clock
cycle, doubling the performance. In other words, the architecture of the MAC and
the multipliers do not change, but the configuration makes the hardware to work in
different ways and with different sets of data.

The output of each booth multiplier are the inputs of another DesignWare tree
adder dedicated to sum the result of each multiplication 6.3. Consider that while a
traditional MAC unit multiply and then accumulate serially it’s values, the NVDLA
MAC performs all the multiplications in parallel, concluding with a final sum of all
the previous results.

1the booth multiplier algorithm has a better performance due these shift multiplications that
can be done in parallel

40

6 – MAC architectures

6.1.2 MAC optimized architecture
The first NVDLA MAC architecture using booth multipliers, behaviorally works
fine but it was not optimal in terms of area and power due the complexity of the
booth multiplier. It is not described as a simple booth multiplier since it has the
possibility to be configured, for instance to double the speed when reducing the
data-type from 16-bits to 8-bits.

Hence, in following releases, NVIDIA has described the MAC cell in a different
way, using a simpler multiplier. As reported in listing .8 is the Verilog file of the
MAC cell after an RTL build of a small accelerator working at 8-bits.

Figure 6.4: NVDLA MAC cell Architecture

In section 4.2.1 it is explained that different RTL models of the accelerator can
be generated by changing certain parameters. In particular, the Atomic-C and
Atomic-K parameters determine the number of MAC. Moreover, it can be config-
ured the data-type. In this case the generated MAC cell works at 8-bits, thus the
multiplication is at 8-bits.

When trying to generate the MAC cell at 16-bits, after the build, the multipliers
still multiplicating at 8-bits. This may be due to a possible NVIDIA bug (in the
RTL generation) or simply due to its own quantization at the MAC level.

Therefore, the 16-bit MAC NVDLA has been generated manually starting from
the 8-bit version, applying small modifications.

41

6 – MAC architectures

6.2 Approximate and Inferential MAC Architec-
tures

From the NVDLA architectures, inaccurate MACs have been generated by removing
the exact multiplier of the accelerator and inserting the approximate 16-bits and
8-bits version. The respective files to each architecture can be found on github
repository.

6.3 Inaccurate MAC optimizations
The input image and kernels values are represented in 2’s complement, therefore the
booth multiplier is an optimal architecture since the algorithm is directly based on
this notation.

For the inaccurate multipliers this is a problem since they work in Sign-and-
Magnitude notation. Specifically the problem is that in order to insert those multi-
plications for replacing the NVDLA one there must be a previous conversion to the
inputs of the multiplier from 2’s complement to Sign-and-Magnitude and viceversa
at the output, which adds area and power consumption to the circuit and its also
reduce the working frequency. If the multipliers are compared (without convert-
ers), the inaccurates have better performances in terms of area and power, but by
introducing these extra hardware they are no longer convenient.

Figure 6.5 shows the structure of the inaccurate multiplier with the converters
and compared graphically with the NVDLA multiplier that do not need them.

Figure 6.5: Multipliers with/without converters

42

6 – MAC architectures

Leftmost picture in 6.5 shows the inaccurate multiplier with the obligatory con-
verters. The multiplexer selects the input depending on the MSB (not shown in
the graph to simplify the understanding). In case of a 0 as the MSB, it means
that the value is positive, thus it does not need to be converted. Otherwise, if the
number is negative, therefore the module of the negative number is calculated by an
inverter following by a +1 addition. For instance, if the input has a value of 0x0045,
the MSB is 0, therefore the representation in 2’s complement does not change to
the representation in Sign-and-Magnitude. On the contrary, if the input number is
0xA0FE, its MSB is 1, therefore the number must be negated, resulting 0x5F01 and
added +1 for getting the exact module of the number. In decimal representation,
0xA0FE is not +41214 but is -24320.

To the right of the image you can see the NVDLA multiplier that does not need
conversion stages.

The biggest problem with the converters are the adders. Removing them, the
circuit is abruptly improved in terms of area, power and speed, losing
a minimum accuracy that in theory should not affect the predictions of
the neural network. Using the previous values as an example, the conversion
will throw -24321 instead of -24320. Then the relative error between these values is
calculated:

relative_error = exact− approx

exact
∗ 100%

Finally 0.0041% is the error introduced in the converters when removing the adders.

43

6 – MAC architectures

6.4 SystemC
The same architectures are developed in SystemC. While Verilog allows comparing
the architectures in terms of area, power and speed, SystemC allows high level sim-
ulations for testing the accuracy of each MAC by running inferences of complete
neural networks. The accelerator is described in software in a modular form, similar
to the hardware model. Therefore there is a module directly related to the CMAC
stage of the convolution pipeline which contains the multiply-and-accumulate oper-
ations, therefore, the multipliers.

Files related to the MAC modules are:

• NV_NVDLA_cmac.cpp for definitions

• NV_NVDLA_cmac.h for declarations

Inputs of MAC module are explained at next, starting from the inference running
command:

• ./nvdla_runtime –loadable default.nvdla –image ../../regression/images/
testSample/img_1.jpg –rawdump

When running the runtime command, the parameters are: the loadable file and
the input image. The first one is the pretrained convolutional neural network, so
it contains information about the accelerator configuration and weights while the
input image has the feature data. All these inputs (for sure processed and with a
certain format given in previous steps) comes into the cmac when convolutions has
to be done.

Depending on the configuration, the calculation is done at INT8, INT16 or FP16
with the Winograd option enabled or not. As neural networks are developed at
software level in programs such as TensorFlow or Caffe, all of them works in a high
precision (FP32 or FP64) so minimally NVDLA quantize the data down to FP16.

The MAC operation is usually done at FP16 (at least with the pretrained net-
works used) since no networks have been found that after the compilation generate
a loadable file with a configuration at INT8 or INT16. This has been attempted
with specific tools to quantize pretrained models such as Ristretto but the compiler
fails to interpret the lines related to the quantization.

Diagram 6.6 explain graphically the main functions of the CMAC module in
SystemC.

As explained above, due to the configuration of CNN, in a switch-case statement,
enter the function calculation_fp16. Enter the data related to the image and the
weights in array forms (replicating the cube format) where they pass through two
stages: in a first (cal_fp16_mul) where all the multiplications are performed in
parallel and stored in an array called mts_product[ch_iter] and the second where

44

6 – MAC architectures

Figure 6.6: NV_NVDLA_cmac.h

the products are added together. Figure 6.7 graphically shows the behavior of the
function explained above.

Figure 6.7: calculation_fp16

Within the function cal_fp16_mul, a process occurs as shown in 6.8(a). The
array is decomposed in each atomic data of images and weights and they enter in
pairs into the cal_fp16_booth function which works as shown in the figure 6.8(b).

The booth multiplier sequentially decomposes weights into codes and shifts the
image according to them, finally resulting in a sum. Behaviorally, it acts like a
hardware described booth multiplier.

45

6 – MAC architectures

(a) cal_fp16_mul (b) cal_fp16_booth

6.4.1 Interfacing

Internally, the performance of the CMAC stage at the software level was decomposed
until the multiplication function. The next task is to replace the booth multiplier
with a standard one (using the asterisk symbol between two variables). Therefore, a
function called MULTIPLICATION is generated, which has as inputs the incoming
values to the booth multiplier and as output the mts_product[] array where results
of the booth multipliers are saved.

As booth multiplier is exact, there are no differences in the results of the multi-
plications, therefore the results at the MAC level do not vary. Finally the inference
predictions are the same. The relative error of each MAC operation using the
NVDLA multiplier and the ideal one can be seen in the figures 7.3(c) and 6.8(d)
respectively.

(c) MAC error using
NVDLA multiplier

(d) MAC error using ideal
multiplier

46

6 – MAC architectures

6.4.2 Custom multipliers in SystemC
The interface created previously allows to insert custom multipliers, in particular,
the approximate and the inferencial architectures.

Approximate

A hierarchical description has been replicated using functions. The appendix .9
contains the software description of the inaccurate 2x2 multiplier. The same ap-
pendix contains the 4x4 multiplier conformed with 2x2 multiplier functions. For the
construction of bigger multipliers the same logic was used until arriving at the 16
bits version. At the top function, are added to inputs and outputs the respective
converters from 2’s Complement to Sing-and-Magnitude and vice versa.

To replicate the behavior of the hardware-optimized versions of the multipliers,
the "+1" adders used after the negation of the value have been removed.

Inferential

The inferential multiplier, is described in verilog as a huge set of assignments that
represent the classification tree.

When trying to replicate the behavior in SystemC, appears a problem due the
difference between the runtime of a Verilog code and a SystemC one. While the
assings in verilog are done in parallel, the programs in C work sequentially, therefore
replicating the code also requires an ordering of assignments which is cumbersome.

Therefore, the most viable option is to represent the inferential multiplier with a
Look Up Table with the information of inputs and outputs. When trying to generate
a LUT for the 16-bits inferential multiplier the sizes are the following:

264 = 1.8446x1019

Finally, working with an 8-bits inferential multiplier, the size of the LUT is
viable:

232 = 4.294.967.296

47

6 – MAC architectures

6.4.3 Quantization
To try the accelerator operating at 8-bits, the idea was the following: using Ristretto,
quantize a pre-trained model and compile it with the nvdla software tools. The prob-
lem is that the compiler does not recognize the quantization commands described
in the model which leads to the loadable file can not be generated. Therefore, it is
not possible to configure externally the NVDLA SystemC model to work with the
8-bits function 6.6.

The compiler continues in development, since it is not only the only bug it
presents, for example, some more complex CNNs can not be compiled either.

In one of the last releases, the accelerator allows the build of a small SystemC
accelerator model, which would be the optimal solution since it has only the 8-
bits function, which means that the accelerator quantize the data from FP32 to
INT8. The release was in the final stages of development of the thesis, therefore,
this solution is left for future work.

The solution considered was to quantize the data manually upon entering the
multiply-and-accumulate function. Half-LSB of the image and weights is truncated,
followed by a shift right of the data. Then the multiplication is on 8-bits and the
16-bits result is shifted again accommodating it into 32-bits.

6.4.4 Configuring the MAC
In summary, different versions of the multipliers have been developed within the
MAC architecture. All of them are in the same file (NV_NVDLA_cmac.h) to
speed up simulations and avoid moving files.

If you want to run an inference using a certain MAC, the steps are as follows:

1. In the function cal_fp16_mul of the file NV_NVDLA_cmac.h select the func-
tion that represents the correct multiplier. Uncomment and leave commented
on the rest (follow the instructions given in the file).

2. Follow the process described in 5.5.2.

48

Chapter 7

Results

7.1 Inference Results
The accelerator architecture has been tested using several MAC architectures each
one composed by different multipliers:

• NVDLA 8-bits and 16-bits.

• Approximate 8-bits and 16-bits.

• Inference 8-bits and 16-bits.

The original NVDLA MAC has been compared with inaccurate MAC architec-
tures in both 16-bits and 8-bits.

7.1.1 MNIST
The LeNet convolutional neural network pretrained with a MNIST handwritten
digits set, expects a precision of 98.9% according to [9]. The inference results of the
accelerator using different MAC architectures are shown in table 7.1.

Architecture Accuracy
NVDLA 16-bits 98.5%
approx 16-bits 98.5%
NVDLA 8-bits 98.5%
approx 8-bits 98.5%

inferential 8-bits 68%

Table 7.1: MNIST Inference results using different multiplicators.

49

7 – Results

For each test, the number of handwritten digit was 200 thus, 98.5% means
197/200 hits and 3/200 misses.

7.1.2 CIFAR
Using the same LeNet convolutional neural network pretrained with the CIFAR10
dataset of animals and vehicles expects a precision of 76.26% 1. The inference results
of NVDLA using different MAC architectures are shown in table 7.2.

Architecture Accuracy
NVDLA 16-bits 86%
approx 16-bits 83%
NVDLA 8-bits 86%
approx 8-bits 83%

inferential 8-bits 10%

Table 7.2: CIFAR10 Inference results using different multiplicators

The test set where these results were obtained is composed of 30 random images
of vehicles and animals thus 86% means 26/30 hits and 4/30 misses.

It is worth mentioning that inferences in the environment usually take a long time
compared to a normal processor or GPU, since it is simulating the behavior of the
accelerator.

The MNIST is taken as the study set and the CIFAR10 as proof that the acceler-
ator recognizes multiple configurations. Some interesting facts according to previous
results:

• Quantification of data do not affects severely to prediction result. For instance,
there is no difference in precision between the 16-bit and 8-bit NVDLA.

• The error introduced by the approximate multiplier is not large enough to
affect predictions in big terms.

• The error introduced by the inferential multiplier it is sufficient to affect dras-
tically in prediction results.

1According to https://github.com/BIGBALLON/cifar-10-cnn

50

7 – Results

7.2 Inference Scores
From the results shown in table 7.1, the behavior of each architecture using different
multipliers is analyzed at label’s scores. Figure 7.1 shows the scores of each class
using different architectures.

Figure 7.1: Label’s scores, "2" as input digit

In x-axis are all possible classes (labels), thus handwritten digits from 0 to 9 are
represented while in y-axis is the value of the final score, the unnormalized proba-
bility. Each color represent a different architecture using a different multiplier. This
particular figure shows the scores of an inference using a LeNet network pretrained
with a MNIST dataset with a handwritten number 2 as input. All the architectures
predict correctly the number, all of them have the label corresponding to number
two with the highest score.

NVDLA 16-bits (blue) has the highest score, thus is the most accurate of all
of them while approximate 16-bits (orange) is the second one. Quantizing data
generate a small fall in scores but still predicting well: gray, yellow and light blue
are 8-bits architectures. At last, the green one is the architecture with the inferential.
It has a big fall in scores but keep hitting correctly.

51

7 – Results

Figure 7.2 shows an example of an inference using a LeNet pretrained model
where the input image is a handwritten 9. More examples can be found in file
prediction_behavior.xlsx.

Figure 7.2: Label’s scores, "9" as input digit

All the architectures predict correctly the number having the highest score at la-
bel 9, except for the inferential multiplier that predicts an “8”. Thus, if the multiplier
is imprecise enough, predictions will start to fail. In the next section, multipliers
are compared directly at the operation level.

52

7 – Results

7.3 MAC Error

7.3.1 Introduction

A deeper comparison is carried out at MAC level. The relative error of a MAC
multiplication can be calculated using the following formula:

relative_error = exact− approx

exact
∗ 100%

exact value represents the multiply-and-accumulate operation result using an
ideal multiplier (without introducing errors) while approx represents the result of
the operation using an approximate multiplier and/or quantizing the data to 8-bits,
in both cases introducing an error.

MAC operations have been extracted from an inference of a LeNet CNN pre-
trained with a MNIST dataset, using a random handwritten number as input. The
file MAC_SystemC.txt contains a list of all the multiplications done by the acceler-
ator during the inference. Indeed, the exact number of multiplication is 169.353.

Using this file as input, a script called plots.pl generates a list of all the MAC
operations results (and it’s error) in an output file. The number of MAC operations
done by the accelerator during the inference is approximately 15,000.

7.3.2 NVDLA vs Approx 16-bits

Figure 7.3(c) shows shows the relative error of each MAC operation when using
16-bit NVDLA MAC. Being an exact multiplier, there is no difference between the
exact and approximate result, therefore the relative error is always 0.

x-axis represents the relative error in percentage that goes from 0% to 100% (or
more). For instance, if the result should be 10 but the approximate throws 12, it
means that the relative error is 20%. On the other hand, y-axis is an accumulation
of results with this relative value.

Figure 7.3(b) shows the error when using the approximate multiplier at 16-bits.
The behavior is quite similar, being wrong in a very low percentage. 11% is the last
relative error value that is repeated, although to a very low quantity regarding to
0%.

53

7 – Results

(a) Error introduced by NVDLA 16-bits mul-
tiplier.

(b) Error introduced by Approx 16-bits multi-
plier.

7.3.3 NVDLA 16-bits vs 8-bits
In the previous section it has been compared the exact multiplier with the approxi-
mate one. Now it is compared the NVDLA at 16-bits 7.3(c) with NVDLA at 8-bits
7.3(e).

It can be appreciated that when quantifying the data, the greatest number of
errors are maintained between 0% and 10%. Then between 10% and 20% there is
another group of accumulated errors, but in smaller quantity and abruptly decreases
since 20%.

(c) Error introduced by NVDLA 16-bits mul-
tiplier.

(d) Error introduced by NVDLA 8-bits multi-
plier.

54

7 – Results

7.3.4 NVDLA vs Approx vs Inference 8-bits
In this section the 8-bits architectures are compared. Figure 7.3(e) is related to the
NVDLA, 7.3(f) to the approx and 7.3(g) to the inference.

The approximate multiplier behavior is similar to the NVDLA while the inference
has high relative errors, greater than 20%. From these results it can understood the
result of the imprecise predictions generated by this multiplier.

(e) Error introduced by NVDLA 8-bits multi-
plier.

(f) Error introduced by Approx 8-bits multi-
plier.

(g) Error introduced by Inference 8-bits multi-
plier.

55

7 – Results

7.3.5 MAC error at hardware framework
The behavior of the architectures so far was documented in the software framework.
The next step is to migrate to the hardware framework to compare them in terms of
area, power and speed, but first, before beginning the synthesis of the models to get
this data, it is proved the behavior to check the correctness of them. For this task
it has been used the single layer Googlenet testbench provided by NVDLA. In other
words, the relative error of the MAC operations is extracted and analyzed using the
testbenchs of the hardware framework.

Figures 7.3(h), 7.3(i), 7.3(j), 7.3(k) and 7.3(l) are the related relative error dis-
tributions for each MAC architecture. The amount of MAC operations is less since
it is only a layer what is being tested and not the whole network as it was in the
software framework.

It is worth mentioning that the behavior does not necessarily have to be similar,
since they are diverse neural networks. Anyway, there are some similarities between
software and hardware simulations. This ensures that the architectures are working
correctly is their Verilog descriptions.

56

7 – Results

(h) Error introduced by NVDLA 16-bits
multiplier

(i) Error introduced by Approx 16-bits
multiplier

(j) Error introduced by NVDLA 8-bits
multiplier

(k) Error introduced by Approx 8-bits
multiplier

(l) Error introduced by Inference 8-bits
multiplier

57

7 – Results

7.4 Synthesis

7.4.1 16-bits vs 8-bits architectures
Among 16-bit architectures (NVDLA, Approx and Inference) there are no major
differences when synthetizing them, but comparing 16-bit architectures with the
same to 8-bits the results are as shown in figure 7.3.

Reducing operations to 8-bits reduces the area of the circuit by approximately
70% and the power consumption reduction is of 84%. In addition, it allows working
at higher frequencies. 8-bit architectures allow working at 1GHz of frequency while
16-bit does not.

Therefore, as long as CNN allows it, in the sense that the quantization of the
data does not affect the result of the predictions it is very convenient to work with
8-bits architectures.

Figure 7.3: Area [um2] and Power [mW] comparison between 16-bits and 8-bits
architectures

For NVDLA 16-bits values are the following

• Area: 16000um2

• Power: 10.0339mW

For NVDLA 8-bits values are the following

• Area: 4700um2

• Power: 1.59606mW

58

7 – Results

7.4.2 NVDLA, approx and inference at 8-bits
It has been seen that whenever is possible it is very convenient to reduce the archi-
tecture to 8-bits. Then, three architectures with different multipliers are possible:
NVDLA, approx and inferential. The results in terms of area are shown at figure
7.4.

Figure 7.4: Area comparison between 8-bits architectures

According to the results in 7.1 the inferential multiplier is discarded since it
strongly reduces the precision in the predictions but could be used with re-training
phases to mitigate the accuracy drop. In other words, it can be used as a tool for
fine-tuning a CNN model. On the other hand, the results of the NVDLA and the
approx are 4702 and 4743 respectively.

The results seem to show that the NVDLA architecture offers better solutions.
The question is: why a reduced version of the multiplier is bigger than the original
version? The answer has been explained in the section 6.3 and it is because of the
converters that are included.

It has been proposed to remove the adders from all converters at the cost of an
additional error aggregation, which by the way is minimal. The prediction results
when removing the adders are shown in table 7.3.

59

7 – Results

Architecture Accuracy
NVDLA 8-bits 98.5%
approx 8-bits 98.5%

inferential 8-bits 68%
approx reduced 8-bits 98.5%

Table 7.3: Inference results including the reduced version of the approximate MAC

Removing the adders, does not worsen the accuracy, it remains the same since
as explained in the section, the error introduced when removing them is minimal.

Synthesis results removing the adders is shown at figure 7.5.

Figure 7.5: Area [um2] and Power [mW] comparison between 16-bits and 8-bits
architectures

For NVDLA 8-bits values are the following

• Area: 4702um2.

• Power 1.59606mW .

For approx. 8-bits values are the following

• Area: 3565um2.

• Power 1.57182mW .

60

7 – Results

The approximate architecture reduces the area by 24% while the power consump-
tion remains practically the same. If it is a circuit in which savings are fundamental,
a reduction of 24% of area is a good point as long as it does not affect the accuracy
as in this case tested.

61

Chapter 8

Conclusion and Future works

In the field of artificial intelligence and machine learning, this type of accelerators
are beginning to be of vital importance either for improving performances and com-
puting times or to reduce the architecture in terms of area, power and speed for
being able to insert them into smaller devices. As a conclusion, the accelerator ar-
chitecture is working correctly in both descriptions (Verilog and SystemC) and as a
future work, it would be interesting to carry it out as a prototype on an FPGA.

Secondly, it has been shown that the precision in operations is not of crucial
in neural networks. Reducing it down to 8-bits generates great improvement in
terms of area and power consumption and increases the maximum clock frequency.
Related to this topic, the future works should be more testing. Thesis work has
been developed when the accelerator was being developed, whereby for instance, a
large number of CNNs could not be compiled (because of bugs or future-releases)
and therefore tested. Today there are the necessary bases to continue easily testing
with new neural networks and architectures.

Regarding the multipliers and the different generated MAC architectures, the
conclusion is the following. If the area is not a determining factor in the circuit
and high precision is required in the calculations, the standard multiplier is recom-
mended, whereas if the area of the circuit is crucial, using an approximate multiplier
is very convenient.

On the other hand, the inferential multiplier can not yet be inserted to replace
an exact one, but can be used as a tool for fine-tuning a CNN model. For instance,
for re-training phases to mitigate the accuracy drop.

The power consumption of a single multiply-and-accumulate unit has been cal-
culated (via the switching activity) by simulating a single-layer of a convolutional
neural network.

Without doing extra work, it can be calculated the power consumption of the
entire accelerator during a single-layer. Even more but as a future job, new single-
layer configurations at hardware level (Verilog) could be generated from the CNN

62

8 – Conclusion and Future works

simulations in software platform since the KMD has been customized to show reg-
ister writing to the NVDLA. Therefore, the total power consumption of a complete
inference can be calculated.

63

Chapter 9

Files

In the next chapter, the files related to the thesis are briefly explained.
In https://github.com/IgnacioGoldman. it can be downloaded all the files re-

lated to the thesis:

• hardware framework (NVDLA and MAC level), verilog files, scripts, post-
synthesis files, results.

• software framework contains the results obtained in this environment, the pre-
trained models but not the framework itself. The framework can be described
from Google Drive link.

Both the hardware and the software framework can be downloaded and used
with little or no modification.

64

https://github.com/IgnacioGoldman/NVDLA_repo/
https://drive.google.com/drive/folders/1ItRa6G2o6GdoEdoxXD2cYRCyOcN9LtDs?usp=sharing

Bibliography

[1] Yann LeCun, Yoshua Bengio Geoffrey Hinton, Deep learning, New York Univer-
sity, 2015.

[2] Valentina Arrigoni Beatrice Rossi Pasqualina Fragneto Giuseppe Desoli, Approx-
imate operations in Convolutional Neural Networks with RNS data representa-
tion, University of California, April 2017.

[3] Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, University of Toronto.

[4] Christian Szegedy1, Going Deeper with Convolutions, University of North Car-
olina, 2015.

[5] Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze, Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks,
Massachusetts Institute of Technology, 2016.

[6] Parag Kulkarni, Puneet Gupta, Milos Ercegovac, Trading Accuracy for Power
with an Underdesigned Multiplier Architecture, University of California, 2011.

[7] Roberto Giorgio Rizzo, Valerio Tenace, Andrea Calimera, Multiplication by In-
ference using Classification Trees: a Case-Study Analysis, Politecnico di Torino,
2018.

[8] Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, Gradient-Based
Learning Applied to Document Recognition, 1998.

[9] Yann LeCun, Jackel, Bottou, Brunot, Cortes, Denker, Drucker, Guyon, Muller
Comparison of Learning Algorithms for Handwritten Digit Recognition.

65

Appendices

66

.1 CNN LeNet
1 name : " LeNet "
2 l a y e r {
3 name : " data "
4 type : " Input "
5 top : " data "
6 input \ tex tunder s co r e param { shape : { dim : 1 dim : 1 dim : 28 dim : 28 }

}
7 }
8 l a y e r {
9 name : " conv1 "

10 type : " Convolution "
11 bottom : " data "
12 top : " conv1 "
13 param {
14 l r \ t ex tunder s co r e mult : 1
15 }
16 param {
17 l r \ t ex tunder s co r e mult : 2
18 }
19 convo lut ion \ textunder s co r e param {
20 num\ textunder s co r e output : 20
21 ke rne l \ t ex tunder s co r e s i z e : 5
22 s t r i d e : 1
23 weight \ tex tunder s co r e f i l l e r {
24 type : " xav i e r "
25 }
26 b ia s \ t ex tunder s co r e f i l l e r {
27 type : " constant "
28 }
29 }
30 }
31 l a y e r {
32 name : " pool1 "
33 type : " Pool ing "
34 bottom : " conv1 "
35 top : " pool1 "
36 poo l ing \ textunder s co r e param {
37 pool : MAX
38 ke rne l \ t ex tunder s co r e s i z e : 2
39 s t r i d e : 2
40 }
41 }
42 l a y e r {
43 name : " conv2 "
44 type : " Convolution "
45 bottom : " pool1 "
46 top : " conv2 "

67

47 param {
48 l r \ t ex tunder s co r e mult : 1
49 }
50 param {
51 l r \ t ex tunder s co r e mult : 2
52 }
53 convo lut ion \ textunder s co r e param {
54 num\ textunder s co r e output : 50
55 ke rne l \ t ex tunder s co r e s i z e : 5
56 s t r i d e : 1
57 weight \ tex tunder s co r e f i l l e r {
58 type : " xav i e r "
59 }
60 b ia s \ t ex tunder s co r e f i l l e r {
61 type : " constant "
62 }
63 }
64 }
65 l a y e r {
66 name : " pool2 "
67 type : " Pool ing "
68 bottom : " conv2 "
69 top : " pool2 "
70 poo l ing \ textunder s co r e param {
71 pool : MAX
72 ke rne l \ t ex tunder s co r e s i z e : 2
73 s t r i d e : 2
74 }
75 }
76 l a y e r {
77 name : " ip1 "
78 type : " InnerProduct "
79 bottom : " pool2 "
80 top : " ip1 "
81 param {
82 l r \ t ex tunder s co r e mult : 1
83 }
84 param {
85 l r \ t ex tunder s co r e mult : 2
86 }
87 i nne r \ t ex tunder s co r e product \ t ex tunder s co r e param {
88 num\ textunder s co r e output : 500
89 weight \ tex tunder s co r e f i l l e r {
90 type : " xav i e r "
91 }
92 b ia s \ t ex tunder s co r e f i l l e r {
93 type : " constant "
94 }
95 }

68

96 }
97 l a y e r {
98 name : " r e l u1 "
99 type : "ReLU"

100 bottom : " ip1 "
101 top : " ip1 "
102 }
103 l a y e r {
104 name : " ip2 "
105 type : " InnerProduct "
106 bottom : " ip1 "
107 top : " ip2 "
108 param {
109 l r \ t ex tunder s co r e mult : 1
110 }
111 param {
112 l r \ t ex tunder s co r e mult : 2
113 }
114 i nne r \ t ex tunder s co r e product \ t ex tunder s co r e param {
115 num\ textunder s co r e output : 10
116 weight \ tex tunder s co r e f i l l e r {
117 type : " xav i e r "
118 }
119 b ia s \ t ex tunder s co r e f i l l e r {
120 type : " constant "
121 }
122 }
123 }
124 l a y e r {
125 name : " prob "
126 type : " Softmax "
127 bottom : " ip2 "
128 top : " prob "
129 }

69

.2 Convolution Core Stages

Figure 1: CDMA. Source: https://github.com/nvdla/doc.

Figure 2: CBUF. Source: https://github.com/nvdla/doc.

Figure 3: CSC. Source: https://github.com/nvdla/doc.

70

Figure 4: CMAC. Source: https://github.com/nvdla/doc.

Figure 5: CACC. Source: https://github.com/nvdla/doc.

71

.3 Modelsim Adaption

1 . . .
2 make s imulate :
3 . . .
4 @#Change f i l e s from . v to . sv in /rams/ synth
5 @[−f nv_ram_rws_64x116 . v] && mv nv_ram_rws_64x116 . v

nv_ram_rws_64x116 . sv | | echo " nv_ram_rws_64x116 . sv e x i s t s "
6 @[−f nv_ram_rws_16x256 . v] && mv nv_ram_rws_16x256 . v

nv_ram_rws_16x256 . sv | | echo " nv_ram_rws_16x256 . sv e x i s t s "
7 @[−f nv_ram_rwsp_80x14 . v] && mv nv_ram_rwsp_80x14 . v

nv_ram_rwsp_80x14 . sv | | echo " nv_ram_rwsp_80x14 . sv e x i s t s "
8 . . .
9 @cp f i l e s_wi thou t_e r ro r s /NV_HWACC_NVDLA_tick_defines . vh

NV_HWACC_NVDLA_tick_defines . vh
10 @cp f i l e s_wi thou t_e r ro r s /RANDFUNC. v l i b RANDFUNC. v l i b
11 NV_NVDLA_BDMA_csb. v NV_NVDLA_BDMA_csb. v
12 . . .
13 @cd ~/hardware_framework/NVDLA/ v e r i f / synth_tb/ s im_scr ipt s && . /

inp_txn_to_hexdump . p l
14 . . .
15 @vsim ${WAVES} −do " v log v l i b s /∗ ; v log rams/model /∗ ; v log rams/

synth /∗ ; v log nvdla /apb2csb /∗ ; v log bdma/∗ ; v log cacc /∗ ; v log car
/∗ ; v log cbuf /∗ ; v log cdma/∗ ; v log cdp/∗ ; v log mac_units/${MAC}
_mac/cmac/∗ ; v log csb_master /∗ ; v log c sc /∗ ; v log g lb /∗ ; v log n o c i f
/∗ ; v log pdp/∗ ; v log re t iming /∗ ; v log rubik /∗ ; v log sdp /∗ ; v log
synth_tb /∗ ; v log top /∗ ; vsim −novopt work . top +i n c d i r+synth_tb/ +
i n c d i r+top/ run −a l l ; e x i t ; "

72

.4 Script flow NVDLA framework

Figure 6: Pre-built code example of accelerator module

73

.5 After simulation results_generator.pl script
1 #!/ usr / bin /env p e r l
2 use s t r i c t ;
3 use F i l e : : Compare ;
4 my $ b i t s ="$ARGV[0] " ;
5 my $ f l a g ="$ARGV[1] " ;
6 my $input \ tex tunder s co r e f i l e = " . / t r a n s c r i p t " ;
7 my $output \ tex tunder s co r e f i l e = " . / e r r o r \ t ex tunder s co r e check /MAC\

textunder s co r e r e s u l t . txt " ;
8 my $exact \ t ex tunder s co r e f i l e ;
9 i f ($ f l a g == 1) {

10 $exact \ t ex tunder s co r e f i l e = " . / e r r o r \ t ex tunder s co r e check / exact \
t ex tunder s co r e r e s u l t . txt " ;

11 }
12 my $ i n f ; my $ouf ; my $exac ; my $check ;
13 my $input \ tex tunder s co r e l enght = 0 ;
14 i f ($ b i t s == 8) { $input \ tex tunder s co r e l enght = 2 ;}
15 i f ($ b i t s == 16) { $input \ tex tunder s co r e l enght = 4 ;}
16

17 open ($ in f , " <" , $ input \ tex tunder s co r e f i l e) | | d i e " Cannot open $input
\ tex tunder s co r e f i l e " ;

18 open ($ouf , " >" , $output \ t ex tunder s co r e f i l e) | | d i e " Cannot open
$output \ tex tunder s co r e f i l e " ;

19 i f ($ f l a g == 1) {
20 open ($exac , " >" , $exact \ t ex tunder s co r e f i l e) | | d i e " Cannot open

$exact \ t ex tunder s co r e f i l e " ;
21 }
22 my $C = 0 ;my $B = 0 ;my $A = 0 ;my $k = 0 ;
23 whi le (my $ l i n e = <$in f >){
24 i f (index ($ l i n e , " weight : ") >0){
25 i f ($k < 300000) {
26 #Inputs and outputs are not in the same l i n e ! ! !
27 #l i n e 1 : A0∗A1 = X
28 #l i n e 2 : B0∗B1 = X
29 #l i n e 3 : C0∗C1 = A r e s u l t . . .
30 $C = $B ;
31 $B = $A ;
32 $A = $ l i n e ;
33 my $data = (s p l i t (/ / , $C , 9)) [2] ;
34 my $weight = (s p l i t (/ / , $C , 9)) [5] ;
35 my $ r e s u l t = (s p l i t (/ / , $A , 9)) [7] ;
36 my $accumulation = 0 ;
37

38 #F i l l with z e ro s i f data i s incomplete
39 whi le (l ength ($data) <(8∗ $input \ t ex tunder s co r e l enght)) {
40 $data = "0 " . $data ;
41 }
42 whi le (l ength ($weight) <(8∗ $input \ t ex tunder s co r e l enght)) {

74

43 $weight = "0 " . $weight ;
44 }
45 #convert to decimal approximate r e s u l t
46 my $re s = hex ($ r e s u l t) ;
47 my $ i = 0 ;
48 #c a l c u l a t e exact r e s u l t
49 whi le ($i <(8∗ $input \ tex tunder s co r e l enght)) {
50 my $sub\ tex tunder s co r e data = subs t r ($data , $i , $ input \

tex tunder s co r e l enght) ;
51 my $sub\ tex tunder s co r e weight = subs t r ($weight , $i , $ input \

tex tunder s co r e l enght) ;
52 #pr in t $sub\ textunder s co r e data . " ∗ " . $sub\ tex tunder s co r e

weight . " = \n " ;
53 $ i = $ i + $input \ t ex tunder s co r e l enght ;
54 #exact MAC c a l c u l a t i o n
55 my $dat = hex ($sub\ tex tunder s co r e data) ;
56 my $wt = hex ($sub\ textunder s co r e weight) ;
57 i f ($ b i t s == 8) {
58 $dat −= 256 i f $dat >= 128 ;
59 $wt −= 256 i f $wt >= 128 ;
60 }
61 e l s e {
62 $dat −= 65536 i f $dat >= 32768 ;
63 $wt −= 65536 i f $wt >= 32768 ;
64 }
65 my $mul\ t ex tunder s co r e r e s = $dat ∗$wt ;
66 $accumulation = $accumulation + $mul\ t ex tunder s co r e r e s ;
67 }
68 i f ($k>1){
69 i f ($ b i t s == 8) {
70 $ r e s −= 65536 i f $ r e s >= 32768;
71 $ r e s = $re s ∗65536;
72 }
73 e l s e {
74 $ r e s −= 4294967296 i f $ r e s >= 2147483648;
75 }
76 #pr in t r e s u l t s o f output f i l e s
77 pr in t $ouf $ r e s . "\n " ;
78 #pr in t exact r e s u l t only i f working with MAC NVDLA 16−b i t s
79 i f ($ f l a g == 1) {
80 pr in t $exac $accumulation . "\n " ;
81 }
82 }
83 }
84 $k++;
85 }
86 }

75

.6 After simulation compare.pl script

1 #!/ usr / bin /env p e r l
2 use s t r i c t ;
3 use F i l e : : Compare ;
4 #input and output f i l e s
5 my $approx = " . / e r r o r \ t ex tunder s co r e check /MAC\ textunder s co r e r e s u l t .

txt " ;
6 my $exact = " . / e r r o r \ t ex tunder s co r e check / exact \ t ex tunder s co r e r e s u l t .

txt " ;
7 my $output = " . / e r r o r \ t ex tunder s co r e check / r e l a t i v e \ tex tunder s co r e

e r r o r . txt " ;
8 #v a r i a b l e s r e l a t e d to I /O
9 my $appr ;

10 my $ouf ;
11 my $exac ;
12 #open in R or W mode
13 open ($appr , " <" , $approx) | | d i e " Cannot open $approx " ;
14 open ($exac , " <" , $exact) | | d i e " Cannot open $exact " ;
15 open ($ouf , " >" , $output) | | d i e " Cannot open $output " ;
16

17 whi le (my $re s \ t ex tunder s co r e appr = <$appr >){
18 #get l i n e s o f both f i l e s
19 my $re s \ t ex tunder s co r e exac = <$exac >;
20 #exact r e s u l t o f MAC operat ion
21 my $exact = $re s \ t ex tunder s co r e exac ;
22 #approximate r e s u l t o MAC operat ion
23 my $approx = $re s \ t ex tunder s co r e appr ;
24 #c a l c u l a t e e r r o r
25 my $abso lute = $exact − $approx ;
26 my $ r e l a t i v e = 0 ;
27 i f ($abso lu te != 0 && $exact != 0) {
28 $ r e l a t i v e = ($abso lute / $exact) ∗100 ;
29 }
30 i f ($ r e l a t i v e == 0) {
31 pr in t $ouf " r e l a t i v e e r r o r i s : 0%\n " ;
32 } e l s e {
33 pr in t $ouf " r e l a t i v e e r r o r i s : " . $ r e l a t i v e . "%\n " ;
34 }
35 }
36 pr in t " e x i t i n g f i l e \n " ;
37 c l o s e $exac ;
38 c l o s e $appr ;
39 c l o s e $ouf ;

76

.7 Gitignore file configuration

1 [u r l " https : // github . com/qemu/ sk iboot "]
2 ins teadOf = g i t : // g i t . qemu . org / sk iboot . g i t
3 [u r l " https : // anongit . f r e ede sk top . org / g i t "]
4 ins teadOf = g i t : // anongit . f r e ede sk top . org
5 [u r l " https : // github . com/qemu "]
6 ins teadOf = g i t : // g i t . qemu−p r o j e c t . org
7 [u r l " https : // github . com "]
8 ins teadOf = g i t : // github . com
9 [u r l " http :// g i t . qemu . org / g i t /QemuMacDrivers . g i t "]

10 ins teadOf = g i t : // g i t . qemu . org /QemuMacDrivers . g i t
11 [u r l " https : // github . com/qemu/ sk iboot "]
12 ins teadOf = g i t : // g i t . qemu . org / sk iboot . g i t
13 [u se r]
14 name = IgnacioGoldman
15 emai l = ignig22@gmai l . com

77

.8 NVDLA MAC cell description
1 ‘ d e f i n e DESIGNWARE_NOEXIST 1
2 /∗MAC NVDLA INT8∗/
3 module mac_unit (
4 nvdla_core_clk
5 , nvdla_wg_clk
6 , nvdla_core_rstn
7 , cfg_is_wg
8 , cfg_reg_en
9 , dat_actv_data

10 , dat_actv_nz
11 , dat_actv_pvld
12 , wt_actv_data
13 , wt_actv_nz
14 , wt_actv_pvld
15 , mac_out_data
16 , mac_out_pvld
17) ;
18 input nvdla_core_clk ;
19 input nvdla_wg_clk ;
20 input nvdla_core_rstn ;
21 input cfg_is_wg ;
22 input cfg_reg_en ;
23 input [8∗8 −1:0] dat_actv_data ;
24 input [8 −1:0] dat_actv_nz ;
25 input [8 −1:0] dat_actv_pvld ;
26 input [8∗8 −1:0] wt_actv_data ;
27 input [8 −1:0] wt_actv_nz ;
28 input [8 −1:0] wt_actv_pvld ;
29 output [19 −1:0] mac_out_data ;
30 output mac_out_pvld ;
31

32 wire [8 −1 :0] wt_actv_data0 = wt_actv_data [7 : 0] ;
33 wire [8 −1 :0] dat_actv_data0 = dat_actv_data [7 : 0] ;
34 wire wt_actv_nz0 = wt_actv_nz [0] ;
35 wire dat_actv_nz0 = dat_actv_nz [0] ;
36

37 wire [8 −1 :0] wt_actv_data1 = wt_actv_data [1 5 : 8] ;
38 wire [8 −1 :0] dat_actv_data1 = dat_actv_data [1 5 : 8] ;
39 wire wt_actv_nz1 = wt_actv_nz [1] ;
40 wire dat_actv_nz1 = dat_actv_nz [1] ;
41

42 wire [8 −1 :0] wt_actv_data2 = wt_actv_data [2 3 : 1 6] ;
43 wire [8 −1 :0] dat_actv_data2 = dat_actv_data [2 3 : 1 6] ;
44 wire wt_actv_nz2 = wt_actv_nz [2] ;
45 wire dat_actv_nz2 = dat_actv_nz [2] ;
46

47 wire [8 −1 :0] wt_actv_data3 = wt_actv_data [3 1 : 2 4] ;

78

48 wire [8 −1 :0] dat_actv_data3 = dat_actv_data [3 1 : 2 4] ;
49 wire wt_actv_nz3 = wt_actv_nz [3] ;
50 wire dat_actv_nz3 = dat_actv_nz [3] ;
51

52 wire [8 −1 :0] wt_actv_data4 = wt_actv_data [3 9 : 3 2] ;
53 wire [8 −1 :0] dat_actv_data4 = dat_actv_data [3 9 : 3 2] ;
54 wire wt_actv_nz4 = wt_actv_nz [4] ;
55 wire dat_actv_nz4 = dat_actv_nz [4] ;
56

57 wire [8 −1 :0] wt_actv_data5 = wt_actv_data [4 7 : 4 0] ;
58 wire [8 −1 :0] dat_actv_data5 = dat_actv_data [4 7 : 4 0] ;
59 wire wt_actv_nz5 = wt_actv_nz [5] ;
60 wire dat_actv_nz5 = dat_actv_nz [5] ;
61

62 wire [8 −1 :0] wt_actv_data6 = wt_actv_data [5 5 : 4 8] ;
63 wire [8 −1 :0] dat_actv_data6 = dat_actv_data [5 5 : 4 8] ;
64 wire wt_actv_nz6 = wt_actv_nz [6] ;
65 wire dat_actv_nz6 = dat_actv_nz [6] ;
66

67 wire [8 −1 :0] wt_actv_data7 = wt_actv_data [6 3 : 5 6] ;
68 wire [8 −1 :0] dat_actv_data7 = dat_actv_data [6 3 : 5 6] ;
69 wire wt_actv_nz7 = wt_actv_nz [7] ;
70 wire dat_actv_nz7 = dat_actv_nz [7] ;
71

72

73 ‘ i f d e f DESIGNWARE_NOEXIST
74 wire s igned [19 −1:0] sum_out ;
75 wire [8 −1:0] op_out_pvld ;
76

77 a s s i gn op_out_pvld [0] = wt_actv_pvld [0] & dat_actv_pvld [0] &
wt_actv_nz0 & dat_actv_nz0 ;

78 wire s igned [18 −1 :0] mout_0 = ($s igned (wt_actv_data0) ∗ $s igned (
dat_actv_data0)) & $s igned ({18{ op_out_pvld [0] } }) ;

79 a s s i gn op_out_pvld [1] = wt_actv_pvld [1] & dat_actv_pvld [1] &
wt_actv_nz1 & dat_actv_nz1 ;

80 wire s igned [18 −1 :0] mout_1 = ($s igned (wt_actv_data1) ∗ $s igned (
dat_actv_data1)) & $s igned ({18{ op_out_pvld [1] } }) ;

81 a s s i gn op_out_pvld [2] = wt_actv_pvld [2] & dat_actv_pvld [2] &
wt_actv_nz2 & dat_actv_nz2 ;

82 wire s igned [18 −1 :0] mout_2 = ($s igned (wt_actv_data2) ∗ $s igned (
dat_actv_data2)) & $s igned ({18{ op_out_pvld [2] } }) ;

83 a s s i gn op_out_pvld [3] = wt_actv_pvld [3] & dat_actv_pvld [3] &
wt_actv_nz3 & dat_actv_nz3 ;

84 wire s igned [18 −1 :0] mout_3 = ($s igned (wt_actv_data3) ∗ $s igned (
dat_actv_data3)) & $s igned ({18{ op_out_pvld [3] } }) ;

85 a s s i gn op_out_pvld [4] = wt_actv_pvld [4] & dat_actv_pvld [4] &
wt_actv_nz4 & dat_actv_nz4 ;

86 wire s igned [18 −1 :0] mout_4 = ($s igned (wt_actv_data4) ∗ $s igned (
dat_actv_data4)) & $s igned ({18{ op_out_pvld [4] } }) ;

79

87 a s s i gn op_out_pvld [5] = wt_actv_pvld [5] & dat_actv_pvld [5] &
wt_actv_nz5 & dat_actv_nz5 ;

88 wire s igned [18 −1 :0] mout_5 = ($s igned (wt_actv_data5) ∗ $s igned (
dat_actv_data5)) & $s igned ({18{ op_out_pvld [5] } }) ;

89 a s s i gn op_out_pvld [6] = wt_actv_pvld [6] & dat_actv_pvld [6] &
wt_actv_nz6 & dat_actv_nz6 ;

90 wire s igned [18 −1 :0] mout_6 = ($s igned (wt_actv_data6) ∗ $s igned (
dat_actv_data6)) & $s igned ({18{ op_out_pvld [6] } }) ;

91 a s s i gn op_out_pvld [7] = wt_actv_pvld [7] & dat_actv_pvld [7] &
wt_actv_nz7 & dat_actv_nz7 ;

92 wire s igned [18 −1 :0] mout_7 = ($s igned (wt_actv_data7) ∗ $s igned (
dat_actv_data7)) & $s igned ({18{ op_out_pvld [7] } }) ;

93 a s s i gn sum_out =
94 mout_0
95 + mout_1
96 + mout_2
97 + mout_3
98 + mout_4
99 + mout_5

100 + mout_6
101 + mout_7
102 ;
103 ‘ e n d i f
104

105 wire pp_pvld_d0 = (dat_actv_pvld [0] & wt_actv_pvld [0]) ;
106 wire [19 −1:0] sum_out_d0 = sum_out ;
107 reg [19 −1 :0] sum_out_d0_d1 ;
108 always @(posedge nvdla_core_clk) begin
109 i f ((pp_pvld_d0)) begin
110 sum_out_d0_d1 [19 −1 :0] <= sum_out_d0 [19 −1 : 0] ;
111 end
112 end
113

114 reg pp_pvld_d0_d1 ;
115 always @(posedge nvdla_core_clk) begin
116 pp_pvld_d0_d1 <= pp_pvld_d0 ;
117 end
118

119 reg [19 −1 :0] sum_out_d0_d2 ;
120 always @(posedge nvdla_core_clk) begin
121 i f ((pp_pvld_d0_d1)) begin
122 sum_out_d0_d2 [19 −1 :0] <= sum_out_d0_d1 [19 −1 : 0] ;
123 end
124 end
125

126 reg pp_pvld_d0_d2 ;
127 always @(posedge nvdla_core_clk) begin
128 pp_pvld_d0_d2 <= pp_pvld_d0_d1 ;
129 end

80

130

131 reg [19 −1 :0] sum_out_d0_d3 ;
132 always @(posedge nvdla_core_clk) begin
133 i f ((pp_pvld_d0_d2)) begin
134 sum_out_d0_d3 [19 −1 :0] <= sum_out_d0_d2 [19 −1 : 0] ;
135 end
136 end
137

138 reg pp_pvld_d0_d3 ;
139 always @(posedge nvdla_core_clk) begin
140 pp_pvld_d0_d3 <= pp_pvld_d0_d2 ;
141 end
142

143 wire [19 −1 :0] sum_out_dd ;
144 a s s i gn sum_out_dd = sum_out_d0_d3 ;
145

146 wire pp_pvld_dd ;
147 a s s i gn pp_pvld_dd = pp_pvld_d0_d3 ;
148

149 a s s i gn mac_out_pvld=pp_pvld_dd ;
150 a s s i gn mac_out_data=sum_out_dd ;
151 endmodule

81

.9 Approximate multiplier SystemC

1 void mult2x2 (i n t x1 , i n t x0 , i n t y1 , i n t y0 , i n t ∗p3 , i n t ∗p2 , i n t ∗p1 ,
i n t ∗p0) {

2 ∗p3 = 0 ;
3 ∗p2 = x1 && y1 ;
4 ∗p1 = x1 && y0 | | x0 && y1 ;
5 ∗p0 = x0 && y0 ;
6 }
7

8 void mult4x4 (i n t ∗out , i n t a , i n t b) {
9 i n t wirex_out ;

10 i n t wire_pp1 , wire_pp2 , wire_pp3 , wire_pp4 ;
11

12 i n t a_0 = (a & (1 << 0)) >> 0 ; i n t a_1 = (a & (1 << 1)) >> 1 ; i n t
a_2 = (a & (1 << 2)) >> 2 ; i n t a_3 = (a & (1 << 3)) >> 3 ;

13 i n t b_0 = (b & (1 << 0)) >> 0 ; i n t b_1 = (b & (1 << 1)) >> 1 ; i n t
b_2 = (b & (1 << 2)) >> 2 ; i n t b_3 = (b & (1 << 3)) >> 3 ;

14

15 i n t wire_pp1_0 , wire_pp1_1 , wire_pp1_2 , wire_pp1_3 ;
16 i n t wire_pp2_0 , wire_pp2_1 , wire_pp2_2 , wire_pp2_3 ;
17 i n t wire_pp3_0 , wire_pp3_1 , wire_pp3_2 , wire_pp3_3 ;
18 i n t wire_pp4_0 , wire_pp4_1 , wire_pp4_2 , wire_pp4_3 ;
19 mult2x2 (a_1 , a_0 , b_1 , b_0 , &wire_pp1_3 , &wire_pp1_2 , &wire_pp1_1 , &

wire_pp1_0) ;
20 mult2x2 (a_3 , a_2 , b_1 , b_0 , &wire_pp2_3 , &wire_pp2_2 , &wire_pp2_1 , &

wire_pp2_0) ;
21 mult2x2 (a_1 , a_0 , b_3 , b_2 , &wire_pp3_3 , &wire_pp3_2 , &wire_pp3_1 , &

wire_pp3_0) ;
22 mult2x2 (a_3 , a_2 , b_3 , b_2 , &wire_pp4_3 , &wire_pp4_2 , &wire_pp4_1 , &

wire_pp4_0) ;
23

24 wire_pp1 = (wire_pp1_3 << 3) + (wire_pp1_2 << 2) +(wire_pp1_1 << 1) +
(wire_pp1_0) ;

25 wire_pp2 = (wire_pp2_3 << 3) + (wire_pp2_2 << 2) +(wire_pp2_1 << 1) +
(wire_pp2_0) ;

26 wire_pp3 = (wire_pp3_3 << 3) + (wire_pp3_2 << 2) +(wire_pp3_1 << 1) +
(wire_pp3_0) ;

27 wire_pp4 = (wire_pp4_3 << 3) + (wire_pp4_2 << 2) +(wire_pp4_1 << 1) +
(wire_pp4_0) ;

28

29 i n t conc_wire = (wire_pp4 << 4) + wire_pp1 ;
30 wirex_out = (wire_pp2 << 2) + (wire_pp3 << 2) + conc_wire ;
31 // wirex_out = { 2 ’ b0 , wire_pp2 , 2 ’ b0} + {2 ’b0 , wire_pp3 , 2 ’ b0} + {

wire_pp4 , wire_pp1 } ;
32

33 ∗out = wirex_out ;
34 }

82

	Summary
	Acknowledgements
	Introduction
	Motivation
	Objective
	Organization

	Background
	Deep Learning
	Computer Vision
	Convolutional Neural Networks
	Definition
	Layers
	Architectures

	Multipliers
	Approximate
	Inferential

	Ristretto

	NVDLA
	Introduction
	Architecture
	Convolution Pipeline
	Post-Convolution Pipeline

	Interfaces & Connections
	CSB interface
	Interrupt interface
	System Data Interfaces

	Implementations
	Configurability

	NVDLA hardware framework
	Introduction
	NVDLA Framework
	RTL build
	Compilation & Simulation
	Testing
	Synthesis

	MAC Framework
	Input data for MAC testbench
	Compilation & Simulation
	Synthesis
	Switching Activity

	NVDLA software framework
	Introduction
	Software Tools
	Virtual Platform
	Configuration
	VP
	Buildroot
	Software Insertion

	Testing
	Compilation
	Runtime

	MAC architectures
	NVDLA MAC unit
	MAC with Booth multipliers
	MAC optimized architecture

	Approximate and Inferential MAC Architectures
	Inaccurate MAC optimizations
	SystemC
	Interfacing
	Custom multipliers in SystemC
	Quantization
	Configuring the MAC

	Results
	Inference Results
	MNIST
	CIFAR

	Inference Scores
	MAC Error
	Introduction
	NVDLA vs Approx 16-bits
	NVDLA 16-bits vs 8-bits
	NVDLA vs Approx vs Inference 8-bits
	MAC error at hardware framework

	Synthesis
	16-bits vs 8-bits architectures
	NVDLA, approx and inference at 8-bits

	Conclusion and Future works
	Files
	Bibliography
	Appendices
	CNN LeNet
	Convolution Core Stages
	Modelsim Adaption
	Script flow NVDLA framework
	After simulation results_generator.pl script
	After simulation compare.pl script
	Gitignore file configuration
	NVDLA MAC cell description
	Approximate multiplier SystemC

