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Abstract

The aim of this study is to investigate numerically some modified Navier-Stokes
equations, namely O. A. Ladyzhenskaya’s set of equations, which describe viscous non-
Newtonian incompressible fluid motion. Employing pseudo-spectral methods (Fourier-
Galerkin method) Navier-Stokes equations and Ladyzhenskaya equations are solved in
a cubic domain assuming periodic boundary conditions and the Taylor-Green Vortex as
initial condition, in order to compare solutions and explore alternative fluid dynamics
models whose hypotheses are less restrictive.

The study consists of two Parts named Theoretical Formulation and Numerical Inves-
tigation. In Part I governing equations of Fluid Dynamics are derived using the continuum
hypothesis and the conservation laws; then equations are specialized for incompressible
flows, defining also the conditions under which flows can be considered incompressible
and the role of the pressure. Viscous behavior is analyzed in Chapter 2 where expressions
for the viscous stress tensor are derived for the cases of Newtonian fluids and general
Reiner-Rivlin fluids. These expressions are then used in Chapter 3 to obtain incom-
pressible Navier-Stokes equations and Ladyzhenskaya’s models which contain non-linear
additional viscous terms. In the same Chapter global regularity problem for Navier-Stokes
equations and mathematical results for Ladyzhenksaya equations are presented pointing
out turbulence’s possible role in the Millennium Problem. Chapter 4 then covers Turbu-
lence, its characteristics, its statistical description and statistical symmetries. Part I ends
with some considerations on Navier-Stokes equations and the reasons why one should
investigate also alternative models.

In Part II the mathematical problems to solve are presented defining equations, do-
main and initial conditions. In Chapter 6 spectral methods are then introduced and
some applications of the Fourier-Galerkin method to linear and non-linear partial dif-
ferential equations are shown. Assuming the arising turbulence to be homogeneous and
isotropic, Navier-Stokes and Ladyzhenskaya equations are discretized in space through
the Fourier-Galerkin method, whereas advancement in time is realized through the fourth-
order Runge-Kutta scheme. The MPI program which implements the numerical scheme
described is presented. Simulations’ results are shown and analyzed in Chapter 7.
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Chapter 1

Governing Equations of Fluid Dynamics

The physical model which leads to formulate the governing equations of fluid motion is
based on the assumption of fluid as a continuum and on some fundamental principals of
physics.

1.1 The Continuum Hypothesis
The matter is not continuous: at microscopic scale homogeneous materials, such as solids,
liquids and gases are composed of molecules separated by space. Every molecule has
its own mass, momentum and energy so that at this scale material properties (density
and velocity) present discontinuities. In everyday experience, however, there are many
physical phenomena - such as fluid motion in pipes and bodies deformation under loads -
that can be described and predicted accurately using theories which neglect the molecular
structure of matter. Fluid mechanics is indeed normally concerned with the behavior of
matter on scales which are much larger than the distance between molecules so that
molecular structure of fluid does not need to be taken into account explicitly.
As an example, taking air under atmospheric condition the average spacing between
molecules is 3 · 10−9 m, the mean distance between two successive collisions of a molecule
(the mean free path) is λ = 6 · 10−8 m, whereas the mean time necessary to cover this
distance is τ = 10−10 s. In a flow, instead, the smallest geometric length scale is about
L = 0.1 mm = 10−4 m and for flow velocities up to u = 100 m/s the flow time scale results
larger than t = 10−6 s. It seems clear that even for flows with small length and time
scales, the macroscopic scales are some order of magnitude greater than molecular scales.
The separation between molecular length scale and flow length scale is quantified by the
Knudsen number :

Kn :=
λ

L
(1.1)

and in general if Kn� 1 the approach that neglects the molecular structure of matter is
justified.

The theory that regards matter as indefinitely divisible and describes its behavior
from a macroscopic point of view is knows as Continuum Theory. Within this theory
materials are considered to be composed of infinitesimal volumes, referred as particles,
which contain a huge number of molecules such that a statistical description of particle
properties is possible and holds. In a continuum the matter is assumed to be continuously
distributed and to fill the entire region of space it occupies; physical quantities such as
mass, momentum and energy associated with the matter in the particle are regarded as

6
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being spread uniformly over its volume. The continuum hypothesis implies that it is pos-
sible the notion of value at a point of the various fluid properties such as density, velocity
and temperature and that in general these quantities are continuous functions of position
and time. For very small Knudsen number, indeed, there exist intermediate length scales
l such that l is large compared with molecular scales, but small compared with flow scales
and the continuum properties can be thought of as the molecular properties averaged over
a volume V of size l3. If in the R3 space at the time t this small volume V located in x
contains a number of N(t) molecules each of which has its own mass mn and velocity un,
then the density of the material is

ρ(x, t) =
1

l3

N(t)∑
n=1

mn (1.2)

and can be considered as uniformly spread within the volume. The velocity of the center
of mass of this volume is

u(x, t) =

∑N(t)
n=1 mnun∑N(t)
n=1 mn

(1.3)

and it can be regarded as the velocity of the entire small volume (the fluid particle) as
well. The continuum hypothesis allows to introduce the notion of the fluid particle: a
point that moves with the local fluid velocity.

From a mathematical point of view, giving meaning to the notion of value at a point
and leading to continuous functions of space and time, the continuum assumption makes
differentiation possible. Fundamental physical laws such as the conservation of mass, the
conservation of momentum, and the conservation of energy may then be applied to such
model to derive differential equations that describe the phenomenon (motion, equilibrium,
deformation, etc).

1.2 Eulerian and Lagrangian descriptions of fluid mo-
tions

In order to obtain some differential equations for the fluid motion, it is necessary a frame
and a set of mathematical tools to represent physical quantities and their variations with
time and space. There are two main ways to describe the physical fields variations in a fluid
motion: the Eulerian approach and the Lagrangian approach. In a fluid motion physical
quantities of interest can be expressed as function of time and fixed points position in
an inertial frame that is equivalent to assign to every fixed point a quantity which varies
with time (Eulerian description) or they can be regarded as quantities associated to each
fluid particle which can varies with time and as the particle moves along its trajectory
(Lagrangian description).

1.2.1 Eulerian description

Considering an inertial reference frame with the coordinate system x in the R3 space,
the Eulerian representation of a (scalar or vectorial) physical variable f consists of the
continuum field f(x1, x2, x3, t). The continuum density and velocity fields, ρ(x, t) and
u(x, t), are Eulerian fields. Fluid properties are specified at a fixed point and a chosen
time.
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1.2.2 Lagrangian description

The Lagrangian approach follows all fluid particles and describes the variations around
each fluid particle along its trajectory. Considering an inertial reference frame with the
coordinate system x in the R3 space, a particle can be identified by its initial position
that is the position at time t(0) assumed as reference time,

y =
{
x

(0)
1 , x

(0)
2 , x

(0)
3

}
(1.4)

Let
x∗ = x∗ (t,y) (1.5)

denote the position at time t of the particle initially located in y. Mathematically, the
fluid particle position x∗ (t,y) is completely defined by two equations:

• the definition of the position at the reference time t(0)

x∗
(
t(0),y

)
= y (1.6)

• the equation that expresses the fact that the fluid particle moves with the local fluid
velocity u(x∗, t):

∂

∂t
x∗ (t,y) = u (x∗ (t,y) , t) (1.7)

Given the Eulerian velocity field u (x, t), for any particle, i.e. for any initial position
y, equation (1.7) can be integrated backward and forward in time to obtain particles
positions x∗ (t,y) for all the time t. Lagrangian fields of density and velocity can be then
expressed in term of their Eulerian fields:

ρ∗(t,y) = ρ (x∗(t,y), t)

u∗(t,y) = u (x∗(t,y), t)

The Eulerian fields are indexed by the position x in the inertial frame, whereas the
Lagrangian fields are indexed by the position y =

{
x

(0)
1 , x

(0)
2 , x

(0)
3

}
the particle has at the

reference time t(0). The coordinate y is called Lagrangian or material coordinate.
For a given initial position y, x∗ (t,y) defines the path and ρ∗(t,y) the density of the

fluid particle initially positioned in y. The rate of change of density associated with this
particle is

∂

∂t
ρ∗(t,y) =

∂

∂t
ρ (x∗(t,y), t) =

(
∂

∂t
ρ(x, t)

)
x=x∗

+
∂

∂t
x∗i (t,y)

(
∂

∂xi
ρ(x, t)

)
x=x∗

=

=

(
∂

∂t
ρ(x, t) + ui(x, t)

∂

∂xi
ρ(x, t)

)
x=x∗

=

(
D
Dt
ρ(x, t)

)
x=x∗

(1.8)

where the operator D(.)/Dt is the material derivative defined by
D
Dt

(.) :=
∂

∂t
(.) + vi

∂

∂xi
(.) =

∂

∂t
(.) + (u • ∇) (.) (1.9)

Thus the variation of density following the fluid particle is due to the local time rate of
change of Eulerian field and the term u • ∇ρ, referred to as convective variation, which
arises because the fluid particle moves with local velocity to a new position. Similarly,
the rate of change of fluid particle velocity, i.e. the particle acceleration, is given by

∂

∂t
u∗(t,y) =

(
D
Dt

u(x, t)

)
x=x∗

=

(
∂

∂t
u(x, t) + (u(x, t) • ∇)u(x, t)

)
x=x∗

. (1.10)
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1.3 Conservation laws of fluid dynamics
Many of laws of continuum mechanics state that the total amount of some particular
quantities associated with a material body either is invariant or changes in a certain
way under the action of known external influences. The total mass of an arbitrary given
volume of fluid, for example, is the most obvious conserved quantity; in general given an
arbitrary extensive property of the fluid, the amount of which per unit of mass of fluid is
an intensive quantity denoted by θ(x, t), it is possible to write a conservation law for this
extensive quantity associated with the a material volume Ω which has the following form:

∂

∂t

∫
Ω

ρθ(x, t) dΩ =

∫
Ω

Q(x, t) dΩ (1.11)

where Q(x, t) represents the density of the source of the extensive quantity and may
depend on the instantaneous fluid motion in some way. The exact form of the function
Q(x, t) depends on the nature of the extensive quantity corresponding to θ.
Since for a material element of fluid the integral relation

∂

∂t

∫
Ω

ρθ dΩ =

∫
Ω

D
Dt

(ρθ) dΩ +

∫
Ω

ρθ∇ • u dΩ (1.12)

holds, then ∫
Ω

D
Dt

(ρθ) dΩ +

∫
Ω

ρθ∇ • u dΩ =

∫
Ω

Q dΩ (1.13)

Since Ω is an arbitrary volume, the quantity ρθ must satisfy the following differential
equation

D
Dt

(ρθ) + ρθ∇ • u = Q(x, t) (1.14)

which represents the differential form of a conservation law for the generic extensive
property ρθ.

1.3.1 Mass Conservation

Considering the mass itself as a extensive property then θ = 1 and the equation (1.14)
becomes

Dρ
Dt

+ ρ∇ • u = Q

and by the definition of the material derivative

∂ρ

∂t
+ u • ∇ρ+ ρ∇ • u = Q

∂ρ

∂t
+∇ • (ρu) = Q (1.15)

If there is not any source of mass, Q(x, t) = 0 everywhere and (1.15) becomes

∂ρ

∂t
+∇ • (ρu) = 0 (1.16)

which is the mass conservation law in differential form. Integrating this equation over a
finite material volume Ω of fluid the mass conservation becomes∫

Ω

∂ρ

∂t
dΩ +

∫
Ω

∇ • (ρu) dΩ = 0
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and by applying the divergence theorem∫
Ω

∂ρ

∂t
dΩ +

∫
S

ρu • n dS = 0 (1.17)

where S is the boundary of the fluid volume (S = ∂Ω) that has unit outward normal n.
The integral equation (1.17) states that the rate of increasing of the mass of fluid enclosed
by the surface S ∫

Ω

∂ρ

∂t
dΩ

is equal to the net rate at which mass is flowing inward across the surface S, i.e. the net
flux of mass entering the control volume through the boundary:

−
∫
S

ρu • n dS

If mass is conserved then
Dρ
Dt

= −ρ∇ • u (1.18)

and the integral conservation law for extensive properties (1.13)∫
Ω

θ
Dρ
Dt

dΩ +

∫
Ω

ρ
Dθ
Dt

dΩ +

∫
Ω

ρθ∇ • u dΩ =

∫
Ω

Q dΩ

is reduced to ∫
Ω

ρ
Dθ
Dt

dΩ =

∫
Ω

Q dΩ (1.19)

which has the differential form

ρ
Dθ
Dt

:= ρ
∂θ

∂t
+ ρu • ∇θ = Q (1.20)

1.3.2 Momentum Conservation

Considering the momentum as extensive property, θ = u and the integral form of the
conservation law will be ∫

Ω

ρ
Du

Dt
dΩ =

∫
Ω

Q dΩ

In this equation the term on the left-hand side represents the sum of the product of mass
and acceleration for all the elements of the material volume Ω or alternatively the time
rate of change of momentum of the entire fluid volume. For Newton’s second law this time
rate of change of momentum equals the resultant of the external forces F (both surface
and body forces) acting on the fluid:∫

Ω

ρ
Du

Dt
dΩ = F(x, t) (1.21)

In general surface forces, which are of molecular origin and act on the volume boundary
S = ∂Ω, are described by a second order symmetric tensor σ = σij(x, t) called stress tensor
which expresses the mutual reactions of the adjacent parts of fluid, while body forces per
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unit mass are described by their vector resultant f = fi(x, t). The total body force on the
selected volume of fluid is then the vector∫

Ω

ρf dΩ

The i-component of the surface force exerted on a surface element of area dS and normal
unit vector n is represented as σijnj dS. The total surface force exerted on the selected
portion of fluid by the surrounding matter is then the vector∫

S

σijnj dS =

∫
S

σ • n dS =

∫
Ω

∇ • σ dΩ =

∫
Ω

∂σij
∂xj

dΩ

Therefore the integral conservation law (1.21), which is a vector equation, will be∫
Ω

ρ
Du

Dt
dΩ =

∫
Ω

ρf dΩ +

∫
Ω

∇ • σ dΩ (1.22)

or by component (i = 1, 2, 3)∫
Ω

ρ
Dui
Dt

dΩ =

∫
Ω

ρfi dΩ +

∫
Ω

∂σij
∂xj

dΩ (1.23)

Since Ω is arbitrary then the following differential equation holds

ρ
Du

Dt
:= ρ

∂u

∂t
+ ρ(u • ∇)u = ρf +∇ • σ (1.24)

The equation (1.24) represents the differential form of the conservation law for momentum.
Angular momentum is conserved as consequence of the symmetry of the stress tensor.

Body forces acting on fluid are generally due to earth gravitational fields, so that f is
simply equal to the gravitational acceleration g; in other particular cases such as treating
fluids with electromagnetic properties, for example, an appropriate expression for f has
to be specified.

As symmetric tensor, the stress tensor σij can be decomposed in a isotropic part and
an anisotropic (or deviatoric) part:

σij =
1

3
σiiδij + τij (1.25)

The isotropic part is

σ0
ij =

1

3
σiiδij (1.26)

where σii is the trace of the tensor. This part is characterized by invariance under any
frame rotation and represents the mean normal stress. If the fluid is at rest only these
stresses are present and are equal to the static pressure p:

σij =
1

3
σiiδij = −pδij (1.27)

This pressure is also the thermodynamic pressure: a state variable that can be determined
by the temperature and the density and may be function of position in the fluid. There is
no reason to expect that the notion of pressure, intended as normal stress acting equally
in all the directions, is valid for a fluid in motion as well since in general the normal
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component of the stress acting on a surface element depends on the direction of the
normal to the element. It is useful however to define a scalar quantity for a moving fluid
which is analogous to the static pressure which measures the amount of the compression
exerted on the fluid element by the surrounding matter. In this sense the quantity −1

3
σii

can generalise the notion of pressure to moving fluids since it is invariant under rotation
and represents the mean stress acting normally on the fluid element. Thus the pressure
at a point in a moving fluid can be defined as

p = −1

3
σii (1.28)

This is a purely mechanical definition of pressure and nothing is implied about the con-
nection with the thermodynamic pressure. In conclusion when the fluid is moving the
pressure is defined as the average normal force on a fluid element and is not necessarily
the thermodynamic pressure.

Subtracting the mean normal stress from the stress tensor produces the deviatoric
stresses

τij = σij −
1

3
σiiδij (1.29)

The deviatoric stress tensor is due entirely to the existence of the motion of the fluid; it
will be discussed later in the Chapter 2.

Using the stress tensor decomposition in isotropic and deviatoric part the integral
conservation law of momentum becomes∫

Ω

ρ
Dui
Dt

dΩ =

∫
Ω

ρfi dΩ−
∫

Ω

∂p

∂xi
dΩ +

∫
Ω

∂τij
∂xj

dΩ (1.30)

which has differential form

ρ
Du

Dt
:= ρ

∂u

∂t
+ ρ(u • ∇)u = ρf −∇p+∇ • τ (1.31)

or by components (for i = 1, 2, 3)

ρ
Dui
Dt

:= ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρfi −
∂p

∂xi
+
∂τij
∂xj

(1.32)

1.3.3 Energy Conservation

Classical thermodynamics is concerned with equilibrium states of uniform matter: states
in which all local mechanical, physical and thermal quantities are virtually independent
of both position and time. Therefore, in order to obtain a conservation law for the
energy in a fluid motion it is necessary to extend classical thermodynamics concepts
and results to systems which are in non-uniform and non-equilibrium states; observations
show that classical thermodynamics results are approximately valid for the fluid motion in
practical fluid dynamics when the non-uniformities are considered to generate a succession
of states in each of which the departure form equilibrium at any instant is small and can be
neglected. If a given mass of fluid is in thermodynamic equilibrium, its state is completely
defined by two parameters, for example the density ρ and the pressure p; thus all the other
quantities (such as the temperature, the internal energy and the entropy) which describe
the state of the fluid are function of these two parameters of state through equations
of state. When the fluid presents non-uniformities, instead, it is necessary to define
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thermodynamics quantities which are not dependent on the existence of exact equilibrium;
the simplest independent quantity that can be defined is the density: the instantaneous
ratio of the mass to volume of the fluid element. Another important quantity is the
internal energy per unit of mass E. Assuming that E refers to an equilibrium state
that is achieved instantaneously by isolating the fluid element and letting it to come to
equilibrium, the internal energy can be defined at every instant using the first law of
thermodynamics

∆E = Q+W (1.33)

in which the heat gained by the fluid per unit of mass (Q) and the work per unit of
mass performed on the fluid (W ) between two instants are quantities whose definitions
are independent on the existence of equilibrium. Once ρ and E are defined, it is possible
to use them to define other quantities such as the temperature T and the entropy per
unit of mass S which describe the state of the moving fluid. It is possible at this point
to determine the internal energy balance for a mass of homogeneous fluid using the first
principle of thermodynamics which, derived in time, states that the rate of change of
internal energy is due to the rate at which work is performed on fluid and the rate at
which heat is gained by the fluid:

DE
Dt

= Q̇+ Ẇ (1.34)

The rate at which the work is done on the fluid in the volume Ω by the body forces is∫
Ω

ρuifi dΩ (1.35)

whereas that done by surface forces is∫
S

uiσijnjdS =

∫
Ω

∂ (uiσij)

∂xj
dΩ =

∫
Ω

[
∂ (uiτij)

∂xj
− ∂ (uipδij)

∂xj

]
dΩ (1.36)

Thus the total rate of working on a material element per unit of mass of fluid is

uifi +
1

ρ

∂ (uiτij)

∂xj
− 1

ρ

∂ (uipδij)

∂xj
(1.37)

It can be written also as follows

uifi +
ui
ρ

∂τij
∂xj

+
τij
ρ

∂ui
∂xj
− ui
ρ

∂ (pδij)

∂xj
− p

ρ

∂ui
∂xi

=

=
ui
ρ

[
ρfi +

∂τij
∂xj
− ∂p

∂xi

]
+
τij
ρ

∂ui
∂xj
− p

ρ

∂ui
∂xi

(1.38)

and using the momentum equation (1.32):

ui
Dui
Dt

+
τij
ρ

∂ui
∂xj
− p

ρ

∂ui
∂xi

(1.39)

It can be seen that the term in (1.38)

ui
ρ

[
ρfi +

∂τij
∂xj
− ∂p

∂xi

]
=

D
Dt

(
u2

2

)
(1.40)
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is due to the difference between the stresses on opposite sides of the element and to the
volume force and contributes only to the gain in kinetic energy u2/2 (per unit of mass)
of the material element, whereas the term

τij
ρ

∂ui
∂xj
− p

ρ

∂ui
∂xi

is due to the difference between the velocities on opposite side of the element and repre-
sents the work done in deforming the element without changing its velocity. This term
contributes only to the gain of internal energy. Thus the rate of working done by surface
and body forces which determines a change of internal energy will be simply:

Ẇ =
τij
ρ

∂ui
∂xj
− p

ρ

∂ui
∂xi

(1.41)

Assuming that there is no heat source and that the heat is transferred in the fluid
by molecular conduction, the net heat’s flux entering the control volume through the
boundary S can be written using Fourier’s law of heat conduction∫

S

k
∂T

∂xi
ni dS =

∫
Ω

∂

∂xi

(
k
∂T

∂xi

)
dΩ (1.42)

where T is the local temperature and k the thermal conductivity of the fluid. Thus the
rate of gain of heat by a material element per unit of mass is

Q̇ =
1

ρ

∂

∂xi

(
k
∂T

∂xi

)
(1.43)

Therefore using the first principle of thermodynamics (1.34), the rate of change of
internal energy per unit of mass is

DE
Dt

=
1

ρ

∂

∂xi

(
k
∂T

∂xi

)
+
τij
ρ

∂ui
∂xj
− p

ρ

∂ui
∂xi

(1.44)

This equation represents the balance of internal energy in differential form; the balance
of kinetic energy K for unit of mass associated with the material element is given by
equation (1.40):

DK
Dt

=
D
Dt

(
u2

2

)
= uifi +

ui
ρ

∂τij
∂xj
− ui
ρ

∂p

∂xi
(1.45)

Summing equations (1.44) and (1.45) the total energy balance equation can be obtained

ρ
D
Dt

(
E +

u2

2

)
=

∂

∂xi

(
k
∂T

∂xi

)
+ τij

∂ui
∂xj
− p∂ui

∂xi
+ ρuifi + ui

∂τij
∂xj
− ui

∂p

∂xi
(1.46)

In these equations the pressure p has a mechanical definition, as previously explained it
is defined as menus the mean normal stress. Given the values of density ρ and internal
energy E it is possible to obtain the value of pressure pe corresponding to the instanta-
neous thermodynamic equilibrium using an equilibrium equation of state for the fluid. In
absence of relative motion of the fluid the pressure p equals the thermodynamic equilib-
rium pressure pe, but when relative motion occurs they may be different. For sufficiently
small magnitude of the velocity gradient, the difference p − pe can be assumed to be a
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linear function of the non-uniformities in velocity field, that are the various components
of the tensor ∂ui/∂xj:

p− pe = Bij
∂ui
∂xj

(1.47)

where the tensor coefficient Bij depends on the local state of the fluid but not directly on
the velocity field. The response of the pressure to an imposed velocity gradient can be
assumed also to be independent on the direction so that Bij is an isotropic tensor

Bij = −κδij (1.48)

where κ is a scalar coefficient dependent on the local state of fluid. Thus the relation
(1.47) reduces to

p = pe − κδij
∂ui
∂xj

= pe − κ
∂ui
∂xi

(1.49)

The rate at which the isotropic part of the stress tensor, i.e. the pressure, contributes to
change the internal energy in equation (1.44) is then

−p
ρ

∂ui
∂xi

= −pe
ρ

∂ui
∂xi

+
κ

ρ

(
∂ui
∂xi

)2

(1.50)

in which the term
κ

ρ

(
∂ui
∂xi

)2

provided that κ is positive, represents a dissipation of mechanical energy due to the
expansion caused by ∂ui/∂xi in the departure from the equilibrium state; κ represents
indeed a expansion damping coefficient usually called bulk viscosity. This term is in
general small compared to the first term on right-hand side of the relation (1.50) since the
velocity gradient is assumed to be small, however it can determine a considerable amount
of dissipation of mechanical energy when the rate of expansion ∂ui/∂xi is periodic and
goes through many cycles, like in propagation of acoustic waves on long distances.

The set of equations which describes the fluid motion under the assumptions made is
formed by

• Mass conservation
∂ρ

∂t
+
∂ (ρui)

∂xi
= 0 (1.51)

• Momentum conservation (for i = 1, 2, 3)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρfi −
∂p

∂xi
+
∂τij
∂xj

(1.52)

• Energy conservation

ρ
D
Dt

(
E +

u2

2

)
=

∂

∂xi

(
k
∂T

∂xi

)
+ τij

∂ui
∂xj
− p∂ui

∂xi
+ ρuifi + ui

∂τij
∂xj
− ui

∂p

∂xi
(1.53)

If we assume for the moment that the deviatoric part of stresses is a known function of
the velocity gradient and the local thermodynamic state (it will be explained later), then
the unkown functions in these five differential equations are eight: the three components
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of the velocity field u, the density field ρ, the pressure field p, the temperature field
T , the thermal conductivity of the fluid k and the internal energy field E. We thus
miss three equations in order to close the system of equations. These missing equations
are given by thermodynamic relations between ρ, T , E, p and k. We have assumed
that non-uniformities generate a succession of states in each of which the departure form
equilibrium is small and an intermediate equilibrium state is achieved instantaneously by
the fluid element; thus this intermediate thermodynamic state of the fluid is completely
defined by two parameter of state, for example the density ρ and the temperature T .
Therefore, given ρ and T , the other thermodynamic variables can be determined through
known relations called constitutive equations which are proper of the fluid:

p = p(ρ, T ) (1.54)

E = E(ρ, T ) (1.55)

k = k(ρ, T ) (1.56)

Using these three relations and the expression of τij which, for the moment, is supposed
known, the five equations can be expressed in function of the following five variables: u1,
u2, u3, ρ, T .

1.4 Incompressible flows
In certain flow conditions that will be soon discussed, the density of the fluid element
does not change during its motion and the flow is said to be incompressible. Therefore
when the flow is incompressible, the rate change of density of the material fluid element
is zero:

Dρ
Dt

=
∂ρ

∂t
+ ui

∂ρ

∂xi
= 0 (1.57)

Using this condition the mass conservation equation

∂ρ

∂t
+ ui

∂ρ

∂xi
+ ρ

∂ui
∂xi

= 0 (1.58)

takes the simple form
∂ui
∂xi

= 0 (1.59)

which expresses that the rate of expansion is everywhere zero or, mathematically, that the
velocity field is solenoidal. Since the incompressibility is a property of the flow and not of
the fluid, we want to understand the conditions under which the flow can be considered
incompressible; it can be done using dimensional analysis.

1.4.1 Dimensional Analysis

If a flow is incompressible we can also write that the density variation ∆ρ experienced by
any fluid element during its motion is small compared with the unperturbed value of the
density ρ: ∣∣∣∣∆ρρ

∣∣∣∣� 1 (1.60)
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Let L and U denote respectively the characteristic length scale and the characteristic
velocity of the flow, then the order of magnitude of the relative density variation is ap-
proximately

∆ρ

ρ
∼ 1

ρ

Dρ
Dt

L

U
(1.61)

since L/U expresses the characteristic time in which significant variations of flow quanti-
ties may occur. Thus the condition (1.60) can be written∣∣∣∣1ρDρDt

∣∣∣∣� U

L
(1.62)

If we choose density ρ and entropy S as the two independent thermodynamic state vari-
ables than we can express the pressure variation as follows

Dp(ρ, S)

Dt
=

(
∂p

∂ρ

)
S

Dρ
Dt

+

(
∂p

∂S

)
ρ

DS
Dt

(1.63)

Denoting with a2 the quantity (∂p/∂ρ)S which is actually the square of the speed of sound,
we may express the density variation as

Dρ
Dt

=
1

a2

Dp
Dt
− 1

a2

(
∂p

∂S

)
ρ

DS
Dt

(1.64)

which substituted in the condition (1.62) gives∣∣∣∣∣ 1

ρa2

Dp
Dt
− 1

ρa2

(
∂p

∂S

)
ρ

DS
Dt

∣∣∣∣∣� U

L
(1.65)

This condition is normally satisfied if each on the two terms on the left-hand side is small
compared with U/L: ∣∣∣∣ 1

ρa2

Dp
Dt

∣∣∣∣� U

L
(1.66)∣∣∣∣∣ 1

ρa2

(
∂p

∂S

)
ρ

DS
Dt

∣∣∣∣∣� U

L
(1.67)

To estimate the order of magnitude of the term Dp/Dt, we can use the kinetic energy
equation (1.45), in particular to express the pressure convection, and neglect the effect
of viscosity which modifies the pressure distribution rather than the magnitude of the
pressure variation Dp/Dt. The condition (1.66) can be rewritten as∣∣∣∣ 1

ρa2

∂p

∂t
− 1

2a2

Du2

Dt
+

u • f

a2

∣∣∣∣� U

L
(1.68)

Again, this condition is satisfied if each of the terms is small in magnitude compared to
the right-hand side: ∣∣∣∣ 1

2a2

Du2

Dt

∣∣∣∣� U

L
(1.69)∣∣∣∣ 1

ρa2

∂p

∂t

∣∣∣∣� U

L
(1.70)
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a2

∣∣∣∣� U

L
(1.71)

The order of magnitude of variation of u2 is given by U2/(L/U), i.e. U3/L, so that
the first of these conditions becomes:

M2 :=
U2

a2
� 1 (1.72)

whereM is the Mach number characterising the flow. This condition is practically satisfied
for Mach numbers lower than 0.3.
To estimate the time fluctuations of pressure contained in the second condition, we can
use a simple case: an unidirectional flow with a velocity which is constant in space (over
L), but oscillates in time between opposite values of order U with the frequency f . In
addition,without invalidating the analysis, we can neglect the effects of the body and
the viscous forces. Using these assumptions and the momentum balance equation (1.32),
one can express the pressure variation as ∆p ≈ ρUL/∆t where the characteristic time of
variation ∆t is simply the reciprocal of the frequency f . Thus the condition∣∣∣∣ 1

ρa2

∂p

∂t

∣∣∣∣� U

L

can be rewritten as follows ∣∣∣∣ 1

ρa2
ρULf 2

∣∣∣∣ =
f 2L2

a2
� U

L
(1.73)

If the order of magnitude of the frequency f is U/L, this condition simply reduces to
the previous condition (M � 1). If the frequency of oscillations is instead high than
the (1.73) represents and independent and more restrictive condition than M � 1. This
explains why it is essential to take compressibility into account in acoustics even when
Mach numbers are low.

The order of magnitude of the left-hand side in the last condition∣∣∣∣u • f

a2

∣∣∣∣� U

L

can be estimate supposing that the body forces arises from the gravitational acceleration
g only. Thus the condition can be rewritten as follows∣∣∣∣gUa2

∣∣∣∣� U

L
⇒ gL

a2
� 1 (1.74)

which implies that the typical length scale of motion L should be small compared to the
characteristic length given by a2/g.

For the remaining condition ∣∣∣∣∣ 1

ρa2

(
∂p

∂S

)
ρ

DS
Dt

∣∣∣∣∣� U

L
(1.75)

it is possible to demonstrate using the entropy balance that it is satisfied in almost all cases
of practical interest, provided that the Mach number is low and the externally imposed
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temperature gradients are not significant. This condition is indeed almost irrelevant
compared to the condition regarding Dp/Dt.

In conclusion it is possible to state that the fluid behaves as if it were incompressible
when the following flow conditions are all satisfied:

M2 =
U2

a2
� 1 (1.76)

f 2L2

a2
� U

L
(1.77)

gL

a2
� 1 (1.78)

1.4.2 Equations for incompressible flows

Explained the conditions under which the flow can be considered incompressible, we now
want to know how equations of motion change. We have already seen that if the flow
is incompressible then the velocity field is solenoidal (∇ • u = 0) because of the mass
conservation; using this property of the velocity field in the internal energy balance (1.46)
the contribution due to the pressure vanishes and the equation reduces to

DE
Dt

=
1

ρ

∂

∂xi

(
k
∂T

∂xi

)
+
τij
ρ

∂ui
∂xj

(1.79)

in which we can assume that the internal energy is a function of the temperature T only
since ρ is constant. In the internal energy balance the term containing the deviatoric part
of stresses is usually referred to as dissipation function and denoted by Φ:

DE
Dt

=
1

ρ

∂

∂xi

(
k
∂T

∂xi

)
+ Φ (1.80)

The set of equations of motion in the case of incompressible flow is then reduced to the
following system

∂ui
∂xi

= 0 (1.81)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρfi −
∂p

∂xi
+
∂τij
∂xj

(1.82)

DE
Dt

=
1

ρ

∂

∂xi

(
k
∂T

∂xi

)
+ Φ (1.83)

As will be seen later, in these equation τij can be considered as function of the velocity
gradient only. Like in the case of generic compressible flows, the three components of
velocity u and the temperature T are still unknown functions. The density instead can
no longer be an unknown since it does not change in the motion and is effectively constant
in the whole field. The quantity which replaces the density as an unknown variable is the
pressure p which, however, can no longer be considered a thermodynamic state function
related to the density and the temperature by an equation of state. The pressure is purely
a mechanical variable which adjusts itself instantaneously so that the velocity field can
satisfies the divergence-free condition; in fact by applying the divergence operator to the
momentum conservation equation and using ∇ • u = 0, it is possible to obtain a Poisson
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equation for the pressure in which the source term is a known function of the derivatives
in space of the velocity only:

∇2p = f(u) (1.84)

The pressure field is then completely defined by the velocity field and the satisfaction of the
Poisson equation represents a necessary and sufficient condition for a solenoidal velocity
field to remain solenoidal. Since the equation is not an evolution equation the pressure
field has to change instantaneously to guarantee that the divergence-free condition is
satisfied by the velocity.

From a mathematical point of view it can be observed that if one assumes that the
density is constant and that the deviatoric stresses does not depend on the thermodynamic
state, then the temperature, which represents the only thermodynamic variable, appears
in the internal energy equation only. Consequently, the energy equation is decoupled
from the other four scalar equations so that one could solve the system formed by mass
conservation and momentum balance to obtain the velocity and the pressure fields and
later, given the velocity field and a constitutive equation for k = k(T ), to solve the internal
energy equation to obtain, if needed, the temperature field . When temperature field is
not needed, in fact, the energy balance equation is not even written down and the problem
reduces to the solution of the system given by equations (1.81) and (1.82) only.



Chapter 2

Viscous Stress Tensor

In the previous Chapter the following equations for compressible fluid motion have been
derived

• Mass conservation
∂ρ

∂t
+
∂ (ρui)

∂xi
= 0 (2.1)

• Momentum conservation (for i = 1, 2, 3)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρfi −
∂p

∂xi
+
∂τij
∂xj

(2.2)

• Energy conservation

ρ
D
Dt

(
E +

u2

2

)
=

∂

∂xi

(
k
∂T

∂xi

)
+ τij

∂ui
∂xj
− p∂ui

∂xi
+ ρuifi + ui

∂τij
∂xj
− ui

∂p

∂xi
(2.3)

As explained, in these equations density, pressure, internal energy, thermal conductivity of
the fluid and temperature are related through thermodynamic equations (the constitutive
laws) proper of the fluid.

In order to carry out some considerations, we have previously assumed that the de-
viatoric part τij of the stress tensor was a function of the thermodynamic state and of
the velocity gradient without clarifying these dependences; so far, an expression for τij
is in fact missed. In order to derive an expression for τij it is essential to consider the
molecular origin of the stresses and their relation with the local fluid properties.

2.1 Transport of momentum and stress tensor
When matter is in an equilibrium state the spatial distribution of each of the various prop-
erties of the material is uniform and each material element is in mechanical and thermal
balance with near elements. If certain properties are not uniform it is observed that ex-
changes of mechanical and thermal properties occur between adjoining elements and tend
to bring the material to an equilibrium state smoothing out the non-uniformities. These
kind of exchanges occurring on molecular length scales are called diffusive phenomena and
concern the transport on matter, energy and momentum. All molecules are in continual
motion of a random kind because of thermal agitation and as consequence they tend to

21
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migrate away from any initial position transporting their matter, energy and momentum.
The transport of molecular momentum across an element surface occurs when molecules
cross the surface and interact with each other; as consequence of this flux of molecular
momentum in the fluid a local stress (a force per unit of surface) arises. The stress at
any point is then a consequence of molecular motions and interactions around the point
and if the fluid continuum velocity is uniform the stress is normal to the surface element
for all orientation of the element. If the continuum velocity is not uniform crossing the
surface then the tangential components of stress may not be zero since the net flux of
molecular momentum in the direction of relative motion may not be zero. Tending to
smooth out the non-uniformity these tangential stresses represent an internal friction and
when a fluid shows this behavior is said to be viscous.
We have previously introduced the stress tensor σij to represent the surface forces acting
on a fluid element and we have decomposed it in isotropic and deviatoric parts. As ex-
plained, the isotropic part, invariant under any rotation of frame, is completely defined
by a scalar quantity which represents the generalisation of the concept of pressure to fluid
which are in non-equilibrium

σ0
ij =

1

3
σiiδij = −pδij (2.4)

whereas an expression for the deviatoric part still misses. However, we now know that the
deviatoric part τij of the stress tensor represents the viscous interaction between elements
of fluid, it can be indeed named viscous stress tensor, and is entirely due to the diffusive
transport of molecular momentum caused by non-uniformities in the continuum velocity
field. Thus the local velocity gradient ∂ui/∂xj, which expresses these non-uniformities, is
the parameter of the flow with most relevance in the definition of viscous stresses.

2.2 Linear relation between viscous stress tensor and
velocity gradient - Newtonian fluids

There is no rigorous way to deduce the dependence of τij on ∂ui/∂xj for all the fluid in
general, however it is possible to say that if the velocity gradient is sufficiently small in
magnitude then τij is approximately a linear function of ∂ui/∂xj:

τij = Aijkl
∂uk
∂xl

(2.5)

where Aijkl is a fourth-order tensor of coefficients depending on the local state of the
fluid, but not directly on the velocity gradient. Since τij is symmetrical, the tensor Aijkl
is necessarily symmetrical in the indices i and j. The velocity gradient can be written as
the sum of a symmetric and antisymmetric tensor

∂uk
∂xl

= Dkl + Skl (2.6)

where
Dkl =

1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
(2.7)

is the symmetric rate-of-strain tensor, and

Skl =
1

2

(
∂uk
∂xl
− ∂ul
∂xk

)
(2.8)
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is the antisymmetric rate-of-rotation tensor. Using this decomposition, (2.5) becomes

τij =
1

2
Aijkl

(
∂uk
∂xl

+
∂ul
∂xk

)
+

1

2
Aijkl

(
∂uk
∂xl
− ∂ul
∂xk

)
(2.9)

If we suppose that the molecular structure of the fluid is statistically isotropic then the
deviatoric stress generated in an element of fluid by a given velocity gradient is indepen-
dent on the orientation of the element, i.e. the viscous response to a given gradient has
not directional preferences. In general gases and simple liquids have this kind of isotropic
structure because of the low number of atoms composing the molecules, however there
exist some fluids, like solutions containing long-chain molecules (such as polymers), that
may exhibit an anisotropic response to velocity gradient and for which this hypothesis is
not valid. We now suppose to deal with the first category of fluids, for which the isotropic
viscous response leads to the isotropy of the tensor of coefficients Aijkl so that it can be
written as follows

Aijkl = µ0δikδjl + µ1δilδjk + µ2δijδkl (2.10)

where µ0, µ1 and µ2 are scalar coefficients depending on the local state of the fluid, but
not on the velocity gradient . Since Aijkl is symmetrical in i and j

Aijkl = Ajikl

which is
µ0δikδjl + µ1δilδjk + µ2δijδkl = µ0δjkδil + µ1δjlδik + µ2δjiδkl

Since δij = δji then
µ0δikδjl + µ1δilδjk = µ0δjkδil + µ1δjlδik

which reduces to
(µ0 − µ1) (δjlδik − δilδjk) = 0

This relation is satisfied for each value of i, j, k and l if

µ1 = µ0 := µ (2.11)

so that
Aijkl = µ (δikδjl + δilδjk) + µ2δijδkl (2.12)

The relation (2.9) then becomes

τij =
1

2
[µ (δikδjl + δilδjk) + µ2δijδkl]

(
∂uk
∂xl

+
∂ul
∂xk

)
+

+
1

2
[µ (δikδjl + δilδjk) + µ2δijδkl]

(
∂uk
∂xl
− ∂ul
∂xk

) (2.13)

It can be observed that µ0 = µ1 implies that Aijkl is also symmetrical in the indices k
and l (Aijkl = Aijlk) and as consequence its product with the antisymmetric part of the
velocity gradient

[µ (δikδjl + δilδjk) + µ2δijδkl]

(
∂uk
∂xl
− ∂ul
∂xk

)
drops out leading to

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ µ2

∂uk
∂xk

δij (2.14)
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If we suppose that τij does not give contribution to the normal stress (Stokes’ hypothesis)
then

τii = (2µ+ 3µ2)
∂uk
∂xk

= 0 (2.15)

for all the values of the velocity divergence ∂uk/∂xk, implying that

µ2 = −2

3
µ (2.16)

and leading to

τij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
(2.17)

where the quantity
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij

represents the non-isotropic part of the rate of strain tensor

Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
If the incompressibility conditions previously presented are satisfied then ∂uk/∂xk = 0
and the viscous stress tensor reduces to

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
= 2µDij (2.18)

In the special case of simple shearing motion in which the fluid is moving along x1

with the velocity u1 which only varies along the direction x2 (u1 = u1(x2)) then all the
components of τij are zero except the tangential stresses:

τ12 = τ21 = µ
∂u1

∂x2

(2.19)

Since this stress resulting from molecular momentum transport has to eliminate the
non-uniformities in the velocity field, the scalar quantity µ must be positive; thus µ rep-
resents a measure of the internal friction opposing to shear deformation of the fluid, is
called dynamic viscosity and may be function of the thermodynamic state of the fluid
only.
The simple relation (2.19) states that the shear stress τ12 is directly proportional to the
shear rate of deformation ∂u1/∂x2 (Figure 2.1); it was first formulated for simple shear-
ing laminar motion by Sir Isaac Newton in his famous Philosophiae Naturalis Principia
Mathematica (1686) in which he introduced the term defectus lubricitatis to express the
concept of internal friction or viscosity in fluids. Fluids for which the linear relation be-
tween the non-isotropic part of the stress and the rate-of-strain tensor holds accurately
are indeed called Newtonian after Isaac Newton’s work. Only in 1845 Stokes was able to
write Newton’s simple relation in a three-dimensional form deriving the relation (2.17);
few decades later Poiseuille and Couette proved Newton’s relation experimentally. Today
through experiments on a variety of fluids and flow fields we know that linear relation
(2.17) is accurate for simple liquids and most gases over a wide range of values of the rate
of strain despite the assumption of sufficiently small velocity gradient used to derived it.
In general, the Newtonian constitutive equation (2.17) accurately describes the viscous
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Figure 2.1: Linear relation between shear stress and velocity gradient for simple shearing
motion

behavior of low molecular weight fluids. On the other hand, there exists a vast category
of fluids, mainly of industrial importance, which show a behavior which differs from that
shown in Figure 2.1, i.e. fluids for which the viscous stress tensor is not simply linearly
related to the rate-of-strain. In the case of polymeric liquids, emulsions and concentrated
suspension, for example, the viscosity µ can be a strong function of the rate-of-strain.
These kind of fluid are generally classified as Non-Newtonian to distinguish them from
those which follow the simple relation (2.17).

2.3 Non-Newtonian fluids
We now consider fluids which still show an isotropic viscous response to imposed velocity
gradients, but they are characterised by an instantaneous relation between the viscous
stress tensor τ and the rate-of-strain tensor D which is in general non-linear:

τ = f (2D) (2.20)

Since the isotropic behavior is still assumed, we can focus our attention to the simple
case of shearing motion without loss of generality. In addition we assume that the flow
is incompressible. Under these hypotheses, the principal departures from the Newtonian
behavior of fluids, i.e. the principal non-Newtonian phenomena, can be summarised in:

• Dependence of the viscosity on the shear rate, also called Shear thinning or shear
thickening behavior in which the shear stress τ12 is respectively a sublinear or a
superlinear function of the shear rate ∂u1/∂x2. For this kind of fluids a generalised
viscosity µg, which is function of the shear rate, can be defined

µg = µg

(
∂u1

∂x2

)
(2.21)

If the fluid shows a shear thickening behavior is called dilatant fluid and its gener-
alised viscosity is an increasing function of the shear rate (Figure 2.2); in general
the generalised viscosity is positive for ∂u1/∂x2 = 0. On the other hand if the fluid
shows a shear thinning behavior is called pseudoplastic fluid and its generalised
viscosity is a decreasing function of the shear rate (Figure 2.3); in general the gener-
alised viscosity is finite for ∂u1/∂x2 = 0. The Newtonian fluid is thus a very special
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(a) Shear stress - Shear rate

∂u1/∂x2

µ
g

(b) Generalized viscosity - Shear rate

Figure 2.2: Shear Thickening behavior
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(a) Shear stress - Shear rate
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(b) Generalized viscosity - Shear rate

Figure 2.3: Shear Thinning behavior
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(a) Viscosity in Newtonian behavior
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(b) Viscosity in Pressure thickening behavior

Figure 2.4: Viscosity - Pressure

fluid: it neither shear thins nor shear thickens. The models with shear dependent
viscosity are used in many areas of engineering science such as geophysics, colloid
mechanics, polymer mechanics, hemodynamics and food rheology, etc.

The simplest known model which describes these behaviors are the power-law models
in which the viscous stress tensor is defined as

τij = 2K |4 IID|
n−1
2 Dij (2.22)

where n is the power-law index, K is a constant called consistency and IID is the
second principal invariant of D given by:

IID =
1

2
[tr(D)]2 − 1

2
tr(D2) (2.23)

The generalised viscosity is then

µg = K |4 IID|
n−1
2 (2.24)

When n = 1 then the power-law reduces to the Newton constitutive law for incom-
pressible fluids:

τij = 2KDij = 2µDij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.25)

When n is less than one, the constitutive equation describes the shear thinning,
whereas when n is greater than one the equation describes the shear thickening.

• Dependence of the viscosity on the pressure, also called Pressure thickening be-
havior in which the generalised viscosity is not constant as in the case of the New-
tonian fluids but it is a function of the pressure; in particular, experimental data
show that viscosity is an increasing function of p (Figure 2.4). A famous relation
which describes the generalised viscosity variation with pressure for such fluids is
the exponential relation proposed by Barus [4] (1983):

µg(p) = µ0 eαp (2.26)

where α is a constant pressure-viscosity coefficient characteristic for each fluid. The
shear stresses are then

τij = 2µ0 eαpDij (2.27)
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(a) Bingham fluid
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(b) Herschel-Bulkley fluid

Figure 2.5: Fluids with yield stress

• The presence of activation/deactivation criteria (such as yield stress). There exists
some fluids that start to flow when they reach a critical value of stress τ which is
called yield stress. Once the fluid is in motion, if the stress dependence on the shear
rate is linear the fluid is called Bingham fluid (Figure 2.5.a), otherwise it is called
Herschel-Bulkley fluid (Figure 2.5.b). For these kind of fluids the viscous stress is
usually a non-continuous function of the shear rate.

• Time dependent phenomena in which viscous stresses are also function of the tem-
poral variations of the rate-of-strain tensor D.

A large number of models have been developed to cover the description of all the
non-Newtonian behaviors. Most of these models, like the power-law fluid model, depends
on the rate of deformation D and they arise from a general viscous model. Let the stress
tensor σ depend only on the rate of deformation D, i.e. σ = f(2D); expanding the
function in a power series gives

σ = A0D
0 + A1D

1 + A2D
2 + A3D

3 + ... (2.28)

in which D0
ij = δij and, assuming that the flow is incompressible, A0 = −p. The Cayley-

Hamilton theorem states that any tensor Tij (with i, j = 1, 2, 3) satisfies its own charac-
teristic equation

det (T− λI) = 0 (2.29)

where I is the identity matrix. Expanding the determinant, the characteristic equation
can be rewritten as

λ3 − ITλ2 + IITλ− IIIT = 0 (2.30)

where the coefficients are the three principal invariants of the tensor T given by

IT = tr(T) (2.31)

IIT =
1

2
[tr(T)]2 − 1

2
tr(T2) (2.32)

IIIT = det(T) (2.33)

The symbol tr(.) denotes the trace of the tensor. The theorem allows us to write

T3 − ITT2 + IITT− IIITI = 0 (2.34)
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thus
T3 = ITT2 − IITT + IIITI (2.35)

Similarly higher power of T can be expressed in terms of the lower powers and the invari-
ants of T. Using this results for the rate-of-strain tensor 2D and assuming that the flow
is incompressible, i.e I2D = tr(2D) = 2∇ • u = 0, we can rewrite the (2.28) as follows

σ = −pI + η12D + η2(2D)2 (2.36)

in which η1 and η2 are scalar functions of the invariants II2D and III2D:

η1 = η1 (II2D, III2D) (2.37)

η2 = η2 (II2D, III2D) (2.38)

where, since tr(2D) = 0 and D is symmetric, the second invariant is simply

II2D = −1

2

3∑
i,j=1

4D2
ij = −1

2

3∑
i,j=1

(
∂ui
∂xj

+
∂uj
∂xi

)2

(2.39)

It is related to the second main invariant as follows:

J
(2)
2D = I22D − 2 · II2D =

3∑
i,j=1

(
∂ui
∂xj

+
∂uj
∂xi

)2

(2.40)

The constitutive equation (2.36) represents a general viscous model and describes what
are called Reiner-Rivlin fluids or sometimes Stokesian fluids. More generally, a fluid is
said to be Stokesian if it satisfies the following postulates:

1. σ is a continuous function of the deformation tensor D, and is independent of all
other kinematic quantities.

2. σ does not depend explicitly on the position x (spatial homogeneity).

3. There is no preferred direction in space (isotropy).

4. When D = 0, σ reduces to −pI

It can be noticed that the Newtonian fluid is a special case of the Reiner-Rivlin fluid in
which η1 (II2D, III2D) = µ and η2 = 0. The term containing η2 gives rise to some problems;
it generates normal stresses in simple shearing flow that are not in qualitative agreement
with experimental observations and for this reason it is usually discarded. The general
viscous fluid equation reduces to

σ = −pI + 2 η1 (II2D, III2D) D (2.41)

for which several expressions of η1 can be found in rheology literature.



Chapter 3

Equations for viscous incompressible
fluids

3.1 Incompressible Navier-Stokes Equations
Assuming that the fluid is Newtonian and that the flow is incompressible, it is possible
to use the linear relation between the viscous stress tensor and the rate of strain

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
= 2µDij (3.1)

in equations (1.81) and (1.82) which describe incompressible flows, and to obtain

∂uj
∂xj

= 0 (3.2)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρfi −
∂p

∂xi
+ µ

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.3)

The momentum equation can be also written as follows

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρfi −
∂p

∂xi
+ µ

∂2ui
∂x2

j

+ µ
∂

∂xi

(
∂uj
∂xj

)
and using the mass conservation ∂uj/∂xj = 0:

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρfi −
∂p

∂xi
+ µ

∂2ui
∂x2

j

(3.4)

or, alternatively, in vector notation

ρ
∂u

∂t
+ ρ (u • ∇)u = ρf −∇p+ µ∇2u (3.5)

This vector equation is called Navier-Stokes Equation. It is a generalization of the equation
devised in the 18th century (1757) by the Swiss mathematician Leonhard Euler to describe
the flow of incompressible and non-viscous fluids. The first derivation of the Navier-Stokes
equation appeared in two articles ([6],[7]) published by the French engineer Claude-Louis
Navier (1785 - 1836). After some theoretical developments failed to include the effects of
viscosity in the equations of motion of fluids, these publications formally introduced, for

30
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the first time, friction in fluid motion. Even if it was known that the friction of fluids was
the main cause for deviation of experiments from theory, no scientist but Navier formally
tackled this problem and succeeded in solving it. Navier’s publications and studies on the
theory of elasticity encouraged other investigators, such as Cauchy (1828), Poisson (1829)
and de Saint-Venant (1843), to derive equations for viscous fluid motion using their own
equations of elasticity. All of these 19th century investigators tried to fill the gap between
the rational fluid mechanics of the perfect non viscous fluid developed in the 18th century
and the actual behavior of real viscous fluids.
In 1880 the British physicist and mathematician Sir George Gabriel Stokes carried out
some experiments on pendulum [8] to investigate the departure of real fluids from perfect
ones. He pointed out that friction in fluids is the main cause of this departure, but not
the only one; he recognised other causes such as discontinuity of flow and instabilities
that lead to a turbulent wake behind the pendulum. Since it was not possible to carry
out accurate experiments to prove his insights, he decided to include internal fluid friction
in the fundamental equations of hydrodynamics. By assuming that the stress tensor is
proportional to the rate of deformation tensor, similarly to Chauchy and Poisson, he
obtained the equation of motion for viscous fluids given by Navier. Stokes then made
extensive comparisons of theory and experiments of different researchers. He succeeded
in obtaining good agreement with the Navier-Stokes equation by comparing predictions
with experimental data for oscillating pendula [9]. Similarly to Navier, Stokes had a very
clear intention on the practicality of his efforts by confronting theory with experiments,
and this may be a reason why he and Navier became associated with the equation of
motion for viscous flows. Associated with the incompressibility condition ∇ • u = 0, the
Navier-Stokes equation is recognised to be the model which best describes the motion of
Newtonian and incompressible fluids.

3.1.1 Global regularity problem and partial results

From a mathematical point of view the incompressible Navier-Stokes equations

ρ
∂u

∂t
+ ρ (u • ∇)u = ρf −∇p+ µ∇2u (3.6)

represent a system of non-linear evolution partial differential equations (PDEs). The
unknowns are the velocity field u(x, t) : [0, T ) × R3 → R3 and the pressure field p(x, t) :
[0, T ) × R3 → R. In these equations the density ρ and the dynamic viscosity µ are
known constant, whereas f is a known vector field representing the external volumetric
force. Since in three dimensional space there are three equations and four unknowns, it
is necessary another equation: the continuity equation ∇ • u = 0. The solution for the
Navier-Stokes equations are then searched in the set of divergence-free functions.
The natural problem to solve in an evolution equation is the initial value problem, in
which, given some initial data (at time t = 0), it is required to construct a solution
with this data for later times. For the Navier-Stokes equation one specifies an initial
velocity field u0 : R3 → R3 obeying the incompressibility condition ∇ • u = 0; the initial
pressure has not to be specified since it can derived from the initial velocity. As explained
in the Section 1.4.2, because of incompressibility the pressure instantly adjusts itself so
that the velocity field is divergence-free. Applying Leray projection to the Navier-Stokes
equation (projection onto the divergence-free vector fields), one can indeed eliminate both
the pressure term and the continuity equation (Appendix A).
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Solving partial differential equations is not an easy task, especially when the equations
are non-linear. First of all, the problem for a given PDE has to be well-posed, which
means that

1. the problem in fact has a solution

2. this solution is unique

3. the solution depends continuously on the data given in the problem

Then, once the well-posedness has been shown, one can try to construct a solution which
is required to be smooth enough: if the PDE in the problem has order k, the solution has
to be at least k times continuously differentiable. At least all the derivatives which appear
in the statement of the PDE will exist and be continuous, although maybe certain higher
derivatives will not exist. A solution with this smoothness is called classical solution of
the PDE. Thus, solving an evolution PDE in the classical sense means, if possible, to write
down a formula for a classical solution for all the times which is unique, which depends
continuously on the initial data, which is smooth enough, or at least to show such solution
exists, and deduce its properties. However, certain partial differential equations can not
be solved in the classical sense. The structure of some equations may force to abandon the
search for smooth, classical solutions and, instead, investigate a wider class of candidates
for solution for which one requires less strict regularity properties. Even for those PDE
which turn out to be classically solvable, it is often wiser to initially search for some kind
of solutions which are called generalized or weak solutions. For this kind of solutions it
may be easier to establish existence, uniqueness and continuous dependence on the given
data and then to prove the well-posedness of the problem. For some equations a weak
solution may turn out after all to be smooth enough to be considered as classical; thus,
in solving PDE, existence problem and regularity (or smoothness) problem are usually
tackled separately.

For the incompressible Navier-Stokes equations the global existence and smoothness
problem is still open. For the three-dimensional system of equations, and given some initial
conditions, mathematicians have not yet proved that smooth solutions always exist. In
May 2000 this led the Clay Mathematics Institute to make this problem one of its seven
Millennium Prize problems in mathematics, offering a one million dollar prize to the
first person who proves or disproves the existence and the regularity of the Navier-Stokes
solutions in the whole space R3 or in the three-dimensional torus T3. The official statement
of the problem in the whole space R3 is the following [10]:

The Navier–Stokes equations are given by

∂ui
∂t

+
n∑
j=1

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
+ fi(x, t) (x ∈ Rn, t ≥ 0) (3.7)

n∑
i=1

∂ui
∂xi

= 0 (x ∈ Rn, t ≥ 0) (3.8)

with initial conditions

u(x, 0) = u◦(x) (x ∈ Rn) (3.9)
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Here, u◦(x) is a given, C∞ divergence-free vector field on Rn, fi(x, t) are the
components of a given, externally applied force, ν is a positive coefficient
(the viscosity), and ∆ is the Laplacian in the space variables. The Euler
equations are equation (3.7),(3.8), (3.9) with ν set equal to zero. [...] For
physically reasonable solution, we want to make sure u(x, t) does not grow
large as |x| → ∞. Hence, we will restrict our attention to forces f and initial
conditions u◦ that satisfy

|∂αxu◦| ≤ CαK (1 + |x|)−K on Rn, for any α and K (3.10)

and

|∂αx∂mt f(x, t)| ≤ CαmK (1 + |x|+ t)−K on Rn × [0,∞), for any α, m, K
(3.11)

We accept a solution of (3.7),(3.8), (3.9) as physically reasonable only if it
satisfies

p, u ∈ C∞
(
R3 × [0,∞)

)
(3.12)

and ∫
Rn
|u(x, t)|2 < C for all t ≥ 0 (bounded energy). (3.13)

[...] A fundamental problem in analysis is to decide whether such smooth,
physically reasonable solutions exist for the Navier–Stokes equations. To give
reasonable leeway to solvers while retaining the heart of the problem, we ask
for a proof of one of the following four statements.

(A) Existence and smoothness of Navier–Stokes solutions on R3.
Take ν > 0 and n = 3. Let u◦(x) be any smooth, divergence-free vector field
satisfying (3.10). Take f(x, t) to be identically zero. Then there exist smooth
functions p(x, t), ui(x, t) on R3 × [0,∞) that satisfy (3.7),(3.8), (3.9), (3.12),
(3.13). [...]

(C) Breakdown of Navier-Stokes solution on R3. Take ν > 0 and
n = 3. Then there exist a smooth, divergence-free vector field u◦(x) on R3

and a smooth f(x, t) on R3 × [0,∞), satisfying (3.10), (3.11), for which there
exist no solutions of (3.7),(3.8), (3.9), (3.12), (3.13) on R3 × [0,∞).

Even if the problem is still unsolved, some partial results have been achieved regarding
the Navier-Stokes equations:

1. The Navier–Stokes problem in two dimensions has already been solved positively
since the 1930s: there exist smooth and globally defined solutions.

2. In three dimensions, it is known that there exist smooth and globally defined so-
lutions to the Navier-Stokes equation provided the initial velocity u◦(x) satisfies a
smallness condition.

3. In three demensions, for initial data u◦(x) not assumed to be small, it is known that
there exist smooth and globally defined solutions to the Navier-Stokes equation (also
for ν = 0, Euler equation) if the time interval [0,∞) is replaced by a small time
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interval [0, T ), with T depending on the initial data (local existence). For a given
initial u◦(x), the maximum allowable T is called the blowup time. The solution
becomes unbounded (u → ∞) near the blowup time and it is not known if the
solutions exist beyond the blowup time. It is not known if T is whether or not
finite.

4. In 1934 Jean Leray [11] showed that the Navier–Stokes equations in three space di-
mensions always have a weak solution (p, u) with suitable growth properties. How-
ever uniqueness of weak solutions of the Navier–Stokes equation is not known.

5. In 1982 Caffarelli–Kohn–Nirenberg [12] proved a partial regularity theorem for suit-
able weak solutions of the Navier–Stokes equations.

6. In 2016 Terence Tao [13] published a finite time blowup result for an averaged ver-
sion of the three-dimensional Navier–Stokes equation. For these averaged equations
which satisfy the same energy identity of the original Navier-Stokes equation

1

2

∂

∂t

∫
R3

|u|2 dx = −ν
∫
R3

|∇u|2 dx

Tao has recognized a supercriticality barrier in the global regularity problem for
which the boundedness of the energy does not seem to prevent the finite time blowup
of the solution. Tao then claims that this result can be extended to the true Navier-
Stokes equations and that the method of proof in fact hints at a possible route to
establishing blowup for the true equations.

One may wonder why three-dimensional Navier-Stokes problem is so hard. According
to Terence Tao [14]

the answer to this question is Turbulence - the behaviour of three-dimensional
Navier-Stokes equations at fine scales is much more nonlinear (and hence un-
stable) than at coarse scales. I would phrase the obstruction slightly dif-
ferently, as supercriticality. Or more precisely, all of the globally controlled
quantities (such as the total energy) for Navier-Stokes evolution which we are
aware of (and we are not aware of very many) are either supercritical with
respect to scaling, which means that they are much weaker at controlling
fine-scale behaviour than controlling coarse-scale behaviour, or they are non-
coercive, which means that they do not really control the solution at all, either
at coarse scales or at fine.

And then they can’t be used to show the solution does not blow up. According to Tao
one of the most promising strategies in tackling Navier-Stokes problem would be

Discover a new globally controlled quantity which is both coercive and either
critical or subcritical; [...] but apart from the energy, it is not clear if there
are any physical quantities of fluids which are deterministically monotone.
[..] Given the turbulent, unstable, and chaotic nature of Navier-Stokes, it is
quite conceivable that in fact no reasonable globally controlled quantities exist
beyond that which arise from the energy.
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3.2 Ladyzhenskaya’s Equations
The Navier-Stokes equations are generally recognized as an accurate model for the incom-
pressible motion of viscous fluids in many practical situations, and there are many who
believe this is true even for turbulent flows since results from numerical simulations show
turbulent behavior. However, the linear constitutive law used to express the viscous stress
tensor in the Navier-Stokes presumes that derivatives of the components of the velocity are
small. Moreover, as previously seen, the linear relation used to express the viscous stress
tensor cannot describe the viscous behavior of the vast category of the non-Newtonian
fluids. There are then various reasons why one could abandon the Navier-Stokes equation
in favor of model employing nonlinear constitutive laws.

In New equations for the description of the motions of viscous incompressible fluids,
and global solvability for their boundary value problems [15], the Russian mathematician
Olga Ladyzhenskaya introduced some alternative models to describe the incompressible
flow of viscous fluids which differ from the Navier-Stokes equations for the diffusive term
only. The most interesting model is

∂ui
∂t

+ uj
∂ui
∂xj

=
∂

∂xj

[
A(u)

(
∂ui
∂xj

+
∂uj
∂xi

)]
− 1

ρ

∂p

∂xi
+ fi (3.14)

∂uj
∂xj

= 0 (3.15)

where, in the three-dimensional space, i = 1, 2, 3 and A(u) is defined by

A(u) = ν0 + ν1

[
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2
] r

2

with r > 0 (3.16)

In the equation (3.16) ν0 and ν1 are two positive constants, analogous to the kinematic
viscosity (ν = µ/ρ). The equation (3.15) is simply the divergence-free condition of the
velocity field, whereas the vector equation (3.14) is a momentum equation which can be
rewritten as follows:
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∂p

∂xi
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(3.17)
This form shows evidently that Ladyzhenskaya’s equation is basically the Navier-Stokes
equation with some additional non-linear diffusive terms (the boxed ones). Setting the
parameter r to zero, one obtains the Navier-Stokes equation with ν = ν0 + ν1; thus, from
a modeling stand point, the Navier-Stokes equation is a special case of the Ladyzhenskaya
equation. Similarly to the Navier-Stokes equation, the Ladyzhenskaya equation can indeed
be derived using the mass and the momentum conservation laws and supposing the fluid
to be Stokesian (see Section 2.3), which means supposing that the stress tensor can be
expressed by

σ = −pI + η12D + η2(2D)2 (3.18)

in which η1 and η2 are scalar functions of the principal invariants II2D and III2D:

η1 = η1 (II2D, III2D) (3.19)
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η2 = η2 (II2D, III2D) (3.20)

For incompressible flows
I2D = 2∇ • u = 0 (3.21)

II2D = −1

2
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4D2
kl = −1

2
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(
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)2

= − d̂
2

2
(3.22)

III2D = 2 det(D) (3.23)

In particular, the scalar quantity d̂2, which is the second main invariant of 2D, is:
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(3.24)

Then the stress tensor can be rewritten as follows:

σ = −pI + 2η1

(
d̂2, det(D)

)
D + 4η2

(
d̂2, det(D)

)
D2 (3.25)

If one retains some of the nonlinear terms of this constitutive law then arrives at the
Ladyzhenskaya models. In fact, if one assume that η2 = 0 and

η1

(
d̂2
)

= ν0

(
1 + εd̂2

)
(3.26)

it is possible to obtain
σ = −pI + 2ν0D + 2εν0d̂2D (3.27)

or

σij = −pδij + ν0
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(3.28)

which is exactly the stress tensor provided by the Ladyzhenskaya model [16] with r = 2
and ν1 = εν0 . Ladyzhenskaya also gives a partial justification, based on kinetic theory
arguments, for why one should retain the nonlinear terms she chooses to include in the
constitutive relation. Information about the constant ν1 and the parameter r may be
derived from the kinetic theory of gases and the Stokes hypotheses; however, generally
one can assume ν1 � ν0, whereas two natural choices for r are r = 1 and r = 2.

The most interesting feature of these sets of equations is that Olga Ladyzhenskaya
has proven in [15] and [16] that weak solutions to the initial values problem for these
equations are globally unique in time for any Reynolds number and parameter r ≥ 1/2.
In 1989 [17] this results has been extended to r ≥ 1/5.



Chapter 4

Turbulence

Chaos: When the present determines
the future, but the approximate
present does not approximately
determine the future.

- Edward Norton Lorenz, 2005.

Turbulence is a chaotic motion of real fluids that are subject to shearing forces [18].
It can be regarded as an example of deterministic chaos : classical events which are de-
scribed by deterministic equations and appear to be random. Dynamical systems whose
apparently random states and irregularities are actually governed by deterministic laws
that are highly sensitive to initial conditions, are said to be Chaotic. Two other famous
examples of such systems are the double pendulum (Figure 4.1) and the Lorenz attractor
[28] (Figure 4.2).

Figure 4.1: Double Pendulum - Chaotic Motion and sensitivity to initial conditions:
solutions obtained for two identical double pendula with slightly different initial positions.

A rigorous definition of turbulence does not exists and would not be useful without de-
scribing its characteristics. Some of the known characteristic features of fluid turbulence
are the following:

37
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(a) Lorenz Attractor Trajectories (b) x(t) solutions

Figure 4.2: Solutions of Lorenz System (Attractor): solutions obtained for two identical
systems (ρ = 28, σ = 10, β = 8/3) which have slightly different initial positions x◦

(x◦1 = {0, 1, 0} and x◦2 = {0, 1.001, 0}). Solutions show chaotic behaviour and extreme
sensitivity to initial conditions.

• Turbulent flows are irregular and chaotic. Fluid velocity is a random function of
space and time, with a non-Gaussian probability distribution. Even if equations
of fluid motion are deterministic, solutions may be random because in real flows
there are, unavoidably, perturbations in initial conditions, boundary conditions and
material properties and, moreover, turbulent flows display an extreme sensitivity to
such perturbations.

• Turbulent flows occur when Reynolds number is sufficiently high. Below critical
Reynolds numbers, disturbances cannot generate flow instabilities and turbulent
flows cannot exist.

• Turbulence consists of many eddying motions, of various sizes and speeds which
define the so-called length and velocity scales. Turbulence contains in fact a wide and
continuous range of space and time scales. The different scales coexist superimposed
in the flow, with the smaller ones living inside the larger ones. The largest eddies
are of the order of the flow geometry and may break up into smaller eddies.

• Turbulent flows are unsteady and three-dimensional in nature. However, for Navier-
Stokes equations has been proved in [29] that Leray-Hopf weak solutions of the
equations preserve initially imposed symmetry or two-dimensionality and that such
two-dimensional or symmetric flows are stable under general three-dimensional per-
turbations, globally in time. Thus if the initial velocity field is two-dimensional
or, for example, axisymmetric, then Leray-Hopf weak solution of three-dimensional
incompressible Navier-Stokes remains two-dimensional or axisymmetric.

• Turbulent flows are highly dissipative; kinetic energy is transferred from largest
scales to smaller scales in a cascade process, then the smallest eddies dissipate this
energy into thermal energy. The rate at which kinetic energy is dissipated is usually
denoted by ε.
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• Turbulent flows are strongly mixing in nature; turbulent velocity fluctuations results
in an eddying motion which enhances diffusivity and mixing.

In 1922 Lewis Fry Richardson [30] recognized maybe the main phenomenology of turbu-
lence: the energy cascade process. The largest eddies, whose length and velocity scales
are comparable to the flow ones, are characterized by large Reynolds numbers and their
dynamic is essentially inviscid; because of the large Reynolds number, they are unstable
and break-up, transferring their energy to somewhat smaller eddies. These smaller eddies
undergo similar break-up processes transferring their energy to yet smaller eddies. This
process goes on until the Reynolds number is sufficiently small that eddy motion is sta-
ble, and molecular viscosity is effective in dissipating kinetic energy. The smallest eddy
motion is usually referred to as dissipative or Kolmogorov scale, after the Soviet mathe-
matician Andrey Nikolaevich Kolmogorov who proposed in 1941 the first statistical theory
of turbulence based on the Richardson’s notion of the energy cascade. Kolmogorov stated
that for very high Reynolds numbers the small-scale turbulent motions are statistically
isotropic, i. e. velocity statistics are invariant under rotations and reflections of the coor-
dinate system. This means that, while the scale is reduced, the directional information
is lost, and turbulence at small scales has a universal character which does not depend
on the type of flow. He then postulated that in every turbulent flow at sufficiently high
Reynolds number, the statistics of the motions of small scale have a universal form that
is uniquely determined by the kinematic viscosity ν and the energy dissipation rate ε.
With only these two parameters, the unique length, velocity and time scales that can be
formed by dimensional analysis are respectively

η =

(
ν3

ε

)1/4

vη = (νε)1/4

τη =
(ν
ε

)1/2

(4.1)

which are called Kolmogorov or dissipative scales. Assuming that the rate of dissipation
ε is entirely determined by characteristics of the large eddies (the velocity U , the length
L and the time Θ)

ε =
U3

L
(4.2)

it is possible to write the ratio between Kolmogorov and flow scales as function of the
Reynolds number ReL = UL/ν

η

L
= Re−3/4

L

vη
U

= Re−1/4
L

τη
Θ

= Re−1/2
L

(4.3)

which show that as the Reynolds number increases the gap between the large and the
small structure increases, and for very high Reynolds numbers the small scale motions
are independent of the largest structures.
It is then possible to recognize in turbulence three ranges (Figure 4.3 ):

1. the energy containing range corresponding to the largest eddy motion which pro-
duces turbulence kinetic energy from the flow and which contains most of this energy;
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Figure 4.3: Turbulence length scales

2. the dissipation range corresponding to the small scale motion in which viscosity is
effective in dissipating kinetic energy;

3. the inertial subrange corresponding to the intermediate scales in which energy cas-
cade process takes place, transferring energy to smaller and smaller scales. The
extension of this intermediate range depends on the Reynolds number according
to the expressions (4.3). As the Reynolds number increases the inertial subrange
becomes wider.

4.1 Statistical description of turbulence and mean flow
equations

In a turbulent flow, the velocity field u(x, t) is a time-dependent random vector field
and its values are inherently unpredictable. It is possible, however, to determine the
probability that the value of a random variable U , or a random field u(x, t), is within
a certain interval. A random variable U can be in fact completely characterized by
its probability density function (PDF). Introducing an independent velocity variable V ,
referred to as the sample-space variable corresponding to U , it is possible to define the
cumulative distribution function (CDF) as

F (V ) := P{U < V } (4.4)

which represents the probability p of the event {U < V }. The probability p of an event
is a real number, such that 0 ≤ p ≤ 1, indicating the likelihood of the occurrence of the
event. If p = 0 the event cannot occur, if instead p = 1 the event certainly occurs. The
higher the probability of an event, the more likely it is that the event will occur.
The probability density function (PDF) is defined to be the derivative of the cumulative
distribution function:

f(V ) :=
dF (V )

dV
(4.5)

The cumulative distribution function has the following properties:

• since {U < −∞} is impossible, F (−∞) = 0;

• since {U <∞} is certain, F (∞) = 1;
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• since the probability p is non-negative, F (Vb) ≥ F (Va) for Vb > Va. Thus, the CDF
is a non-decreasing function.

From this last CDF property follows that the PDF is non-negative: f(V ) ≥ 0. Moreover,
the PDF satisfies the condition ∫ ∞

−∞
f(V ) dV = 1 (4.6)

and f(−∞) = f(∞) = 0.
Using the PDF it is possible to define the mean (or expectation) of the random variable
U as

〈U〉 =

∫ ∞
−∞

V f(V ) dV. (4.7)

It represents the first-order moment of U . The fluctuating in U is

U ′ = U − 〈U〉 . (4.8)

The variance is defined to be the mean-square fluctuation:

var(U) =
〈
U ′2
〉

=

∫ ∞
−∞

(V − 〈U〉)2 f(V ) dV (4.9)

and represents the second-order central moment of U . The square-root of the variance
defines the standard deviation:

sdev(U) = σU =
√

var(U) =
〈
U ′2
〉 1

2 (4.10)

which is a measure of the random fluctuations. In general the nth central moment is

µn := 〈U ′n〉 =

∫ ∞
−∞

(V − 〈U〉)n f(V ) dV (4.11)

The moments can be standardized to have zero mean (central moment) and unit variance
as follows:

µ̂n :=
µn
σnU

(4.12)

The third and fourth order standardized central moments are called respectively skewness
(µ̂3) and kurtosis (µ̂4).
Having two joint random variables (U1, U2) the CDF is defined by

F12 (V1, V2) := P {U1 < V1, U2 < V2} (4.13)

The joint PDF is then

f12 (V1, V2) :=
∂2

∂V1∂V2

F12 (V1, V2) (4.14)

The covariance of U1 and U2 is the mixed second moment

cov (U1, U2) = 〈U ′1U ′2〉 =

∫ ∞
−∞

∫ ∞
−∞

(V1 − 〈U1〉) (V2 − 〈U2〉) f12 (V1, V2) dV1dV2 (4.15)

These notions can be extended to time-dependent random vector fields u(x, t) =
{u1(x, t), u2(x, t), u3(x, t)}T; the one-point and one-time joint CDF of velocity is

F (v,x, t) := P {ui (x, t) < vi, i = 1, 2, 3} (4.16)
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and then the joint PDF is

f (v;x, t) :=
∂3

∂v1∂v2∂v2

F (v,x, t) (4.17)

The mean velocity field is

〈u (x, t)〉 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

vf (v;x, t) dv1 dv2 dv3 (4.18)

then the fluctuating field is defined as follows

u′ (x, t) = u (x, t)− 〈u (x, t)〉 (4.19)

The simplest statistic which contains information on the spatial structure of the field
u (x, t) is the two-point, one-time autocovariance (also named two-point correlation):

Rij (r,x, t) =
〈
u′i (x, t)u

′
j (x + r, t)

〉
(4.20)

which integrated in any direction and divided by Rij (0,x, t), gives the integral lengthscale
in that direction; for example, the integral lengthscale in direction e1 is

L
(1)
ij (x, t) =

1

Rij (0, x1, t)

∫ ∞
−∞

Rij (e1r,x, t) dr (4.21)

The integral lengthscale provides a quantitative measure of the correlation length scale
at the time t.
Random processes whose multi-time statistics are invariant under a shift in time are said
to be statistically stationary ; for such processes the simplest multi-time statistic is the
autocovariance (a one-point two-time covariance):

R
(t)
ij (x, τ) =

〈
u′i (x, t)u

′
j (x, t+ τ)

〉
(4.22)

or, in normalized form, the autocovariance function

ρ
(t)
ij (x, τ) =

R
(t)
ij (x, τ)

R
(t)
ij (x, 0)

(4.23)

which integrated in τ gives the integral timescale of the process:

Θij(x) =

∫ ∞
0

ρ
(t)
ij (x, τ) dτ (4.24)

which provides a quantitative measure of the correlation timescale in the point x. For
turbulent flows the integral length and time scales are the characteristic lenght and time
of the largest eddies; moreover, their ratio defines the velocity scale U = L/Θ which is
comparable to the flow velocity.

4.1.1 Reynolds-averaged equations

According to the Reynolds decomposition for turbulent flows one can decompose the ve-
locity and the pressure fields in the sum of a time-averaged field and a fluctuating field
associated with turbulence:

ui(x, t) = ui + u′i
p(x, t) = p+ p′

(4.25)

The time-averaged field is denoted the by the overbar, whereas the apex denotes the
turbulent fluctuating field. Mathematically, the time average can be defined as follows.
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Time Average. Let u(x, t) be an integrable function with respect to t for t → ∞ and
defined for any desired x ∈ Rd, d = 1, 2, 3. Then the time average of u at the point x is
defined as

u(x) := lim
T→∞

1

T

∫ T

0

u(x, t) dt (4.26)

It is clear that the average cannot be a function of time, and it follows that all time
derivatives of u(x) are identically zero. It is possible another operation of average, the
ensemble average, defined as follows.

Ensemble Average. Let
{
u(i)(x, t)

}N
i=1

be a sequence of realizations of a function
u(x, t) defined for x ∈ Rd and t ∈ [0, tf ]. Then the ensemble average of u is defined
as

〈u(x, t)〉 :=
1

N

N∑
i=1

u(i)(x, t) (4.27)

and it is formally a time-dependent quantity. For ergodic processes, i.e. stochastic pro-
cesses whose statistical properties can be deduced from a single, sufficiently long, random
sample of the process, time averages and ensemble averages are equivalent as the number
of realizations N tends to infinity. Thus assuming that the turbulence is ergodic, one can
use ensemble averages instead of time averages and formally keep the time dependence in
the averaged fields.

Introducing the Reynolds decomposition with ensemble averages in the Navier-Stokes
equations and taking the average of the resulting equations, one obtains the Reynolds-
averaged Navier–Stokes equations (RANS):
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(4.28)

The momentum equation in the RANS is formally the Navier-Stokes equation for the
mean flow with some additional terms arising from averaging the original nonlinear term.
These additional terms have the physical dimensions of a stress and form a symmetric
tensor

Rij = −ρ
〈
u′iu
′
j

〉
(4.29)

called Reynolds stress tensor. The mean velocity depends on the covariance of the fluc-
tuating velocities and this introduces the closure problem for the set of RANS.
It is possible to introduce the Reynolds decomposition in the Ladyzhenskaya equations as
well. The Reynolds-averaged Ladyzhenskaya equations will be similar to the RANS with
some additional terms deriving from the nonlinear diffusive terms (Appendix B):
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(4.30)
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where
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4.1.2 Homogeneous Isotropic Turbulence (HIT)

A random field u (x, t) is statistically homogenous if all statistics (moments and mixed
moments) are invariant under a shift in position, i. e. under any translation. Turbulence,
instead, is said to be homogeneous if its fluctuating velocity field u′ (x, t) is statistically
homogeneous. If an homogeneous random field u (x, t) is also statistically invariant un-
der rotations and reflections of the coordinate system, then it is said to be statistically
isotropic.
In general real turbulent flows are not homogeneous because the presence of boundaries
and other physical constraints results in spatial variation of flow statistical properties;
real fluids are not generally isotropic neither, since the simple idea of a flow direction is
incompatible with isotropy. However there exist some flows in which some regions can
be considered as characterized by homogeneity an isotropy in a local sense; examples are
those regions in large-scale flows which are far from boundaries.
By definition, for homogeneous turbulence the two-point correlation (4.20) is indepen-
dent of x: Rij (r, t). Using the Fourier’s Transform it is then possible to transform the
two-point correlation from the physical space to the wavenumber space k obtaining the
velocity spectrum tensor:

Φij (k, t) =
1

(2π)3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Rij (r, t) e−ik
•r dr (4.31)

thus, one can obtain the energy spectrum function:

E (k, t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

1

2
Φii (k, t) δ (|k| − k) dk (4.32)

which shows, for every time, how turbulent kinetic energy Φii (k, t) /2 is distributed among
the different wavenumbers.

Energy Equation. Ladyzhenskaya equations with r = 2 are
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(4.33)

along with the mass conservation
∂uj
∂xj

= 0 (4.34)
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Multiplying (4.33) by ui, summing over i and taking the ensemble average over space one
obtains
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The convective and the pressure term vanish. In fact the convective term can be rewritten
as

2
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〉
(4.36)

The first term on right-hand side is zero because, by homogeneity, the average is con-
stant and its derivative is zero, whereas the second term vanishes thanks to continuity
∂uj/∂xj = 0. Similarly the pressure term can be rewritten as〈

ui
∂p

∂xi

〉
=

∂

∂xi
〈uip〉 −

〈
1

p

∂ui
∂xi

〉
(4.37)

and the two terms on the right-hand side vanish for the same reasons: homogeneity and
continuity respectively.
The Newtonian viscous term becomes

ν

〈
ui
∂2ui
∂x2

j

〉
= ν

〈
ui

∂

∂xj

(
∂ui
∂xj

)〉
= ν

∂

∂xj

〈
uj
∂ui
∂xj

〉
− ν

〈(
∂ui
∂xj

)2
〉

(4.38)

and thanks to homogeneity

ν

〈
ui
∂2ui
∂x2

j

〉
= −ν

〈(
∂ui
∂xj

)2
〉

(4.39)

The nonlinear viscous term contribution is

ν1

〈
ui

∂

∂xj

[
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2(
∂ui
∂xj

+
∂uj
∂xi

)]〉
(4.40)

or alternatively

ν1

〈
ui

∂

∂xj

[
d̂2

(
∂ui
∂xj

+
∂uj
∂xi

)]〉
(4.41)

where d̂2 is the scalar quantity

d̂2 =
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2

(4.42)

This contribution can be rewritten as

ν1

〈
ui

∂

∂xj

[
d̂2

(
∂ui
∂xj

+
∂uj
∂xi

)]〉
= ν1

〈
∂

∂xj

[
d̂2

(
∂ui
∂xj

+
∂uj
∂xi

)
ui

]〉
−ν1

〈
d̂2

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

〉
(4.43)
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The first term on right-hand side vanishes because average and derivative can commute
and thanks to homogeneity the derivative of the ensemble average is zero, thus

ν1

〈
ui

∂

∂xj

[
d̂2

(
∂ui
∂xj

+
∂uj
∂xi

)]〉
= −ν1

〈
d̂2

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

〉
(4.44)

Finally, energy balance is

1

2

∂ 〈u2
i 〉

∂t
= −ν

〈(
∂ui
∂xj

)2
〉
− ν1

3∑
i,j=1

〈
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

〉
(4.45)

or, compactly,
∂E

∂t
= −ε− εlad (4.46)

where

E =
1

2

3∑
i=1

〈
u2
i

〉
(4.47)

is the kinetic energy,

ε = ν
3∑

i,j=1

〈(
∂ui
∂xj

)2
〉

(4.48)

is the viscous Newtonian dissipation, and

εlad = ν1

3∑
i,j=1

〈
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

〉
(4.49)

is the viscous dissipation due to the nonlinear additional term in Ladyzhenskaya equations.
Navier-Stokes energy equation can be simply obtained, as particular case, by setting the
nonlinear viscous contribution to zero:

∂E

∂t
= −ε (4.50)

If one rewrites the additional dissipation as follows

εlad = ν1

3∑
i,j=1

〈
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2
[(

∂ui
∂xj

)2

+

(
∂uj
∂xi

∂ui
∂xj

)]〉
(4.51)

one can observe that d̂2 and (∂ui/∂xj)
2 are certainly positive, whereas the product

∂uj
∂xi

∂ui
∂xj

, (4.52)

which is basically the velocity gradient tensor multiplied by its transpose, might have
negative off-diagonal entries.



Concluding Remarks

The laws of conservation of mass, momentum and energy, which no one questions, provide
a system of partial differential equations in which one has to model the viscous stress ten-
sor τ through a constitutive law which depends on the kind of fluid one is dealing with.
As previously seen, the Navier-Stokes equations are based on the assumption of small
velocity gradient so that a linear relation between the viscous stress tensor and the rate
of deformation could hold. However, there exist many reasons why one should investigate
new fluid dynamic models in which nonlinearities are included in the viscous stress ten-
sor, such as better mathematical properties of solutions and the extension of the model
to very large velocity gradient or to non-Newtonian fluids. Form a mathematical stand-
ing point, studying some slightly modified Navier-Stokes equations could help in better
understanding the behavior of the original ones, of their possible solutions and maybe
Turbulence. The Navier-Stokes equations have smooth and globally defined solution in
the two-dimensional space; the problem of global regularity is instead still unsolved for
the three-dimensional space and many blame Turbulence, the random, chaotic and multi-
scale fluid motion which, up to date, has no rigorous definition. One may then wonder
if this kind of motion, whose characteristics are partially known, results also from other
sets of equations for viscous incompressible fluids for which better mathematical results
have been proved. In this sense, the Ladyzhenskaya equations with r = 2

∂ui
∂t

+ uj
∂ui
∂xj

= ν0
∂2ui
∂x2

j

+ ν1
∂

∂xj

[
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2(
∂ui
∂xj

+
∂uj
∂xi

)]
− 1

ρ

∂p

∂xi

∂uj
∂xj

= 0

represent an useful tool for this kind of research. The basic idea of the present study is
then to investigate numerically how the solutions of the Ladyzhenskaya equations differ
from those of Navier-Stokes for a test case: free-decaying of Taylor-Green Vortex assuming
the Turbulence to be homogeneous and isotropic. The additional diffusive term

ν1
∂

∂xj

[
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2(
∂ui
∂xj

+
∂uj
∂xi

)]

has clearly a stabilizing effect by strengthening the viscous term so that one should expect
solutions which are more damped then those of the Navier-Stokes equations, but obviously
it is not the same kind of damping which one achieves by simply increasing the viscosity.
It is interesting to understand if Ladyzhenzkaya equations develop Turbulence, similarly
to other non-Newtonian viscous models, and eventually how turbulent solutions differ
from those of the Navier-Stokes equations.
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Chapter 5

Mathematical Problems

For our purposes, the two sets of equations we want to solve numerically are the previously
presented:

• three-dimensional incompressible Navier-Stokes equations (i = 1, 2, 3)
ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρfi −
∂p

∂xi
+ µ

∂2ui
∂x2

j

∂uj
∂xj

= 0

(NS)

• three-dimensional Ladyzhenskaya equations (i = 1, 2, 3) with r = 2
ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρfi −
∂p

∂xi
+ µ0

∂2ui
∂x2

j

+ µ1
∂

∂xj

[
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2(
∂ui
∂xj

+
∂uj
∂xi

)]
∂uj
∂xj

= 0

(Lr2)

where u(x, t) = (u1, u2, u3) and p(x, t) are respectively the unknown velocity and pressure
fields, ρ is the constant fluid density, µ and µ0 are the constant Newtonian dynamic
viscosities and µ1 is the additional constant viscosity appearing in the Ladyzhenskaya
models (generally µ1 � µ0); it is important to note that µ1 actually has not the physical
dimension of a viscosity, in fact

µ1 = [M ] · [T ] · [L]−1

whereas
µ = [M ] · [T ]−1 · [L]−1

For simplicity we set the volumetric forces f(x, t) to zero; then, given an initial solenoidal
velocity field u(x, 0) = u◦(x), we want to solve the systems (NS) and (Lr2) for the velocity
field u(x, t) in the whole space R3 (unbounded flow).

In the R3 space we can assume that the turbulence arising in the flow is homogeneous
and isotropic, which means that turbulent statistical properties are respectively invariant
under any translation and under any rotation. Thanks to homogeneity we look for solu-
tions u(x, t) which are space-periodic, therefore for simplicity we assume the periodicity
is L = 2π in each direction:

u(x + 2πnej, t) = u(x, t) j = 1, 2, 3 (5.1)
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where ej is a unit vector in the jth direction and n is an integer. Thus the space domain
on which we solve the equations can be reduced to the box Ωb = [0, 2π]× [0, 2π]× [0, 2π]
(Figure 5.1) by assuming periodic boundary conditions (for j = 1, 2, 3):

u(x + 2πej, t) = u(x, t) (5.2)

Figure 5.1: Domain Geometry Ωb

The two problems can be then formally rewritten as follows (for i = 1, 2, 3):

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= µ
∂2ui
∂x2

j

− ∂p

∂xi
in Ωb × [0, T ]

∂uj
∂xj

= 0 in Ωb × [0, T ]

ui(x, 0) = u◦i (x) in Ωb × {0}
ui(x + 2πej, t) = ui(x, t) on ∂Ωb × [0, T ]

(NS hit)

and 

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= µ0
∂2ui
∂x2

j

− ∂p

∂xi
+ µ1

∂

∂xj

(
2d̂2Dij

)
in Ωb × [0, T ]

∂uj
∂xj

= 0 in Ωb × [0, T ]

ui(x, 0) = u◦i (x) in Ωb × {0}
ui(x + 2πej, t) = ui(x, t) on ∂Ωb × [0, T ]

(Lr2 hit)

in which d̂2 is the scalar quantity

d̂2 =
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2

(5.3)

and Dij is the rate of strain tensor

Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(5.4)
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5.1 Initial conditions - Taylor-Green Vortex
For the problems (NS hit) and (Lr2 hit) - where hit stands for homogeneous isotropic
turbulence problem - it is possible to use as initial conditions the three-dimensional velocity
field devised by Sir Geoffrey Ingram Taylor and Albert Edward Green in [19] to illustrate
the process of grinding down of large eddies into smaller ones. The Taylor-Green Vortex
(TGV) is a synthetic flow field that fulfills the time-dependent incompressible Navier-
Stokes equations. In two dimensions the vortex is stable and keeps its shape, while
dissipating energy; in three dimension vortex stretching occurs and energy is transported
from large scales to smaller scales: small vortices are generated while the base vortex
decays. The three-dimensional TGV has the following form:

u(x) =


u1(x1, x2, x3)

u2(x1, x2, x3)

u3(x1, x2, x3)

 =


A cos(ax1) sin(bx2) sin(cx3)

B sin(ax1) cos(bx2) sin(cx3)

C sin(ax1) sin(bx2) cos(cx3)

 (5.5)

and it is divergence-free if the constants A, B, C, a, b and c satisfy the following condition:

Aa+Bb+ Cc = 0 (5.6)

Since we want the initial velocity field to be 2π-periodic in x1, x2 and x3, we set a = b =
c = 1. The condition (5.6) reduces to

A+B + C = 0 (5.7)

Setting C = 0 and A equal to the velocity scale U0, one obtains B = −U0 from (5.7).
Thus the initial velocity field can be written as

u◦(x) =


u◦1(x1, x2, x3)

u◦2(x1, x2, x3)

u◦3(x1, x2, x3)

 =


U0 cos(x1) sin(x2) sin(x3)

−U0 sin(x1) cos(x2) sin(x3)

0

 (5.8)

5.2 Non-dimensional equations
Equations (NS) and (Lr2) can be non-dimensionalized using the velocity scale U0 for the
velocities, L = Lb/(2π) for the space variables x, where Lb is the physical domain size,
the dynamic pressure ρU2

0 for the pressure and the characteristic time L/U0 for the time
variable; therefore the non-dimensionalized variables are

ũi =
ui
U0

x̃i =
xi
L

p̃ =
p

ρU2
0

t̃ = t · U0

L

(5.9)
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Introducing this non-dimensionalization the equations (NS) and (Lr2) become
∂ũi

∂t̃
+ ũj

∂ũi
∂x̃j

= − ∂p̃

∂x̃i
+

1

Re
· ∂

2ũi
∂x̃2

j

∂ũj
∂x̃j

= 0

(NS nd)

and
∂ũi

∂t̃
+ ũj

∂ũi
∂x̃j

= − ∂p̃

∂x̃i
+

1

Re
· ∂

2ũi
∂x̃2

j

+
1

La2

· ∂

∂x̃j

[
3∑

k,l=1

(
∂ũk
∂x̃l

+
∂ũl
∂x̃k

)2(
∂ũi
∂x̃j

+
∂ũj
∂x̃i

)]
∂ũj
∂x̃j

= 0

(Lr2 nd)
where Re is the Reynolds number

Re =
ρLU0

µ
(5.10)

and La2 is the non-dimensional parameter defined by

La2 =
ρL3

µ1U0

(5.11)

which arises from non-dimensionalization of the Ladyzhenskaya equations with r = 2 and
may be called Ladyzhenskaya number. For a generic r this parameter can be defined by

Lar =
ρLr+1U1−r

0

µ1

(5.12)

with
µ1 = [M ] · [T ]r−1[L]−1

The problems can be then rewritten in non-dimensional form as follows

∂ũi

∂t̃
+ ũj

∂ũi
∂x̃j

= − ∂p̃

∂x̃i
+

1

Re
· ∂

2ũi
∂x̃2

j

in Ω̃b × [0, T̃ ]

∂ũj
∂x̃j

= 0 in Ω̃b × [0, T̃ ]

ũi(x̃, 0) = ũ◦i (x̃) in Ω̃b × {0}
ũi
(
x̃ + 2π/Lej, t̃

)
= ũi

(
x̃, t̃
)

on ∂Ω̃b × [0, T̃ ]

(5.13)

and 

∂ũi

∂t̃
+ ũj

∂ũi
∂x̃j

= − ∂p̃

∂x̃i
+

1

Re
· ∂

2ũi
∂x̃2

j

+
1

La2

· ∂

∂x̃j

(
2 ̂̃d2D̃ij

)
in Ω̃b × [0, T̃ ]

∂ũj
∂x̃j

= 0 in Ω̃b × [0, T̃ ]

ũi(x̃, 0) = ũ◦i (x̃) in Ω̃b × {0}
ũi
(
x̃ + 2π/Lej, t̃

)
= ũi

(
x̃, t̃
)

on ∂Ω̃b × [0, T̃ ]

(5.14)
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in which ̂̃d2 is the scalar quantity

̂̃d2 =
3∑

k,l=1

(
∂ũk
∂x̃l

+
∂ũl
∂x̃k

)2

(5.15)

and D̃ij is the non-dimensional rate of strain tensor

D̃ij =
1

2

(
∂ũi
∂x̃j

+
∂ũj
∂x̃i

)
(5.16)

The non-dimensional domain is simply Ω̃b = [0, 2π]× [0, 2π]× [0, 2π] since L = 1 and the
time T̃ equals TU0. The non-dimensional initial condition instead is

ũ◦(x̃) =


cos(x̃1) sin(x̃2) sin(x̃3)

− sin(x̃1) cos(x̃2) sin(x̃3)

0

 (5.17)



Chapter 6

Numerical methods and
implementation

The problems presented in the previous Chapter can be numerically solved using different
methods, such as those which employ finite differences, finite elements or spectral ap-
proximations. Because of their ability to achieve moderately accurate solutions with less
dense grids, over the past sixty years spectral methods have gained a lot of popularity
in solving fluid dynamic problems and seem to be the natural choice when dealing with
turbulent flows.

6.1 Spectral methods
Spectral methods belong to a class of discretization schemes for differential equations
known generically as methods of weighted residuals. In this kind of methods one uses
some functions called trial functions {φk} as basis to approximate the solution u in a
truncated series expansion

uN(x) =
N∑
k=0

ûkφk(x) with x ∈ Ω ⊆ Rd, d ∈ Z+ (6.1)

and some other functions called test function {ψk} to ensure that the differential equation
is satisfied as closely as possible by the approximating expansion. In fact if one uses
the truncated expansion instead of the exact solution in the differential equation, say
generically

F(u)− g = 0 in Ω ⊆ Rd, d ∈ Z+, (6.2)

produces an error called residual

RN(x) = F(uN)− g (6.3)

which can be minimized by imposing an orthogonality condition with respect to each of
the test functions:

(RN , ψi)w∗
=

∫
Ω

RN ψiw∗ dx = 0 i ∈ IN (6.4)

where w∗ is the weight associated with the method and the trial functions, and the
dimension of the discrete set IN depends on the problem under consideration. For complex
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functions, ψi in the integral is replaced by its complex conjugate ψi

(RN , ψi)w∗
=

∫
Ω

RN ψiw∗ dx = 0 i ∈ IN (6.5)

Spectral methods are distinguished from the other methods of weighted residuals, such
as the finite elements methods, for the type of trial functions used and the extension of
the domain on which they are specified. Unlike finite elements methods in which the
domain Ω is divided into small elements and a trial function is specified in each element,
for spectral methods the trial functions are infinitely differentiable global functions, i. e.
they are defined over the whole domain of the problem. The trial functions are generally
orthogonal with respect to some weight w(x) such that

(φk, φl)w =

∫
Ω

φk φl w dx = ckδkl =

{
ck if k = l

0 if k 6= l
(6.6)

where ck are constants and δkl is the Kronecker delta. The most frequently used trial
functions are trigonometric polynomials (for periodic problems), Chebyshev polynomials
Tk(x) and Legendre polynomials Lk(x) (for nonperiodic problems).

The most popular and commonly used spectral scheme are theGalerkin, the collocation
and the tau schemes. They differ for the choice of the test functions and the weight w∗

• in the Galerkin method the test function are the same as the trial functions; they
are infinitely smooth functions which individually satisfy the boundary conditions.
The weight w∗ is the weight associated with the orthogonality of the trial functions
(6.6):

ψk = φk and w∗ = w

• in the collocation method the test functions are translated Dirac functions centered
at special points xk called collocation points

ψk = δ(x− xk)

and the weight is w∗ = 1. For this method the residual minimization condition (6.4)
simply gives

(RN , ψi)w∗
=

∫
Ω

RN δ(x− xk) dx = 0

RN(xk) = 0

Therefore in the collocation method the residual is exactly zero at certain points,
whereas in the Galerkin method the residual is zero in the mean.

• the tau method is similar to the Galerkin method but none of the test functions has
to satisfy the boundary conditions and a supplementary set of equations is needed
to enforce boundary conditions. The tau approach is a modification of the Galerkin
method that is applicable to problem with nonperiodic boundary conditions.

From a numerical point of view, Galerkin and tau methods are implemented in terms of the
coefficients {ûk} of the expansion which approximates the solution, whereas collocation
methods are implemented in terms of the physical space values of the unknown solution.
The key feature of the Galerkin method is that the trial functions must individually satisfy
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the boundary condition; thus, if the boundary conditions are periodic the Galerkin method
with the Fourier series approximating the solution, called Fourier-Galerkin method, is
the most obvious and simple way to follow since the trigonometric functions with an
appropriate periodicity will automatically satisfy the boundary conditions. If boundary
conditions are not periodic, instead, one has to choose different trial functions, like for
example Chebyshev and Legendre polynomials, or alternatively use a different method,
like the tau method, for which the trial functions are not supposed to satisfy the boundary
conditions.

6.1.1 Spectral approximation of a function

One of the main ideas on which many numerical methods are based is the approximation
of the unknown function in term of an infinite sequence of orthogonal functions {φk}:

u =
∞∑

k=−∞

ûkφk(x) with x ∈ Ω ⊆ Rd, d ∈ Z+ (6.7)

The expansion in term of an orthogonal system introduces a linear transformation between
u and the sequence of its expansion coefficients {ûk}. If the expansion functions are chosen
properly it is possible to obtain series for which the k-th coefficient decays faster than any
inverse power of k. This rapid decay of the coefficients implies that the series truncated
after just few terms represents a good approximation of the function. This characteristic
is referred to as spectral accuracy of the series. This property can be obtained for periodic
functions expanded in Fourier series and for smooth nonperiodic functions as well using the
eigenfunctions of a singular Strum-Liouville problem (see Appendix C), namely Chebyshev
or Legendre polynomials.
As will be seen later, we are interested in approximating our solutions through spectral
methods supposing the solution to be periodic in all directions; therefore we focus our
attention on the Fourier system.

Continuous Fourier expansion

The set of trigonometric functions

φk(x) = eikx = cos(kx) + i sin(kx) (6.8)

is an orthogonal system for x ∈ [0, 2π], that is∫ 2π

0

φk(x)φl(x) dx =

∫ 2π

0

eikx e−ilx dx = 2πδkl =

{
2π if k = l

0 if k 6= l
(6.9)

where i is the imaginary unit and φk(x) denotes the complex conjugate of φk(x). One can
then use this system as basis to expand a complex-valued function u(x) defined on (0, 2π)
as follows

Su =
∞∑

k=−∞

ûkφk(x) =
∞∑

k=−∞

ûk eikx (6.10)

This expansion is called Fourier series of the function u and ûk, named Fourier coefficients
of u, are defined by

ûk =
1

2π

∫ 2π

0

u(x) e−ikx dx k = 0,±1,±2, ... (6.11)
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This relation associates with u a sequence of complex number called Fourier transform
of u. The function u is transformed from the physical space to the space of (angular)
wavenumbers k, called transform space. The Fourier series of u truncated to a sequence
of N trigonometric polynomials is

PNu(x) =

N/2−1∑
k=−N/2

ûk eikx (6.12)

The most important convergence property of the Fourier series is the following: for a
function u(x), periodic, continuous on [0, 2π] as well as its derivative to the order m− 1
included and with them-th derivative absolutely integrable, the Fourier coefficients behave
like

ûk = O
(
|k|−m

)
for k →∞ (6.13)

As corollary of this property one can conclude that the k-th Fourier coefficient of a func-
tion which is infinitely differentiable and periodic with all its derivatives on [0, 2π] decays
faster than any negative power of k. In conclusion, for smooth periodic functions the
Fourier series ensures the so-called spectral accuracy. This behavior has to be compared
to the O (N−p) error of a finite-difference approximation, where N is the mesh size and
p, which depends on the particular scheme, is a relatively small order.

These results can be extended to smooth functions u(x) defined on [0, L] which are
L-periodic (u(0+) = u(L−)) assuming as basis the set of functions

φk(x) = eik
2π
L
x = cos

(
k

2π

L
x

)
+ i sin

(
k

2π

L
x

)
(6.14)

which are the trigonometric polynomials with periodicity equal to L. These functions
form a orthogonal system over [0, L]∫ L

0

φk(x)φl(x) dx =

∫ L

0

eik
2π
L
x e−il

2π
L
x dx = Lδkl =

{
L if k = l

0 if k 6= l
(6.15)

Thus the function u(x) can be approximated by

u ≈
∞∑

k=−∞

ûkφk(x) =
∞∑

k=−∞

ûk eik
2π
L
x (6.16)

and the Fourier coefficients are

ûk =
1

L

∫ L

0

u(x) e−ik
2π
L
x dx k = 0,±1,±2, ... (6.17)

Discrete Fourier expansion

In many numerical applications the continuous Fourier series cannot be precisely imple-
mented because of some difficulties, such as the fact that the Fourier coefficients of an
arbitrary function are not known in closed form and must be approximated in some way.
To overcome this kind of problems discrete Fourier transform and discrete Fourier series
are used.



CHAPTER 6. NUMERICAL METHODS AND IMPLEMENTATION 58

The discrete Fourier coefficients of a complex-valued function u(x) in [0, 2π] with respect
to the points xj = 2πj/N (with j = 0, ..., N − 1 and N ∈ Z+) are

ũk =
1

N

N−1∑
j=0

u(xj) e−ikxj −N/2 ≤ k ≤ N/2− 1 (6.18)

Thanks to the orthonormality

1

N

N−1∑
j=0

eipxj =

{
1 if p = Nm, m = 0,±1,±2, ...

0 otherwise
(6.19)

one can write the inversion formula

u(xj) =

N/2−1∑
k=−N/2

ũk eikxj j = 0, ..., N − 1 (6.20)

which is the interpolation of u at the nodes xj also known as discrete Fourier series of u.
The discrete Fourier Transform (DFT) is the mapping between the N complex numbers
u(xj), the values of the function at the nodes, and the N complex numbers ũk, the discrete
Fourier coefficients. From a numerical point of view, the discrete Fourier transform can
be easily calculated using the computationally cheap Fast Fourier Transform (FFT) algo-
rithms. By far the most commonly used FFT algorithm is the Cooley–Tukey algorithm
[22].

6.1.2 Fourier-Galerkin method for space discretization

For our purposes we are interested in the Galerkin scheme coupled with the Fourier’s
approximation on the unknown solution; the resulting method is called Fourier-Galerkin
method.
We want to approximate the solution u(x, t) of the evolution equation

∂u

∂t
= L(u) (6.21)

where L is a linear operator which contains all the spatial derivatives of u(x, t) up to
the finite order M . The problem must include an initial condition u(x, 0) and suitable
boundary conditions. We suppose that the problem is one dimensional, that the spatial
domain is (0, 2π) and that the boundary conditions are periodic:

u(0, t) = u(2π, t) (6.22)

Moreover, we assume L to be

L(u) =
M∑
m=0

cm
∂mu

∂xm
(6.23)

where cm are known real constants. The approximated solution is represented as

uN(x, t) =

N/2∑
k=−N/2

ak(t)φk(x) (6.24)
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where φk are the trial functions and ak are the expansion coefficients. Thanks to periodic
boundary conditions we can approximate the solution using the trigonometric polynomials
with periodicity L = 2π

uN(x, t) =

N/2∑
k=−N/2

ak(t)φk(x) =

N/2∑
k=−N/2

ûk(t) eikx (6.25)

In general, being an approximation, uN will not satisfy the equation

∂u

∂t
= L(u)

so that the residual
RN(x) =

∂uN
∂t
− L(uN) (6.26)

will not vanish everywhere. However, using the weighted residual method we can minimize
the residual by imposing its orthogonality with respect to the test functions

(RN , ψl)w∗
=

∫
Ω

RN ψl w∗ dx = 0 l = −N/2, ..., N/2 (6.27)

We now decide to employ the Galerkin scheme for which we have already seen that

ψk = φk and w∗ = w

Having chosen as trial functions the trigonometric polynomial

φk(x) = eikx (6.28)

and knowing that they form a orthogonal system over [0, 2π]∫ 2π

0

φk(x)φl(x) dx =

∫ 2π

0

eikx e−ilx dx = 2πδkl =

{
2π if k = l

0 if k 6= l
(6.29)

we conclude that, for the Fourier-Galerkin scheme, w∗ = 1
2π

such that∫ 2π

0

RN(x)ψk w∗ dx =
1

2π

∫ 2π

0

[
∂uN
∂t
− L(uN)

]
e−ilx dx = 0 (6.30)

for l = −N/2, ..., N/2. Introducing the approximation (6.25) in this condition one obtains∫
2π

0

( ∂

∂t
− L

) N/2∑
k=−N/2

ûk(t) eikx

 e−ilx dx = 0 l = −N/2, ..., N/2

We have assumed L to be a linear operator containing all the spatial derivatives of u(x, t)
up to the order M such that∫

2π

0

( ∂

∂t
−

M∑
m=0

cm
∂m

∂xm

) N/2∑
k=−N/2

ûk(t) eikx

 e−ilx dx = 0
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We can now analytically space differentiate the trial functions∫
2π

0

 N/2∑
k=−N/2

(
dûk
dt
−

M∑
m=0

cmi
mkmûk

)
eikx

 e−ilx dx = 0

and exploit the orthogonality between the trial and the test functions, obtaining the
following system of ODEs in the transform space

dûk
dt
−

M∑
m=0

cmi
mkmûk = 0 for k = −N/2, ..., N/2

For example, if L is the second-order derivative in space ∂2/∂x2 only, one obtains

dûk
dt
− i2k2ûk = 0 for k = −N/2, ..., N/2

The problem then reduces to the solution of a set of ODEs in the transform space for
which one assumes as initial conditions the coefficients for the expansion of the initial
physical condition, namely

ûk(0) =
1

2π

∫ 2π

0

u(x, 0) e−ikx dx for k = −N/2, ..., N/2

In order to solve this problem, a stable scheme for the temporal discretization is required.

Application - Burgers Equation

In order to understand how nonlinearities can be treated within this method, we now
apply the Fourier-Galerkin method to the viscous Burgers equation; this raises issues
that occur also for much complicated equations like those we intend to solve.
The viscous Burgers equation is the following nonlinear PDE

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0 (6.31)

where ν is a positive constant. The nonlinearity is due to the term u(∂u/∂x). Given an
initial condition u(0, x) = u◦(x), we want to solve the equation (6.31) over [0, 2π] with
periodic boundary conditions. We can approximate the solution u in a truncated Fourier
series

uN(x, t) =

N/2−1∑
k=−N/2

ûk(t) eikx (6.32)

and, using the Galerkin scheme, require that the residual of the equation due to this
approximation is orthogonal to all the test functions:∫ 2π

0

(
∂uN
∂t

+ uN
∂uN
∂x
− ν ∂

2uN
∂x2

)
e−ilx dx = 0 l = −N

2
, ...,

N

2
− 1 (6.33)

Due to the orthogonality property of the test and the trial functions one obtains the
following system of N ordinary differential equations:

dûk
dt

+

〈
uN

∂uN
∂x

〉
k

+ νk2ûk = 0 k = −N
2
, ...,

N

2
− 1 (6.34)
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with initial conditions

ûk(0) =
1

2π

∫ 2π

0

u◦(x) e−ikx dx for k = −N/2, ..., N/2

where the N terms due to the nonlinearity u(∂u/∂x) have the implicit expression〈
uN

∂uN
∂x

〉
l

=
1

2π

∫ 2π

0

uN
∂uN
∂x

e−ilx dx l = −N
2
, ...,

N

2
− 1 (6.35)

In fact, the nonlinearity does not allow to use the orthogonality property of the trial and
the test functions directly, and we have to find a different way to evaluate the N terms
given by (6.35). It can be noted however that (6.35) is actually a particular case of the
general quadratic nonlinear term

〈uv〉l =
1

2π

∫ 2π

0

uv e−ilx dx (6.36)

where u e v are generic trigonometric polynomials which can be expanded in

u(x, t) =

N/2−1∑
k=−N/2

ûk(t) eikx

v(x, t) =

N/2−1∑
k=−N/2

v̂k(t) eikx

Substituting these expressions in the (6.36) and invoking the orthogonality property of
the trigonometric basis (see [20]), one obtains the convolution sum

〈uv〉k = ŵk =
∑

p+ q = k

|p|, |q| ≤ N/2

ûpv̂q (6.37)

Since the numerical evaluation of this convolution is prohibitively expensive (in three
dimensions the cost is O(N4)) one can decide to use the so-called transform method. In
order to evaluate the convolution, we may introduce the inverse discrete Fourier transform
with respect to the points xj = 2πj/N (with j = 0, ..., N − 1 and N ∈ Z+) of u and v:

u(xj) = Uj =

N/2−1∑
k=−N/2

ûk eikxj

v(xj) = Vj =

N/2−1∑
k=−N/2

v̂k eikxj

j = 0, 1, ..., N − 1 (6.38)

and define
Wj = UjVj j = 0, 1, ..., N − 1

and

Ŵk =
1

N

N−1∑
j=0

Wj e−ikxj k = −N
2
, ...,

N

2
− 1 (6.39)
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Therefore

Ŵk =
1

N

N−1∑
j=0

UjVj e−ikxj k = −N
2
, ...,

N

2
− 1 (6.40)

Using the orthonormality relation

1

N

N−1∑
j=0

eipxj =

{
1 if p = Nm, m = 0,±1,±2, ...

0 otherwise
(6.41)

one finds
Ŵk =

∑
m+n=k

ûmv̂n +
∑

m+n=k±N

ûmv̂n = ŵk +
∑

m+n=k±N

ûmv̂n (6.42)

In conclusion, approximating the convolution ŵk = 〈uv〉k with Ŵj, which is defined
by the (6.40) and the evaluations (6.38) of Uj and Vj, produces an error equal to∑

m+n=k±N

ûmv̂n (6.43)

which is called aliasing error. However, on the upside, if one uses FFT algorithms for the
discrete Fourier transforms in this transform method, the number of operations needed to
evaluate the convolution is reduced to O (N log2N) multiplications. A spectral method
which employs this transform method for treating nonlinearities is said pseudospectral.
The idea of the pseudospectral transform method is basically to evaluate the product uv
in the physical space and then transform the product’s result in the wavenumbers’ space,
introducing however an error which depends on the mode k and the total number N of
modes.

Padding/Truncation technique for de-aliasing. A technique for removing the alias-
ing error from the (6.42) is the Padding/Truncation technique, also called 3/2-rule. The
basic idea in this de-aliasing technique is to use the discrete transforms of u and v with
respect to M nodes instead of N with M ≥ 3N/2.
Let

yj = 2πj/M

Uj =

M/2−1∑
k=−M/2

ũk eikyj

Vj =

M/2−1∑
k=−M/2

ṽk eikyj

Wj = UjVj

j = 0, 1, ...,M − 1

where

ũk =

{
û for |k| ≤ N/2

0 otherwise

and

ṽk =

{
v̂ for |k| ≤ N/2

0 otherwise



CHAPTER 6. NUMERICAL METHODS AND IMPLEMENTATION 63

Thus the coefficients ũ and ṽ are basically the coefficients û and v̂ padded with zeros for
the additional wavenumbers, namely N/2 < |k| ≤M/2. Let

W̃k =
1

M

M−1∑
j=0

Wj e−ikyj k = −M
2
, ...,

M

2
− 1 (6.44)

then
W̃k =

∑
m+n=k

ũmṽn +
∑

m+n=k±M

ũmṽn (6.45)

It can be shown that for M ≥ 3N/2 the aliasing error (the second term on the right-hand
side) vanishes for the wavenumebrs we are interested in, i. e. |k| ≤ N/2.

In conclusion, the N terms resulting from the nonlinearity, which are〈
uN

∂uN
∂x

〉
l

=
1

2π

∫ 2π

0

uN
∂uN
∂x

e−ilx dx =

=
1

2π

∫ 2π

0

 N/2−1∑
k=−N/2

ûk(t) eikx

 N/2−1∑
k=−N/2

ikûk(t) eikx

 e−ilx dx,

find a pseudospectal evaluation in〈
uN

∂uN
∂x

〉
l

=
1

M

M−1∑
j=0

UjVj e−ilyj l = −M
2
, ...,

M

2
− 1, (6.46)

with
M ≥ 3N/2

yj = 2πj/M

Uj =

M/2−1∑
k=−M/2

ũk eikyj

Vj =

M/2−1∑
k=−M/2

ikũk eikyj

j = 0, 1, ...,M − 1

reduced to the wavenumbers of interest l = −N/2, ..., N/2− 1.
From a numerical point of view this technique can be implemented in another equivalent
way called 2/3-rule: products are calculated over N nodes instead of M ≥ 3N/2 and
then the values corresponding to the aliased N/3 central (with greatest absolute value)
modes are set to zero, avoiding padding-truncation operations. This however means to
solve equations over 2N/3 nodes, i. e. 2N/3 modes, instead of N , because the remaining
N/3 modes are used to remove aliasing error only.

6.2 Numerical scheme for HIT problem
For the problems (NS hit) and (Lr2 hit) we want to solve, space-periodic solutions along
the three directions are assumed thanks to the homogeneity and the isotropy of the
turbulence. Consequently, the natural choice for the discretization scheme is the Fourier-
Galerkin method.
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We recall the two problems presented in the Chapter 5 (for i = 1, 2, 3) in non-
dimensional form dropping out the tilde to denote the non-dimensional variables for
simplicity: 

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re
· ∂

2ui
∂x2

j

in Ωb × [0, T ]

∂uj
∂xj

= 0 in Ωb × [0, T ]

ui(x, 0) = u◦i (x) in Ωb × {0}
ui (x + 2πej, t) = ui (x, t) on ∂Ωb × [0, T ]

(6.47)

and 

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re
· ∂

2ui
∂x2

j

+
1

La2

· ∂

∂xj

(
2d̂2Dij

)
in Ωb × [0, T ]

∂uj
∂xj

= 0 in Ωb × [0, T ]

ui(x, 0) = u◦i (x) in Ωb × {0}
ui (x + 2πej, t) = ui (x, t) on ∂Ωb × [0, T ]

(6.48)

in which d̂2 is the scalar quantity

d̂2 =
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2

(6.49)

Dij is the non-dimensional rate of strain tensor

Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(6.50)

and u◦(x) is the non-dimensional initial condition

u◦(x) =


cos(x1) sin(x2) sin(x3)

− sin(x1) cos(x2) sin(x3)

0

 (6.51)

Since periodic boundary conditions are assumed in all directions we can approximate
the velocity and the pressure field in term of trigonometric polynomials with periodicity
2π:

ui(x, t) =
∞∑

h=−∞

∞∑
l=−∞

∞∑
k=−∞

û
(i)
klh (t) eikx1 eilx2 eihx3 (6.52)

p(x, t) =
∞∑

h=−∞

∞∑
l=−∞

∞∑
k=−∞

p̂klh (t) eikx1 eilx2 eihx3 (6.53)

Truncating the expansions to N1 terms in x1, N2 terms in x2 and N3 terms in x3:

u
(i)
N (x, t) =

N3/2−1∑
h=−N3/2

N2/2−1∑
l=−N2/2

N1/2−1∑
k=−N1/2

û
(i)
klh (t) eikx1 eilx2 eihx3 (6.54)
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pN(x, t) =

N3/2−1∑
h=−N3/2

N2/2−1∑
l=−N2/2

N1/2−1∑
k=−N1/2

p̂klh (t) eikx1 eilx2 eihx3 (6.55)

In order to simplify the notation we rewrite these last two expressions as follows

u
(i)
N (x, t) =

∑
h

∑
l

∑
k

û
(i)
klh φk(x1)φl(x2)φh(x3) (6.56)

pN(x, t) =
∑
h

∑
l

∑
k

p̂klh φk(x1)φl(x2)φh(x3) (6.57)

with h = −N3/2, ..., N3/2− 1, l = −N2/2, ..., N2/2− 1, k = −N1/2, ..., N1/2− 1 and

φk(xi) = eikxi

We then note that the trial functions form three orthonormal systems over [0, 2π] in each
direction

1

2π

∫ 2π

0

φk(x)φl(x) dx =
1

2π

∫ 2π

0

eikx e−ilx dx = δkl =

{
1 if k = l

0 if k 6= l

We then apply the Galerkin method for the space discretization to the Navier-Stokes
and the Ladyzhenskaya equations obtaining respectively (for n = −N1/2, ..., N1/2 − 1,
m = −N2/2, ..., N2/2− 1, s = −N3/2, ..., N3/2− 1)

1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

[
∂u

(i)
N

∂t
+ u

(j)
N

∂u
(i)
N

∂xj
− 1

Re

∂2u
(i)
N

∂x2
j

+
∂pN
∂xi

]
e−inx1 e−imx2 e−isx3 dx1 dx2 dx3 = 0

1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

[
∂u

(i)
N

∂t
+ u

(j)
N

∂u
(i)
N

∂xj
− 1

Re

∂2u
(i)
N

∂x2
j

+
∂pN
∂xi
− 1

La2

∂

∂xj

[
d̂2
N

(
∂u

(i)
N

∂xj
+
∂u

(j)
N

∂xi

)]]
·

· e−inx1 e−imx2 e−isx3 dx1 dx2 dx3 = 0

where

d̂2
N =

3∑
k,l=1

(
∂u

(k)
N

∂xl
+
∂u

(l)
N

∂xk

)2

If we denote with 〈.〉nms the Galerkin projection

〈.〉nms =
1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

(.) e−inx1 e−imx2 e−isx3 dx1 dx2 dx3 =

=
1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

(.)φn(x1)φm(x2)φs(x3) dx1 dx2 dx3 =

=
1

dim (Ωb)

∫
Ωb

(.)ψnms(x1, x2, x3) dΩb

(6.58)

for n = −N1/2, ..., N1/2 − 1, m = −N2/2, ..., N2/2 − 1 and s = −N3/2, ..., N3/2 − 1, we
can rewrite the schemes as follows〈

∂u
(i)
N

∂t

〉
nms

+

〈
u

(j)
N

∂u
(i)
N

∂xj

〉
nms

− 1

Re

〈
∂2u

(i)
N

∂x2
j

〉
nms

+

〈
∂pN
∂xi

〉
nms

= 0 (6.59)
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and 〈
∂u

(i)
N

∂t

〉
nms

+

〈
u

(j)
N

∂u
(i)
N

∂xj

〉
nms

− 1

Re

〈
∂2u

(i)
N

∂x2
j

〉
nms

+

〈
∂pN
∂xi

〉
nms

+

− 1

La2

〈
∂

∂xj

[
d̂2
N

(
∂u

(i)
N

∂xj
+
∂u

(j)
N

∂xi

)]〉
nms

= 0

(6.60)

We now consider term by term the second of these two systems, namely the Galerkin
approximation of the Ladyzhenskaya equations; that for the Navier-Stokes equations can
be obtained by setting to zero the additional nonlinear viscous terms.

Local time variation. The projection of the local time-variation of the velocity field
is simply 〈

∂u
(i)
N

∂t

〉
nms

=
1

dim (Ωb)

∫
Ωb

∂

∂t

(∑
h

∑
l

∑
k

û
(i)
klh ψklh

)
ψnms dΩb =

=
1

dim (Ωb)

∫
Ωb

(∑
h

∑
l

∑
k

dû
(i)
klh

dt
ψklh

)
ψnms dΩb

and using the orthogonality property of the test and the trial functions it becomes〈
∂u

(i)
N

∂t

〉
nms

=
dû

(i)
nms

dt
(6.61)

Linear viscous term. The projection of the linear viscous term is the tensor

− 1

Re

〈
∂2u

(i)
N

∂x2
j

〉
nms

= − 1

Re



〈
∂2u

(1)
N

∂x2
1

〉
nms

+

〈
∂2u

(1)
N

∂x2
2

〉
nms

+

〈
∂2u

(1)
N

∂x2
3

〉
nms〈

∂2u
(2)
N

∂x2
1

〉
nms

+

〈
∂2u

(2)
N

∂x2
2

〉
nms

+

〈
∂2u

(2)
N

∂x2
3

〉
nms〈

∂2u
(3)
N

∂x2
1

〉
nms

+

〈
∂2u

(3)
N

∂x2
2

〉
nms

+

〈
∂2u

(3)
N

∂x2
3

〉
nms


(6.62)

Differentiating with respect to the space variables and using the orthogonality properties,
the terms in (6.62) which contain the derivatives with respect to x1, x2 and x3 become
respectively〈

∂2u
(i)
N

∂x2
1

〉
nms

=
1

dim (Ωb)

∫
Ωb

∂2

∂x2
1

(∑
h

∑
l

∑
k

û
(i)
klh ψklh

)
ψnms dΩb =

=
1

dim (Ωb)

∫
Ωb

(∑
h

∑
l

∑
k

û
(i)
klh

∂2ψklh
∂x2

1

)
ψnms dΩb =

=
1

dim (Ωb)

∫
Ωb

(∑
h

∑
l

∑
k

û
(i)
klh (ik)2 ψklh

)
ψnms dΩb = −n2û(i)

nms
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∂2u

(i)
N

∂x2
2

〉
nms

=
1

dim (Ωb)

∫
Ωb

∂2

∂x2
2

(∑
h

∑
l

∑
k

û
(i)
klh ψklh

)
ψnms dΩb =

=
1

dim (Ωb)

∫
Ωb

(∑
h

∑
l

∑
k

û
(i)
klh

∂2ψklh
∂x2

2

)
ψnms dΩb =

=
1

dim (Ωb)

∫
Ωb

(∑
h

∑
l

∑
k

û
(i)
klh (il)2 ψklh

)
ψnms dΩb = −m2û(i)

nms〈
∂2u

(i)
N

∂x2
3

〉
nms

=
1

dim (Ωb)

∫
Ωb

∂2

∂x2
3

(∑
h

∑
l

∑
k

û
(i)
klh ψklh

)
ψnms dΩb =

=
1

dim (Ωb)

∫
Ωb

(∑
h

∑
l

∑
k

û
(i)
klh

∂2ψklh
∂x2

3

)
ψnms dΩb =

=
1

dim (Ωb)

∫
Ωb

(∑
h

∑
l

∑
k

û
(i)
klh (ih)2 ψklh

)
ψnms dΩb = −s2û(i)

nms

The resulting discretized linear viscous term (6.62) thus is

− 1

Re

〈
∂2u

(i)
N

∂x2
j

〉
nms

=
1

Re



(
n2 +m2 + s2

)
û(1)
nms(

n2 +m2 + s2
)
û(2)
nms(

n2 +m2 + s2
)
û(3)
nms

 (6.63)

Pressure term. Similarly to the linear viscous term, the following Galerkin projection
of the pressure term can be obtained

〈
∂pN
∂xi

〉
nms

=



〈
∂pN
∂x1

〉
nms〈

∂pN
∂x2

〉
nms〈

∂pN
∂x3

〉
nms


=


inp̂nms

imp̂nms

isp̂nms

 (6.64)

Convective term. The discretized nonlinear convective term is

〈
u

(j)
N

∂u
(i)
N

∂xj

〉
nms

=



〈
u

(1)
N

∂u
(1)
N

∂x1

〉
nms

+

〈
u

(2)
N

∂u
(1)
N

∂x2

〉
nms

+

〈
u

(3)
N

∂u
(1)
N

∂x3

〉
nms〈

u
(1)
N

∂u
(2)
N

∂x1

〉
nms

+

〈
u

(2)
N

∂u
(2)
N

∂x2

〉
nms

+

〈
u

(3)
N

∂u
(2)
N

∂x3

〉
nms〈

u
(1)
N

∂u
(3)
N

∂x1

〉
nms

+

〈
u

(2)
N

∂u
(3)
N

∂x2

〉
nms

+

〈
u

(3)
N

∂u
(3)
N

∂x3

〉
nms


(6.65)
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Unlike the linear terms, which can be easily obtained, it needs to be considered carefully.
As previously seen for the Burgers equation, the terms resulting from the nonlinearity
(u • ∇)u contained in the (6.65) can be expressed as convolution sums. Let focus for the
moment on some representative terms. For example, for the first term one can write〈
u

(1)
N

∂u
(1)
N

∂x1

〉
nms

=
1

dim (Ωb)

∫
Ωb

[(∑
h

∑
l

∑
k

û
(1)
klh ψklh

)
∂

∂x1

(∑
h

∑
l

∑
k

û
(1)
klh ψklh

)]
ψnms dΩb =

=
1

dim (Ωb)

∫
Ωb

[(∑
h

∑
l

∑
k

û
(1)
klh ψklh

)(∑
h

∑
l

∑
k

û
(1)
klh

∂ψklh
∂x1

)]
ψnms dΩb

(6.66)
Differentiating ψklh(x1, x2, x3) = eikx1+ilx2+ihx3 with respect to x1 one obtains〈
u

(1)
N

∂u
(1)
N

∂x1

〉
nms

=
1

dim (Ωb)

∫
Ωb

[(∑
h

∑
l

∑
k

û
(1)
klh ψklh

)(∑
h

∑
l

∑
k

û
(1)
klh ik ψklh

)]
ψnms dΩb

(6.67)
or, alternatively 〈

u
(1)
N

∂u
(1)
N

∂x1

〉
nms

= in
〈
u

(1)
N u

(1)
N

〉
nms

, (6.68)

then invoking the orthogonality property leads to the convolution sum〈
u

(1)
N

∂u
(1)
N

∂x1

〉
nms

= in
∑

p+ r = n

|p|, |r| ≤ N1/2

∑
q + f = m

|q|, |f | ≤ N2/2

∑
e+ y = s

|e|, |y| ≤ N3/2

û(1)
pqeû

(1)
rfy (6.69)

Since the numerical evaluation of these convolution sums is prohibitively expensive, we
decide to evaluate the convolution integral〈

u
(1)
N

∂u
(1)
N

∂x1

〉
nms

= in
〈
u

(1)
N u

(1)
N

〉
nms

, (6.70)

employing the pseudospectral transform method coupled with the 2/3-rule for the de-
aliasing, as explained in the previous Section for the Burgers equation. The other terms
of (6.65) can be treated exactly like the term (6.66) obtaining

〈
u

(j)
N

∂u
(i)
N

∂xj

〉
nms

=



in
〈
u

(1)
N u

(1)
N

〉
nms

+ im
〈
u

(2)
N u

(1)
N

〉
nms

+ is
〈
u

(3)
N u

(1)
N

〉
nms
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〈
u

(1)
N u

(2)
N

〉
nms

+ im
〈
u

(2)
N u

(2)
N

〉
nms

+ is
〈
u

(3)
N u

(2)
N

〉
nms

in
〈
u

(1)
N u

(3)
N

〉
nms

+ im
〈
u

(2)
N u

(3)
N

〉
nms

+ is
〈
u

(3)
N u

(3)
N

〉
nms


(6.71)
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Nonlinear viscous term. The Galerkin projection of the nonlinear viscous term asso-
ciated with the Ladyzhenskaya equations is

− 1

La2

〈
∂

∂xj

[
d̂2
N

(
∂u

(i)
N

∂xj
+
∂u

(j)
N

∂xi

)]〉
nms

=

= − 1

La2



〈
∂

∂x1
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N
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(1)
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]
+

∂

∂x2
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(
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(1)
N

∂x2
+
∂u

(2)
N
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+

∂

∂x3
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(
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(1)
N

∂x3
+
∂u

(3)
N
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)]〉
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∂

∂x1
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N

(
∂u

(2)
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+
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(1)
N

∂x2

)]
+

∂
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[
2d̂2

N

∂u
(2)
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]
+

∂

∂x3
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(
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(2)
N

∂x3
+
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(3)
N
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)]〉
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∂

∂x1
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(
∂u

(3)
N

∂x1
+
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(1)
N

∂x3

)]
+

∂

∂x2

[
d̂2
N

(
∂u

(3)
N

∂x2
+
∂u

(2)
N

∂x3

)]
+

∂

∂x3

[
2d̂2

N

∂u
(3)
N

∂x3

]〉
nms


(6.72)

This term is strongly nonlinear since d̂2, which contains the square of the components of
the rate-of-strain tensor

d̂2 =
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2

= 4

[(
∂u1

∂x1

)2

+

(
∂u2

∂x2

)2

+

(
∂u3

∂x3

)2
]

+

+2

(
∂u1

∂x2

+
∂u2

∂x1

)2

+ 2

(
∂u1

∂x3

+
∂u3

∂x1

)2

+ 2

(
∂u2

∂x3

+
∂u3

∂x2

)2

,

(6.73)

is multiplied by the rate-of strain tensor Dij itself. We want to evaluate these terms in the
space of wavenumbers; we know that in this space, at given time, our solution is defined
by the Fourier’s coefficients

û(i)
nms(t) (6.74)

for n = −N1/2, ..., N1/2 − 1, m = −N2/2, ..., N2/2 − 1 and s = −N3/2, ..., N3/2 − 1.
Moreover, we also know that in this space the derivatives of the solution with respect to
x1 are

∂ui
∂x1

→ inû(i)
nms (6.75)

the derivatives with respect to x2 are

∂ui
∂x2

→ imû(i)
nms (6.76)

and the derivatives with respect to x3 are

∂ui
∂x3

→ isû(i)
nms (6.77)

If we suppose to know the coefficients û(i)
nms, we can numerically evaluate the derivatives in

the transform space directly like in the expressions (6.75), (6.75) and (6.77). In order to
evaluate the nonlinear viscous term, then, we can adopt this evaluation of the derivatives
in the transform space and proceed as follows:

• transform the value of the derivatives from the wavenumbers’ space to the physical
space obtaining the values of the derivative of ui on the N1, N2 and N3 points along
x1, x2 and x3 respectively.
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• use the values of the physical derivatives to evaluate the term d̂2 and the rate-of-
strain tensor Dij in physical space;

• compute the products d̂2Dij in the physical space;

• transform the product’s results from the physical space back to the space of wavenum-
bers and set to zero the values corresponding to the aliased modes; thus one has the
Ladyzhenskaya nonlinear viscous stress tensor in the transform space;

• compute in the transform space the divergence of the tensor adopting the same
differentiation technique expressed by (6.75), (6.76) and (6.77).

This procedure is basically the application of the transform method, coupled with the
de-aliasing 2/3-rule, used for the evaluation of the convective nonlinear term; products,
which provide the nonlinear stress tensor, are in fact solved in the physical space and then
transformed back to the transform space. The divergence of the nonlinear viscous tensor
is then calculated in the transform space.

In conclusion, the results obtained in (6.61), (6.63), (6.64) and (6.71) allow to rewrite
the Navier-Stokes equations in the transform space as follows
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u
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+
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)
û(1)
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+ inp̂nms = 0
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N

〉
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+ im
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u
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(2)
N

〉
nms
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〉
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+
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)
û(2)
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+ imp̂nms = 0

dû
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nms

dt
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〈
u

(1)
N u
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N

〉
nms

+ im
〈
u

(2)
N u

(3)
N

〉
nms
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〈
u

(3)
N u

(3)
N

〉
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+
1

Re

(
n2 +m2 + s2

)
û(3)
nms+

+ isp̂nms = 0

(6.78)

In order to simplify the notation, we set for the moment

(x1, x2, z3) = (x, y, z)(
u

(1)
N , u

(2)
N , u

(3)
N

)
= (u, v, w)(

û(1)
nms, û

(2)
nms, û

(3)
nms

)
= (û, v̂, ŵ)

kx = n, ky = m, kz = s

k2 = k2
x + k2

y + k2
z = n2 +m2 + s2

〈·〉nms = 〈·〉
thus we can rewrite the (6.78) as follows

dû

dt
+ ikx 〈uu〉+ iky 〈uv〉+ ikz 〈wu〉+

1

Re
k2û+ ikxp̂ = 0

dv̂

dt
+ ikx 〈uv〉+ iky 〈vv〉+ ikz 〈wv〉+

1

Re
k2v̂ + ikyp̂ = 0

dŵ

dt
+ ikx 〈uw〉+ iky 〈vw〉+ ikz 〈ww〉+

1

Re
k2ŵ + ikzp̂ = 0

(6.79)
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Consequently, adding the nonlinear viscous term to this scheme, the Ladyzhenskaya equa-
tions can be rewritten in the transform space as follows

dû
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1
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〈
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(6.80)
in which the nonlinear viscous term are computed using the procedure previously ex-
plained. It is important to remember that these equations must hold for all the wavenum-
bers associated with the spectral approximation; every equation in (6.79) and (6.80) forms
indeed a system of n ×m × s differential equations for which discretization in time has
not yet been realized.

The velocity divergence-free condition can be simply discretized, since the divergence
is a linear operator. The Galerkin projection of ∇ • u = 0 is in fact

ikxû+ ikyv̂ + ikzŵ = 0 (6.81)

In Fourier space, Navier-Stokes and Ladyzhenskaya systems can be written in a even more
compact way denoting with ĉk = −〈u • ∇u〉k the non-linear convective term, and with
ĝk =

〈
∇ •

(
d̂2D

)〉
k
the non-linear diffusive term:

dûk

dt
= − 1

Re
|k|2 ûk − ikp̂k + ĉk

ik • ûk = 0

(6.82)


dûk

dt
= − 1

Re
|k|2 ûk − ikp̂k + ĉk +

1

La2

ĝk

ik • ûk = 0

(6.83)

The pressure may be eliminated by taking ik dotted with the momentum equations and
using the mass conservation ik • ûk = 0. Hence, for Navier-Stokes system one obtains

p̂k = − 1

|k|2
ik • ĉk (6.84)

and then
dûk

dt
= − 1

Re
|k|2 ûk + ĉk − k

k • ĉk

|k|2
(6.85)
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whereas for Ladyzhenskaya system one obtains

p̂k = − 1

|k|2
ik • ĉk −

1

La2 |k|2
ik • ĝk (6.86)

and then
dûk

dt
= − 1

Re
|k|2 ûk + ĉk +

1

La2

ĝk − k
k • ĉk

|k|2
− k

k • ĝk

La2 |k|2
(6.87)

This is equivalent to evaluating, in every sub-step of the time advancement scheme (Sec-
tion 6.2.1), the space operators without the pressure term to calculate an intermediate
velocity u∗ which does not satisfy the incompressibility condition ∇ • u∗ = 0, then taking
the divergence of u∗, solving the following Poisson equation for the pressure correction ϕ

∇2ϕ = ∇ • u∗ (6.88)

which, in the Fourier’s space, is simply

ϕ̂k = − 1

|k|2
ik • û∗ (6.89)

and correcting the field u∗ with the gradient ∇ϕ to obtain u which satisfies the incom-
pressibility condition, enforced implicitly by the Poisson equation (6.88).

6.2.1 Temporal discretization

For time advancement, the fourth-order explicit Runge-Kutta method has been used.

Fourth-order Runge Kutta scheme

Typical problems for evolution equations can be written in the general form

∂u

∂t
= F (u, t) t > 0

u(0) = u0
(6.90)

where the generally nonlinear operator F contains the spatial part of the PDE. Given an
initial condition, a time integration scheme can be applied to find the solution at later
times. For this problem the generic explicit Runge-Kutta scheme of s-th order has the
form

u(n+1) = u(n) + ∆t
s∑
j=1

bjkj (6.91)

where ∆t = t(n+1) − t(n) is the constant integration step and, for j = 1, 2, ..., s, kj are

kj = F

(
u(n) + ∆t

j−1∑
l=1

ajlkl, t
(n) + cj∆t

)
(6.92)

In the scheme ajl, cj and bj are coefficients which depends on the order s. For the fourth
order scheme s = 4 and

u(n+1) = u(n) + ∆t (b1k1 + b2k2 + b3k3 + b4k4) = u(n) + ∆t

(
k1

6
+
k2

3
+
k3

3
+
k4

6

)
(6.93)
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Figure 6.1: Region of absolute stability of Runge-Kutta fourth-order scheme.

with
k1 = F

(
u(n), t(n)

)
k2 = F

(
u(n) + ∆t

k1

2
, t(n) +

∆t

2

)
k3 = F

(
u(n) + ∆t

k2

2
, t(n) +

∆t

2

)
k4 = F

(
u(n) + ∆tk3, t

(n) + ∆t
)

This explicit method computes the value of u at the time t(n+1) adding four weighted
increments to the value u assumes at the previous time t(n):

• k1 is the increment based on the slope of u at the beginning of the interval
[
t(n), t(n+1)

]
;

• k2 and k3 are two different increments based on the slope of u at the midpoint of
the interval

[
t(n), t(n+1)

]
;

• k4 is the increment based on the slope of u at the end of the interval
[
t(n), t(n+1)

]
.

The method is fourth-order accurate: the local truncation error in (6.93) is on the order of
O (h5), while the total accumulated error (the cumulative error caused by many iterations)
is on the order of O (h4). The region of absolute stability of this method is given in Figure
6.1.
Note that the systems we are solving are autonomous, i. e. the function F is independent
of t. The scheme can be divided into four steps, in fact one can write u(0) = u(n) and
implement the scheme as follows:

• sub-step 1

u(1) = u(0) + ∆t
k1

2
= u(0) +

∆t

2
F
(
u(0)
)
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• sub-step 2

u(2) = u(0) + ∆t
k2

2
= u(0) +

∆t

2
F
(
u(1)
)

• sub-step 3
u(3) = u(0) + ∆tk3 = u(0) + ∆tF

(
u(2)
)

• sub-step 4

u(n+1) = u(4) = u(0) + ∆t

(
k1

6
+
k2

3
+
k3

3
+
k4

6

)
=

= u(0) +
∆t

6
F
(
u(0)
)

+
∆t

3
F
(
u(1)
)

+
∆t

3
F
(
u(2)
)

+
∆t

6
F
(
u(3)
)

The fourth-order Runge Kutta scheme requires at least five levels of storage: u(n), k1, k2,
k3 and k4; then u(n+1) may be overwritten in u(n).

6.2.2 Computational cost

The computational cost is mainly due to the resolution requirements: the domain size
L must be large enough to catch the energy-containing motions (largest structures) and,
on the other side, the grid spacing has to be small enough to resolve the smallest scales,
namely the dissipative scale η. Moreover, the time step ∆t used in the time advancement
scheme is limited by numerical accuracy and stability requirements proper of the scheme.
The resolution of the smallest scales requires a small grid spacing ∆x/η which corresponds,
for spectral methods, to sufficiently large maximum wavenumber kmaxη = ηπ/∆x. Since
experience shows that dissipation is small for kη ≥ 1.5, the criterion kmaxη ≥ 1.5 can be
used to guarantee the resolution of the smallest scales. It corresponds to the grid spacing
requirement

∆x

η
≤ π

1.5
' 2.1 (6.94)

A reasonable minimum limit for the domain’s size L is L = 8L11 which, in terms of
wavenumber, implies that

k0L11 =
π

4
' 0.8 (6.95)

for which almost all energy (95%) is resolved. The necessary number of modes is then
a function of the Reynolds number, since the ratio between the largest and the smallest
length scales depends on Re according to (4.3). Approximatively this dependence is

N3 ∼ 4.4 · Re
9/4
L . (6.96)

For time advancement it is necessary to chose a time step ∆t which allows to catch
the diffusive and the convective phenomena at small scales. In practice, the following
condition for the Courant number is required

C = k1/2
e

∆t

∆x
≤ 1

20
(6.97)

where ke is turbulent kinetic energy. In order to obtain valid statistics in time is then
necessary to simulate at least for four times the turbulence time scale: τ = ke/ε. Thus,
using also the limit in (6.97), the number of steps required is at least

nsteps =
4τ

∆t
= 80

k3/2

ε∆x
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Figure 6.2: Total number of operations growth with Reynolds number per simulation

Since the integral lengthscale is on the order of L = k3/2/ε and, according to (6.94), ∆x
has to be at most equal to 2.1η, the total number of steps required is

nsteps ' 38 · L
η

Thus using L/η = Re3/4
L from (4.3) one finds

nsteps ' 38 · Re3/4
L (6.98)

The number of operations required to perform a simulation is approximatively propor-
tional to the product of the number of modes and the number of steps:

N3 · nsteps ∼ 4.4 · Re9/4
L · 38 · Re3/4

L ' 168 · Re3
L (6.99)

which shows how the number of operations rapidly grows with the Reynolds number
(Figure 6.2).

6.3 Fortran Program
The schemes presented in the previous Section (Fourier-Galerkin method coupled with
the fourth-order Runge-Kutta time advancement) have been implemented in a program
named dns_hit_mpi written in Fortran language; the program implements a parallel al-
gorithm, using Message Passing Interface (MPI), decomposing the physical domain into
slices parallel to the plane (x1, x2), i. e. parallelizing the third direction x3 (Figure 6.3).
The program’s structure is based on DNS-TurIsMi (version 1.4), developed by Profes-
sor Michele Iovieno (see [24], [25], [26] and [27] as references), which can solve three-
dimensional Navier-Stokes equations and the passive scalar transport equation assuming
turbulence to be homogeneous and isotropic.

1 program dns_hit_mpi
2 !developed and written by Domenico Zaza
3 !Subroutines for data transposition are taken from
4 !DNS -TurIsMi (v1.4) developed by Professor Michele Iovieno
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Figure 6.3: Parallelization - Decomposition of the computational domain (pn denotes the
n-th process)

5 include 'mpif.h'
6 common nid ,noprocs ,n1 ,nloc ,n3,n3loc
7 double precision ::deltat ,pi,sim_time
8 double precision ::Re , La
9 integer :: model ,nsalva ,ntot

10 integer :: m1,m2 ,m3 ,m4
11 double precision ,allocatable , dimension (:):: xx,xx3loc
12 double precision ,allocatable , dimension (:):: k,k3,k3loc
13 double precision ,allocatable , dimension (:,:,:):: kk1 ,kk2 ,kk3loc ,...

kk_quad ,kk_quadnz
14 double complex ,allocatable , dimension (:,:,:,:):: u0,u1
15 double precision ,allocatable ,dimension (:)::deal1 ,deal3 ,deal3loc
16 double precision ,allocatable , dimension (:,:,:)::deal
17 double complex ,allocatable , dimension (:,:,:,:):: HH1 ,HH2 ,HH3 ,HH4
18 double precision ,allocatable , dimension (:,:,:,:):: u0real
19 integer ,allocatable ,dimension (:)::inds ,inds3
20 character *20, allocatable :: nomefile (:)
21 character(len =10):: snapshot
22

23 !..... Variables for parallelization:
24 integer status(MPI_Status_size)
25 !..... Parallel initialization:
26 call MPI_Init(ierror)
27 call MPI_Comm_size(MPI_COMM_WORLD ,noprocs ,ierror)!noprocs=number...

of processors
28 call MPI_Comm_rank(MPI_COMM_WORLD ,nid ,ierror) !nid=rank of each ...

processor
29 !..... End of initialization ...
30 call MPI_BARRIER(MPI_Comm_World ,ierror)
31 !..... Parameters definition:
32

33 pi=4.0* atan (1.0d0)
34

35 !..... parameter are read by processor 0 from file in_dns.txt ...
36 if(nid.eq.0) then
37 open(1,file='in_dns.txt')
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38 read (1,*)n1
39 read (1,*)n3
40 read (1,*) deltat
41 read (1,*) ntot
42 read (1,*) nsalva
43 read (1,*) model
44 read (1,*)Re
45 read (1,*)La
46 close (1)
47

48 sim_time=deltat*ntot
49

50 WRITE (*,*)' dns_hit_mpi PROGRAM ...
'

51 WRITE (*,*)
52 WRITE (*,*)
53 WRITE (*,*)'******************** INPUT DATA ...

************************** '
54 WRITE (*,*)'...

********************************************************** '
55 WRITE (*,*)'Number of points in x1 and x2:', n1
56 WRITE (*,*)'Number of points in x3:', n3
57 WRITE (*,*)'Reynolds number:',RE
58 if(model.eq.1) then
59 WRITE (*,*)'Model: Navier -Stokes equations '
60 elseif(model.eq.2) then
61 WRITE (*,*)'Model: Ladyzhenskaya equations with r=2'
62 WRITE (*,*)'Ladyzhenskaya number: ',La
63 else
64 WRITE (*,*)'ERROR IN FLUID DYNAMIC MODEL SELECTION '
65 end if
66 WRITE (*,*)'Integration Step: ',deltat
67 WRITE (*,*)'Number of steps: ',ntot
68 WRITE (*,*)'Simulation Time: ',sim_time
69 WRITE (*,*)'Steps for saving: ',nsalva
70 WRITE (*,*)'...

********************************************************** '
71 WRITE (*,*)'...

********************************************************** '
72 end if
73

74

75 !..... and spread to all processors ...
76 call MPI_Bcast(n1 ,1,MPI_INTEGER ,0,MPI_COMM_WORLD ,ierror)
77 call MPI_Bcast(n3 ,1,MPI_INTEGER ,0,MPI_COMM_WORLD ,ierror)
78 call MPI_Bcast(ntot ,1,MPI_INTEGER ,0,MPI_COMM_WORLD ,ierror)
79 call MPI_Bcast(nsalva ,1,MPI_INTEGER ,0,MPI_COMM_WORLD ,ierror)
80 call MPI_Bcast(model ,1,MPI_INTEGER ,0,MPI_COMM_WORLD ,ierror)
81

82 call MPI_Bcast(Re ,1, MPI_DOUBLE_PRECISION ,0,MPI_COMM_WORLD ,ierror...
)

83 call MPI_Bcast(La ,1, MPI_DOUBLE_PRECISION ,0,MPI_COMM_WORLD ,ierror...
)

84 call MPI_Bcast(deltat ,1, MPI_DOUBLE_PRECISION ,0,MPI_COMM_WORLD ,...
ierror)

85 call MPI_Bcast(sim_time ,1, MPI_DOUBLE_PRECISION ,0,MPI_COMM_WORLD ,...
ierror)

86
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87 n3loc=n3/noprocs
88 nloc=n1/noprocs
89

90 !.... Points for de-aliasing
91 m1=CEILING(n1/3.D0)
92 m2=n1+3-2*m1
93

94 m3=CEILING(n3/3.D0)
95 m4=n3+3-2*m3
96

97 !..... wavenumbers
98 allocate(k(0:n1 -1),k3(0:n3 -1),k3loc (0:n3loc -1))
99 allocate(deal1 (0:n1 -1),deal3 (0:n3 -1),deal3loc (0:n3loc -1))

100 allocate(deal (0:n1 -1,0:n1 -1,0:n3loc -1))
101 allocate(inds (0:m2 -1),inds3 (0:m4 -1))
102

103 do ii=0,n1/2
104 k(ii)=dfloat(ii)
105 end do
106 do ii=1,n1/2-1
107 k(n1 -ii)=-dfloat(ii)
108 end do
109 do ii=0,n3/2
110 k3(ii)=dfloat(ii)
111 end do
112 do ii=1,n3/2-1
113 k3(n3-ii)=-dfloat(ii)
114 end do
115

116 do ii=0,n1 -1
117 deal1(ii)=1.0d0
118 end do
119 do ii=0,n1 -1
120 deal3(ii)=1.0d0
121 end do
122

123 !..... deactivating aliased modes
124 do ii=0,m2 -1
125 inds(ii)=m1+ii
126 end do
127 do ii=0,m4 -1
128 inds3(ii)=m3+ii
129 end do
130

131 k(inds)=0.0d0
132 k3(inds3)=0.0d0
133 deal1(inds)=0.0d0
134 deal3(inds)=0.0d0
135

136 do ii=0,n3loc -1
137 k3loc(ii)=k3(nid*n3loc+ii)
138 deal3loc(ii)=deal3(nid*n3loc+ii)
139 end do
140 deallocate(k3)
141 deallocate(deal3)
142

143 allocate(kk1 (0:n1 -1,0:n1 -1,0:n3loc -1),kk2 (0:n1 -1,0:n1 -1,0:n3loc -1)...
,kk3loc (0:n1 -1,0:n1 -1,0:n3loc -1),kk_quad (0:n1 -1,0:n1 -1,0:n3loc...
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-1))
144 allocate(kk_quadnz (0:n1 -1,0:n1 -1,0:n3loc -1))
145

146 do ll=0,n3loc -1
147 do jj=0,n1 -1
148 do ii=0,n1 -1
149 kk1(ii ,jj,ll)=k(ii)
150 kk2(ii ,jj,ll)=k(jj)
151 kk3loc(ii,jj,ll)=k3loc(ll)
152 kk_quad(ii,jj,ll)=k(ii)**2+k(jj)**2+ k3loc(ll)**2
153 deal(ii,jj,ll)=deal1(ii)*deal1(jj)*deal3loc(ll)
154 if(kk_quad(ii ,jj ,ll).eq.0.0D0)then
155 kk_quadnz(ii,jj,ll)=0.0d0
156 else
157 kk_quadnz(ii,jj,ll)=(1.0d0)/kk_quad(ii,jj,ll)
158 end if
159 end do
160 end do
161 end do
162 deallocate(k,k3loc)
163

164 allocate(u0real (0:n1 -1,0:n1 -1,0:n3loc -1 ,1:3))
165 allocate(u0(0:n1 -1,0:n1 -1,0:n3loc -1 ,1:3))
166 allocate(xx(0:n1 -1),xx3loc (0:n3loc -1))
167

168 do i1=0,n1 -1
169 do i2=0,n1 -1
170 do i3=0,n3loc -1
171 do j=1,3
172 u0(i1,i2,i3,j)=(0.0d0 ,0.0d0)
173 u0real(i1,i2,i3 ,j)=0.0d0
174 end do
175 end do
176 end do
177 end do
178

179 !..... space variables
180 do ii=0,n1 -1
181 xx(ii)=ii*2.d0*pi/n1
182 end do
183 do ii=0,n3loc -1
184 xx3loc(ii)=(nid*n3loc+ii)*2.d0*pi/n3
185 end do
186

187 call MPI_BARRIER(MPI_Comm_World ,ierror)
188 !..... initial condition: Taylor -Green Vortex
189 do i1=0,n1 -1
190 do i2=0,n1 -1
191 do i3=0,n3loc -1
192 u0real(i1,i2,i3 ,1)=sin(xx(i1))*cos(xx(i2))*cos(xx3loc(i3)) ! ...

u0
193 u0real(i1,i2,i3 ,2)=-cos(xx(i1))*sin(xx(i2))*cos(xx3loc(i3)) ! ...

v0
194 u0real(i1,i2,i3 ,3) =0.0d0 ! w0
195 end do
196 end do
197 end do
198
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199 deallocate(xx,xx3loc)
200

201 if(nid.eq.0) then
202 write (*,*)'Saving Initial Velocity Field'
203 end if
204

205 !........ saving initial field
206 allocate(nomefile (1:3))
207 nomefile (1)='u_0.bin'
208 nomefile (2)='v_0.bin'
209 nomefile (3)='w_0.bin'
210 call MPI_Barrier(MPI_COMM_WORLD ,ierror)
211 !..... Data storage ...........
212 do jcomp =1,3
213 call saveres(u0real ,jcomp ,nomefile(jcomp))
214 end do
215

216

217 if(nid.eq.0) then
218 write (*,*)'Flow initialised and saved in:'
219 do ii=1,3
220 write (*,*) nomefile(ii)
221 end do
222 WRITE (*,*)'...

********************************************************** '
223 WRITE (*,*)'...

********************************************************** '
224 WRITE (*,*)'Starting Solver ...'
225 WRITE (*,*)
226 WRITE (*,*)'****************** TIME INTEGRATION ...

********************** '
227 end if
228

229 call MPI_BARRIER(MPI_Comm_World ,ierror)
230 call transform_notr(u0,u0real)
231

232 !.... March in time:Fourth Order Runge -Kutta scheme
233 ncicli=ntot/nsalva
234

235 allocate(HH1 (0:n1 -1,0:n1 -1,0:n3loc -1 ,1:3),HH2(0:n1 -1,0:n1 -1,0:...
n3loc -1 ,1:3))

236 allocate(HH3 (0:n1 -1,0:n1 -1,0:n3loc -1 ,1:3),HH4(0:n1 -1,0:n1 -1,0:...
n3loc -1 ,1:3))

237 allocate(u1(0:n1 -1,0:n1 -1,0:n3loc -1 ,1:3))
238 call MPI_BARRIER(MPI_Comm_World ,ierror)
239 call projection(u0 ,kk1 ,kk2 ,kk3loc ,kk_quadnz)
240

241 if(model.eq.1) then !Navier -Stokes equations
242 !..... External loop = save results
243 do iext=1,ncicli
244 !..... Inner loop= time integration with Runge -Kutta 4th
245 do int=0,nsalva -1
246

247 CALL SPACE_OP(HH1 ,u0,kk1 ,kk2 ,kk3loc ,kk_quad ,Re,deal)
248 u1=u0+0.5d0*deltat*HH1
249 call projection(u1 ,kk1 ,kk2 ,kk3loc ,kk_quadnz)
250

251 CALL SPACE_OP(HH2 ,u1,kk1 ,kk2 ,kk3loc ,kk_quad ,Re,deal)
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252 u1=u0+0.5d0*deltat*HH2
253 call projection(u1 ,kk1 ,kk2 ,kk3loc ,kk_quadnz)
254

255 CALL SPACE_OP(HH3 ,u1,kk1 ,kk2 ,kk3loc ,kk_quad ,Re,deal)
256 u1=u0+deltat*HH3
257 call projection(u1 ,kk1 ,kk2 ,kk3loc ,kk_quadnz)
258

259 CALL SPACE_OP(HH4 ,u1,kk1 ,kk2 ,kk3loc ,kk_quad ,Re,deal)
260 u0=u0+deltat *(HH1 /(6.0d0)+HH2 /(3.0d0)+HH3 /(3.0 d0)+HH4 /(6.0d0...

))
261 call projection(u0 ,kk1 ,kk2 ,kk3loc ,kk_quadnz)
262

263 write (*,*)'End of cicle ',int+1,'/',iext
264 end do
265 !..... End of inner loop (RK4)
266

267 call MPI_BARRIER(MPI_Comm_World ,ierror)
268

269 !..... Data storage ...........
270 call transforminv_notr(u0real ,u0)
271

272 write(snapshot ,'(i8)') (iext)
273 nomefile (1)='u_'//trim(adjustl(snapshot))//'.bin'
274 nomefile (2)='v_'//trim(adjustl(snapshot))//'.bin'
275 nomefile (3)='w_'//trim(adjustl(snapshot))//'.bin'
276

277 write (*,*)'Saving results '
278 do jcomp =1,3
279 call saveres(u0real ,jcomp ,nomefile(jcomp))
280 end do
281

282 call MPI_Barrier(MPI_COMM_WORLD ,ierror)
283 end do
284 !..... End of external loop
285

286 elseif(model.eq.2) then !Ladyzhenskaya equations with r=2
287 !..... External loop = save results
288 do iext=1,ncicli
289 !..... Inner loop= time integration with Runge -Kutta 4th
290 do int=0,nsalva -1
291

292 CALL SPACE_OP_LAD(HH1 ,u0,kk1 ,kk2 ,kk3loc ,kk_quad ,Re,La,deal)
293 u1=u0+0.5d0*deltat*HH1
294 call projection(u1 ,kk1 ,kk2 ,kk3loc ,kk_quadnz)
295

296 CALL SPACE_OP_LAD(HH2 ,u1,kk1 ,kk2 ,kk3loc ,kk_quad ,Re,La,deal)
297 u1=u0+0.5d0*deltat*HH2
298 call projection(u1 ,kk1 ,kk2 ,kk3loc ,kk_quadnz)
299

300 CALL SPACE_OP_LAD(HH3 ,u1,kk1 ,kk2 ,kk3loc ,kk_quad ,Re,La,deal)
301 u1=u0+deltat*HH3
302 call projection(u1 ,kk1 ,kk2 ,kk3loc ,kk_quadnz)
303

304 CALL SPACE_OP_LAD(HH4 ,u1,kk1 ,kk2 ,kk3loc ,kk_quad ,Re,La,deal)
305 u0=u0+deltat *(HH1 /(6.0d0)+HH2 /(3.0d0)+HH3 /(3.0 d0)+HH4 /(6.0d0...

))
306 call projection(u0 ,kk1 ,kk2 ,kk3loc ,kk_quadnz)
307
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308 write (*,*)'End of cicle ',int+1,'/',iext
309 end do
310 !..... End of inner loop (RK4)
311 call MPI_BARRIER(MPI_Comm_World ,ierror)
312

313 !..... Data storage ...........
314 call transforminv_notr(u0real ,u0)
315

316 write(snapshot ,'(i8)') (iext)
317 nomefile (1)='u_'//trim(adjustl(snapshot))//'.bin'
318 nomefile (2)='v_'//trim(adjustl(snapshot))//'.bin'
319 nomefile (3)='w_'//trim(adjustl(snapshot))//'.bin'
320

321 write (*,*)'Saving results '
322 do jcomp =1,3
323 call saveres(u0real ,jcomp ,nomefile(jcomp))
324 end do
325

326 call MPI_Barrier(MPI_COMM_WORLD ,ierror)
327 end do
328 !..... End of external loop
329

330 end if
331

332 deallocate(deal1 ,deal3loc)
333 deallocate(deal)
334 deallocate(HH1 ,HH2 ,HH3 ,HH4)
335 deallocate(u1)
336 deallocate(u0real ,u0)
337 deallocate(nomefile)
338 deallocate(kk1 ,kk2 ,kk3loc ,kk_quad)
339 deallocate(kk_quadnz)
340 deallocate(inds ,inds3)
341

342 !..... Closing
343 print *,'Stop!',nid
344 call MPI_Finalize(ierror)
345 stop
346

347 end program dns_hit_mpi

The main code reads line by line the following data from an input file called in_dns.txt :

• the number of points n of the spatial discretization in x1 and x2 directions;

• the number of points n3 of the spatial discretization in x3;

• the time step ∆t for the time advancement scheme;

• the total number of steps nsteps. Thus ∆t · nsteps gives the simulation time;

• the number of steps nsave after which saving the results;

• an integer which selects the fluid dynamic model: 1 for the Navier-Stokes equations
and 2 for the Ladyzhenskaya model with r = 2;

• the Reynolds number Re;
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(a) Two-Dimensional FFT is executed in first
and second dimension (x1 and x2)

(b) Data are transposed between the second
and third dimension

(c) One-Dimensional FFT is executed along the
second dimension (x3)

(d) Data are transposed back

Figure 6.4: Parallel three-dimensional FFT algorithm - subroutine transform_notr

• the Ladyzhenskaya number La2 defined by (5.11).

Then it calculates the wavenumbers, initializes and saves the flow with the Taylor-Green
field and transforms the fields to the wavenumbers’ space (subroutine transform_notr).
The Fourier’s coefficients of the velocity field are computed as discrete Fourier transform
(DFT) using FFTW (version 3.3.9) libraries . The Fourier transform of data along x3,
which are spread among the different processes, is realized by transposing the second
and the third direction of the three-dimensional array containing velocities, after DFTs
in the first and the second direction have been calculated (Figure 6.4). In this point
the main code is split by an if-elseif statement into two possible time advancements: one
solves the Navier-Stokes equations and the other solves the Ladyzhenskaya equations with
r = 2. The selection is realized using the sixth line of the input file. Both the advance-
ments employ the fourth-order Runge-Kutta scheme which requires four evaluations of the
space operator. The space operator is evaluated through the subroutine space_op for the
Navier-Stokes equations end the subroutine space_op_lad for the Ladyzhenskaya equa-
tions. These subroutines implement the Fourier-Galerkin method previously presented.
In particular space_op_lad proceeds as follows

• it calculates pseudo-spectrally the symmetric convective stress tensor uiuj using the
subroutine ConvectiveStress ;
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• calculates pseudo-spectrally the symmetric non-linear Ladyzhenskaya stress tensor

τLad
ij

La2

=
1

La2

·

[
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2(
∂ui
∂xj

+
∂uj
∂xi

)]
(6.100)

using the subroutine LadyzhenskayaStress ;

• adds τLad
ij /La2 to −uiuj;

• de-aliases the resulting array by setting to zero the aliased modes (n/3 central
modes), implementing the 2/3-rule;

• calculates the divergence of the resulting four-dimensional array which contains the
convective and the non-linear viscous stresses de-aliased;

• adds the linear viscous terms.

After an intermediate velocity field is obtained in the Runge-Kutta substep, it is projected
onto a solenoidal field solving the Poisson equation (6.89) for the pressure correction
(subroutine projection), as previously explained. The subroutine space_op follows the
same procedure, obviously avoiding to calculate the Ladyzhenskaya viscous stress tensor.

The pseudospectral evaluations of non-linear terms in subroutines ConvectiveStress
and LadyzhenskayaStress represent the heart of the program; they are shown in Ap-
pendix D. The main idea in pseudo-spectral methods is to evaluate the derivatives in
the transform space, because is much easier, and the products in the real space. For
this parallel program, however, transforming variables back and forth would implicate
several data transpositions (MPI communications among the processes), like in the sub-
routine transform_notr ; one way to avoid too many communications in pseudo-spectral
evaluations is to transform variables back to the real space, do not transpose back the
third and the second direction, calculate the products with data still transposed, and
then transpose back direction two and three while results are transformed to Fourier’s
space. These antitransform and transform are realized through the subroutines trans-
form_tr and transforminv_tr. The outline of the pseudospectral evaluation of u1u2 is
represented in Figure 6.5. Transpositions are realized using the subroutines trasponi_dir
and trasponi_inv which belong to the program DNS-TurIsMi (version 1.4).
Finally, every nsave time steps the components of the resulting velocities are saved in
binary files.
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(a) Data are originally given in Fourier’s space: û1 and û2

(b) û1 and û2 are transformed to real space using transforminv_tr : 2D antitransform is executed in
dimensions 1 and 2, data are transposed between directions 2 and 3, and 1D antitransform is executed
in dimension 2. Data are not transposed back.

(c) Product u1u2 is calculated (d) u1u2 is transformed to Fourier’s space using
transform_tr : transform is executed in dimen-
sions 1 and 2, data are transposed back between
directions 2 and 3, and 1D transform is executed
in dimension 2.

Figure 6.5: Pseudospectral evaluation of u1u2



Chapter 7

Simulations and results

The program dns_hit_mpi has been run on CASPER High Performance Computer, one of
the three InfiniBand clusters at the Politecnico di Torino whose characteristics are shown
in Table 7.1; computational resources were indeed provided by HPC@POLITO, a project
of Academic Computing within the Department of Control and Computer Engineering at
the Politecnico di Torino.

Architecture Linux Infiniband-DDR MIMD Distributed
Shared-Memory Cluster

Node Interconnect Infiniband DDR 20 Gb/s
Service Network Gigabit Ethernet 1 Gb/s
CPU Model 2x AMD Opteron 6276/6376 (Bulldozer)

2.3 GHz (turbo 3.0 GHz) 16 cores
Sustained performance 4.360 TFLOPS
Peak performance 5.658 TFLOPS
Green500 Index 422.31 MFLOPS/W
Power Consumption 3.6 kW
Computing Cores 512
Number of Nodes 16
Total RAM Memory 2 TB DDR3 REGISTERED ECC
OS Centos 7.6 - OpenHPC 1.3.8.1
Scheduler SLURM 18.08.8

Table 7.1: CASPER cluster characteristics

Four simulations have been realized on a grid formed by 128 points in each direction:
the first (Sim1 ) solves Navier-Stokes equations, whereas the second (Sim2 ), the third
(Sim3 ) and the fourth (Sim4 ) solve Ladyzhenskaya equations. Simulations’ parameters
in non-dimensional form are shown in Table 7.2. Assuming the largest scale to be on the
order of L = π and the Reynolds number to be Re = 450, the dissipative scale would be
approximatively

η ≈ L

Re3/4
= 0.03215 (7.1)

Thus, using the kmaxη ≥ 1.5 criterion, the minimum number of modes which allows to
catch the dissipative scales would be N = 1.5/η ' 47 which corresponds to 94 points in
each direction. Using 1283 points, simulations would solve the dissipative scales even if
N/3 modes are used for de-aliasing.
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Sim1 Sim2 Sim3 Sim4
n 128 128 128 128
n3 128 128 128 128

Model Navier-Stokes Ladyzhenskaya Ladyzhenskaya Ladyzhenskaya
Re 450 450 450 450
La2 - 12000 8000 6000
∆t̃ 10−3 10−3 10−3 10−3

nsteps 20000 20000 20000 20000
Time 20 20 20 20

N. of processors 16 16 16 16
Run Time (h:m:s) 14:56:09 48:01:00 41:07:05 40:59:43

Table 7.2: Simulations’ parameters

Figure 7.1: Isosurfaces of x-component of u◦ (TGV) - u◦ = {±0.25,±0.5,±0.9}

The Taylor-Green Vortex (5.17) is used as initial condition for all the simulations.
The isosurfaces of the x and y components of the initial velocity field are represented in
Figures 7.1 and 7.2; the isosurfaces of the resulting z-component of vorticity ωz are shown
in Figure 7.3.

7.1 Results
Isosurfaces for the x and y components of the velocity and the z-component of the vortic-
ity fields are shown for the simulations from Figure 7.4 to Figure 7.15. From these Figures
it can be noted qualitatively that, similarly to Navier-Stokes equations, Ladyzhenskaya
equations include vortices’ breakup into smaller structures: initial energy, which is con-
tained by the largest structures, is transferred to smaller ones as time passes. In fact
Figure 7.16, which shows energy spectra, reveals that even for Ladyzhenskaya equations
the cascade process takes place: for t̃ ' 9 spectra are approximatively continuous and
for k ≤ 10 there is a very small inertial range, for which E(k, t) is close to the expected
Kolmogorov k−5/3 law. As the Reynolds and the Ladyzhenskaya numbers increase this
range should become wider.
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Figure 7.2: Isosurfaces of y-component of u◦ (TGV) - v◦ = {±0.25,±0.5,±0.9}

Figure 7.3: Isosurfaces of z-component of vorticity ω◦ (TGV) - ω◦z =
{±0.25,±0.5,±1.0,±1.9}
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(a) u for t̃ = 3 (b) v for t̃ = 3

(c) u for t̃ = 6 (d) v for t̃ = 6

(e) u for t̃ = 9 (f) v for t̃ = 9

Figure 7.4: Sim1 - Isosurfaces of x and y components of u: v = {±0.1,±0.25,±0.5} and
v = {±0.1,±0.25,±0.5} for t̃ = {3, 6, 9}
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(a) u for t̃ = 12 (b) v for t̃ = 12

(c) u for t̃ = 15 (d) v for t̃ = 15

(e) u for t̃ = 18 (f) v for t̃ = 18

Figure 7.5: Sim1 - Isosurfaces of x and y components of u: v = {±0.1,±0.25,±0.5} and
v = {±0.1,±0.25,±0.5} for t̃ = {12, 15, 18}
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(a) ωz for t̃ = 3 (b) ωz for t̃ = 6

(c) ωz for t̃ = 9 (d) ωz for t̃ = 12

(e) ωz for t̃ = 15 (f) ωz for t̃ = 18

Figure 7.6: Sim1 - Isosurfaces of z-component of ω◦: ωz = {±0.1,±0.25,±0.5 ± 1} for
t̃ = {3, 6, 9, 12, 15, 18}



CHAPTER 7. SIMULATIONS AND RESULTS 92

(a) u for t̃ = 3 (b) v for t̃ = 3

(c) u for t̃ = 6 (d) v for t̃ = 6

(e) u for t̃ = 9 (f) v for t̃ = 9

Figure 7.7: Sim2 - Isosurfaces of x and y components of u: v = {±0.1,±0.25,±0.5} and
v = {±0.1,±0.25,±0.5} for t̃ = {3, 6, 9}
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(a) u for t̃ = 12 (b) v for t̃ = 12

(c) u for t̃ = 15 (d) v for t̃ = 15

(e) u for t̃ = 18 (f) v for t̃ = 18

Figure 7.8: Sim2 - Isosurfaces of x and y components of u: v = {±0.1,±0.25,±0.5} and
v = {±0.1,±0.25,±0.5} for t̃ = {12, 15, 18}
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(a) ωz for t̃ = 3 (b) ωz for t̃ = 6

(c) ωz for t̃ = 9 (d) ωz for t̃ = 12

(e) ωz for t̃ = 15 (f) ωz for t̃ = 18

Figure 7.9: Sim2 - Isosurfaces of z-component of ω◦: ωz = {±0.1,±0.25,±0.5 ± 1} for
t̃ = {3, 6, 9, 12, 15, 18}
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(a) u for t̃ = 3 (b) v for t̃ = 3

(c) u for t̃ = 6 (d) v for t̃ = 6

(e) u for t̃ = 9 (f) v for t̃ = 9

Figure 7.10: Sim3 - Isosurfaces of x and y components of u: v = {±0.1,±0.25,±0.5} and
v = {±0.1,±0.25,±0.5} for t̃ = {3, 6, 9}
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(a) u for t̃ = 12 (b) v for t̃ = 12

(c) u for t̃ = 15 (d) v for t̃ = 15

(e) u for t̃ = 18 (f) v for t̃ = 18

Figure 7.11: Sim3 - Isosurfaces of x and y components of u: v = {±0.1,±0.25,±0.5} and
v = {±0.1,±0.25,±0.5} for t̃ = {12, 15, 18}
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(a) ωz for t̃ = 3 (b) ωz for t̃ = 6

(c) ωz for t̃ = 9 (d) ωz for t̃ = 12

(e) ωz for t̃ = 15 (f) ωz for t̃ = 18

Figure 7.12: Sim3 - Isosurfaces of z-component of ω◦: ωz = {±0.1,±0.25,±0.5 ± 1} for
t̃ = {3, 6, 9, 12, 15, 18}
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(a) u for t̃ = 3 (b) v for t̃ = 3

(c) u for t̃ = 6 (d) v for t̃ = 6

(e) u for t̃ = 9 (f) v for t̃ = 9

Figure 7.13: Sim4 - Isosurfaces of x and y components of u: v = {±0.1,±0.25,±0.5} and
v = {±0.1,±0.25,±0.5} for t̃ = {3, 6, 9}
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(a) u for t̃ = 12 (b) v for t̃ = 12

(c) u for t̃ = 15 (d) v for t̃ = 15

(e) u for t̃ = 18 (f) v for t̃ = 18

Figure 7.14: Sim4 - Isosurfaces of x and y components of u: v = {±0.1,±0.25,±0.5} and
v = {±0.1,±0.25,±0.5} for t̃ = {12, 15, 18}
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(a) ωz for t̃ = 3 (b) ωz for t̃ = 6

(c) ωz for t̃ = 9 (d) ωz for t̃ = 12

(e) ωz for t̃ = 15 (f) ωz for t̃ = 18

Figure 7.15: Sim4 - Isosurfaces of z-component of ω◦: ωz = {±0.1,±0.25,±0.5 ± 1} for
t̃ = {3, 6, 9, 12, 15, 18}
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(a) Sim1 : Re = 450 (b) Sim2 : Re = 450 and La2 = 12000

(c) Sim3 : Re = 450 and La2 = 8000 (d) Sim4 : Re = 450 and La2 = 6000

Figure 7.16: Energy Spectra for t̃ = {3, 6, 9, 12, 15, 18, 20}.

As expected, even if structures are similar, the solutions of Ladyzhenskaya equations
appear more dumped; for t̃ = 9, for example, velocity isosurfaces corresponding to the
values u = ±0.5 and v = ±0.5 seem smaller as Ladyzhenskaya number decreases, i. e.
strengthening the nonlinear viscous term. No external force is applied, then kinetic energy
correctly decays (Figure 7.18). Moreover, even if for all the times energy is smaller as
Ladyzhenskaya number decreases, because of enhanced diffusivity, the rates at which en-
ergy decays in Figure 7.19 have particular trends: energy decays faster for lower La2 until
t̃ ' 7, whereas for later times this trend is reversed and Navier-Stokes equations show
higher dissipation. The dissipation depends on the components of the velocity gradient
which decay faster for lower Ladyzhenskaya number because increased diffusivity tries to
smooth out inhomogeneities in the velocity field, thus for certain times the velocity gra-
dient is higher for higher Ladyzhenkaya number and the resulting dissipation is greater.
For t̃ ' 20, however, all the solutions give approximatively the same value of energy.

Figures 7.20 and 7.21 show the contribution of the Newtonian and the Ladyzhenskaya
non-linear viscous terms to the total dissipation. These two contributions are calculated
in physical space respectively as

ε = ν
3∑

i,j=1

〈(
∂ui
∂xj

)2
〉

(7.2)



CHAPTER 7. SIMULATIONS AND RESULTS 102

Figure 7.17: Spectra comparison for t̃ = 10.

and

εlad = ν1

3∑
i,j=1

〈
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

〉
(7.3)

Newtonian dissipation is higher for higher Ladyzhenskaya number because, as previously
explained, Ladyzhenskaya’s terms affects the velocity gradient reducing it. Ladyzhenskaya
viscous dissipation instead is higher for lower Ladyzhenskaya number for all the times.
Total dissipation (Figure 7.22) and rate of decay of energy (Figure 7.19) are identical; this
can be considered as proof that incompressibility condition and homogeneity are satisfied
in all the simulations.
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Figure 7.18: Energy Decay E(t)

Figure 7.19: Rate at which energy decays: −dE/dt
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Figure 7.20: Viscous Newtonian Dissipation

Figure 7.21: Viscous Non-Newtonian Dissipation
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Figure 7.22: Total Dissipation



Conclusions

Incompressible Navier-Stokes and Ladyzhenskaya equations have been obtained and dis-
cussed. For Ladyzhenskaya models weak solutions to the initial value problem are globally
unique in time for any Reynolds and r ≥ 1/5; the analogous result for the Navier-Stokes
equations has not been proved and is not believed to be true. This result, along with
the less restrictive hypothesis on the velocity gradient, represents a motivation to inves-
tigate Ladyzhenskaya models. From a numerical point of view, codes which compute
approximate solutions of the Navier-Stokes equations may be easily modified to handle
the Ladyzhenskaya equations as well. Thus, the Fourier-Galerkin method coupled with
the fourth-order Runge-Kutta time advancement has been implemented in a parallel For-
tran program in order to simulate the free-decay of the Taylor-Green Vortex according
to Navier-Stokes and Ladyzhenskaya equations assuming Turbulence to be homogeneous
and isotropic. The additional non-linearity contained in Ladyzhenskaya equations does
not generate any numerical instability for the cases which have been simulated. Solutions
have been correctly obtained and commented. Similarly to Navier-Stokes’, Ladyzhenskaya
equations show turbulent behavior consisting in continuous spectra, vortices’ breakup and
energy cascade towards smaller scales: a inertial subrange is present in all the solutions.
Because of the low Reynolds numbers this subrange is very small and most of the en-
ergy spectra are not actually close to Kolmogorov’s 5/3 law. Moreover, Ladyzhenskaya’s
solutions are clearly more dumped because of the additional diffusive term and kinetic
energy is smaller strengthening this additional term. Newtonian and non-Newtonian con-
tributions to the total energy dissipation have been calculated showing the effect of the
non-linear viscous term in the early stages of vortex decay.
In order to catch characteristic features of fully developed turbulence further studies
should be conducted on Ladyzhenskaya equations for higher Reynolds number (for exam-
ple Re ≥ 3000).
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Appendix A

Leray Projection

The Leray Projection is a linear operator P(·) that can be seen as the projection onto
the divergence-free vector fields. The Leray (or Helmholtz-Leray) operator can be defined
recalling the Helmholtz-Leary decomposition.

Helmholtz-Leary decomposition. A given vector field u can be decomposed as

u = ∇q + v (A.1)

with ∇•v = 0. This decomposition of u is unique, up to an additive constant for q. Then
the Leary operator applied to u can be defined as

P(u) = v (A.2)

Applying the Leray projection operator to the incompressible Navier-Stokes equations

ρ
∂u

∂t
+ ρ (u • ∇)u = ρf −∇p+ µ∇2u

∇ • u = 0

and using the properties of the operator leads to

ρ
∂u

∂t
− µP(∇2u) + ρP [(u • ∇)u] = P (f) (A.3)

since, because of the divergence-free condition on u,

P(u) = u

P
(
∂u

∂t

)
=
∂u

∂t

P (∇p) = 0

The equation can be rewritten also as follows:

ρ
∂u

∂t
+ µS(u) + ρB (u,u) = P (f) (A.4)

where
S(u) = −P

(
∇2u

)
(A.5)
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is the Stokes operator and B(·, ·) is the bilinear operator defined by

B(u,v) = P [(u • ∇)v] (A.6)

For boundary problems on unbounded domains in which space-periodic boundary condi-
tion are imposed, the Stokes operator simply reduces to the Laplacian:

S(u) = −P
(
∇2u

)
= −∇2u

Moreover, f is often assumed to be divergence-free so that P (f) = f . Introducing these two
assumptions the Navier-Stokes equation reduces to the heat equation with some additional
nonlinear terms and a forcing term

ρ
∂u

∂t
= µ∇2u− ρB (u,u) + f (A.7)



Appendix B

Reynolds-averaged Ladyzhenskaya
equations

The Reynolds-averaged Ladyzhenskaya equations (shortened, RAL) can be derived from
the Ladyzhenskaya equations by introducing Reynolds’ decomposition of the velocity and
pressure fields and averaging the resulting equations:

ρ
∂ 〈ui〉
∂t

+ ρ 〈uj〉
∂ 〈ui〉
∂xj

=
∂ 〈p〉
∂xi

+ µ0
∂2 〈ui〉
∂x2

j

− ρ
∂
〈
u′iu
′
j

〉
∂xj

+ µ1
∂

∂xj

〈
2d̂2Dij

〉
∂ 〈uj〉
∂xj

= 0

(B.1)

The term which makes these equations different from RANS is

µ1
∂

∂xj

〈
2d̂2Dij

〉
= µ1

∂

∂xj

〈
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2(
∂ui
∂xj

+
∂uj
∂xi

)〉

which can be decomposed as follows:

µ1
∂

∂xj

〈
2d̂2Dij

〉
= µ1

∂

∂xj

〈
d̂2

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
+ d̂2

(
∂u′i
∂xj

+
∂u′j
∂xi

)〉
=

= µ1
∂

∂xj

〈
d̂2

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)〉
︸ ︷︷ ︸

Sij

+µ1
∂

∂xj

〈
d̂2

(
∂u′i
∂xj

+
∂u′j
∂xi

)〉
︸ ︷︷ ︸

Tij

(B.2)

In this equation the term Sij can be rewritten as follows

Sij =

〈
d̂2

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)〉
=
〈
d̂2
〉(∂ 〈ui〉

∂xj
+
∂ 〈uj〉
∂xi

)
since the average is basically an integration in time and (∂ 〈ui〉/∂xj + ∂ 〈uj〉/∂xi) does
not depend on time. The average of the quantity d̂2 is

〈
d̂2
〉

=

〈
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2
〉

=
3∑

k,l=1

〈(
∂uk
∂xl

)2
〉

+

〈(
∂ul
∂xk

)2
〉

+ 2

〈
∂uk
∂xl

∂ul
∂xk

〉
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and introducing the Reynolds decomposition it becomes

〈
d̂2
〉

=
3∑

k,l=1

〈(
∂ 〈uk〉
∂xl

)2

+

(
∂u′k
∂xl

)2

+ 2

(
∂ 〈uk〉
∂xl

∂u′k
∂xl

)〉
+

+

〈(
∂ 〈ul〉
∂xk

)2

+

(
∂u′l
∂xk

)2

+ 2

(
∂ 〈ul〉
∂xk

∂u′l
∂xk

)〉
+

+ 2

〈
∂ 〈uk〉
∂xl

∂ 〈ul〉
∂xk

+
∂ 〈uk〉
∂xl

∂u′l
∂xk

+
∂u′k
∂xl

∂ 〈ul〉
∂xk

+
∂u′k
∂xl

∂u′l
∂xk

〉
Since the quantities ∂ 〈ui〉/∂xj do not depend on time and the time averages of the
fluctuating fields are zero (〈u′i〉 = 0),

〈
d̂2
〉
reduces to

〈
d̂2
〉

=
3∑

k,l=1

(
∂ 〈uk〉
∂xl

)2

+

〈(
∂u′k
∂xl

)2
〉

+

(
∂ 〈ul〉
∂xk

)2

+

〈(
∂u′l
∂xk

)2
〉

+

+ 2

(
∂ 〈uk〉
∂xl

∂ 〈ul〉
∂xk

)
+ 2

〈
∂u′k
∂xl

∂u′l
∂xk

〉
〈
d̂2
〉

=
3∑

k,l=1

[(
∂ 〈uk〉
∂xl

+
∂ 〈ul〉
∂xk

)2

+

〈(
∂u′k
∂xl

+
∂u′l
∂xk

)2
〉]

(B.3)

In conclusion, the term Sij can be rewritten as follows

Sij =
3∑

k,l=1

(
∂ 〈uk〉
∂xl

+
∂ 〈ul〉
∂xk

)2(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
+

3∑
k,l=1

〈(
∂u′k
∂xl

+
∂u′l
∂xk

)2
〉(

∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
(B.4)

The term denoted by Tij in equation (B.2) is instead

Tij =

〈
d̂2

(
∂u′i
∂xj

+
∂u′j
∂xi

)〉
=

〈
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2(
∂u′i
∂xj

+
∂u′j
∂xi

)〉

Introducing Reynolds’ decomposition and denoting
(
∂u′i/∂xj + ∂u′j/∂xi

)
with d′ij, it be-

comes

Tij =

〈[
3∑

k,l=1

(
∂uk
∂xl

+
∂ul
∂xk

)2
]
d′ij

〉
=

〈[
3∑

k,l=1

(
∂ 〈uk〉
∂xl

)2

+

(
∂u′k
∂xl

)2

+ 2

(
∂ 〈uk〉
∂xl

∂u′k
∂xl

)
+

+

(
∂ 〈ul〉
∂xk

)2

+

(
∂u′l
∂xk

)2

+ 2

(
∂ 〈ul〉
∂xk

∂u′l
∂xk

)]
d′ij

〉
Solving for the products and commuting the average and the sum:

Tij =
3∑

k,l=1

〈(
∂ 〈uk〉
∂xl

)2

d′ij

〉
+

3∑
k,l=1

〈(
∂u′k
∂xl

)2

d′ij

〉
+ 2

3∑
k,l=1

〈(
∂ 〈uk〉
∂xl

∂u′k
∂xl

)
d′ij

〉
+

+
3∑

k,l=1

〈(
∂ 〈ul〉
∂xk

)2

d′ij

〉
+

3∑
k,l=1

〈(
∂u′l
∂xk

)2

d′ij

〉
+ 2

3∑
k,l=1

〈(
∂ 〈ul〉
∂xk

∂u′l
∂xk

)
d′ij

〉
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Noting that (∂ 〈uk〉/∂xl)2 and (∂ 〈ul〉/∂xk)2 do not depend on the time and that

〈
d′ij
〉

=

〈(
∂u′i
∂xj

+
∂u′j
∂xi

)〉
=

(
∂ 〈u′i〉
∂xj

+
∂
〈
u′j
〉

∂xi

)
= 0

the first and the fourth term in the previous equation drop out leading to

Tij =
3∑

k,l=1

〈(
∂u′k
∂xl

)2

d′ij

〉
+ 2

3∑
k,l=1

〈(
∂ 〈uk〉
∂xl

∂u′k
∂xl

)
d′ij

〉
+

3∑
k,l=1

〈(
∂u′l
∂xk

)2

d′ij

〉
+

+ 2
3∑

k,l=1

〈(
∂ 〈ul〉
∂xk

∂u′l
∂xk

)
d′ij

〉

Tij =
3∑

k,l=1

〈[(
∂u′k
∂xl

)2

+

(
∂u′l
∂xk

)2
]
d′ij

〉
+ 2

3∑
k,l=1

[
∂ 〈uk〉
∂xl

〈
∂u′k
∂xl

d′ij

〉
+
∂ 〈ul〉
∂xk

〈
∂u′l
∂xk

d′ij

〉]
(B.5)

Using the partially simplified expressions of Sij (B.4) and Tij (B.5), the equation (B.1)
can then be rewritten as follows:

ρ
∂ 〈ui〉
∂t

+ ρ 〈uj〉
∂ 〈ui〉
∂xj

=
∂ 〈p〉
∂xi

+ µ0
∂2 〈ui〉
∂x2

j

− ρ
∂
〈
u′iu
′
j

〉
∂xj

+

+ µ1
∂

∂xj

[
3∑

k,l=1

(
∂ 〈uk〉
∂xl

+
∂ 〈ul〉
∂xk

)2(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)]
+ µ1

∂Zij
∂xj

∂ 〈uj〉
∂xj

= 0

(B.6)

where

Zij =
3∑

k,l=1

〈(
∂u′k
∂xl

+
∂u′l
∂xk

)2
〉(

∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
+

3∑
k,l=1

〈[(
∂u′k
∂xl

)2

+

(
∂u′l
∂xk

)2
]
d′ij

〉
+

+ 2
3∑

k,l=1

[
∂ 〈uk〉
∂xl

〈
∂u′k
∂xl

d′ij

〉
+
∂ 〈ul〉
∂xk

〈
∂u′l
∂xk

d′ij

〉]
(B.7)

and

d′ij =
∂u′i
∂xj

+
∂u′j
∂xi

Further simplifications are difficult to obtain; it is clear that the Reynolds-averaged La-
dyzhenskaya equations are formally different from the RANS for which one can isolate a
term, namely Rij = −ρ

〈
u′iu
′
j

〉
, depending on the fluctuating field only, and maintain the

original structure for the mean field. In fact, even if in the RAL (B.6) the original struc-
ture of the Ladyzhenskaya equations could be recognized for the mean flow, the remaining
term ∂Zij/∂xj depends on both the mean field and the fluctuating field.



Appendix C

Spectral approximation of smooth
nonperiodic functions

Spectral approximation of an infinitely smooth nonperiodic function can be regarded as a
finite expansion of eigenfunctions of a suitable Sturm-Liouville problem, i. e. a boundary
eigenvalue problem for the Sturm-Liouville equation

− d

dx

[
p(x)

dy

dx

]
+ q(x)y = λr(x)y x ∈ (a, b), λ ∈ C (C.1)

The Sturm-Liouville equation is a real second-order linear ordinary differential equation
for which the coefficients p(x), q(x) and r(x) are three given, real-valued functions such
that:

• p(x) is continuously differentiable, strictly positive in (a, b) and continuous at x = a
and x = b;

• q(x) is continuous, non-negative and bounded in (a, b);

• r(x) called the weight or density function is continuous, non-negative and integrable
over (a, b).

The problem includes also boundary conditions for y in x = a and x = b. Finding the λ
for which there exists a non-trivial solution is part of the given Sturm-Liouville problem
(eigenvalue problem). The corresponding non-trivial solutions are the eigenfunctions as-
sociated to each λ. If the function p(x) vanishes at the boundaries, the problem is said
to be singular and the resulting eigenfunctions form an expansion basis which guarantees
spectral accuracy.
If one assumes

p(x) = (1− x)α+1 (1 + x)β+1

q(x) = 0

r(x) = (1− x)α+1 (1 + x)β+1

the Sturm-Liouville problem defined on [−1, 1] has eigenfunctions which are the Jacobi
polynomials: polynomials that are orthogonal with respect to the weight (1− x)α+1 (1 + x)β+1

on the interval [−1, 1]. Legendre polynomials and Chebyshev polynomials of the second
kind are special cases of the Jacobi polynomials. For α = β = 0 one obtains Legen-
dre polynomials {Lk(x), k = 0, 1, ..., }, whereas choosing α = β = −1/2 one obtains
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Chebyshev polynomials of second kind {Tk(x), k = 0, 1, ..., } which can be defined by the
recurrence relation

T0(x) = 1

T1(x) = 2x

Tn+1(x) = 2xTn(x)− Tn−1(x)

(C.2)



Appendix D

Code Subroutines

1 subroutine space_op_lad(a,u,kk1 ,kk2 ,kk3loc ,kk_quad ,Re ,La,deal)
2 ! Ladyzhenskaya equations (r=2) space operator: F(u)
3 ! du/dt=F(u)
4 ! F(u)=div(-uu+tau_lad/La)+(1/Re)*Laplacian(u)
5

6 include 'mpif.h'
7 common nid ,noprocs ,n1 ,nloc ,n3,n3loc
8 double complex :: a(0:n1 -1,0:n1 -1,0:n3loc -1 ,1:3)
9 double complex :: u(0:n1 -1,0:n1 -1,0:n3loc -1 ,1:3)

10 double precision :: kk1 (0:n1 -1,0:n1 -1,0:n3loc -1),kk2(0:n1 -1,0:n1...
-1,0:n3loc -1)

11 double precision :: kk3loc (0:n1 -1,0:n1 -1,0:n3loc -1),kk_quad (0:n1...
-1,0:n1 -1,0:n3loc -1)

12 double precision :: Re,invRe ,La,invLa
13 double precision :: deal (0:n1 -1,0:n1 -1,0:n3loc -1)
14 double complex :: imu
15 double complex ,allocatable ,dimension (:,:,:,:)::prods ,divprods ,...

ladyz
16 double complex ,allocatable ,dimension (:,:,:)::pterm
17

18 invRe =1.0d0/Re
19 invLa =1.0d0/La
20 imu=DCMPLX (0.0d0 ,1.0d0)
21

22 ! convective stress ui*uj
23 allocate(prods (0:n1 -1,0:n1 -1,0:n3loc -1 ,1:6))
24

25 ! Ladyzhenskaya viscous stress d^2*D_{ij}=sum(D_{kl}^2)*D_{ij}
26 ! with D_{ij} rate -of -strain tensor
27 allocate(ladyz (0:n1 -1,0:n1 -1,0:n3loc -1 ,1:6))
28

29 ! divergence of -ui*uj+(1/La)*d^2*D_{ij}
30 allocate(divprods (0:n1 -1,0:n1 -1,0:n3loc -1 ,1:3))
31

32

33 call ConvectiveStress(prods ,u)
34 !prods (:,:,:,1) is uu
35 !prods (:,:,:,2) is vv
36 !prods (:,:,:,3) is ww
37 !prods (:,:,:,4) is uv
38 !prods (:,:,:,5) is uw
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39 !prods (:,:,:,6) is vw
40 call LadyzhenskayaStress(ladyz ,u,kk1 ,kk2 ,kk3loc)
41 !ladyz (:,:,:,1) is d^2*D_{11}
42 !ladyz (:,:,:,2) is d^2*D_{22}
43 !ladyz (:,:,:,3) is d^2*D_{33}
44 !ladyz (:,:,:,4) is d^2*D_{12}
45 !ladyz (:,:,:,5) is d^2*D_{13}
46 !ladyz (:,:,:,6) is d^2*D_{23}
47

48 prods=-prods+invLa*ladyz ! -ui*uj+(1/La)*d^2*D_{ij}
49

50 !dealiasing
51 do jcomp =1,6
52 do ll=0,n3loc -1
53 do jj=0,n1 -1
54 do ii=0,n1 -1
55 prods(ii ,jj,ll,jcomp)=prods(ii ,jj,ll,jcomp)*deal(ii ,jj ,ll)
56 end do
57 end do
58 end do
59 end do
60

61 call divergence(divprods ,prods ,kk1 ,kk2 ,kk3loc)
62

63 a(:,:,:,1)=divprods (:,:,:,1)-invRe*kk_quad (:,:,:)*u(:,:,:,1)
64 a(:,:,:,2)=divprods (:,:,:,2)-invRe*kk_quad (:,:,:)*u(:,:,:,2)
65 a(:,:,:,3)=divprods (:,:,:,3)-invRe*kk_quad (:,:,:)*u(:,:,:,3)
66

67

68 deallocate(prods ,ladyz ,divprods)
69

70 return
71 end subroutine

1 subroutine ConvectiveStress(prods ,u)
2 include 'mpif.h'
3 common nid ,noprocs ,n1 ,nloc ,n3,n3loc
4 double complex :: prods (0:n1 -1,0:n1 -1,0:n3loc -1 ,1:6)
5 double complex :: u(0:n1 -1,0:n1 -1,0:n3loc -1 ,1:3)
6 double precision , allocatable :: u_real (:,:,:,:)
7 double precision , allocatable :: prod_real (:,:,:)
8

9 allocate(u_real (0:n1 -1,0:n3 -1,0:nloc -1 ,1:3))
10 allocate(prod_real (0:n1 -1,0:n3 -1,0:nloc -1))
11

12 !prods (:,:,:,1) is uu
13 !prods (:,:,:,2) is vv
14 !prods (:,:,:,3) is ww
15 !prods (:,:,:,4) is uv
16 !prods (:,:,:,5) is uw
17 !prods (:,:,:,6) is vw
18

19

20 !Using transform subroutine
21 !transforminv_tr(uT,uhat) --> transposition forward (complex -...

straight to real -transposed)
22 !transform_tr(uhat ,uT) --> transposition backward (real -...
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transposed to complex -straight)
23

24 call transforminv_tr(u_real (:,:,:,1),u(:,:,:,1))
25 call transforminv_tr(u_real (:,:,:,2),u(:,:,:,2))
26 call transforminv_tr(u_real (:,:,:,3),u(:,:,:,3))
27

28 prod_real (:,:,:)=u_real (:,:,:,1)*u_real (:,:,:,1)!uu
29 call transform_tr(prods (:,:,:,1),prod_real (:,:,:))
30

31 prod_real (:,:,:)=u_real (:,:,:,2)*u_real (:,:,:,2)!vv
32 call transform_tr(prods (:,:,:,2),prod_real (:,:,:))
33

34 prod_real (:,:,:)=u_real (:,:,:,3)*u_real (:,:,:,3)!ww
35 call transform_tr(prods (:,:,:,3),prod_real (:,:,:))
36

37 prod_real (:,:,:)=u_real (:,:,:,1)*u_real (:,:,:,2)!uv
38 call transform_tr(prods (:,:,:,4),prod_real (:,:,:))
39

40 prod_real (:,:,:)=u_real (:,:,:,1)*u_real (:,:,:,3)!uw
41 call transform_tr(prods (:,:,:,5),prod_real (:,:,:))
42

43 prod_real (:,:,:)=u_real (:,:,:,2)*u_real (:,:,:,3)!vw
44 call transform_tr(prods (:,:,:,6),prod_real (:,:,:))
45

46

47

48 deallocate(u_real)
49 deallocate(prod_real)
50

51 return
52 end subroutine

1 subroutine LadyzhenskayaStress(ladyz ,u,kk1 ,kk2 ,kk3loc)
2 ! This subroutine calculates Ladyzhenskaya 's non -linear
3 ! symmetric viscous stress tensor:
4 ! tau_lad_ik=sum_{j,l=1}^3( duj/dxl+dul/dxj)^2 (dui/dxk+duk/dxi)=
5 ! =2* II_{2D}*D
6 ! where D is the rate of strain tensor and II_{2D} its
7 ! second invariant
8

9 include 'mpif.h'
10 common nid ,noprocs ,n1 ,nloc ,n3,n3loc
11 double complex :: ladyz (0:n1 -1,0:n1 -1,0:n3loc -1 ,1:6)
12 double complex :: u(0:n1 -1,0:n1 -1,0:n3loc -1 ,1:3)
13 double precision :: kk1 (0:n1 -1,0:n1 -1,0:n3loc -1),kk2(0:n1 -1,0:n1...

-1,0:n3loc -1),kk3loc (0:n1 -1,0:n1 -1,0:n3loc -1)
14 double complex ,allocatable ,dimension (:,:,:,:)::RoS
15 double complex ::imu
16 double precision ,allocatable :: d_hat_quad (:,:,:),lad_real (:,:,:)
17 double precision ,allocatable :: Ros_real (:,:,:,:)
18 imu=dcmplx (0.0d0 ,1.0d0)
19

20 allocate(RoS (0:n1 -1,0:n1 -1,0:n3loc -1 ,1:6))!Rate -of -Strain in ...
Fourier Space

21 allocate(RoS_real (0:n1 -1,0:n3 -1,0:nloc -1 ,1:6))!Rate -of Strain in...
physical Space

22 allocate(d_hat_quad (0:n1 -1,0:n3 -1,0:nloc -1))
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23 allocate(lad_real (0:n1 -1,0:n3 -1,0:nloc -1))
24

25 Ros(:,:,:,1)=imu*kk1(:,:,:)*u(:,:,:,1) !du/dx
26 Ros(:,:,:,2)=imu*kk2(:,:,:)*u(:,:,:,2) !dv/dy
27 Ros(:,:,:,3)=imu*kk3loc (:,:,:)*u(:,:,:,3) !dw/dz
28 Ros(:,:,:,4)=imu*kk2(:,:,:)*u(:,:,:,1)+imu*kk1(:,:,:)*u(:,:,:,2)...

!du/dy+dv/dx
29 Ros(:,:,:,5)=imu*kk3loc (:,:,:)*u(:,:,:,1)+imu*kk1(:,:,:)*u...

(:,:,:,3) !du/dz+dw/dx
30 Ros(:,:,:,6)=imu*kk3loc (:,:,:)*u(:,:,:,2)+imu*kk2(:,:,:)*u...

(:,:,:,3) !dv/dz+dw/dy
31

32

33 call MPI_Barrier(MPI_COMM_WORLD ,ierror)
34

35

36 do jcomp =1,6
37 call transforminv_tr(RoS_real (:,:,:,jcomp),Ros(:,:,:,jcomp))
38 end do
39

40 d_hat_quad (:,:,:) =4.0e0*( RoS_real (:,:,:,1)*RoS_real (:,:,:,1)+...
RoS_real (:,:,:,2)*RoS_real (:,:,:,2)&

41 &+ RoS_real (:,:,:,3)*RoS_real (:,:,:,3))+2.0e0*( RoS_real (:,:,:,4)*...
RoS_real (:,:,:,4)&

42 &+ RoS_real (:,:,:,5)*RoS_real (:,:,:,5)+RoS_real (:,:,:,6)*RoS_real...
(:,:,:,6))

43

44

45 lad_real (:,:,:)=2.0e0*d_hat_quad (:,:,:)*RoS_real (:,:,:,1)
46 CALL transform_tr(ladyz (:,:,:,1),lad_real)
47

48 lad_real (:,:,:)=2.0e0*d_hat_quad (:,:,:)*RoS_real (:,:,:,2)
49 CALL transform_tr(ladyz (:,:,:,2),lad_real)
50

51 lad_real (:,:,:)=2.0e0*d_hat_quad (:,:,:)*RoS_real (:,:,:,3)
52 CALL transform_tr(ladyz (:,:,:,3),lad_real)
53

54 lad_real (:,:,:)=d_hat_quad (:,:,:)*RoS_real (:,:,:,4)
55 CALL transform_tr(ladyz (:,:,:,4),lad_real)
56

57 lad_real (:,:,:)=d_hat_quad (:,:,:)*RoS_real (:,:,:,5)
58 CALL transform_tr(ladyz (:,:,:,5),lad_real)
59

60 lad_real (:,:,:)=d_hat_quad (:,:,:)*RoS_real (:,:,:,6)
61 CALL transform_tr(ladyz (:,:,:,6),lad_real)
62

63 deallocate(RoS ,RoS_real ,d_hat_quad ,lad_real)
64

65 return
66 end subroutine
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