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ABSTRACT 
 

We present a seismic three-dimensional case study, from the mining site in the province of Aurignac, 
south France, characterized by stiff materials, to assess the feasibility and validity of the new non-
standard scheme of acquisition proposed from TOTAL E&P, merged with an innovative processing 
technique. We extracted the Rayleigh dispersion curves (DCs) by means of an innovative 
multichannel method, practically our processing methodology consists in a moving square-window 
which slides over the acquisition array for the selection of the receivers and a moving circumference, 
having the same centre of the square-window, for the selection of the shots. For each position of the 
moving window, we obtain a local DC, therefore, the dataset to be inverted it is composed by a unit 
of DCs that are associated to a series of spatial coordinates, represented by the centre of each square-
window. To build a 3D VS model, we invert the fundamental mode of the DCs using the Laterally 
Constrained Inversion (LCI) algorithm, that consist in a deterministic inversion where every 1D 
model is related to its neighbors with a mutual constraint to offer a single pseudo-2D or pseudo-3D 
model. Then, to take advantages of all the benefits of including the higher modes in the inversion, 
(increase the investigation depth, increase the resolution etc.), we invert them using the Maraschini-
Monte Carlo inversion. This method. allows higher modes to be considered without the necessity to 
associate experimental data points to a specific mode. The retrieved velocities obtained from the two 
different approaches are in good agreement, with an average variation of 16%. Therefore, we 
conclude that the METIS system merged with an expeditious processing approach, is functional to 
build shear wave velocity models in an area characterized by stiff materials, given the reasonable and 
geologically appropriate results, the limit of personal involved on the ground, wise cost, HSE 
exposure and the acceptable amount of time required to process the data. 
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INTRODUCTION 
 

Surface Wave methods (SWM) are well-established to retrieve S-wave velocity (VS) models for 
stratified media (Socco et al. 2010). In surface wave methods, usually the surface wave dispersion is 
exploited and used to estimate local VS models. The local VS models then can be used to build 2-D 
and 3-D velocity models considering lateral interpolation.   

Since the phase velocities of surface wave are dispersive, in the analysis of surface wave, the 
experimental data are analyzed to retrieve the dispersion curve (DC - phase velocity as a function of 
frequency) which is used to solve the inverse problem. Then, the DCs are inverted to find the VS 
model.  

One of the most interesting area to be investigated, with the SWM, are the foothills environment, this 
is because significant amount of hydrocarbon and mineral resources are believed to be located in this 
hard to access area. But, the main issue is that in those areas logistics are so costly and by employing 
the classic acquisition approach the obtained data are often not valuable. This is the reason why those 
areas cannot be examined by using conventional seismic methods, this pave the way for the 
development of new technologies to find the possibilities to investigate those areas by rethinking 
geophysical acquisition: IoT, drones, or artificial intelligence are few examples (Rassenfoss, 2017). 
An interesting example of the use of drone for an innovative seismic acquisition is presented in 
Masoni et all (2019), another relevant example is the work of Blacquiere and Nakayama (2019) in 
which is explained the use of artificial intelligence for an optimum seismic acquisition. 

The METIS project, launched by Total EandP and partners, basically is a new disruptive onshore 
acquisition method which simplifies the acquisition in remote areas such as foothills. The target of 
this project is to develop an innovative approach for the foothills seismic acquisition survey by 
employ a wireless real-time seismic receiver array combined with an innovative deployment of the 
array by Unmanned Aerial Vehicles, this innovative method unlocks the opportunity to explore 
acreage in hard-to-access onshore areas and at the same time limits the number of personal involved 
on the ground and keeps cost and HSE exposure to a minimum (Puntous et all, 2018) 

Essentially, the goal of the METIS operational model is to ensure the seismic data quality by 
deploying a very dense grid of seismic sensors (basically, one every 50 meters), this technique is 
known as “carpet recording” because it “carpets” the pavement in the exploration area, by means of 

DART wireless geophysical sensors which are dart-shaped. (Pierre-Olivier Lys and the METIS 
Team, Total 2018). 

The favored method for the determination of near-surface S-wave velocity structure is the 
multichannel analysis of surface waves (MASW) (e.g., Miller et al., 1999; Song et al., 1989; Xia et 
al., 1999). This method introduced by Park et al. (1999), as a nondestructive test, time by time became 
more popular because of its large range of applications and benefits (Banab and Motazedian, 2010). 
The efficiency of this approach has been demonstrated by oil exploration industries over the last 
decades (Chon Park et all, 2001).  Exhaustive advancement process and case study of high-frequency 
Rayleigh-waves technique have been summarized by Socco et al. (2010) and Xia et al. (2009). The 
main reasons by which the multichannel approach should be selected are that: it averages and 
attenuate errors (Park et al., 1999; Xia et al., 2002), enhances the mode separation and recognition 
(Park et al., 1998; Xia et al., 2003), permits to filter coherent noise and does not necessitate convoluted 
acquisition methods to sample the propagation over an adequate frequency band (Socco and Strobbia 
2004).    

https://library.seg.org/doi/abs/10.1190/segam2019-3202558.1
https://library.seg.org/doi/abs/10.1190/segam2019-3202558.1
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One of the issues of this approach is that the number of geophones used, the length of the receiver 
spread, the receiver spacing and the source offset, can affect the quality of the multichannel surface 
wave records that are obtained (Park et al., 2001, 2002; Park and Carnevale, 2010). Another important 
aspect is that in the case of full 3D acquisition scheme, in which there is an irregular grid of sources 
and receiver the classic multichannel approach does not offer valuable results because become 
problematic the selection of different array. For this reason, most of the examples of using the MASW 
technique are concentrated on 2D models or data from a 1D linear receiver spread, but time to time 
some authors proposed application of this method also for 3D data. A 3D method was developed by 
Lee and Ross (2008) to mitigate surface-wave noise in spatially inhomogeneous media, Boiero and 
Socco. (2011) developed a method to estimate surface-wave dispersion curves from 3D seismic 
acquisition, based on the analysis in the offset domain and the f–k multiple signal classification 
transforms, Wang et all (2015) expanded the finite difference time domain (FDTD) scheme of Wang 
et al. (2012) from 2D to 3D. Following those examples, we apply some change to the classic 
multichannel approach to investigate a 3D dataset. 

Another important aspect, when we deal with the surface waves analysis, is relative to the inversion. 
Since surface wave propagation is a multimodal phenomenon (Socco et all, 2010), the DC is 
composed by several modal curves, but in surface wave analysis often only the fundamental mode is 
considered. Many authors explained the importance and the advantages of including the higher 
modes, in particular, in numerous cases, the experimental DC is the product of the superposition of 
numerous modes (Socco et all, 2010). Additionally, considering the higher modes in the inversion 
step can increase the precision of the result (Ernst, 2008; Maraschini et al., 2008), because they are 
responsive to parameters to which the fundamental mode is weakly affected (Socco and Strobbia, 
2004), moreover, in the case of a velocity decrease with depth (Gucunski and Woods, 1992; Xia et 
al., 2003). considering higher modes can rise the investigation depth (Gabriels et al., 1987) and when 
the low-frequency band is not accessible (Ernst, 2008), can stabilize the inversion process (Xu et al., 
2006), and can augment the resolution of the inverted model (Socco and Strobbia, 2004). 

In this thesis, we want to evaluate the feasibility and validity of the new non-standard scheme of 
acquisition proposed from TOTAL, merged with an innovative processing technique, multichannel 
approach with some small change, for the inversion of the single fundamental modes and the 
inversion of the higher modes, to define a VS model. To do this we propose an application to a dataset 
acquired in a mining site in the province of Aurignac, south France, characterized by stiff materials. 

Briefly, the structure of this thesis can be divided as follow: 

- At first, we present the main features of the seismic waves. 
- Secondly, will be introduce an innovative multi-channel approach (usually array of receivers 

are lined up in an equally spaced line on the test site, and the surface waves are generated by 
impulsive or vibrating seismic sources that are applied at one end of the receiver line-up, but 
in the case of a full 3D acquisition scheme of irregular geometry of sources and receivers this 
creates mistakes and problems in the interpretation of the results, to overpass this issue we 
modify the classic linear approach using a so-called square multichannel),  

- Thirdly, to consider the laterally topographic variation in the analyzed area and to build a 3D 
VS model, we will present the inversion of the fundamental single mode of a set of dispersion 
curves using the Laterally Constrained Inversion (LCI) algorithm, a deterministic inversion 
in which each 1D model is linked to its neighbors with a mutual constraint to provide a single 
pseudo-2D model (Socco et all, 2010),  



 
 

9 
 

- Then, to avoid mode-misidentification errors in the retrieved velocity profiles and to reduce 
the computational cost we will present the inversion including the higher modes using the 
Maraschini-Monte Carlo inversion, method centrered on a misfit function for multimodal 
inversion, based on the Haskell-Thomson matrix method, that allows higher modes to be 
considered without the need to associate experimental data points to a specific mode. 

- At the end, will be presented the comparison of the obtained results. 
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1. SURFACE WAVES 
 

In this section the most important characteristic of Seismic Waves propagation, in particular Rayleigh 
waves, are outlined to point out the aspects that are relevant for constructing a subsurface S-wave 
velocity model. Then, a concise summary of the operation workflow used to build the VS model will 
be presented, to allow the reader to comprehend the role of each step (acquisition, processing and 
inversion) of the method. 

 

1.1-MAIN PROPERTY OF SEISMIC WAVES 
 

SWs propagate parallel to the Earth’s surface and decay exponentially in depth (Figure 1.1).  

  

 

 

Figure 1.1- Rayleigh wave propagation 

 

 

In the case of homogeneous linear elastic isotropic media, the maximum energy related to Rayleigh 
wave propagations travels at a depth of about one time the wavelength. Moreover, when the seismic 
source is situated at the surface or near the surface, SWs are more energetic than body waves (Richart 
et al., 1970). As well, considering that they do not spread energy in all directions (Aki and Richards, 
2002), their attenuation is slower than the attenuation of body waves that spread energy in depth. This 
is one of the reasons why SWs are dominant events in seismic records, in particular, at far offset.  

On the other hand, considering that the harmonics of a propagating SW have diverse wavelengths 
that propagate with different maximum depths, in a vertically heterogeneous medium the propagation 
of surface waves is characterized by geometric dispersion, this means that different frequencies 
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propagate with different phase velocities, the relation between frequencies and phase velocities is 
called dispersion curve (Figure 1.2). 

 

 

 

Figure 1.2-Exapmle od DC 

 

 

Considering the above considerations, the SW propagation is affected only by the mechanical and 
geometric properties of the part of subsoil in which they propagate. In particular, the high frequencies 
(short waves) propagate in top layers and as a consequence their velocity it is function of the shallow 
soil properties, in contrast, the low frequencies (long wavelengths) propagate in thicker layers and 
their velocity is affected also by the characteristic of deeper layers (Socco and Strobbia, 2004), as it 
is shown in Figure1.3b.  

 

 

 

Figure 1.3-Schematic representation of geometric dispersion of Rayleigh waves: the vertical displacement 
associated with a short and a long wavelength (Boiero, 2009). 
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Another important aspect of S-waves is that in vertically heterogeneous media the propagation is a 
multimode phenomenon, that means that at the same frequency different velocities of propagation 
can exist (Figure 1.4).  

 

 

 

Figure 1.4-Different modes of propagation (Socco and Strobbia, 2004). 

 

 

In heterogeneous media, often the fundamental mode (the slowest one) is the most energetic, but 
sometimes higher modes are detectable, and they can be used in the inversion process to increase 
resolution and investigation depth.                                                 

 

1.2-SURFACE WAVES METHOD 
 

By analysing SW geometrical dispersion it is possible to retrieve information about the SV-wave 
velocity of the subsurface down to a depth that depends on the propagating wavelengths. The SW 
method can be summarised in three main steps (Figure1.5): 

 1. Acquisition 

 2. Processing  

3. Inversion 

The acquisition consists in recording seismic data containing SW with high signal to noise ratio and 
in a broad frequency band. The processing involves extracting the information about the dispersion 
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characteristics of SWs, i.e. the experimental dispersion curve, from seismic records, and the inversion 
uses it to estimate the model parameters.  

 

 

 

Figure 1.5-SW method (Strobbia, 2003). 

 

 

In the following chapters, we will present an innovative acquisition technique (carpet acquisition), 
used to retrieve the seismic data used in our case study, the processing applied to the data and, finally 
the result of the inversion. 
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2. AQUISITION 
 

2.1 OVERVIEW 
 

Depending on the type of application, on the depth of investigation and on the scale of acquisition, 
there are different acquisition techniques that can be used in surface-wave testing. Essentially, it is 
possible to extract surface-wave dispersion curves from active and passive data.            
When the acquisition is performed on purpose the benefit is that it is possible to choose the optimal 
equipment and testing setup, moreover it is interesting to notice that data sets acquired for body-
wave analysis, even though not specifically designed for surface-wave analysis, often are riches in 
surface waves that can be processed along with body waves with significant synergy (Foti et al., 
2003; Yilmaz et al., 2006; Socco et al., 2008).   

The ideal data to be processed and inverted should have a high signal to noise ratio over a broad 
frequency band, should permit for modal separation and recognition, should allow for separating 
and filtering out of coherent noise, and should allow estimation of uncertainties (Socco and 
Strobbia, 2004).                 

A significant amount of hydrocarbon resources is believed to be located in hard-to access onshore 
areas, like foothills. Often, conventional acquisition techniques for the exploration of those areas 
result expensive, computationally costly and with an elevate environment impact, and for those 
reasons they are underexplored. To overcome those difficulties new technologies have developed, 
and thus have opened new horizons and innovative ways to rethink geophysical acquisition: IoT, 
drones or artificial intelligence are only a few examples of these innovations (Rassenfoss, 2017). 

 

2.2 METIS-CARPET RECORDING APPROACH 
 

To solve major issues for oil and gas exploration related to geophysical imaging in areas of complex 
topography, in the recent years, Total E&P has concentrated efforts on major advance technologies 
to improve the quality of the acquisition in hard to access area. In particular, the company has 
embarked an integrated geophysics and logistics R&D project called METIS, Multiphysics 
Exploration Technology Integrated System (Lys et all, 2018; Puntous et all., 2018; Pagliccia et all., 
2018). 

METIS introduced a new acquisition method, based on an irregular carpet of receivers which are 
deployed over the exploration area by means of DART wireless geophysical sensors dropped using 
drone swarms. 

It consists of deploying a dense grid, of seismic sensors and presents the double advantage of finely 
sampling the upcoming wave field, while limiting the number of seismic sources required to 
illuminate the subsurface. Indeed, in complex areas like foothills or jungle environments, seismic 
sources are more costly, dangerous, and damaging to the environment than deploying additional 
receivers. The sources themselves will be spread over a loose grid based on logistic constraints 
(existing roads) . 
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In Figure 2.1 (Lys et al., 2018), we show the METIS operational model, the carpet recording replaces 
the common conventional cross-spread acquisition scheme. 

 

 

 
Figure 2.1- Synthetic modelling showing the same image quality between conventional cross-spread and 

carpet recording methods. 

 

 

The target of METIS is not only to innovate the acquisition techniques but also to innovate the 
processing techniques, this means that the final aim, is to test the potentiality of the surface waves 
techniques for building shear wave velocity models from dataset acquired employing the carpet 
acquisition scheme. 

In this contest there is a scientific collaboration between Total E&P and Politecnico di Torino. For 
this reason, various dataset acquired from Total E&P have been analyzed. It is important to underline 
that the dataset are acquired adopting the carpet geometry, in some cases using the METIS system 
based on drone and in other cases without the using of drone. 

An analysis on a dataset acquired without using drones, but with a comparable geometry that could 
be obtained by using the METIS approach, will be presented in the next chapters. 
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3. DATASET 
 

The seismic data were acquired in a mining site in the province of Aurignac, south France (Figure 
3.1). The acquisition was performed inside and outside the two active open mining pits. Here, we 
analyze the North West portion of the dataset. The aim of our analysis is to estimate the VS model.  

 

 

 
Figure 3.1--Map of France showing the location of the site 

 

 

The dataset was acquired using several types of sources (vibrator truck, electromagnetic sources, and 
weight drop) but after analyzing the records we concluded that the data from the vibrator truck were 
the most promising for the surface wave applications. The selected source was the Birdwagen Mark 
IV off-road trucks equipped with a 24-ton vibrator. The recording system was a RT2, 5 Hz wireless, 
vertical, receiver system, this allows to record the data remotely. The topographic survey was carried 
out with real-time kinematic GPS system, with 0.01 m accuracy. The description of the acquisition 
parameters is given in Table 3.1. For more details about the acquisition parameters, it is possible to 
refer to Khosro Anjom, (2021). 

 

Table 3.1- Acquisition parameters for the whole dataset. 

RECEIVERS SOURCES 
NUMBER OF 
RECEIVERS 

NUMBER OF 
SHOTS 

SAMPLING 
RATE [ms] 

RECORDING TIME 
WINDOW [s] 

5 Hz 
geophones 

Vibroseis 
truck 

217 
(spacing 25 to 50 m) 

182 
(irregular layout) 2 5 
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The site is characterized by stiff material, and this make the surfaces wave analysis challenging, 
moreover, the topography produces distortion in the propagation of surface wave. To lessen the effect 
of the topography, the dataset, was divided into four sub datasets, each with relatively flat topography. 
In Figure 2.2a the map of the area is shown, where the triangles are the receiver positions and the “+” 

are the source locations. Each sub dataset is depicted with a distinct color. The data set in the North-
west used in this thesis is highlighted by the white polygon. in the Figure 2.2b it is shown the elevation 
map of the whole area, again with a polygon that underline the area of interest.  

 

 

 
Figure 3.2--(a) Acquisition outline of the whole area, within the polygon acquisition outline of the area 

analyzed in this work (b)-Elevation map in which each sub data sets have flat topography, within the 
polygon elevation of the area analyzed in this work (Koshro Anjom, 2021). 
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  In Figure 2.3 we show the zoom of the acquisition outline of the area of interest. 

 

 

 

Figure 3.3-Acquisition outline of the area of interest. 
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4. PROCESSING 
 

The task of the processing is to process the field data to estimate an experimental DC. Through time, 
many processing techniques have been developed but among all of them is not possible to define one 
as the best technique. 

Most of them working in the spectral domain. 

 

4.1 OVERVIEW 
 

It is possible to distinguish different processing approaches depending on the characteristics of the 
data that have to be analyzed. Specific methods have been designed for active source data and passive 
source data. In both the cases, the best choice is to select procedures that can be applied to provide an 
automated extraction of the DCs. 

For the analysis of active-source data, the most common approaches are transform-based methods 
(frequency–wavenumber (f–k), frequency–slowness (f–p) or frequency- phase velocity analysis (f-
v)). The general procedure is centered on the computation of the spectra and the picking of the 
amplitude maxima. The data gathered in the time-offset domain are transformed to various domains 
where the peaks of the amplitude spectrum are observed in correspondence of pairs of wave 
propagation parameters (Foti et all, 2018). 

In the case of passive-source data, the usual approaches are f–k analysis and SPatial AutoCorrelation 
(SPAC). The dispersion characteristics are obtained from statistics computed on a huge quantity of 
small-time blocks obtained from the long duration recorded signals (Foti et all, 2018).  

Generally, the common processing approach does not take into account the lateral variations. In this 
thesis, the area investigated for our case study, it is characterized by lateral heterogeneities and since 
we want to extract numerous curves with high quality containing higher modes, we use the phase 
shift method because it permits to take into account the lateral variation and offer results with a good 
resolution. 

In the following will be explained the importance of identifying the higher modes, the concept of 
lateral variation, and will be presented a brief overview of the phase shift method. Consequentially 
will be presented our approach and the relative results. 

 

4.1.2 HIGHER MODES IDENTIFICATION 
 

An important aspect during the processing step is the proper recognition of various modes: it is 
required to pick the relative maxima of the spectrum and to relate them to the fundamental or to a 
specified higher mode. The examination and the consequent selection of each mode is manual and it 
is based on visual inspection of the spectrum; after that the DC is automatically recognized (Foti et 
all, 2018). 
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An issue to consider is the recognition of the mode number for every data point. This means that since 
part of the apparent DC could arise from the superposition of modes, some modes could be 
misidentified in the experimental data set.  

Even if, often it is not possible to identify unmistakably the various modes, they are very useful 
because including the higher modes can increase the investigation depth and the resolution. Moreover, 
the joint use of higher modes improves the outcome of inversion in comparison with the use of 
fundamental mode only (Pan et all, 2019), for this reason the effort of extracting higher modes in the 
processing it is worthwhile.  

The common difficulties in recognize the higher modes are caused by the fact that the energy 
distribution between the different modes may not be constant across the whole frequency band. This 
is caused by the velocity and attenuation structures, source characteristics and lateral variation (Foti 
et all, 2018). 

 

4.1.3 LATERAL VARIATION 
 

During processing it is necessary to consider the presence of lateral variation (Figure 4.1), because 
respect to the three main parts in which the surface wave method can be split (acquisition, processing 
and inversion), the presence of lateral heterogeneities in the investigated subsurface volume 
influences more the processing step and have also affects on the inversion. The lateral variations are 
responsible to alter the wave propagation and the phase velocity (Hashemi et all, 2020).  

 

 

 
Figure 4.1-Example of the concept of lateral variation (Boiero,2009). 
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When we extract one DC from a set of receivers, we delete the information about the lateral variation. 
Moreover, during the inversion the DC will be associated to a 1D model, this means that the lateral 
variations are not considered. But, in the case of area characterized by lateral variations, this can 
generate mistake in the final VS model. 

For this reason many approaches have been presented: Tian et al. (2003) expanded the spread length, 
Hayashi and Suzuki (2004) utilize the common mid-point (CMP) cross-correlation, Luo et al. (2007) 
performed the horizontal resolution analysis for a pair of synthetic traces, Socco et al. (2009) used a 
moving window along the receiver’s line, Hashemi et al. (2019) identified subsoil lateral 
heterogeneities using multi-offset phase analysis of surface wave data. 

 

4.2 PHASE SHIFT 
 

It is a method introduced by Park at all, 1998, it involves a three-step wavefield transformation that 
transforms surface waves on a shot gather into images of multi-mode dispersion curves. This method 
constructs high-resolution images of dispersion curves with relatively small number of traces.  

The main advantage of this method is that it separates the different modes with higher resolution even 
if the shot gather consists of a relatively small number of traces collected over a limited offset range 
(Park at all, 1998). 

In the following section of the thesis, we discuss the processing techniques procedure that we adopted 
for the estimation of the dispersion curves 

 
4.3 PROCESS WORKFLOW 
 

To estimate the DCs we adopted a processing methodology consisting in a moving window, of center 
O, which slides over the acquisition array, so for each position we estimate a local DC that is located 
at the center of the window, and we considered the estimated dispersion curve as a local property of 
a subsoil column beneath the array 

After computing the spectra trough wavefield transform, we pick the energy maxima on the stacked 
f-v spectrum at each position of the moving window, following this approach, proposed by Grandjean 
and Bitri 2006; Neducza, 2007, and then suggested also in Socco et all, 2009, the signal to noise ratio 
it is improved through spectral stacking. In Figure 4.2 it is shown an example of picking of the energy 
maxima. 

The technique we used it is summarized in the flowchart in Figure 4.2. 
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Figure 4.2-Flowchart 

 

 

The first portion of the method is mainly manual and is based on tests on representative sample 
records, to select the processing parameters, listed below:  

- size of the moving window W of center O. 

- shift of the spatial windows ΔW. 

- maximum offset range r for shot selection. 

 

To decide the optimum value of W we performed numerous tests on a few representative records. It 
is known that, if we want to increase the spatial resolution, we need to maintain the dimension of W 
as small as possible, on the other hand, to improve the spectral resolution, the window should be large 
enough (in terms of number of receivers) to separate the different dispersive events present in each 
window (Boiero, 2009).            

Once the optimal processing parameters have been selected, the processing procedure is completely 
automatic. A group of shots is selected for each ith position of the window W considering the receivers 
that fall in Wi. After this W is moved by increment ΔW to the position Wi+1, and the process is 
reiterated for the whole survey area. In this way we extract a group of n dispersion curve for each Wi, 
where n is the number of shots that fall into r. All the individual spectra related to each shot were 
computed and stacked to obtain a smooth dispersion curve with higher signal-to-noise ratio 
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(Grandjean and Bitri, 2006; Neducza, 2007), we call the final dispersion curve obtained after stacking 
the “stacked dispersion curve” (SDC) 

The third step is in part manual and in part automatic and consist of picking the energy maxima in 
the stacked dispersion curve. In particular, the maxima are searched automatically in a window that 
is selected manually in the spectra. An example it is show in Figure 4.3. 

 

 

 
Figure 4.3-Picking procedure, (a) original spectra, (b) spectra in which the maxima have been selected, (c) 

obtained dispersion curve. 

 

 

It is important underline that when the spectra presents also higher modes, the picking procedure is 
applied in different spectral zone, one for each mode. 

The picking procedure is repeated for each Wi and the processing result is a set of dispersion curves, 
with experimental uncertainties, regularly spaced with steps ΔW over the area, the spatial coordinates 
of the DCs correspond to the center of each window. 

To reach this goal we tested two approaches that differ in the way by which the array and the shot 
have been selected. The first approach we propose is the classic 2D multichannel approach, then we 
propose an innovative 3D multichannel approach, in the following the results obtained will be 
presented and discussed.  
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4.4.1 CLASSIC 2D MULTICHANNEL APPROACH FOR AURIGNAC 
 

We apply the classic 2D multichannel approach, so as shown in Figure 4.4, we consider a linear array 
of receivers and the sources in line with it, and we attribute at the obtained dispersion curves the 
coordinate of the midpoint of the linear array, in this way we obtain a number of DCs, equal to the 
number of considered linear arrays and In Figure 4.5 it is shown an example of spectrum. 

 

 

 

Figure 4.4- Geometry of the selected sources and receivers 

 

 

Figure 4.5-Stacked spectrum 

 

Doing so, since we are dealing with an area characterized by lateral variation, when we consider linear 
array, having different azimuth, that intersects each other on their midpoint we are investigating two 
different zones, and as a consequence we obtain two different dispersion curves located at the same 
location, one example of two arrays with the same midpoint is shown in Figure 4.6 and Figure 4.7 we 
show the two spectra. In Figure 4.8 we show the comparison of the two obtained DCs. 
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Figure 4.6-Geometry of the selected sources and receivers, in which two different arrays have the same 
midpoint 

 

Figure 4.7-Stacked spectrum, relative to the array case 1(b), and to the array case 2 (c) 

 
Figure 4.8-Comparison of the two different DCs, in red the DC relative to the spectrum (b) and in blue the 

DC relative to the spectrum (c) 

 

As it is shown in the above Figures, although both DCs are assigned to the same location, they exhibit 
totally different patterns. 
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4.4.1 INNOVATIVE MULTICHANNEL APPROACH FOR AURIGNAC 
 

To reduce the effect of lateral variation and obtain local dispersion curves representative of the subsoil 
column, we adopted a processing methodology consisting in a 2D square moving window, of center 
O, which slides over the acquisition array.  

We chose a window size equal to 100×100m to obtain information on a wide frequency band and to 
maximize the lateral resolution, moreover a condition by which the spectrum will be computed is that 
there are at least 8 receivers within the square window.         

We also needed to select the shots to be stacked in each spatial window. We defined a circle centered 
in O with radius r from tests on signal-to-noise ratio, and the shots that fall within it are used, after 
some test we decided that the best radius to be selected was 250 meters, in this way it was possible 
to consider sources at different azimuth, and therefore the effects of different propagation were 
lessened, so the directionality had a weaker effect (Strobbia and Cassiani, 2011). 

The other important parameter to be selected is the shift of the spatial window, as shown in the Figure 
4.3, there are basically two areas with different receivers’ density, in the North part the spacing 
between receivers is equal to 50 meters, and for this reason, in this area, we used a ΔW equal to 50 

meters, while for the Southern part in which the spacing between receivers is equal to 25 meters we 
used a ΔW of 25 meters, in the Figure 4.9 we show some square windows in the two different subarea,  
and in Figure 4.10 are shown the corresponding spectra. 

 

 

 

Figure 4.9- Geometry of the selected sources and receivers using a square window, in which the shift of the 
window is 50 meters from a) to b), and in which the shift is 25 meters from c) to d) 
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Figure 4.10-Stacked spectra relative to the figure 4.8 

 

 

As already mentioned, once the optimal processing parameters have been selected, the processing 
procedure is completely automatic. At the end for each window Wi we obtained n individual spectra, 
where n is the number of shots that fall into r. All the individual spectra related to each shot, 
corresponding to each source within 250 m of the receiver spread, were computed and stacked to 
obtain a smooth dispersion curve with higher signal-to-noise ratio (Grandjean and Bitri, 2006; 
Neducza, 2007), we call the final dispersion curve obtained after stacking the “stacked dispersion 

curve” (SDC). One example it is shown in the Figure 4.11, in which we show the spectrum of an 
individual shot and the stacked spectrum from all the shots within the circumference.  
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Figure 4.11- Scheme of stacking. (a) position of the moving window Wi, the shots within the circumference of 
radius r, (b) an example of single shot spectrum, (c) stacked spectrum (d) Stacked dispersion curve. 

 

 

In Figure 4.12 we show an example of frequency vs phase velocity spectrum with the relative location 
of the square window and the relative DC obtained after picking the energy maxima. 
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Figure 4.12-An example of the obtained spectrum using the phase-shift method. (a) The geometry of the 
selected sources and receivers. (b) The stacked spectrum where the red dots show the estimated modes of 

surface waves, and finally (c) the plot of the picked energy maxima (dispersion curve) 

 

 

In Figure 4.13 we show the DCs obtained, in particular (a) all the fundamental modes and (b) the 
whole DCs obtained. 
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Figure 4.13-DCs obtained in the processing step, (a) all the fundamental modes, (b) multimodal 
DCs. 
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5.  CLUSTERING 
 

Cluster analysis or clustering is the method by which it is possible to group a set of objects in a way 
that components in the same group (called a cluster) are more like each other than to those in other 
clusters. In this workwe use a hierarchical clustering method. 

Hierarchical clustering also known as connectivity-based clustering consists of the principle by which 
objects are more related to nearby objects than to objects farther away. So practically, the procedures 
link "objects" to form "clusters" based on their distance. Roughly, it is possible to say that a cluster 
can be explained, essentially, by the highest distance necessary to link parts of the cluster. At various 
distances, different clusters will form, generally, they are represented using a dendrogram in which 
in the y-axis is plot the distance at which the clusters merge, while the objects are placed along the x-
axis such that the clusters do not mix, that is why this procedure is called "hierarchical clustering". 
This technique does not provide a specific partitioning of the data set but provides an extensive 
hierarchy of clusters that merge at certain distances (Maimon and Rokach, 2000). 

 

5.1 CLUSTER OF OUR DATA  
 

Following the approach in Khosro Anjom et al. (2017) the first step of our analysis was the construction 
of a dendrogram, (Figure 5.1). As it is known in the horizontal axis of the dendrogram are plotted the 
DC numbers and in the vertical axis the distance between linked clusters. The higher the vertical 
nodes the further the clusters are from each other. On the dendrogram we choose the number of 
clusters.   

  

 
Figure 5.1--Dendrogram showing the cluster system of the dispersion curves, in blue the cluster A, and in 

red the cluster B 

https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Dendrogram
https://en.wikipedia.org/wiki/Hierarchical_clustering
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From the clustering of the 174 dispersion curves, (fundamental modes) in the dendrogram two 
major clusters are detected, in particular, the cluster A (represented by the blue color) composed by 
123 DCs, and the cluster B (represented by the red color) composed by 51 DCs. 

In Figure 5.2 we show the DCs numbered according to their position along the survey area and with 
different colors to indicates the clusters. The same DCs in terms of frequency, indicated with 
different colors based on clusters are shown in Figure 5.3 where the color indicates the clusters. 

 

 

 
Figure 5.2-Fundamental modes of the DCs plotted in term of location and cluster 

 

 
Figure 5.3-Dispersion curves in the seismic area 
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The clustering is very effective in identifying two different groups of DCs that correspond to 
different zones. This suggests that the clustering is consistent with lateral variations of the 
subsurface velocity. This, it is also confirmed in the clustering of the higher modes (Figure 5.4), 

 

 
Figure 5.4-Higher modes of the DCs plotted in term of location and cluster 

 

 

As already mentioned, in the case of multimodal DCs we have data almost along the whole analyzed 
area. 
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6. LATERALLY CONSTRAINED INVERSION 
 
 
In this chapter, we describe the laterally constrained inversion (LCI) of the fundamental modes of the 
dispersion curves the chapter is divided in two main parts: 
- the background of the adopted method by which fundamental modes are inverted 
- the adopted algorithm and the relative result obtained for the used dataset.  
                                                                  

6.1 BACKGROUND 
 
The laterally constrain inversion was introduced by Auken and Christiansen, 2004 as tool for the 
interpretation of resistivity data. LCI, is a deterministic inversion that offers as output a single pseudo-
2D/3D model, to do so every initial 1D model is related to its neighbors with a mutual constraint.  
The strength of constraints is thought of as a priori information on the geological variability in the 
zone of interest, the higher the estimated deviation of a model parameter, the less rigid the constraint. 
(Socco et al., 2009).  
The function of those constrains is to permit just a limited variation of each model parameter among 
two neighboring 1D models. The goal of the constrains and of the accessible a priori information is 
to make less severe the solution non-uniqueness (Shakir et all. 2013).  
Numerous authors, validated the LCI method, presenting various application on resistivity and 
seismic data. Wisén et al. 2005 make a comparison between the LCI of 1D resistivity soundings and 
a 2D smoothed inversion, demonstrating that, in layered media, LCI present a superior vertical 
resolution. Auken et al. 2005 presented an analogous comparison for synthetic and field resistivity 
data with lateral variations.  
The idea of LCI applied to surface wave data was initially introduced by Wisén and Christiansen 
2005. Socco et all 2009 employed LCI as the last step of evaluating surface waves in seismic 
reflection surveys to retrieve a pseudo-2D S-wave velocity model. Boiero and Socco, 2010 display 
that Lateral variations can be characterized by exploiting the data redundancy of the ground roll 
contained in multifold seismic data, and they show that the introducing lateral constraints enhances 
the outcome, in comparison to individual inversions. Bardainne et al 2017 suggest a LCI of surface 
wave obtaining reliable near-surface shear-wave velocity field from Rayleigh wave measurements. 
 
Here, we apply LCI for the inversion of the fundamental mode of the obtained dispersion curves. In 
the following, the inversion method is described and applied to the Aurignac data set. 
 
6.2 METHOD  
 

The Inversion of experimental data it is developed as a two phases process, we use a Monte Carlo 
Inversion (MCI) to accomplish a rigorous model parameterization and, consequently, reduce the 
effect of non-uniqueness of the solution. The ultimate step of this procedure consists on the LCI of 
local DCs to get a final pseudo 3D model.  
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6.2.1 MCI 
 
The Surface Wave (SW) technique is centered on the inversion of surface wave DCs. The major 
problem of the procedure is the small sensitivity of the DC to model parameter alterations, this causes 
to obtained output with low-resolution and this produces an issue in defining the best model 
parameterization for the inversion process (Strobbia, 2009). Furthermore, another crucial feature is 
that the outcome may be extremely influenced by the initial model which can run the inversion into 
local minima, this is caused by the fact that the solution is non-unique (Luke et al., 2003). The 
methods that utilize a random, pseudo-random, or quasi-random succession generator to sample a 
parameter space are called Monte Carlo (MC) methods (Sambridge and Mosegaard, 2002; Tarantola, 
2005). The reason why the MC approach is extremely attractive for the inversion of surface waves is 
that it precludes all the assumptions of linearity between the observables and the unknowns and 
additionally it offers a way of handling the non-uniqueness problem (Boiero, 2009). Practically, the 
MC methodology can be simple summarized as follow:  
- Definition of the model parameters (number of layers, shear-wave velocity, density, Poisson ration, 
and thickness).  
- Generation of a group of casual models. 
- Computation of the synthetic DCs related to the models.  
- Scaling the set of models to reduce the global distance between the experimental and theoretical 
curves, this operation is made artificially by shifting each of the acquired synthetic dispersion curves 
as close as possible to the experimental DCs by matching the curve barycenter (Socco et all, 2009).  
- Invert the computed scaled model by computing the misfit among the experimental dispersion curve 
and the shifted DC.  
- Use of a statistical test to be able to select the final models.  
Doing so, the sampling is concentrated in the low-misfit regions of the model parameter space and 
therefore, this approach permits considerable optimization of the process by lowering the number of 
needed simulations (Socco et all, 2009). 
 
 
6.2.2 LCI 
 
This laterally constrained inversion consists on inverting simultaneously all the local DCs, 
minimizing a common objective function, which includes the data misfit, the a priori information, 
and the constraints (Auken and Christiansen, 2004).  
The constraints, the a priori information, and the dispersion data are part of the inversion. Information 
from one model will spread to neighbouring models through the lateral constraints; the final result is 
a smoothly varying pseudo 2D/3D model. Consequently, the output models form a balance between 
the constraints, the physics and the data (Socco et all, 2009). 
Model parameters with little influence on the data will be controlled by the constraints. The strength 
of the constraints can be considered a priori information on the geological variability in the area, the 
smaller the expected variation of a model parameter, the more rigid the constraint. The lateral and a 
priori constraints are scaled according to the model separation so that they are weakened with 
increased separation. 
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At the first step, the result of the inversion is composed of a set of 1D models, in which each model 
is linked to an experimental local DC. Then, the 1D models neighbor are connected sideways by 
lateral constraints, that claim equivalence among neighboring model parameters of equivalent 
typology (Boiero, 2009).  
Since the SW inversion is non-linear, it is possible to write the iterative inversion scheme as the model 
update at the nth iteration: 
 

 
 
 

Where: 
 

- dobs is the local DC dataset. 
- Cobs represent the observational covariance matrix. 
- G is the sensitivities matrix. 
- Rp is the lateral regularisation matrix for the thicknesses and the velocities. 
- CRp represent the covariance matrices. 
- λ is the Marquart damping parameter. 
- g(mn) represent the forward response. 

 
 
The entire set of 1D VS models m is related to the entire local DC dataset dobs with the linked 
observational covariance matrix Cobs. The efficacy of the Rp matrix is function of the power of the 
constraints described in the covariance matrices. The non-linearity of the problem, particularly in the 
first iterations, is stabilised by λ while g(mn) links the VS models to their relative SW dispersion 
curves. More details about the inversion algorithm can be found in Boiero, 2009.  
 
 

6.3 APPLICATIO TO AURIGNAC DATA-SET 
 
The method we adopted it is schematized in the flowchart in Figure 6.1 
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Figure 6.1-Flowchart LCI 

 
The starting point of our method was the selection of the DCs (fundamental modes) to invert, to do 
so we clustered the data, as explained in the previous chapter. Once selected the DCs. We inverted 
them using the MCI to accomplish a rigorous model parameterization and, consequently we adopted 
the LCI of local DCs to get a final pseudo 3D model.  
In the following will be presented all the results.  
 
6.3.1 MCI RESULT 
 
In Figure 6.2 a and b (from Khosro Anjom, 2021), we show the estimated VS (obtained through the 
MCI) for the two different clusters that we explained in section 4.3.  

 

Figure 6.2-Estimated VS-(a) for the reference DC of Cluster A. (b) for the reference DC of Cluster B. 
(Khosro Anjom, 2021), 

 

The selected model parameters for the LCI inversion are shown in Table 5.1: 
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Table 6.1-Model parameters 

NUMBERS OF LAYER DENSITY POISSON RATIO 

9 with a constant thickness of 15 
meters, except for the first layer 
(20 m) 

2400 Kg/m3 in all the 
layers, excluded for the 
first one (2200 Kg/m3) 

we use a priori Poisson’s 

ratio from Khosro Anjom 
(2021). (Figure 5.2) 

 

 

Figure 6.3-(a) The obtained Poisson’s ratio for LCI application for cluster A. (b) The estimated Poisson’s 

ratio for cluster B in blue. The obtained Poisson’s ratio for LCI for cluster B. 

 

 

6.3.2 LCI RESULT 

For the LCI the level of constraints selected was 50 m/s, because Khosro Anjom (2021) demonstrated 
is the optimal level for this dataset.  

The final output obtained selecting the laterally constrained inversion (50 m/s constraints) 
automatically ceased after 37 iterations, reaching a minimum misfit. In Figure 6.4a to d, we show the 
horizontal sections of the estimated VS model at various depths. In Figure 6.5(a) it is shown the quasi-
3D view of the VS model, obtained after the interpolation of the estimate 1D models, and in Figure 
6.5(b) we show multiple iso-surfaces in x, y, and z directions from the 3D model. 
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Figure 6.4--Horizontal sections of the estimated VS model at various depths 

 

 

Figure 6.5- VS model- (a) 3D view of the obtained VS after linear interpolation of the 1D models. (b) 
Multiple iso-surfaces in x, y, and z directions from the 3D model. 
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6.4 CONCLUSION 
 
The tests conducted on the data acquired with the carpet acquisition show that the Laterally 
Constrained Inversion (LCI) is a powerful tool for consistent and reliable estimation of a VS model 
with lateral variations. both the processing and the constraints applied during the inversion produce 
a smoothing effect on the final VS model results.  
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7. MULTI-MODAL INVERSION 
 
7.1 OVERVIEW 
Generally, in surface wave analysis the VS model is obtained from the inversion of the fundamental 
modes of the observed DCs. However, it is reasonable to consider higher modes since, very often, the 
experimental DC is characterized by the superposition of numerous modes, especially in the case of 
velocity inversions or sharp velocity contrasts in the S-wave profile (Maraschini et all, 2010).  
The main value of the higher modes is that they are sensitive to factors to which the fundamental 
mode is poorly sensitive (Socco and Strobbia, 2004). For these reasons, numerous authors analyze 
and underline the importance of higher modes in the inversion process.  
Ernst, (2008), and Maraschini et al.,(2008) show that using them can enhance the correctness of the 
estimated velocity model, specifically in the occurrence of a low velocity layer (Gucunski and Woods, 
1992; Xia et al., 2003). Gabriels et al., (1987) demonstrate higher modes can improve the 
investigation depth, Ernst, (2008), show that including them in the inversion can stabilize the process, 
in particular, in the case of not accessibility of the low-frequency band Xu et al., (2006), Xia et al. 
(2006) prove that they can improve the resolution of the shear wave velocity of the inverted model. 
 
Those works validate the importance of higher modes in Rayleigh-wave inversion, but it is valuable 
to mention that including them in the inversion presents difficulties. For this reason, some authors 
analyze the common issues that derive from their use in the inversion process and present possible 
solutions.  
One issue to consider is the separation of various modes in the spectrum. Gabriels et al. (1987) and 
Foti et al. (2000) underline that it is possible to improve spectral resolution while also saving high-
frequency info, only by using many sensors and a long array.  Park et al. (1999) and Luo et al. (2008) 
demonstrate that it is possible to enhance the mode separation during the signal-processing. 
Another important issue to consider is the recognition of the mode number for every data point. This 
means that since part of the apparent DC could arise from the superposition of modes, some modes 
could be misidentified in the experimental data set. Therefore, if a portion of the DC is related to an 
improper mode number the resulting errors are greater than errors resulting from inaccurate data for 
a given mode (Zhang & Chan, 2003). Due to these considerations, few authors worked on multimodal 
inversions that do not require mode numbering.  
Ganji et al. (1998), Lai & Rix (1999), Forbriger (2003a,b) make a comparison on the experimental 
apparent DC with a synthetic apparent DC or utilized the full waveform inversion. These 
methodologies are computationally costly since they need an accurate simulation of the wave 
propagation. Another method to invert higher modes, that does not require to number the different 
modes was proposed by Ernst (2007) and then implemented within a deterministic algorithm by 
Maraschini et al. (2010). This is the approach that we used for the inversion of the higher modes in 
this thesis. The inversion technique makes use of a misfit function based on the properties of the 
solution of the forward problem, allowing for a substantial saving of computational costs (Maraschini 
et all, 2010). 
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In the following section, after briefly explaining the approach introduced by Maraschini et al 
(2010), we apply it to the Aurignac dataset and subsequentially we present the results. 
 

7.2 MARASCHINI’S METHOD 
 

Maraschini and Foti (2010) developed a method to invert apparent DCs implementing in a Monte 
Carlo inversion the Haskell-Thomson matrix determinant misfit function. This permit to 
automatically consider all the modes preventing mode misidentification and with a reduced 
computational cost.  

In particular, the method is based on a misfit function based on the determinant of the Haskell–
Thomson matrix and a classical Euclidean distance between the dispersion curves. 

Those misfits are utilized in a MCI with a large population of profiles. Consequently, the selection of 
representative models is achieved by using a Fisher test centrered on the Euclidean distance between 
the experimental and the synthetic DCs to the best models of the MCI (Maraschini et all, 2010). 

 

7.3 APPLICATION TO AURIGNAC DATASET 
 

In the following section we explain the criterion for the selection of the model space, and we show 
the result of the inversion. 

 

7.3.1 MODEL SPACE  
 

The boundaries of the model space are VS and depth, while the Poisson ratio and the density are 
assumed, so they do not vary in the model space. 

The boundaries are selected based on the result of the LCI. We decided to use the minimum and the 
maximum profiles of the VS to impose respectively the lower and the upper boundary limits of the 
models for the inversion of the higher modes. We did so, to obtain a result that could be in the range 
of the results of the LCI and to reduce the computational time. 

We divided the analyzed area into two sub-areas (Chapter 4) using clustering, therefore we apply the 
same clustering also to define the model space based on the LCI inversion. We defined different 
model space boundaries for cluster A one for the cluster B: cluster A corresponds to the high-velocity 
area, while the cluster B corresponds to the low-velocity area. In Figure 7.1 we show the results of 
the LCI in terms of depth vs VS, for cluster A (in blue) and in Figure 7.2 for cluster B (in red). 
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Figure 7.1- LCI result for the high velocity area 

 

 

Figure 7.2- LCI result for the low velocity area 

 

 

In both areas there is a general trend for many models and also some models that are far from the 
general trend, to be able to generate a proper model space, we removed these outliers, and reduced 
the reference models as those shown in Figure 7.3 and 7.4. 
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Figure 7.3-LCI result for the high velocity area after removing outliers 

 

 

Figure 7.4LCI result for the slow velocity area after removing outliers 

 

We then selected the boundaries of the model space for the inversion by defining the the minimum 
and the maximum profile of the VS vs depth. In Figures 7.5 and 7.6 we show the selected model 
space for the cluster A and B, respectively 
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Figure 7.5-Final boundary for the high velocity area. 

 

 

Figure 7.6-Final boundary for the low velocity area. 

 

The MCI of the higher modes, for the parametrization of the model space we utilized the same 
parameters utilized in the LCI, so 9 layers with a constant thickness of 15 meters, except for the first 
layer (20 m), density equal to 1800 Kg/m3 and a priori Poisson’s ratio from Khosro Anjom (2021). 
(Figure 5.2) 
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7.3.2 RESULTS 
 
For the Monte Carlo inversion 1 × 106 profiles were generated by random sampling VS within the 
boundaries.      

For brevity we present the output only for one DC for each cluster. 

For the cluster A, in Figure 7.7 it is shown the best plotted utilizing a color scale that is based on the 
fitting, the best fitting is characterized by the blue color, while for the lower misfit the yellow color 
is utilized. In Figures 7.8 and 7.9 we show the difference between the synthetic dispersion curve and 
the absolute value of the Haskell–Thomson matrix determinant of the best-fitting model, the fitting 
between the real dispersion curve and the dispersion curves of the best profiles.  

 

 
Figure 7.7-Best fitting profile for one sample of cluster A 

 
Figure 7.8-Absolute value of the Haskell–Thomson matrix determinant for best-fitting model of cluster A 

(white dots represent the experimental dispersion curve). 
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Figure 7.9-- Dispersion curves for best models compared with the experimental dispersion curve. 

 

There is a good agreement among the real data and the synthetic DC. The experimental DC is 
characterized by the fundamental mode and the higher mode, but a few points do not fit to any mode, 
this is caused by the spatial resolution of the acquisition (Maraschini et all, 2010). They belong to 
the, so called, transition zones. The determinant misfit function, used in this work, permits to take 
into account the transition zones, indeed, the area in which the experimental DC jump from a mode 
to the next one is linked with low-misfit values (Figure 7.8). 

For the cluster B, in Figure 7.10 we show the results using the same scheme adopted for cluster A. 

In Figures 7.11 and 7.12 we show again the difference between the synthetic dispersion curve and the 
absolute value of the Haskell–Thomson matrix determinant of the best-fitting model, the fitting 
between the real dispersion curve and the dispersion curves of the best profiles.  

 

 
Figure 7.10-Best fitting profile for one sample of cluster B 
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Figure 7.11-Absolute value of the Haskell–Thomson matrix determinant for best-fitting model of cluster B 
(white dots represent the experimental dispersion curve). 

 
Figure 7.12- Dispersion curves for best models compared with the experimental dispersion curve. 

 

We obtained a very good fitting between experimental and computed data. Also, in this case, there 
are some points in the transition zone. 

To conclude, in Figure 7.13 we show the 3D view of the VS model, obtained after the interpolation 
of the estimate 1D models, and in Figure 7.13 (b) multiple iso-surfaces in x, y, and z directions from 
the 3D model 
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Figure 7.13-VS model (a) 3D view of the obtained VS after linear interpolation of the 1D models. (b) 

Multiple iso-surfaces in x, y, and z directions from the 3D model. 
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7.4 MULTIMODAL VS FOUNDAMENTAL MODES INVERSION 
 
Once obtained the results, we wanted to answer to an important question, does the inclusion of the 
higher modes in the Maraschini MCI, improve the quality of the obtained results? 
To answer to this question we inverted, for some DCs, the fundamental mode only using the same 
algorithm used for the multimodal inversion and we compared the results with those obtained by 
including higher mode data points.  
In Figure 7.14 it is shown the comparison of the inversion. In Figure 7.14 (a) we show the result of 
the inversion considering the fundamental mode only and in Figure 7.14 (b) the result of the 
inversion also considering the higher modes. 
 
 

Figure 7.14-Comparison of the inversions (a) result of the inversion considering only the fundamental mode, 
(b) the result of the inversion also considering the higher modes. 
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As it is possible to notice, in Figure 7,14(d) the obtained profiles present a lower variation in 
comparison with the profile of Figure 7.14(b). This means that including the higher modes in the 
inversion, increase the resolution of the process. 

 
7.5 CONCLUSION 
 
In this chapter, we proposed the Maraschini-Monte Carlo algorithm for surface wave inversion 
(higher modes) based on a determinant misfit function. This misfit presents two central benefits. The 
main one is that it allows all the experimental higher modes to be considered in the inversion, without 
the need to number the modes before the inversion. The second advantage is that the computation of 
the misfit is faster than the usual misfit functions. For the inversion of the multimodal generating 1 
million model the computational time was equal to 10 minutes for each DCs.  

The efficacy of this process is demonstrated by the results obtained from the application on the 
Aurignac dataset, where the algorithm is assessed by inverting DCs that present complexities, for 
example the jump of the apparent DC to higher modes.  

Moreover, we showed the importance of including the higher modes during the inversion, indeed, as 
it is demonstrated by the results obtained, higher modes increase the resolution at depth in comparison 
with the inversion of the fundamental mode only.  
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8. COMPARISON OF THE METHODS 
 
8.1 INTRODUCTION 
 
The goal of this chapter is to compare the results obtained from the fundamental modes inversion 
LCI, and the results from the Multi-modal Monte Carlo inversion, we compared the relative results 
to evaluate the strength and the weakness of the utilized approaches, moreover, our task is also to 
underline advantages obtained from the inversion of the higher modes. We divide this chapter into 
two parts, first we present a graphical analysis, in which we show the chart of the local estimated VS 
model at various depths for both analyses, then we present a quantitative analysis to better understand 
the magnitude of the similarity or dissimilarity of the two different inversions. 
 
 

8.2 GRAPHICAL ANALYSIS  
 
We present the obtained results in terms of shear wave velocity at various depths: 20 meters, 50 
meters, 80 meters, 100 meters, and 130 meters. 
 
 

 

 

Figure 8.1- The estimated VS model at a depth equal to 20 meters, (a) results from LCI, (b) results from 
multi-modal Monte Carlo Inversion 
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Figure 8.2-The estimated VS model at a depth equal to 50 meters, (a) results from LCI, (b) results from 

multi-modal Monte Carlo Inversion 

 
 
 

 
 

Figure 8.3-The estimated VS model at a depth equal to 80 meters, (a) results from LCI, (b) results from 
multi-modal Monte Carlo Inversion 

 

 

Figure 8.4-The estimated VS model at a depth equal to 100 meters, (a) results from LCI, (b) results from 
multi-modal Monte Carlo Inversion 
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Figure 8.5-The estimated VS model the at a depth equal to 130 meters, (a) results from LCI, (b) results from 
multi-modal Monte Carlo Inversion 

 
 

As it is possible to notice from the above figures, globally the results obtained from the two different 
inversions are comparable. Both models show velocity contrast between the east and west sides of 
the site.                                

In particular, it is possible to notice that until the depth of 80 meters the VS are almost the same with 
just a few points in which the result differs more, once reached the depth of 100 meters the difference 
between the two results increases. 

In the case of multimodal inversion, we obtained more models, as a consequence the best techniques 
in terms of amount of results it the multimodal inversion. 

 

8.3 QUANTITATIVE ANALYSIS  
In this section, we evaluate the difference between the VS obtained for the two different inversions,  

in table 5 we show for each selected depth: 

 

- the average VS variation, 
- the minimum VS variation 
- the maximum VS variation 

 

And in table 6, we show for each selected depth, the percentage of:  

- the average VS variation, 
- the minimum VS variation, 
- the maximum VS variation, 
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Computed with the following equations: 

 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑆 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 [
𝑚

𝑠
] = 𝑚𝑒𝑎𝑛(𝑉𝑆𝐿𝐶𝐼𝑖

− 𝑉𝑆𝑀𝐶𝐼𝑖
) 

 

 

 

  

Where: 

 

- 𝑉𝑆𝐿𝐶𝐼𝑖
 represent the value of the shear wave velocity from the LCI, at a given depth,  

- 𝑉𝑆𝑀𝐶𝐼𝑖
 represent the value of the shear wave velocity from the LCI, at a given depth 

 

 

Table 8.1-Variation of the VS result of the higher modes in comparison with the result of the 
fundamental modes 

SELECTED 
DEPTH 

[m] 

AVERAGE 
VARIATION 

[m/s] 

MINIMUM 
VARIATION 

[m/s] 

 
MAXIMUM 
VARIATION 

[m/s] 

20 131 1 
 

379 

50 116 2 
 

462 

80 111 0,2 
 

515 

100 216 0,8 
 

1184 

130 209 4 
 

1202 
 

 

 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑆 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 [%] = 𝑚𝑒𝑎𝑛(ቤ
𝑉𝑆𝐿𝐶𝐼𝑖

− 𝑉𝑆𝑀𝐶𝐼𝑖

𝑉𝑆𝐿𝐶𝐼𝑖

ቤ 𝑋 100 ) 
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Table 8.2-Variation in percentage of the VS result of the higher modes in comparison with the 
result of the fundamental modes 

SELECTED 
DEPTH 

[m] 

AVERAGE 
VARIATION 

[%] 

MINIMUM 
VARIATION 

[%] 

 
MAXIMUM 
VARIATION 

[%] 

20 10 0,10 
 

105 

50 10 0,24 
 

72 

80 9 0,01 
 

50 

100 11 0,05 
 

61 

130 11,5 0,23 
 

41 
 

 

The differences between the two models are within 10%, the most comparable results are obtained at 
the depth of 80 meters, in which the average variation it is only 9 percent, while the worst condition 
it is at the depth of 130 meters where the average variation is equal to 11,5 percent. In the following 
figure, we show the results in terms of variation in VS both in terms of [m/s] and [%],  

 

 

Figure 8.6-Variation of VS model at a depth equal to 20 meters, (a) variation in terms of (m/s), (b) variation 
in terms of (%) 
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Figure 8.7-Variation of VS model at a depth equal to 50 meters, (a) variation in terms of (m/s), (b) variation 
in terms of (%) 

 

 

Figure 8.8-Variation of VS model at a depth equal to 80 meters, (a) variation in terms of (m/s), (b) variation 
in terms of (%) 

 

 

Figure 8.9-Variation of VS model at a depth equal to 20 meters, (a) variation in terms of (m/s), (b) variation 
in terms of (%) 
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Figure 8.10-Variation of VS model at a depth equal to 130 meters, (a) variation in terms of (m/s), (b) 
variation in terms of (%) 

 

The higher amount of variation is located in the north part of the investigated area, that corresponds 
also to the area in which there is a lower density of receivers, on the other hand, in the south part of 
the area (the high-density receiver zone), the variation is less. 
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CONCLUSION 
 

In this thesis, we presented a case study that confirms the feasibility and validity of the new non-
standard scheme of acquisition, carpet receiver geometry and irregular sparse sources, merged with a 
fast-processing technique, a so-called square multichannel, for the extraction of the DCs  

We considered a dataset, acquired in a mining site in the province of Aurignac, south France, 
characterized by stiff materials, consisting of seismic gathers recorded using an array of 217 5 Hz 
geophones, deployed using the carpet acquisition scheme.                                                                              

In the first part of the thesis, we implemented a processing workflow based on a square moving 
window that span the whole area and identifies a set of receivers which are used to estimate a 
dispersion curve using the phase shift data transform on which the maxima are automatically picked. 
For each position of the moving window we considered separately all the shots identified by a circular 
area centered in the square center. The velocity spectra from the different shots were stacked to 
improve the quality of the DCs. . We considered the obtained dispersion curves as a local property of 
the subsurface and associated them to the coordinates of the center of the window and the data that 
we inverted was composed by a group of DCs. As is usual, in the case of stiff sites, the data were 
noisy, discontinuous, narrow banded and characterized by the presence of energetic higher modes of 
propagation. We retrieved 173 dispersion curves for the inversion of the fundamental’s modes and 

234 for the inversion of the higher modes.                                                

We first inverted the fundamental curves using a laterally constrained inversion (LCI). The obtained 
results demonstrated that the LCI is a powerful tool for consistent and reliable estimation of a VS 
model with lateral variations.  

Due to the large amount of information that is contained in the higher modes we also included them 
in the  inversion. We applied the Maraschini-Montecarlo algorithm for the multi-modal inversion. 
The results showed the efficacy of the used algorithm in inverting DCs that present complexities, for 
example, the jump of the apparent DC to higher modes.  

Furthermore, we demonstrated by comparing the results obtained from the Monte Carlo multi-modal 
inversion with the Monte Carlo inversion of the individual fundamental mode, that including the 
higher modes improves the quality of the results. In our case, the use of the higher modes increased 
the resolution of the velocity model at depth. 

We compared the results obtained from the two analyses (LCI and Monte Carlo multi-modal) in terms 
of variation of shear wave velocity, the retrieved VS values achieved are, globally, comparable with 
an average variation of 10%. 

The obtained outcomes have shown that our method properly worked on the data acquired with the 
new acquisition approach. Pondering all these features, we conclude that the new acquisition scheme 
system merged with  a fast processing approach, is functional to build shear wave velocity models in 
an area characterized by stiff materials. 
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