
Politecnico di Torino
Academic Year 2018/2019

Master Thesis
Master in Computer Engineering (Networks)

Green Light Optimal
Speed Advisory for
Connected Vehicles

Supervisor:
Prof. Gianpiero Cabodi
Supervisor Magneti Marelli:
Ing. Fabio Tosetto

Candidate:
Giuseppe Sturniolo

S232561

Turin, April 2019

Green light optimal speed advisory for connected
vehicles

Giuseppe Sturniolo

Supervised by:

Prof. Gianpiero Cabodi
Politecnico di Torino
Ing. Fabio Tosetto

Magneti Marelli

Abstract
The main purpose of this thesis is to develop an embedded software with the aim
to suggest to the driver, when it is possible, the optimal speed in order to overcome
a traffic light during the green phase.
This software, called G.L.O.S.A. (an acronym for Green Light Optimal Speed Ad-
visory), is part of the Magneti Marelli Connectivity Framework , and represents one
of the use cases developed by the team to improve driving comfort and safety.
The G.L.O.S.A. algorithm takes information provided by traffic lights, other ve-
hicles and the road infrastructure (according to the IEEE WAVE standard for the
V2I and V2V communication) and gives an appropriate advice to the driver .

III

Dedication

I would like to express my gratitude to my family, in particular to my mother, my
brother and my father.
They always supported me in my choices and gave me the possibility to achieve this
goal.

1

Contents

1 Introduction 11
1.1 Vehicle-to-Everything Communication 11
1.2 Business organisation . 12
1.3 Goals of the thesis . 13

2 Background 15
2.1 Inter-Vehicular Communication Applications 15
2.2 The SAEJ2735 . 16

2.2.1 The MAP Message . 16
2.2.2 The Signal Phase and Timing message (SPAT) 17
2.2.3 The Traveler Information Message (TIM) 17
2.2.4 The Basic Safety Message (BSM) 18

2.3 The Magneti Marelli Connectivity Framework 18
2.3.1 The Middleware layer . 19
2.3.2 The Facilities layer . 20
2.3.3 The Applications layer . 21

3 Implemented Background 23
3.1 Software Instruments . 23

3.1.1 The C++ language . 23
3.1.2 Makefile/cmake . 23
3.1.3 Cross-Compiling . 24
3.1.4 Apache Subversion (SVN) . 24
3.1.5 Matlab . 25
3.1.6 Simulink . 25
3.1.7 Enterprise Architect . 25
3.1.8 SUMO (Simulation of Urban Mobility) 26

3.2 The MM Connectivity hardware . 27
3.2.1 The Magneti Marelli Step 03 board 27
3.2.2 MK5-Cohda Wireless OBU . 28
3.2.3 Road Side Unit . 30

2

CONTENTS

4 State of art 32
4.1 GLOSA existing versions . 32

4.1.1 Single segment GLOSA . 32
4.1.2 Multi segments GLOSA . 34

5 Software : Use Case GLOSA 38
5.1 GLOSA overview . 38
5.2 Use Case GLOSA one vehicle version 40

5.2.1 Algorithm . 41
5.2.2 Simulation on Simulink . 57
5.2.3 C++ implementation . 62

5.3 Use Case GLOSA more vehicles version 66
5.3.1 Algorithm . 67
5.3.2 Simulation on Simulink . 70
5.3.3 C++ implementation . 74

6 Testing and Validation 78
6.1 Testing e Validation . 78

6.1.1 Bench tests . 78
6.1.2 On road tests . 84

7 Results 90
7.1 Results . 90

8 Future improvements 92
8.1 Future improvements . 92

3

List of Figures

1.1 V2X communication . 12

2.1 Comparison between IEEEWAVE (left) and ETSI ITS station (right)
stacks . 16

2.2 Map Data Structure according SAEJ2735 17
2.3 Spat Data Structure according SAEJ2735 18
2.4 Bsm Data Structure according SAEJ2735 19
2.5 Framework V2X Magneti Marelli . 20
2.6 Middleware layer . 20
2.7 Facilities layer . 20
2.8 Applications layer . 22

3.1 A Subversion example schema. 25
3.2 The step 03 board . 27
3.3 MK5-Cohda Wireless OBU . 29
3.4 RSU example . 30
3.5 RSU schema . 31

4.1 Glosa algorithm of the University of Surrey Guildford 33
4.2 Distance Model to control updating of suggested speed for human

drivers . 34
4.3 Decision tree to determine the message generated to advice the human

driver on his speed decision based on the traffic light status 35
4.4 fuel consumption model for a single intersection 35
4.5 total fuel consumption model for N intersections 36
4.6 B&B algorithm representation . 36

5.1 Logical Model of one vehicle version 40
5.2 Flowchart of first step of GLOSA . 43
5.3 Flowchart of the general case of green phase 44
5.4 Flowchart of the first case of green phase 45
5.5 Flowchart of the second case of green phase 46
5.6 Flowchart of the third case of green phase 47

5

LIST OF FIGURES

5.7 Flowchart of yellow phase . 48
5.8 Flowchart of red phase . 49
5.9 Flowchart of the first case during red phase 50
5.10 Flowchart of the second case during red phase 51
5.11 Flowchart of the third case during red phase 52
5.12 Flowchart of the fourth case during red phase 53
5.13 Flowchart of the fifth case during red phase 54
5.14 Flowchart of the sixth case during red phase 55
5.15 Representation of the 4 possible strips for hysteresis 56
5.16 Simulink model overview . 57
5.17 Focus on input simulator block . 58
5.18 Focus on GLOSA block . 59
5.19 Focus on UcManager simulator block 59
5.20 Focus on driver response simulator block 60
5.21 Focus on UDP_SOCKET_SEND_and_RECEIVE block 61
5.22 Focus on main plot block . 61
5.23 Focus on settings block . 62
5.24 Glosa class and its main parts . 63
5.25 BPMN of the two threads of one vehicle version of GLOSA 64
5.26 Vehicles distance . 66
5.27 Logical model of UC-GLOSA more vehicles version 69
5.28 Simulink model of UC-GLOSA more vehicles version 70
5.29 OTHER_VEHICLE_DYNAMIC Simulink block 71
5.30 FCW_BLOCK Simulink block . 71
5.31 SETTINGS_BLOCK Simulink block 72
5.32 EGO_VEHICLE_SUBSYSTEM Simulink block 73
5.33 OTHER_FCW_PLOT Simulink block 73
5.34 GLOSA class more vehicles version 74
5.35 BPMN more vehicles version . 76

6.1 Example of output on a Simulink scope 79
6.2 Legend of a Simulink scope . 79
6.3 Example of a test case using only Simulink 80
6.4 Schema of the bench tests using both Simulink and C++ 81
6.5 TEST case 2 Simulink and C++ . 82
6.6 C++ output on Simulink example . 83
6.7 Simulink output example . 83
6.8 Map configuration for tests . 84
6.9 Map areas in Viale Venaria . 85
6.10 Hardware schema for on road test . 88
6.11 UC-GLOSA log example . 89

6

LIST OF FIGURES

7.1 Glosa output on tablet in case of green window 91
7.2 Glosa output on tablet in case of critical stop 91

7

List of Tables

5.1 Table of GLOSA input . 41
5.2 Table of GLOSA output . 41
5.3 Table of GLOSA input (more vehicles) 67
5.4 Table of GLOSA output (more vehicles) 67

8

List of Acronyms

V2X Vehicle-To-Everything

V2V Vehicle-To-Vehicle

V2I Vehicle-To-Infrastructure

V2N Vehicle-To-Network

V2D Vehicle-To-Device

V2P Vehicle-To-Pedestrians

V2G Vehicle-To-Grid

LTE-V2X Long-Term Evolution Vehicle-to-Everything

C-V2X Cellular Vehicle-To-Everything

DSRC Dedicated short-range communications

IVC Inter-Vehicular Communication

RSU Road Side Unit

OBU On-Board Unit

C-ITS CooperativeIntelligent Transport Systems

ETSI European Telecommunications Standards Institute

FCC Federal Communi-cations Commission

WAVE Wireless Access in Vehicular Envi-ronments

CAN Controller Area Network

API Application Programming Interface

TCP Transmission Control Protocol

9

LIST OF TABLES

UDP User Datagram Protocol

GPS Global Positioning System

LDM Local Dynamic Map

POTI Positioning Timing

VDP Vehicle Data Provider

SPAT Signal Phase and Time

HMI Human Machine Interface

BSM Basic Safety Message

TIM Traveler Information Message

WSA WAVE Service Advertisement

CAM Cooperative Aware Message

DENM Decentralized Enviromental Notification Message

SV Stationary Vehicle

FCW Forward Collision Warning

EEBL Electronic Emergency Brake Ligh

GLOSA Green Light Optimised Speed Advise

IMA Intersection Movement Assist

CLW Control Loss Warning

LTA Left Turn Assist

BSW Blind Spot Warning

IVRS In-Vehicle Road Sign

10

Chapter 1

Introduction

1.1 Vehicle-to-Everything Communication

In the scenario of modern technological innovation, vehicular networks assume an
increasingly important significance as regards the development of transport. In fact,
nowadays, mobility plays a central role in the social system and is continuously grow-
ing worldwide.
However,travel could cause problems related to traffic efficiency, safety and pollu-
tion.
According to the World Health Organization (WHO), the World Health Organi-
zation, road accidents each year cause around 1.2 million deaths and around 50
million injured worldwide. If preventive measures are not taken, road death is des-
tined to become the third leading cause of death in 2020 from ninth place in 1990 [1].

At the same time, this sector is responsible for about 33% of final energy consump-
tion, and therefore represents an increasingly central element in European policies
to fight climate change and reduce pollution in urban areas. European statistics
referring to 28 member countries show that as much as 30.4% of greenhouse gases
and 30.5% of carbon dioxide emissions, as well as a considerable part of urban air
and noise pollution, are attributable to transport. These values for Italy increase to
around 34%[2].
Vehicular Networks could represent a solution to fix these issues thanks to the cre-
ation of smart vehicles that are able to communicate with other vehicles and also
with the infrastructure.All this features are possible through the exchange of mes-
sage between all the actors involved in a travelling environment, in order to discover
what is happening around a vehicle.
The vehicular communication involves the exchange of many messages that contain
information on a large number of details concerning the studied scenario.

11

CHAPTER 1. INTRODUCTION

Figure 1.1: V2X communication

Currently, two standards are available to provide communications in support
of transportation efficiency, safety and sustainability: European ETSI and United
States IEEEWAVE. These two standards are similar in some ways, but very different
from the point of view of the multi-channel management.
The framework developed by the Magneti Marelli Innovation Connectivity team
takes information by all these messages and use them for various use cases, in order
to help the driver in some different situations.

1.2 Business organisation

Magneti Marelli is an italian multinational, founded in 1919 as result of a joint-
venture between FIAT and Ercole Marelli [3]. It is specialized in the supply of high
technology products and systems for the automotive industry.

12

CHAPTER 1. INTRODUCTION

It began as a producer of
magnets for both avia-
tion and automotive and
motorcycle engines, but
it gradually extended
its activities in the field
of embedded systems ,
developing and produc-
ing embedded platforms
for several purposes, in
particular as regards the
automotive world.

In Magneti Marelli there are also several Research & Development divisions
such as the Innovation Connectivity and the Autonomous Driving ones. The
Innovation Connectivity team is working to develop a solution for enabling Vehicle-
to-Everything (V2X) communication.

1.3 Goals of the thesis
One of the use cases developed by the team is the "TRAFFIC LIGHT":
This use case was developed only to show to the driver the current phase of a traffic
light and the respective countdown to the next phase.
The aim of this thesis is to build a software, integrated in the Magneti Marelli Con-
nectivity Framework, that takes information from other connected actors (traffic
lights, other vehicles and infrastructures) in order to suggest a range of speeds that
permit to overcome a traffic light during the green phase, if it is possible.
This software is called G.L.O.S.A., and its building consisted of several steps:
The first one has been to choice an appropriate algorithm that takes into account
as much information as possible in order to make the result more accurate.
Then, there was the implementation of this algorithm in a testing environment, to
check its validity and to correct any errors.
The third step has been the implementation of the C++ version in order to be de-
ployed on the custom ARM-based Magneti Marelli Connectivity Board(nicknamed
Step 03).
This process has been followed by the validation of the C ++ version of the soft-
ware using bench-based inputs. Finally, there are road tests to verify if the result
produces a pleasant driving experience.

13

Chapter 2

Background

2.1 Inter-Vehicular Communication Applications

Inter-Vehicular Communication (IVC [4]) represents an important component of the
ITS (Intelligent Trasportation System) architecture.
Its main feature is to ensure communication between the driver, or his vehicle, with
the other drivers, or their vehicles, which are outside the LOS (line of sight).
The architecture of an IVC can be classified into three large types:

• The first one is the cellular or WLAN network in which the gateways of the
the mobile network or access points of the WLAN to connect to the Inter-
net.However, this typology can not be implemented on a large scale because
it has high costs and there are geographical limitations.

• The second one is the ad-hoc network without infrastructure in which com-
munication V2V is built using DSRC communication, Dedicated Short-Range
Communication [5], and each vehicle is equipped with a wireless network de-
vice.

• The third one is hybrid because it has both the characteristics of a cellular
network WLAN / WLAN that those of an ad-hoc network. Vehicles use the
Infrastructure Unit to access dynamic information exchanged outside its own
range and share information via a V2V communication without infrastructure.

Different kinds of applications for IVC are identified by The Vehicle Safety
Communication (VSC) consortium: The most relevant concerns the Road Safety
and involves the implementation of a lot of use cases: Warning, Forward Colli-
sion,Intersection Violation Warning, Blind Spot Warning, Icy Road Warning, and
Longitudinal Collision Risk Warning. The main purposes is increasing the trans-
portation efficiency and the road safety in order to reduce the impact of transporta-
tion on the environment. To implement all these applications it is mandatory to have

15

CHAPTER 2. BACKGROUND

two categories of messages, called periodic and the event-driven messages exchanged
in the fastest possible way. The periodic messages are sent with a certain frequency,
instead the event-driven ones are messages activated from particular events, like an
emergency event , and it must be transmitted immediately on the channel.
IVC systems are based on two standards : IEEE for the American Standard [6] and
ETSI for the European Standard [7].
These two standards implement the same concept but with different architectures.
In particular,IEEE defines a system architecture for IVC called wireless access in
vehicular environments(WAVE) architecture.

Figure 2.1: Comparison between IEEE WAVE (left) and ETSI ITS station (right)
stacks

This thesis is focused on the application layer, which consist of applications
able to elaborate and use messages exchanged between nodes and described in the
SAEJ2735 (as regards the WAVE architecture). Thanks to the SAEJ2735 is possible
to develop a lot of use cases for the safety of the driver.

2.2 The SAEJ2735
The main purpose of the SAEJ2735 Standard is to support interoperability among
DSRC applications through the use of a standardized message set, and its data
frames and data elements. The most important messages defined in this standard
are the Basic Safety Message (BSM), Signal Phase and Timing (SPAT), Map Data
(MAP) and Traveler Information Message(TIM).

2.2.1 The MAP Message

The MAP message contains information about the topology of an intersection and
it is sent every 5 second. The structure of this message is the following:

16

CHAPTER 2. BACKGROUND

Figure 2.2: Map Data Structure according SAEJ2735

The rectangles of the figure are the different fields of the packet.Some fields must
be always present in the message, others are not mandatory.
A single MAP message can transmit descriptions of one or more intersections or
geographical areas. The content of this message is often used by other modules to
generate new messages.For instance, the SPAT message needs some of the MAP
information to define in which lane a certain semaphore is located.

2.2.2 The Signal Phase and Timing message (SPAT)

The SPAT message is used to transmit information about the current state of one
or more intersections.If combined with a MAP type message, the receiver can de-
termine the signal status and the relative timing.

The SPAT message sends the current status of each active phase of the traffic
light and the countdown to the next phase. Usually, information on inactive phases
is not transmitted. The overall use of the SPAT message is to reflect the current
state of all lanes in all approaches in single intersection. Any preemption or priority
then follows in a structure for the whole intersection.

2.2.3 The Traveler Information Message (TIM)

The Traveler information Message provides information gives information about the
traffic status or road signs. It is mostly used to communicate the street condition.
For example, it is useful to know the current legal speed limit of the road near an
intersection.

17

CHAPTER 2. BACKGROUND

Figure 2.3: Spat Data Structure according SAEJ2735

2.2.4 The Basic Safety Message (BSM)

The Basic Safety Message (figure 2.4) belongs to the American standard and it is
used in a variety of applications to exchange information related to both safety and
vehicle status. It is a message that is sent with an high frequency, up to ten times
per second.
In the following figure is showed its structure:

It is divided into two parts:

• The first part contains data about the vehicle, retrieved from GPS and CAN
network. The most important fields are the Message Sequence Number iden-
tifying a packet sent from a vehicle and the Temporary ID identifying the
Vehicle.

• The second part is composed by four modules that contain additional infor-
mation.

2.3 The Magneti Marelli Connectivity Framework
The Magneti Marelli Connectivity Framework was designed with the aim to unify the
the American standard (WAVE) with the European standard (ETSI) for vehicular

18

CHAPTER 2. BACKGROUND

Figure 2.4: Bsm Data Structure according SAEJ2735

communication. Three software groups can be identified:

• Those that refer only to the European standard, such as DENM and CAM,
decoded according to the standard EN 302 637-2 [8] and EN 302 637-3 [9].

• Those that belong to the American standard (eg BSM, TIM).

• Those that are in common with the two standards (eg LDM, MAP, HMI,
SPAT).

As shown in the figure, it is divided into three large layers: middleware, facilities
and applications.

2.3.1 The Middleware layer

Themiddleware (figure 2.6) is a layer that creates an interface in order to make the
upper layers independent from the driver chosen at the lowest level.This make the
software adaptable to any V2X stack that will be used (Cohda Wireless, Autotalks).

19

CHAPTER 2. BACKGROUND

Figure 2.5: Framework V2X Magneti Marelli

Figure 2.6: Middleware layer

2.3.2 The Facilities layer

The Facilities layer (figure 2.7) contains most of the software modules that com-
pose the Framework.

Figure 2.7: Facilities layer

The most important modules of this layer are:

20

CHAPTER 2. BACKGROUND

• Local Dynamic Map (LDM) is a software module that cooperates with
intelligent transport systems. Its main function is to manage the information
that influences or is influenced by road traffic, in particular the sources that
generate data can be different as vehicles, external infrastructures, on-board
sensors, signals. The LDM module is the hub of the framework, from which
the vast majority of information passes.

• Positioning and Timing (POTI) provides time information and 3D posi-
tion information (latitude, longitude, altitude). POTI processes and merges
data received from sensors, such as GPS and other data from different vehicle
sensors in order to obtain location information on the mobile station. It also
allows to synchronize the timing of the system thanks to time information
taken from the satellites.

• Vehicle Data Provider (VDP)is a module connected to the entire vehicle
network and provides information on the status of the same (speed,longitudinal
acceleration,braking status, active arrows).

• The Human Machine Interface (HMI) is a link between the driver and
all the possible messages that the vehicle can communicate to it.The HMI
can exchange information both in a monodirectional and bidirectional way,
according to the application needs. It can be a dynamic (following a priority)
or static information handler , such as the emergency level of information such
as reporting of collision risk, traffic status information.

• The MAP-BS is the module responsible to process MAP in the MM V2X
Framework.

• The SPAT-BS is the module responsible to process SPAT in the MM V2X
Framework.It also merges some information from MAP messages(taken from
MAP-BS) and from SPAT messages, generating a new message type, the
SPATMAP.This is the message actually used by UC-GLOSA.

• The BS-Basic Service (BS-BS) is the module responsible to process BSM
in the MM V2X Framework.

2.3.3 The Applications layer

The Applications layer (figure 2.8) consists of several applications that represent
the use cases, that are a practical example of all the possible features of the frame-
work.
There are three different types of use cases:

21

CHAPTER 2. BACKGROUND

Figure 2.8: Applications layer

The first one is Safety and concerns road safety. In fact, when an obstacle
is present on the roadway or when an accident has occurred, vehicles may receive
alarm messages from other vehicles, even in automatic mode.

The second is Traffic Efficiency and concerns traffic management. The introduc-
tion of real intelligent traffic lights would reduce the long waits at an intersection.As
a matter of fact, these traffic lights could take information about traffic near the
intersection and so regulate their red-green cycles.The UC-GLOSA is part of this
category of applications.

The third is Infotainment & Business and provides information of different kinds:
tourist (like restaurants, cinemas, museums) or services, such as hospitals, car parks
in the area crossed by the vehicle.

22

Chapter 3

Implemented Background

3.1 Software Instruments

3.1.1 The C++ language

The C++ is an object-oriented programming language. It has been developed as a
C language improvement through the introduction of the object-oriented program-
ming paradigm, operator overloading, virtual functions,template, multiple inheri-
tance and exception handling.
This makes possible to develop software following the most modern design pat-
terns, thanks to many ready and reusable libraries that can be integrated with the
projects.
C++ compilers directly to a machine’s native code, allowing it to be one of the
fastest languages in the world, if optimized. There are C++ compilers for all plat-
forms and operating systems,so it is possible to recompile a software and running
it in different application contexts. This is due to the fact that C ++ is defined as
standard [10].

3.1.2 Makefile/cmake

Makefiles are special format files that together with the make utility help to build
and manage the project.
The utility is mainly used for compiling source code in object code, joining and then
linking the object code in executable programs or in libraries.
Makefiles are useful to determine the dependencies graph for a particular output the
scripts necessary for the compilation to be passed to the shell.

23

CHAPTER 3. IMPLEMENTED BACKGROUND

3.1.3 Cross-Compiling

C++ is a portable language, so it can be compiled for different architecture. A cross
compiler is a compiler capable of creating executable code for a platform other than
the one on which the compiler is running. The fundamental use of a cross compiler
is to separate the build environment from target environment. It is necessary to
compile for multiple platforms from one machine. A platform could be infeasible
for a compiler to run on, such as for the microcontroller of an embedded system
because those systems contain no operating system. GCC, a free software collection
of compilers, can be set up to cross compile. It supports many platforms and
languages, in particular G++ is one of the version of GCC to compile C++. In
this thesis embedded system with ARM processor and Laptop X86 processor has
been used, so Cross-compiling is necessary to execute the same programs on both
platforms [11].

3.1.4 Apache Subversion (SVN)

Apache Subversion (often abbreviated SVN, after its command name svn) is a soft-
ware versioning and revision control system distributed as open source under the
Apache License.
Software developers use Subversion to maintain current and historical versions of
files such as source code, web pages, and documentation. Its goal is to be a mostly
compatible successor to the widely used Concurrent Versions System (CVS).
The open source community has used Subversion widely: for example in projects
such as Apache Software Foundation, Free Pascal, FreeBSD, GCC and SourceForge.
CodePlex used to offer access to Subversion as well as to other types of clients.
The main features of SVN are:

• Folder version: the content of each directory is also tracked and therefore
the movement of a file is considered a modification, therefore traceable and
reversible.

• Atomic commits: a series of changes is applied only in bulk and if even one
of them creates errors, none of the changes sent are applied. This avoids the
creation of incomplete versions that should then be corrected by hand.

• Metadata version: it is possible to assign custom properties and files to
directories and files and to keep the history of changes to these properties.

This tool has been used very a lot on this thesis to work with the Magneti Marelli
Venaria Team, in fact thanks to SVN, sharing the code has been very easy [12].

24

CHAPTER 3. IMPLEMENTED BACKGROUND

Figure 3.1: A Subversion example schema.

3.1.5 Matlab

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environ-
ment and proprietary programming language developed by MathWorks. MATLAB
allows matrix manipulations, plotting of functions and data, implementation of al-
gorithms, creation of user interfaces, and interfacing with programs written in other
languages, including C, C++, C#, Java, Fortran and Python.
Although MATLAB is intended primarily for numerical computing, an optional
toolbox uses the MuPAD symbolic engine, allowing access to symbolic computing
abilities. An additional package, Simulink, adds graphical multi-domain simulation
and model-based design for dynamic and embedded systems [13].

3.1.6 Simulink

Simulink, developed by MathWorks, is a graphical programming environment for
modeling, simulating and analyzing multidomain dynamical systems. Its primary
interface is a graphical block diagramming tool and a customizable set of block
libraries. It offers tight integration with the rest of the MATLAB environment
and can either drive MATLAB or be scripted from it. Simulink is widely used
in automatic control and digital signal processing for multidomain simulation and
Model-Based Design[14].

3.1.7 Enterprise Architect

Sparx Systems Enterprise Architect is a visual modeling and design tool based on
the OMG UML. The platform supports: the design and construction of software
systems, modeling business processes and modeling industry based domains. It is
used by businesses and organizations to not only model the architecture of their
systems, but to process the implementation of these models across the full appli-
cation development life-cycle. Systems modeling using UML provides a basis for
modeling all aspects of organizational architecture, along with the ability to pro-
vide a foundation for designing and implementing new systems or changing existing

25

CHAPTER 3. IMPLEMENTED BACKGROUND

systems. The aspects that can be covered by this type of modeling range from
laying out organizational or systems architectures, business process re-engineering,
business analysis, and service-oriented architectures and web modeling, through to
application and database design and re-engineering, and development of embed-
ded systems. Along with system modeling, Enterprise Architect covers the core
aspects of the application development life-cycle, from requirements management
through to design,construction, testing and maintenance phases, with support for
traceability, project management and change control of these processes, as well
as, facilities for model driven development of application code using an internal
integrated-development platform [15].

3.1.8 SUMO (Simulation of Urban Mobility)

SUMO (Simulation of Urban MObility) is a free, open, microscopic and contin-
uous road traffic simulation suite designed to handle large road networks. It allows
modelling of intermodal traffic systems including road vehicles, public transport and
pedestrians. SUMO includes a wealth of supporting tools, which handle tasks such
as route finding, visualisation, network import and emission calculation. SUMO can
be enhanced with custom models and provides various APIs to remotely control the
simulation.

SUMO offers various features such as:

• Microscopic simulation.

• Online interaction.

• Multimodal simulation incl. vehicles, public transport, pedestrians.

• Automatic generation of time schedules of traffic lights.

• No limitations in network size and number of simulated vehicles.

• Evaluation of eco-aware routing based on pollutant emission and investigations
of autonomous route choice on the overall network.

SUMO supports the import formats OpenStreetMap, VISUM, VISSIM and NavTeq.
SUMO is implemented in C++ and uses only portable libraries. The SUMO package
contains a number of different applications [16].

26

CHAPTER 3. IMPLEMENTED BACKGROUND

3.2 The MM Connectivity hardware

3.2.1 The Magneti Marelli Step 03 board

The Step 03 board (figure 3.2) is a custom board developed in the Magneti Marelli
Electronic Systems division.It was originally developed for vehicle infotainment pur-
poses,but it has been modified for V2X functions.
This board has the following specifications:

Figure 3.2: The step 03 board

• Arm Cortex-A9-based i.MX 6QuadPlus processor

• 1 GB DDR3L RAM

• 512 MB NAND

• 32 GB eMMC

• CAN High Speed & Low Speed

• GPS, Wi-Fi, Bluetooth, 4G modem

• 802.11p transceiver

It is based on the NXP-Freescale Smart Application Blueprint for Rapid Engi-
neering (SABRE) i.MX 6QuadPlus reference design and for a limitation of its
System-on-Chip, the Step 03 supports only two Flexible Controller Area Network
(FlexCAN) buses. FlexCAN modules provide a full implementation of the CAN
protocol specification. In order to communicate with other on-vehicle CAN buses,
the PEAK-System PCAN-USB interface is used.

27

CHAPTER 3. IMPLEMENTED BACKGROUND

3.2.2 MK5-Cohda Wireless OBU

The MK5-OBU(a Cohda Wireless’ 5th generation On-Board Unit (OBU))(figure
3.3) are products ready to be used in large scale field trials, aftermarket deploy-
ments, or serve as a reference design for automotive production and Smart City
deployments.
It incorporates dual IEEE 802.11 radios, a GNSS positioning system providing lane-
level accuracy,a powerful processor running V2X software stacks and applications, ,
and V2X security with hardware acceleration and tamper-proof key storage.
The MK5 chip-set , based upon the automotive-grade RoadLinkTM developed by
NXP/Cohda, has unmatched radio performance in mobile environments, harsh out-
door, particularly in critical safety use-case scenarios.[17]

Some features of this board are the following :

• Embedded processor with optional SDK

• Embedded GNSS with dead reckoning (optional)

• IEEE 802.11p Access Layer

• IEEE 1609 Network Layer software

• ETSI TC-ITS Network Layer software

• V2X Facilities Layer software

• V2X Applications Layer software

• Dual or single antenna operation

• Dual or single radio operation

• Outstanding performance under outdoor, mobile conditions

• Security co-processor with tamper-proof key storage (optional)

• USB 2.0 host and OTG interfaces

• CAN bus interfaces

• Ethernet interface

• Audio output

• MicroSD card slot

28

CHAPTER 3. IMPLEMENTED BACKGROUND

• 12V & 24V operation

• Expansion Card (optional) 2nd CAN, serial, SPI, I2C, HDMI, WiFi, Blue-
tooth, Cellular

• Available in NEMA2 OBU enclosure

Figure 3.3: MK5-Cohda Wireless OBU

As regards the specifications of the MK5 :

• Standard Conformance : IEEE 802.11p - 2010 IEEE 1609 - 2010 IEEE
802.11an -2012 ARIB STD - T109 - 2012 ETSI ES 202 663 SAE J2735 - 2009

• Bandwidth : 10 MHz

• Data Rates : 3 - 27 Mbps

• Operating System: Linux 3.10.17

• Antenna Diversity

• CDD Transmit Diversity - MRC Receive Diversity

• Receiver Sensitivity: -100 dBm @ 3 Mbps

• Environmental Operating Ranges: -40ÂřC to +85ÂřC

• Frequency Band: 5 GHz

29

CHAPTER 3. IMPLEMENTED BACKGROUND

• Max Tx Power: +24 dBm (ETSI Mask C)

• GNSS: 1.5 m Best-In-Class Accuracy

• Mobility & Multipath Tolerance

• Doppler Spread: 800 km/hr Delay Spread: 1500ns

• Dimensions: 130 x 120 x 35 mm

• Power Suppl: 12/24V

3.2.3 Road Side Unit

Road Site Unit (RSU) are infrastructure mounted on one side of the street which
provide information about the street and communicates with vehicles equipped with
an On Board Unit (OBU).

Figure 3.4: RSU example

They are usually situated close to the traffic lights, typically on high supports
in order to have a wider transmission range.
Thanks to Cohda Wireless there is the possibility to run a custom RSU application
on an MK5 board to broadcast SAEJ2735 packets related to one or more intersec-
tions.
The Cohda Wireless board has been inserted in a box created with the external

30

CHAPTER 3. IMPLEMENTED BACKGROUND

ports to plug in the antennas, power and Ethernet.
The below schema represents the internal structure of an RSU:

Figure 3.5: RSU schema

The RSU can be configured in order to generate custom SPAT and MAP mes-
sages by using scripts and configuration files running on it.

31

Chapter 4

State of art

4.1 GLOSA existing versions

The first part of this thesis concerned the search for the existing G.L.O.S.A ver-
sions to evaluate the state of art regarding this type of application.
Below are some of these solution, divided according the considered number of ap-
proaches.

4.1.1 Single segment GLOSA

Here there are two articles regarding some possible implementation of the GLOSA
algorithm as concern a single road segment.

The first one is "Application of Vehicular Communications for Improv-
ing the Efficiency of Traffic in Urban Areas",as result of a research of the
University of Surrey Guildford in 2011. This study uses an integrated simulation
platform.
Here there is a brief description of this algorithm (figure 4.1):
When the on-board unit receives a cooperative awareness message (CAM, from the
European standard), the algorithm checks if it was sent by a traffic light or not.
Taking into account the position information of the message and the vehicle’s own
position and heading, it calculates if this traffic light is relevant (on its route) or
not (line 1). The application can then calculate the distance from the traffic light
and with the current speed and acceleration, the time that it would take to reach
it (time-to-traffic-light TTL) (line 2). Next, it checks the traffic light phase at that
time (TTL) (line 3). If the traffic light is green when the vehicle reaches it, then
the vehicle continues its trip trying to reach the maximum speed limit of the road
Umax(lines 4-6). If it is red, it calculates the speed that it should have to reach it
in the next green phase (lines 7-9). If it is yellow, depending on the remaining yellow
time and the acceleration capabilities of the vehicle, it could advice to accelerate or

32

CHAPTER 4. STATE OF ART

decelerate again within the permitted range (lines 10-13). Finally, the driver gets
an advise with the speed limited within the permitted range [V min, V max] (line
15). This algorithm runs every second, which makes it more robust against external
interference, such as other vehicles, that do not follow the same advisory speed or
are non-equipped [18].

Figure 4.1: Glosa algorithm of the University of Surrey Guildford

The second article is "A Cooperative ITS study on green light optimiza-
tion using an integrated Traffic, Driving, and Communication Simulator".
In the algorithm developed during this study are defined seven types of advisory
message that can be used to instruct the human drivers:

1. Please wait for next green light.

2. Maintain speed at [suggested speed] km per hour to pass next green light.

3. Speed up to [suggested speed] km per hour to pass next green light.

4. Slow down to [suggested speed] km per hour for safe driving.

33

CHAPTER 4. STATE OF ART

5. Maintain speed at [suggested speed] km per hour for safe driving.

6. Speed up to [suggested speed] km per hour for safe driving.

7. Slow down to [suggested speed] km per hour for safe driving.

The suggested speed is not updated each time step, but in three specific points
(figure 4.2):

Figure 4.2: Distance Model to control updating of suggested speed for human drivers

Here is represented the decision tree to choice which is the best advice to give to
the driver (figure 4.3) [19]:

4.1.2 Multi segments GLOSA

The following article regards a scenario composed by contiguous intersections:

Here is showed "B&B Algorithm Based Green Light Optimal Speed Advi-
sory Applying to Contiguous Intersections Biao XU, Fang ZHANG, Jian-
qiang WANG, Keqiang LI ".This research is funded by the Chinese National
Program for High Technology Research and Development , which is also supported
by the joint research project of Tsinghua University and NISSAN Motor.
It starts with the definition of a kinematic model:
According to this model, when approaching an intersection, the vehicle will adjust
its velocity, and then pass the intersection with constant speed.The adjustment pro-
cess the vehicle is running with constant acceleration or deceleration.So the vehicle
adapts its velocity to target velocity Vi and keeps the pace until passing each inter-
section during the green phase.
The second step consists in the study of a fuel consumption model, that shows the

34

CHAPTER 4. STATE OF ART

Figure 4.3: Decision tree to determine the message generated to advice the human
driver on his speed decision based on the traffic light status

Figure 4.4: fuel consumption model for a single intersection

relation among the fuel consumption, velocity and acceleration is built as follows
according to equation (figure 4.4):

Here the coefficients, k0 k6, need to be fitted based on the fuel consumption data
and V is the target speed in a specific intersection.
Given this equation , it is possible to determine the total fuel consumption to pass
N intersections (figure 4.5) :

This objective function (in which ai and vi are the acceleration and the speed in
each road segment) will be minimized.
The issue is that it is difficult to find the analytical solution so the B&B algorithm
is used to obtain the approximate optimal solution.

35

CHAPTER 4. STATE OF ART

Figure 4.5: total fuel consumption model for N intersections

This algorithm is applied in several steps (figure 4.6):

Figure 4.6: B&B algorithm representation

• The first step of the B&B algorithm is to discretize the target velocity in each
segment according to the velocity limit constraints.

• The discretization values of the target velocity in each segment named nodes
constitute a solution space tree with plenty of branches,

• Then the corresponding trip time of each node in the first layer is calculated
using the kinematic constraints. When the trip time fails to reach the green
light constraint at the first intersection, the corresponding branch should be
cut, Otherwise, go to the next step.

• Next, the corresponding trip time of each node in the i-th layer is calculated
using the kinematic constraints. When the trip time fails to reach the green

36

CHAPTER 4. STATE OF ART

light constraint at the ith intersection, the corresponding branch should be cut.
Otherwise, reserve the branch.

• After the feasible solution space is found, the value of the objective function
is computed and the optimal solution is sought out. [20]

.

37

Chapter 5

Software : Use Case GLOSA

5.1 GLOSA overview

UC-GLOSA is one of the use cases developed by the Magneti Marelli Innovation
Connectivity team for the Magneti Marelli Connectivity Framework, which is a so-
lution to enable a Vehicle-to-Everything (V2X) communication.
This use case takes information from other road’s actors (traffic lights, other vehicles
and other infrastructures) with the aim to suggest to the driver an appropriate range
of speeds(when it is possible) to overcome a traffic light during the green phase.
All the advice provided by this software are given paying particular attention to
driver’s safety.

The UC-GLOSA starts to work only when the vehicle enters the area defined by
MAP messages provided by the RSU (Road Site Unit).The map message content
includes such items as complex intersection descriptions, road segment descriptions,
high speed curve outlines (used in curve safety messages), and segments of roadway
(used in some safety and for platoon applications).
These information, combined with those coming from the SPAT messages (current
phase and time to next phase of a traffic light),the VDP mediator, the BSMs and
GPS data (in the second version of the algorithm) , allow to have an appropriate
advice about the range of speeds to overcome the traffic light.

The initial idea (3rd revision) was to find an exact speed value that was the
goal to be reached to pass during the green.
This recommended speed (Vr) was an average speed given by the ratio between
distance from stop and time.

38

CHAPTER 5. SOFTWARE : USE CASE GLOSA

V r =
DistanceFromStop

T imeToChange

According to the current phase, Vr was set to the lower value of the scale
(RED case) or to the upper value (GREEN case), because of the granularity of
the speedometer.
This implementation proved to be ineffective given that the algorithm’s
output was a different speed every second, so the driver did not have a
comprehensible feedback.

The second step was the 4th revision, that introduced some news respect to the
previous one:

• Average speed was calculated once only when the first SPATMAP was received.

• Corrections made only if the current speed exceeds the recommended average
speed (red light) or is lower than it (green light).This correction consisted of
a new recommended speed calculated according to the uniformly accelerated
motion’s laws.

The issue of this second solution was that,in some cases,the output of the al-
gorithm was a negative recommended speed (different from error messages).This
problem was an effect deriving from the physics’ model used in this version.

V r = V 0 + a ∗ t

As a matter of fact, assuming a uniformly accelerated motion, the path will be
a parabola,therefore in some points the arrival speed will be negative because the
derivative of speed (acceleration) in that specific point could be negative too.
So the following step was trying to find a curve that allows to get to the point of
arrival while maintaining positive speed and minimizing energy consumption (In
case of going above or below the recommended speed initially, depending on the
color of the light).
This idea was abandoned because of the difficulty in finding this new function and
in favor of a new and simpler model, closer to the driver’s necessities.In fact, one of
the main issues in these models was that for a driver it’s hard to follow a specific
speed that could change each second:
All these evaluations brought to the definition of a new model, based on a range of
possible speeds, also called "green window".

39

CHAPTER 5. SOFTWARE : USE CASE GLOSA

5.2 Use Case GLOSA one vehicle version

This section introduces the final version of this thesis’ work.At the basis of this last
version there is the idea to give a range of speeds that permit to overcome a traffic
light during the green phase.
This range, sometimes called "green window", is included between a maximum
speed Vmax and a minimum value Vmin.
In all cases, the recommended speed must not overcome the legal speed limit of the
road and must not be lower than an acceptable minimum speed.
When these two limits are not respected by both ends of the range (too higher or
too lower), it is not possible to cross the current approach in a safe way, so some
advice are given to the driver.

Logical Model

Figure 5.1: Logical Model of one vehicle version

This logical model describes in general how the module UC-GLOSA (one vehicle
version) works and which is the data flow according to the framework architecture.
Inputs comes from the "Facilities" sub-layer and output is sent to the UseCase
Manager and then propagated to the HMI if there are no data from Use Cases
with higher priority.
In particular, this UC-GLOSA version takes SPATMAP messages from LDM
Database (coming from an RSU) and data related to the vehicle from the CAN
Network (ex. speed) through the VDP (Vehicle Data Provider).

40

CHAPTER 5. SOFTWARE : USE CASE GLOSA

5.2.1 Algorithm

Here is described, through the use of diagrams and flowcharts, the algorithm at the
basis of the UC-GLOSA:
The following flowcharts have been made using the tool "Enterprise Architect",
which allows to build these models in a simple way.

The tables shown below contain an accurate description of all input and output
of the UC-GLOSA algorithm, paying particular attention to the unit of measure of
each parameter.
As regards the output speeds, although they are expressed in Km/h, their unit is
changed by the UcManager according to the current one of the country in which
they are used.

INPUT

NAME SOURCE UNIT DESCRIPTION
Distance from stop spatmap/Simulink m Distance from traffic light
Time to change spatmap/Simulink s Time left to the next color
TL color spatmap/Simulink / Current traffic light color
Egospeed VDP/Simulink m/s Current vehicle speed
Legal speed Config file or TIM m/s Maxi speed allowed by law
Minspeedlimit Config file or TIM m/s Min reasonable speed

Table 5.1: Table of GLOSA input

OUTPUT

NAME UNIT DESCRIPTION
V_MAX Km/h Upper limit of green window
V_MIN Km/h Lower limit of green window
Popup / Advice to the driver

Table 5.2: Table of GLOSA output

41

CHAPTER 5. SOFTWARE : USE CASE GLOSA

Possible advice to the driver

As regards this first version of UC-GLOSA algoritm, there are four possible types
of popup which can be given to the driver, with the aim to suggest the right be-
haviour to follow:

• popup = 0=> "maintain speed" . The speed of the vehicle is the right
one to reach the green phase when crossing the intersection.

• popup = 1 => "info warning" . The speed of the vehicle is higher than
V_MAX, so a small deceleration is need or , in some cases, it is too lower than
MINSPEEDLIMIT so it is better to stop the vehicle just before the stop.

• popup = 2 => "Critical warning" . The speed is too high respect to
the "green window" or the "green window" is not feasible, so the vehicle must
stop.

• popup = 3 => "Accelerate" . In case of feasible "green window", if
Egospeed is lower than V_MIN, it is possible to accelerate in a totally safe
way.

V_MIN and V_MAX shown on HMI

Sometimes the "green window" could cover a very extended range of speeds, so
it could cause an unpleasant view on the HMI.
To correct this behaviour, when Egospeed is between V_MIN and V_MAX, the
window is truncated on the top, on the bottom or in both sides respect to Egospeed
if these limits exceed it at least 10 km/h .

GLOSA-general

The algorithm starts with the analysis of the SPATMAP message coming from
the LDM database once per second. According to the traffic light color in that
specific moment, three different cases are possible (figure 5.2).

• TLcolor = 1 => GLOSA_GREEN_LIGHT-general

• TLcolor = 2 => GLOSA_YELLOW_LIGHT-general

• TLcolor = 4 => GLOSA_RED_LIGHT-general

42

CHAPTER 5. SOFTWARE : USE CASE GLOSA

Figure 5.2: Flowchart of first step of GLOSA

GLOSA_GREEN_LIGHT-general

Because of the current color of the traffic light is green, the first step is to eval-
uate if the driver is able to reach the intersection before the next phase changing.
For this reason V_MAX is always set to the Legal speed of that specific road, while
V_MIN is obtained using the uniformly accelerated motion formula (the addition
of 2 seconds is in order to allow the crossing of the intersection also during the first
seconds of the yellow phase).

43

CHAPTER 5. SOFTWARE : USE CASE GLOSA

Figure 5.3: Flowchart of the general case of green phase

The value of V_MIN discriminates the next step of the algorithm.

GLOSA_GREEN_LIGHT_case_1

In this case V_MIN is lower than the chosen MINSPEEDLIMIT, so it is set to
this specific last value.The "green window" is the largest possible, from the Legal
speed to the MINSPEEDLIMIT.
From the current speed of the car (Egospeed) derives the specific advice given to
the driver, in order to enter this green window or to remain in it.

44

CHAPTER 5. SOFTWARE : USE CASE GLOSA

Figure 5.4: Flowchart of the first case of green phase

GLOSA_GREEN_LIGHT_case_2
The advice given to the driver depends not only by the relative position of the

Egospeed respect to the V_MIN or V_MAX, but also from the comparison between
the distance from the traffic light and the current safety space to stop the vehicle
(which depends from the Egospeed):
This evaluation is visible in the second case of this flowchart.
Another evaluation is given by comparing the difference between V_MIN and Egospeed:
because the V_MIN has the tendency to become higher second after second, if
Egospeed is still lower than it and the difference is higher than 4 Km/h (1 m/s),it
could be hard for the driver to reach the green window.

45

CHAPTER 5. SOFTWARE : USE CASE GLOSA

Figure 5.5: Flowchart of the second case of green phase

46

CHAPTER 5. SOFTWARE : USE CASE GLOSA

GLOSA_GREEN_LIGHT_case_3

Figure 5.6: Flowchart of the third case of green phase

This can be considered as a particular situation, because during the several tests
made using Simulink,a not appropriate sequence of popups was shown (ex. "Critical
Stop" followed by "Maintain speed" and then by "Critical stop").
This wrong result was avoided introducing an hysteresis,which permits to give the
same advice in consecutive moments,so to go far from that edge situation.

GLOSA_YELLOW_LIGHT

During the yellow phase there are some checks about the distance from stop and
the Egospeed:
The first one is to use the hysteresis in order to give the same advice (as regards the
popup) respect to the previous one.
After this check, if the distance from the traffic light is higher than 10 meters, the
advice is "maintain speed".

47

CHAPTER 5. SOFTWARE : USE CASE GLOSA

Figure 5.7: Flowchart of yellow phase

GLOSA_RED_LIGHT-general

This is the first step of the GLOSA algorithm in case of red light:
In this situation the "green window" is calculated as follows:

• V_MAX is given as the rate between the current distance from the traffic light
and the time to the next phase switch ("time to green").

• V_MIN is calculated in the same way but, in this case, the time is the sum
of "time to green" and a "TverdeMin" that can be considered as a reasonable
minimum duration of the green phase.
This last value can be changed from configuration file.

In this case there are 6 possible "green windows", depending from the relative
position of V_MAX and V_MIN respect to the legal speed of that specific road
and the minimum speed limit set in configuration file.

48

CHAPTER 5. SOFTWARE : USE CASE GLOSA

Figure 5.8: Flowchart of red phase

49

CHAPTER 5. SOFTWARE : USE CASE GLOSA

GLOSA_RED_LIGHT-CASE_1

Figure 5.9: Flowchart of the first case during red phase

In this situation V_MAX is higher than the legal speed limit of the road, so it
is set to this maximum allowed speed.

50

CHAPTER 5. SOFTWARE : USE CASE GLOSA

The most relevant thing of this "case" is the check on the current distance from
approach:
If this this distance is higher than the current space of stop of the car (which de-
pends from the egospeed) adjusted with a space threshold,the driver can accelerate
to reach the green window in complete safe.

GLOSA_RED_LIGHT-CASE_2

Figure 5.10: Flowchart of the second case during red phase

Here V_MAX and V_MIN are both included between the legal speed and min-
imum speed limit.
There is the same check regarding the current distance from stop as in the previous
case (when Egospeed is lower than MINSPEEDLIMIT).

51

CHAPTER 5. SOFTWARE : USE CASE GLOSA

GLOSA_RED_LIGHT-CASE_3

Figure 5.11: Flowchart of the third case during red phase

This case is similar to previous except for V_MIN, which is lower than MIN-
SPEEDLIMIT, so it must be set to this last value, reducing the extension of the
green window.

52

CHAPTER 5. SOFTWARE : USE CASE GLOSA

GLOSA_RED_LIGHT-CASE_4

Figure 5.12: Flowchart of the fourth case during red phase

The fourth case of the RED case checks if Egospeed is lower than MINSPEEDLIMIT.
In affirmative case, if the current speed of the vehicle is not zero and the distance
from the approach is lower than 10 metres a not critical stop popup is given to the
driver,in order to make him stop before the end of the lane.

53

CHAPTER 5. SOFTWARE : USE CASE GLOSA

GLOSA_RED_LIGHT-CASE_5

The fifth case regards a situation of a not feasible "green window", because
V_MAX and V_MIN are both higher than legal speed.
If the comparison between the distance from stop and space of stop shows that the
car is in the proximity of the traffic light, a critical stop popup appears because the
current Egospeed will never be enough to get the green light.

Figure 5.13: Flowchart of the fifth case during red phase

54

CHAPTER 5. SOFTWARE : USE CASE GLOSA

GLOSA_RED_LIGHT-CASE_6

In this sixth case the "green window" has the largest possible size (from legal
speed to MINSPEEDLIMIT) so, according to Egospeed, the advice given to the
driver could be "maintain speed","info warning" or "accelerate".

Figure 5.14: Flowchart of the sixth case during red phase

HYSTERESIS
It was introduced to avoid the alternation between different popups in consecu-
tive time-steps when the difference between distance from stop and (space of stop
*threshold) is among 0. In that cases difference can be alternately <0 or >0 in
consecutive seconds and the result was very unpleasant to the driver. In order to
fix that, 4 logical strips were considered, each one with its ID (figure 5.15):

55

CHAPTER 5. SOFTWARE : USE CASE GLOSA

Figure 5.15: Representation of the 4 possible strips for hysteresis

Strip is calculated at each second, taking into account the formula:

Difference = distance_from_stop− (Space_of_stop ∗ space_threshold))

According to "difference", it is possible to determine the exact "strip ID".

1) Difference >strip_threshold ==> UP_OUT ID=1

2) 0<Difference <= strip_threshold ==> UP_IN ID=2

3) strip_threshold <Difference <= 0 ==> DOWN_IN ID=3

4) Difference <= strip_threshold ==> DOWN_OUT ID=4

The amount of threshold is configurable.
In the "OUT" strips, in that cases the popup is fixed, in particular "0"(no popup
or maintain speed) when ID=0, "2"(Critical stop) when ID=4.
The situation changes as regards the "IN" strips because the popup value depends
from the previous one,in order to give not conflicting information.
This new feature was applied in case of conflict between CRITIC_STOP popup and
NO_POPUP. It remains to be considered whether to apply the same criterion in
other cases of alternation .

56

CHAPTER 5. SOFTWARE : USE CASE GLOSA

5.2.2 Simulation on Simulink

The next step in this thesis work was the development of a simulation environment,
in order to test and verify the validity of the algorithm.For this purpose the chosen
software was Matlab with its extension Simulink.
In particular, the created Simulink model is composed by some blocks, each with the
aim to simulate a particular function, from the input to the algorithm to a possible
driver reaction to the output.
Each simulation block contains a matlab function written in Matlab programming
language, a C-like language.

Here is shown an overview of the complete model, and then this there will be
the description of the single blocks(figure 5.16):

Figure 5.16: Simulink model overview

57

CHAPTER 5. SOFTWARE : USE CASE GLOSA

The main blocks of the developed model are described below:

INPUT_SIMULATION_BLOCK

Figure 5.17: Focus on input simulator block

This is the starting function of the model.Through the array on the left of this
this block it is possible to set the initial conditions (in this example a Map Area of
100 m,a time to change of 4s and green as starting color).
The "inputs" function receives as input the current vehicle speed, distance to ap-
proach, the time to the next phase and the color and decreases their value according
the simulation step (1s).
These input can be considered as a mix between the SPATMAP message and the
data given by VDP.
The output is sent to the following step, the GLOSA_BLOCK.

58

CHAPTER 5. SOFTWARE : USE CASE GLOSA

GLOSA_BLOCK

Figure 5.18: Focus on GLOSA block

This block receives the information coming from the INPUT_SIMULATION_BLOCK
and the chosen legal speed and MINSPEEDLIMIT (they are not hardcoded in order
to make simple change them from settings_block).
It contains the implementation in Matlab language of the complete algorithm de-
scribed in the flowcharts, so the output consists of 3 parameters, that are V_MAX_HMI,
V_MIN_HMI and popup.
V_MAX and V_MIN are the maximum and the minimum speed not truncated and
so they are not sent to the HMI, but they are useful in the debugging process.

UcManager_SIMULATOR

Figure 5.19: Focus on UcManager simulator block

59

CHAPTER 5. SOFTWARE : USE CASE GLOSA

This part of the model has the function to simulate the behaviour of the UcMan-
ager.
According to the input coming from the GLOSA_BLOCK it builds a matrix con-
taining all the data for the HMI dispatcher and for the tablet, and write it on a
".mat" file.
This simulator is very important to test the algorithm because the generated matrix
can be written on a file and then used for a simulation on the android tablet.

DRIVER_RESPONSE_SIMULATOR

Figure 5.20: Focus on driver response simulator block

The "DRIVER_RESPONSE_SIMULATOR" tries to reproduce a possible re-
action of the driver according to the popup that appears on the HMI.
In particular, the input speed is modified adding or subtracting an acceleration (this
operation is possible because the simulation step is 1 second) which could be rea-
sonable from the physic point of view.
For instance, if popup = "accelerate", the acceleration is set to 1 m/s2, or if popup
= "critical stop", acceleration is -2 m/s2.
The output Egospeed is the one used in the next simulation step.

UDP_SOCKET_SEND_and_RECEIVE
This block allows to communicate with the framework running on the Step 03

board.
This data exchange is realized through two UDP sockets, in order to send and re-
ceive data from the C++ version of UC-GLOSA during the testing phase.

60

CHAPTER 5. SOFTWARE : USE CASE GLOSA

Figure 5.21: Focus on UDP_SOCKET_SEND_and_RECEIVE block

Data coming from the Framework are so plotted to verify their correctness.

MAIN_PLOT

Figure 5.22: Focus on main plot block

This is the block which plots all variables coming from GLOSA_BLOCK and
INPUT_SIMULATION_BLOCK. It allows to test the output in order to avoid
errors.

61

CHAPTER 5. SOFTWARE : USE CASE GLOSA

SETTINGS

Figure 5.23: Focus on settings block

Through this block it is possible to change all the settings as regards the road (
length , threshold for the space of stop), the traffic light (duration of each phase),
legal speed and MINSPEEDLIMIT and parameters about the hysteresis.
There are also some global variables common to all blocks.

5.2.3 C++ implementation

For the C++ implementation of this Use Case the Kdevelop editor was used.
The Glosa class, as most of the other framework modules, derives from the class
MMv2x:Template.
This choice has been done for uniformity reasons between the modules, because some
methods like "threadProc()" (which starts all threads), "loadModuleConfigFile" (for
the load of configuration files) or terminateThreads() (which allows to terminate all
the threads of the framework in a common way through the handling of system
signals), are managed in the same way.

62

CHAPTER 5. SOFTWARE : USE CASE GLOSA

GLOSA CLASS

Figure 5.24: Glosa class and its main parts

63

CHAPTER 5. SOFTWARE : USE CASE GLOSA

The "one vehicle" version is basically composed by two threads:

• threadGLOSA(), which reads SPATMAP messages from the LDM and im-
plements the Glosa algorithm.

• threadVDP(), which takes information from the VDP.

The following BPMN diagram shows how these two threads work:

Figure 5.25: BPMN of the two threads of one vehicle version of GLOSA

64

CHAPTER 5. SOFTWARE : USE CASE GLOSA

INPUT AND OUTPUT

It is possible to compile this software with different options in order to change
the input sources or the output direction.

Input can be generated from:

• the framework, through VDP (data from CAN) and LDM (SPATMAP).

• Simulink, through an UDP socket.

Output instead can be sent to:

• UcManager, which forwards it to HMI and tablet.

• Simulink, through another UDP socket.

65

CHAPTER 5. SOFTWARE : USE CASE GLOSA

5.3 Use Case GLOSA more vehicles version

Old Glosa versions are only based on the assumption that there are no vehicles be-
tween the Egovehicle and the traffic light.
This in most cases does not represents a real scenario, especially in an urban envi-
ronment, in which with an higher probability there are one or more vehicles in front
of Egovehicle.
As a matter of fact in a similar context the old Glosa algorithm loses part of its
validity, in particular when the Use Case suggest to accelerate, but this action could
lead to overcome the safety distance respect to the preceding vehicle.
So a new revision is required, in order to try to maintain the old functions but
also paying attention to not give to the driver not safe information and,sometimes,
generate warnings by other use cases like UC-FCW.

Figure 5.26: Vehicles distance

This new revision introduces another vehicle preceding the Egovehicle which has
a simple dynamic:

• A constant speed (otherspeed)

• A starting distance from Egovehicle

• A zero acceleration

The aim is try to overcome the TL during the green phase paying attention to
safety, that means to avoid collisions with other vehicles.

66

CHAPTER 5. SOFTWARE : USE CASE GLOSA

5.3.1 Algorithm

As in the section dedicated to the old algorithm, two tables containing a description
of all input and output are shown below.

INPUT

NAME SOURCE UNIT DESCRIPTION
Distance from stop spatmap/Simulink m Distance from traffic light
Time to change spatmap/Simulink s Time left to the next color
TL color spatmap/Simulink / Current traffic light color
Egospeed VDP/Simulink m/s Current vehicle speed
Legal speed Config file or TIM m/s Maxi speed allowed by law
Minspeedlimit Config file or TIM m/s Min reasonable speed
Ego_latitude Poti mediator ◦ Latitude of egovehicle
Ego_longitude Poti mediator ◦ Longitude of egovehicle
Other_latitude BSM ◦ Latitude of other vehicle
Other_longitude BSM ◦ Longitude of other vehicle

Table 5.3: Table of GLOSA input (more vehicles)

OUTPUT

NAME UNIT DESCRIPTION
V_MAX Km/h Upper limit of green window
V_MIN Km/h Lower limit of green window
Popup / Advice to the driver

Table 5.4: Table of GLOSA output (more vehicles)

A new popup type has been introduced:

popup = 5 => "Vehicle very nearly" in case of too short distance from in
front vehicle.

This new version could be intended as a restriction of the previous one, so Glosa
can suggest a valid green window only if a safety distance (more relaxed than the
one used by UC FCW) is respected.

67

CHAPTER 5. SOFTWARE : USE CASE GLOSA

The indicator that represents the limit for giving valid GLOSA info derives from
the safety distance’s formula:

Safety_distance = (Egospeed) +
(Egospeed ∗ Egospeed)

2 ∗ ego_safety_deceleration

Ego_safety_deceleration has been set to 3 m/s2 in order to have an higher
safety distance.

Replacing the safety distance with the current distance between the two vehicles
can be obtained ,for each time step, the maximum speed (V_MAX_TEORICA)
that Egoveicle should follow to make safety distance equals than current distance.In
formula (a,b and c are the coefficients of the equation):

V _MAX_TEORICA =
−b +

√
b2 − 4 ∗ a ∗ c
2 ∗ a

Where:

a =
1

2 ∗ ego_safety_deceleration
(5.1)

b = 1 (5.2)

c = −vehicles_distance (5.3)

V_MAX_TEORICA represents the upper limit that Egospeed must
not overcome to maintain a reasonable distance from in front vehicle,
with the possibility to receive feasible information from GLOSA.
It directly reflects all the variations related to the distance between the two vehicles,
so it take into account both vehicles speed.
If Egospeed become greater than V_MAX_TEORICA a new popup appears on the
HMI ,to advise the driver that no GLOSA info are available because of the short
distance from in front vehicle.

68

CHAPTER 5. SOFTWARE : USE CASE GLOSA

HYSTERESIS

As in the previous Glosa versions, hysteresis is used to avoid unpleasant alter-
nations of different popups with conflicting indications to the driver.
According to different settings of hysteresis upper bound and lower bound, is easier
to fall into danger situations and it is more difficult to come out from them.
In fact an higher upper bound permits to get far from V_MAX_TEORICA, with
an higher possibility to receive feasible info from GLOSA and maintaining also a
safety distance.
This conservative approach also reduces the possibility to get more serious warnings
from UC-FCW, that is one of the main aims of this revision.

LOGICAL MODEL
Taking into account all this new constraints and corrections to the old version

in order to follow the changes in the road scenario, it is possible to show the new
Logical Model of the UC-GLOSA more vehicle version (figure 5.27):

Figure 5.27: Logical model of UC-GLOSA more vehicles version

69

CHAPTER 5. SOFTWARE : USE CASE GLOSA

5.3.2 Simulation on Simulink

The building of the Simulink model associated to this version started from the ex-
isting "one vehicle" model with the addition of new features (figure 5.28):

• A simulation of another vehicle with a simplified behaviour (uniform motion).

• A simulation of the UC-FCW, in order to recognize when the distance between
two vehicles is too small.

Figure 5.28: Simulink model of UC-GLOSA more vehicles version

The new blocks of the developed model are described below:

OTHER_VEHICLE_DYNAMIC

This block simulates another vehicle in front of the Egovehicle with a simplified
uniform motion.
It is possible to set the uniform speed and the starting distance between the two
vehicles.

70

CHAPTER 5. SOFTWARE : USE CASE GLOSA

Figure 5.29: OTHER_VEHICLE_DYNAMIC Simulink block

The main function of "OTHER_VEHICLE_DYNAMIC" is to update the dis-
tance between the vehicles at each simulation step considering the Egospeed and
the acceleration of the Egovehicle.

FCW_BLOCK

The FCW_BLOCK implements the logic of the UC-FCW, which gives a warn-
ing when the Egovehicle is too near to the preceding vehicle.

Figure 5.30: FCW_BLOCK Simulink block

71

CHAPTER 5. SOFTWARE : USE CASE GLOSA

SETTINGS_BLOCK

The SETTINGS_BLOCK has been improved to reflect the changes of the new
version.

Figure 5.31: SETTINGS_BLOCK Simulink block

It is possible to see on the right of this block the section dedicated to the other
vehicle and to the other parameters involved in the simulation(figure 5.31).

EGO_VEHICLE_SUBSYSTEM
This subsystem incorporates the two already existing blocks that concern the

Egovehicle(figure 5.32):

• "EGO_INPUT_SIMULATION_BLOCK"

• "EGO_DRIVER_RESPONSE_SIMULATOR"

The only change respect to the previous version is that the Egovehicle is able
to react to the new warning coming from FCW_BLOCK, which implies an high
deceleration to get far from a danger situation.

72

CHAPTER 5. SOFTWARE : USE CASE GLOSA

Figure 5.32: EGO_VEHICLE_SUBSYSTEM Simulink block

OTHER_FCW_PLOT

This block has the function to plot all data concerning the UC-FCW and the
dynamic of the other vehicle.

Figure 5.33: OTHER_FCW_PLOT Simulink block

73

CHAPTER 5. SOFTWARE : USE CASE GLOSA

5.3.3 C++ implementation

Here is the class diagram of the new version of UC-GLOSA, with the new threads
and variables:

Figure 5.34: GLOSA class more vehicles version

74

CHAPTER 5. SOFTWARE : USE CASE GLOSA

THREADS

The "more vehicles" version is basically composed by 4 threads:

• threadGLOSA():
This is the main thread. It starts with the subscription to LMD in order
to receive SPATMAP messages and thread is locked until a new SPATMAP
arrives or the timeout expires.
In case of a new SPATMAP the next step is to read the Egospeed from a
shared variable (in mutual exclusion) and the application of the old Glosa
version to obtain V_MAX, V_MIN and popup.
Then the current distance between the two vehicles is read from another shared
variable and it is used to calculate V_MAX_TEORICA. By using this upper
speed limit it is possible to do a check by verifying if Egospeed is higher or
lower than it and by changing the popup if needed (an hysteresis is applied in
order to avoid alternating popups with different advice).

• threadVDP(): This thread starts with the subscription to CANDataprovider,
with the aim to get , when it is available, the current speed of Egovehicle.
When the data arrives the thread unlocks and write in a shared variable the
obtained value. After that it starts waiting again.

• threadBSM(): It starts with the subscription to LMD in order to receive
BSM messages and thread is locked until a new BSM arrives or the timeout
expires.
In case of a new BSM, latitude and longitude of the other vehicle are read. The
next step is to get from two shared variables the latitude and the longitude
of Egovehicle and through the calculateEarthDistance() method (which
accept the two latitudes and longitudes) it calculates the distance between the
two vehicles and writes it in a shared variable.

• threadGPS(): It takes information from the POTI Mediator in the already
described way and write latitude and longitude of the Egovehicle in a shared
variable.

75

CHAPTER 5. SOFTWARE : USE CASE GLOSA

The following BPMN shows in details how the threads of UC-GLOSA work,as
regards the new version.

Figure 5.35: BPMN more vehicles version

76

CHAPTER 5. SOFTWARE : USE CASE GLOSA

As in the previous version, UC-GLOSA for more vehicles can be set in different
ways. As a matter of fact it is possible to compile this software with different options
in order to change the input sources or the output direction.

Input can be generated from:

• the framework, through VDP (data from CAN), LDM (SPATMAPs and
BSMs) and POTI Mediator.

• Simulink, through an UDP socket.

Output instead can be sent to:

• UcManager, which forwards it to HMI and tablet.

• Simulink, through another UDP socket.

77

Chapter 6

Testing and Validation

6.1 Testing e Validation

6.1.1 Bench tests

Bench tests have the function to verify the correctness of the output given by UC-
GLOSA in order to fix any bugs that could affect the software.
These kinds of test have been introduced because it was very uncomfortable to try
the Use Case directly on road, because of the difficulty to recognize errors in real
time.
Bench tests have been divided into two different phases:

• Tests done only using Simulink.

• A combination of the Simulink model and the C++ version running on the
Step 03 board.

TESTS ON SIMULINK

The first phase of the bench tests consists of a set of simulations (TEST CASES)
done each time by using different starting conditions.
These test cases are divided basing on the starting distance from the traffic light:

• TEST CASE 1 : distance from stop 400 m

• TEST CASE 2 : distance from stop 200 m

• TEST CASE 3 : distance from stop 100 m

78

CHAPTER 6. TESTING AND VALIDATION

Each TEST CASE is composed by several simulations characterized by the same
distance from the traffic light but different starting Egospeed (in a range from MIN-
SPEEDLIMIT to legal speed), in order to try to stimulate the major number of
cases of the algorithm.
Output is visualized on a Simulink "scope" and so it possible to verify if there are
anomalies in the simulation. The image below shows an example of this output on
a "simulink scope"(figure 6.1).

Figure 6.1: Example of output on a Simulink scope

Where:

Figure 6.2: Legend of a Simulink scope

79

CHAPTER 6. TESTING AND VALIDATION

This is the output of the already described MAIN_PLOT of the Simulink model.
In this particular scope the following variables (for each simulation step that is 1
second) are shown:

• Egospeed

• V_MIN : the real one directly deriving from the formula.

• V_MAX : the real one directly deriving from the formula.

• MINSPEEDLIMIT

• Legal speed

• Popup

• Time to change

• Fine incrocio : a variable that is always 0 and has a peak when distance from
stop become null.

• Color : the current phase of the traffic light.

• V_MIN HMI : the lowest possible green speed visualized on the HMI.

• V_MAX HMI : the highest possible green speed visualized on the HMI.

The following table is an example of TESTCASE 1:

Figure 6.3: Example of a test case using only Simulink

This test case concerns the situation in which there is a fixed distance from stop
of 400 metres and an increasing Egospeed from MINSPEEDLIMIT to Legal speed.
Two similar tests have been done, each time by halving the distance from the traffic
light and with an similar Egospeed behaviour.

80

CHAPTER 6. TESTING AND VALIDATION

TESTS ON SIMULINK AND C++

The second step of the bench tests about UC-GLOSA consists of 3 test cases, with
the aim to verify two output:

• Output directly from Simulink

• Output from the C++ UC-GLOSA running on the Step 03

To be able to compare in the right way these two output it is necessary to visu-
alize the output of the "C++ version" in a "Simulink Scope" which is part of the
simulink model.

Tests follow the below schema:

Figure 6.4: Schema of the bench tests using both Simulink and C++

81

CHAPTER 6. TESTING AND VALIDATION

As is possible to notice from this schema (figure 6.4), the Simulink environment
must be able to communicate with the Step 03 board.
This is made possible by using two UDP sockets which transport data in and out
from the Simulink model.
It is important that the PC on which Simulink is running and the Step 03 are in
the same LAN, in order to make UDP protocol working in the right way.

As regards the UDP ports these are the settings:

• UDP SOCKET FROM SIMULINK port 8100

• UDP SOCKET TO SIMULINK port 8101

By comparing the two Simulink scopes it is possible to discover possible differ-
ences caused by a wrong C++ implementation.

The following images are an example of the output that shall be compared by setting
a starting Egospeed and distance from stop:

Figure 6.5: TEST case 2 Simulink and C++

In this case we have a Distance from stop of 200 metres and an initial egospeed
of 30 Km/h.

82

CHAPTER 6. TESTING AND VALIDATION

These are the corresponding output:

When "green window" exists, the red line
is V_MAX on HMI, the yellow line is
V_MIN on HMI while the blue line rep-
resents the popup.

C++

Figure 6.6: C++ output on Simulink example

SIMULINK

Figure 6.7: Simulink output example

83

CHAPTER 6. TESTING AND VALIDATION

6.1.2 On road tests

After the bench tests phase it is possible to do the on road tests and check if the
use case works in the right way.
The necessary hardware to realize these tests is composed by:

• A Step 03 board with the Magneti Marelli Connectivity Framework running
on it

• A RSU (Road Side Unit) placed on the car

• A wi-fi switch

• A PC-laptop to monitoring the software

• An Android tablet

RSU configuration

Before on road tests it is important to configure the RSU to generate MAP and
SPAT messages in order to simulate a real RSU placed on a traffic light.
This operation is possible by modifying the configuration files loaded on the MK5,
in paticular:

• "config_MM_WAVE_RSUbackend_MAPconfig_params.cfg"

• "config_MM_WAVE_RSUbackend_SPATconfig_params.cfg"

MAP:
MAP has been defined by fixing a reference point and two map areas, one for each
lane(figure 6.8).

Figure 6.8: Map configuration for tests

84

CHAPTER 6. TESTING AND VALIDATION

These points are located in the avenue adjacent to the Magneti Marelli head-
quarters of Venaria Reale(figure 6.9).:

Figure 6.9: Map areas in Viale Venaria

These points have been inserted in the configuration file in the following order:

• REFERENCE POINT (Intersection ID,Latitude and Longitude)

• APPROACH NORTHBOUND (Intersection ID,Latitude and Longitude)

• APPROACH SOUTHBOUND (Intersection ID,Latitude and Longitude)

85

CHAPTER 6. TESTING AND VALIDATION

This is the configuration file on the RSU that defines MAP areas:

——————————————————————————————————–—

MAP_COMPOSER :
{

INTERSECTION_ID = 3118;
REF_POINT_LAT = 45.140654;
REF_POINT_LON = 7.614455;
APPROACH_NORTHBOUND :
{

ENABLED = 1;
APPROACH_ID = 1;
OFFSET_A_LAT = 45.140584;
OFFSET_A_LON = 7.614751;
OFFSET_B_LAT = 45.140231;
OFFSET_B_LON = 7.615881;

};
APPROACH_SOUTHBOUND :
{

ENABLED = 1;
APPROACH_ID = 2;
OFFSET_A_LAT = 45.140700;
OFFSET_A_LON = 7.614235;
OFFSET_B_LAT = 45.141227;
OFFSET_B_LON = 7.612509;

};
APPROACH_EASTBOUND :
{

ENABLED = 0;
APPROACH_ID = 3;
OFFSET_A_LAT = 45.0;
OFFSET_A_LON = 8.0;
OFFSET_B_LAT = 45.0;
OFFSET_B_LON = 8.0;

};
APPROACH_WESTBOUND :
{

ENABLED = 0;
APPROACH_ID = 4;
OFFSET_A_LAT = 45.0;
OFFSET_A_LON = 8.0;
OFFSET_B_LAT = 45.0;
OFFSET_B_LON = 8.0;

};
};

——————————————————————————————————-

86

CHAPTER 6. TESTING AND VALIDATION

SPAT:

According to the configuration file, SPAT messages have been set in the follow-
ing way:

• Frequency = 2Hz , that means 2 SPATs per second

• Red phase duration = 60 s

• Yellow phase duration = 5 s

• Green phase duration = 40 s

• Initial phase = RED

This is the configuration file on the RSU that defines SPAT message:

SIM_SPAT :
{
ENABLED = true;
FREQUENCY_HZ = 2;
TIMETOCHANGE_GREEN_SEC = 40;
TIMETOCHANGE_YELLOW_SEC = 5;
TIMETOCHANGE_RED_SEC = 60;
INITIAL_PHASE = "RED";
};

87

CHAPTER 6. TESTING AND VALIDATION

ON BOARD CONFIGURATION

The needed components for these tests have been linked in a wired LAN through
an ethernet switch. The Android tablet is connected to the LAN by using a wi-fi
802.11a/b/g/n switch, while SPATs and MAPs are sent using a DSRC (802.11p)
communication(figure 6.10).

Figure 6.10: Hardware schema for on road test

88

CHAPTER 6. TESTING AND VALIDATION

LOG FILES

During on road test thanks to the PC has been possible to monitoring what was
happening by observing the log file written by UC-GLOSA in real time.
In fact, for each time step (1 second), the following information were visualized:

• V_MAX (the one sent to HMI)

• V_MIN (the one sent to HMI)

• Time to the next phase

• Distance from traffic light

• Egospeed

• Traffic light current color

• Popup with relative advice

• Information about the distance from traffic light (to discriminate if the popup
is for maintaining speed or for "not available advice"

Figure 6.11: UC-GLOSA log example

89

Chapter 7

Results

7.1 Results

In this thesis a software architecture, named Use Case Glosa (UC-GLOSA), was
designed and implemented.
This software is integrated in the Magneti Marelli Connectivity Framework, a solu-
tion for enabling Vehicle-to-Everything (V2X) communication, with the aim to try
reducing problems related to traffic efficiency, safety and pollution.
The developed software is framed in the field of traffic efficiency and tries to resolve
those problems related to the waiting time at intersections and consumption.
The UC-GLOSA software extended and improved the already existing UC-TRAFFIC-
LIGHT, a simpler use case which shows the current phase of a traffic light and the
time left to the next phase, by adding more useful information.

The thesis work lead to the development of this Use case in some steps:

• A research phase in order to know what already exists about these software
types.

• The drafting of an algorithm which in the simplest possible way could find a
feasible solution to these problems, taking into account both safety and driving
comfort.

• The building of a simulation environment which makes no longer necessary to
do frequent on road tests, in order to easily recognize issues in the algorithm
and to avoid logistic problems.

• The implementation of a C++ software which is part of a complex embedded
framework and which interacts with other modules.

90

CHAPTER 7. RESULTS

The final result is an advice to the driver about what is the best action to do
when he is approaching an intersection regulated by a traffic light and, if it is pos-
sible, a range of speeds that allows to overcome it during the green phase.
All this is done by paying particular attention to safety.
All the advice which are given as output,at this moment, are only sent to the v2x
software installed on the tablet, while the car HMI shows only the already imple-
mented UC-TRAFFIC LIGHT information.
The following images represent two possible final output on the tablet:

Figure 7.1: Glosa output on tablet in case of green window

Figure 7.2: Glosa output on tablet in case of critical stop

91

Chapter 8

Future improvements

8.1 Future improvements
The work done for this thesis could be improved under different points of view:

• Algorithm :
A possible change could be use the hysteresis not only to decide between no
popup or critical stop, but also in other cases, for example when Egospeed
is close to V_MAX or V_MIN, in order to maintain coherent and pleasant
advice to the driver.

• Simulink model :
As regards the Simulink model, an improvement could be to modify the vehicle
reaction to the GLOSA output to make it more realistic. The same thing could
be done for the other vehicle dynamic.
Another possible change is to introduce the logic of other use cases to monitor
possible different behaviour of the GLOSA One.

• C++ software :
The C++ version could be improved by modifying the threadBSM() in order
to filter the received BSMs and select only those coming from the in front
vehicle.

92

Bibliography

[1] World report on road traffic injury prevention. url: https : / / www . who .
int/violence_injury_prevention/publications/road_traffic/world_
report/summary_en_rev.pdf (visited on 03/05/2019).

[2] Creating the Clean Energy Economy - Analysis of the Electric Vehicle Industry.
url: http://www.iedconline.org/clientuploads/Downloads/edrp/
IEDC_Electric_Vehicle_Industry.pdf (visited on 03/05/2019).

[3] Magneti Marelli website. url: https://www.magnetimarelli.com/it (vis-
ited on 01/02/2019).

[4] Imad Jawhar, Nader Mohamed, and Hafsa Usmani. “An Overview of Inter-
Vehicular Communication Systems, Protocols and Middleware”. In: Journal of
Networks JOURNAL OF NETWORKS, VOL. 8, NO. 12, DECEMBER 2013
(Dec. 2013). doi: 10.4304/jnw.8.12.2749-2761.

[5] John Kenney. “Dedicated Short-Range Communications (DSRC) Standards
in the United States”. In: Proceedings of the IEEE 99 (Aug. 2011), pp. 1162–
1182. doi: 10.1109/JPROC.2011.2132790.

[6] IEEE organisation. url: https://www.ieee.org/ (visited on 01/02/2019).

[7] ETSI organisation. url: https://www.etsi.org/ (visited on 01/02/2019).

[8] ETSI EN 302 637-2 V1.3.1: Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Part 2: Specification of Coopera-
tive Awareness Basic Service. url: https://www.etsi.org/deliver/etsi_
en/302600_302699/30263702/01.03.01_30/en_30263702v010301v.pdf
(visited on 01/02/2019).

[9] ETSI EN 302 637-3 V1.2.1: Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Part 3: Specifications of Decen-
tralized Environmental Notification Basic Service. url: https://www.etsi.
org/deliver/etsi_en/302600_302699/30263703/01.02.01_30/en_
30263703v010201v.pdf (visited on 01/02/2019).

[10] C++ description. url: http://www.cplusplus.com/info/description/
(visited on 01/02/2019).

93

https://www.who.int/violence_injury_prevention/publications/road_traffic/world_report/summary_en_rev.pdf
https://www.who.int/violence_injury_prevention/publications/road_traffic/world_report/summary_en_rev.pdf
https://www.who.int/violence_injury_prevention/publications/road_traffic/world_report/summary_en_rev.pdf
http://www.iedconline.org/clientuploads/Downloads/edrp/IEDC_Electric_Vehicle_Industry.pdf
http://www.iedconline.org/clientuploads/Downloads/edrp/IEDC_Electric_Vehicle_Industry.pdf
https://www.magnetimarelli.com/it
https://doi.org/10.4304/jnw.8.12.2749-2761
https://doi.org/10.1109/JPROC.2011.2132790
https://www.ieee.org/
https://www.etsi.org/
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.03.01_30/en_30263702v010301v.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.03.01_30/en_30263702v010301v.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263703/01.02.01_30/en_30263703v010201v.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263703/01.02.01_30/en_30263703v010201v.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263703/01.02.01_30/en_30263703v010201v.pdf
http://www.cplusplus.com/info/description/

BIBLIOGRAPHY

[11] Cross-compilation definition. url: https : / / en . wikipedia . org / wiki /
Cross_compiler (visited on 01/02/2019).

[12] Apache Subversion. url: https : / / en . wikipedia . org / wiki / Apache _
Subversion (visited on 01/02/2019).

[13] Matworks’ Matlab. url: https://uk.mathworks.com/products/matlab.
html (visited on 01/02/2019).

[14] Matworks’ Simulink. url: https://uk.mathworks.com/products/simulink.
html (visited on 01/02/2019).

[15] ENTERPRISE ARCHITECT. url: https://sparxsystems.com/products/
ea/ (visited on 01/02/2019).

[16] SUMO- Simulation of Urban MObility. url: http://sumo.dlr.de/index.
html (visited on 01/02/2019).

[17] Cohda Wireless’ MK5. url: https : / / cohdawireless . com / solutions /
hardware/mk5-obu/ (visited on 02/28/2019).

[18] Konstantinos Katsaros Ralf Kernchen Mehrdad Dianati David Rieck Char-
alampos Zinoviou. Application of Vehicular Communications for Improving
the Efficiency of Traffic in Urban Areas. University of Surrey Guildford, 2011.

[19] Kugamoorthy Gajananan Sra Sontisirikit Jianyue Zhang Marc Miska Ed-
ward Chung Sumanta Guha Helmut Prendinger. A Cooperative ITS study on
green light optimisation using an integrated Traffic, Driving, and Communi-
cation Simulator. National Institute of Informatics,Asian Institute of Technol-
ogy,Smart Transport Research Centre, Queensland University of Technology,
Brisbane, 2013.

[20] Biao XU Fang ZHANG Jianqiang WANG Keqiang LI. B&B Algorithm Based
Green Light Optimal Speed Advisory Applying to Contiguous Intersections1.
Chinese National Program for High Technology Research and Development,
2015.

94

https://en.wikipedia.org/wiki/Cross_compiler
https://en.wikipedia.org/wiki/Cross_compiler
https://en.wikipedia.org/wiki/Apache_Subversion
https://en.wikipedia.org/wiki/Apache_Subversion
https://uk.mathworks.com/products/matlab.html
https://uk.mathworks.com/products/matlab.html
https://uk.mathworks.com/products/simulink.html
https://uk.mathworks.com/products/simulink.html
https://sparxsystems.com/products/ea/
https://sparxsystems.com/products/ea/
http://sumo.dlr.de/index.html
http://sumo.dlr.de/index.html
https://cohdawireless.com/solutions/hardware/mk5-obu/
https://cohdawireless.com/solutions/hardware/mk5-obu/

	Introduction
	Vehicle-to-Everything Communication
	Business organisation
	Goals of the thesis

	Background
	Inter-Vehicular Communication Applications
	The SAEJ2735
	The MAP Message
	The Signal Phase and Timing message (SPAT)
	The Traveler Information Message (TIM)
	The Basic Safety Message (BSM)

	The Magneti Marelli Connectivity Framework
	The Middleware layer
	The Facilities layer
	The Applications layer

	Implemented Background
	Software Instruments
	The C++ language
	Makefile/cmake
	Cross-Compiling
	Apache Subversion (SVN)
	Matlab
	Simulink
	Enterprise Architect
	SUMO (Simulation of Urban Mobility)

	The MM Connectivity hardware
	The Magneti Marelli Step 03 board
	MK5-Cohda Wireless OBU
	Road Side Unit

	State of art
	GLOSA existing versions
	Single segment GLOSA
	Multi segments GLOSA

	Software : Use Case GLOSA
	GLOSA overview
	Use Case GLOSA one vehicle version
	Algorithm
	Simulation on Simulink
	C++ implementation

	Use Case GLOSA more vehicles version
	Algorithm
	Simulation on Simulink
	C++ implementation

	Testing and Validation
	Testing e Validation
	Bench tests
	On road tests

	Results
	Results

	Future improvements
	Future improvements

