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Abstract

Designers who engage in robotics are called Robot Makers. Robotics is an interdisciplinary 
field, requiring robot makers to have knowledge of mechanics, electronics and information 
technology, meaning that robotics has a significant entry barrier.

Robots are usually designed with an application in mind, but Robot makers often have 
to wrestle with the same hardware, interface and software configuration issues over and over. 
Robot Makers would rather focus on the final application.

The aim of this thesis is to provide an hardware configuration and a software framework 
that streamline and simplify the design of a robotic platform. This is achieved by combining 
the custom board developed in this thesis with a Raspberry Pi and with the HotBlack Software 
Framework.

The custom board  provides  features  that  are  highly desirable  to  robot  makers.  It  is 
cheap, easy to mount and easy to integrate. It powers the robot from a single power source. It 
allows for a large variety of different power sources to be used. It provides protections against 
common mishaps. It natively support two DC motors with encoders and four servomotors. It 
can  be  expanded  through  the  use  of  Arduino  Shields.  It  is  compatible  with  the  Arduino 
Software Framework.

There are countless Arduino Shields, providing all sort of functionality for which a large 
amount of open source code exists. This allow robot makers to easily expand the functionality 
of their robot.

The HotBlack Software  Framework consists  of  a  remote  cloud infrastructure  and a 
modified Linux OS Figure with ROS installed. The Figure is loaded on a SD card and works 
on a Raspberry Pi 3B. The user programs the robot through a cloud interface designed to 
easily share and import code. This framework allows  the user to get a robotic system up and 
running in a matter of minutes.

ROS is  itself  a  framework  that  provide  abstraction  layers  and  many functionalities 
aimed at robot makers, like software for navigation, mapping, vision, and more.

The hope is for the hardware and software framework presented in this thesis to become 
widespread and lower the entry barrier of robotics itself, allowing for an ever growing user 
base to develop novel robotic applications, forming a virtuous cycle.
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1. Introduction
Robotics is an interdisciplinary field with a significant entry barrier. Robot makers must possess 
knowledge in mechanics, electronics and information technology in order to successfully build a 
robot that performs a task.

Building a robot requires:

• A mechanical structure

• A power source, a power regulator and a charger

• Motors and motor controllers

• Sensors

• Intelligence

• An interface and/or a data link

• The application software

Robots are often created with a specific application in mind. More often than not, the added 
value of a robotic application comes from the way the robot uses sensor data to interact with the 
environment and the way the robot answers to user commands.

Robot makers often have to solve the same hardware, interface and software configuration 
issues over and over. They would rather focus on developing the application.

The aim of this thesis is to design a custom board that handles common hardware related 
issues routinely faced by robot makers. The custom board will provide quality of life improvements 
and features that are desirable to robot makers, and will be easy to use.

The custom board is meant to be paired with a powerful software framework that streamline 
and simplify the configuration and the programming of the robot.

The software framework chosen put a strong emphasis on code sharing and code reuse, so that 
the robot makers only have to write code directly involved with the application.

1.1 Cloud Robotics
A mobile robotic platforms can be limited in terms of memory, data storage and processing power.

IoT, Internet of Things, is a paradigm in which devices can be individually accessible from 
everywhere in the world through a cheap internet connection.

The Cloud is an IT infrastructure featuring remote servers accessible through the internet. 
Those servers can store data and execute computationally intensive applications. Tasks that would 
be slow or outright impossible to run locally.

Cloud Robotics is a paradigm that combines Cloud technology and IoT. It allows workload to 
be offloaded from the robotic platform to  remote servers through an internet connection.

Cloud Robotics is attractive to robot makers as it can allow a robot to perform tasks far in 
excess of the specifications of the local hardware. 

The Cloud can be used to access large amount of data, like images and maps. It can be used to 
offload processor heavy tasks, like Figure recognition. It allows for remote control o the platform 
and supervision of entire fleets of robots.
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The most significant drawback of Cloud Robotics is the added latency of the communication 
link. A latency in excess of several hundreds of milliseconds will severely impair remote control the 
robot.

1.2 ROS Robot operating System
ROS  [1] is a framework. It  provides a message exchange mechanism, abstraction layers,  cloud 
support and more. It promotes the reuse of code in robotics and distributed software architecture.

ROS is based on the concept of node. A node can be either a piece of hardware, like a camera 
or even a robot, or a piece of software, like an navigation algorithm. A node can be either local or 
remote. Nodes exchange ROS messages between each others. The map of all nodes is called Graph.

ROS natively supports distributed architectures in which some nodes are locals while  others 
are running on a remote server.

ROS defines protocols like Rosserial [2], that defines the exchange of ROS messages over a 
serial interface to a board, like a motor controller.

Rosserial is implemented as a library for many microcontrollers. The custom board developed 
for this thesis will communicate with a ROS installed on the Linux operating system (OS) running 
on the Raspberry Pi [3] using a serial UART interface and the Rosserial protocol.

The custom board will  act  like  a  ROS node.  It  will  support  several  ROS messages,  like 
messages that will physically move motion axis or messages that control the I/O of the Arduino 
Shields.

1.3Arduino
Arduino developed a cheap but flexible board, the Arduino Uno [4], and paired it with the Arduino 
IDE [5], a powerful framework that promote code sharing, code reuse and open source software.

User designed boards, the Arduino Shields, can used to expand the functionality (ex. GPS) of 
the base Arduino board. Sketches (Arduino IDE project) made by the community exists and allow 
users to quickly make use of the new hardware.

Arduino became the de-facto standard in the field of prototyping electronics thanks to this 
business model. There is a lot to be learned from their success case.

Success factors include:

• Cheap open source hardware

• Arduino Shields provide easy optional hardware expansion

• IDE that simplifies the programming phase

• IDE that allows for easy share and import of open source sketches

• Bootloader that simplifies the firmware uploading phase

• Humongous amount of open source code and projects for the platform

• A large community that produces large amount of sketches, code and shields

2/113



1.4 HotBlack Robotics
HotBlack Robotics  [6] is a start-up based in the Polytechnic University of Turin. This thesis was 
developed closely with their collaboration. Their inside knowledge of what robot makers proved 
invaluable  for  understanding  what  robot  makers  would  consider  as  a  desirable  features  in  the 
custom board.

The  vision  of  HotBlack  Robotics  is  to  create  a  framework  take  advantage  of  cloud 
technologies to simplify the setup and programming phase of a robot and promote code sharing, 
code reuse and open source software. This lowers the entry barrier faced by would-be robot makers, 
allowing  for  more  people  to  engage  in  robotics  and  contribute  with  their  own solutions,  in  a 
virtuous cycle.

HotBlack has developed a clever software framework that simplify the setup phase and the 
programming of a Raspberry Pi based robot through the use of a custom Linux Figure with ROS 
installed and a cloud infrastructure. Details of the HotBlack Framework will be explored in greater 
details later.

A similar model was used to great effect by Arduino.

The HotBlack Framework takes advantage of the Raspberry Pi, the cheapest most popular 
ARM based SBC today. The Raspberry Pi is a remarkable device. It has many features that are 
highly desirable for a mobile robotic platform. 

The Raspberry Pi is not perfect. The most significant shortcoming is the lack of native support 
for motors. At least one additional board (a motor controller) is required to build a robot out of a  
Raspberry Pi.  The additional board has to be able to drive at least two motors in order to make the 
robot useful.

A short research showed there are many boards in the market that allows to do just that.  
Existing Raspberry Pi shields will be explored in greater details later.

Since an additional board is required anyway, there is an opportunity. The custom board could 
do more that just drive two motors. It could also handle problems routinely encountered by robot 
makers, while also providing quality of life improvements and add desirable features.

Learning from the Arduino success case, the custom board should be useful, cheap and simple 
to integrate for it to become widespread.

With greater adoption, robot makers that use this framework would be able to draw from an 
ever increasing pool of open source code shared by fellow robot makers. A virtuous cycle.

The hope is for the custom board developed in this thesis paired with the framework 
developed by HotBlack Robotics to become the de-facto standard for Raspberry Pi based robots.

1.5 Objectives
The objective for this thesis is to develop a custom board that interfaces with a Raspberry Pi and 
provides useful functionalities that would be desirable for robot makers.

A research was conducted on what boards are already available on the market, what problems 
robot makers had with them, and, if there was space for a custom board more attuned to the needs 
of robot makers. A list of existing boards will be explored in details later.

A research was conducted to find out what problems were commonly encountered by robot 
makers, and by extension, the features that robot makers would like to have on the custom board.
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Small robots are popular amongst robot makers. They are cheap, convenient and allows for all 
kind of algorithms to be implemented and tested.

Small robots are intrinsically safe as their engines are comparatively weak and can't hurt 
people. Small robots have low hardware specifications and can take advantage the most from a 
cloud  approach. The decision was taken to focus on small robots. Target form factor is 15cm.

A popular way to power a Raspberry Pi based robot is to use two batteries: A power bank and 
a separate battery for the motor controller. This approach invites for all kind of problems.

The decision was taken to have a flexible on-board power regulator that allows for both the 
engines and the Raspberry to be powered from the same power source. The decision was taken to 
allow for many popular power sources to be used, from single cell LIPO to AAA batteries.

Learning from the Arduino success case, the custom board should be cheap, flexible, easy to 
mount and easy to use. The board should be paired with a powerful framework that simplify the 
setup phase and the programming phase while encouraging code sharing and code reuse.
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2. Research
A research was made to see what kind of robotic platforms are already present on the market, on 
what Raspberry Pi compatible boards already exists and on what problems are encountered by robot 
makers.

It's  imperative to  understand the state  of the art  before moving forward with the project, 
otherwise the risk of developing a solution for a problem that is not widespread is high.

2.1 Small Mobile Robotic Platforms
Robots  comes  in  every  shape  and  form.  Robots  perform  as  many  diverse  functions  as  the 
imagination, skills and resourcefulness of the robot maker allows. Robots range from tonnes heavy 
anthropomorphic arms to swarms of miniaturized insect like robots to autonomous  flying military 
combat drones.

Figure 1: Robokind [7][8][9]

The objective of this thesis is to create a custom board and a software framework that make 
the life of robot maker easy. This requires a large community that share open source code. This in 
turn requires a wide adoption. The prime factors in adoption are:

• Usefulness

• Cost

• Ease of use

The kind of robots that best fit those factors are small mobile platforms. A market search 
shows that there are countless small mobile platform sold on the market.

Most of them features two DC motors with wheels for motion, a SBC Single Board Computer 
for intelligence, two power sources and some additional board. 

Advancement in technology means that significant computational power is now available at 
low cost and low power consumption, making the prospect of a small cheap platform attractive.

SBC are still limited to this day and more demanding application that involve neural network 
and  artificial  vision  are  still  out  of  reach.  This  is  where  the  IoT component  could  make  the 
difference,  allowing  to  offload  computational  heavy  tasks  on  remote  servers.  There  is  an 
opportunity.
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Some of the small mobile robotic platforms considered in the research can be seen in  Figure 
2. They are cheap, small, and mobile. Most feature some additional sensors and board.

Figure 2: Small Mobile Robotic platforms based on Raspberry Pi [10][11][12]

Aereo-models and Quadcopters (Figure 3) can be considered small mobile platforms as well. 
Wheeled robots are convenient as they can sit on a table, flying drones on the other hand can be  
more fulfilling to work with. Ideally, this thesis should cater to robot makers from both worlds.

Common features of small mobile robotic platforms are:

• The most popular platforms are also the cheapest

• Most wheeled platforms use two small DC motors or servomotors to move around

• Servomotors are popular for manipulators. Flying drones overwhelmingly use servomotors 
for their control surfaces and brushless motors with a servo interface for the propellers.

• A wide range of sensors are used for navigation, from camera, to ultrasound, to infrared, to 
IMUs
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• Wi-Fi is the most common remote data link used. Bluetooth comes second.

• A huge variety of power sources are used. AAA batteries, power banks, LIPO with varying 
number of cells and more

• Usually two power sources are used. A Power bank for the Raspberry and a battery for the 
motors

2.2 Problems Encountered by Robot Makers
A research has been conducted to discovers the kind of problems robot makers routinely encounters. 
HotBlack Robotics has significant experience when it comes to such robots, their expertise proved 
invaluable in narrowing out the research.

On top of regular research, participation in events like the mini-maker faire [14], hackathons 
[15],  workshops  and  more,  allowed  to  see  first  hand  what  aspects  of  robotics  proved  more 
problematic to robot makers.

Common problems identified include:

• Using multiple power sources invites for often irreversible damage on the robot

• Noise caused by DC motors and servomotors induces bugs and instabilities in the Raspberry 
Pi. Something that can be very hard to debug and solve

• Voltage, current and capacity are all things robot makers must consider. Making the wrong 
choice can cause irreversible damage to the robot

• With so many Raspberry Pi operating systems,  it's  hard to chose the right  one forr  the 
application

• The ROS framework is as useful as it is hard to learn and make use of

• Robot  makers  often  have  an  Arduino  Board  and  Arduino  Shields.  Using  them  with  a 
Raspberry Pi is not trivial and involves wiring and programming both at firmware level and 
at software level inside the Raspberry

• Robot makers often spend time solving hardware related issues and software bugs. They 
would rather focus on the application

• The Raspberry Pi can become unstable when powered through the USB port in some load 
configurations. Powering Servos from the Raspberry Pi only exacerbates this problem

• Shields usually lack an hole to let the Raspicam flex cable through

There is a big opportunity for a framework that solves all the hardware and software problems 
identified in the place of the robot makers. The objective must be to make something useful, easy to 
use and cheap that allows robot makers to focus on the application.
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2.3 Existing Raspberry Pi Shields
The first consideration to be done is that mobile robotic platforms require additional boards anyway 
to pilot the engine, so there is space for a custom board.

A quick research showed that  there are  countless Raspberry Pi  shield on the market  that 
perform a wide variety of functions:

• Shields that allows the raspberry to pilot DC motors, brushless motors, and more.

• Shields that allow for an Arduino Shield to be used by the Raspberry Pi.

• Shields that add a micro controller and some sensors.

• Shields that allow the Raspberry to be powered through a buck regulator.

• No  Raspberry  Shield  was  found  that  powered  the  Raspberry  from  below  it's  nominal 
operating voltage of 5V

While shields that handles one or two of the problems identified are plentiful, no shield that 
handled all of them could be found. It was the impossibility to find such hardware that prompted the 
development of this thesis with HotBlack Robotics in the first place.

Some of the Raspberry Pi Shields considered in the research can be seen in Figure 4.

Figure 4: Raspberry Pi Shields [16] [17] [18]
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2.4 Conclusions
To be desirable to robot makers, the custom board should have the following features:

• Low cost

• Easy to assembly, easy to integrate, easy to use

• Support at least two DC motors

• Support servomotors

• Power the whole robot from a single power source

• Allow a wide range of input voltages

• Keep the Raspberry Pi stable regardless of noise generated by the motors and power source 
used

• Protect robot from common mishaps like inverting power cables

• Have an hole to let the Raspicam flex cable through

• Support Arduino Shields

A custom board with the proposed specifications would be highly desirable to a robot maker. 
If such board were to be combined with a software framework that provides IoT functionalities like 
remote computing or a simplified online IDE and allow for easy sharing and integration of open 
source code, widespread adoption of this solution becomes a real possibility.
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3. Specifications
Drafting the specifications is probably the most important part of any project. Significant effort has 
been put into providing only useful and/or cheap features in order to maximize the usefulness of the 
board to robot makers.

3.1 Design Philosophy
An open source platform is successful only when there is a thriving community sharing and reusing 
code for it. Adoption is driven by three main parameters:

• Cost

• Ease of use

• Usefulness

Taking into account the main parameters to optimize for, the overall principles that guided the 
drafting of the specifications are as follow:

• Design a custom board that interfaces with the Raspberry Pi

• The custom board interfaces with the HotBlack framework

• Configuration and setup of the system should be quick and easy

• The HotBlack Framework should promote code sharing and code reuse

• The HotBlack Framework should simplify the programming phase

• The custom board and the HotBlack Framework should solve problems, not create more

• The custom board should be cheap, easy to mount and easy to use

• The custom board should provide features that are desirable to robot makers

• The custom board should give quality of life improvements

• The custom board should be protected against common mishaps and mistakes on the part of 
the robot maker

• The custom board should be compatible with the popular power sources

• The custom board should be compatible with popular open source software

• The custom board should be able to control at least two motion axis

• The custom board should support popular motors

3.2 Pareto Principle
The Pareto Principle  is  an empirical  observation that  emerges  from many different  domains in 
different ways. It basically states that the majority of an observed output quantity will be the result 
of a minority of an observed input quantity.

When applied to a design, it can be stated as follow:

• A solution that covers 100% of the cases will cost 100% of the resources.

• A Pareto Solution will cover 80% of the cases at the cost 20% of the resources.
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• A Pareto Solution might not exists in a given domain.

It is an empirical observation, not a law and not always a Pareto Solution will exist.  For 
example, in a specific field a solution exists that costs 90% of the resources but covers only 10% of 
the cases, making it virtually useless. 

Following the spirit  of the Pareto Principle,  the specifications will  be drawn in a  way to 
maximize  the  user  cases  covered  by the  overall  solution  while  minimizing  overall  costs,  thus 
maximizing usefulness and desirability.

3.3 Dropped Features
Features that would rarely be used,  or that would be overly costly,  be it  in term of PCB area, 
component cost, processing power or power requirements have been dropped in favor of features 
that are cheap to implement and would be desirable for most robot makers.

This is a list of features that were considered, but dropped:

• No On-board battery charger. Extremely useful but overly complex since the board is to be 
compatible with a wide range of different power sources.

• No IMU. Fairly useful,  but  not  useful  enough.  User  that  want  an  IMU can plug in  an 
Arduino Shield with their favorite IMU.

• No native  support  for  brushless  or  stepper  motors.  The  cheapest  most  commonly  used 
motors are Servomotors and DC motors. Arduino Shields can be used to support other types 
of motor.

• No native support  for  more  than four  servomotors.  Having four  servos  allow for  quad-
copters, already. Any more would result in diminishing returns. Arduino Shields can be used 
to support more servomotors.

• No standalone I2C and UART connectors.  Useful  and cheap.  But  not  useful  and cheap 
enough. The pins can be taken from the Arduino Shield connector by robot makers who 
needs them at only a slightly higher cost, while lowering the base cost for everyone.

• Optic Flow sensor. Useful but costly and clunky.

• Radio (Bluetooth, Wi-Fi, etc...). Useful but costly. Wi-Fi is already inside the Raspberry Pi 
Model 3.
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3.4 High Level Architecture: Cloud Architecture 
The overall architecture of the system can be seen in Figure 5.

Figure 5: HotBlack Cloud Architecture

The user needs the following pieces of hardware to get started:

• A computer

• A router and an internet connection

• A Raspberry Pi

• An SD card with the HotBlack HBrain [19] image installed

User and robot do not directly communicate with each others, instead, the user communicate 
with a remote server that handles  the IDE, and the server itself  take care of all  the intricacies 
involved in configuring and controlling the robot. This architecture has several advantages:

• The user only need a basic browser. The HotBlack IDE on the remote server provides every 
tool needed to program and control the robot

• Setup of the system can be done in a matter of minutes with the following steps:

◦ Configuration of the router. A default wi-fi network name is required for the robot to 
connect the first time

◦ Power up the Raspberry Pi

◦ Register  on  the  HotBlack  website  and  accessing  HotBlack  robotics  web  page  on  a 
common browser

Once those steps are taken care, the user can have the system ready and an example project up 
and running in only a few minutes after power up by following the tutorial on the site.
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3.5 High Level Architecture: Custom Board Architecture
The architecture of the hardware of the custom board can be seen in Figure 6.

Figure 6: Custom Board Architecture

The board features:

• A voltage regulator that powers the whole robot from a single power source

• Communication with the Raspberry Pi through the UART interface

◦  The protocol used is the Rosserial, defined by ROS.

• Programming of the microcontroller through the UART interface

◦ The bootloader used is the Arduino Bootloader

◦ The board is compatible with the Arduino Framework and can be programmed through 
the Arduino IDE.

• The board features an Arduino Shield connector for optional hardware expansion

• DC Motor controller for up to two DC motors with encoders

• Four Servomotor connectors

3.6 SBC - Single Board Computer
There are any number of ways to give the robot some intelligence. The Raspberry Pi was chosen 
because it has several remarkable features that makes it highly desirable for robot makers:

• It is the cheapest most popular SBC available on the market

• It is reliable

• It is powerful

• It requires little power to work. About 10W

There are many other ARM based SBC on the market. Alternatives that were considered include:

• Arduino YUN [20]
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• Marsboard [21]

• UDOO [22]

• BeagleBone Black [23]

The Raspberry Pi stood out because of its cost and its popularity, which are key metrics for 
maximizing adoption.

The development of a custom board with an ARM microcontroller on board was considered, 
but was quickly dropped because of the scale economy involved. It is cheaper to make a custom 
board  that  interfaces  with  an  existing  SBC  than  making  a  custom  SBC.  On  top  of  that,  the 
disadvantage  of  not  having  a  large  community  developing  custom Linux  distributions  for  the 
custom SBC cannot be overstated.

The Raspberry Pi is not perfect, and does have a few drawbacks:

• The ARM architecture lacks of the X86 instruction set. It limits the choice for the OS

• The system is unstable under some power and load configurations

• It can become fairly hot in certain load configurations

There are several models of Raspberry Pi

• Raspberry Pi

• Raspberry Pi 2. More powerful. More interfaces, (USB, Camera flat and HDMI).

• Raspberry Pi model 3B. On-Board Wi-Fi radio. More powerful 64bit arm architecture.

Raspberry Pi  2  and Raspberry Pi  model  3B have  the  same  board  layout.  The  HotBlack 
Framework is compatible with both of them.

The Raspberry Pi Model 3 is advised as platform because the additional power consumption 
and cost is worth  the wireless connectivity and the additional computational power. Raspberry Pi 2 
is more attractive for systems that do not need wireless connectivity.

14/113



3.7 Power System
Powering up a mobile robot is not trivial. It is a problem that every robot maker has to face. A 
research conducted on Raspberry Pi based robots shows that the most common configuration is to 
have two separate power sources:

• A USB power bank that powers the Raspberry Pi itself

• An  additional  power  source,  usually  a  number  of  AAA batteries,  to  power  a  motor 
controller, connected through wires to the GPIO.

The power system offers many opportunities to simplify the robot, by removing batteries and 
wires while providing protections and quality of life features.

Specifications for the power system:

• The custom board will enable the robot to be powered by single power source

• The custom board will be compatible with variety of popular power sources

◦ Input Voltage Range: 3.5[V] ~ 15 [V]

◦ Single cell LIPO: 3.5[V] discharged ~ 4.2[V] overcharged

◦ Two cells LIPO: 7.0[V] discharged ~ 8.4[V] overcharged

◦ Three cells LIPO: 10.5[V] discharged ~ 12.6[V] overcharged

◦ NiMH AAA battery: 1.1V per cell

◦ Alkaline AAA battery: 1.5V per cell

◦ USB power bank: 5V

◦ Portable power supply: 3.5[V] ~ 15 [V]

• The custom board will provide protections against common mishaps, like connecting the 
wires in the opposite polarity or protecting the raspberry against noise generated by motors

The power source must be able to provide enough power for both the Raspberry Pi and the 
motors.  The Raspberry Pi 3 Model B alone draws about 10[W]. No amount of electronics can 
output more steady state power than what a power source can provide.

3.8 Arduino Shield Connector
An Arduino Shield is a board that can be mounted on top of an Arduino board and adds some kind 
of hardware functionality to the system. Shields by design are easy to mount and cheap to produce. 

There exists Arduino shields that adds all kind of functionality. From GPS receivers to Geiger 
detectors. From IR sensors to loudspeakers. Sketches often exists that allow users to quickly make 
take advantage of the new hardware. 

There is an opportunity. The custom board can be designed to be compatible with Arduino 
Shields. This will allow robot makers to draw from a large pool of existing desirable robot hardware 
in the form of Arduino Shields.

There  is  another  opportunity.  The board  can  be  made  compatible  not  only with  Arduino 
hardware, but also with the Arduino Framework, allowing the robot maker to also draw from a large 
pool of existing software written for Arduino and Arduino Shields.
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3.9 Form Factor, Design Rules
The custom board will be a shield for the Raspberry Pi 2 or the Raspberry Pi 3. It will have about 
the same physical dimensions of the Raspberry Pi, it will be mounted on top of it and connects with 
its GPIO.

The board will be easy to mount, it will have just two levels of interconnect and will use a 
design rule suitable for a TQFP packages, the package of the microcontroller. Such design rule is 
makes the design of the custom board harder, but lowers the production costs.

3.10 Motors
There are many types of motors. Adding support for all of them would only increase the complexity 
of the board. The custom board will focus on providing support for the most popular motors used in 
small robotic application. Servomotors and DC Motors.

Since the custom board is compatible with Arduino Shields, it can be optionally expanded to 
drive potentially any kind of motor.

In order to be useful, a robot needs at least two axis. The custom board will feature at least 
two axis of DC motors and two axis of servomotors. A reasonable power limit for a small robotic  
platform is 3[A]. Often much smaller DC motors are used 500 [mA], meaning that the drives will 
not overheat in a typical use case.

The servomotors are somewhat cheaper to support. The footprint of their connector is small 
and has a scalable layout. Four axis of servomotors allows for the board to be used as controller for 
quad-copters and UAV, which is the reason four was chosen as the number of axis of servomotors to 
be supported.

Motor specifications so far:

• Four axis of Servomotors. 5V

• Two axis of DC Motors. 3A each

3.11 Encoders
Having two encoder connectors enables closed loop position and speed control on the DC motors. 
Having encoders also enables odometry, the ability to estimate the current position from the angular 
position of the wheels. Both are staple features used in robotics.
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3.12 Recap
The specifications of the custom board so far:

• The custom board will be designed as a Raspberry Pi 2/3B Shield

• The custom board will be cheap, easy to mount and easy to use

• The custom board will be mounted on top of the Raspberry Pi and connect to its GPIO

• The custom board will allow for a single power source to powers the whole robot

• The custom board will be compatible with many popular power sources

• The  custom board  will  feature  protections  against  common  mishaps,  like  inverting  the 
power wires

• The custom board will feature an Arduino Shield connector and will be compatible with 
Arduino Shields

• The custom board will support the following protocols:

◦ The Arduino Bootloader

◦ The Rosserial protocol

• The custom board will be compatible with the following frameworks:

◦ The Arduino Framework

◦ The HotBlack Framework

◦ ROS

• The custom board will be able to control four axis of servomotors natively

• The custom board will support two axis of DC motors natively

• Input Voltage range: 3.5[V] ~ 15.0[V]

Limitations:

• The power source must be able to provide whatever power the system requires

• The Raspberry Pi itself draws about 10[W]

• The DC motors will be powered directly from the input voltage. 3[A] maximum

• The total current used by the Raspberry, the Arduino Shield, and all Servomotors combined 
cannot exceed 5[A]
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4. Architecture
Having  drawn the  specifications,  it's  time  to  delve  deeper  into  the  architectural  design  of  the 
individual blocks of the custom board.

4.1 Power System
The first stage in the power system must be an efficient regulator that take whatever voltage is in 
input and generate an intermediate voltage. After careful considerations, it was chosen to use the 
following specifications for the power regulator:

• Input Voltage: 3.5[V]~15[V]

• Output Voltage: 5.7[V] 5 [A]

Considerations include the drop-out needed by the linear regulators, the voltage drop at higher 
current, the input voltage range for servomotors and the safety margin needed for the Raspberry Pi 
to remain stable in high load configurations.

Since this regulator needs to be efficient, the only solution is to use a switching regulator. The 
output  voltage  can  be  either  greater  or  lower  than  the  input  voltage,  this  limit  the  switching 
topology that can be used. Possible switching regulator topologies are:

• Buck-Boost. Inverting Regulator.

• Flyback. Requires a transformer and a more complex feedback network.

• SEPIC (Single Ended Primary Inductor Converter). Requires two inductors.

The Buck-Boost has an inverted output, which is fine for a stand alone board, but causes all 
sort of problems when the robot makers wishes to use the battery for something else. Making things 
harder for the user would go against the design philosophy of the board. The Buck-boost is not 
suitable.

The Flyback is the optimal choice when an insulation barrier is required, as insulation comes 
for free thanks to the transformer used. In this case, insulation is not needed, and the additional 
component required to close the feedback loop can be seen as an overhead.

The topology of choice for this board is the SEPIC topology (Figure 7). 

Figure 7: SEPIC Topology
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In a SEPIC regulator, the energy is transferred from input to output through a capacitor (C1). 
Two inductors are required for the regulation (L1 and L2). A single low side switch S1 is used. A 
diode suffice as second switch D1.

The intermediate voltage 5.7[V] 5[A] is used by the other peripherals.

The Raspberry Pi need a clean power line. A LDO is used to clean up the 5.7[V] line and 
generate the 5[V] 2[A] required.

The Arduino Shield, the microcontroller and the encoders require another clean 5[V] line. 
Another smaller LDO generates their supply line.

Servomotors can make use of the intermediate voltage directly. Robot Makers will enjoy an 
higher torque from the servomotor with no drawback other than greater power dissipated.

Powering the DC Motors is trickier. When the input voltage is greater than the intermediate 
voltage (>5.7[V]), it's convenient to power the DC motors directly from the power source. When 
the input voltage is lower than the intermediate voltage (<5.7[V]) it would be convenient to use the 
intermediate  voltage,  but that  would vastly increase the required power rating of the switching 
regulator and finding an H-Bridge which can work from 5.7[V] to 15[V] would be a challeng in 
itself.

A compromise was made. The decision was taken to power the DC motors directly from the 
input voltage.  After careful consideration, the architecture of the block schematics of power system 
can be summarized as in Figure 8.

Figure 8: Architecture of the power system
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4.2 Protections
The  aim  is  to  handle  common  mishaps  on  the  part  of  the  robot  maker.  Placing  reasonable 
protections on the power system is not only a good practice, but goes a long way in helping out  
robot makers who may be inexperienced with safe electronic practices.

The overall architecture of the protections is shown in Figure 9.

Connecting power wires the wrong way is the most common mistake. The system should not 
be destroyed by reversing the power wires. Diodes and ideal diodes ensure this does not happen.

Self recovery fuses are used both to prevent over currents and to avoid the hassle of changing 
a fuse when an over-current situation does happens.

Logic reset due to noise inside the power lines is a problem that is as common as it is subtle. 
Robot makers might find it very hard to find the source of the instability. Line filters inside the 
board and separation of the power domains ensure the noise insulation needed to mitigate the 
problem. The added value of handling noise related problems cannot be overstated.

The user may be in a situation when the DC Motors are either not present or not needed. To 
selectively disconnect the DC motors, a solid state relay is required.

Power injected by DC motors in the power lines during break is another potential cause of 
problems. The H-Bridge used features internal recirculation diodes. Another layer of recirculation 
diodes has been placed near the motor connector to move the power dissipation of the braking away 
from the bridge.

Power injected by the DC motor during break is recirculated on the input voltage rail. A zener 
could be inserted to prevent over-voltage situations, but since the input voltage has an wide range, 
it's impractical, so this protection was not inserted.
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4.3 DC Motors and Encoders
The block schematics for the DC Motors and the encoders is  straightforward (Figure  10).  The 
microcontroller generates the control signals for the H-Bridges, moving the motors. Encoders can 
be sampled by the microcontroller in interrupt both to have an odometry reading, or to close a PID 
position or speed loop on the motors. Both odometry and PID can be implemented at the same time.

Figure 10: DC Motors Architecture

What is hidden from the block schematics are all the nuances that have to be handled in order 
to make the system reliable.

• Noise from the motors must be filtered out.

• H-Bridges work at a different voltage from the microcontroller.

• H-Bridges can be cut-off by a solid state relay driven by the microcontroller itself.

• Inputs from the encoder should be filtered.

• Protections should be in place to protect the microcontroller from failure on the encoders

• Encoders can have all sorts of supply voltages and electrical levels. Open drain 12V, TTL, 
etc...

The choice of the right component is of paramount importance. usually an H-Bridge can work 
at a low voltage or at an high voltage. One, or the other. Significant effort has been put in making  
the right choice.
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4.4 Microcontroller
An important step in defining the architecture of the board is the choice of the microcontroller. The 
specifications for the microcontroller so far are as follow:

1. Compatibility with Arduino Shields

2. Enough pins

3. Compatible with Arduino Bootloader

4. Compatible with Arduino Framework

5. Programmable through the Raspberry

The specifications impose many constraints.  The first  obvious choice would be to use an 
Atmel ATmega 328P [24], the same microcontroller on board of the Arduino Uno. It satisfies every 
specification except #2. It doesn't have enough pins.

Specification #1 implies either a working voltage of 5V or the use of level shifters. It was 
decided to use a 5V microcontroller.

Specification #3 implies the use of an Atmel microcontroller or the porting of the bootloader 
to another family. It was decided to stick to Atmel.

Specification #4 implies the use of microcontrollers already supported by the Arduino IDE.

Specification #5 implies either two hardware UART communication peripherals or a lot of 
headaches.

After sifting through many Atmel microcontroller and after careful consideration, the choice 
was made to use an Atmel ATmega 644 [25]. It features:

• 5V operation at 20MHz

• Package TQFP44. Just enough pins for everything on the board

• Two  hardware  UART.  One  for  programming  and  Rosserial  communication  with  the 
raspberry, one for communication with the Arduino Shield

• Enough pins for everything, barring some limitations

• Level shifter are required for communication with the Raspberry Pi (3.3V)

4.4.1 Architecture: Microcontroller Pin Assignment

The assignment of board functions to pins on a microcontroller is somewhat flexible. There is some 
leeway as there are multiple instances for many of the embedded peripherals.

There are also many constraints for the pin assignment as well due to limitations about the 
layout  and  the  routing  and  limitations  due  to  board  space,  electromagnetic  compatibility  of 
switching tracks, routing for the power lines and more.

Features:

• Device: ATmega 644 5V 20MHz

• Package: TQFP44

• Arduino Shield Connector
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• Four Servo Motors

• Two H-Bridges that drive two DC motors

• Two Encoders

• Two LEDs

• Raspberry Pi GPIO

The microcontroller of choice is the ATmega 644, it has 32 usable pins divided in four banks 
of eight. Many pins are reserved as interfaces with the Arduino Shield.

4.4.2 Analog to Digital Converter ADC

The assignments for the ADC interface are set.  The pins must be wired directly to the Arduino 
Shield ADC pins (Table 1).

Table 1: Microcontroller pin assignments for the ADC

4.4.3 PWM Generators

The assignment for the PWM generators are somewhat trickier. The microcontroller has three 
dedicated PWM peripherals, each generating two PWM outputs for a total of six. All of those six 
PWM outputs need to be routed to the Arduino Shield connector.

The board also features two H-Bridges that drive two DC motors. Each of them requires two 
PWM lines for a total of four. Now, there is some overlap, but also some leeway. There are four 
possible user configurations:

1. The use need neither the DC motors neither a Shield that requires PWM signals.

2. The user need DC motors

3. The user need a shield that make use of up to six PWM signals

4. The user need the DC motors and a shield that uses two PWM signals

5. The user need both DC motors and a Shield that uses six PWM signals.

Now, options 1, 2 and 3 are easy to cater to. Four PWM signals can be forked, sending them 
to both the Arduino Shield and the DC motors at the same time.

Option 4 is trickier. If a shield uses PWM signals that are already used by the DC motors, 
then, there will be a soft collision. The user won't be able to control all axis independently.

Option 5 is the trickiest, as the user will have to slave two of the five axis to each others.

The design philosophy comes in our aid. The board should covers all reasonable and cheap 
options, while avoiding costly ones, to maximize usefulness while minimizing costs.
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Pin Number Description Device Device Description
37 PA0, ADC0 Arduino Shield PA0, ADC0
36 PA1, ADC1 Arduino Shield PA1, ADC1
35 PA2, ADC2 Arduino Shield PA2, ADC2
34 PA3, ADC3 Arduino Shield PA3, ADC3
33 PA4, ADC4 Arduino Shield PA4, ADC4
32 PA5, ADC5 Arduino Shield PA5, ADC5



The solution is to fork four PWM lines. Users will be able to deploy options 1, 2 and 3 with 
ease,  but will  be unable to deploy option 4 and 5 without significant effort on their part.  It's  a 
reasonable limitation as the user can expect to be able to use either the on-board motor controllers 
or a shield motor controller. Just not both at the same time.

Table 2: Microcontroller pin assignments for the PWM generators

4.4.4 Atmel In-Circuit Programming (ISP) and Serial Peripheral Interface (SPI)

A  Microcontroller  can  be  programmed  two  different  ways.  Ether  through  an  internal 
communication  interface  with  the  help  of  a  bootloader,  or  with  the  dedicated  Atmel  ISP 
programmer interface.

Using a bootloader is often more convenient for the user, as it allows to program the board 
through an interface that is already user, like a USB port.

The Atmel ISP interface is the only way to burn the bootloader firmware in the first place 
therefore is required in order to for the board to be primed for use. In order to make use of the ISP 
programming interface, the user needs a dedicated piece of HW. The AvRisp MkII  [26] was the 
programmer used in this thesis. It is the cheapest option, but there are any numbers of alternatives  
on the market.

The ISP make use of the SPI hardware embedded inside the microcontroller. The SPI pin must 
also be routed to the Arduino Shield, resulting in a limitation. The user will need to disconnect the 
ISP cable  of  the  programmer  when  they  make  use  of  an  Arduino  Shield  that  needs  the  SPI 
communication. The assignment for the SPI related pins can be seen in Table 3.

Table 3: Microcontroller pin assignments for the ISP and the SPI interfaces
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Microcontroller Board
Pin Number Description Device Device Description

43 PB3, OC0A Arduino Shield D6, OC0A
44 PB4, OC0B Arduino Shield D5, OC0B
13 PD5, OC1A Arduino Shield D9, OC1A
14 PD4, OC1B Arduino Shield D10, OC1B
15 PD7, OC2A Arduino Shield D11, OC2A
16 PD6, OC2B Arduino Shield D12, OC2B
13 PD5, OC1A HBridge A PWM+
14 PD4, OC1B HBridge A PWM-
15 PD7, OC2A HBridge B PWM+
16 PD6, OC2B HBridge B PWM-

Microcontroller Board
Pin Number Description Device Device Description

1 PB5, MOSI Atmel ISP ISP MOSI
2 PB4, MISO Atmel ISP ISP MISO
3 PB3, SCK Atmel ISP ISP SCK

14 RST# Atmel ISP ISP RST#
1 PB5, MOSI Arduino Shield D11
2 PB4, MISO Arduino Shield D12
3 PB3, SCK Arduino Shield D13



4.4.5 Universal Asynchronous Receiver Transmitter interface (UART)

The  microcontroller  features  two  hardware  UART  interfaces.  One  is  used  for  in-circuit 
programming and communication with the Raspberry Pi board, the other is used for communication 
with the Arduino Shield.

The Raspberry Pi works at 3.3V and the microcontroller works at 5V. A level shifter ensures 
the electrical levels are be compatible between the two.

The UART peripheral is a point to point communication interface. The RX input pin of the 
first device must be connected with the corresponding TX output pin of the second device, and vice 
versa. Assignment for the UART pin can be seen in Table 4.

Table 4: Microcontroller pin assignments for the UART interface

4.4.6 Encoders

The board supports two differential encoders with index. They are meant to be used in combination 
with  the  H-Bridges  and  DC  motors  to  close  position  and  speed  control  loops  inside  the 
microcontroller and provide odometry readings.

There are any number of possible electrical configurations for the encoder interface. They can 
be open collector or open drain, they can be TTL, they might work with 5V, 12V, or higher voltages 
still. The complexity of the encoder interface increases significantly if compatibility with multiple 
configurations is given.

In accordance with the design philosophy for the custom board, a single configuration was 
chosen, 5V TTL encoders, the cheapest most common encoders used in small robotic applications. 

If the user wishes to use encoders with different electrical levels, they must take care to place 
appropriate  level  shifter  electronics  outside  the  custom board.  It's  a  reasonable  limitation.  Pin 
assignment for the encoders can be seen in Table 5.

Table 5: Microcontroller pin assignments for the encoders

Any  meaningful  incremental  encoder  firmware  implementation  requires  for  the  encoder 
reading to be handled by an Interrupt Service Routine (ISR).

The requirement is for the encoder signals to be able to trigger such a response inside the 
microcontroller. Atmel allows for ISR to be triggered by any pin, so the specification is easy to 
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Microcontroller Board
Pin Number Description Device Device Description

9 RXI0 Raspberry Pi GPIO TXO
10 TXO0 Raspberry Pi GPIO RXI
11 RXI1 Arduino Shield TXO
12 TXO1 Arduino Shield RXI

Microcontroller Board
Pin Number Description Device Device Description

25 PCINT22 Encoder A Channel A
26 PCINT23 Encoder A Channel B
31 PCINT6 Encoder A Channel Z
40 PCINT8 Encoder B Channel A
41 PCINT9 Encoder B Channel B
30 PCINT7 Encoder B Channel Z



meet.

The programming of an encoder reading ISR is made easier and more efficient if both A and 
B channels of the encoder can trigger the same ISR.

4.4.8 Servomotors and Generic Digital I/O pins

Finally, it's time to route all remaining pins that do not have other specifications. This include the 
Servomotors, as they do not require any hardware peripheral. The assignment for the remaining pins 
can be seen in Table 6.

Table 6: Microcontroller pin assignments for Servomotors and generic digital I/O

The control signal for a servo motor is a Pulse Width Modulated (PWM) signal with a period 
of 20mS and usually the 'zero' at 1.5mS width.

It would be possible to use an hardware PWM generator to generate the control signal for the 
servomotors,  but those interfaces are already assigned, furthermore,  a servomotor signal can be 
efficiently generated using an hardware timer and an ISR.

The shutdown signal for the H-Bridges can be just another general I/O as there are no hard 
specifications tied to it. It can be wired to just about every pin.

Lastly, are the remaining general digital I/O required by the Arduino Shield connector. There 
are not enough pin left to have individual connections. Some of the digital I/O lines are shared 
between the Arduino Shield and the Servomotors. This introduces a limitation. The user will not be 
able to use both a servomotor slot and a Shield that use the shared I/O independently.

The custom board features two LEDs. They are connected to the ISP programmer pins. This 
introduces a limitation. SPI and LEDs cannot be used independently.
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Microcontroller Board
Pin Number Description Device Device Description

42 PB2 H-Bridge Shutdown
2 PB6 Leds Led 0
3 PB7 Leds Led 2
9 PC0 Servomotors Servo 0

10 PC1 Servomotors Servo 1
11 PC2 Servomotors Servo 2
12 PC3 Servomotors Servo 3
9 PC0 Arduino Shield D2

10 PC1 Arduino Shield D4
11 PC2 Arduino Shield D7
12 PC3 Arduino Shield D8
23 PC4 Arduino Shield D12
24 PC5 Arduino Shield D13



5. Test Boards
Chances are that some mistakes will slip through the design phase. It is cheaper, easier and quicker 
to  individually test  parts  of  the  design  that  are  most  likely to  fail,  rather  than  make with  the 
complete design only to have to redo it again once mistakes are discovered.

Two individual boards test two critical sections of the design:

• The Power Regulator

• The H-Bridge Driver

5.1 Design of the Power Regulator Test Board
The Power Regulator is a critical part of the design. A test board allows to test the Power System 
independently from all other components.

Design flow:

• Choice of the SEPIC Controller

• Design of the SEPIC Regulator

• Design of the Linear Regulators

• PCB layout for the test board

• BOM Bills of Materials and production of the PCB

5.1.1 Choice of the SEPIC Controller

The topology of the switching regulator was decided to be a SEPIC. Specifications are:

• Input: 3.5[V] ~ 15 [V]

• Output: 5.7[V], 5[A]

The critical part of the design of the switching regulator is the choice of the controller. There 
are two kinds of controllers:

• Integrated MOS Switch

• External MOS Switch

A quick  research  showed  that  controllers  featuring  an  integrated  switch  cannot  meet  the 
specifications. A controller with and external MOS switch is required.

Several manufacturers were considered. The tightest specification is the wide range of the 
input voltage. Many controllers were found that were able to work with low voltages (3V) using an 
internal charge pump to drive the MOS. Many controllers were found that could handle higher 
voltages (15V). Finding a controller able to work over the full range proved challenging. In the end 
a candidate was found: LT1619[27].

Other controller candidates that were considered were: LM3488, LT1624, LT1871, LT3757, 
LTC3806, TPS51363. Of those, the LM3488 [28]seemed the most promising.
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5.1.2 Design of the SEPIC Regulator

With the topology and the controller decided, the next step was to design the switching regulator 
itself and calculate the value for all components.

The schematics of the regulator (Figure 11) was derived from the datasheet of the component 
LT1619 with the help of the well written Application Note AN-1484  [29] from Texas Instrument 
about SEPIC regulators.

Figure 11: Schematics of the SEPIC regulator

As a low side switch, the obvious choice was to use a N-channel MOS. The switch need a low 
voltage threshold, since the chosen controlled does not have a charge pump and need a nominal 
current greater than 10.93[A].

Many candidates were found that satisfied the specification. The transistor chosen was the 
FDD6635 which has a threshold voltage of 3[V] and a nominal current of 15[A].

The choice of the SEPIC diode is not critical. There are many candidates as specifications are 
not tight for this component. A Schottky diode was chosen to improve efficiency. The final choice 
was the B560C with 42[V] of blocking reverse voltage and 5[A] of nominal current.

The choice of the capacitor is critical since it's the component that handles the energy transfer 
between input and output. If an electrolytic capacitor is used, it must be rated for an high enough 
RMS current. If a ceramic capacitor is used, the problem becomes finding one that has both enough 
capacity. The choice was to use a ceramic capacitor.

The input capacitor is not critical components as the SEPIC is continuous in input. A  220uF 
35V electrolytic capacitor was chosen for the job.

The output capacitor has tighter specifications as the SEPIC is not continuous in output. Care 
has to chose one that can handle the RMS current. A 220uF 16V electrolytic capacitor was chosen 
for the job. 

The feedback network is what decides the value of the steady state output voltage. The output 
voltage is  5.7V.  A feed  forward capacitor  is  used to  improve transient  response,  its  value  was 
calculated according to the datasheet of the component.
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The controller LT1619 requires the design of several filters. The datasheet of the component 
does an excellent job in explaining how to choose the value of the components for the filters.

The controller requires both the output voltage and the switch current to close the control 
loop. A shunt resistor is required near the source of the SEPIC switch. It was decided to try and use 
a shaped PCB track in place of the shunt resistor.

Linear  Technology  provides  the  SPICE model  for  the  SEPIC  controller  LT1619.  Before 
routing the PCB and ordering the components, LT Spice was used to test a simulated version of the 
regulator in various load configuration and input voltages. The feedback from the simulation was 
used to iteratively correct the value of the components, until a combination was found to provide 
the best performance (Figure 12).

After the LT Spice simulation, the final value for the components of the SEPIC regulator in 
Figure 11 are as follow:

SEPIC Power Stage:

• Switch: FDD6635

• Diode: B560C

• LA, LB: EPCOS B82477G4333M000 (33uH)

• C: TDK CKG45NX7S2A106M500JH (Ceramic 10uF)

• Cin:  220uF 35V

• Cout: 220uF 16V

• Rg: 10 Ω SMD0805

• Rpd1: 100 KΩ SMD0805

SEPIC Controller:
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• Rpu1: 100 KΩ SMD0805

• Cbypass (3): 100nF 50V SMD0805

• CB2. 10uF 16V SMD1210

• Schottky barrier: BAT54C

SEPIC Feedback network:

• RAD2: 34.8 KΩ SMD0805

• RAU2: 10 KΩ SMD0805

• CA2: 10nF 50V SMD0805

SEPIC Filter network:

• CFA1: 6.8nF 50V SMD0805

• RFA1: 34.8 KΩ SMD0805

• CFA2: Not used

The simulated output of the SEPIC regulator in a typical use case, the robot maker will power 
the board with a three cell LIPO battery giving 11.1V in input and the load will be about 2A with 
the Raspberry Pi drawing about 1A two servomotors drawing each 500mA. Transient and steady 
state response of the regulator can be seen in Figure 13. 

Figure 13: LT Spice Simulation. 11.1Vin, 2Aout

5.1.3 Linear Regulators

Switching regulators are efficient but noisy. Linear regulators have clean outputs but are inefficient. 
I combine the two t have the best of both worlds.

The bulk of the voltage swing between input and output is handled by the efficient SEPIC 
regulator. The remaining voltage swing is  handled by linear regulators. This way I do most of the 
regulation efficiently, and I handle what's left in a clean way. LDO have about 700mV of drop-out 
voltage across them.

Two linear regulators are used:

• A 5V 3A LDO for the Raspberry Pi
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• A 5V 1A LDO for the Arduino Shield, the microcontroller and encoders.

The design of the linear regulators is straightforward. They need to be able to work at their  
rated  current  with  only  about  700mV  of  drop-out.  It  all  comes  down  to  choosing  the  right 
component.

The schematics used for the linear regulator can be seen in Figure 14.

Figure 14: Schematics for the LDO Regulators

The  choice  for  the  linear  regulator  for  the  raspberry  was  the  EXAR SPX29302  [30].  It 
provides adjustable output, high precision and only need about 600mV of drop-out at 3A. A perfect 
choice to powers the raspberry. The schematics is in Figure 11.

There is a variant that has a fixed voltage, and requires fewer components. The reason the 
adjustable version was chosen was to have the ability to increase the raspberry voltage from 5.0V to 
5.2V, increasing the stability of the device in high load configurations.

A line filter is placed at the input of all linear regulators to further clean up noise and reduce 
cross talk between power lines. This is an important feature, as there are DC motor controllers on 
board that are known to inject dangerous high frequency noise in the power lines.

The  design  of  the  other  linear  regulators  is  straightforward.  It's  all  about  choosing  a 
component that works with a low enough drop-out voltage.

31/113



5.1.4 Supply Board Layout

The power regulator is a critical part in the design of the board. A test board was created  with only 
the power regulator section on it in order to test the power section independently.

Eagle cad was used to design the footprint of the components, design the layout of the PCB 
and generate the Gerber files. 

The design philosophy when it comes to power tracks was to use copper areas to make carry 
as much current as possible.

The board measures 24 by 61 mm. The thickness of the copper layer will be about 22um, 
Maximum current flow will be about 8A.

The  board  (Figure  15)  include  a  SEPIC  controller,  power  components  for  the  SEPIC 
regulator,  linear  regulators  and line  filters,  along with  two LEDs that  light  when the  board  is 
regulating power.

Figure 15: Schematics PCB layout

The  board  interfaces  with  the  outside  world  through  two  six  pin  wide  2.54mm  screw 
connectors. The board takes from 3.5V to 15V in inputs and generate several outputs: 5.7V@5A, 
5V@3A, 5V@1A and 3.3V@1A. Not all output can be used at their rated power at the same time.
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A more detailed description of details for the layout of the board can be seen in Figure 16.

Figure 16: Test Power Regulator Board Layout Sectors

PCB Layout Details:

• (Top) B4, C4, D4, E4, E5: Shunt track. A shaped track that presents a controlled resistance, 
used by the SEPIC controller to sense the current on the switch.

• (Bot) E3: SO8 package of the SEPIC controller LT1619

• (Top) A1: LED, Input power active

• (Top) M5: LED, Output 5.7V active

• (Bot) From A1 to F2: Copper area carries input current

• (Top) From A4 to M1: Copper area for ground voltage

• (Bot) From A3 to G2 to G1: Copper area for intermediate voltage

• G5, H5: Multiple parallel vias carry intermediate voltage to LDO regulators

• (Bot) From A1 to E2: Copper area for internal SEPIC node

• (Top) K5, L5 and (Bot) M4: feedback network for 3A LDO regulator
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Eurocircuit [31] was chosen as manufacturer for the boards. A preview of the final aspect of 
the board can be seen in Figure 17.

5.1.5 Supply Board BOM

The BOM Bills of Materials for the Power regulator test board can be seen in Table 7. Components 
were supplied by RS Components.

34/113

Table 7: BOM for the Test Power Regulator Board

Description Code Quantity
Led Verde 2.2V SMD0805 LG R971 2

FDD6635 1
LDO 5V 800mA sot223 REG1117-5 1

35ZLH220MEFC8X11.5 1
Inductor 33uH 3A B82477G4333M000 2

BAT54CW 1
SK36A R2 2

LT1619ES8#PBF 1
CR0805-FX-1001ELF 2
CR0805-JW-103ELF 2

CPF-A-0805B34K8E1 2
RMC1/10K104FTP 3
08055F682KAZ2A 1
08055C104KAT2A 4

CKG45NX7S2A106M500JH 1
GRM31CB31E106KA75L 2

Ferrite 240nH 26mO 3.2A SMD0806 74479876124C 3
63ZLG100M63X7 4

4
Resettable Fuse PTC 85mO MF-NSMF200-2 1

Low Vth NMOS

Electrolitic Capacitor 220uF 35V 755mA 8mm

Twin Scottky 200mA sot23
Diodo Schottky 60V 0,75V 3A

Sepic Controller SOIC8
Resistenza 1K SMD0805

Resistenza 10K SMD0805
Resistenza 33.8K SMD0805
Resistenza 100K SMD0805

Condensatore 6.8nF V SMD0805
Condensatore 100nF 50V SMD0805

Capacitor Sepic 10uF 100V SMD1812
Condensatore 10uF 25V SMD1206

Electrolitic Capacitor 100uF 6,3V 480mA 6,3mm
Morsetto a vite 5.12mm 1x3



5.2 Design H-Bridge Board
The  H-Bridge  is  a  problematic  component.  The  difficulty  lies  in  finding  one  that  fits  the 
specifications.  A test  board  has  been used  to  test  it  independently from other  components  and 
validate the choice.

5.2.1 Component Choice: H-Bridge

Driving DC motors involves the use of a circuit known as H-Bridge, a structure in which four solid 
state switches are commuted in a PWM modulation.

The rotor of the engine has a significant inertia and act as a low pass filter. The result is that 
the speed of the DC motor will be directly proportional to the duty cycle of the PWM control signal. 
An H-Bridge allows to control both the speed and the direction of rotation of a DC motor.

There are any number of ways to implement an H-Bridge. Low power motors (<50mA) can 
be driven by digital I/Os. Sigh power motors (>10KW) are driven by high power IGBT transistors 
at high voltages and currents.

Target robotic platforms use at most 3A DC Motors at low voltages (<15V) usually. There 
exists  fully  integrated  H-Bridge  components  that  makes  the  control  as  easy  as  powering  the 
component and wiring in a digital PWM signal.

The problem arise from the intended specifications. The board allows for a wide input range 
(3.5-15V). H-Bridge that works at lower voltages, have a low maximum voltage as well. H-Bridges 
that works at 15V will cut-off power below a certain threshold (9V usually). An H-Bridge is limited 
by the gate driver and its charge pump.

One option  is  to  make the  H-Bridge  from discrete  components.  This  option  was  quickly 
discarded because of the area required. It just can't fit the board.

Another option is to power the H-Bridge from the internal intermediate voltage of 5.7V, but it  
was discarded as well because it would limit the choice for the DC Motor and it would further tax 
the already burdened SEPIC regulator.

The design philosophy for this board is not provide costly features. Robot makers can take 
advantage of servo motors when working with a low input voltage, so it is a reasonable limitation 
for the DC motors to be inoperable when using a small battery.

A through market research was conducted to see if  there were H-Brides available on the 
marked that had a small footprint and a reasonably low cut off threshold. Ideally, the H-Bridge 
should be able to operate from two LIPO cells to maximize usefulness.

Again, it is about choosing the right component for the job. H-Bridge Specifications:

• Maximum voltage: 15V

• Cut off voltage greater than 6.6V (Two LIPO cells at low charge level)

• Small enough footprint for two to fit the custom board
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A research  showed  that  an  H-Bridge  existed  that  satisfied  the  tight  specifications.  The 
BD62321 [32] from ROHM (Figure 18).

Figure 18: ROHM 
BD62321 

Unlike other  H-Bridges,  like the LMD18200  [33],  the BD62321 has  just  seven pins.  No 
external charge pump capacitors, or filters are needed at all. Only power, motor pins and PWM 
signals are routed. The package seems also good from a thermal point of view. The component 
features:

• 36Vmax, 6Vmin, 3Amax, 100KHz PWM

• HRP7 Package (9.4 by 10.5 mm)

5.2.2 Mini Arduino Shield

Testing an H-Bridge component requires a way to generate PWM signals.

An option would be to include a microcontroller inside the board, but that seems overkill as 
this board is designed to just test the component.

Since the PWM signal will not be generated internally, it must come from the outside. An 
option would be to just place some screw connectors and make a simple breakout board. 

A more attractive proposition is to use an Arduino Uno board as controller, and looking at the 
Arduino Shield connector, there is an opportunity: The PWM pins are exactly on the opposite side 
of the power pins.

The test board makes use of a minimal number of Arduino Connector pins and is designed as 
the smallest Arduino Shield.

The outline of the mini Arduino Shield to test the H-Bridge component is shown in Figure 19.

Figure 19: Outline of the mini Arduino 
Shield

Some pins are unused, and there is some free space on the board. The space host a couple of 
LEDs, a linear regulator to power the Arduino Uno and an encoder connector to allow for a PID 
control loop.
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5.2.4 H-Bridge Test Board Design

The schematics for the H-Bridge test board can be seen in Figure 20. 

Figure 20: Schematics for the H-Bridge Test Board

This board is made of several sections:

• Input Protections: Protect against reverse voltages and over-currents

• 5V Regulator: Powers the Arduino shield board

• Motor Driver: The H-Bridge under test along with line filters against motor noise

• Connectors

As for the microcontroller pin assignment, the PWM pins for the H-Bridge must be routed 
first as they require dedicated HW. Pin D9 and D10 were chosen.

Remaining pins have no hard constraint to them. Any generic I/O would do. D8 is wired to a 
LED, D12 and D13 are wired to the encoder channels.

DC motors are known to inject high frequency noise in the power lines and can easily make 
microcontroller unstable. A line filter is inserted to protect the system.
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5.2.5 H-Bridge Test Board Layout

The layout of the H-Bridge Test Board (Figure  21) is straightforward. Special care was taken in 
getting the footprints of the components right, in giving enough area to the power tracks and in the 
design of the Arduino Uno connector footprint.

Figure 21: Layout for the H-Bridge test board
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In Figure 22 the area allocation for the various sections of the board can be seen.

Figure 22: Area allocation for the H-Bridge test board

The board has been manufactured by Eurocircuits. In Figure 23 the preview of the board can 
be seen. The final dimensions are 16.5x52[mm]. It's about the smallest a practical Arduino Shield 
can be.
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5.2.6 H-Bridge Test Board BOM

The BOM, Bill  Of Materials  can  be  seen in  Table  8.  The components  were  ordered  from RS 
Components.

Table 8: BOM for the H-Bridge Test Board
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Description Manifacturer Code Quantity
LDO 5V 800mA sot223 REG1117-5 1
Morsetto a vite 2.54mm 1x4 1725672 1
Morsetto a vite 2.54mm 1x2 1725656 2
H-Bridge. 3A 6Vmin 36Vmax BD62321HFP-TR 1
Ferrite 240nH 26mO 3.2A SMD0806 74479876124C 2
Led Verde 2.2V SMD0805 LG R971 1
Condensatore 100nF 50V SMD0805 08055C104KAT2A 7
Resistenza 1K SMD0805 CR0805-FX-1001ELF 5
Diodo Schottky 60V 0,75V 3A SK36A R2 1
Electrolitic Capacitor 100uF 6,3V 480mA Ir 6,3mm 63ZLG100M63X7 1
Electrolitic Capacitor 220uF 35V 755mA 8mm 35ZLH220MEFC8X11.5 1
Resettable Fuse PTC 85mO MF-NSMF200-2 1



6. Robotic Platform
The objective for this thesis is to develop an useful framework for small robotic platforms. Building 
one such platform comes natural as it allows to test and experience the features as they are being 
developed.

It takes time to design, route and manufacture the custom shield. Boards already developed by 
the candidate for past  robotic platforms have been used in a configuration close enough to the 
desired final result provide meaningful feedback.

6.1 Seeker of Ways
The small mobile robotic platform built for this thesis is named Seeker of Ways (Figure 24). It's a 
good sounding and apt name for a robot that focuses on navigation and remote control from the 
cloud. This platform has been used extensively to write and test the firmware for the board and to  
develop example applications using the HotBlack software framework.
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The platform is made of the following components:

• Three levels of polycarbonate as support structure.

• Commercial DC motors with wheels and integrated encoders for motion

• Three LIPO cells in series (3700mAh)

• LIPO battery charger

• Power Switch / Protections

• Motor controller

• USB Camera
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6.1.1 Seeker of Ways: Architecture

The architecture of the robotic platform can be seen in Figure 25.

Figure 25: Architecture of Seeker of Ways

The architecture works as follow:

At  the  topmost  level  there  is  the  HotBlack  cloud  infrastructure  that  runs  the  HotBlack 
software framework. The user programs and controls the robot through a remote interface.

The Raspberry Pi runs an operating system Figure developed by HotBlack Robotics. The user 
does not need to modify the Figure. Te user need a wireless network named DotBot for the first use. 
The name of the network can be reconfigured once inside.

The ROS Framework through an  hidden  but  complex chain  of  events  searches  for  ROS 
compatible devices, including the motor controller connected through the UART interface using the 
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Rosserial protocol.

An ATmega 324 board runs the firmware that will be run by an ATmega 644 once the custom 
shield is complete. By default the board recognizes custom made topics that allow to move the 
motors and read the encoders.

The ATmega324 board connects through a second UART interface to a motor controller with 
a simple protocol. Once the shield is complete, the motor controller too will be on-board, and there 
will be no need for a second board.

The Raspberry Pi is powered through the GPIO by the ATmega324 board, just like it will be 
in the final configuration. In this version the motor controller draws power directly from the battery.

6.1.2 Motor Controller

The motor controller (Figure 26) is one that was built a while ago. It was designed exactly for  this 
kind of robotic applications and it can be considered an early precursor to the custom board being 
developed.

This motor controller is soldered on a prototype board. It communicates through an UART 
interface and controls two DC Motors with Encoders. PID can be closed in both speed and position.

The motor controller uses the LMD18200, an integrated H-Bridge with MOS switches, itself 
an inferior version to the newer better motor controller chosen for the custom board.

The microcontroller is an ATmega328, the same microcontroller used by an Arduino. The 
firmware is written in C using Atmel's own IDE and cross compiler, the AVR Studio 7. Actually, the 
previous firmware was developed on AVR Studio 4, the old code has been ported to the new IDE 
version to take advantage of the better cross compiler.

Most of the firmware was already done, and the board was fully tested and reliable. Despite  
gathering dust for a few years, it still worked like a charm when powered up as great care was taken 
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when bundling the wire-wrap cables on the back to avoid malfunction.

The firmware  is  made of  several  modules.  A block schematics  of  the  architecture  of  the 
firmware can be seen in Figure 27.

Figure 27: SoW Motor Controller Firmware Architecture

The command parser is a firmware library I'm quite proud of. I found myself writing parsers 
over and over, so I made a library that matches characters and handle special parametric symbols 
like the printf function, but limited in scope in order to minimize resource requirement. The result is 
that one just need to define the commands in a dictionary and feed it with a byte stream. The parser 
library will handle all the nuances.

The definition of the dictionary can be seen in the code snippet “main.c” - Parser Dictionary. 
Four commands were defined:

• UART_CMD_PING: reset the connection timeout, a safety feature

• UART_CMD_SIGN: asks for the board signature. A string

• UART_CMD_SETVELXY: sets the target speed for the wheels

• UART_CMD_GET_ENCREL: Get the change in encoder reading since last call

Code Snippet “main.c” - Parser Dictionary

///---------------------------------------------------------

/// PARSER COMMANDS

///---------------------------------------------------------

//Ping command

#define UART_CMD_PING 1

//Sign command. Board is expected to answer with the signature string on UART

#define UART_CMD_SIGN 2

//Set desired forward and sideway velocity
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#define UART_CMD_SETVELXY 10

//Get the relative encoder position since last reading. Cap to S16

#define UART_CMD_GET_ENCREL 21

//Command dictionary. Command IDs 0 and 255 are forbidden

U8 uart_cmd[] =

{

//Ping: No action. Effect is to reset the connection timeout

UART_CMD_PING , 'P', '\0', //Sign: 
Ask for board signature

UART_CMD_SIGN , 'F', '\0',

//Set X Y: X=forward motion. Y=sidway motion

UART_CMD_SETVELXY , 'V', 'X', '%', 'd', 'Y', '%', 'd', '\0', 

//Get relative encoder reading since last call

UART_CMD_GET_ENCREL , 'G', 'E', 'T', 'E', 'N', 'C', 'R', '\0',

//Dictionary Terminator

'\0'

};

//Board Signature

U8 *board_sign = (U8 *)"TwinDrive";
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6.1.3 Rosserial Slave

The control board (Figure 28) too was built a while ago to make practice with routing PCBs and to 
have a breakout board for Atmel microcontrollers with a slot for a LCD. It's a board that served well 
over the years. A couple of dozens of them have been used over for various projects.

The board used in SoW features an ATmega 324 and an LCD display. The DIL40 ATmega324 
and the TQFP44 ATmega644 belongs to the same family, making porting the code as easy as 
changing the target platform on the IDE.

The ATmega324 module is mounted on top of a prototyping board (Figure 29) which features 
connectors, protections and the power regulator for the Raspberry Pi.

Figure 29: SoW Rosserial Slave Board
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The firmware on board of the rosserial Slave board performs most of the functions that would 
be expected of the custom shield being developed. It act as rosserial Slave, it powers the system. A 
block schematics of the board and the firmware can be seen in Figure 30.

The architecture differs from the final intended configuration of the custom shield. A native 
LCD display is present. The second UART peripheral is used to communicate with the motor board 
rather than being free.  The rosserial  slave board lacks an Arduino shield connector and remote 
bootloader capability.

6.1.4 Differencies between SoW and the custom shield

Seeker of Ways architecture features many of the functions of the custom shield, but has 
significant differences as well:

• The functions of the motor controller, are performed by a dedicated motor board controlled 
through the second UART peripheral

• No Bootloader support. It lacks a controllable reset line

• No Arduino Shield connector. Lacks expansion capability

• LCD Display. It is installed on the microcontroller module, and provides an effective 
runtime debug and monitor tool.

Despite the differences, Seeker of Ways proved to be an invaluable tool to develop the 
firmware and the applications. The platform has a Long battery life, is sturdy and can cross small 
obstacle, is fast, and is reliable, having never broken down.
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6.2 Software and Firmware
The previous chapters focused on specifications, vision for the project,  architecture,  component 
choice  and HW implementation. This section describes the code that runs on the microcontroller 
inside the shield and the high level software framework and application.

6.2.1 Firmware Architecture

Seeker  of  Ways,  the  mobile  robotic  platform built  for  development,  has  a  different  hardware 
configuration compared to the custom board that is going to be developed. As long as the choice of 
microcontroller is made correctly, minimal work is required to port the code.

The motor board is based on an ATmega 328 and uses two LMD18200 as H-Bridges. It was 
built using a prototyping soldered board for the purpose of driving two DC motors with encoders 
and run PID control loops and communication.

The motor board was chosen because it was available and tested, with the firmware already 
written. Only minimal work was required to add a few messages to the command parser.

The rosserial driver runs on an existing custom PCB based on an ATmega 324, basically a  
version of the ATmega 644 with less memory. Porting the code can be as simple as changing the 
target of the cross compiler in the Atmel Studio 7 IDE [34].

Two new firmware modules have been implemented inside the rosserial slave:

• The rosserial driver that communicates with the Raspberry Pi

• The bootloader.

The custom board is seen by the Raspberry Pi as a ROS node. The communication between 
the two is done using the rosserial protocol. over a UART communication channel. 

On top of the driver for the communication protocol, ROS messages themselves that allows 
communication between the Raspberry Pi and the custom board need to be defined in this phase. 

Several baud rates were considered. The rosserial UART runs at 128[Kb/s]. Discretization of 
internal  prescalers  of  the  microcontroller  means  that  the  true  baud  rate  is  125  [Kbs].  This 
discretization causes no meaningful data loss.
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6.2.2 Rosserial Driver

This thesis requires implementing the rosserial protocol inside an ATmega644.

An open source C++ implementation already exists for Arduino. Rather than rewriting the 
driver from scratch, the existing code has been ported to AVR C++ using AVR Studio 7 as cross 
compiler.

Porting the library involves rearranging the folder structure of source and header folders, re-
factoring the names of the .h files and writing a low level class that interfaces the rosserial driver 
with the physical peripherals of the microcontroller.

The low level hardware interface methods that needs implementing in order to port the rosserial 
driver are:

• Ros_driver::read. Get data from the UART

• Ros_driver::write. Send data through the UART peripheral

• Ros_driver::time. Get the number of milliseconds passed since power on

• Subscriber  and  publisher  topics  callback  functions.  This  code  physically  execute  ROS 
messages on the hardware (get encoder position, set motor speed, etc...)

The read method from the  Ros_driver class, can be seen in the ros_driver_at324.cpp snippet. 
It  executes  a  blocking  read  from  the  UART peripheral,  reading  a  character  from  the  UART 
interface.

Code Snippet “ros_driver_at324.cpp” - read

int Ros_driver::read( void )
{

///----------------------------------------------------------
/// STATIC VARIABILES
///----------------------------------------------------------

///----------------------------------------------------------
/// LOCAL VARIABILES
///----------------------------------------------------------

//return value
int ret;

///----------------------------------------------------------
/// CHECKS
///----------------------------------------------------------

///----------------------------------------------------------
/// INITIALIZATIONS
///----------------------------------------------------------

///----------------------------------------------------------
/// BODY
///----------------------------------------------------------

//Blocking read from UART interface
ret = get_ch();

///----------------------------------------------------------
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/// FINALIZATIONS
///----------------------------------------------------------

///----------------------------------------------------------
/// RETURN
///----------------------------------------------------------

return ret;
} //end method: read

The write method from the  Ros_driver class, can be seen in the ros_driver_at324.cpp - write 
snippet.  This  method  is  non  blocking.  It  transfers  the  output  string  to  a  memory.  The 
microcontroller will handle transmission through the UART interface when the system is idle to 
save resources.

Code Snippet “ros_driver_at324.cpp” - write

void Ros_driver::write(uint8_t* data, int length)
{

///----------------------------------------------------------
/// STATIC VARIABILES
///----------------------------------------------------------

///----------------------------------------------------------
/// LOCAL VARIABILES
///----------------------------------------------------------

//temp fast counter
register int t;
//temp var
U8 txd;

///----------------------------------------------------------
/// CHECKS
///----------------------------------------------------------

///----------------------------------------------------------
/// INITIALIZATIONS
///----------------------------------------------------------

///----------------------------------------------------------
/// BODY
///----------------------------------------------------------

//For: scan string
for (t = 0;t < length;t++)
{
//While: the Uart1 HW buffer is not empty
while (UART1_TX_BUSY());
//
txd = data[t];
cnt_tx++;
//Write on UART tx buffer.
UDR1 = txd;

}

///----------------------------------------------------------
/// FINALIZATIONS
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///----------------------------------------------------------

///----------------------------------------------------------
/// RETURN
///----------------------------------------------------------

return;
} //end setter: write | uint8_t *, int

The time method from the  Ros_driver class, can be seen in the ros_driver_at324.cpp - time 
snippet.  This  method returns  the  number of  milliseconds the microcontroller  has  been up.  The 
variable is stored as a global variable and updated by the main.

Code Snippet “ros_driver_at324.cpp” - time

unsigned long Ros_driver::time( void )
{

///----------------------------------------------------------
/// STATIC VARIABILES
///----------------------------------------------------------

///----------------------------------------------------------
/// LOCAL VARIABILES
///----------------------------------------------------------

unsigned long ret;

///----------------------------------------------------------
/// CHECKS
///----------------------------------------------------------

///----------------------------------------------------------
/// INITIALIZATIONS
///----------------------------------------------------------

///----------------------------------------------------------
/// BODY
///----------------------------------------------------------

//fetch global millisecond time
ret = g_time_ms;

///----------------------------------------------------------
/// FINALIZATIONS
///----------------------------------------------------------

///----------------------------------------------------------
/// RETURN
///----------------------------------------------------------

return ret;
} //end method: time
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A subscribed topic will execute a user defined callback function. For each topic subscribed, a 
callback  function  must  be  defined  that  execute  the  hardware  level  instructions  required.  As 
example, the code snippet msg_empty shows a callback function that toggle a led connected to the 
port PC0 when the message “empty” is received.

Code Snippet “main.cpp” - msg_empty

void msg_empty( const std_msgs::Empty& toggle_msg )
{

///----------------------------------------------------------
/// STATIC VARIABILES
///----------------------------------------------------------

///----------------------------------------------------------
/// LOCAL VARIABILES
///----------------------------------------------------------

///----------------------------------------------------------
/// CHECKS
///----------------------------------------------------------

///----------------------------------------------------------
/// INITIALIZATIONS
///----------------------------------------------------------

///----------------------------------------------------------
/// BODY
///----------------------------------------------------------

    TOGGLE_BIT( PORTC, 0 );

///----------------------------------------------------------
/// FINALIZATIONS
///----------------------------------------------------------

///----------------------------------------------------------
/// RETURN
///----------------------------------------------------------

return;
} //end function: msg_empty

Making use of the rosserial driver inside the microcontroller is remarkably simple. The user 
need to do as follow:

• Call the constructor for the rosserial driver class

• Call the rosserial initialization method

• Call the constructors for the subscriber topic classes and link the topics to the callback 
functions.

• Subscribe the topic classes inside the rosserial node class

• Inside the infinite for call the  ros_node.spinOnce method. It's the runtime method.
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The  code  snippet  “main.cpp” listed  below shows  a  the  minimum code  that  execute  the 
Rosserial driver. This code registers a topic called toggle_led of type Empty and toggles a LED 
when the Raspberry Pi sends such message.

Code Snippet “main.cpp”

#define EVER (;;)

int main( void )
{

///----------------------------------------------------------
/// STATIC VARS
///----------------------------------------------------------

///----------------------------------------------------------
/// LOCAL VARS
///----------------------------------------------------------

//ROSnode class.
ros::NodeHandle  ros_node;

   ///----------------------------------------------------------
/// VARS INIT
///----------------------------------------------------------

///----------------------------------------------------------
///    Rosserial init
///----------------------------------------------------------

ros_node.initNode();

///----------------------------------------------------------
/// Subscriber
///----------------------------------------------------------

    //Construct subscriber topic class
ros::Subscriber<std_msgs::Empty> sub_empty("toggle_led", &msg_empty );
//Subscribe topic
ros_node.subscribe(sub_empty);

///----------------------------------------------------------
/// MAIN LOOP
///----------------------------------------------------------

//Main Loop
for EVER
{

        ///Operative user code...

///----------------------------------------------------------
/// ROS Handler
///----------------------------------------------------------

//If: Handle ros messages. Flag generated by interrupt timer.
if (flags.ros == 1)
{

//clear flag
flags.ros = 0;
//
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ros_node.spinOnce();
}

}//end for: for EVER

return 0;
} //end main

6.2.3 ROS Topics

A ROS Node can be either a piece of software or hardware. Nodes are seen by ROS as black boxes 
that sends or receive messages to one another. Messages in ROS are called Topics. The publish 
subscribe paradigm can be seen in Figure 31.

A ROS Topic is  a message that  is  implemented as  a C++ class.  It  provides standardized 
methods as interface (::init, ::read, ::write, ::time). Nodes that make use of a Topic must individually 
include the definition to make use of it.

A node that sends a message is called Publisher. A node that receives a message is called 
Subscriber. ROS API calls allow nodes to register, send and receive.

ROS defines a set of standard messages that can be used out of the box for communication, 
like the UInt8 topic that exchange an unsigned 8bit number or an Figure topic meant to exchange 
images. The header definition for the message  UInt8 can be seen in the code snippet  “UInt8.h” 
below.

Code Snippet “UInt8.h” - Uint8
namespace std_msgs
{
    class UInt8 : public ros::Msg
    {
    public:
        uint8_t data;

        UInt8():
            data(0)
        {
        }

        virtual int serialize(unsigned char *outbuffer) const
        {
            int offset = 0;
            *(outbuffer + offset + 0) = (this->data >> (8 * 0)) & 0xFF;
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            offset += sizeof(this->data);
            return offset;
        }

        virtual int deserialize(unsigned char *inbuffer)
        {
            int offset = 0;
            this->data =  ((uint8_t) (*(inbuffer + offset)));
            offset += sizeof(this->data);
            return offset;
        }

        const char * getType()
        {
            return "std_msgs/UInt8";
        };
        const char * getMD5()
        {
            return "7c8164229e7d2c17eb95e9231617fdee";
        };
    };
}

A custom user Topic is defined by writing a C++ header file that must be included by both the 
subscriber and the publisher node. In a similar fashion to the ROS driver, this header must provide 
standardized interface methods.

ROS is a framework that has been adopted by a large community, and many open source 
software tools exist that automatically generate the .h definition file for a Topic by providing the 
description of the payload fields of the message.

The topic has  a data  field that  hold the payload,  a  serialize and deserialize function that 
pack/unpack the data into a 8bit vector for communication, a getType() function that generate a 
string with the name of the message, and a getMD5() functions that saves a precalculated MD5 
CRC hash in string form used by the subscriber to check the integrity of the message.

There  are  many  namespaces  to  chose  from when  adding  a  new  topic.  Commonly  used 
namespaces are:

• std_msgs: It holds many basic topics that exchange a single variable (float, UInt16, etc...). 
UInt8 message belongs to this namespace

• geometry_msgs: This namespace is home to topics that describe coordinates. Twist.h is part 
of this namespace and contains a 3D angle and position

• sensor_msgs:  used  to  exchange  sensor  data.  Figure.h  belongs  to  this  namespace  and 
exchanges an image, usually snapped from an on-board camera
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6.2.4 Custom Board Messages

The design philosophy for the system described in this thesis is to make the life of the robot maker 
easier. Providing a set of ROS Topics ideally suited for small robotic mobile platforms is one way in 
which this is accomplished.

Advanced users will of course be able to add their own custom topics to cater to their specific  
application, but this requires knowledge of the intricacies of ROS.

A set of useful messages and example open source projects have been provided that allow an 
inexperienced robot maker to make the HotBlack powered platform to move out of the box, just by 
running the example project on the browser based HotBlack IDE.

First and foremost, messages are needed that allows to move the robot. Depending on the 
structure of the platform, there are several kind of motions:

• Wheeled robots: Move in a 2D space. Require two Cartesian positions and one angle.

• Aeromodels: Move in a 3D space. Require three Cartesian positions and three angles.

• Robotic arms. End effector move in a 3D space. Require three Cartesian positions and 
three angles.

A standard message exists in ROS that already describes a 3D Euler position featuring three 
Cartesian positions and three angles, Twist.h. This Topic belongs to the geometry_msgs namespace. 
Its code can be seen in the code snippet “Twist.h” down below.

Code Snippet “Twist.h”
namespace geometry_msgs
{
    class Twist : public ros::Msg
    {
    public:
        geometry_msgs::Vector3 linear;
        geometry_msgs::Vector3 angular;

        Twist():
            linear(),
            angular()
        {
        }

        virtual int serialize(unsigned char *outbuffer) const
        {
            int offset = 0;
            offset += this->linear.serialize(outbuffer + offset);
            offset += this->angular.serialize(outbuffer + offset);
            return offset;
        }

        virtual int deserialize(unsigned char *inbuffer)
        {
            int offset = 0;
            offset += this->linear.deserialize(inbuffer + offset);
            offset += this->angular.deserialize(inbuffer + offset);
            return offset;
        }
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        const char * getType()
        {
            return "geometry_msgs/Twist";
        };
        const char * getMD5()
        {
            return "9f195f881246fdfa2798d1d3eebca84a";
        };
    };
}

The Twist Topic covers Aeromodels and Robotic Arms quite well, but the message is unsuited 
for wheeled platforms.

Twist exchanges six floating point numbers. A wheeled platform would need at most three, 
and on top of that, an 8bit microcontroller like the ATmega 644 lacks the hardware to natively 
handles floating point calculations. Using floats involves significant overheads. On top of all of 
that, exchanging six floating point numbers of four byte each one hundred times a second would use 
uses 19.2Kb/s of bandwidth of the 128Kb/s.

A more efficient set of custom ROS messages is needed for wheeled platforms. The messages 
have been collected in a custom namespace named after the HotBlack framework: hb_core_msgs.

A total of four custom ROS messages have been defined:

• Velocity2D: Controls the speed of two wheels

• Pose2D: Identify the position of the robot in two dimensions

• Odom2D: Returns the relative position of the robot in two dimensions

• Odom2DExtended: Returns the absolute position of the robot in two dimensions

The first message is one that allows to set the speed of the wheels. After careful consideration 
the Velocity2D message has been crafted. it uses two signed 16bit integers in fixed point to control 
the speed of two wheels. The definition of the Topic can be seen in the code snippet “Velocity2D.h” 
down below.

Code Snippet “Velocity2D.h”
namespace hb_core_msgs
{

class Velocity2D : public ros::Msg
{
    public:
        int16_t linear;
        int16_t angular;

        Velocity2D():
            linear(0),
            angular(0)
        {
        }

        virtual int serialize(unsigned char *outbuffer) const
        {
            int offset = 0;
            union
            {
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                int16_t real;
                uint16_t base;
            } u_linear;
            u_linear.real = this->linear;
            *(outbuffer + offset + 0) = (u_linear.base >> (8 * 0)) & 0xFF;
            *(outbuffer + offset + 1) = (u_linear.base >> (8 * 1)) & 0xFF;
            offset += sizeof(this->linear);
            union
            {
                int16_t real;
                uint16_t base;
            } u_angular;
            u_angular.real = this->angular;
            *(outbuffer + offset + 0) = (u_angular.base >> (8 * 0)) & 0xFF;
            *(outbuffer + offset + 1) = (u_angular.base >> (8 * 1)) & 0xFF;
            offset += sizeof(this->angular);
            return offset;
        }

        virtual int deserialize(unsigned char *inbuffer)
        {
            int offset = 0;
            union
            {
                int16_t real;
                uint16_t base;
            } u_linear;
            u_linear.base = 0;
            u_linear.base |= ((uint16_t) (*(inbuffer + offset + 0))) << (8 * 0);
            u_linear.base |= ((uint16_t) (*(inbuffer + offset + 1))) << (8 * 1);
            this->linear = u_linear.real;
            offset += sizeof(this->linear);
            union
            {
                int16_t real;
                uint16_t base;
            } u_angular;
            u_angular.base = 0;
            u_angular.base |= ((uint16_t) (*(inbuffer + offset + 0))) << (8 * 
0);
            u_angular.base |= ((uint16_t) (*(inbuffer + offset + 1))) << (8 * 
1);
            this->angular = u_angular.real;
            offset += sizeof(this->angular);
            return offset;
        }

        const char * getType()
        {
            return "hb_core_msgs/Velocity2D";
        };
        const char * getMD5()
        {
            return "51fd6b987aa2eb4fc97aebca8aaf424e";
        };
    };
}
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The second message defines the absolute position of the robot. It uses three 32bit signed int in 
fixed point for the X and Y position and one for the absolute heading. This message allows the 
Raspberry Pi to move the robot to a position or to receive the estimated position of the platform in  
space.  The definition of the Topic can be seen in the code snippet “Pos2D.h” down below.

Code Snippet “Pos2D.h”
namespace hb_core_msgs
{

    class Pose2D : public ros::Msg
    {
    public:
        int32_t x;
        int32_t y;
        int32_t theta;

        Pose2D():
            x(0),
            y(0),
            theta(0)
        {
        }

        virtual int serialize(unsigned char *outbuffer) const
        {
            int offset = 0;
            union
            {
                int32_t real;
                uint32_t base;
            } u_x;
            u_x.real = this->x;
            *(outbuffer + offset + 0) = (u_x.base >> (8 * 0)) & 0xFF;
            *(outbuffer + offset + 1) = (u_x.base >> (8 * 1)) & 0xFF;
            *(outbuffer + offset + 2) = (u_x.base >> (8 * 2)) & 0xFF;
            *(outbuffer + offset + 3) = (u_x.base >> (8 * 3)) & 0xFF;
            offset += sizeof(this->x);
            union
            {
                int32_t real;
                uint32_t base;
            } u_y;
            u_y.real = this->y;
            *(outbuffer + offset + 0) = (u_y.base >> (8 * 0)) & 0xFF;
            *(outbuffer + offset + 1) = (u_y.base >> (8 * 1)) & 0xFF;
            *(outbuffer + offset + 2) = (u_y.base >> (8 * 2)) & 0xFF;
            *(outbuffer + offset + 3) = (u_y.base >> (8 * 3)) & 0xFF;
            offset += sizeof(this->y);
            union
            {
                int32_t real;
                uint32_t base;
            } u_theta;
            u_theta.real = this->theta;
            *(outbuffer + offset + 0) = (u_theta.base >> (8 * 0)) & 0xFF;
            *(outbuffer + offset + 1) = (u_theta.base >> (8 * 1)) & 0xFF;
            *(outbuffer + offset + 2) = (u_theta.base >> (8 * 2)) & 0xFF;
            *(outbuffer + offset + 3) = (u_theta.base >> (8 * 3)) & 0xFF;
            offset += sizeof(this->theta);
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            return offset;
        }

        virtual int deserialize(unsigned char *inbuffer)
        {
            int offset = 0;
            union
            {
                int32_t real;
                uint32_t base;
            } u_x;
            u_x.base = 0;
            u_x.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0);
            u_x.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
            u_x.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
            u_x.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
            this->x = u_x.real;
            offset += sizeof(this->x);
            union
            {
                int32_t real;
                uint32_t base;
            } u_y;
            u_y.base = 0;
            u_y.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0);
            u_y.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
            u_y.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
            u_y.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
            this->y = u_y.real;
            offset += sizeof(this->y);
            union
            {
                int32_t real;
                uint32_t base;
            } u_theta;
            u_theta.base = 0;
            u_theta.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0);
            u_theta.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
            u_theta.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
            u_theta.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
            this->theta = u_theta.real;
            offset += sizeof(this->theta);
            return offset;
        }

        const char * getType()
        {
            return "hb_core_msgs/Pose2D";
        };
        const char * getMD5()
        {
            return "2bff1127cd10ca02349c9c72c72be56e";
        };
    };
}
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The last  messages  are  meant  to  exchange telemetry data.  Rather  than make a  one fit  all 
message,  two  topics  have  been  conceived.  One  optimized  for  bandwidth,  one  optimized  for 
completeness of information.  This allows the control program to optimize bandwidth usage.

Telemetry data are used to receive either the differential encoder readings or absolute encoder 
readings with a timestamp. They can be used to estimate the current position and heading of the 
platform.

The Odom2D message is a short message meant to exchange a differential encoder or position 
reading in respect to the previous transmission.

Odom2D reuses  the  Velocity2D topic  to  encapsulate  the  differential  telemetry reading.  A 
timestamp is needed since the time jitter of the rosserial driver is unknown and varies depending on 
the workload of the microcontroller, the residual bandwidth of the communication channel and a 
random jitter due to the discretization of the internal timers.

Accurate timing of the position is required by many navigation algorithms. The definition of 
the Topic can be seen in the code snippet “Odom2D.h” down below.

Code Snippet “Odom2D.h”
namespace hb_core_msgs
{

    class Odom2D : public ros::Msg
    {
    public:
        uint32_t time_stamp;
        hb_core_msgs::Velocity2D velocity;

        Odom2D():
            time_stamp(0),
            velocity()
        {
        }

        virtual int serialize(unsigned char *outbuffer) const
        {
            int offset = 0;
            *(outbuffer + offset + 0) = (this->time_stamp >> (8 * 0)) & 0xFF;
            *(outbuffer + offset + 1) = (this->time_stamp >> (8 * 1)) & 0xFF;
            *(outbuffer + offset + 2) = (this->time_stamp >> (8 * 2)) & 0xFF;
            *(outbuffer + offset + 3) = (this->time_stamp >> (8 * 3)) & 0xFF;
            offset += sizeof(this->time_stamp);
            offset += this->velocity.serialize(outbuffer + offset);
            return offset;
        }

        virtual int deserialize(unsigned char *inbuffer)
        {
            int offset = 0;
            this->time_stamp =  ((uint32_t) (*(inbuffer + offset)));
            this->time_stamp |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 
1);
            this->time_stamp |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 
2);
            this->time_stamp |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 
3);
            offset += sizeof(this->time_stamp);
            offset += this->velocity.deserialize(inbuffer + offset);

62/113



            return offset;
        }

        const char * getType()
        {
            return "hb_core_msgs/Odom2D";
        };
        const char * getMD5()
        {
            return "f7b5df72ac17f89fc59d9683e7ee53e2";
        };
    };
}

Odom2DExtended allows the Raspberry Pi, to get all telemetry data with a single topic. It 
includes a timestamp, the Odom2D with an added Pose2D payload. This message is complete in 
terms of information provided, but expensive in terms of bandwidth used. The definition of the 
Topic can be seen in the code snippet “Odom2DExtended.h” down below.

Code Snippet “Odom2DExtended.h”

namespace hb_core_msgs
{

    class Odom2DExtended : public ros::Msg
    {
    public:
        uint32_t time_stamp;
        hb_core_msgs::Velocity2D velocity;
        hb_core_msgs::Pose2D pose;

        Odom2DExtended():
            time_stamp(0),
            velocity(),
            pose()
        {
        }

        virtual int serialize(unsigned char *outbuffer) const
        {
            int offset = 0;
            *(outbuffer + offset + 0) = (this->time_stamp >> (8 * 0)) & 0xFF;
            *(outbuffer + offset + 1) = (this->time_stamp >> (8 * 1)) & 0xFF;
            *(outbuffer + offset + 2) = (this->time_stamp >> (8 * 2)) & 0xFF;
            *(outbuffer + offset + 3) = (this->time_stamp >> (8 * 3)) & 0xFF;
            offset += sizeof(this->time_stamp);
            offset += this->velocity.serialize(outbuffer + offset);
            offset += this->pose.serialize(outbuffer + offset);
            return offset;
        }

        virtual int deserialize(unsigned char *inbuffer)
        {
            int offset = 0;
            this->time_stamp =  ((uint32_t) (*(inbuffer + offset)));
            this->time_stamp |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 
1);
            this->time_stamp |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 
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2);
            this->time_stamp |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 
3);
            offset += sizeof(this->time_stamp);
            offset += this->velocity.deserialize(inbuffer + offset);
            offset += this->pose.deserialize(inbuffer + offset);
            return offset;
        }

        const char * getType()
        {
            return "hb_core_msgs/Odom2DExtended";
        };
        const char * getMD5()
        {
            return "830beb884a3d5949d8e4c94af38fff87";
        };
    };
}

The  messages  described  above  are  topic  for  which  example  projects  and  open  source 
firmware has been released. They are meant for a robot maker to get started with mobile robotics in 
a matter of minutes and to be able to control the robotic platform even without a deep understanding 
of  the  architecture  of  the  frameworks  involved.  An  extremely  valuable  feature  that  promotes 
adoption.

Robot makers experienced with ROS and firmware programming can make their own custom 
messages to cater their own custom application or add code and existing topics developed by other 
ROS developers.

The added value of the HotBlack software framework is the ability to easily share code and 
projects, so that other robot makers can make use of snippets and application developed by more 
experienced designer, and built their own application on top of that.
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6.3 HotBlack Software Framework
The custom board developed in this thesis is only one of the components required to realize the 
overall vision for the project.

A framework that provides IoT functionalities, easy code sharing and a streamlined online 
IDE is required in order to make the development of a robotic platform as fast and easy as possible.

HotBlack Robotics, the start-up this thesis has been developed alongside with, has developed 
the software and cloud infrastructure. The HotBlack Software Framework.

To engage in  robotics using the HotBlack Software Framework, the user only need three 
things to get started:

• An SD card with the HBrain image burned on

• A Raspberry Pi model 2 or 3 and its power source

• A wireless router connected to the internet

To prime  the  system,  the  user  first  set  up  the  Wi-Fi  network  to  a  predefined  SSID and 
Password.  The  HBrain  image  always  tries  to  connect  to  this  network  the  first  time.  Wi-Fi 
configuration is as follow:

SSID: dotbot

PWD: dotbot@polito

Once the Wi-Fi is setup, the user opens a common web browser and goes to the following 
web address:

http://cloud.hotblackrobotics.com/cloud/index

There,  the web page interfaces with the HotBlack cloud infrastructure.  The user  registers 
themselves on the site.

The Raspberry Pi should take a few tens of seconds to boot up, connect to the Wi-Fi network 
and establish a connection with a remote server. Once the handshake is complete, the robot will 
show up on the web page as shown in Figure 32.
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It can be seen that Seeker Of Ways was found in the local network. The robot has a default  
name initially. Both the default Wi-Fi network and the name of the platform can be changed by 
accessing a configuration page on the website. No editing of configuration a file is required.

The user can now proceed on the 'Sketches' tab on the web page. There, the user can program 
sketches using Python and run them.

A few templates and example projects are provided by HotBlack developers for first timers. 
One such project is example_led, that toggles pin 47 of the Raspberry Pi GPIO. The source code of 
the sketch can be seen in Figure 33. By pressing 'Run', the user can get the first program running.
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The HotBlack framework provides a powerful tool that maps the complete Node and Topic 
list of the ROS network. The user can than see a map of ROS nodes currently active by going into 
the 'node' tab (Figure 34).

After running the sketch, it can be seen that the ROS node /SeekerOfWays/blink is present in 
the list of active nodes (Figure 34). That's the same name that was given to the node in the sketch 
(Figure 33) with the line: node_name = 'blink'. 'Kill node' allows the user to terminate a Sketch.

This is it. Just like that, in a matter of minutes from the first boot, the user has been able to 
execute a program on the platform. 

This framework and the abstraction layers it provides, allow the user to get a Python program, 
running on a ROS framework, running on a Linux operating system, running on a Raspberry Pi, 
from a common browser, without so much as editing a Linux configuration file.

This is an exceedingly effective approach that massively lowers the entry barrier of 
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developing on an ARM based Linux/ROS platform. This is as simple as things can get. And ease of 
use is one of the main drives for adoption.

HotBlack Robotics provides a series of Python libraries and example sketches that perform a 
variety of functions. Image processing, telegram bots or remote control from on-screen joystick are 
just a few examples. It is also possible to write html pages to control the robot.

The user can count on a good selection of templates to start from to implement their own 
applications, and things can only get better as adoption increases and a thriving community shares 
more and more open source projects.

Sketches can be easily shared and imported. With this, all the software tools required to 
achieve the objective of simplifying the life of the robot makers are in place.
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7. Test Boards
The test board and the components arrived by the time the bulk of the firmware was ready. The next 
step is to solder the H-Bridge board and the Supply board, test them and find out bugs in the design.

7.1 Supply Board: Testing
The voltage regulator is a critical part of the design. Once soldered, the first test was to power the  
test board through a small resistor in series with the power supply to ensure that it wouldn't blow up 
on activation. The test failed. The board displayed a near short circuit in the input.

After some debug the problem became obvious. The power NMOS of the SEPIC regulator 
has drain and source inverted. It's a mistake that slipped through during the design the layout of the 
package of the power MOS.

The solution (Figure  35) is to remove the component and use flying wires to connect the 
power NMOS the right way.

The power test was repeated with the power MOS fixed and this time was a success.
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The SEPIC regulator generated an intermediate voltage of 5.6V in output (Figure  36). An 
intermediate voltage of 5.6V falls short of the 5.7V required. Correcting this problem was easy, as it 
just required soldering different resistors in the SEPIC feedback network.

The next step was to measure the output of the LDO regulators. The 3.3V regulator worked 
just fine, but the 5V regulator was outputting about 4.7V.

The problem was that the 1117 series regulators used are PMOS style LDO and need 1.1V to 
make the linear regulation. Solution was to either raise the intermediate voltage or to use a better 
component.

The output of the 5V 3A regulator is fine. The chosen LDO for the Raspberry Pi is a NMOS 
style linear regulator that requires only about 600mV at 3A to make the regulation.
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The final step was to test the system under load. The supply board was used to power Seeker of 
Ways, both the Raspberry Pi and the rosserial Slave (Figure 37).

The test went without an hitch. The robot worked perfectly while powered by the new voltage 
regulator.
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7.2 Test H-Bridge Board
The assembled test board for the H-Bridge component can be seen in Figure 38.

The first test, the power test was successful. Electrical levels were right and there were no 
signs of overheating.

The next step was to plug the board on top of an Arduino Uno (Figure 39). Again, the power 
test went without an hitch. The Arduino board was able to operate correctly while powered through 
the test board.

Finally, an Arduino Sketch was written to control a small DC motor. Even this final test was 
successful. Both the board and the H-Bridge component work as intended.
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The Arduino sketch used to test the board can be seen in the snippet "Test_hb.ino". 

Code Snippet: "Test_hb.ino"
//HotBlack Minishield Single Motor Controller
//10, OC1B  | PWM+
//9, OC1A   | PWM-
//8         | LED

#define MIN 5
#define MAX 20

extern void set_pwm( int16_t spd );

bool f_led = 0;

//upcount
bool f_cnt = 0;
int16_t cnt = 0;

uint16_t cnt_led;
uint8_t pwma, pwmb;

void setup() 
{
  // put your setup code here, to run once:
  //analogWrite( 9, 127 );
  //analogWrite( 10, 140 );

  set_pwm( +0 ); 
}

void loop() 
{
  // put your main code here, to run repeatedly:
  //Sleep(1);
  delay(10);

  if (f_cnt == 0)
  {
    cnt++;
  }
  else
  {
    cnt--;
  }

  if (cnt > +255)
  {
    cnt = +255;
    f_cnt = 1;
    
  }
  else if (cnt < -255)
  {
    cnt = -255;
    f_cnt = 0;
  }
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  set_pwm( cnt );

  cnt_led++;
  if (cnt_led > 100)
  {
      cnt_led = 0;
      digitalWrite( 8, f_led );
      f_led = !f_led;
  }
  
  
}

void set_pwm( int16_t spd )
{
  uint8_t pwm_plus, pwm_minus;
  bool f_dir;
  //
  if (spd < 0)
  {
    spd = -spd;
    f_dir = 1;
  }
  else
  {
    f_dir = 0;
  }
  
  if (spd < MIN)
  {
    pwm_minus = 0;
    pwm_plus = 0;
  }
  else if (spd > MAX)
  {
    pwm_minus = 0;
    pwm_plus = MAX;
  }
  else  
  {
    pwm_minus = 0;
    pwm_plus = spd;
  }

  if (f_dir == 0)
  {
    analogWrite( 9, pwm_minus );
    analogWrite( 10, pwm_plus );
  }
  else
  {
    analogWrite( 9, pwm_plus );
    analogWrite( 10, pwm_minus );
  }
}

The sketch generates two PWM ramps to move the motor at a linearly increasing speed in one 
direction then, decelerate until the motor reverse direction and reach max speed on the opposite 
direction. After that, the cycle starts over. PWM signals that are too small are clipped to zero as duty 
cycles that are too smalls can't fully turn on the high side switch.
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8. Custom Raspberry Pi Shield Design
Chapter 1 was about objectives and vision for this project

Chapter 2 was about a research on the problems and existing solutions

Chapter 3 was about the specifications for the custom shield

Chapter 4 was about the overall architecture of the system

Chapter 5 was about schematics and layout for the power system and the motors

Chapter 6 was about building a test platform to write and test the firmware and test the architecture

Chapter 7 was about validating the test boards

By this point the bulk of the firmware is written and tested in conjunction with the HotBlack 
Software  Framework.  and  the  critical  part  of  the  shield  hardware  sections  have  been  tested 
independently on their own test boards.

What's left is to use the feedback obtained to design the full schematics of the custom shield.  
To route the PCB, manufacture it and test it. Finally, to develop some meaningful applications that  
take advantage of the system and the HotBlack framework and cloud infrastructure.

8.1 Custom Shield Schematics
The features, specifications, interfaces, and internal configuration of the single blocks have been 
explored in details in previous chapters. Using the information gathered from the tests, the final 
hardware configuration of the board with the hardware components required and the interfaces can 
be seen in Figure 40.
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The architecture of the custom shield is comprised of the following sections:

• Battery connector and protection stage

• SEPIC Regulator

• LDO Regulators and filters

• H-Bridges

• Microcontroller, ISP programming connector and LEDs

• Raspberry Shield screw holes and GPIO connector

• Arduino Shield connector

• Servomotor connectors

• Encoder connectors

The schematics is somewhat large, so it will be shown and described in sections rather than as 
a whole for reading convenience.

8.1.1 Battery connector and Protections

This  part  of  the  schematics  (Figure  41)  deals  with  the  battery  connector  and  with  the  input 
protections stage.

Inputs:
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• CON_PWR: Power source screw connector

• HB_PWR: Logic line from uC. Cut power to H-Bridges.

Outputs:

• COM: 0V. Common voltage sink.

• VSEPIC: Input voltage for the SEPIC regulator

• VBRIDGE: Input voltage for the H-Bridges

A screw terminal connector is used for the wires coming from the power source, usually a 
battery.  The footprint used has three terminal spaced 2.54mm. This allows both 2.54mm screw 
connectors  or 5.12mm screw connectors  to  be used.  Because of the currents  involved,  using a 
5.12mm screw connector is advised.

The H-Bridge features a resettable fuse, a diode that protects against polarity inversion and a 
solid state relay that allows the microcontroller to cut off power to the H-Bridges altogether through 
the HB_PWR line. If HB_PWR is left undriven by the microcontroller, the H-Bridge is cut off by 
default.

VSEPIC is protected by a resettable fuse and by an ideal diode that minimizes voltage drop 
and power loss in the protection stage. A feature that maximizes efficiency.
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8.1.2 SEPIC Regulator

The SEPIC Regulator (Figure 42) has been discussed in details in Chapter 5.1. Minor corrections to 
the  value  of  components  and  the  schematics  have  been  applied  taking  into  account  feedback 
obtained from the test board.

Inputs:

• VSEPIC: Input power from protection stage

Outputs:

• VPRE: Pre-regulated 5.7V 5A power line. Powers the linear regulators

The SEPIC regulators efficiently generate a 5.7V line from a wide range of input voltages. 
This line is noisy, and a later section will make this power line usable by other services on the 
board.
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8.1.2 Linear Regulators and Filters

This sections of the schematics (Figure 43) apply further voltage regulation to the 5.7V power line 
to make it usable by other services of the board. This includes:

• The Raspberry Pi. It needs a clean 5V 2A power line

• The Arduino Shield and the ATmega 644. Both need a clean 5V 1A power line

• The Servomotors use the raw 5.7V line. Care has been taken since they inject noise

Figure 43: Shield Schematics - Linear Regulators

Inputs:

• VPRE: 5.7V 5A line from SEPIC regulator

Outputs:

• RPI_5V: 5V 3A line for the Raspberry Pi

• SHLD_5V: 5V 1A line for the microcontroller and the Arduino Shield

The 5.7V line is naturally noisy as the SEPIC regulator is not continuous in output. Rather 
than making the design of the switching regulator more complex than it already is, linear regulators 
to make the final fine regulation from 5.7V to a very clean and stable 5V. Linear regulators feature a 
good input noise rejection, and their inherent inefficiency is mitigated by the low voltage dropout 
they start from.

This paradigm allows the system be robust at the cost of a slight loss in overall power 
conversion efficiency.
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8.1.3 H-Bridges and DC Motors connectors

This section of the schematics (Figure 44) allows the custom shield to make use of DC motors up to 
3A. Details of the schematics have been discussed in Chapter 5.2.

Inputs:

• VBRIDGE: Protected input power line from battery

• HBA_PWM+/-: Digital control lines for Motor A coming from the microcontroller.

• HBB_PWM+/-: Digital control lines for Motor B coming from the microcontroller.

Outputs:

• MOTA+/-: Output power lines to the DC Motor A

• MOTB+/-: Output power lines to the DC Motor B

Line filters (LB3, CB12 and LB4, CB17) are used to clear out harmful switching noise 
coming from both the H-Bridges and the DC motors.

Rectifiers B1 and B2 are used to recirculate inductive power from the DC motors to the power 
lines. The H-Bridges have internal recirculation diodes, but having an external rectifier allows to 
move the power dissipation away from the H-Bridge package, improving reliability.

Two electrolytic capacitors (CP4, CP6) are used to both provide energy reserves for the H-
Bridges and to absorb recirculation current that might otherwise increase the voltage on the 
VBRIDGE line above safe levels during breaking.
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8.1.4 Microcontroller Services

The schematics for the microcontroller is shown in two sections. The first section (Figure 45) deals 
with filters, ISP programming connector, reset and test points. The second section (Figure 46) deals 
with the pin-out of the microcontroller itself. Pin assignment has been discussed in Chapter 4.4.2.

Inputs:

• SHLD_5V: Clean 5V line from LDO

• RPI_RST: Digital reset line from the Raspberry Pi

Outputs:

• UC_5V: Filtered 5V line for the microcontroller

• ADC_5V: Filtered line for the ADC of the microcontroller

• LEDs

• Test Points: Allows to sense the 5V line from the outside

• ISP Connector: Allows the programming of the microcontroller

Line  filters  and  bypass  capacitors  are  used  to  clean  up  noise  coming  in  and  out  of  the 
microcontroller power lines. Digital electronics can be noisy.

The  ISP  connector  allows  the  microcontroller  to  be  programmed  with  a  dedicated 
programmer, like the Atmel AvRisp MKII. This is needed to burn the bootloader that allows the 
microcontroller to be programmed from the Raspberry Pi in the first place.

The microcontroller reset line is controllable form the Raspberry Pi as well. A feature required 
to allow in circuit programming from Raspberry Pi with the Arduino Bootloader.
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Two LEDs can be used at will be the user.

Test points are present to check that the microcontroller is powered right.

8.1.5 Microcontroller

The microcontroller (Schematics in Figure  46) is the nexus for all signals in the board. It can be 
programmed from the Raspberry Pi.  It's  seen by the Raspberry Pi  as a  ROS node and can be 
controlled through ROS topic messages. It controls the motors, the LEDs, the Servomotors and 
interfaces with an Arduino Shield. Pin assignment has been discussed in Chapter 4.4.2.

Inputs:

• UC_5V: Clean 5V power line

• ADC_5V: Clean 5V power line

• UC_RST#: Reset signal coming from either ISP connector or from Raspberry Pi

Controls:

• RPI_TXO, RPI_RXI: Communication line with the Raspberry Pi. Rosserial Protocol

• ARD_TXO, ARD_RXI: Communication line with the Arduino Shield.

• HB_PWR: Cut power to H-Bridges and DC Motors

• HBA/B_PWM+/-: Control lines for the H-Bridges and the DC Motors

• UC_ENCA/B_A/B/Z: Encoders. Odometry, Position/Velocity PID with DC Motors
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• SRV0/1/2/3: Servomotors control lines

• Dx: General I/O lines for the Arduino Shield

• LED0/1: Generic LEDs

• ADC0 to ADC 5: Analog lines from the Arduino Shield Connector

8.1.6 Raspberry Pi GPIO

The board uses only the first ten pins of the Raspberry Pi GPIO connector (Schematics in Figure 
47). There is enough space below the board for the user to access to the other GPIO pins if needed, 
and using only ten pins to free board area for more useful features.

Inputs:

• UC_RST#: Reset signal for the microcontroller

Controls:

• RPI_TXO, RPI_RXI: Communication line with the Raspberry Pi. Rosserial Protocol and 
programming through the Arduino Bootloader

Outputs:

• RPI_5V: 5V 3A clean power line that powers the Raspberry Pi

The GPIO allows for the Raspberry Pi to be powered by a battery from the custom shield, a 
feature that makes it that much easier for the robot maker to power the system safely.

The controllable reset line allows for the microcontroller to be programmed by the Raspberry 
Pi thanks to the RPI_TXO, RPI_RXI communication lines and the Arduino bootloader.

The  RPI_TXO, RPI_RXI allows for the Raspberry Pi to control the shield thanks to the 
rosserial protocol and the ROS topic messages.
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8.1.7 Arduino Shield Connector

The Arduino Shield Connector (Schematics in Figure 48) allows for Arduino Shields to be used in 
combination with the custom board. It's an extremely useful feature as countless Arduino Shields 
exists that offer a wide range of features.

Inputs:

• SHLD_5V: Clean 5V power line

Controls:

• ARD_TXO, ARD_RXI: Communication line

• OC0/1/2A/B: PWM Lines. Cannot be controlled independently from DC motor lines.

• UC_ENCA/B_A/B/Z: Encoders. Odometry, Position/Velocity PID with DC Motors

• Dx: General I/O lines

• ADC0 to ADC 5: Analog lines

A line filter is used to insulate noise coming from and to the Arduino Shield. The connector 
simply routes all required lines to the microcontroller, allowing the user to take advantage of 
existing Arduino Shields.
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8.1.8 Servomotors

The servomotor connector (Schematics in Figure  49) is straightforward. A line filter insulate the 
power line from the noisy servomotors, and an electrolytic capacitor provides an energy storage 
nearby to protect against current spikes and short brown-out.

Outputs:

• VPRE: 5.7V 5A Noisy pre-regulated power line

• SRV0/1/2/3: Servomotor control signals

Powering the servomotors from the VPRE allows the user to enjoy the full rated torque of the 
servomotor and allows 5V servomotors to be powered from single LIPO cell 3.7V.

Additionally, noise from the servomotors often causes instability in the system, a problem that 
can be very hard to debug. It is a significant quality of life feature to handle this noise for the robot 
maker.
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8.1.9 Encoders

The part of the schematics that deals with the encoders  (Figure  50) involves some limitations. 
Several protections are provided to protect the board from failing encoders or encoders with wrong 
voltage levels.

Inputs:

• ENCA/B_A/B/Z: Encoder signals

Outputs:

• ENC_5V: Clean 5V power line

The encoders are powered by the same LDO that powers the microcontroller and the Arduino 
Shield. A line filter is used to insulate the board from the noisy encoders and an electrolytic 
capacitor provides an energy storage nearby to protect against current spikes and short brown-out.
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Encoders comes with all kinds of electrical interface. Unfortunately it would take too much 
area to be compatible with all of them, and the design philosophy is to provide features that are both 
cheap and popular.

The choice was made to limit compatibility with 5V encoders only. Encoder signals can be 
either TTL or open collector/open drain outputs. The robot maker is expected to chose the right kind 
of encoders, or use an external level shifter.

A diode array protects the board if encoders with great logic voltage swing are used (12V/24V 
encoders).
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8.2 Layout and Routing
With the schematics for the shield done, the next step was to decide on the form factor of the board, 
complete the routing of the layout and generate the gerber files and the BOM for production.

8.2.1 Form Factor

The form factors of the custom board (Figure 51) is the result of several routing attempts and 
considerations.

The custom board is 85x62mm, the Raspberry Pi is 85x56mm. The custom board is about 
6mm wider. It was considered acceptable to have the board slightly bigger as making the board 
smaller would have meant dropping features or using a tighter design rule. Both options would have 
had greater ill effects than just allowing for the added 6mm in width.

The board uses only 10 pins of the Raspberry Pi GPIO. Originally it was thought to use them 
all, but leave most of them unconnected. The solution chosen allows to reduce costs by having a 
smaller connector, does not hinder functionality as the user has enough space to access GPIO pins 
below the board and leaves more area for features.

The board feature a rectangular hole in the middle of the lower side. This space allows for the 
flex cable that connects to a Raspicam [35] to pass through. A feature absent from every Raspberry 
Shield considered and that gives some real gripes to robot makers.

The position of the connectors was hard thought as the area is relatively small for the amount 
of features desired. This layout is the results of multiple failed placing and routing iterations.
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8.2.2 Components Placing

Placing the components of the board proved to be a major challenge. In Figure 52 can be seen the 
final outline of the components and the pads on both sides of the custom board.

Details of the component placing inside the board:

• A2: The input power connector. Can be either a 2.54mm or a 5.12mm screw connector

• B1/2: GPIO connector of the Raspberry Pi

• A1 to D5: This section is dedicated to the Power supply.

◦ B2 (Bot): Ideal diode and resettable fuse for the SEPIC regulator

◦ A3 (Bot): Solid state relay and protections for the H-Bridges

◦ C2, D2 (Bot): 3A LDO for the Raspberry Pi

◦ B3 to D5 (Top): Power components of the SEPIC regulator

◦ B3 to B5 (Bot): SEPIC controller

◦ D3: 5V LDO for Arduino Shield, microcontroller and Encoders

• A5 to C5 (Bot): H-Bridges

• A6 to C6: Motor connectors and recirculation diodes

• A4 to B4: Capacitors and filters for the H-Bridges
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• D4 to D6 and G3 to G6: Arduino Shield connector

• E6: ISP Connector

• D/E 5 to 6: Hole for the Raspicam flex cable

• D1 to E1: Servomotors connector, filter and capacitor

• F4 to G5 (Bot): ATmega 644

• F4 to G5 (Top): Filters, quartz and protections for the Microcontroller

• F1 to G2: Encoders. Connectors, filters, capacitor and protections

• F/G6(Top): LEDs

• E3 to F4: Seemingly empty area. It's very busy with interconnections and vias

• A1 and G1: Test Points

8.2.3 Layout

Routing the board and closing all the nets while keeping an eye to rated currents and interferences 
was a daunting task. It would have been simpler had a four layer design rule been used, but two 
layers board are cheaper, so the choice was made to limit the board to two layers if at all possible. 

The layout for the top layer can be seen in Figure 53.
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The layout for the bottom layer can be seen in Figure 54.

Details of the layout:

• A1 to E5 and A6 to D8: Large copper areas for the power lines. It was challenging to give 
the power lines enough areas to allows for their rated current while also leaving space for 
the smaller control lines to make their way through

• B5: Shaped track that acts as shunt resistor to sense the SEPIC switch current

• F3 to H7: Area very busy with the routing of the microcontroller lines. Multiple iterations 
were required when after a failed routing, pins on the microcontroller were swapped in the 
schematics to try and pass another way.

• H7 (Bot): Crystal for the microcontroller

• G6 to H6 (Bot): Microcontroller shield area

• B2 to C2 (Top): Copper area for the 5V line for the Raspberry Pi

• A5 to A7 and B5 to C7 (Top): Copper Area for the supply for the H-Bridges

• C3 to D5: Copper areas for the SEPIC regulator

• By default, all remaining free area is routed to the COM line

• C8 to E8 to E5 to G7: PWM lines for the H-Bridges
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8.2.4 Gerber and BOM

The next step in the design is to generate the gerber file for the production of the PCB and prepare a 
BOM for the components. The full layout of custom shield with all layers visible can be seen in 
Figure 55.

The design rule chosen for the layout is two layers with 17.5um copper thickness and 200um 
of insulation between lines. It is a rather lax design rule meant to result in a cheaper board.
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In Figure 56 can be seen the final look of the board after the gerber files have been generated and 
uploaded to Eurocircuit for manufacturing.
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In table 9 can be seen the Bill of Materials for the Raspberry Pi Shield. RS Components was 
chosen as supplier.

Table 9: BOM - Custom Raspberry Pi Shield
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Description Code Quantity
At Mega 644 ATMEGA644A-AU 1

Distanziali M3 31.8mm HS 6 10 4
matched bjt DMMT5401-7-F 1

Raspberry Pi GPIO Female SH-2x20-L16.5 1
Pin Strip Maschio 2.54mm 2
Pin Strip Femmina 2.54mm W34420TRC 2

Morsetto a vite 2.54mm 1x5 2
Morsetto a vite 5.12mm 1x2 3

Quarzo 7x5mm 20MHz LFXTAL026394 1
Led Verde 2.2V SMD0805 LG R971 2

Resettable Fuse PTC 85mO MF-NSMF200-2 2
Electrolitic Capacitor 100uF 6,3V 480mA 6,3mm 63ZLG100M63X7 4

Electrolitic Capacitor 220uF 35V 755mA 8mm 35ZLH220MEFC8X11.5 2
Sepic Controller SOIC8 LT1619ES8#PBF 1

Condensatore 22pF SMD0805 2
Condensatore 6.8nF V SMD0805 08055F682KAZ2A 1

Condensatore 100nF 50V SMD0805 08055C104KAT2A 8
Capacitor Sepic 10uF 100V SMD1812 CKG45NX7S2A106M500JH 1

Condensatore 10uF 25V SMD1206 GRM31CB31E106KA75L 2
Ferrite 240nH 26mO 3.2A SMD0806 74479876124C 3

Inductor 33uH 3A B82477G4333M000 2
Twin Scottky 200mA sot23 BAT54CW 1

SMD rectifier DB207S 2
Diodo Schottky 60V 0,75V 3A SK36A R2 2

nmos sot23 IRLML2803TRPBF 2
pmos to252 IPD50P03P4L-11 2

Low Vth NMOS FDD6635 1
H-Bridge. 3A 6Vmin 36Vmax BD62321HFP-TR 2

LDO Adjust 3A SPX29302T5-L/TR 1
LDO 5V 800mA sot223 REG1117-5 1

4X resistors 1K SMD1206 RAC164D102JC 5
Resistenza 1K SMD0805 CR0805-FX-1001ELF 1

Resistenza 10K SMD0805 CR0805-JW-103ELF 2
Resistenza 33.8K SMD0805 CPF-A-0805B34K8E1 3
Resistenza 100K SMD0805 RMC1/10K104FTP 13



8.3 Shield Assembly
The shield PCB that arrived from Eurocircuit can be seen in Figure 57.

With the components and the PCB available, the custom shield was finally soldered. In Figure 
58 and 59 can be seen the final result after the assembly phase.

95/113



In Figure 59 can be seen the assembled bottom side of the custom shield.
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9. Applications
With the robotic platform Seeker of Ways ready and the custom shield finally assembled, a few 
example applications have been made making use of the HotBlack Software Framework.

Example applications:

• Motor Testing

• Image Processing

• FPV Robot control with Keyboard

9.1 Motor Testing
This  application is  written in python and runs  on the remote HotBlack software framework as 
described in Chapter 6.3.

The code described in the Code Snippet HotBlack Framework Sketch: Test Motors HB Core  
Messages  move  the  two  motors  in  opposite  directions  giving  them a  linear  acceleration  ramp 
followed by a linear deceleration ramp. It's meant to test the motors of the platform.

Code Snippet: HotBlack Framework Sketch: Test Motors HB Core Messages

#HotBlack phyton library

import dotbot_ros

#for print

import sys

from sys import stdout

#for SeekerOfWay print

from std_msgs.msg import UInt8

#for SeekerOfWay control

from hb_core_msgs.msg import Velocity2D

class Node(dotbot_ros.DotbotNode):

    node_name = 'SeekerOfWays_TestMotors'

    #

    def setup(self):

        print 'Seeker Of Way Test Motors'

        sys.stdout.flush()

        #looprate automatically tie to loop. it's in Hz

        self.loop_rate = dotbot_ros.Rate(2)

        #Communication with SeekerOfWays

        self.pub_cnt = dotbot_ros.Publisher('/msg_cnt_u8', UInt8)

        self.cmd_vel = dotbot_ros.Publisher('/cmd_vel', Velocity2D)
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        self.cnt = 0

        self.fwd = 31

        self.turn = 0

        self.dir = 0

        

        

        self.max = +16000

        self.min = -16000

        

    def loop(self):        

        #C | uint8_t msg | those are data structure ROS based that only hold one 
data.

        #those are basic ROS messages

        msg = UInt8()

        #fill data of message with a counter. 

        msg.data = self.cnt

        #don't have post increment. increment counter. crash if exceed 255

        if (self.cnt < 254):

            self.cnt += 1

        else:

            self.cnt = 0

        

        self.pub_cnt.publish(msg)

        #update motor commands

        if (self.dir == 0):

            self.fwd += 250

        else:

            self.fwd -= 250

            

        if (self.fwd > self.max):

            self.fwd = self.max

            self.dir = 1

        if (self.fwd < self.min):

            self.fwd = self.min

            self.dir = 0    

        

        self.turn = 0;

        

        #construct the motor message

        cmd = Velocity2D()

        cmd.linear = self.fwd
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        cmd.angular = self.fwd

        self.cmd_vel.publish(cmd)

        print self.fwd, self.turn

        sys.stdout.flush()
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9.2 Camera Image Processing
This application take the camera stream and generate a topic which contain the stream converted in 
gray scale.  On the Figure it's  applied a  filter  called Orb, which is  already implemented in  the 
OpenCV libraries [36] inside ROS. This filter searches for features inside the image (Figure 60).

The python code of the application can be seen in the code snippet Test USB Camera Processing 
down below.

Code Snippet: HotBlack Framework Sketch: Test USB Camera Processing

import dotbot_ros

from geometry_msgs.msg import Vector3

from std_msgs.msg import Float32, String, UInt8

from gpiozero import DistanceSensor, Button, PWMLED, Robot

import sys

from math import sin

import rospy
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import cv2

import time

from std_msgs.msg import String

from sensor_msgs.msg import Figure

from cv_bridge import CvBridge, CvBridgeError

class Node(dotbot_ros.DotbotNode):

    node_name = 'camera'

   

    def setup(self):

        self.Figure_pub = dotbot_ros.Publisher("my_Figure_topic",Figure)

        self.bridge = CvBridge()

        self.Figure_sub  = 
dotbot_ros.Subscriber("/usb_cam/Figure_raw",Figure,self.callback)

        self.orb = cv2.ORB()

    def callback(self,data):

        try:

            Figure = self.bridge.imgmsg_to_cv2(data, "bgr8")

            gray_Figure = cv2.cvtColor(Figure, cv2.COLOR_BGR2GRAY)

            kp1, des1 = self.orb.detectAndCompute(gray_Figure, None)

            Figure = cv2.drawKeypoints(Figure, kp1)

        except CvBridgeError as e:

            print e

        

        try:

            self.Figure_pub.publish(self.bridge.cv2_to_imgmsg(Figure, "bgr8"))

        except CvBridgeError as e:

            print e
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9.3 FPV First Person View Control
This  application uses  a  custom made html page,  the HotBlack software framework,  a piece of 
javascript code and a robot to make a first person view control application.

This application allows the user to see the streamed Figure from the camera on the custom 
browser page and control the robot using the WASD keys on the keyboard. It's an application that 
demonstrates the power and ease of use of this framework.

In Figure 61 can be seen the browser page when the application is running.

The following Code Snippet  Keyboard FPV is the  python code that runs on the HotBlack 
cloud. It takes keystrokes detected with the Keyboard APP and use them to control the robot. The 
video stream is visible by default by the web browser page thanks to how the HotBlack Software 
Framework is designed.
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Code Snippet: HotBlack Framework Sketch: Keyboard FPV

#HotBlack phyton library

import dotbot_ros

#for print

import sys

from sys import stdout

#for SeekerOfWay print

from std_msgs.msg import UInt8

#for SeekerOfWay control

from hb_core_msgs.msg import Velocity2D

#for keyboard APP

from geometry_msgs.msg import Twist

class Node(dotbot_ros.DotbotNode):

    node_name = 'SeekerOfWays_Keyboard'

    #

    def setup(self):

        print 'Seeker Of Way Keyboard Control'

        sys.stdout.flush()

        #looprate automatically tie to loop. it's in Hz

        self.loop_rate = dotbot_ros.Rate(10)

        #define callback for the keyboard app

        dotbot_ros.Subscriber('/keyboard', Twist, self.keyb_wasd)

        #Communication with SeekerOfWays

        self.pub_cnt = dotbot_ros.Publisher('/msg_cnt_u8', UInt8)

        self.cmd_vel = dotbot_ros.Publisher('/cmd_vel', Velocity2D)

        self.cnt = 0

        self.fwd = 0

        self.turn = 0

        self.dir = 0

        

        self.max = +25

        self.min = -25

        

    #handler of keyboard APP

    def keyb_wasd(self, msg):

        self.throttle = 31
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        #update motor variables    

        self.fwd = 63*256*msg.linear.x

        self.turn = 31*256*msg.angular.z

        #debug

        print 'Shaka', self.fwd, self.turn

        stdout.flush()

        

    def loop(self):        

        #C | uint8_t msg | those are data structure ROS based that only hold one 
data.

        #those are basic ROS messages

        msg = UInt8()

        #fill data of message with a counter. 

        msg.data = self.cnt

        #don't have post increment. increment counter. crash if exceed 255

        if (self.cnt < 254):

            self.cnt += 1

        else:

            self.cnt = 0

        

        self.pub_cnt.publish(msg)

        

        #construct the motor message

        cmd = Velocity2D()

        cmd.linear = -self.fwd

        cmd.angular = self.turn

        self.cmd_vel.publish(cmd)

        #print self.fwd, self.turn

        #sys.stdout.flush()
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The code for the HTML page can be seen in the Code Snippet HTML Page: Keyboard FPV 
down below. The user just double click on the html file after the python sketch begins running.

A browser page will open, loading the scripts that interface the html page with the HotBlack 
cloud and with the javascript that reads the keystrokes from the local machine. 

A video stream from the robot will also be shown. 

Code Snippet: HTML Page: Keyboard FPV

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<link rel="stylesheet" type="text/css"

  href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8/themes/base/jquery-
ui.css" />

<script 
src="https://ajax.googleapis.com/ajax/libs/jquery/1.8.0/jquery.min.js"></script>

<script  src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.8.23/jquery-
ui.min.js"></script>

<script 
src="http://cdn.robotwebtools.org/EventEmitter2/current/eventemitter2.min.js"></
script>

<script src="http://cdn.robotwebtools.org/roslibjs/current/roslib.js"></script>

<script src="keyboardteleop.js"></script>

<script  type="text/javascript" 
src="http://www.hotblackrobotics.com/cloud/webgui/static/js/initros.js"></script
>

<script type="text/javascript">

var robot_address = '192.168.0.101';

var robot_name = 'SeekerOfWays'

start_ros('192.168.0.101',  'SeekerOfWays',  '192.168.0.101', 
'192.168.0.101/bridge/');

</script>

<script>

  /**

   * Setup all GUI elements when the page is loaded.
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   */

  function init() {

    // Initialize the teleop.

    var teleop = new KEYBOARDTELEOP.Teleop({

      ros : ros,

      topic : '/TeleOP/keyboard'

    });

  }

</script>

</head>

<body onload="init()">

  <h1>First Point View Robot Control</h1>

  <p>Use WASD to move.</p>

  <div id="stream">

<p>Video Stream</p>

<img  style="width:320"  src="http://192.168.0.101:8080/stream?
topic=/usb_cam/Figure_raw">

  </div>

</body>

</html>
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The Javascript code that reads keystrokes and generate a ROS topic can be seen in the code 
snippet Javascript: Keyboard FPV down below. This code was written by a fellow robot maker that 
was tackling the same problem.

Code Snippet: Javascript: Keyboard FPV

/**

 * @author Russell Toris - rctoris@wpi.edu

 */

var KEYBOARDTELEOP = KEYBOARDTELEOP || {

  REVISION : '0.4.0-SNAPSHOT'

};

/**

 * @author Russell Toris - rctoris@wpi.edu

 */

/**

 * Manages connection to the server and all interactions with ROS.

 *

 * Emits the following events:

 *   * 'change' - emitted with a change in speed occurs

 *

 * @constructor

 * @param options - possible keys include:

 *   * ros - the ROSLIB.Ros connection handle

 *   * topic (optional) - the Twist topic to publish to, like '/cmd_vel'

 *   * throttle (optional) - a constant throttle for the speed

 */

KEYBOARDTELEOP.Teleop = function(options) {

  var that = this;

  options = options || {};

  var ros = options.ros;

  // permanent throttle

  var throttle = options.throttle || 1.0;

  // used to externally throttle the speed (e.g., from a slider)

  this.scale = 1;
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  // linear x and y movement and angular z movement

  var x = 0;

  var y = 0;

  var z = 0;

  var cmdVel = new ROSLIB.Topic({

    ros : ros,

    name : '/keyboard',

    messageType : 'geometry_msgs/Twist'

  });

  // sets up a key listener on the page used for keyboard teleoperation

  var handleKey = function(keyCode, keyDown) {

    // used to check for changes in speed

    var oldX = x;

    var oldY = y;

    var oldZ = z;

    var pub = true;

    var speed = 0;

    // throttle the speed by the slider and throttle constant

    if (keyDown === true) {

      speed = throttle * that.scale;

    }

    // check which key was pressed

    switch (keyCode) {

      case 65:

        // turn left

        z = 1 * speed;

        console.log("left");

        break;

      case 87:

        // up

        x = 1 * speed;

        console.log("up");

        break;

      case 68:

        // turn right

        z = -1 * speed;
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        console.log("right");

        break;

      case 83:

        // down

        x = -1 * speed;

        console.log("down");

        break;

      default:

        pub = false;

    }

    // publish the command

    if (pub === true) {

      var twist = new ROSLIB.Message({

        angular : {

          x : 0,

          y : 0,

          z : z

        },

        linear : {

          x : x,

          y : 0,

          z : 0

        }

      });

      cmdVel.publish(twist);

      console.log("publish");

      // check for changes

      if (oldX !== x || oldY !== y || oldZ !== z) {

        that.emit('change', twist);

      }

    }

  };

  // handle the key

  var body = document.getElementsByTagName('body')[0];

  body.addEventListener('keydown', function(e) {

    handleKey(e.keyCode, true);

  }, false);
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  body.addEventListener('keyup', function(e) {

    handleKey(e.keyCode, false);

  }, false);

};

KEYBOARDTELEOP.Teleop.prototype.__proto__  =  EventEmitter2.prototype;10. 
Conclusions
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10. Conclusions
This thesis described an approach to robotics made of the following parts:

• A repository of open source code and projects

• A cloud interface and a software framework

• A Raspberry Pi model 2 or 3

• A custom Raspberry Pi Shield

The approach described allows robot makers to develop robotic applications with more ease 
as the various tools are designed to hide complexity and handle the nuances involved so that the 
robot maker can focus on the final application.

Within this thesis, a custom board was designed with the needs of robot makers in mind as no  
board found on the market was free of such problems. A prototype of this board was built along 
with a robotic mobile platform to test the system first hand.

Within  this  thesis  several  robotic  applications  were  developed,  taking  advantage  of  the 
HotBlack Software Framework. Those application proved that the amount of work required by the 
robot maker to develop a meaningful robotic application can be vastly reduced thanks to the tools 
provided.

Applications that were developed include:

• Control motors

• Computer Vision filters

• FPV remote control through browser page

It  is  the  opinion of  the  candidate  that  this  approach  has  the  potential  of  achieving wide 
adoption, and by allowing for more people to engage in robotics and focus on the applications, the 
boundaries of robotic itself can be expanded.

10.1 Future Development
While the results of the hardware and software are more than satisfying, test showed limitations and 
inefficiencies that can be improved upon:

• Bootloader integration is as yet incomplete. A dedicated tab will be added to the HotBlack 
Software Framework to quickly upload new firmware to the board. Such tab will allow to 
import and share code with robot makers in a similar fashion to the python sketches.

• The power system of the board had an ambitious aim. To be able to power the Raspberry 
through the board from a wide variety of common power sources. While it  achieve this  
objective, it  makes the system unstable at heavy loads (many servos) or at low voltages 
(single LIPO). The regulator has margin for improvements.

• Arduino Shield integration with the HotBlack Software Framework is as yet incomplete. A 
dedicated tab will be added to support existing Arduino Shield Sketches.

• Board optimization. Reduce area, optimize components, lower costs.

As a robot maker myself, I find this approach exceedingly effective, and I will keep working 
alongside HotBlack Robotics to ensure the success of this approach to robotic.

111/113



10.2 Example Applications
A few example of applications that can be made by taking advantage of the custom shield and the 
HotBlack Software Framework.

10.2.1 Autonomous Navigation

The system supports many kind of sensors thanks to on-board resources and expansion possibilities 
opened by the Arduino Shield Connector. Examples of sensors that can be integrated are:

• Odometry: Requires encoders on the wheels

• Absolute Position (open field): GPS receiver on Arduino Shield

• Inertial Navigation: IMU on Arduino Shield

• Visual Navigation: Camera and Image processing. SLAM

Autonomous  navigation can be implemented by making full use of this system.

As an added value, image processing can be offloaded from the robot to a remote server, 
allowing for a more in depth analysis and a faster response. The cloud and the power it provides 
opens many possibilities.

10.2.2 Flying Drones

A Quad-copter uses four brushless motors that interface with a standard servomotor connector. An 
aeromodel uses one brushless motor with servomotor connector for the propeller, two servomotor 
axis for the tail (yaw and pitch) and one servomotor axis for the ailerons on the wings (roll), for a 
total of four servomotors

The shield developed for this thesis allows for four servomotors to be controlled. The custom 
shield is ideally suited as control system for flying drones.

The fact that the system can easily integrate a camera and sustain a video stream means that 
FPV remote control of flying drones is not only viable, but a natural application for this system.

10.2.3 UAV

Flying  drones  and  autonomous  navigation  can  be  combined  to  build  an  UAV,  Unmanned  Air 
Vehicle, by making use of this system. 

10.2.4 Remote IoT Node

Not all applications require motors. The HotBlack Software Framework can be used to simply setup 
the Raspberry as an IoT node. Applications include smart cameras,  temperature measurement and 
more.
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10.3 Final Remarks
As a robot maker myself, I find the approach described in this thesis to be exceedingly effective. I 
have personally been taking advantage of it for my recent robotic platforms and will continue to do 
so for the foreseeable future.

I will continue working with HotBlack Robotics to improve upon the board that has been 
designed and build upon the features of the Hot Black Software Framework, with the hope that this 
system will grow to see widespread adoption from robot makers all around the world.

The code, and gerber for this board can be found on my GitHub [37]. I have many ideas in 
mind for what to do next and what is to come, and the future looks bright indeed.
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Glossary

Atmel:  Company that  manufactures  popular  microcontrollers.  It  was  recently acquired  by 
Microchip

Arduino: Company that manufactures a popular prototyping boards and provides a popular 
online IDE with a thriving open source community

Arduino Shield: A board that expands the functionality of an Arduino base board

ARM: A power efficient microprocessor architecture. Incompatible with X86 instruction set

BOM: Bill of Materials

Cloud: IT architecture involving remote servers and an internet connection

Cloud Robotics: Paradigm in which a Cloud architecture is used for a mobile platform

CRC: Cyclic Redundancy Check. A method to check the integrity of data.

FOM: Figure of Merit. A way to give a number to the fitness of a design to given metrics

FPV: First Person View. A method of control for remote platforms

Gerber: PCB layout production files

HotBlack: A Start-up in the sector of cloud robotics

IT: Information Technology

IoT: Internet of Things

LDO: Low Drop-out linear regulator

Linux: A popular open source Operating System

Linux Distribution: Custom version of a Linux OS. Countless distributions exists of varying 
degree of adoption, stability and usefulness

Microchip: Company that manufactures microcontrollers and low power ICs.

OS: Operating System

PWM: Pulse Width Modulation

PCB: Printed Circuit Board

ROS: Robot Operating System. A popular framework used in robotics

SEPIC: Single Ended Primary Inductor Converter. A switching regulator topology

UAV: Unmanned Air Vehicle

uC: Microcontroller

X86: An instruction set. X86 processors can run a staggering amount of legacy code
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