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Abstract

The evolution of the IT world towards the massive adoption of cloud solutions
has required the development of virtualization technologies to meet the needs
of software scalability and portability. This has led to the emergence of new
approaches to virtualization that adapt to these needs, thus efficiently sup-
porting the architecture of distributed applications based on microservices.
Our thesis work consists in the study of OS-level virtualization, in particular
focusing on its implementation through the Linux kernel. We analyzed the
in-kernel mechanisms that ensure process isolation, such as namespaces and
cgroups. Using these we have developed a tool that allows the creation of
an isolated environment from the host system for the execution of a pro-
cess, implementing the following features: isolation and limitation of system
resources through the use of namespaces and cgroups, system calls filter-
ing through the use of seccomp and privileges management through Linux
capabilities. Compared to traditional Hypervisor-based approaches, virtu-
alization at the operating system level takes advantage of a shared kernel
between the host machine and guest containers, reducing the overhead intro-
duced by the management of a virtualized host kernel. By no longer using
an Hypervisor (or Virtual Machine Monitor), container isolation is guaran-
teed thanks to isolation mechanisms offered by the kernel itself. We could
therefore say that a Virtual Machine is to an Hypervisor as a container is to
the kernel of the host machine. However, these solutions raise new security
issues due to the use of a shared kernel. In recent years have been developed
hybrid technologies that integrate the isolation obtained by traditional vir-
tualization with the advantages of OS-level virtualization. These have found
particular application in the development of the container runtimes, the layer
of software that deals with the effective creation of the containers inside of
tools like Docker or Podman. Our thesis work continues with the analysis of
the overhead introduced by the adoption of hybrid solutions within runtime
containers, both on performance and on the use of system resources. For
this study, several applications executed within containers were considered
and, as the runtime container varied, their performance was evaluated. Two
hybrid runtimes (gVisor, Kata-runtime) and two traditional solutions (runc,
crun) were chosen to perform the tests.
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Chapter 1

Virtualization

The goal of this chapter is to give an overview of the different types of
virtualization approaches and methodologies that allow the creation of a
virtual environment. We will analyze which are the main problems that the
implementation of virtualization has to face and their possible solutions.
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1 – Virtualization

1.1 Types of virtualization
It is not simple to give a single definition of virtualization since the are
many definitions of it in literature [3] . Each definition is related to different
aspects and reflects the main characteristics of each type of virtualization.
Amit Singh defined it as: "Virtualization is a framework or methodology of
dividing the resources of a computer into multiple execution environments, by
applying one or more concepts or technologies such as hardware and software
partitioning, time-sharing, partial or complete machine simulation, emula-
tion, quality of service, and many others." [4]. This is one of the most general
definition of virtualization which embrace concepts that belong to different
ways of implementing virtualization as we will see later. The definition given
by Joshua S. White and Adam W. Pilbeam focuses more on security, defining
virtualization as: "Virtualization is a mechanism permitting a single physical
computer to run sets of code independently and in isolation from other sets."
[5]. This definition is closer to the notion of software containers, being a
way of isolating the execution context of different applications. By creating
different virtual environments we are ensuring that processes in a specific
virtual context cannot tamper with processes in another one. This is a key
feature for security, since today we have thousands of different applications
that run together on a single server. Actually there are different approaches
to virtualization that can be grouped in three main categories:

• Server virtualization
Also known as CPU, machine or system virtualization [3]. It is the pos-
sibility to create complete virtual environment, called Virtual Machine
(VM), that is able to run it’s own operating system. With server vir-
tualization we can have multiple operating systems running on a single
machine, working in isolation from each other.

• Resource virtualization
In this case it’s a specific resource of the host which is virtualized. Re-
sources can be both software, like domain names or certificates, or hard-
ware, like memory, storage and network [7]. Depending on the resource
which is virtualized we can distinguish between:

– Storage virtualization
Used to create a software abstraction of the physical storage system.
In this way we can put together different physical drives to form a
single logical entity.
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1.1 – Types of virtualization

– Memory virtualization
In this case what is being virtualized is the physical memory. This
is done by adding an additional level to addresses translation. A
virtual address refers to the memory seen by the guest applications
whereas the physical memory is what the Guest O.S operates on.
Next we have the machine memory which is the memory managed
by the Virtual Machine Monitor and that the underlying machine
has.

– Network virtualization
With Network virtualization both hardware and software resources
can be puth together into a single logical entity in software [8]. This
approach can happens between different physical networks, called
external network virtualization, or to provide software based net-
work functionality to a guest operating system, referred as internal
network virtualization. An example of external network virtualiza-
tion are VLANs whereas the creation of virtual network interfaces
are the results of internal network virtualization.

• Application virtualization
Application virtualization can be implemented in different contexts and
it usually refers to two main cases [3]. A first definition of application
virtualization is linked with the possibility of running an application
on a local machine without actually installing it. The application is
dislocated in a remote server and it is accessed through the network. The
application runs in a small virtual environment with only the resources
that are needed for its execution. In this way each user has its own
isolated virtual environment where the application runs. On the other
hand, a second definition of application virtualization [5] refers to the
creation of a small virtual environment on a client machine that allows
to emulate the execution context for the application. An example is the
Java Virtual Machine (JVM) which allows the same java program to be
run on different hosts, for example running a java application on both
Linux and Windows.

Although there are different types of virtualization, we will focus on server
virtualization, in which thanks to the addition of a software layer [7] called
hypervisor (or VMM), multiple virtual environments (or VM) can be created
on the same physical machine, each with its own operating system and set
of applications.
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1 – Virtualization

1.2 Hypervisors
The essential component of server virtualization is called Virtual Machine
Monitor (VMM) or Hypervisor. It allows to create a virtual environment
on the host machine called Virtual Machine (VM). On top of it is possible
to execute a set of virtualized guest operating systems that can share the
hardware resource offered by the host.
Usually it is possible to classify Hypervisors in two different main types:

1. Type 1 - Native or bare metal

2. Type 2 - Hosted

According to Robert P. Goldberg and Gerald J. Popek [2] a VMM must re-
spect three main characteristics:

1. Equivalence
The VMM must provide an environment to the VMs which is essentially
identical to the physical machine. With the term "essentially identical"
it is intended that any program that run on top of the VMM should have
an effect equal to that exhibited if the program had been executed on the
physical machine directly. In any case there could be some exceptions
caused by the availability of system resources due to the fact that we
can have multiple virtual machines running concurrently.

2. Efficiency
This characteristic requires that most of the virtual processor’s instruc-
tions must be executed directly by the physical processor, without any
software intervention by the Hypervisor. This requirement excludes em-
ulators and simulators from the Hypervisor club.

3. Resource control
The VMM must have complete control over resources. This statement
is satisfied if:

• A program running inside a virtual machine on top of the VMM
can’t access resources that were not explicitly allocated to it.

• The VMM has the possiblity, under some circumstances, to regain
control over the resources previously allocated.

12



1.2 – Hypervisors

1.2.1 Type 1 - Native or bare metal

Native Hypervisors run directly on the host’s hardware. Adopting a bare
metal architecture’s schema, the Hypervisor runs directly on the hardware
rather than going through an host operating system. A bare metal Hy-
pervisor is more efficient than a hosted one having greater robustness and
performance. Examples of this architecture are Microsoft Hyper-V, VMWare
ESX Server and Xen.

1.2.2 Type 2 - Hosted

Hosted hypervisors are designed to run on top of a traditional operating
system. In this case the VMM maintains a software-level representation of a
physical hardware. As shown in 1.1, running in ring 3 as a normal application,
all the actions that need to be performed ( IO, memory management ecc ...)
are mediated by the host operating system, which represents an additional
software level beneath the VMM. Oracle VM VirtualBox is an example of a
hosted hypervisor.

PHYSICAL HARDWARE

GUEST OS

VMM

USER APPS

RING 0

RING 1

RING 2

RING 3

PHYSICAL HARDWARE

HOST OS

VMM

GUEST OS

USER APPS

RING 0

RING 1

RING 2

RING 3

a) b)

Figure 1.1. a. Bare metal Hypervisor , b. Hosted hypervisor (inspired from [6])
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1 – Virtualization

1.3 Virtualization requirements
Before introducing the different approaches to server virtualization it is im-
portant to understand the concept of "Virtualizable processor".
As described in a paper from 1974 by Goldberg and Popek [2], an instruction
set is composed of three main types of instructions:

• Control sensitive
An instruction is regarded as control sensitive if it accesses low-level ma-
chine resources (accessing devices, changing virtual to physical memory
mapping ...) that should be managed by an OS or VMM.

• Behaviour sensitive
Instructions whose behaviour is different depending on the resource’s
configuration. It is possible to distinguish between:

– Location sensitive
The instruction’s behavior depends on its location in real memory.

– Mode sensitive
The instruction’s behavior depends by the CPU mode (kernel or user
mode).

• Privileged
These are the instructions that can cause a trap when executed in a ring
different from Ring 0.

According to the definitions given above, an instruction is generally referred
as sensitive if it is either control sensitive or behavior sensitive. If an in-
struction is not generally sensitive then it is not problematic. Thanks to this
latter definition, we can enunciate the following theorem:

Theorem 1 (Virtualizable CPU) a CPU is defined as virtualizable if and
only if the set of all sensitive instructions are a subset of the set of privileged
instructions.

This leads to the necessity of having all the sensitive instructions being
privileged as well in order to cause a trap. In this way when a sensitive and
privileged instruction is executed, a trap occurs and, by switching to kernel
mode, the control is passed back to the VMM.

Problems arise because, to allow virtualization, the guest O.S must be
moved from Ring0 to a lower privilege Ring, to let the Hypervisor run at
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1.4 – Approaches to server virtualization

the lowest level (Ring0). If an instruction is sensitive but no privileged, it’s
execution behaviour may change since now it is no more executed at Ring0.

Additionally, not all the CPUs have been designed to support virtualiza-
tion and so they do not respect Theorem 1. For example the famous Intel
x86 architecture is not virtualizable.
As an example, the followings are some problems related to the the x86
architecture, as reported in [6]:

• push instruction is used to store a value into the stack. A register called
code segment register has two bits that indicates the privilege level. A
guest OS could use this instruction to understand that it is not executed
in Ring 0. To solve this problem, push should cause a trap giving control
to the VMM that will force a fake value of CPL (current privilege level).

• pushf/popf are used to manage (read or write) a register called %eflags.
This contains a bit to enable interrupts. The problem is that if these
instructions are executed in Ring 1 they will fail without raising a trap.
Instead we would like to have these instructions to trap in order to
respect the requirements of a virtualizable CPU architecture.

The different approaches to virtualization that will be described in the
next section are solutions that can be adopted to make a CPU architecture
virtualizable accordingly to the Goldberg and Popek requirement.

1.4 Approaches to server virtualization
To address server virtualization different approaches can be adopted:

1. Full virtualization

2. Para virtualization

3. Hybrid virtualization

Each of this solution has different scope and implementation methodology
that differs in several aspects.
Our next discussion is based on two assumption:

• When we talk about virtualization solutions, we assume that the guest
and the host use the same Instruction Set Architecture (ISA). There are
possible also other scenarios, in which the guest and host ISA are differ-
ent, but they are more closer to the emulation world. With emulation

15



1 – Virtualization

each instruction of the guest code need to be translated, denying any
form of direct execution. Conversely virtualization is implemented by
abstracting the system ISA to support multiple guest OS’es.

• We are focusing on CPU virtualization, so all those techniques that
makes a CPU architecture virtualizable. Each solution that will be in-
troduced has a wider scopes, including memory, I/O and device virtu-
alization. Actually this is not our focus, we will only make some hints
about those topics comparing the efficiency of the different solutions.

1.4.1 Full Virtualization
With full virtualization a complete and isolated versions of the entire com-
puter is virtualized, including all the hardware like CPU, memory, and I/O
device,s allowing a guest OS to be run in isolation without any modification
[8]. From the virtual machine point of view is like running on real hardware
and the guest operating system does not notice the difference. In this way
any application or complete operating system that is capable of running di-
rectly on the physical host is able to run inside a Virtual Machine.
There are different way to implement full virtualization that can be grouped
in two major family [10]:

1. Software based

• Hosted Interpretation
• Trap and emulate with direct execution
• Binary translation with direct execution

2. Hardware assisted

Hosted interpretation

As described in [6], this approach uses an hosted Hypervisor architecture
since the VMM will run as a regular application on top of the host operating
system. The hypervisor is in charge of abstracting the hardware in a software
representation. The VMM reads each instruction of the code of the virtual
machine and updates the hardware’s state accordingly. Below is provided an
example of the interpreter pseudo code.
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1.4 – Approaches to server virtualization

1 whi le (1 ) {
2 i n s t r = f e t c h ( virtHw .PC) ;
3 virtHw .PC += 4 ;
4 switch ( decode ( i n s t r ) ) {
5 case ADD:
6 // execute
7 i n t sum = virtHw . r eg s [ i n s t r . r0 ] + virtHw . r eg s [ i n s t r . r1 ] ;
8 virtHw . r eg s [ i n s t r . r0 ] = sum ;
9 break ;

10 case SUB:
11 // . . . e t c . . .

Listing 1.1. Pseudo code of hosted interpreter (inspired from [6])

In this way the interpreter, maintaining a software representation of the hard-
ware, prevents the guest OS from reading the current privilege level (CPL)
of the physical CPU and can correctly implement the popf instruction, which
would not trap, by referencing the virtual CPU state. The main advantage
of this approach is the ease of management of privileged instructions. The
interpreter has the possibility to handle those instructions in accord to dif-
ferent policy. Moreover, due to the fact that the hypervisor runs on top of
the host O.S as a regular application, the host desktop operating system can
still work concurrently with the guest O.S. Conversely this approach has bad
performance due to the presence of the interpreter. The fetch-decode-execute
cycle of the interpreter may use too much physical instruction for each guest
instruction.

Actually this approach is mostly used by emulators such as BOCHS. In
fact, no direct execution is allowed since every guest instruction will be em-
ulated by a fetch-decode-execute cycle at software level, causing worse per-
formance. This is needed because emulators theoretically allow to run guest
code written for a totally different hardware architecture than the host ma-
chine. Anyway, despite the performances, this approach can also be a way
of virtualizing a guest OS written for the same hardware as the host.

Trap and emulate with direct execution

The Ravello Community at Oracle [13] explains how this approach can be
used to run directly on the CPU all those instructions (from the guest code)
that can be executed in user mode. Instead, a privileged instruction will
cause a trap giving the control back to the Hypervisor, which is in charge of
emulating it and then continuing the execution.
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1 – Virtualization

The figure 1.2 below gives an overview of how trap and emulate actually
works. The following example is inspired from [16]. The Guest tries to change
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vCPU RING 0

RING 1

Execute
pCPUHARDWARE

TRAP

VMM interrupt
handler

Emulate

RING 3
APPLICATION

GUEST APPLICATION

privileged instruction

call

Guest interrupt
handler

Figure 1.2. Trap-and-emulate approach to CPU virtualization

CPU flags which is a privileged operation. Doing this it would violate the
ring protection because it is trying to access the hardware directly. Since
the instruction is privileged and the guest kernel is running in Ring 1, a trap
occurs.
To fool the guest of running in Ring 0, the VMM will emulate the instruction
and set the new flags for guest’s virtual CPU. This illusion is enforced by
calling the guest’s interrupt handler, so for the guest OS is like having the
control of the hardware.
The main advantage of this approach is that most of the instructions do
not require to trap and can be executed directly on the CPU in user mode
[13]. On the other hand, the main limitation is that the processor must be
“virtualizable”, so it must respect the Goldberg-Popek requirement as we
described before. A CPU architecture that can be completely virtualized
with trap-and-emulate, is called "Classically virtualizable". Accordingly to
this definition this approach can not be used with the x86 architecture due
to the problem of sensitive but unprivileged instructions. For this reason
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two new techniques has been introduced to implement the trap mechanism :
binary translation and hardware assisted virtualization.

Binary translation with direct execution

The concept of binary translation was introduced as a way to implement
virtualization to address processors that do not support the Goldberg-Popek
requirement. These CPUs do not have a clean separation of privileged and
non-privileged instructions. For example, the Intel x86 CPU line is one of
them.
As described here [13] the idea is that the hypervisor reads each instruction
of guest code before it runs. If the instruction is not a sensitive one it can
be run natively on the physical CPU in user mode. On the other hand if
the VMM find a non virtualizable (sensitive but not privileged) instructions,
it translates it into something safer (virtualizable). This results in only the
kernel code of the guest OS to be translated whereas guest application code
can be executed directly. The translated code can be then executed directly
by the Guest OS. As a consequence of this approach we get rid of all the
sensitive instructions because they will be translated.
Also natively privileged instructions, the ones who would trap, can be man-
aged in an efficient way by the binary translator. They can also be translated
in order to avoid a trap and the consequently context switch to the VMM,
improving performances with respect to the trap-and-emulate approach. As
shown in figure 1.3 the guest OS would like to execute the CLI instruction
to clear the IF flag in the EFLAGS register. Clearing the IF flag causes the
processor to ignore maskable external interrupts [14]. When the BT reads
the Guest OS code before execution, it will translate that instruction into
something safer that will affect only virtual hardware (vCPU), allowing the
guest OS to execute it in Ring1. It is clear that in this way we are avoiding
traps for privileged operations.
However there are still some operations that are hard to manage efficiently.
System calls triggered by guest applications, are trapped into the Hypervisor
running in Ring 0, which is in charge of giving back control to the kernel of
the guest OS. Traps cannot be directly managed by the guest OS for two
main reasons:

1. The guest OS has been de-privileged to run in Ring1.

2. We want the VMM to intercept every privileged instruction to emulate
it in a safe way.
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Figure 1.3. Binary translation with direct execution of a privileged instruction

This approach requires multiple context switches for the management of sys-
tem calls which represents one of the main drawbacks. The following example
is inspired from the article written by Johan De Gelas [17]. As we can see
from figure 1.4 when a guest application invokes a system call it will trap to
the VMM which is in charge of emulating it, translating the code and then
giving back the control to the Guest OS which will execute the translated
code. When the translated service routine is finished the guest OS will use
SYSEXIT to switch back to the user application. However, being SYSEXIT
a privileged operation, it will trap again into the VMM again which will then
emulate it.

Also memory management is quite hard to be done in an efficient way. As
sustained by Keith Adams and Ole Agesen [10] operations that are not priv-
ileged (e.g load and store) can actually cause a trap if they access sensitive
data like page table. A simple BT would not be able to avoid those kind of
traps, affecting the overall performance, since trapping is an expensive oper-
ation especially on modern CPU. For this reason better approaches has been
developed with the main goal of reducing the number of traps. This is what
is called an adaptive binary translator. The basic idea is that the execution
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Figure 1.4. Syscall management in a Virtual Machine

of the translated code is analyzed and if some instructions frequently trap
the BT will adapt their translator to avoid those traps.

The operation of binary translation can be done in two different ways [13]:

• Statically, by translating the executable code of an entire program.

• Dynamically (on-demand) grouping the code to be translated in
smaller chunks. These are called basic blocks and their main character-
istic is that the do not contains branch instructions. The performance
of a binary translator are improved by saving the translations in order
to reuse them later on. In this way the overhead is limited to the first
time the block is translated. In addition different blocks can be linked
together by exploiting the branch instruction at the end of each chunk.
This is called as block chaining.

To conclude, binary translation can be adopted to solve the problem of
the stealthy x86 instructions by creating an x86 to x86 binary translator
[10] to make the x86 architecture compilant with the oldberg and Popek
requirements.
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Hardware assisted

Hardware assisted virtualization, also referred as Native Virtualization [8],
has been introduced to cope with the limitations of software based approaches
to full virtualization, in particular the cost of binary translation. It is sup-
ported since 2006 by different generations of CPUs thanks to the introduc-
tion of the VT-x and AMD-V technologies from Intel and AMD respectively.
Below is described the approach proposed by Intel to hardware assisted vir-
tualization in order to clarify the concepts that make this possible.

The main idea is to add virtualization support to the hardware. To achieve
this goal a new ideal ring, called Ring -1 in 1.5, has been added just below
Ring 0 in the CPU architecture. There is where the VMM runs.

PHYSICAL HARDWARE

GUEST OS

VMM

USER APPS

RING 0

RING 1

RING 2

RING 3

ROOT MODE RING -1

NON ROOT
MODE

OS requests
trap to VMM 

Direct execution

Figure 1.5. Intel VT-x Hardware assisted virtualization architecture
(inspired from [8])

This allows the guest OS to be moved in Ring 0, avoiding the problem of
running Ring 0 code in higher Rings. In this way it can access the hardware
just as it normally would when running directly on a physical host. For this
reason the guest OS can be virtualized without any modifications.

Accordingly two new CPU execution mode has been introduced [15]:

1. Root mode In this operational mode, the CPU works like a traditional
CPU does not exploit hardware assisted virtualization. This mode is
used to run the Hypervisor.
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2. Non-root mode This mode reflects the x86 CPU architecture having
four privilege rings. Non-root mode is used to run the Guest OS. It’s
state is represented by the Virtual Machine Control Structure (VMCS)
which controls how instructions from the guest OS are executed.

All the sensitive operations executed in non-root mode trigger a transition
by trapping to root mode, even in Ring 0. There are two different operations
that allows to move from root mode to non-root mode and vice versa: "VM
entry" and "VM exit". So the basic idea of hardware assisted virtualization is
to use a trap-and-emulate but in a efficient way, since now we have hardware
support. Even if being at Ring 0 means that the guest OS is using some of the
host hardware directly, we still have a virtual machine. For example any I/O
operations in Guest Ring 0 trigger a VM exit to let the VMM emulating the
device. In particular, the state of the guest virtual machine (the state of its
processor, of its memory and of its peripherals) is implemented as VMCS in
the host memory. Inside the VMCS is also store control data to to determine
which sensitive operations cause non-root code to transition to root code.

The main advantage of Hardware-assisted full virtualization is that now,
having the guest OS running in Ring 0 we have no more all the problems
related to the execution of sensitive instructions in a privileged Ring differ-
ent from Ring 0 that were previously addressed by binary translation. Now
the guest OS directly trap to the VMM. Thus hardware-assisted virtualiza-
tion not only satisfy the Popek and Goldberg principle, but also improves
performance because the emulation of privileged instructions and traps are
managed by the hardware directly [18].

Hardware-assisted virtualization also have some limitations. First of all
the overhead of switching between non-root mode to root mode (VM exits)
is high affecting the performance for all those devices whose emulation leads
to an high number of traps. [15]. Secondly the host CPU must provide the
required support to hardware-assisted virtualization which is not available
on all processors.

1.4.2 Paravirtualization
Paravirtualization is a virtualization technique that works differently from
the full virtualization. The biggest difference is that the guest OS must be
modified. This leads to two main consequences, which represent the major
advantages of Paravirtualization:

1. Virtual guests know they are virtualized.
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2. Only a subset of the complete hardware set of the physical machine is
virtualized.

The idea behind Paravirtualization is that the guest OS source code is rewrit-
ten to remove instructions that are not virtualizable, allowing it to access
resources through a virtual hardware API exposed by the hypervisor [8].
Consequently, unlike full virtualization, it is no more needed to perform the
binary translation of unsafe instructions. Any non virtualizable instruction
of the guest OS is replaced with calls to the hypervisor, known as hyper-
calls. System calls are also replaced with hypercalls as well. The hypervisor
will then perform the task that the guest kernel should have done [19]. The
major advantage of this approach is that calls to the hypervisor(hypercalls)
do not trap, removing the expensive additional context switches required by
binary translation in full virtualization. Moreover, the guest OS can now
access hardware resources or perform kernel operation by making a direct
request to the Hypervisor, thanks to the virtual hardware interfaces pro-
vided to him by the underlying additional sofware layer [11]. In this case is
not needed to emulate the entire hardware because the guest OS is aware of
being virtualized (differently from full virtualization). This leads to simpler
implementation of the Hypervisor.
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GUEST OS

VMM

USER APPS

RING 0

RING 1

RING 2

RING 3

Direct execution 
of user requests

'Hypercalls' to the
Virtualization Layer

replace Non-virtualizable
OS instructions

Figure 1.6. Paravirtualization on Intel x86 architecture (inspired from [8])

The goal of para-virtualization technique is to reduce the time needed to
perform operations that otherwise would be difficult to execute in a virtual
environment [20]. On the other hand, in order to work, a guest operating sys-
tem must be modified to take advantage of this technology. If is not possible
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to change the guest operating system (as is the case with Windows), will be
not possible to use paravirtualization. Solutions like Xen Hypervisor offers
the possibilities to execute both a full virtualization or a para-virtualization
solution.

1.4.3 Hybrid Virtualization
The basic idea behind hybrid virtualization is to bring together hardware as-
sisted virtualization and Paravirtualization. Different studies [12] [35] have
pointed out that hardware assisted virtualization performs better in CPU
and memory virtualization whereas a software based approach like paravir-
tualization exposes the best features for I/O virtualization. An hybrid virtu-
alization approach takes advantages from both these technologies and could
be a promising solution since applications’ workload is various, resulting in
a mix of intensive CPU, memory and I/O operations. The main goal is
to merge the best aspects of the two different approaches for performance
maximization.

1.4.4 O.S Level Virtualization
Differently from the virtualization techniques described so far, operating sys-
tem level virtualization uses a shared kernel between the host and the guest.
This techniques removes the need of virtualizing the hardware leading to
higher speed and performances. On the other hand the shared kernel repre-
sents one of the biggest limitation of this approach due to the fact that the
guest must use the same OS as the host.

Operating system level virtualization it’s originally born as an advanced
implementation of the chroot jails. Chroot jails are based on the chroot
(change root) command which allows to change the root directory for a pro-
cess and all its children. In this way we have a process that is confined inside
its directory. However, these solutions soon became unsafe. Starting from
this idea, O.S level virtualization, also referred as "chroot on steroids", enforce
isolation at process level, taking advantages of different isolation mechanisms
that are usually built into the kernel itself. The main idea is that now, in-
stead of having a complete virtual environment (what we previously called
Virtual Machine), we have lighter and isolated context, usually referred as
Container, made of a process or group of processes that has some restrictions
over the resources that it can see and use. This kind of solution does not
use an Hypervisor (or VMM) because the abstraction leverages on the kernel
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Figure 1.7. O.S virtualization architecture

running on the host. Moreover, due to the fact that there is no more the
need of emulating the hardware, this approach to virtualization is the less
expensive. Generally, it is possible to distinguish two types of container:

• System Container
Also referred as OS container, they expose the same functionalities of a
traditional Virtual Machine but they are lightweight. Their goal is to
create and environment which is as close as possible to a full operating
system but without the need of a separate kernel. For this reason inside
a system container we can have multiple processes and services running
at the same time.

• Application container
This kind of containers is used to run a single process that represents
the service that we want to run. This embraces the microservices archi-
tectural pattern which has its concretization in the world of distributed
applications.

Containers are easy to move, embracing the "build once run everywhere"
paradigm. A container is described by an image (Docker) or template (openVZ),
which represents the recipe to create the container. Then you can deploy the
image on any host or environment that has a daemon installed to manage
and run containers. Containers come also with some limitations and draw-
backs. As said before having a shared kernel means that we are unable to
virtualize other O.S (what we have is linux on linux).
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Moreover, the shared kernel is a single point of failure. If malicious code
can exploit a vulnerability of the host all the containers that run on top of
it should be considered compromised.

With respect to other forms of virtualization, The lack of a VMM (or
hypervisor) and hardware virtualization leads to security and isolation totally
being enforced at software level, increasing the attack surface. Due to the
fact that Containers rely upon isolation mechanism that are embedded into
the kernel, their specific implementation depends on the operating system
on which they are built. Linux has been the most successful in this field and
most of the technologies that exploit lightweight virtualization today make
use of Linux containers.
However, that are also different implementations of container-like solutions
for other operating system:

• FreeBSD, a UNIX operating system developed by the University of
California, has its own concept of container which is called a freeBSD
jail. [23]

• Oracle Solaris, developed by Sun Microsystems, introduced its concept
of chrooted environment called Solaris Zones. They distinguish between
two type of zones [22]:

– Global Zone
Each Solaris installation has exactly one global zone. It represents
the default zone for the operating system and has control over all the
processes running inside of it. It is used for administrative control
over the system.

– Non Global Zone
They represent the container concept. Each non global zone is cre-
ated under the system-wide Global Zone and consists of an isolated
virtual environment.

• Microsoft Windows also have its own container solutions which are
supported by Windows Server. It also supports linux containers ,thanks
to the support of docker and a traditional virtual machine, in two dif-
ferent ways [21]:

– Moby VM
This approach creates a complete Virtual Machine where the docker
daemon will run and create our Linux Containers. The docker client
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runs in Windows but make calls into the docker daemon inside the
VM.

– LCOW
LCOW stands for Linix Container On Windows. Only a minimal
linux kernel, just allowing the creation of containers, is virtualized.
In this way each Linux Container has its own minimal virtual ma-
chine, in contrast with the Moby VM approach where a complete
VM is shared between all the containers.
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Chapter 2

Linux containers

A Linux container is no more than a process with some security and isolation
mechanism that ensure it has its own view over the system resources and no
possibilities to tamper with processes in other namespaces. Today there
are several tools and libraries that help us in spawning and managing the
lifecycle of containers like Docker, LXC, LXD, LibVirt and many others.
Actually container does NOT run on this tools or libraries , they run on the
Linux kernel.
The aim of this chapter is to illustrate which are the component of the Linux
kernel that allow the creation of a process container and how they actually
acts on the view that the container has on the system resources.
All the code presented in this chapter is taken from the Linux Kernel [29]
and adapted in order to explain the concept we are interested in.
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2.1 Namespaces
Namespaces are a Linux Kernel feature originated in 2002 and mainlined
in Linux kernel v2.4.19, that allows to wrap system resources in a level of
abstraction capable of isolating a set of system resources for a subset of
processes.
Thanks to namespaces is possible to safely execute unknown programs in
your server but in isolation from the rest of your system.
There are different types of isolation that can be achieved using namespacing:

1. Mount Namespace

2. Process Namespace

3. Network Namespace

4. IPC

5. UTS (UNIX Time Sharing)

6. User Namespace

7. Control group (cgroup) Namespace

8. Time Namespace

Each type of namespace will then affect some resources instead of others.
The following table 2.1 lists all the namespaces, the flags that are associated
to them in the linux kernel and which system resources they isolate.

Namespace FLAG Isolate
PID CLONE_NEWPID Process IDs

Network CLONE_NEWNET Network devices, stacks, ports, etc.
Time CLONE_NEWTIME Boot and monotonic clock
Mount CLONE_NEWNS Mount points
IPC CLONE_NEWIPC System V IPC, POSIX message queues

Cgroup CLONE_NEWCGROUP Cgroup root directory
User CLONE_NEWUSER User ID and Group ID
UTS CLONE_NEWUTS Hostname and NIS domain name

Table 2.1. Namespace overview [24]
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2.1.1 Namespaces internals

Linux kernel namespaces are implemented using a dedicated structure called
nsproxy 2.1 that contains a pointer to each namespace where the current pro-
ces resides (except the user namespace). Another parameter that is stored in
this structure is a reference counter used to count the number of tasks having
a reference to this structure. When two processes share all the namespaces
the counter is incremented by one (e.g when fork is executed) [26]. Instead,
when a single namespace is created (as a result of clone or unshare), the
nsproxy is copied. For this reason each namespace has also its own separate
reference count which represents the number of nsproxies that point to it
and not the number of tasks [27], as we can see in figure 2.1. This is needed
because sometimes we want to operate on a single namespace.

1 s t r u c t nsproxy {
2 atomic_t count ;
3 s t r u c t uts_namespace ∗uts_ns ;
4 s t r u c t ipc_namespace ∗ ipc_ns ;
5 s t r u c t mnt_namespace ∗mnt_ns ;
6 s t r u c t pid_namespace ∗ pid_ns_for_chi ldren ;
7 s t r u c t net ∗net_ns ;
8 s t r u c t time_namespace ∗ time_ns ;
9 s t r u c t time_namespace ∗ t ime_ns_for_chi ldren ;

10 s t r u c t cgroup_namespace ∗cgroup_ns ;
11 } ;

Listing 2.1. nsproxy Linux kernel structure in /include/linux/nsproxy.h

As can be seen there is no a pid_ns entry representing the pid namespace
of the current task, instead what we see is pid_ns_for_children. This en-
try refers to the namespace in which the children of the current task will be
created but not the PID namespace of the current task. If we call unshare()
or setns() with the flag CLONE_NEWPID, these calls do not change the PID
namespace of the calling process, but instead the PID namespace for the
future children of the calling process. Actually change the PID namespace of
the current process is not possible because it would change its own idea of its
PID (e.g obtained by getpid()) which would cause problems with many ap-
plications and libraries [25]. When a process’s PID namespace is created, it’s
membership with a single PID namespace is defined, and cannot be changed
anymore. This results in the fact that relationship between processes reflects
the parental relationship between PID namespace, as reported in the linux
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Figure 2.1. Namespace reference count

man of the pid namespace [25]. For this reason we do not find the PID
namespace for the current task in nsproxy but in the upid 2.23 structure
instead. As we can see from figure 2.1.1, when unshare() is executed, a new
PID namespace for children is created but the calling process remains in its
original namespace. If we want a new process to enter the new PID names-
pace we need to fork. The same thing applies for the time_namespace, in
fact we have the time_ns_for_children entry in the nsproxy structure.
The user namespace is part of another structure called struct cred 2.2.
This structure represents the security context of a task. It stores information
about the owner of the process, its capabilities and various other.

1 s t r u c t cred {
2 [ . . . ]
3 s t r u c t user_namespace ∗user_ns ;
4 [ . . . ]
5 }

Listing 2.2. cred Linux kernel structure in include/linux/cred.h
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pid_ns : a
pid_ns_ch : a

PID 2678

unshare -fp /bin/bash

pid_ns : a
pid_ns_ch : a

PID 2678

pid_ns : a
pid_ns_ch : b

pid_ns : a
pid_ns_ch : b

pid_ns : b
pid_ns_ch : b

PID 10

fork()

PID 2679

PID 2679

Figure 2.2. Execution of unshare -pf /bin/bash

These two data structures are hold together by the task_struct 2.3 struc-
ture that represents the single task. This structure is in charge of provide
information like the status of the current task, its own pid, its parent and so
on.

1 s t r u c t task_struct {
2 [ . . . ]
3 /∗ proce s s c r e d e n t i a l s ∗/
4 const s t r u c t cred __rcu ∗ cred ;
5 [ . . . ]
6 /∗ namespaces ∗/
7 s t r u c t nsproxy ∗ nsproxy ;
8 }

Listing 2.3. task_struct Linux kernel structure in include/linux/sched.h

Namespaces are represented in the Kernel by a structure named
[ns_name]_namespace 2.4 (for example time_namespace for the namespace
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of type TIME_NS).

1 s t r u c t time_namespace {
2 [ . . . ]
3 s t r u c t user_namespace ∗user_ns ; // po in t e r to user_ns
4 s t r u c t k r e f k r e f ; //namespace r e f count
5 s t r u c t ns_common ns ;
6 }

Listing 2.4. struct namespace example

For most namespace structures there are some common fields:

• A pointer to the user_namespace is needed because each operation of
the namespace will be controlled and according to the granted permis-
sions accepted, in particular according to the assigned UID and GID.
However, there are a set of other information regarding the user that
are stored in the user namespace. When a namespace is created (that
is different from the user one), it is automatically owned by the user
namespace where the creating process resides. Each privileged opera-
tion performed by a task on a resource that is owned by another user
namespace is checked by the kernel in order to validate it and check if
it owns the required capability in that user namespace.

• A private reference count, as explained when introducing the nsproxy,
to count the number of nsproxy structure pointing to it.

• A reference to a struct ns_common 2.5 structure.

1 s t r u c t ns_common {
2 atomic_long_t stashed ; // dentry
3 const s t r u c t proc_ns_operations ∗ops ; // proc ope ra t i on s
4 unsigned i n t inum ; // inode number
5 } ;

Listing 2.5. ns_common Linux kernel structure in /include/linux/ns_common.h

The ns_common structure 2.5 collects all the abstractions of namespace in
procfs as described in [26]. As we will discuss later, each file placed under
/proc/[pid]/ns/ is a symbolic link that points to an inode in a file system
called nsfs, only visible to the kernel. Each of these links refers to a names-
pace for the process.
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The field stashed is the dentry that is the "glue" between this file and the as-
sociated inode number of the namespace that is represented by the field inum.
The ops field points to the proc_ns_operations structure 2.6. It includes
the name and the type of the namespace (for example the type of the user
namespace is CLONE_NEWUSER). Function get() is used to increment by one
the private reference counter of the namespace and put() to decrement it.
install() is used to install the process into the specified namesapce. It calls
get() on the namespace we are attaching to and put() on the namespace
we are detaching from.

1 s t r u c t proc_ns_operations {
2 const char ∗name ;
3 const char ∗real_ns_name ;
4 i n t type ;
5 s t r u c t ns_common ∗(∗ get ) ( s t r u c t task_struct ∗ task ) ;
6 void (∗ put ) ( s t r u c t ns_common ∗ns ) ;
7 i n t (∗ i n s t a l l ) ( s t r u c t n s s e t ∗ nsset , s t r u c t ns_common ∗ns ) ;
8 [ . . . ]
9 }

Listing 2.6. proc_ns_operations Linux kernel structure in
include/linux/proc_ns.h

Each namespace will then define it’s own proc_ns_operations.
Figure 2.3 shows the relational schema of the structures explained so far.

1 const s t r u c t proc_ns_operations utsns_operat ions = {
2 . name = " uts " ,
3 . type = CLONE_NEWUTS,
4 . get = utsns_get ,
5 . put = utsns_put ,
6 . i n s t a l l = ut sn s_ in s t a l l ,
7 . owner = utsns_owner ,
8 } ;

Listing 2.7. utsns_operations example

Kernel operation over namespace

In /kernel/nsproxy.c are reported a set of functions used to operate with
namespaces’ kernel data structures. Some of these will be analyzed in the
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following chapters.

switch_task_namespaces

The switch_task_namespaces 2.8 function is responsible for changing the
namespace set of a task. This is done by replacing the nsproxy structure 2.1
with a new one which refers to the new set of namespaces.

1 void switch_task_namespaces ( s t r u c t task_struct ∗p ,
2 s t r u c t nsproxy ∗new)
3 {
4 s t r u c t nsproxy ∗ns ;
5

6 [ . . . ]
7

8 task_lock (p) ;
9

10 ns = p−>nsproxy ;
11 p−>nsproxy = new ; /∗ Set the new nsproxy ∗/
12

13 task_unlock (p) ;
14 /∗ I f we are the l a s t task having a r e f e r e n c e to t h i s nsporxy

∗ s t r u c t then f r e e the s t r u c t . ∗/
15 i f ( ns && atomic_dec_and_test(&ns−>count ) )
16 f ree_nsproxy ( ns ) ;
17 }

Listing 2.8. switch_task_namespaces in /kernel/nsproxy.c
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As we said while introducing the nsproxy structure 2.1, the reference counter
of the old nsproxy is atomically decremented since we detached from the old
namespace set. If we are the last task that shares the old nsproxy, the count
goes to zero and the old nsproxy can be freed.

unshare_nsproxy_namespaces

The unshare_nsproxy_namespaces() is in charge of creating a new nsproxy
2.1 which will contain a new set of namespace accordingly to the unshare_flags.
It is used by the unshare() system call to detach the calling process from
the specified namespaces and enter into a new ones.

1 i n t unshare_nsproxy_namespaces ( unsigned long unshare_f lags ,
2 s t r u c t nsproxy ∗∗new_nsp ,
3 s t r u c t cred ∗new_cred ,
4 s t r u c t f s_s t ruc t ∗new_fs )
5 {
6 s t r u c t user_namespace ∗user_ns ;
7 [ . . . ]
8 /∗ Being not part o f the nsproxy s t ruc t , the user

∗ namespace i s c r e a t e ou t s id e t h i s func t i on and s to r ed in
∗ the new_cred s t r u c t passed as th i rd argumet .

9 ∗/
10 user_ns = new_cred ? new_cred−>user_ns : current_user_ns ( ) ;
11

12 /∗ Create the new nsproxy ho ld ing the new namespaces . ∗/
13 ∗new_nsp = create_new_namespaces ( unshare_f lags , current ,
14 user_ns ,
15 new_fs ? new_fs : current−>f s ) ;
16 }

Listing 2.9. unshare_nsproxy_namespaces in /kernel/nsproxy.c

create_new_namespaces

The create_new_namespaces 2.10 function is the core function to create a
new set of namespaces. It is in charge of allocating the memory for the new
nsproxy structure 2.1 and creating the corresponding set of namespaces.
Steps that are achieved in this function are:

• create a new nsproxy structure through create_nsproxy()
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• initialize each new namespace by calling functions in the form
copy_[namespace](). Depending on the value of the flags bit mask
passed as first argument a new namespace is created or the old one is
returned.

• return the created nsproxy structure 2.1.

1 s t a t i c s t r u c t nsproxy ∗create_new_namespaces (
2 unsigned long f l a g s ,
3 s t r u c t task_struct ∗ tsk ,
4 s t r u c t user_namespace ∗user_ns ,
5 s t r u c t f s_s t ruc t ∗new_fs )
6 {
7 s t r u c t nsproxy ∗new_nsp ;
8 // Create new nsproxy .
9 new_nsp = create_nsproxy ( ) ;

10 // Mount namespace .
11 new_nsp−>mnt_ns = copy_mnt_ns ( f l a g s , tsk−>nsproxy−>mnt_ns ,
12 user_ns , new_fs ) ;
13 // UTS namespace .
14 new_nsp−>uts_ns = copy_utsname ( f l a g s , user_ns ,

tsk−>nsproxy−>uts_ns ) ;
15 // IPC namespace .
16 new_nsp−>ipc_ns = copy_ipcs ( f l a g s , user_ns ,

tsk−>nsproxy−>ipc_ns ) ;
17 // PID namespace .
18 new_nsp−>pid_ns_for_chi ldren = copy_pid_ns ( f l a g s , user_ns ,
19 tsk−>nsproxy−>pid_ns_for_chi ldren ) ;
20 // Cgroup namespace .
21 new_nsp−>cgroup_ns = copy_cgroup_ns ( f l a g s , user_ns ,
22 tsk−>nsproxy−>cgroup_ns ) ;
23 // Network namespace .
24 new_nsp−>net_ns = copy_net_ns ( f l a g s , user_ns ,
25 tsk−>nsproxy−>net_ns ) ;
26 // Time namespace .
27 new_nsp−>time_ns_for_chi ldren = copy_time_ns ( f l a g s , user_ns ,

tsk−>nsproxy−>time_ns_for_chi ldren ) ;
28 new_nsp−>time_ns = get_time_ns ( tsk−>nsproxy−>time_ns ) ;
29

30 re turn new_nsp ;
31 }

Listing 2.10. Linux kernel create_new_namespaces in /kernel/nsproxy.c
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2.1.2 Namespace API
Namespaces come with an API which consists of three system calls:

1. clone()

2. unshare()

3. setns()

clone

One way to create a namespace is to use the clone syscall. There are several
implementation of the clone function like clone(2) and clone(3). The
difference is that the clone(3) receives as argument a clone_args structure,
instead clone(2) receives a set of parameters that are passed individually.
The glibc wrapper prototype of clone(2) is reported below:

1 i n t c l one ( i n t (∗ chi ld_func ) ( void ∗) ,
2 void ∗ chi ld_stack ,
3 i n t f l a g s , void ∗ arg ) ;

Listing 2.11. glibc wrapper for clone()

Before introducing how clone can be used to manage namespaces let’s spend
a few words about how it works. Basically clone allows to control which parts
of the execution context (virtual memory, open file descriptors...) are shared
between the calling process and the child process. Moreover, it allows the
child process to be created in a different set of namespaces than its father.
This topic will be discussed later on.
Differently from the fork syscall the child process created by clone starts
its execution from the function pointed by the first argument provided to
the system call: child_func. As desrcribed in the Linux man page of clone
[30], when child_func returns the child terminates. The function executed
by the child (child_func) returns to the parent an integer that represents
the exit status of the cloned process. The last argument arg is passed as
argument of the function child_func.
The clone system call is very interesting because it represents the unifying
implementation shared between processes and threads, as written here [31].
Eli Bendersky explains how threads and processes have always been seen
as two completely different entities. Actually this is not true. From the
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Linux kernel point of view there is no difference between process (which are
the results of fork) and threads (the result of pthread_create). They are
both represented by the same concept of task which is implemented by the
task_struct kernel data structure. In Linux, threads are task that share
their memory space whereas processes are task that don’t share resources.
Despite threads and processes are managed by different libraries and APIs
they are both created thanks to the clone system call.
Every feature that differentiates threads and processes is obtained by passing
different flags 2.1 to clone. For this reason it’s better not to see threads and
processes as two completely different concepts but as variants of the same
concept, starting a concurrent task. The major differences are only in what
is shared between the parent task and the child one.

User Level

Kernel Level

Library Call

fork() pthread_create()

clone() [LINUX]

sys_clone()

do_fork()

sys_fork()

Figure 2.4. process and thread creation calls chain

clone and namespaces

The clone system call allows to create a new task in a separate set of names-
paces. By passing as parameter a 32-bit mask flag, defined by ORing different
namespace flags (reported in table 2.1), clone will be in charge of creating
the specified namespaces and put the created task inside of them. As we can
see by the definition of the clone system call 2.12 the only action performed
is to call _do_fork 2.13 passing as parameter the kernel_clone_args data
structure. This acts like a wrapper for the parameters of clone.
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1 SYSCALL_DEFINE5( c lone , unsigned long , c lone_f lags ,
2 unsigned long , newsp ,
3 i n t __user ∗ , parent_tidptr ,
4 unsigned long , t l s ,
5 i n t __user ∗ , ch i l d_t idp t r ) {
6 s t r u c t kerne l_clone_args args = {
7 . f l a g s = ( lower_32_bits ( c l one_ f l ag s ) & ~CSIGNAL) ,
8 . p id fd = parent_tidptr ,
9 . ch i l d_t id = ch i ld_t idpt r ,

10 . parent_tid = parent_tidptr ,
11 . e x i t _ s i g n a l = ( lower_32_bits ( c l one_f l ag s ) & CSIGNAL) ,
12 . s tack = newsp ,
13 . t l s = t l s ,
14 } ;
15

16 i f ( ! l egacy_clone_args_val id(&args ) )
17 re turn −EINVAL;
18

19 re turn _do_fork(&args ) ;
20 }

Listing 2.12. clone syscall ABI definition

The _do_fork is the core function to create a new task. Note that we
are talking about tasks and not threads or processes since, as explained be-
fore, the difference between threads and processes it’s just a matter of flags
passed to clone. Actually _do_fork performs different actions to initial-
ize the new task structure but the only function we are interested in is the
copy_process. This function is in charge of copying different data structure
from the parent to the child, including namespaces. Depending on the flags
of the kernel_clone_args structure it will create a new namespace for each
flag ad assign it to the ns_proxy structure of the child.

1 long _do_fork ( s t r u c t kerne l_clone_args ∗ args ) {
2 s t r u c t pid ∗ pid ;
3 s t r u c t task_struct ∗p ;
4 /∗ c r e a t e a new proce s s as copy o f the o ld one ∗/
5 p = copy_process (NULL, trace , NUMA_NO_NODE, args ) ;
6 [ . . . ]
7 /∗ put the task in the runqueue and then run i t ∗/
8 wake_up_new_task (p) ;
9 }

Listing 2.13. _do_fork implementation in /kernel/fork.c
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unshare()

The unshare system call allows the current task (process or thread) to dis-
associate parts of its execution context. It creates a new set of namespaces,
in accord with the flags passed as argument, and attach the current process
to it. Its prototype is the following:

1 i n t unshare ( i n t f l a g s ) ;

Listing 2.14. Linux unshare system call prototype

In the Linux kernel the unshare system call is defined as follow. Looking at
the syscall definition 2.15, the number one at the end of SYSCALL_DEFINE1
indicates that the unshare syscall takes only one input parameter ( the
unshare_flags bit mask ).

1 SYSCALL_DEFINE1( unshare , unsigned long , unshare_f lags )
2 {
3 re turn ksys_unshare ( unshare_f lags ) ;
4 }

Listing 2.15. unshare syscall in /kernel/fork.c

The ksys_unshare 2.16 function takes as argument the flags bit mask and
it is in charge for associating the current task to the a new set of namespces.
The following steps are performed:

1. calls unshare_userns() to create the new user_ns, filling the new_cred
structure. This is not done in unshare_nsproxy_namespaces because
as we said before the user_ns is not part of the struct ns_proxy.

2. calls unshare_nsproxy_namespaces() 2.9 in order to create a new
nsproxy structure. The unshare_nsproxy_namespaces 2.9 function is
responsible for creating a new nsproxy structure that will be used by
the task to leave its old set of namespaces and associates with the new
one in accord to the flags passed as first argument. In particular, a new
set of namespaces will be created or copied from the parent nsproxy
structure.

3. when the new nsproxy structure is created, a new call to
switch_task_namespace(current, new_nsproxy) 2.8 is done in order
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to switch the old and the new ns_proxy in the task_struct of the
current task.

4. calls commit_creds() to install the new cred structure, containing the
new user namespace, to the current task.

1 i n t ksys_unshare ( unsigned long unshare_f lags )
2 {
3 s t r u c t f s_s t ruc t ∗ f s , ∗new_fs = NULL;
4 s t r u c t f i l e s _ s t r u c t ∗ fd , ∗new_fd = NULL;
5 s t r u c t cred ∗new_cred = NULL;
6 s t r u c t nsproxy ∗new_nsproxy = NULL;
7

8 /∗ Create the new_cred s t r u c t i f nece s sa ry . I n t e r n a l l y checks
9 ∗ i f the CLONE_NEWUSR f l a g i s a c t u a l l y s e t

10 ∗/
11 unshare_userns ( unshare_f lags , &new_cred ) ;
12

13 /∗ c r e a t e the new ns proxy s t r u c t f o r the new namespaces ∗/
14 unshare_nsproxy_namespaces ( unshare_f lags , &new_nsproxy ,
15 new_cred , new_fs ) ;
16 /∗ s e t to the cur rent task the new nsproxy s t r u c t ∗/
17 i f ( new_nsproxy )
18 switch_task_namespaces ( current , new_nsproxy ) ;
19 [ . . . ]
20 i f ( new_cred ) {
21 /∗ I n s t a l l the new user namespace ∗/
22 commit_creds ( new_cred ) ;
23 new_cred = NULL;
24 }
25 }

Listing 2.16. ksys_unshare in /kernel/fork.c

setns()

The setns() system call allows a process or thread to move into a different
set of namespaces. Its prototype is reported below:

1 i n t s e tn s ( i n t fd , i n t nstype ) ;

Listing 2.17. Setns syscall prototype
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Both the arguments can assume different meanings:

• fd refers to a /proc/[pid]/ns/ link (nsfd) then nstype indicates the
type of the namespace we are associating to. This allows only to as-
sociate with one namespace at a time. It is also possibile to pass 0 as
nstype. In this case any type of namespace is allowd to be joined.

• fd refers to a PID file descriptor (pidfd) then setns moves the calling
thread into one or more of the same namespaces as the target process
referred to by fd. In this case nstype is a flag bit mask which indicates
the namespaces we want to associate with. Specifying 0 as nstype is not
valid together with a pidfd.

Taking a look at the implementation we can see that, differently from the
unshare syscall definition 2.15, SYSCAL_DEFINE2 ends with 2 that indicates
the two parameters needed as argument.
A new structure called nsset 2.18 is used to include all bits needed to install
a partial or complete new set of namespaces as reported in [27] at line 45.
It’s definition it’s reported below:

1 s t r u c t n s s e t {
2 unsigned f l a g s ;
3 s t r u c t nsproxy ∗ nsproxy ;
4 const s t r u c t cred ∗ cred ;
5 s t r u c t f s_s t ruc t ∗ f s ;
6 } ;

Listing 2.18. nsset Linux kernel structure in linux/include/linux/nsproxy.h

The main tasks performed by setns are:

• calls proc_ns_file(file) to check if fd refers to a symbolic link inside
the procfs. If true, it calls get_proc_ns() to obtained the corresponding
ns_common structure otherwise fd is referred to a pid file descriptor and
the set of flags is checked.

• calls prepare_nsset(flags , &nsset) to create the nsset->nsproxy
structure. Internally it will call create_new_namespaces() passing 0 as
first parameter (flags bit mask). This implies that only an nsproxy is
created by calling the create_nsproxy() method, but no new namespace
is created (setns() does not create new namespace but just attach current
task to an exhisting namespace).
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• calls again proc_ns_file(file) to distinguish between the two execu-
tion cases. If fd refers to a symbolic link in /proc/[pid]/ns/ we can attach
to only one namespace and validate_ns is called. Internally, thanks to
the proc_ns_operations struct of ns_common it will call the install()
function of the namespace we want to attach to. During installation
the reference count of the namespace we are detaching from is decre-
mented and the count of the target namesapce is incremented. Then
the new namespace is saved into the nsset->nsproxy. In the other case
validate_nsset() is called which is responsible for accessing the nsproxy
of the target task and associating the current task with the specified
namespaces.

• At the end the commit_nsset function will internally call
switch_task_namespaces 2.8 in order to save the new nsproxy into the
structure of the current task.

1 SYSCALL_DEFINE2( setns , int , fd , int , f l a g s )
2 {
3 s t r u c t f i l e ∗ f i l e ;
4 s t r u c t ns_common ∗ns = NULL;
5 s t r u c t n s s e t n s s e t = {} ;
6

7 f i l e = f g e t ( fd ) ;
8

9 [ . . . ]
10

11 i f ( proc_ns_f i l e ( f i l e ) ) {
12 /∗ fd r e f e r s to a symbol ic l i n k in / proc / [ pid ] / ns / , we take

∗ the ns_common s t r u c t .
13 ∗/
14 ns = get_proc_ns ( f i l e _ i n o d e ( f i l e ) ) ;
15 /∗ check f l a g type passed as parameter aga in s t the type

∗ taken from ns_common .
16 ∗/
17 i f ( f l a g s && ( ns−>ops−>type != f l a g s ) )
18 e r r = −EINVAL;
19 f l a g s = ns−>ops−>type ;
20 } e l s e i f ( ! IS_ERR( pidfd_pid ( f i l e ) ) ) {
21 /∗ fd r e f e r s to a pid f i l e d e s c r i p t o r . ∗/
22 e r r = check_setns_f lags ( f l a g s ) ;
23 } e l s e {
24 e r r = −EINVAL;
25 }
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26

27 [ . . . ]
28

29 /∗ Create nsset −>nsproxy and nsset −>cred . ∗/
30 prepare_nsset ( f l a g s , &ns s e t ) ;
31

32 i f ( proc_ns_f i l e ( f i l e ) )
33 /∗ fd r e f e r s to a symbol ic l i n k in / proc / [ pid ] / ns/ ∗/
34 va l idate_ns(&nsset , ns ) ;
35 e l s e
36 /∗ fd r e f e r s to a proce s s f i l e d e s c r i p t o r , ns_common not

∗ needed .
37 ∗/
38 va l ida t e_ns s e t (&nsset , f i l e −>private_data ) ;
39

40 [ . . . ]
41

42 /∗ save new namespace s e t in to cur rent task . ∗/
43 commit_nsset(& ns s e t ) ;
44

45 [ . . . ]
46 }

Listing 2.19. Linux setns system call in /kernel/nsproxy.c

Procfs

Each process has a dedicated /proc/PID/ns directory inside the proc filesys-
tem where we it is possible to find information about the namespaces it
belongs to.

1 $ l s − l / proc /$$/ns # $$ i s r ep laced by s h e l l ’ s PID
2 t o t a l 0
3 lrwxrwxrwx . 1 mtk mtk 0 Jan 8 04 :12 ipc −> ipc : [ 4 0 26 531 83 9 ]
4 lrwxrwxrwx . 1 mtk mtk 0 Jan 8 04 :12 mnt −> mnt : [ 4 0 26 531 84 0 ]
5 lrwxrwxrwx . 1 mtk mtk 0 Jan 8 04 :12 net −> net : [ 4 02 65 31 95 6 ]
6 lrwxrwxrwx . 1 mtk mtk 0 Jan 8 04 :12 pid −> pid : [ 4 02 65 31 83 6 ]
7 lrwxrwxrwx . 1 mtk mtk 0 Jan 8 04 :12 user −> user : [ 4 02 65 31 83 7 ]
8 lrwxrwxrwx . 1 mtk mtk 0 Jan 8 04 :12 uts −> uts : [ 4 02 65 31 83 8 ]

Listing 2.20. Proc virtual filesystem
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Each number enclosed by square brackets is the inode number for the corre-
sponding symbolic link. If two different processes are in the same namespace
then the inode number will be the same for the corresponding symbolic link.

Actual these entries are not only usefull to check if two processes are in the
same namespace, but they can also be used to create a persistent namespace.
When a new namespace is created it will persist as long as it has a process
member of it. When all the processes leave the namespace it can be freed.
Alternatively, a new namespace can be made persistent by doing a bind
mount of /proc/pid/ns/[entry] files to another path in a private filesystem.
A persistent namespace lives even if there are no processes member of it
(except for the PID namespace which requires a permanent init process to
run). We can enter in a persistent namespace by using nsenter specifying
the path to the bind mount. A persistent namespace can be deleted by using
umount to remove the bind mount.

2.1.3 PID Namespace
As described by Mahmud Ridwan [28], in the past years the Linux kernel
has maintained a single process tree. Processes in the same tree can inspect
another process, attach a tracer to it or may even be able to kill it. Today,
the process namespace allows to have "nested" process trees that are isolated
from each other. Two process that are in two different and not related process
trees can not be know the existence of the other, so they can not inspect or
kill it. In Linux, the root process has process identifier equal to 1 and it is
designed as root of the process tree.
All other processes starts below it in the tree. Thanks to process namespace
is possible to create a new tree starting from a new process with PID 1. This
process will be the root of the new nested tree but it will be attached to the
parent tree.
As presented in 2.5 PID namespace are a hierarchical architecture, so the
processes of the parent PID namespace are aware of the existence of the
son namespace processes but not vice versa. So a process that stands in a
child PID namespace can not see another process that sits in a parent PID
namespace.

As you can see, with the introduction of the process namespace, a single
process can have multiple PIDs associated with it. Each of them is associated
with one namespace. A pid namesapce is represented in the Linux kernel by
the pid_namespace 2.21 structure.
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1
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10,39,2

parent PID namespace

child PID
namespace

Figure 2.5. Process Namespace tree example inspired from [28]

1 s t r u c t pid_namespace {
2 s t r u c t task_struct ∗ ch i ld_reaper ;
3 unsigned i n t l e v e l ;
4 s t r u c t pid_namespace ∗ parent ;
5 [ . . . ]
6 }

Listing 2.21. pid_namespace structure

The main fields of this structure, which are relevant for us, are:

• parent
The parent of a PID namespace is the PID namespace of the process
that created the namespace using clone or unshare().

• child_reaper
Pointer to the task_struct structure of the task which is in charge for
becoming the parent of orphaned process. Usually this is done by the
init process of each namespace.

• level
Depth in the namespace hierarchy.
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The pid 2.22 structure is the Kernel level representation of the PID concept.

1 s t r u c t pid {
2 unsigned i n t l e v e l ;
3 s t r u c t upid numbers [ 1 ] ;
4 [ . . . ]
5 }

Listing 2.22. Linux kernel pid structure

The field level represents the depth of the namespace in which the task
holding a reference of the pid structure was created. Numbers is an array
of upid structure. Due to the introduction of the pid namespace, a task can
have multiple PIDs that are are relevant in their specific PID namespace.
For this reason the structure upid 2.23 was added to maintain together the
couple (PID number, namespace).

1 s t r u c t upid {
2 i n t nr ; // the PID number
3 s t r u c t pid_namespace ∗ns ; // namespace where PID i s r e l e v a n t
4 }

Listing 2.23. Linux kernel upid structure

The task_struct structure has a reference called thread_pid which holds
information about the PID structure of the current task. It also have two
other entries which refers to the global PID and TGID respectively. As
written by Pavel Emelyanov and Kir Kolyshkin [32], Global IDs are unique
in the entire system, just like the old PIDs were. These are only useful when
the PID value is not going to leave the kernel.

1 s t r u c t task_struct {
2 pid_t pid ; // g l o b a l pid
3 pid_t tg id ; // g l o b a l t g id
4 s t r u c t pid ∗ thread_pid ; // r e f e r e n c e to pid s t r u c t u r e
5 [ . . . ]
6

7 }

Listing 2.24. task_struct’s entries relevant for pid namespace
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level = 2
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pid
int nr

struct pid_namespace *ns
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struct pid_namespace *ns

int nr

struct pid_namespace *ns

upid - numbers[0]

upid - numbers[1]

upid - numbers[2]

level 0

level 1

level 2

Figure 2.6. graphic representation of numbers

A more detailed explanation about how the PID for a new task is allocated
is reported in How process IDs are allocated in the appendix A.

2.1.4 Network Namespace
A vital feature for namespaces is networking. Network namespaces allows
to isolate the complete network stack, in particular allows two processes to
perceive a different network setup. An example of what can be done using
network namespaces is:

• see different interfaces in each namespace

• having different routing table

• set different firewalling rules

Logically each network namespace can be considered as a copy of the Linux
network stack. In particular, a physical network device can live in a certain
network namespace and when it is destroyed, it is moved back to the parent
network namespace.
Is also possible to use a virtual network device pair 2.1.4 to provide a network
tunnel between the namespace borders and another namespace.
When a new Network namespace is spawned, the process inherits its network
namespace from its parent.
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Virtual Ethernet Devices

Virtual Ethernet Devices acts as a tunnel between a network device and a
namespace or between two network namespaces. Anything that enters in
one ends, comes out through the other end as in a real Ethernet connection
between two real nodes. Is also possible to use a veth as a standalone network
device.
Virtual Ethernet Devices are always creates as interconnected pairs and are
an abstraction of a wire that allows the traffic to flow between the two ends.

1 $ #!/ bin /bash
2 $ ip l i n k add <p1−name> type veth peer name <p2−name>

Listing 2.25. How to create a Virtual Ethernet Device pair

1 $ #!/ bin /bash
2 $ ip l i n k s e t <p2−name> netns <netnsname>

Listing 2.26. How to move one pair to a network namespace

These two commands can be also chained together.

Root network
namespace

Network
namespace 1

Network
namespace 2

eth0

CNI or Linux routing process

Physical network

veth0

veth0_

veth1

veth1_

Figure 2.7. Simple Network namespace interconnection scheme
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There are different network solutions that can be used to interconnect
VM’s and network namespaces, an example is Project Calico[36] or Polycube
Network [37].

How to interconnect two Network namespaces

In this example is reported how to interconnect two different Network names-
paces. This is only a demonstrative example, more complex situations based
on Ethernet bridges, and even route packets between namespaces can be
created.

eth0

veth-red veth-green

NS_red NS_green

NS_parent

Figure 2.8. Simple Network namespace interconnection scheme

1 $ #! / bin /bash
2 // c r e a t i n g namespaces
3 $ ip netns add NS_red
4 $ ip netns add NS_green
5

6 // c r e a t i n g a new veth pa i r
7 $ ip l i n k add veth−red type veth peer name veth−green
8

9 // move veth−red veth to NS_red and veth−green to NS_green
10 $ ip l i n k s e t veth−red netns NS_red
11 $ ip l i n k s e t veth−green netns NS_green
12

13 // a s s i gn a new ip address to NS_red and NS_green
14 $ ip netns exec NS_red addr add 1 9 2 . 1 6 8 . 8 . 1 dev veth−red
15 $ ip netns exec NS_green addr add 1 9 2 . 1 6 8 . 8 . 2 dev veth−green
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16

17 // s e t veth−red and veth−green up
18 $ ip netns exec NS_red l i n k s e t veth−red up
19 $ ip netns exec NS_green l i n k s e t veth−green up

Listing 2.27. commands to interconnect two Network namespaces

2.1.5 UNIX Time Sharing namesapce
The UNIX Time Sharing namesapce ( CLONE_NEW_UTS ) provides isolation of
two system identifiers [33]:

• Hostname

• NIS domain name

If these identifiers are changed they will be valid only in their own UTS
namespace. The hostname can be set using sethostname. The NIS domain
name is set by setdomainname.

PID 1666
hostname: uts1

domainname: uts1

PID 1667
hostname: uts2

domainname: uts2

PID 1668
hostname: uts3

domainname: uts3

UTS namespace A

UTS namespace B UTS namespace C

Figure 2.9. UTS namespace

The UTS namespace is defined in the Linux kernel by the following struc-
ture:

1 s t r u c t uts_namespace {
2 s t r u c t k r e f k r e f ;
3 s t r u c t new_utsname name ;
4 s t r u c t user_namespace ∗user_ns ;
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5 s t r u c t ucounts ∗ ucounts ;
6 s t r u c t ns_common ns ;
7 }

Listing 2.28. uts_namespace structure

Most of the fields are common to other namespaces and has been already
explained in the "Namespaces internals" section.

The new_utsname 2.29 field, as the name suggest, is specific for the UTS
namespace and holds together different information, including the nodename
and the domain name, which are the only ones that can be modified.

1 s t r u c t new_utsname {
2 /∗ Operating system name ( e . g . , " Linux " ) ∗/
3 char sysname [__NEW_UTS_LEN + 1 ] ;
4 /∗ Network node hostname ∗/
5 char nodename [__NEW_UTS_LEN + 1 ] ;
6 /∗ Operating system r e l e a s e ( e . g . , " 2 . 6 . 2 8 " ) ∗/
7 char r e l e a s e [__NEW_UTS_LEN + 1 ] ;
8 /∗ Operating system ve r s i on ∗/
9 char ve r s i on [__NEW_UTS_LEN + 1 ] ;

10 /∗ Hardware i d e n t i f i e r ∗/
11 char machine [__NEW_UTS_LEN + 1 ] ;
12 /∗ NIS or YP domain name ∗/
13 char domainname [__NEW_UTS_LEN + 1 ] ;
14 } ;

Listing 2.29. new_utsname structure

2.1.6 User namespace
The user namespace (CLONE_NEW_USR) is responsible for isolating security
identifiers and attributes including user IDs, group IDs and capabilities. In
particular, the user namespace allows to map user and group IDs over differ-
ent namespaces. Thanks to this feature is possible to have a process running
as root inside a user namespace, but having no privilege outside of it. In this
way the process is allowed to do operations, which require privilege, only on
resources owned by that user namespace. As described in the Linux man page
of the user namespace [51], each resource that is controlled by a namespace
(that is not a user one) can be used by the task that has an user namespace
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owner of these namespaces. Moreover, there are still many privileged oper-
ations that affect resources that are not managed by any namespace type,
for example, loading a kernel module or creating a device. This kind of op-
erations requires a process with privileges in the root user namespace. Each
process is a member of exactly one user namespace.
The user namespace is defined by the user_namespace 2.30 structure in the
Kernel.

1 s t r u c t user_namespace {
2 s t r u c t uid_gid_map uid_map ;
3 s t r u c t uid_gid_map gid_map ;
4 s t r u c t user_namespace ∗ parent ;
5 i n t l e v e l ;
6 kuid_t owner ;
7 kgid_t group ;
8 [ . . . ]
9 }

Listing 2.30. Linux kernel user_namespace structure

The field owner and group are the effective user ID and group ID of the
creating process of the user namespace. The field level is the depth of the
user namespace in the user namespaces’ hieararchy.
Fields uid_map and gid_map defines the mapping of uid/gid between the
child task inside the user namespace and the parent (which sits outside).
The mapping is represented by the uid_gid_extent 2.31 structure. A refer-
ence to this structure is kept inside the uid_gid_map structure of the uid_map
and gid_map field.

1 s t r u c t uid_gid_extent {
2 u32 f i r s t ;
3 u32 l o w e r _ f i r s t ;
4 u32 count ;
5 } ;

Listing 2.31. uid_gid_extent structure

The first operation that is done when a new process is created in a new user
namespace is defining the mapping between the UID and the GID of the
process by writing information to the /proc/[PID]/uid_map and
/proc/[PID]/gid_map files associated to the interested process in the user
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namespace. These files consists of one or more lines, each of which contains
three values separated by white space:

• ID-inside-ns
Starting ID for the range inside the current user namespace.

• ID-outside-ns
Defines the starting point of the ID range outside the considered user
namespace. How this field must be interpreted depends if the reading
process (PIDr) and the observed process PID are or not in the same
namespace.
In particular:

– If PIDr and PID belong to different user namespaces, then
id-outside-ns refers to the start ID in PIDr ’s user namespace.

– if PIDr and PID are in the same user namespace, then id-outside-ns
refers to the start ID in PID’s parent user namespace.

• length
Length of the mapped range.

These three values are mapped to the first, lower_first and count fields
of the uid_gid_extent structure respectively.
As shown in figure 2.10, the child user namespace owns only the second uts
namespace. If process A attempts to change the hostname, it will succeed
because being a member of the child user namespace (that owns the second
uts namespace) it has the privileges to do such operation. Conversely if
process A tries to bind to a reserved socket port, since it is a member of the
initial network namespace (which is owned by the initial user namespace)
it will fail because the user namespace it is a member of does not own the
initial network namespace.

2.1.7 Mount namespace
Mount namespace (CLONE_NEWNS) was the first namespace type added to
Linux (2002 - Linux 2.4.19) [38]. It is used to isolate the list of mount
points seen by the processes in each namespace instance. Consequently, each
process that resides in a different mount namespace will see its own list of
mount points. In other words, a mount namespace represents the set of
mounted file system that are sees by the considered process.
Remember that a mount point represents the place of a particular dataset (a
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Figure 2.10. User namespace relationship [52].

device or file system) in a particular directory hierarchy. When the mount
namespace is created, the list of the mount points is initialized differently
according to the function used to create it (clone or unshare()):

• Using clone, the mount point of the child’s namespace is a copy of the
mount point present in the parent’s namespace. In this case, the child
namespace will get its own copy of the data about mounted filesystem
from the parent. The new mount namespace process can change his set
of mounted file systems without affecting the parent.

• Using unshare(), the mount point of the child’s namespace is a copy of
the caller’s previous mount namespace. In this way the process associate
with unshare() is moved to the new namespace.

After the clone or unshare() call, starting for a copy of the mount names-
pace of the parent, mounts points can be added or removed in each namespace
using mount() and umount() but these changes are visible only in the process
associate with the considered namespace and not in other mount namespaces.
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Figure 2.11. mount namespaces representation

Often, mount namespaces are combined with chroot() style isolation in
order to isolate the filesystem that is sees by the new process to a portion of
a single directory hierarchy.
It is also possible to mount the /texttt/proc pseudo filesystem for the con-
sidered process to limit the vision over processes that are only child of it.
In this way, the child process will see only a set of processes that are in the
same pid namespace where it resides (or event that of the pid namespaces
children of this).

1 /∗ Create d i r e c t o r y f o r mount po int ∗/
2 mkdir ( mount_point , 0555) ;
3 mount ( " proc " , mount_point , " proc " , 0 , NULL) ;
4 p r i n t f ( " Mounting p r o c f s at %s \n" , mount_point ) ;

Listing 2.32. example of proc mount point

Shared subtrees

Shared subtrees are a Linux Kernel feature that allows to automatically
mount or unmount events between namespaces. This means that, for ex-
ample, mounting an optical disk in a mount namespace can trigger a mount
of that disk in other mount namespace in automatic way. It is useful if for
example is necessary to add a new optical disk in the system.
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2.1.8 IPC namespace
The IPC namespace (CLONE_NEWIPC) [39] is used to isolating System V IPC
objects and POSIX message queues. This namespace is defined in the Linux
Kernel by the ipx_namespace structure. In particular, each IPC namespace
has its own copy of System V IPC identifiers and its own copy of POSIX
message queue filesystem. Each IPC object that is create in a specific IPC
namespace will be only visible by all processes that resides in the same IPC
namespace. If an IPC namespace is destroyed, all IP objects inside it are
automatically removed.
The interfaces that are distinct in each IPC namespace are:

• The System V interface under /proc/sys/kernel

• The System V interface under /proc/sysvipc

• The POSIX message queue interfaces in /proc/sys/fs/mqueue

2.1.9 Time namespace
The time namespace [40] was originally proposed in 2018 but it enters in the
mainline of the Linux kernel in the version 5.6 (early 2020).
This namespace allows the virtualization of two different system clocks that
can not be usually modified:

• CLOCK_MONOTONIC: represents the absolute monotonic elapsed time since
some arbitrary fixed time in the past.

• CLOCK_BOOTTIME: is similar to CLOCK_MONOTONIC but it also includes the
elapsed time since the boot of the system.

It is not possible to create a new time namespace using clone, do to it
is necessary to use unshare() using CLONE_NEWTIME as flag. It will change
the value of /proc/[pid]/ns/time_for_children but the current task time
namespace is not replaced. However, this will have an effect on its child.

2.2 Control groups
Control groups (also called "Cgroups") are a Linux Kernel feature developed
for the first time in 2006 by Google engineers Paul Menage and Rohit Seth
and mainlined in 2007 (cgroups v1 )[41]. A second version (cgroups v2 ) was
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developed by Tejun Heo in 2016.[42]
Cgroups provides a mechanism to isolate ad aggregate sets of tasks (and their
children) into a group characterized by special behaviors.[43] When the flag
CLONE_NEWCGROUP is passed to clone or unshare(), the process is pushed
inside a new croup namespace and its current cgroup directories become the
cgroup root directories of the new namespace.

Cgrops basic concepts

Like processes, Cgroups are organized hierarchically and each child cgroup
inherit some characteristics from his parent. But the two models (cgroups
and processes) are quite different:

• process model: the init process is the common parent of all processes
on a Linux System. Due to this fact, the process model in Linux is a
single hierarchy tree.

• cgroup model: Depending on the version (v1 or v2 ) multiple cgroups
hierarchies can be present in the same system. Each hierarchy can be
attached to one o more subsystem. The main difference between cgroups
v1 and cgroups v2 is that in the second version there is only one single
hierarchy and there is a difference between processes and threads.
Moreover, if a process is moved to a new cgroup, the restrictions are
applied to all its threads.

The basics blocks of the cgroup infrastructure are:

• Resource controller - subsystem: represent a single resource of the
machine, such as memory, devices, cpu, pids number etc...

• Hierarchy: The set of cgroups that are arranged in a tree. Each hi-
erarchy can be attached to one or more resource controller and it is
associated to a specific instance of the cgroup virtual filesystem.

• Cgroup: The node of the hierarchy. Each node is composed by one
task.

• Task: The task of the process that is located inside a specific cgroup.

Cgroup organization

At each cgroup namespace is associated a basepoint directory (/container
in this example) that is pointed by each task that resides inside it. For each
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Figure 2.12. Control group organization

process identifier, a file under /proc/[pid]/cgroup reports the lists of base-
pointers for the associated cgroup namespace of the considered subsystem.
12:devices:/user.slice
11:pids:/container
10:freezer:/
9:cpuset:/
8:blkio:/
7:cpu,cpuacct:/
6:memory:/
5:rdma:/
4:perf_event:/
3:net_cls,net_prio:/
2:hugetlb:/
1:name=systemd:/user.slice/user-1000.slice/session-2.scope
0::/user.slice/user-1000.slice/session-2.scope

In this example, /container is the baseline for the pids subsystem of our task.
The /sys/fs/cgroup/pids/ directory of our system will contains the information
about the considered cgroup. Thanks to the cgroup namespace, the baseline direc-
tory of the new process created by clone or unshare() will be his root directory
"/".
Another interesting file is /proc/cgroups that reports information about cgroup
namespaces and hierarchies in the observed system:
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#subsys_name hierarchy num_cgroups enabled
cpuset 9 1 1
cpu 7 1 1
cpuacct 7 1 1
blkio 8 1 1
memory 6 1 1
devices 12 75 1
freezer 10 2 1
net_cls 3 1 1
perf_event 4 1 1
net_prio 3 1 1
hugetlb 2 1 1
pids 11 81 1
rdma 5 1 1

Relationship between hierarchies are allowed but there are few limitations acts
to reduce the complexity of the problem:

• A single hierarchy can have one o more subsystems attached to it
• A subsystem, that is attached to a hierarchy, cannot be attached to another

hierarchy that is already attached to another subsystem.
• A single task cannot be even in two different cgroups that resides in the same

hierarchy. When it is moved in another cgroup, automatically the system will
remove it from the old hierarchy.

• A forked task inherits the exact same cgroups as its parent task but can be
moved to different cgroups as needed.

Cgroup version 1 and version 2
When cgroup v1 was released, developers starts to take an interest in this new feature
and in the following years the fast and uncoordinated development of controllers lead
inconsistencies in the first implementation of control groups. In particular, in this
version of cgroup, each controller can be mounted by different cgroups where there is
not difference between processes and threads. The membership in each cgroup was
per task. This flexibility is also a major problem of resource management. Cgroup
v2 was designed using an unified hierarchy where a process can be member of one
cgroup. When a process is moved to another cgroup, all its threads are moved to
the same target.
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Chapter 3

Nscage: lightweight
process isolation tool

Nscage [46] is a lightweight process isolation tool, written in C, based on Linux
Containers and related technologies (namespaces, cgroups, Linux capabilities and
seccomp-bpf syscalls filtering). This tool is intended to provide a secure and isolated
execution environment for running a process inside of it, reducing the possible effects
of security breaches on the host system. It can also be used to create a testing
environment for applications under development to reduce the effects of possible
errors on the system.
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3.1 Motivations
Nowadays lightweight virtualization is a weapon used by many. Microservice based
architecture is increasingly used and containers are the backbone of it. There are
several software like Docker, or more in general all those tools regarded as containers
manager, that allow us to easily create and manage containers. The problem is that
the use of this applications actually hide the isolation mechanisms that are used to
create a container, loosing the concept of what really is a Linux Container. The
development of this tool gave us a clear idea on how containers are spawned inside
a container manager and which are the steps that are needed to be performed in
order to enforce isolation at process level. It allowed us to directly work with the
namespace API that the kernel of Linux offers and to face the problems related to
the development of software at low level. Generally speaking, the operations that are
performed in our tool to create a container are the core steps done by the different
container engines that reside below container managers.

3.2 Related works
These are some works, using container technologies such namespaces and cgroups,
that inspired us in the creation of this tool.

• Nsroot
Nsroot [61] has been developed in C by two students of the Arctic University
of Norway, Tromsø. They used namesapces and pivot-root to create an isolate
environment to run third party tools required by the META-pipe metagenomics
data analysis service. A specific biological data analysis usually requires dif-
ferent tools that are arranged in a pipeline. Due to the fact that the pipeline
consists of third party tools that may contains untrusted code not properly
tested, it is important to isolate the individual pipeline tool executions from
each other.

• Nsjail
Nsjail [62] is a light-weight process isolation tool, written in C++, that makes
use of Linux namespaces, cgroup and syscalls filtering to ensure isolation be-
tween different processes. It has been developed by Google to provide a lightweight
solution to containarization of processes.

• Charliecloud
Charliecloud [63] is a tool, written in Python and C and developed at Los
Alamos, that proposes a lightweight approach based on Linux containers for
high performance computing (HPC) centers. It provides user defined software
stacks (UDSS) for HPC systems allowing users to bring their own software
stacks to the system. This includes the possibility of introducing flexible new
features that could increase center’s attack surface. For this reason, to ensure
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performance and security, they choose a lightweight approach based on Linux
Container instead of complete virtual machines to run user code.

• Firejail
Firejail [64] is a program, written in C, that uses Linux namespaces, cgroups,
seccomp-bpf and Linux capabilities to create a sandbox to run untrusted ap-
plication safely. It allow to create an isolated environment for any kind of
processes, including graphical applications.

3.3 Usage
To use nscage it is first of all needed a root filesystem. This can be manually created
or taken from a Docker container by simply extracting a tar archive from it using
the below command.

$ #!/bin/bash
$ docker container export -o rootfs.tar <container_id>

This will be the new root of the isolated process. The CLI of nsroot is simple
and includes few options that are listed beloew:

$ #!/ bin/bash
$ ./ nscage -h

Usage: sudo ./ nscage <options > <entrypoint >

<options > should be:
- a run the new process in a complete new set of

namespace , this does not includes user namespace .
- U create an user namespace for the new process
- c <resources > cgrops used to limit resources .

Where <resources > can be one or more of the following :
- M <memory_limit > [1 -4294967296] default : 1073741824 (1GB)
- C <% _cpu_shares > [1 -100] default : 25
- P <max_pids > [10 -32768] default : 64
- I <io_weight > [10 -1000] default : 10

Listing 3.1. nscage usage

When nscage is executed, a new set of namespace is created thanks to clone 2.1.2
and then the new process is jailed inside the new root filesystem using pivot_root.
What pivot_root does is setting the new root mount for the process to the specified
root_fs while moving the old root into a directory that can be later be unmounted
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and deleted. This solution is to be preferred over chroot because there are several
chroot-jail escapes [65] that cannot be exploited with pivot_root. To summarize,
these are the main steps executed by the nscage main process to setup the new child
environment:

• the parent creates the new cgroup namespace configuration if required (-c
option)

• Clone is called to create a new child process in a new set of namespaces.
• The parent setup the network namespace for the child. This includes the set

up of a veth pair between the parent’s and the child’s namespace.
• If a new user namespace is created, the parent defines the UID and GID map-

ping for the child.
The child process also needs to configure its resources and privileges, following these
steps:

• If a new user namespace is created, the child waits the UID - GID mapping
from the parent and then set its own UID and GID.

• Sets its new hostname
• Prepares the root filesystem for the execution of pivot_root. This includes

mounting all the necessary filesystems and devices.
• Drops a set of capabilities.
• Applies a system call filtering security layer using seccomp.
• Calls execvp to execute the entrypoint command in an isolated environment.
All the steps briefly described here are analyzed deeply in the next sections,

focusing on each namespace.

3.3.1 Namespaces
In this section we will analyze the main steps needed to create the new process and
configuration of namespaces considered most interesting for the case study. Different
setups are needed to allow proper operation in each namespace.

User namespace
The use of a new user namespace is optional (-U option). This allows the creation
of a privileged or unprivileged container. If the -U option is set, clone will guar-
antee that the user namespace will be created first and delegated the owner of the
other non user namespaces. In this way the containerized process gains a full set of
capabilities over the resources that it actually owns (the ones that are created by
clone alongside the user namespace). For example it is able to set a new hostname
because it is a resource in its UTS_NAMESPACE whose it is the owner.
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If a new user namespace is created, the parent need to define a mapping between
the root user inside the container and the UID and GID seen from outside the user
namespace (parent side). In this way we have the conteinerized process having root
privileges inside the container but being unprivileged for operations outside its user
namespace. These are the so called rootless containers, and they are more secure
than being root on the host. We decided to make the user namespace optional
because it also introduces some limitations that can compromise the correct op-
eration of different applications (e.g. the possibility to create a new device with
mknod). Without the user namespace option (-U), the child process is created in
the same user namespace of its parent. In this case the privileged container has UID
0 mapped to the host’s UID 0. This kind of containers are not root-safe and they
must be intended to run only thrusted workloads. They are also called rootfull con-
tainers. The privileges of a rootfull container can be anyway controlled by reducing
its capabilities set and syscalls.

UTS namespace
After the user namespaced has been configured, the child process is free to set its
hostname. This will only affect the hostname as seen by the container process inside
its new uts namespace.

Mount namespace
The mount namespace is mandatory for the new process that is created by clone.
Before executing pivot_root to move the root mount point of the container and
umounting the old root it is needed to prepare the target root filesystem. This
includes the following operations:
1. Remount everything as private. In this way all the following mounts won’t be

propagated outside the current mount namepace. This is also needed to avoid
pivot_root to fail.

2. Ensure that the rootfs of the container is a mount point. This can be done
by bind mounting the rootfs on itself. This is another requirement for the
execution of pivot_root.

3. Mount all the filesystems that are needed for the container inside its rootfs.
These are listed in table 3.2.

4. Depending on the user namespace, if the -U option is not set devices are cre-
ated through mknod otherwise they are bind mounted from the parent. This
operation is done because creating a device is forbidden in a rootless container
even if it has CAP_MKNOD in its capabilities set. This is a known limitation when
creating a container in a new user namespace because devices are a system
resource that is not namespaced.

5. Create all the symbolic links as shown in table 3.1.
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From To
/proc/self/fd /dev/fd
/proc/self/fd/0 /dev/stdin
/proc/self/fd/1 /dev/stdout
/proc/self/fd/2 /dev/stderr
/dev/pts/ptmx /dev/ptmx

Table 3.1. Symbolic links in nscage

It is mandatory to perform the actions listed in point 3 before unmounting the
old root (done after the execution of pivot_root). This is due to the presence of a
check in the Linux kernel, in particular the mount_too_revealing() B.1 function,
that doesn’t allow to mount a filesystem if it is not already present in the list of
mountpoints of the process calling mount. When a new mount namespace is created,
the process inside the new namespace receive a copy of the mount points of its parent.
This list however is cleared when the old root is unmounted, denying the container to
mount any filesystem. So it is nedeed to mount everyhting we need in the container
before performing the unmount of the old root. Afer the rootfs has been configured,
we are ready to jail the child process inside of it executing pivot_root, unmouting
and deleting the old root.

Path Type
/proc proc
/dev tmpfs
/dev/shm tmpfs
/dev/mqueue mqueue
/dev/pts devpts
/sys sysfs

Table 3.2. Mounted filesystems with their respective types [54]

Network namespace

The network namespace set up comes with a default configuration which consists
in the creation of a veth pair 2.1.4 between the newly created network namespace
and the host network namespace. Netlink [48] has been used to communicate and
make requests between the user level process and the underlying Linux kernel. This
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software layer exposes a set of API based on top of socket that can be used by an
application to communicate with the kernel. A more detailed description of the
protocol is reported in RFC3549 [49].
The following operations are performed to configure the network namespace of the
child process allowing it to have internet connectivity:

• Two veth devices are created (a veth-pair).
• An ip address is assigned to the veth device in the parent namespace and it is

set up.
• The veth device of the child is moved in the child network namespace
• An ip adress is assigned to the veth device in the child namespace and it is set

up as well as the loopback interface.
• A default route is added to the routing table of the container
• Packet forwarding in Linux is disabled by default so it is needed to turn it on.
• NAT need to be configured in order to let containers access the outside world.

In this case the NAT will translate the source IP address of the container to
the ip address of the physical interface of the host.

These operations correspond to the bash commands shown in listing 2.27 and have
been embedded in our C code thanks to the iptc.h library.

$ #!/ bin/bash
$ ip link add veth1 type veth peer name vpeer1

$ ip link set vpeer1 netns ns1

$ ip addr add 10.1.1.1/24 dev veth1
$ ip link set veth1 up

$ ip netns exec ns1 ip addr add 10.1.1.2/24 dev vpeer1
$ ip netns exec ns1 ip link set vpeer1 up
$ ip netns exec ns1 ip link set lo up

$ ip netns exec ns1 ip route add default via 10.1.1.1
$ echo 1 > /proc/sys/net/ipv4/ ip_forward

$ iptables -t nat -A POSTROUTING -s 10.1.1.0/255.255.255.0\
-o eth0 -j MASQUERADE

$ iptables -A FORWARD -i eth0 -o veth1 -j ACCEPT
$ iptables -A FORWARD -o eth0 -i veth1 -j ACCEPT

Listing 3.2. Network namespace configuration
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3.3.2 Control groups
In nscage the following subsystems can be controlled thanks to cgroup:

• -M: memory limit
• -C: percentage of cpu shares
• -P: max pids
• -I: io default weight

The parent process, for each resource controller, will create a new cgroup folder that
will become the new cgroup root for the child.

Figure 3.1 shows the data structures relationships that implement the cgroups
system for the child process.

struct cgrp_control **controller

...

struct cgrp_control

char *control

size_t n_settings

struct cgrp_setting **settings

struct cgrp_control

char *control

size_t n_settings

struct cgrp_setting **settings

...

...

struct cgrp_setting

char *name

char *value

struct cgrp_setting

char *name

char *value

struct cgrp_setting

char *name

char *value

Figure 3.1. cgroup strucutres in nscage

As shown in figure 3.1, the controller represents the cgroup configuration to be ap-
plied to the child process. It holds a struct cgrp_control for each resource controller
(e.g. cpu, memory...). Each cgrp_control structure defines the limitations for the
controlled subsystem. Each of these limitations is represented by the cgrp_setting
struct (e.g.memory.limit_in_bytes and memory.kmem.limit_in_bytes). For exam-
ple, if we want to limit the max number of pids for a process to 100, the content of
the cgrp_control structure related to the pid subsystem will be like:

• cgrp_control->control = "/sys/fs/cgroup/pids"

• cgrp_control->n_setting = 1

• cgrp_control->settings[0]->name = "pids.max"

• cgrp_control->settings[0]->value = "100"

Because we are using cgroup v1, a new file called pids.max, having "100" as content,
will be placed under /sys/fs/cgroup/pids/<hostname> (where hostname is the
hostname of the container).
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To finalize the configuration of the child’s cgroup, its pid must be written under
/sys/fs/cgroup/pids/container/tasks.

To do this operation it is possible to write inside
/sys/fs/cgroup/pids/container/tasks the pid tasks of the process that is hosted
inside the new created cgroup. The value "0" can be also written to put the current
process inside the new cgroup, it means "the writing process".
Finally, a new pid cgroup root for the new process is linked to the new’s one so
/proc/self/cgroup will contains pids:/ if it is observed inside the new container.
Is important to notice that in the parent cgroup namespace, the file
/proc/[container_pid]/cgroup is not affected to the cgroup namespace of the
child so it will report a pids entry like pids:/container.

3.3.3 Capabilities
Starting from Kernel 2.2 a security step about root privileged has been done. Ca-
pabilities offer a more accurate granularity instead of having just privileged and
unprivileged processes. Historically, UNIX implementation was characterized by
two main categories of processes:

• privileged: user ID equal to 0, referred to superuser or root
• unprivileged: user ID different from 0

Privileged process can bypass all kernel permission check, instead an unprivileged
process is subject to a full permission checking. Capabilities was released in 1999
(kernel version 2.2) in order to add a more complex root permission management
and avoid the historical binary system of privileged and non-privileged processes.
The final goal of capabilities is to split all the possibles kernel calls into groups of
related functionalities [45] and assign each of them a slice of privileges. Capabilities
are saved into the filesystem (like the bit suid).

Why we need to use capabilities?
Capabilities are used to allow userspace processes to gain a slice of root privileges
when executed. In this way, any attacks conducted through these executables (for
example exploiting a bug) will be limited to the use of a restricted portion of possible
system calls avoiding a possible privilege escalation.

Types of capabilities
There are different sets of capabilities that are own by a thread:

• Permitted
This is the subset that can be assumed by the thread.

• Inheritable
This is the set that is preserved after execve.
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• Effective
Set of capabilities used to the kernel to perform permission checks for the
thread.

• Bounding (since Linux 2.6.25)
This is a mechanism used to limiting the capabilities that are gained after
execve.

• Ambient (since Linux 4.3)
This set of capabilities is preserved after execve. Ambient capabilities are added
to the permitted set and assigned to the effective set when execve is called.

In nscage we decided to implement a capability security layer to reduce the root
level of the process into the container, in the case the user namespace is not used.
Inheritable and ambient capabilities are cleaned to be empty, in this way isn’t pos-
sible for the child process to regain (through a file capability) the capabilities that
are dropped. Then we defined a bounding set where we listed the capabilities to
drop for the child process. An example of the capabilities that decided to drop:

• CAP_SETID whithout user namespacing, allows to modify a setuid executable
without modify the setuid bit. In this case another program can produce a new
executable that can switch setuid to root and execve a root bash and make a
privilege escalation. [55]

• CAP_BLOCK_SUSPEND that prevents the system from suspending.
• CAP_MKNOD without user namespacing allows programs to create new devices

that con correspond to real devices. With this capability a program can create
a new device and associate it to a disk and then mount it. The result is that
the mounted disk can be used inside the new namespace. In nscage all devices
are created before dropping this capability.

• CAP_SYS_ADMIN avoid to use mount, vm86 and other privileged operations.
• CAP_SYS_BOOT allows programs to restart the system (reboot syscall)
• CAP_SYS_TIME programs inside the namespace can not change the system time.

The full list of dropped capabilities is presented in B.1

3.3.4 Seccomp
In nscage a Seccomp security layer is implemented to reduce the set of system calls
that can be used by the containerized process. The main goal is to reduce the possi-
ble attack surface exposed by the kernel by limiting the syscalls that the container is
able to execute. In particular we used the Seccomp-bpf [56] extension, which allows
to install a filter attaching it to every system call. In this way, differently from the
Seccomp strict mode where only four system calls are allowed (read, write, _exit and
sigreturn), it is possible to filter syscalls based on their arguments. When a process
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runs with Seccomp enabled, its mode is stored in the file /proc/self/status under
the field Seccomp. A mode value of 2 indicates that we are operating in seccomp
filter mode. If the process inside the container fork itself its child will inherits par-
ent’s filter or if it makes a call to execve (as done for executing the entrypoint of
the container) the filters are preserved across this call. Just to give an example, we
want do deny the creation of a new user namespace from inside the container. This
is made by adding a Seccomp rule to our filter that checks if between the arguments
passed to clone or unshare the CLONE_NEWUSER is present and in the case deny its
execution. If the contained process was allowed to create a new user namespace,
it would regain, inside that namespace, the capabilities previously dropped. The
seccomp filter’s context has been initialized with the SCMP_ACT_ALLOW flag in order
to implement a black listing policy, so the filter will have no effect on system calls
that does not match our security profile. In the case the process calls a black listed
system call it will receive an EPERM return value.
The Docker default Seccomp profile, which can be found in the Docker’s documen-
tantion [58], provides a reasonable list of system calls that can lead to security issues.
Some of these restrictions anyway have already been enforced by dropping related
capabilities (e.g. a call to mount will fail anyway since it requires the CAP_SYS_ADMIN
which can be dropped from the capabilties set of the process).
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Chapter 4

Performance comparison
of secure container
runtimes
The use of a shared kernel represents one of the biggest risks related to containers’
security. For this reason, most cloud infrastructure managers have opted to use an
approach base on virtual machines to create a secure container execution environ-
ment. The main disadvantage of this approach is that you lose all the advantages
of flexibility and ease of management of containers because several virtual machines
need to be managed and configured manually. For this reason, in recent years, so-
lutions have been developed that maintain the ease of container management and
guarantee a high level of security. Obviously, everything has a cost and the addition
of different levels of indirection to enforce container security introduces an overhead
in terms of resources consumed and execution performance.
In this chapter an analysis is made to quantify this added cost. For this study two
container runtimes were analyzed that implement additional security mechanisms
such as runsc (part of the gVisor project) and kata-runtime (part of the Kata-
containers project). The results obtained with these two new approaches based on
security were compared with those obtained using two traditional container runtimes
such as runc (Docker’s default container runtime) and crun (developed by RedHat).
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4.1 OCI compliant container runtimes
A container runtime is the actual layer of software that takes care of container cre-
ation and lifecycle management. In 2015 docker together with other large container
companies defined the so-called Open Container Initiative - OCI. The OCI currently
includes two specifications: the Runtime Specification (runtime-spec) and the Image
Specification (image-spec). For the purpose of our thesis and the replicability of our
experiments we will only introduce the Runtime Specification. The OCI Runtime-
spec defines a set of interfaces that a runtime must have in order to be compliant
with the standard. The standard defines different operations over containers that
need to be implemented(State, Create, Start, Kill, Delete, Hooks) and also the states
of the container lifecycle(created, running, stopped).

DOCKER

runc

crun

runsc

katacontainer

ContainerCLI interface Docker
daemon

OCI container runtime

Figure 4.1. OCI compliant container runtimes

Additional states or operations can be defined by the runtimes but they must
be different from the ones reported in the runtime specification. For example runc
together with Docker defines additional state such as Paused and Stopped and new
operations to manage the container in these new states like pause and resume.
The biggest advantage of introducing this standard is that using the same container
manager we can change different runtimes simply by changing the appropriate con-
figuration file, without changing the command used to interact with containers.

4.2 Kata Containers
Kata containers [70] is an hybrid container runtime that integrates the strong isola-
tion obtained by a traditional virtualization approach with the efficiency and flexi-
bility of containers. It was born from the merge of two open source projects: Hyper
runV and Intel Clear Containers. It takes advantages from both the projects having
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good performance (Intel Clear Containers) and supporting multiple CPU architec-
ture with different hypervisors (Hyper runV) [71]. The idea of this technique is to
isolate each container instance using a minimal Virtual Machine with a dedicated
kernel. By doing this containers do not share anymore the same kernel, which rep-
resented the main security drawback, because they have their own isolate execution
context enforced by a virtual machine. Figure 4.2 shows how the Kata container
solution ensure isolation by adding a level of indirection using traditional virtual-
ization technologies, in this case hardware assisted virtualization. Thanks to this
additional level of isolation, if malicious code is executed inside a container, it could
no longer use the shared kernel of the host machine to compromise other containers,
because it is confined in its guest kernel. Actually, using traditional virtualization
to ensure the isolation of containers is not a new solution. Most cloud infrastruc-
tures today take advantage of the creation of virtual machines to enforce isolation
at hardware level, providing a secure execution context where to run multiple con-
tainers. Doing so, however, you lose all the advantages that characterize the use of
containers. Kata container’s goal is to bring these two technologies together while
maintaining all the advantages of containers. This approach give us the possibility
to bring the flexibility of the containers ensuring and high level of isolation typically
associated with a Virtual Machine.

LINUX KERNEL

Process A

Namespaces
Cgroups

Filter:
• Seccomp
• MAC
• CAPS

Process B

Namespaces
Cgroups

Filter:
• Seccomp
• MAC
• CAPS

C

CPU Memory Network Storage
LINUX KERNEL

HW VIRTULIZATION HW VIRTULIZATION

Virtual Machine

Process A

Namespaces

Linux kernel A

Virtual Machine

Process B

Namespaces

Linux kernel A

Figure 4.2. Kata Containers isolation (inspired from [66])
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Kata Containers virtualization

Kata Containers uses an hardware-assisted virtualization approach to support the
execution of virtual machines. For this reason a CPU that supports the Intel VT-x
extension is needed. Kata Container can be configured to run with different Hy-
pervisors but for the purpose of our thesis we focused in its implementation with
QEMU/KVM (which is the default for Kata). As reported by Rick Donato in [67],
QEMU is a type 2 hypervisor, sometimes referred as userland Hypervisor since it
runs on top of an host, that is used for hardware emulation and virtualization. This
must not be confused with hardware assisted virtualization (exploited by KVM)
since QEMU is used to emulate different physical devices like CPU, disk, USB etc.
QEMU can be used on its own to virtualize all the resources needed to run a virtual
machine but since this process is performed totally in software it is rather slow. For
this reason it is used in combination with KVM that, by the use of hardware assisted
virtualization, ensures better performance taking the role of an accelerator. KVM
is a Linux kernel moudule that acts as a bare metal hypervisor offering a full vir-
tualization solution for Linux on x86 hardware supporting virtualization extensions
(Intel VT or AMD-V).

Kata-runtime, which is the container runtime of the Kata Containers project,
creates a QEMU/KVM virtual machine for each container that is going to be created.
As shown in listing 4.1, after creating a container through Docker specifying to use
kata-runtime configured with QEMU/KVM, we can see a process running the qemu
executable. This is the process representing the virtual machine that hosts our
container. Moreover it possible to notice that kvm is passed as an accelerator to
qemu.

#!/ bin/bash
$ docker run --rm --runtime =kata -qemu -d ubuntu /bin/bash
$ ps -ef | grep qemu

root 10206 [...] /opt/kata/bin/qemu -system - x86_64 -machine pc ,
accel=kvm

Listing 4.1. Kata containers virtualization

Kata Containers architecture

The Kata Containers project is made of three main packages which are described in
[72] and by Sebastien Boeuf in [73]:

• Kata-runtime
The kata-runtime is the container runtime. It is fully compliant with the OCI
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specification in the creation of a container and the management of its lifecy-
cle. It also implements some other commands that are not part of the OCI
specification but that are actually implemented in runc (the default container
runtime for Docker) and that Docker assumes. Kata-runtime uses a gRPC pro-
tocol to communicate with the agent in order to forward container management
commands. This protocol is also used bring the stdout, stdin and stderr from
the container manager (eg. Docker) to the container and vice-versa. The kata-
runtime is responsible for the creation of the QEMU/KVM virtual machine
and committing the actual creation of the container to the kata-agent process
inside the VM.

• Kata-shim
After a container is created, it should be possible to interact with him for
monitoring or I/O purpose and this is possibile by referring to it by its PID.
The problem with Kata container is that the container its actually spawned
inside a Virtual Machine and we can’t access it on the host by its PID. For this
reason the Kata-shim has been introduced to mimic the container behaviour on
the host side. Thanks to the kata-shim container managers can interact with
the container inside the VM as they would do with a normail container.

• Kata-proxy
The Kata-proxy is a component that is created for each Virtual Machine and
it is used to handle multiplexing and demultiplexing of container management
commands and I/O streams.

Figure 4.3 graphically shows all the components previously described. Particular
attention should be given to the process called kata-agent inside the VM. This pro-
cess acts as a supervisor for containers and their processes. Its role is similar to the
role that runc has inside docker, in fact it uses libcontainer for the creation of con-
tainers and the management of their lifecycle (sharing most of the code with runc).
It’s execution context is called a sandbox and it is defined by a set of namespaces
(NS, UTS, IPC and PID).

As an example (inspired from [72]) by executing the following command docker
run ubuntu echo "Hello world" the following steps are performed:
1. The hypervisor uses the guest kernel to load a minimal root file system for

the guest O.S. This is also called a mini O/S. The only service running in the
context of the guest O.S is the init process.

2. The init process will start the kata-agent.
3. The kata-agent process is responsible for the creation of the execution context

for the container that will run the echo "Hello world" command. The container
is created in the same way as runc does.

4. The kata-agent will the set the rootfs (ubuntu in this case) for the container
and then execute the echo "Hello world" command inside the container.
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Figure 4.3. Kata Containers components (inspired from [66])

4.3 gVisor
gVisor [74] [75] is an open source application kernel developed by Google that im-
plements a new approach of provisioning a virtualized environment moving system
calls interfaces, that are normally implemented by the host kernel, into an user space
kernel. In particular, it implements more than 200 Linux system calls in a memory
safe sandbox. In fact, to avoid memory issues like memory leaks, this project is
written in GO so that it can take advantage of its memory sandbox. A memory safe
application like gVisor has the following security features:

• strong types
• built-in bounds checks
• no unitialized variables
• no use-after-free
• no stack overflow
• built-in race detector

A component of gVisor is an Open Container Initiative (OCI) compliant runtime
called runsc that makes it easy to work with other container managers like Docker
or Podman. In order to provide a strong isolation layer between containers and the
host Kernel, there are two different approaches:

• Machine-level virtualization: A virtualized hardware is exposed to a guest
kernel via a Hypervisors. For example, using KVM or Xen.
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• Rule-based execution: A fine grained security policy is applied to an appli-
cation container using solutions like Seccomp, SELinux or AppArmor.

gVisor provides a third isolation mechanism. In particular, each application system
call is intercepted and executed by a new independent kernel. In this way it is
possible to provide a flexible resource footprint but the price to pay is the application
compatibility and an higher per-system call overhead. The high level architecture
of gVisor is showed in 4.4

containerd
OCI

runsc

sandbox

Container Sentry

User
Kernel

KVM / Ptrace

Gofer

Host Linux Kernel

Seccomp + ns Seccomp + ns

9P

Figure 4.4. gVisor architecture I (inspired from [68])

4.3.1 Internals
gVisor provides a sandbox where containers can run in isolation, it is composed by
a set of processes:

• Sentry: This component is the kernel that runs the container, it intercepts
and responds to system calls made from the application. A single Sentry
is present in each isolated sandbox. It is the larger component in gVisor.
It is an application kernel that implements functionalities like: system calls,
signal delivery, memory managment, page fault logic, threading model and
more. Each system call is intercepted by a component called "Platform" [79]
and then redirected to the Sentry component. The default platform is ptrace
[81] used with the request PTRACE_SYSEMU as argument but gVisor can be also
configured to use KVM [82]. During this process the system calls do not pass
through the host system kernel, them are redirected to sentry that will execute
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the functionalities. After this phase, as a normal user space application, Sentry
will produce system calls to the host kernel in order to support these operations
but does not allow the application to control them directly. Filesystem access
calls are executed by the Gofer.

• Gofer: This component provides file system access to the containers. Each
Gofer process is started when a new container is created. It communicates
with the Sentry process using the 9P network protocol [80] developed by Bell
Labs. The Gofer mediates each access to the filesystem tree providing and
extra layer of isolation.

Netstack

gVisor implements a dedicated user space network stack that was written from
scratch exclusively for the project. It is called Netstack and it is totally written in
GO, it was designed to be modular, flexible and self-contained. Networking grows
quickly and unfortunately Netstack is actually one of the performance bottleneck of
the entire project. The causes are related to the fact that many performances related
RFCs like RACK [86] and BBR [87] (that is a congestion control algorithm) are not
yet implemented. On the other side, it allows to reduce drastically the amount of
system calls that sentry uses to communicate with the host. In particular it uses only
three system calls to write and read packets. Anyway gVisor offers the possibility to
bypass the own network stack and uses the host’s one. This functionality is called
passthrough and unlock the possibility to use fifteen additionally syscalls from Sentry
to the host kernel. Moreover this allows to create file descriptors that exposes the
Sentry to a file-based attach. Using this feature, gVisor will starts to use the socket
API (that normally is not used) increasing the attach surface.

4.3.2 Costs
In general, regarding performances, gVisor introduces a cost over native containers
that can be divided in two main categories [76]:

• Structural costs: This type of costs are given by the design choice introduced
by gVisor. For example, Sentry require a certain amount of userspace memory
to run correctly.

• Implementation costs: Sentry implements a system calls surface that com-
pare to more mature solutions introduces an impact in term of performance
on the execution of the system calls. An example is the gVisor network stack
(called netstack) that is less CPU efficient than the native one.

The full list of syscalls that are supported by gVisor is reported in the documentation
[83][84][85]. Note that an user space application is compatible with gVisor only if it
uses only syscalls that are implemented in Sentry.
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Figure 4.5. gVisor architecture II (inspired from [69])

4.4 Benchmarking
In this section we will illustrate the setup that we used to execute the tests. For each
system resource that we analyzed we give a brief description of the tests executed
to stress that resource and the related metrics that are of our interest.

4.4.1 Testing environment
The system configuration that we used for all the following tests is composed as
follows:

Component Specifications
CPU Intel Core i5 6600
RAM 2x4GB DDR4 2133Mhz
Storage SSD 32GB
OS Ubuntu Server 18.04.5 LTS
Linux Kernel 4.15.0-123-generic
Docker version 19.03.6, build 369ce74a3c
Podman version 2.1.1
runc 1.0.1-dev
crun 0.15.1.3-7d65
runsc 1.0.1-dev
kata-runtime 1.11.1

Table 4.1. System configuration for the benchmark

83



4 – Performance comparison of secure container runtimes

We decided to install two different container manager:

• Docker

• Podman

And the following container runtimes:

• runc

• crun

• runsc from the gVisor project

• kata-runtime

– kata-qemu (kata-runtime using 9pfs as shared filesystem )

– kata-qemu-virtiofs (kata-runtime using viritofs as shared filesystem)

In the next sections we will use the term sandbox as an alternative to container.
The reason is that with Kata-containers and gVisor, as opposed to runc and crun,
the container execution environment is made of multiple processes that are needed
by the runtime architecture itself.

4.4.2 Boot time
Single container boot time

The purpose of this test is to understand how long does it take to create a container
depending on the container runtime that is used. To run this test we have developed
a bash script that take into consideration four different times:

1. t_0: represents the origin time.

2. t_c: the time the container is created.

3. t_s: the time when the container was last started.

4. t_f : the time when the container last exited.

These times were taken thanks to the docker inspect command, which returns a
JSON array containing different information about the container. From the JSON
we extract the fileds Created, StartedAt and FinishedAt. By taking these times we
were able to compute three interesting measures:

1. t_created = t_c − t_0

2. t_started = t_s − t_c

3. t_execution = t_f − t_s
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These refer to the time needed to create the container, perform its start up and
the time taken by the command (specified in docker run) to be executed inside the
container. The script takes as parameter the container runtime and the number of
iteration the test will be executed. The result is the average calculated on the total
number of iterations. To evaluate the boot time of a container we are not interested
in the execution time of the command so we just execute the /bin/true executable
inside the container, which simply returns true.

Real boot time on a set of containers
The aim of this test is to measure the time taken to create multiple containers, in
particular seventy instances. To measure the startup time of a container we used
/usr/bin/time and the real time was computed as the sum of user and kernel time
spent.

4.4.3 CPU
CPU prime
The cpu performance has been tested with sysbench using the command shown
below.

1 $ #!/ bin /bash
2 $ sysbench −−t e s t=cpu −−cpu−max−prime=200000 run

Listing 4.2. CPU performance benchmark

This benchmark consist in a CPU intensive workload to compute all the prime
numbers in the range specified by the –cpu-max-prime field.
The metric we are interested in is the number of events per second consumed by the
CPU.

4.4.4 Memory
The tests that compose the memory test suite are listed in table 4.2, which gives a
short overview about the metrics we are interested in.

Memory footprint
The aim of this test is to compute the memory footprint for a single instance of a
sandbox. Here for memory footprint it is intended the amount of memory required
by the entire sandbox to run a container (in the case of runc and crun its just
the container itself). Each container is created from an Ubuntu image and the
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Test Purpose
Memory footprint Compute the memory used by single instance of a

Sandbox.
Memory access Compute the operations per second performed in

raw memory accesses.
Memory alloca-
tion

Compute the time needed to allocate 1GB of mem-
ory with different chunk’s sizes.

Memory usage Compute the overall system memory utilization of
N sandbox instances running in parallel.

Table 4.2. Memory test suite

entrypoint is /bin/bash. Containers are started in detach mode (-d option) and to
prevent them from exiting we have kept their standard input open via the -i option.
The memory usage for each container is taken from its cgroup associated with the
memory controller. Despite this information is accessible from the cgroup fs under
/sys/fs/cgroup/memory/docker/<container-id>/memory.usage_in_bytes it is
better not to refer to this value as suggested in [92].
Instead we can obtain the memory used by the sum of rss, cache, and swap fields from
the /sys/fs/cgroup/memory/docker/<container-id>/memory.stat file. The test
was repeated multiple times (N=20) and we take the average value of memory used
for a single container instance.

Cgroups in Katacontainer

Since the Kata-containers architecture implies many different componenets (Vir-
tual Machine, kata-shim, kata-proxy) for the management of a container, plus
an additional process (virtiofsd) in case of kata-qemu-virtiofs, to have a correct
measure of how much this ecosystem actually costs, it is necessary to put the
overall sandbox created inside a single cgroup. This is possible by setting the
sandbox_cgroup_only=true [103] flag inside the kata-runtime configuration file un-
der /opt/kata/share/defaults/kata-containers/configuration-<runtime-na
me>.toml.

Memory usage

This benchmark is based on a sequence of 50 containers that are executed in parallel
and in detach mode using docker as container manager. The image that is used for
the test is alpine and the entrypoint is the default one: /bin/sh.
The purpose of this test is to compute how the memory utilization of the system
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changes by increasing the number of container instances being run.

Memory access
To test the raw memory accesses we used sysbench. The command is reported below:

$ #!/ bin/bash
$ sysbench --test= memory --memory -block -size =4k \

--memory -total -size =100G --num - threads =1 run

Listing 4.3. Raw memory accesses benchmark

This test will allocate a buffer of size –memory-block-size and then performs a read
or write operation until reaching the total size specified by the –memory-total-size.
The default operations performed are sequential writes but this can be changed
through the –memory-oper and –memory-access-mode options.
Note that for this test, since there are no differences in the memory management
system of kata-qemu and kata-qemu-virtiofs the results will only show one kata-
runtime configuration. The metrics we are interested in is the number of operation
performed per second.

Memory allocation
To stress the memory management system we developed a little program in C that
allocate a buffer multiple times using malloc, until reaching 1GB of allocated memory
and without freeing it. The test was performed multiple times changing the size of
the allocated buffer. As for the memory access test the results will only show one
configuration of kata-runtime. The metrics that were collected are the number of
allocations per second and the total time needed to allocate of 1GB of memory.

4.4.5 Networking
Net I/O
The networking performance has been tested using iperf3 in different configura-
tions. In particular, the download and upload throughput has been measured as
follows:

• to measure the download speed an iperf3 server has been placed in a con-
tainer using the four different runtimes. The iperf3 client has been always
placed in a container using runc which uses the host kernel network stack.

• to measure the upload speed, a iperf3 server was placed in a container using
runc while the client was executed in another container using the four different
runtimes.
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Using the -J flag of iperf3 it is possible to retrieve the test result in JSON format
and then analyze it. The observed metric is the throughput in Gbit per second.

Round Trip Time
In this test we measured the average Round Trip Time elapsed between the host
and a container booted with different runtimes. The result is the RTT average on
100 ICMP echo requests between two containers started by the same runtime.

4.4.6 System calls execution time
This test was developed to compute the overhead introduced by each sandbox int
the execution of different system calls. In particular we launched one million system
calls (getpid() [88], getcwd() [89] and fopen() [90]) under different scenarios and
we measured the average elapsed time of execution.
We decided to use those system calls because each of them is executed differently
in gVisor. There are three main ways in which a system call can be managed by
Sentry:

• Execute the system call directly in Sentry (getcwd).
• Execute the System call by making a call to the host kernel (getpid).
• Execute the system call trough Gofer (fopen).

The metric observed is the average execution time of each system call. Note that for
this test each file has been placed in a shared volume with the host because talking
with the gVisor community we found that there is a difference when opening a file.
That’s because the root filesystem is for exclusive use of the container and can be
cached more aggressively. While files in container mounts can be changed externally
and require revalidation on every access.

4.4.7 I/O
Testing the I/O by performing reading and writing operations over files has been
one of the most complex benchmark, because there are a lot of different factors to be
taken into consideration (which are strictly dependant on the architecture adopted
by each runtime). To perform this test we used FIO [101] using this command:

$ #!/ bin/bash
$ fio --filename =<filename > --direct =0 --buffered =1 \

--name= seq_write --fallocate =none --ioengine =sync \
--bs=<block -size > --invalidate =1 --thread =0 --numjobs =1 \
--group_reporting =1 --size =1G --filesize =1G --rw=<mode >

Listing 4.4. File I/O benchmark
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As the command shows, we tested buffered I/O (–buffered=1 –direct=0), this
means that every read and write operation is performed thanks to the page cache or
buffer cache (unified starting from Linux kernel version 2.4). This choice is motivated
by two main reasons:
1. Talking with different developers of the Kata-containers project we find out that

direct IO has none effect in host cache for shared filesystem (the container’s
rootfs is shared between the host and the guest thanks to 9pfs or virtio-fs
filesystem). This means that, when testing direct IO with kata-runtime, having
a virtual machine implies two level of page caches (guest and host page cache).
Using the –direct=1 option in FIO the host page cache is still used, resulting
in kata-runtime performing better that runc and crun (this has no sense), which
correctly bypass the only page cache available to them. This actually depends
on the disk cache mode the qemu VM is started with, in the case of Kata-
containers is Writeback [98]. With this cache mode, when a guest container
open a file with the O_DIRECT option, write operations are reported to it as
completed when the host page cache is written [96].

2. As reported here [102], the open system call actually does not support opening
files with the option O_DIRECT, leading to the impossibility of testing direct IO
with runsc.

For these reason the only way we had to make equal comparison was to use buffered
I/O. This also preclude testing asynchronous I/O (–ioengine=libaio) since, as
reported here [97], using AIO on file opened without O_DIRECT lead to non asyn-
chronous behaviour. Instead, synchronous I/O has been tested (–ioegine=sync) to
run fio tests with buffered I/O enabled (–buffered=1).
Another problem we had was that for reading operations, kata-qemu and kata-qemu-
virtiofs performed better than runc or crun (also this has no sense). The problem
is probably related to the fact that FIO, before running a reading test, has to lay-
out the file. Then to avoid reading it directly from the cache, FIO provides the
option –invalidate=1 to invalidate caches before reading. As said before, this had
no effect on the host cache for shared-fs in Kata-qemu resulting in better reading
performance than runc and crun. The same thing applies for Sentry in runsc since
it implements its own memory management. One solution we found was to avoid
laying out the file before reading it and instead use an already existing file.
With regards to kata-runtime, the test were performed with the configurations shown
in table 4.3.

By setting the cache mode to none the guest page cache is disabled resulting in
any data changes being pushed to the host immediately. Actually, virtio-fs supports
different caching mode (other than none) that can be set using the configuration
file of kata-qemu-virtiofs. But this is not possible using 9pfs, as reported here [98],
which by default uses none.
By bypassing the guest page cache we can make an equal comparison with runc and
crun, since both solutions (runc/crun and kata-qemu) will see their IO operations
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runtime cache mode DAX
kata-qemu (9pfs) none not used
kata-qemu-virtiofs none disabled

Table 4.3. Kata-runtime configuration

as completed when they hit the host page cache. This also applies in the case of
gVisor, since as reported here [99] and here [100] (under Files section), read and
write operations (performed by the selected sync ioengine) for files whose host file
descriptors is available, does not use the Sentry page cache.

4.4.8 Real application benchmarking
Machine learning model training

This test consist in a CPU-bound workload. It performs the training of a Convo-
lutional Neural Network (CNN) made of two convolutional layers and three fully
connected layer. To build and train the CNN we used the pytorch deep learning
library (in its CPU version, which allows to train a model only by means of CPU).
The CFAR10 database has been used. The CNN is quite small, due to the simplicity
of the dataset we used but can unsure a good stress workload for the CPU. The aim
of this test is to compute the time needed to train the neural network.

Redis

Redis is an open source in-memory key-value store database written in C. It is
actually the most used key-value store database in the world and it is maintained
by Redis Labs. It supports complex data structures (such as hashes, lists, sets and
more), on-disk persistence, high scalability jobs and typically it is configured as
cache to support near real-time performance applications.
This software is also equipped with an integrated benchmarking tool that allows to
test the operation of the server under different conditions. In particular, we decided
to test the performance using a single container running redis. The final score is
measured in request per second (ops/s) handled by the server. We configured the
benchmarking tool to spawn fifty clients that each ran sixteen operations in parallel
until each operation is executed one million times. These operations are executed in
parallel like in a real scenario and each client does not wait for the server’s response
before sending a subsequent request. Each test is executed twenty times for each
runtime.
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Apache Spark

Apache Spark is an open source distributed general purpose computing framework
used for big data processing. It can be used in different configurations and its is
possible to use it with different APIs and programming languages. To test the
performance of this application we executed a word count problem [94] on a file of
5GB. The experiment was deployed in two different configurations:

• single worker configuration using the official Jupyter image present in the
Docker Hub [95].

• a standalone cluster configuration with two workers.

The API that was used for the test is PySpark. The metrics that we analyzed
are: the CPU usage (inside and outside the container) and the execution time to
complete the Job. For each runtime the test has been executed five times.

Tea Store

Teastore [77] is a distributed micro-services based application, developed by the
Descartes Research Group at the University of Würzburg, that can be used for
benchmarking and testing purpose. It emulates the behaviour of a web shop and its
architecture is made of five different services, each with a specific performance char-
acteristic: WebUI, Authentication, Recommender, Persistence Provider and Image
Provider. Additionally to these five services, a registry service is used to manage the
communication and the instances of all other ones. Moreover a database is required,
in this case MariaDB is used. The easiest way to deploy the TeaStore application
(and also the one that perfectly fits our thesis’s purpose) is to use Docker. The
services can be deployed in a single container or it is also possible to use a container
instance for each service (being closer to the architecture of an application based on
microservices). The second configuration has been adopted since it is suggested for
benchmarking and testing. To test the application we used Apache JMeter [78] with
the default stress script provided by the developer of Teastore. The script include
the execution of 8 different operations (e.g. login, list products, add product to cart
etc.) and we configure it with a loop_count of 1000 and 5 concurrent clients. This
means that a total of 40000 (1000*8*5) operations will be executed in parallel by 5
different clients. The metrics we are interested in are: the time to manage all the
40000 request, the average number of requests consumed per second and the error
rate.

91



4 – Performance comparison of secure container runtimes

4.5 Results

4.5.1 Boot time
Single container boot time

Figure 4.6 shows the result obtained by the computation of the boot time of a
single container instance per container runtime. It is evident that, with respect to
traditional solutions (runc e crun), the hypervisor based approach proposed by Kata-
containers is the most expensive in terms of time. This overhead is mostly due to
the fact that the creation of a container via kata-runtime requires a virtual machine
to be created and moreover the startup of kata-shim and kata-proxy processes. It
is also noticeable that there are no significant differences between kata-qemu and
kata-qemu-virtiofs. On the other hand runsc (gVisor) introduce a little overhead
being 12,7% slower than runc. Its booting process requires the startup of the Sentry
(which represents the sandbox itself) and the Gofer process, but anyway it is less
heavy than starting up a Virtual Machine. As we expected, crun performs better
that any other solution having been developed in C to achieve better performance.

0 0,2 0,4 0,6 0,8 1 1,2

runc

crun

kata-qemu-9pfs

kata-qemu-virtiofs

runsc

Single container instace boot time - s (lower is better)

creation startup execution

Figure 4.6. boot time

Multiple containers real boot time

Image 4.7 shows a sequence of seventy container instances executed in parallel. Is
interesting to note that the deploy time increases considerably when the hypervisor
based solutions reach the memory limit of the system. In this case it starts to use
the swap file and the performance of the system is adversely affected.
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Figure 4.7. boot time on 70 container instances

In this test, the difference regarding the real boot time between runc and crun
is minimal. With regards to gVisor the overhead introduced is limited and only
becomes significant when the number of container instances grow. Regarding Kata-
containers, the impact on the real boot time is considerable compared to others.
Classic container-based solutions are therefore more scalable than the hypervisor-
based runtimes.
Anyway the boot time is also influenced by the container manager that is used
to start the container. In the figure 4.8 is possible to see that starting seventy
containers in a row using Podman as container manager, the real time elapsed is
different changing the container manager. In particular, in this case we used Podman
to compare its result with the result of docker. The difference to the 70th container
is of 11.36 seconds. In order to measure the boot time of each runtime, we would
have to start the container using only the runtime but we wanted to put ourselves in
a real scenario starting the procedure from a container manager. The difference in
the result obtained between the use of Docker or Podman is given by the fact that
Podman is a deamonless application, instead Docker must first communicate with
dockerd.
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Figure 4.8. real time using two different container manager on the same runtime

4.5.2 Memory
Memory footprint

Figure 4.9 shows the memory footprint for each container runtime. As previously
noted runc and crun are the less expensive as they require only the container process
itself to run, with a memory requirement of about 50KB. The biggest discrepancy
can be seen using runsc and kata-runtime (in both its configurations). This overhead,
with respect to traditional runtimes, is mainly due to the fact that the execution
of a container created through runsc or kata-runtime (9p or virtiofs) requires the
presence of additional processes to ensure the security features on which they are
based and to support the runtime’s architecture. Runsc needs to allocate memory
for the Sentry and the Gofer for each container that is created, having a memory
footprint of about ~8MB. Kata-runtime introduces the biggest overhead in terms of
memory since it requires a virtual machine (a QEMU process), a kata-shim and a
kata-proxy process for the execution of a container.

One interesting thing to note is how kata-qemu-virtiofs has a greater impact on
memory (~105MB) than kata-qemu (~92MB).This results is justified by the pres-
ence of an additional process called virtiofsd, which represents the virtio-fs daemon
running on the host side.

Memory usage

Figure 4.10 shows how the different memory requirement of each runtime have signifi-
cant impacts in a scalability scenario. In particular the memory overhead introduced
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Figure 4.9. Memory footprint of a single container instance

by runc and crun is limited allowing an higher density of containers instances on a
single machine. Additional processes used to create the gVisor sandbox (Sentry and
Gofer) has a limited memory overhead making runsc a good solution when an high
number of container instances are required. In fact after 50 containers only 5,61% of
the total memory of the system is used. Kata-runtime is instead hungry for memory
and this affects the maximum number of container instances that can be executed
simultaneously. Kata-qemu-virtiofs and kata-qemu have a memory requirement that
is respectively 2155x and 1897x times greater than the average of runc and crun.

In particular kata-qemu-virtiofs has a bigger impact on memory than kata-qemu,
requiring after 50 containers are created, 6.3GB of memory against the 5.1GB taken
by kata-qemu. This can also be seen in figure 4.7 where after the creation of just
~45 containers, kata-qemu-virtiofs starts using the swap file, affecting the startup
time and the overall performance of the system.

Memory access

The graphs reported in figures 4.11 4.12 4.13 4.14 show the result obtained by testing
raw memory accesses with sysbench. As expected crun and runc have not signif-
icant differences. Gvisor has the highest overhead in both readings and writings.
For what concerns sequential writes gVisor tends to perform about 11% less ops/s
than runc. This overhead decreases to 7% increasing the block size up to 128KB.
With regards to random writes, the overhead increases considerably. In fact gVisor
performs about 62% less ops/s than runc. As noted also for sequential writes, gVisor
performance improves with a larger block size, reducing the overhead to 47,4%. The
same behavior is reflected in reading operations.
The overhead introduced by gVisor in accessing memory is mainly due to the fact
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Figure 4.10. memory benchmarking test over 50 containers using
different runtimes

that it implements its own memory management system (demand-paging) in Sentry,
resulting in two level of mappings for each memory page, one from the guest appli-
cation to the user space kernel (Sentry) and another from the user space kernel to
the host. On the other hand, the use of a VM, as in Kata-containers, has a reduced
overhead in memory accesses. As with gVisor, the higher penalty is achieved with
smaller chunk sizes. In particular, with Kata-containers are made 3% less sequential
writings per second than runc but this difference goes to 0 increasing the size of the
buffer. Moreover there is no significant overhead at all in random writings. In con-
clusion, with Kata-runtime it is not introduced any significant overhead. This can be
justified by the use of hardware memory virtualization technology in QEMU/KVM
that removes the needs of a two level page mapping. In particular QEMU/KVM
use Intel extended page table(EPT) thanks to which it is possible to map directly
guest physical addresses to host physical without the need of traversing the host
page table. So, once the mappings are defined, there is no additional overhead in
accessing memory.

Memory allocation

Figure 4.15 and 4.16 show the results obtained by running the memory allocation
test. Similarly to what obtained with the memory access test, gVisor introduce the
biggest overhead. Kata-qemu instead performs as fast as runc and crun introducing
a very little overhead with respect to them, of about 12% for block sizes less or equal
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Figure 4.12. Memory random write
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Figure 4.13. Memory sequential read
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16KB.

4.5.3 Networking
Net I/O

Figure 4.17 shows the execution of a network test based on the iperf3 tool. As
it is possible to see, there is no difference in performance between classic solutions
such as runc and crun. Regarding gVisor, as reported in 4.3.1, its implementation
worsens networking performance.
A network stack totally in userspace has in fact a big impact on the performance but
it guarantees an additional layer of isolation. The loopback interface is too defined
in userspace and all networking aspects are managed by Sentry. The download and
upload throughput reached by runsc (using netstack) is of 13.19Gbit/s and 13.74

97



4 – Performance comparison of secure container runtimes

0

100

200

300

400

500

600

700

800

900

4KB 16KB 64KB 128KB

Ti
m

e 
(m

s)

Size of allocated block (KB)

Memory allocation - ms (lower is better)

runc crun runsc kata

Figure 4.15. Allocation time

0

100

200

300

400

500

600

700

800

900

1000

4KB 16KB 64KB 128KB

Nu
m

be
r 

of
 a

llo
ca

tio
n

Th
ou

sa
nd

s

Size of allocated block(KB)

Allocations per second (without free)

runc crun runsc kata

Figure 4.16. Allocations per second

Figure 4.17. network iperf3-based benchmarking

Gbis/s respectively, which is only the 0,22x of the one obtained with runc. For
high-intensive network applications, it is possible to cut off this feature and enable
the network passthrough functionality that allows to use the host network stack but
degrading the security of the environment.
Regarding hipervisor-based solutions like kata-quemu and kata-quemu-virtiofs they
reach approximately the 50% of the throughput obtained by runc and crun that
take advantage of the host network stack. This penalty is caused by the overhead
introduced by the presence of the virtual machine.
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Round Trip Time

As it is possible to see in the graph reported in figure 4.18, hybrid solutions introduces
a significant overhead compared to classic container solutions. Differently from what
obtained in the iperf3 test, runsc introduces a smaller overhead compared to kata-
qemu and kata-qemu-virtiofs. In particular, the latency introduced is of: 0,3206ms
for runsc, 0,3336ms for kata-qemu and 0,3517ms for kata-qemu-virtiofs compared
to runc and crun.

Figure 4.18. Round Trip Time

4.5.4 System calls execution time
Figure 4.19 4.20 and 4.21 show the result obtained by the system call execution
test on three different system calls. For what concerns getpid and getcwd, runsc
introduces the biggest overhead due to the system call interception exploited by the
ptrace platform. This represents the most significant structural cost, moreover the
implementation of syscalls entirely in user space is slower than the more mature
native ones. How it is possible to see in 4.19 and 4.20, both the system calls are
executed with similar behaviors. In particular runsc performs 25,4x and 22,25x times
slower than runc for the execution of getpid and getcwd respectively. Instead, in the
case of fopen 4.21, runsc is 5,51x times slower than classic solutions.

With regards to Kata-containers, it does not introduce any significant overhead
in the execution of getpid and getcwd. On the other hand, for the executuon of
fopen kata-qemu-virtiofs and kata-qemu result being 2,54x and 17,35x times slower
than runc and crun. This is due to the fact that they use different methods to access
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the shared filesystem (9pfs using the 9p network protocol or virtio-fs using FUSE
requests).

Figure 4.19. getpid execution time Figure 4.20. getcwd execution time

Figure 4.21. fopen [90] execution time

4.5.5 CPU
CPU prime
The result for the sysbench CPU benchmark are shown in figure 4.22. In this case
we can see that both kata-qemu (in both its configurations) and runsc do not impose
any significant overhead, in terms of events per second managed by the cpu, with
respect to runc and crun.
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Figure 4.22. CPU - prime numbers computation

4.5.6 I/O
Figure 4.23 shows the result obtained by each runtime when performing sequential
writes. As first impression it can be seen that there is a significant overhead intro-
duced by secure runtimes in file I/O operations. With regards to runsc, it is evident
that it tents to performs better with increasing block size. This can be justified by
the implementation of the memory management system of Sentry (since we are using
buffered I/O) that instead of having page based file, it uses a range based memory
allocation approach. So issuing bigger requests results in fewer memory lookups.
Instead the biggest cost is paid with smaller request, in this case runsc reaches a
throughput of about 47MB/s whereas runc and crun score an average of 831MB/s.
Starting from a block size of 32KB runsc outperfoms over kata-runtime, reaching a
throughput of 745MB/s.
With regards to kata-runtime, for smaller block sizes it performs better than runsc
introducing a smaller overhead. An interesting thing to note is that kata-qemu-
virtiofs seems to suffer for block size of 4KB and 32KB, performing worse than
kata-qemu. Talking with the Kata-containers community, it results that in some
cases kata-qemu has better performance than kata-qemu-virtiofs, but this is still
under investigation. Conversely, as expected, kata-qemu-virtiofs outperforms over
kata-qemu in any other case. In any case, there is a singnificant overhead introduced
by the use of an hypervisor based solutions. In particular kata-qemu reaches an av-
erage throughput of 200MB/s, which represents in the best case 1/4 of what runc
achieves. On the other hand, kata-qemu-virtiofs got its best score with 16KB block
size, reaching a throughput of 406MB/s, being however far from the result obtained
by traditional runtimes.

Regarding sequential readings, figure 4.24 shows the result obtained by the FIO
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test. These results are quite different from the ones obtained when performing
writing operations since the overhead introduced by the more secure solutions (kata-
runtime and runsc) is minimal. We think that in this case we are limited by the
hardware that we had at our disposal. The most relevant thing that can be noticed
is the overhead introduced by runsc when performing reading operation with block
size less or equal 16KB.
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4.5.7 Real application benchmarking
Machine learning model training

Figure 4.25 shows the result obtained by training a machine learning model. The
most evident thing is that runsc imposes the most significant overhead being 1,5x
slower compared to runc. Actually this does not depends on a CPU overhead, as
when demonstrated by the result obtained with the sysbench benchmark. By profil-
ing the execution of the python script we realize that this overhead is mostly due to
the use of operations over sockets, so NET I/O operations. Instead, both kata-qemu
and kata-qemu-virtiofs imposes a minimum penalty compared to runc, requiring
1.07x more time than runc. This is because the hardware assisted virtualization
exploited by KVM allows to have performances almost equal to the native ones for
this kind of workload.
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Figure 4.25. CPU - machine learning model training

To run this test, the default Seccomp security profile has been disabled via the
–security-opt seccomp=unconfined option of the docker run command. Since the
first runs of this test, with seccomp enabled, we have had too marked differences in
terms of time, especially between runc and crun. This made us have doubts because,
on the execution of the container, runc and crun should have the same results since
they do not require any addiotional software layer (as for kata-runtime or runsc).
By doing an analysis of the python code executed by the model training script, we
found that the default Seccomp profile of runc slows down the work of the Python
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interpreter to execute the associated byte code, leading to to the wrong results.
This is actually an open issue in runc and it is due to missing support for a seccomp
flag called SECCOMP_FILTER_FLAG_SPEC_ALLOW, which is instead implemented in the
default seccomp configuration of crun [91].

Redis

As described in the Redis test section, we decided to test the performances of this
in-memory key-value store database. Figure 4.26 shows the score obtained by each
runtime. Classic container solutions like crun and runc have a throughput of 1894060
requests per second when using a single container instance to host the database. This
result is no different from running a Redis server directly on the host operating sys-
tem. There is a clear difference when using secure runtimes. GVisor is significantly
slower than other solutions, in particular it reaches a maximum throughput speed
of about 145182 operations per second, which represents only the 7,66% of the one
obtained with runc and crun. This result is probably obtained by the implemen-
tation of the network stack entirely in user space, as previously noted. Regarding
hypervisor-based solutions, the throughput achieved is about 912087 ops/s both for
kata-qemu and kata-qemu-virtiofs, which represents the 48% of the score obtained
by runc and crun.

Figure 4.26. Redis benchmark throughput measured in requests per second

In the end, we can say that this test is definitely dependent on the performance
of the network stack that the various solutions have.
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Apache Spark

The default seccomp security profile was disabled as reported in the CPU M.L. test
to avoid the performance impact on it given by the seccomp layer.
As it is possible to notice in the chart 4.27, runc and crun have similar performance,
finishing the word count problem [94] job in 650 seconds. Instead, regarding the
hybrid solutions, gVisor completes the work in 940 seconds, being 1,44x times slower
than the average of runc and crun. The result obtained by hypervisor-based solutions
is slightly different: kata-qemu using 9p ends the job in 760 second (1,15x slower
than runc and crun), instead the kata-qemu-virtiofs version is able to finish the work
in 729 seconds (1,11x of runc and crun).

Figure 4.27. Spark word count problem execution time (lower is better)

Apache Spark single node system CPU usage

During the test we traced the cpu usage of the whole system and the cpu usage that
is seen by the container. In particular we used the dockerd API to collect data for
the container. To observe the cpu usage of the system, we looked at /proc/stat.
In this case the job is executed by one core of our system. So the total amount of
system CPU usage is about 25%. The chart 4.28 shows how the same spark job
influences the system cpu usage when it runs in different containers. In the chart
4.29 is reported the CPU usage for each container from the point of view of the
containers themselves. Each container consumes 100% of the CPU during the Job.
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Figure 4.28. Spark word count problem
system cpu usage

Figure 4.29. Spark word count problem
container cpu usage

Apache Spark single node system memory usage

The image 4.30 shows the memory usage of each container during the execution of
the word count problem using the single node configuration of Spark. The value
of the memory usage is taken directly from the cgroup of the running container.
The figure shows a progressive increase in memory usage for all technologies. The
overhead introduced by the secure solutions is given by the cost of the processes to
manage the sandbox.

Figure 4.30. Spark word count problem container memory usage
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Apache Spark standalone cluster analysis
Another test that we done in our experiments is based on the same word count
problem [94] of the test reported in 4.5.7 but on a Apache Spark standalone cluster.
In this case we deployed a cluster with two workers using PySpark as API. Each
worker has 3GB of memory and one single core of the CPU. The input file is the
same that was used for the previous experiment. A JupyterLab interface was used
to interact with the cluster. The architecture of the Apache Spark cluster used is
exposed in 4.31.

Simulated Hadoop Distributed FIlesystem

Spark Cluster

JupyterLab

Spark Worker I Spark Worker II

Spark
Master

10.5.0.5:808010.5.0.4:8080

10.5.0.7:808010.5.0.6:8080

subnet: 10.5.0.0/16

Figure 4.31. Apache Spark cluster architecture

As shown in figure 4.32, the execution time of the job has been drastically reduced.
Crun and runc takes about 206 seconds to complete the Job, runsc 627s (3,05x
slower) and regarding Kata-containers: 354s (1,73x slower) for 9p and 334 (1,61x
slower) for the virtiofs version. Compared to the test with only one node we notice
the presence of outliers in the graph, these depends on the instantaneous load on
the machine during the execution process.

Tea Store
In the figure 4.33 are shown the results obtained by measuring the deploy time for
each kind of services. Here for deploy time it is intended the total time required from
the creation of the container to the availability of the service. As we can see the
result reflects what we obtained during the boot time test. Kata-qemu introduces
the the biggest overhead requiring a total of 149,2 s to deploy the entire application
(2,1x slower than runc). This time overhead is mitigated by the use of kata-qemu-
virtiofs which takes 110,3 s to start up all the services (1,55x than runc). GVisor
imposes a minor overhead with respect to kata-qemu taking in total 136,7 s (almost
twice as much as run c, 1,92x slower). An important thing to notice is the time
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Figure 4.32. Apache Spark cluster word count problem execution time

taken by runsc(gVisor) to deploy the persistence service. We have in fact analyzed
the resources consumed during the start up of this service and we find out that it
is highly NET I/O bound workload, as shown in figure 4.34. As noted by testing
networking in gVisor, starting the persistence service takes more time than others.

0 20 40 60 80 100 120 140 160

kata-emu-virtiofs

kata-qemu

gvisor

runc

crun

Deploy time - s

WebUI Auth Persistence Recommender Image

Figure 4.33. TeaStore services de-
ploy time
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Figure 4.34. NET I/O during ser-
vices deploy

Figure 4.35 shows the impact on system memory for the deployment of the TeaS-
tore application. It is clear than kata-runtime has the highest memory requirement
whereas runsc results being less expensive. But in general there is a significant
overhead, in terms of memory, introduced by secure runtimes .

Figure 4.36 illustrates the result obtained by running the JMeter stress test.
Here it is clearly noticeable how the use of additional software layers to improve the
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security of containers ( as in gVisor and Kata-containers ) have a negative effect on
the performance. GVisor is the slowest, handling all the 40000 requests performed
by JMeter in 342 seconds having, reaching the management of 116 ops/s. Kata-
qemu e Kata-qemu-virtiofs obtain similar results, serving all the requests in 295 and
291 seconds respectively and reaching an average throughput of 136.55 ops/s. As
expected runc and crun outperforms with respects to gVisor and Kata-containers,
managing all the request in about 159 s and consuming an average of 252.3 ops/s.
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Figure 4.36. JMeter stress test
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It also important to notice that with runsc we obtain an error rate of 0.01%, with
5 failed requests over a total of 40000. Instead kata-qemu and kata-qemu-virtiofs
both got an error rate of 0.03% failing to serve 13 and 11 request respectively.
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4.6 Overall results
Tables 4.4 - 4.5 shows the results obtained in each test by the different container
runtimes. To better understand the overhead introduced by the use of secure run-
times, tables 4.6 - 4.7 illustrates for each test the cost of adopting these solutions
with respect to the average result obtained by runc and crun. Note that for memory
allocation and memory acess tests the results for kata-qemu-virtiofs are not reported
since there are no differences in the memory management system between the two
kata-runtime configurations.
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Test avg runc/crun Kata-9p Kata-virtiofs runsc
Boot time 0,57333 s 1,8x 1,8x 1,2x
CPU prime 53,915 ops/s 1x 1x 1x
Network upload 59,325 Gbit/s 0,49x 0,47x 0,22x
Network downl. 59,239 Gbit/s 0,48x 0,47x 0,22x
RTT 0,0733 ms 5,54x 5,78x 5,78x
Syscalls getpid 0,4278285 µs 0,85x 0,85x 25,40x
Syscalls getcwd 0,5251605 µs 0,81x 0,80x 22,25x
Syscalls fopen 47,18 µs 17,35x 2,54x 5,51x
I/O 4K write 831,63 MB/s 0,25x 0,20x 0,06x
I/O 16K write 936,75 MB/s 0,21x 0,43x 0,17
I/O 32K write 808,623 MB/s 0,25x 0,21x 0,52
I/O 64K write 884 MB/s 0,23x 0,30x 0,77
I/O 512K write 964,25 MB/s 0,20x 0,33x 0,77
I/O 4K read 220,5 MB/s 1x 0,98x 0,24
I/O 16K read 220,5 MB/s 0,99x 1x 0,92
I/O 32K read 222 MB/s 1x 0,94x 1x
I/O 64K read 220,5 MB/s 1x 1x 1,00x
I/O 512K read 220,5 MB/s 0,98x 1x 0,97x
ML 452,95 1,07x 1,07x 1,50x
Redis 1873062 ops/s 0,48x 0,49x 0,08x
Spark single 654,3015 s 1,15x 1,11x 1,44x
Spark cluster 205,098 s 1,73x 1,61x 3,05x
TeaStore deploy 71,065 s 2,1x 1,55x 1,92x
TeaStore Jmeter 159 s 1,85x 1,83x 2,15x

Table 4.6. Performance penalties of secure container runtimes
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Test avg runc/crun Kata-9p Kata-virtiofs runsc
Memory footprint 49,9705 KB 1897,08x 2155,57x 162,08x
Memory alloc 4K 308 ms 1,08x - 2,75x
Memory alloc 16K 87,5 ms 1,06x - 5,55x
Memory alloc 64K 32 ms 0,84x - 13,44x
Memory alloc 128K 25,5 ms 0,71x - 13,14x
Memory 4K seq write 3321173 ops/s 1x - 0,86x
Memory 16K seq write 1111236,5 ops/s 1x - 0,89x
Memory 32K seq write 579977,5 ops/s 1x - 0,90x
Memory 64K seq write 301432 ops/s 1x - 0,90x
Memory 128K seq write 151763 ops/s 1x - 0,91x
Memory 4K rnd write 648974,5 ops/s 1,03x - 0,37x
Memory 16K rnd write 170500 ops/s 1,05x - 0,36x
Memory 32K rnd write 86985 ops/s 1,04x - 0,36x
Memory 64K rnd write 40426 ops/s 1,01x - 0,39x
Memory 128K rnd write 15040 ops/s 1,02x - 0,52x
Memory 4K seq read 5942826 ops/s 0,96x - 0,80x
Memory 16K seq read 2677888,5 ops/s 0,98x - 0,78x
Memory 32K seq read 1115646,5 ops/s 0,99x - 0,86x
Memory 64K seq read 439571,5 ops/s 1x - 0,87x
Memory 128K seq read 225404,5 ops/s 1x - 0,87x
Memory 4K rnd read 741531 ops/s 0,97x - 0,89x
Memory 16K rnd read 198195,5 ops/s 0,97x - 0,91x
Memory 32K rnd read 98025,5 ops/s 0,99x - 0,93x
Memory 64K rnd read 48283 ops/s 1x - 0,94x
Memory 128K rnd read 24139,5 ops/s 1,01x - 0,95x

Table 4.7. Performance penalties of secure container runtimes
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Chapter 5

Conlusions
The purpose of this thesis was to study the implementation of OS-level virtualiza-
tion through the Linux kernel and how, from recent developments, it has integrated
different aspects of traditional virtualization based on Virtual Machine to enforce
the security of software containers. In the first chapter of our thesis the concept
of virtualization and the different techniques that allow its implementation are in-
troduced. This served us to explain the concept of virtualization at the operating
system level and how it relates with traditional virtualization approaches. Starting
from chapter 2 our work is mainly divided in two parts. In the first part (chapter
2 and 3) we analyzed the mechanisms offered by the Linux kernel that ensure the
isolation of a process, resulting in the creation of a container. This was consolidated
by the development of a lightweight process isolation tool, that leveraging names-
paces and cgroups and enforcing security through Linux capabilities and Seccomp,
allows the creation of an isolated environment for the execution of a process.
This helped us to understand which steps are necessary for the creation of a con-
tainer, in order to have a clear idea of the role of a container runtime within the
architecture of a container manager like Docker.
The second part of our work (chapter 4) is focused on the most recently developed
OCI-compliant container runtimes that has integrated different mechanisms of tra-
ditional virtualization to provide additional layers of security for the execution of a
container. In particular we characterized and quantified the overhead introduced by
these new secure container runtimes with respect to traditional solutions. To do this,
several tests and benchmarks were performed to analyze the consumption of system
resources depending on the type of sandbox used. Our work takes into consideration
four different container runtimes than can be divided in two main groups:

• Traditional runtimes
• Secure runtimes

As traditional runtimes we have chosen runc and crun, being the most popular and
used in the containers world. With regards to secure container runtimes, runsc from
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the gVisor project and kata-runtime from Kata-containers were the best candidates
being completely integrated with Docker and given their growth in recent years
through constant development and improvements. The tests that we did take into
consideration different system resources (memory, CPU, I/O, networking) and some
real application use cases. Our results show that no significant CPU overhead is
introduced when using secure runtimes. This has a positive feedback for all those
applications characterized by intensive CPU-bound workload such as machine learn-
ing or data processing.
The biggest cost can be found in the memory requirement for a single container
instance (what we called the memory footprint). In this case the entire container
sandbox used by Kata-containers introduced the biggest overhead whereas using
runsc from gVisor the cost is considerably reduced. This has significant conse-
quences in all those scalability scenarios where a high number of container instances
are required. Conversely, the penalty introduced in raw memory accesses is rela-
tively high for runsc while kata-runtime introduced a little overhead. Regarding file
I/O, both runsc and kata-runtime have a significant overhead being far from the
performance obtained by traditional solution. This affects considerably all those
applications that need to maintain a state (e.g databases) performing an high num-
ber of reading and writing operations trough the use of persistent storage. These
costs are also relevant in applications such as web server, which are strictly bound
to filesystem and networking operations. In fact a relevant overhead is also intro-
duced when perfoming NET I/O operations. In this case kata-runtime outperforms
runsc, but they are both far from runc and crun. Furthermore runsc introduces an
additional cost in the management of system calls. The configuration of runsc we
have chosen, using ptrace as a platform, has the highest overhead compared to other
runtimes.

In conclusion, our results show that the adoption of secure container runtimes
has a significant cost with respect to traditional solutions. They definitely ensure
better security (this is outside the scope of our thesis) by introducing additional
layer of indirection, but all of this comes at a cost.
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Appendix A

How process IDs are
allocated
As wirtten in PID Namespace 2.1.3, in Linux , a process may have more than one
pid associated with it.
A pid structure is allocated by alloc_pid presented in /kernel/pid.c. In the
code reported below A.1 - A.2 it is possible notice that the alloc_pid is composed
by two main functions:

• kmem_cache_alloc is used to keeps a cache of pre-allocated structures. Since
the allocation of a pid structure is performed frequently, a cache is used
instead of allocating a pid struct from the main memory using kmalloc. In
this way is possible to use a preallocated memory optimizing allocation time.

• idr_alloc and idr_alloc_cyclic are used to retrive the id value and save
it in upid.nr. This value will be stored in one of the upid structures presents in
pid->numbers related to the corresponding pid namespace. The set_tid_size
value, that represents the size of the set_tid array, is used to tells to alloc_pid
which PID to set for a process.
idr_alloc and idr_alloc_cyclic allocates an unused ID in the range speci-
fied by the third parameter and fourth parameter.

After that the pid is stored inside the correct upid structure pid->numbers.
Starting from the pid namespace where the process resides, a pid is assigned going
up the namespaces hierarchy through to the root PID namespace.
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A – How process IDs are allocated

1 s t r u c t pid ∗ a l l oc_pid ( s t r u c t pid_namespace ∗ns , pid_t ∗ set_tid ,
2 s i z e_t se t_t id_s i z e )
3 {
4 s t r u c t pid ∗ pid ;
5 i n t i , nr ;
6 s t r u c t pid_namespace ∗tmp ;
7 s t r u c t upid ∗ upid ;
8

9 [ . . . ]
10 pid = kmem_cache_alloc ( ns−>pid_cachep , GFP_KERNEL) ;
11 [ . . . ]
12 tmp = ns ;
13 pid−>l e v e l = ns−>l e v e l ;
14

15 f o r ( i = ns−>l e v e l ; i >= 0 ; i −−) {
16 i n t t i d = 0 ;
17 i f ( s e t_t id_s i z e ) { /∗ g e t t i n g the deepest t i d ∗/
18 t i d = set_t id [ ns−>l e v e l − i ] ;
19 [ . . . ]
20 set_t id_s ize −−;
21 }
22 [ . . . ]
23 i f ( t i d ) {
24 /∗ used to a l l o c a t e an id that i s the pid value ∗/
25 nr = i d r _ a l l o c (&tmp−>idr , NULL, t id ,
26 t i d + 1 , GFP_ATOMIC) ;
27 [ . . . ]
28 } e l s e {
29 i n t pid_min = 1 ;
30 /∗ used to a l l o c a t e c i c l i c a l l y an id , 1 in t h i s case ∗/
31 nr = i d r _ a l l o c _ c y c l i c (&tmp−>idr , NULL, pid_min ,
32 pid_max , GFP_ATOMIC) ;
33 }
34 [ . . . ]
35 pid−>numbers [ i ] . nr = nr ;
36 pid−>numbers [ i ] . ns = tmp ;
37 tmp = tmp−>parent ;
38 }
39 [ . . . ]
40 }

Listing A.1. pid allocation in alloc_pid - /kernel/pid.c
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1 s t r u c t pid ∗ a l l oc_pid ( s t r u c t pid_namespace ∗ns , pid_t ∗ set_tid ,
2 s i z e_t se t_t id_s i z e )
3 {
4 [ . . . ]
5 r e f count_set (&pid−>count , 1) ;
6 [ . . . ]
7 upid = pid−>numbers + ns−>l e v e l ;
8 [ . . . ]
9 f o r ( ; upid >= pid−>numbers ; −−upid ) {

10 /∗ Make the PID v i s i b l e to find_pid_ns . ∗/
11 i d r_rep lace (&upid−>ns−>idr , pid , upid−>nr ) ;
12 upid−>ns−>pid_a l located++;
13 }
14 [ . . . ]
15 re turn pid ;
16 }

Listing A.2. used to give visibility to the pid in alloc_pid - /kernel/pid.c

Before returning the pid structure, the final step is to make the pid visible to
find_pid_ns. find_pid_ns is a function that can be used to finds the pid in the
namespace specified using the corresponding struct upid.
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Appendix B

Nscage

B.1 mount_too_revealing source code

1 s t a t i c bool mount_too_revealing ( const s t r u c t super_block ∗sb ,
i n t ∗new_mnt_flags )

2 {
3 const unsigned long r e q u i r e d _ i f l a g s = SB_I_NOEXEC|SB_I_NODEV;
4 s t r u c t mnt_namespace ∗ns = current−>nsproxy−>mnt_ns ;
5 unsigned long s _ i f l a g s ;
6

7 i f ( ns−>user_ns == &init_user_ns )
8 re turn f a l s e ;
9

10 /∗ Can t h i s f i l e s y s t e m be too r e v e a l i n g ? ∗/
11 s _ i f l a g s = sb−>s _ i f l a g s ;
12 i f ( ! ( s _ i f l a g s & SB_I_USERNS_VISIBLE) )
13 re turn f a l s e ;
14

15 i f ( ( s _ i f l a g s & r e q u i r e d _ i f l a g s ) != r e q u i r e d _ i f l a g s ) {
16 WARN_ONCE(1 , " Expected s _ i f l a g s to conta in 0x%lx \n" ,
17 r e q u i r e d _ i f l a g s ) ;
18 re turn true ;
19 }
20

21 re turn ! mnt_already_vis ible ( ns , sb , new_mnt_flags ) ;
22 }

Listing B.1. mount_too_revealing() - /fs/namespace.c
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B – Nscage

B.2 List of dropped capabilities

Capability
CAP_NET_BROADCAST
CAP_SYS_MODULE
CAP_SYS_RAWIO
CAP_SYS_PACCT
CAP_SYS_ADMIN
CAP_SYS_NICE
CAP_SYS_RESOURCE
CAP_SYS_TIME
CAP_SYS_TTY_CONFIG
CAP_AUDIT_CONTROL
CAP_MAC_OVERRIDE
CAP_MAC_ADMIN
CAP_NET_ADMIN
CAP_SYSLOG
CAP_DAC_READ_SEARCH
CAP_LINUX_IMMUTABLE
CAP_IPC_LOCK
CAP_IPC_OWNER
CAP_SYS_PTRACE
CAP_SYS_BOOT
CAP_LEASE
CAP_WAKE_ALARM
CAP_BLOCK_SUSPEND
CAP_MKNOD
CAP_AUDIT_READ
CAP_AUDIT_WRITE
CAP_FSETID
CAP_SETFCAP

Table B.1. List of dropped capabilities in nscage
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