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Abstract

Over the years, finite element software has taken an increasingly important place
in the engineering field and the aerospace sector is no exception: the verification of
structural aspects with this software is now common practice. This is the background
to the European research project Expertise, which aims to develop tools and
methodologies for the dynamic analysis of large-scale turbomachinery models, thus
pioneering the virtual testing of the entire machine. This thesis project is aimed at
demonstrating the potential of how finite element software can help in the design
and verification of bladed discs, and how to estimate the level of vibrations due to
forced response near resonance. The correct prediction of the dynamic behaviour of
a bladed disk is of uttermost importance since it affects the performance of the entire
aircraft engine, its reliability and maintenance as vibrations are the major cause for
high cycle fatigue failure. A strongly nonlinear dynamic response can be observed
during engine operation given the particular complex design of turbomachinery,
thus representing a big challenge for the virtual analysis. When verifying a tuned
bladed disc, the most used approach is to analyse only a single sector exploiting
the cyclic symmetry hypothesis, thus reducing the computational cost. During
this work modal analysis of tuned system has been carried out in the open-source
software CalculiX to determine the prestressed modes and build the Safe diagram,
a widely used tool which helps to find resonances, thus indicating to the designer
which of them should be checked. The results obtained in CalculiX have been
compared to the one in the Rolls-Royce in-house software SC03 and Ansys for
validation. Then a reduced model based on free modes and FRF matrix has been
built by extracting the mode shapes with CalculiX. The nonlinear forced response
is computed using harmonic balance method. Today’s computational power is not
nearly enough to estimate the response of the whole model thus only a handful of
degrees of freedom are retained in the reduced order model. The nonlinear forced
response curve has been computed using the Imperial College in-house code Forse.
The proposed approach has been applied to a bladed-disk testcase provided by
Safran in the framework of the Expertise project. The demonstrator consists
of a disc with 24 shrouded blades. The nodes retained in the reduced order model
nodes are selected at the interface between two blades, where the cause of the major
nonlinearities is the friction due to contact. The ROM has been validated first
comparing the mode shapes with the MAC then checking the estimated response.
Finally, a sensitivity analysis of the characteristics most affecting the nonlinear
behaviour, such as contact parameters, shroud geometry or the type of elements
used, has been carried out. The obtained results validate the proposed approach and
interesting nonlinear behaviours of the bladed-disc has been observed and deeply
discussed.
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Chapter 1

Introduction

Over the years, great progress has been made in the field of structural dynamics:
assemblies, in order to comply with increasingly stringent standards in terms of
energy efficiency, are moving in a direction of decreasing mass but gaining stiffness.
This has made it more difficult to estimate their nonlinear behaviour both because
of the new complex materials that have been developed, as composites, and because
of the presence of friction contact. Given the high costs involved in experimental
testing of components, the need for increasingly accurate software, able to predict
the behaviour of the structure, has increased exponentially. The use of these new
methodologies has lowered the cost and time required to develop new components:
being able to verify the goodness of the design directly during the earlier stages of
the development has greatly reduced the number of iterations required, as well as
the number of prototypes to be produced for final verification.

Expertise1, acronym of “models, EXPeriments and high PERformance com-
puting for Turbine mechanical integrity and Structural dynamics in Europe”, is
a European multidisciplinary research activity focussed on the development of
advanced tools for the dynamics analysis of large scale models of turbine com-
ponents and it is an Innovative Training Network in the frame of the “MARIE
SKŁODOWSKA-CURIE” actions of Horizon 2020. The goal is to pave the way
towards the virtual testing of the entire machine by addressing some of the current
challenges in the field of nonlinear structural dynamics of turbo-machines on the
way to a fully validated nonlinear dynamic model of turbo-machinery components.

This project focused on the problem of high cyclic fatigue in bladed discs: in
particular, the analyses necessary to verify the design were carried out using the finite
element codes CalculiX and Forse. Checking the nonlinear vibrations response
is now common practice in the aerospace industry, as these are the cause of most
component fatigue failures.

1Expertise website

1

http://www.msca-expertise.eu/


Introduction

1.1 Thesis Outline
In this thesis, in addition to the discussion of the analyses carried out, the

context within which they are conducted is also presented, starting with why they
are necessary and ending with the presentation of the results. In particular, the
thesis has been divided as follows:

• Chapter 2 first introduces the bladed discs and then the problem they face with
high cyclic fatigue: why this phenomenon is so studied and how it is addressed.

• Chapter 3 introduces the finite element method, showing how it is possible to
discretize a generic body into a finite number of degrees of freedom in order
to study its static and dynamic behaviour. Eventually it also shows how to
construct a Campbell and a Safe diagram, both widely used when it comes to
check the resonances.

• Chapter 4 presents the harmonic balance method, used to compute the steady
state response to an harmonic excitation: the strength of this frequency based
method, compared to a time integration scheme, is The speed and ease with
which the response is computed. However, as it determines a huge increase in
the number of degrees of freedom, when dealing with big assemblies a reduced
model is preferred. Thus, in Chapter 5, first a description of what a reduced
model is and why it is convenient is provided, then different model order
reduction techniques are presented.

• In Chapter 6, a simplified model of a bladed disc is studied in order to highlight
the main characteristics of its dynamic behaviour. Meanwhile Chapter 7
illustrate how the discretized bladed disc is analysed: which boundary conditions
are applied, how the contact between adjacent shrouds is modelled and finally
the solution technique, used to compute the nonlinear response, is presented.

• Chapter 8 contains the numerical analyses of a bladed disc provided by Safran:
a complete description from the construction of the mesh to the nonlinear
forced response is provided. The static and modal analyses have been carried
out in CalculiX, a free finite element code, and the results have been verified
with SC03, the Rolls-Royce proprietary software, and Ansys. Instead, the
nonlinear response analysis has been run in Forse, a software developed
by Imperial College. A sensitivity study has been carried, investigating how
different parameters, such as contact stiffness, shroud geometry and others,
affect the final response.

2



Chapter 2

Bladed Discs

Figure 2.1: Bladed Disc Periodic Structure, [1]

The bladed disc is the fundamental unit of steam and gas turbines, whose
applications are many: they range from aeronautical and marine propulsion to
industrial applications such as oil&gas and power generation. Each blade is designed
to be identical: therefore the constitution of a bladed disc can be described as a
periodic structure, as shown in Figure 2.1, where the bladed disc can be divided into
ns identical sectors. Two main components of the sector, represented in Figure 2.2,
can be identified: the blade and the disc.

However, the bladed disc is not the only type of turbomachine components: in
fact there is also the so-called blisk or integrally bladed rotor (IBR) where the blades
and the disc of a rotor form a single assembly. Obviously, there are pros and cons to
using one instead of the other: the main advantage of the blisk is the elimination of
the connecting parts, such as screws and bolts, between the blades and the disk, thus

3



Bladed Discs

(a) Sector

(b) Blade

(c) Disk

Figure 2.2: Fundamental Sector Representation

decreasing the weight, while at the same time increasing the aerodynamic efficiency.
Instead the main problem is represented by the maintenance: in case of extensive
damage, it is required, in the blisk rotor, to replace the whole assembly, at costs
significantly higher than the partial repair of a conventional rotor. Moreover the
absence of connecting parts means also the loss of mechanical damping generated
by them.

Moreover the bladed disc comes in two configurations based on the type of blade
used: a cantilever one and a shrouded one. The advantage of the latter is the
addition of stiffness, which increases the natural frequencies, but it also introduces
damping due to friction in the relative sliding between adjacent shrouds, which
determine a nonlinear contact behaviour.

A good mechanical design is of extreme importance as the bladed discs are heavily
stressed during operations. In addition to static stress sources such as thermal loads,
fluid pressures and centrifugal loads, dynamic stresses are present as well: these
vibrations are induced by additional dynamic loads primarily of aero-elastic nature.

Therefore a persistently high dynamic load coupled with static stresses can
damage the disc causing cracks induced by the high cycle fatigue phenomenon.
Hence why it is necessary to estimate dynamic stresses and verify the strength of

4



Bladed Discs

(a) Bladed Disc (b) Blisk

Figure 2.3: Turbomachinery Configuration

(a) Cantilever (b) Shrouded

Figure 2.4: Blade Configuration [2]

the structure by performing a forced response analysis over the operating speed
range. As previously said, the main vibration mechanisms are of aeroelastic nature:
the bladed disc is mainly excited due to the non-stationary flow and flutter, a
self-excited phenomenon caused by aerodynamic damping. [3]

Dealing with the forced response of such structures is not trivial: in fact their
behaviour is highly nonlinear. In addition to geometric nonlinearities, the presence
of multiple contact surfaces, see Figure 2.5, requires to take into account the friction
damping, due to slip phenomena at those interfaces, in order to compute the forced
response and predict accurately the stress level. [4]

Moreover The complexity of the analysis can further increase if thermal loads,
causing creep phenomena [5], mistuning [6] and the coupling between different stages

5



Bladed Discs

Figure 2.5: Common types of friction joints: (a) roots joints, (b) tip shrouds, (c)
underplatform dampers, (d) damper wires, (e) damper pins [1]

of the gas turbine [7] are considered.

2.1 High Cycle Fatigue Problem
This section focuses on the procedure for checking the resistance of the bladed

disc to the HCF as the High Cycle Fatigue is the largest single cause of component
failures in aircraft gas turbine engines: since this problem affects all engine sections
and a wide range of materials, it causes a significant economic impact.[8]

Although design criteria and prediction approaches have continuously improved,
the constant increase in engine performance has resulted in the reduction of the
weight and the rise of temperature, stresses and stage loading: therefore not only
HCF occurrences have persisted but the percentage of failures caused by this
phenomenon has increased.

The reason why it is so dangerous and problematic from the economic point
of view of the manufacturer is that if the blade is not designed to be resonance
proof, its HCF life of 107 cycles can be reached in minutes or hours during start-up
operations. It may be useful to note here that the entire high cyclic fatigue life
consists of up to the initiation of the crack as, once initiated, the crack propagates
very rapidly in the material following the Low Cyclic Fatigue mechanisms. [9]

The current approach to evaluate HCF capability is shown in the flow chart of
Figure 2.6: the method is highly empirical and it does not address complicating
factors such as the interaction between different damage modes, foreign object
damage and fretting.

Nowadays, engine manufacturers mainly mitigate HCF risks by:

• Avoiding dangerous resonance in the operating range but as it is impossible to
remove all the resonances, generally the first modes are the ones to be avoided
as they are also more dangerous.

• Accepting resonance in the operating range and estimating its associated
response level early in the design process in order to keep it under the dangerous
level.
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Stress Analysis

Modal Analysis
Mechanical Design

Checks:

1. Static Stress
2. Frequency

Criteria

YESNO
Bladed Disc Analysis

Stability (Flutter)

Meet the 
system 
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Experimental
Verification

(e.g. rig, engine...)

YES

NO

Good
resistance to
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Figure 2.6: HCF Design and Verification Process, [8]

2.1.1 Static Analysis
First and foremost a static analysis is carried on: estimating static loads due to

the rotational speed, the temperature and the steady aerodynamic forces is very
important in order to evaluate the ability of the material to accept extra dynamic
stresses. Other benefits are also a greater tolerance to FOD and longer a life.

In the ideal case of a tuned assembly, bladed disks can be studied as cyclic
symmetric structures: in fact this class of periodic structures is formed by a finite
number N of identical substructures, each one constituted by J degrees of freedom.
This property is exploited using cylindrical coordinates and allows to reduce the
computational cost by modelling only one sector made up by the blade and the disc.

Therefore is sufficient to solve the problem

F = [K]x (2.1)

for a single fundamental sector, while constraining the lateral faces so that the

7
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displacements are equal in order to guarantee the structure continuity. The solution
required can be nonlinear, in case of large displacements, or linear. If the former the
stiffness matrix is updated considering two additional contribution: one coming from
the structure deformation the other from the force field evolution (spin softening).
[10]

2.1.2 Modal Analysis
Being circular, discs experience vibratory modes characterized by having nodal

diameters, i.e. diameters where displacements are zero, and nodal circle patterns:
these modes may be fixed relative to the disk or may travel in the same or opposite
direction to that of the rotor speed. [3]

(a) 0 ND (b) 1 ND (c) 2 ND

Figure 2.7: Nodal Diameters Visualization

This behaviour can be highlighted by looking at the eigenproblem of the entire
assembly

[M ]ẍ+ [K]x = 0 (2.2)
that, indeed, presents a particular characteristic: the mass and stiffness matrices
are block circulant as the structure is rotationally periodic.

The generic eigenvector ϕ can be partitioned in a convenient way so that the J
degrees of freedom of the first substructure are followed by the J degrees of freedom
of the second substructure, and so on.

ϕ =
{︂
ϕ(1) ϕ(2) . . . ϕ(N−1) ϕ(N)

}︂T
However, all the possible mode shapes ϕ of a cyclic symmetric structure fall into
three classes, depending on the relative motion between the sectors: [11]

1. The sectors have the same mode shape of its neighbours, if using a cyclic
coordinate system, and vibrates in phase with them

ϕ
(n)
i = ϕ

(n+1)
i

where ϕni is the i-th eigenvector of the n-th sector.
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2. The sectors have the same mode shape of its neighbours but vibrate in opposi-
tion of phase with them

ϕ
(n)
i = −ϕ(n+1)

i

this class exists only if the number of sector N is even.

3. All the other possible mode shapes.

Focusing on the 3rd case, since the structure is cyclic symmetric, after a rotation
of α = 2π/N of ϕi a new valid eigenvector

ϕ̂i =
{︂
ϕ(N) ϕ(1) . . . ϕ(N−2) ϕ(N−1)

}︂T
with the same eigenvalue is obtained. However, the new eigenvector is not orthogonal
to the previous one: therefore to obtain ϕ̂i there has to be an eigenvector ϕ′

i

orthogonal to ϕi with which it shares the same eigenvalue. This means that there
is a rotational relationship between eigenvectors of adjacent sectors{︄

ϕ̂i
ϕ′ˆ

i

}︄
= [R]α

{︄
ϕi
ϕ′
i

}︄
(2.3)

That is also why the eigenproblem is considered to have a double multiplicity, i.e.
for each natural frequency an orthogonal pair of eigenvectors is found.

Figure 2.8: Orthogonal Modes for ND= 1

This also means that any linear combination of these eigenvectors is still a valid
eigenvector of the system: therefore a complex mode shape can be defined

Θi = ϕi + iϕ′
i

as well as its conjugate Θ′
i.

Thus, by applying subsequent shifts of α-s to the base comprising ϕi and ϕ′
i, it

is possible to obtain the full set of eigenvectors of the assembly.
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Regardless of the type, the kinematics characterizing mode shapes is identified by
the phase angle between adjacent vibrating sectors. This angle is called inter-blade
phase angle (IBPA)

φ = h · α → 0 < φ < π (2.4)

where 0 < k < int [N/2] is the number of nodal diameters.

Cyclic Symmetry

In both analyses, the cyclic symmetry hypothesis allows to reduce the problem
from the entire assembly of NJ degrees of freedom to the fundamental sector made
of J DOFs only.

While for the static case the boundary conditions are pretty straightforward,
for the dynamic analysis the assumption that the lateral faces have the same
displacements does not apply any more and the continuity of the structure is
obtained by allowing a constant phase angle, the IBPA, between each sector. [10]

Both a real [12] and a complex-value [13] based methods are possible: they both
use the cyclic symmetry theory to correlate any physical quantities of the assemblies
to a corresponding quantity in cyclic coordinates of the fundamental sector.

Both transformations yield a problem dependant on the harmonic index k,
equivalent to the nodal diameters, in the sense that the resulting mass and stiffness
matrices are k-dependant therefore the modal analysis has to be computed for each
nodal diameter k.

Moreover, the problem can be further reduced by exploiting the cyclic symmetry
to constrain one of the sides

qH = qLe
iφ (2.5)

where qH and qL are the interface DOFs of the fundamental sector sides as shown
in Figure 2.9.

Figure 2.9: Fundamental sector of a simplified bladed disk, [4]
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The mode shapes characterized by k = 0 and k = N/2 correspond to standing
waves, whose eigenvectors are real in both approaches and their multiplicity is one
being of the 1st and 2nd type respectively.

While for the other indexes the eigenvectors obtained with the two approaches
are different, they are still linked by a linear relationship and the two methods are
equivalent. The advantage of using a complex notation is being able to describe the
travelling wave concept as well as the phase, i.e. the imaginary part, between the
response of the different sectors as shown in Figure 2.10

Figure 2.10: Complex Response, [13]

In particular the mode shapes with 0 < k < N/2 rotate clockwise and those with
k > N/2 rotate counter-clockwise.

In summary assuming a sector size of J dofs, a real-valued cyclic symmetry
approach leads, in the worst case, to one eigenvalue problem of size J and (N − 1)/2
eigenvalue problems of size 2J ; a complex approach leads to N eigenvalue problems
of size J ; while the full analysis leads to a single, but very costly, eigenvalue problem
of size NJ . [12]

2.1.3 Forced Response

The sources of excitation in the engine are numerous and most of them are
periodic: effectively, blades excitations are mainly due to non uniformity of the
upstream pressure field, but other aerodynamic and mechanical excitations are
present as well. [10]

So, when rotating, the blades see a fluctuating pressure field at a frequency
connected to the rotational speed, this periodicity can be exploited by dividing the
periodic force into its harmonic component. Given the symmetry of the assembly,
each sector is excited by the same harmonic force, but with a phase lag.
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Campbell Diagram

Once the mode shapes have been computed, the next step of the analysis is to
check that the natural frequencies of the blades are not excited within the operating
range.

A tool commonly used for this purpose is the Campbell diagram, see Figure 2.11
for an example: the bladed disc natural frequencies, in red, are plotted as a
function of the rotational speed while the straight dashed lines corresponds to the
multiple harmonic excitations. The crossing between the excitation and the natural
frequencies allows to identify resonances.

0 0.25 0.5 0.75 10

0.5

1

1.5

EO

Ω̄

ω̄

Figure 2.11: Campbell Diagram

Usually lower order modes are the most dangerous ones as a higher modal mass
is involved leading to more severe damage. As it is not possible to exclude every
crossings, the more dangerous modes are accurately verified (forced response study,
engine testing, etc.).

In literature, e.g. [14], it is possible to find multiple studies about the natural
frequency variation of the blade with respect to the rotational speed.

Engine Order Excitation

As the excitation is divided into multiple harmonics component, whose frequency
base is the rotational speed Ω: the engine order parameter EO is introduced
to identify the harmonic of the excitation. Each harmonic component excites the
sector at a frequency equal to EO · Ω, but it can be shown that for a given mode
family each it is not true that every engine order can excite any nodal diameter
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associated frequency: instead each engine order excites only certain frequencies as
shown in Table 2.1

Excited ND Engine Order
0 mN
1 1+mN
2 2+mN
. . . . . .
N-2 N-2+mN
N-1 N-1+mN

Table 2.1: Engine Order Excitation

The relationship between the nodal diameter and the engine order that can excite
is represented in the so-called Zig Zag Diagram, an example is shown in Figure 2.12

Figure 2.12: Zig Zag Diagram, [15]

SAFE Diagram

This tool, introduced by Singh et al. [16], helps predict the reliability of blading:
compared to the widely used Campbell diagram, it is much more informative. In
evaluating interferences, the SAFE diagram compares not only the frequencies of
exciting harmonics with natural frequencies of blades, but also the shape of these
harmonics with the normal mode shapes of a completely bladed disc including
packeted blading. [16]

To better identify the dangerous modes, there is a need to eliminate the points
of the Campbell Diagram which are of no concern in the evaluation of reliability
and explaining why these points are of no concern to designers.
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Figure 2.13: SAFE Diagram, [13]

In fact, the conclusion reached is that if SAFE diagram shows resonance then
Campbell diagram will also show resonance. On the other hand if SAFE diagram
shows no possible resonance, Campbell diagram might show resonance. [17] There-
fore, the diagram proves to be of great help in identifying sources of resonance and
in finding solutions if such conditions occur in the operating range.

As for its construction, the SAFE Diagram is built by combining the interference
diagram, which is a Zig Zag diagram in which the natural frequencies corresponding
to each nodal diameter are also shown, with the Campbell Diagram.

Figure 2.14: Interference Diagram, [17]
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Figure 2.15: SAFE Diagram Construction, [16]

Frequency Response Function

The dangerous mode responses have to be verified: an obvious way is to use te
FRF to estimate the response level.

Figure 2.16: Response to different Engine Orders, [13]

In order to accurately predict the response level, damping must be introduced.
The main sources are:

• Mechanical damping is due to the fact that the material is never perfectly linear:
some energy is always dissipated, even under the yield stress. Another source
of mechanical damping comes from friction such as the junctions behaviours at
the structure parts interface.

15



Bladed Discs

• Aeroelastic damping: in fact, when the bladed disk vibrates, it generates
unsteady pressures. These unsteady pressures can either excite the structure
(flutter) or damp it.

Moreover contact has to be modelled, usually with Coulomb’s law, in order to
capture possible nonlinearities generated by the slip of adjacent sectors, mainly
occurring in the shroud, if presents, in the blades connected by underplatform
dampers or in the firtree.

Figure 2.17: Generic Contact Model, [18]

In fact, the presence of a damper greatly influences the forced response of the
bladed disc: Figure 2.18 shows how the mass of the damper affects both the
amplitude and the position of the response peak.

Figure 2.18: Damper Mass Effects, [19]
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In addition, the presence of intermittent contacts can lead to an unstable response:
where several excitation levels can be detected at one rotational speed.

0.3 0.4 0.5 0.6 0.7 0.810−3

10−2

10−1

100

Ω̄

v

Linear
Nonlinear

Figure 2.19: Unstable Nonlinear Response

The final numerical prediction of the resonance stresses depends significantly
on the reliable estimation of excitation forces as well as the trustworthy damping
values, which are often unknown parameters in the design process. Therefore, the
HCF design is based principally on the determination of the allowable amplitude of
alternating stresses with respect to the computed FE mean stresses.

2.1.4 Mistuning
In reality disk assemblies are not perfectly tuned: in fact there are many sources

of variability such as manufacturing tolerances, mounting clearances, material
characteristics dispersion, etc.

Each blade dynamic behaviour is different from the others and the frequency
scatter can reach 1 − 2% standard deviations: this scatter is called mistuning and
it is sufficient to break the structure symmetry, crowding the Campbell diagram
with close frequencies. [10]

In cyclic symmetry, the travelling wave on the bladed disk assured a good
circulation and distribution of the vibration energy on each sector of the bladed
disk. In the mistuned case, each blade response is different from the others and
there is no constant phase angle between the sectors: the energy can localise on
only few sectors, generating important responses on few blades.

The blade mistuning is clearly the dominant parameter: in fact looking at the
number of blades on a rotor, it was observed that the larger the number of blades,

17



Bladed Discs

Figure 2.20: Mistuning Effect on Forced Response, [20]

the greater the influence of mistuning. [3]
The main approaches to the study of mistuning are either statistical or involve

the addition of a perturbation to the mass and stiffness matrices.

2.1.5 Fatigue Diagrams
Ultimately, all of the foregoing analysis and verification testing results in an

assessment of HCF margin for the component. The principal approach used to assess
vibration stress margin is the modified Goodman diagram. The basic attraction
of this approach is that allowable vibratory stress can be simply represented as a
function of mean or steady stress. The fundamental tenant is that operation within
the allowable region will not result in HCF failure. This life is based on the expected
range where an endurance limit is approximated. The diagrams are derived from
stress vs. cycles (S-N) data, after “S-N” curves for fixed mean stresses or fixed stress
ratios are generated out to the desired life. [8]

Since the computed mean static stresses σm and the alternating ones σa are
within the elastic range, a common life prediction tool is the Stress-Life method
developed by Wöhler, indicated by “σ-N” or “S-N” acronyms, where an endurance
limit σe is determined.

It is important to note that the modal analysis does not return the absolute
magnitude of the response but only its distribution: therefore stresses are normalized
by the FE software.

The dynamic stress assessment is performed using a Goodman-Haigh diagram:
on the x-axis the static stresses are reported, while on y-axis the dynamic ones.

Multiple failure hypotheses led to a variety of possible curves that estimate the
maximum allowable couple of static and dynamic stresses. For each element of the
structural model, the couple static and dynamic stresses are plotted in the diagram.
When all the elements are located, the objective is to determine the multiplying
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Figure 2.21: Wöhler Diagram

Figure 2.22: Goodman-Haigh Diagram, [21]

factor, α, applicable to dynamic stresses such as the worst couple of stress is on
the modified Goodman curve and all the others are lower this curve. The following
approach must be performed for each mode suspected to be excited in the operating
range.

Finally the S-N method predicts the number of cycles to crack initiation for the
constant load history. For real operation conditions of the machine, the loading
acting on the analysed component can vary in the time domain. For these signals,
the Palmgren-Miner linear damage hypothesis can be applied, which accounts
different stress amplitudes. The latter are then ordered in blocks of stress/strain
cycles, each having a constant amplitude.
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Chapter 3

The Finite Element Method

With the spread of computers in the resolution of engineering problems, it has
become necessary to develop numerical methods suitable for solving such problems:
in fact the solution of the extended integral on a finite domain of the partial
derivative equations is neither easy to find nor such formulation has general validity.
What these numerical methods do is to discretize the problem and reducing it to
an algebraic system of equations. The most commonly used ones are the finite
differences and the finite elements: in particular the latter is the more widespread of
the two thanks to its incredible flexibility, as it can be adopted for simpler domains
as well as irregular ones. [22] In this chapter an introduction to its structural
dynamic application, in particular for the geometrically nonlinear case, will be
provided.

The basic working principle of the finite element method is the discretization
of the domain by means of various elements such as beams, shells and bricks: in
literature it is possible to find a library of the available elements, their formulation
as well as the cases to which they are best suited.

It is therefore possible to determine what are the general steps of the finite
element analysis:

1. Identify a functional containing all the information of the problem. There are
generally two approaches:

• Energetic Approach based on Lagrange’s equation;
• Method of Weighted Residuals, Galerkin’s being one of the most popular.

2. Divide the whole domain into geometrically simple subdomains, called finite
elements;

3. Careful choice of the shape functions, i.e. the functions approximating the
unknown variables over each subdomain. Usually they are a linear combination
of algebraic polynomials where the degree depends on the number of nodes of
the element used;
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4. Evaluate each subdomain properties and equations in order to assemble the
global matrices governing the system;

5. Applying the boundary conditions. If fixed, it means suppressing all the rows
and columns linked to the constrained degrees of freedom;

6. Solve the system with iterative or direct methods;

7. Evaluate additional unknowns, in structural analysis this means computing
strains and stresses.

Before highlighting the main features of this method it is important to first
understand what a nonlinear behaviour is and what may causes the system to
behave this way. A nonlinear system is one in which a change in the output is not
proportional to the change in the input: this means that the superposition principle
is no longer valid for such a system. This consequence is quite important as it
means the the loading history affect the response. A simple example is a quadratic
relationship or any other polynomial of degree higher than one.

Generally speaking it is possible to affirm that linearity is only an idealization of
the actual behaviour of any system [23] and, in reality, bladed discs always deviate
from the ideal case even if there are many instances where the linearised system
returns a good approximation leading to a reduction of computational cost. However,
in some case the designer is forced to take nonlinearities into account: an example
is the design of high performance components that need to be both lightweight and
stiff.

The main cause of nonlinearity in a system are:

• Geometric nonlinearity, e.g. nonlinear strain-displacement relations;

• Material nonlinear behaviour such as hysteresis in rubber-like materials;

• Contact nonlinearities.

In this chapter geometric nonlinearities are considered in the formulation: this
type of analysis is said to be a large displacement one. It becomes necessary
when the structure’s displacements are so large that the original stiffness matrix
of the system does not represent the structure and the effect of the new deformed
configuration have to be taken into account.

Note that a large displacement analysis can still lead to small strain, meaning
that the material remains elastic and consequently that the structure returns to its
original configuration when the loading is removed.
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3.1 Description of Motion
Consider a deformable body to which a system of forces is applied: this causes the

body to move and deform. Now call C0 the initial configuration and X the position,
referred to a rectangular Cartesian system X1, X2, X3, occupied by the particle X,
belonging to the body. Due to the external loading, the body moves and deforms,
as shown in Figure 3.1, finding itself in the new configuration C. Moreover, after a
displacement u, the particle now occupies the position x. The initial configuration

Figure 3.1: Displacement and Deformation of the body [22]

is described in the material coordinates system (X1, X2, X3), while the deformed
configuration is defined with respect to a new coordinates system called spatial
coordinates, (x1, x2, x3).

There are therefore two possible description of the motion:

• A first approach, the Lagrangian description, follows the motion of the body over
time and it is referred to a reference configuration, usually the undeformed
one C0. Thus the spatial coordinates are expressed as a function of the material
ones

x = x(X, t)

This approach is typically used in structural mechanics problems where the
body is subject to deformation. [24]

• The other approach is the Eulerian description, where the attention is focused
on the space portion x and not on the particle X. This means that the motion
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is referred to the current deformed configuration C

X = X(x, t)

This approach is not suited to structural mechanics since most of the time the
deformed configuration is unknown. Instead it is preferred when treating with
fluid mechanics problems as the volume remains unchanged making it easier to
determine the changes in the fluid velocities, pressure, density and so on. [22]

From now on a Lagrangian description will be followed.

3.2 Stress and Strain
In order to define the deformation of a continuum, two adjacent points P and Q

are studied. The distance between these points is infinitesimal

dX = XQ −XP

and after the deformation becomes

dx = xQ − xP

Figure 3.2: Deformation in the Lagrangian description [22]

Meanwhile the displacement for each point can be written as

u = x−X (3.1)
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From these informations, it is now possible to compute the deformation gradient
tensor, which expresses the relationship between the distance before and after the
deformation

dx = F · dX = dX · F T (3.2)

where

F =
[︄
∂x

∂X

]︄T
≡ (∇0x)T (3.3)

= I +
[︄
∂u

∂X

]︄T
= I + (∇0u)T

with ∇0 indicating the gradient with respect to X.

3.2.1 Green Strain Tensor
Now there is a need to define a measurement of the body deformation: to do this,

once again, the distance between the two points P and Q before and after applying
the load is taken as a reference.

To compute it, first, the following quantities need to be introduced

(dS)2 = dX · dX (3.4)
(ds)2 = dx · dx = (F · dX) · (F · dX) = dX(F T · F ) dX (3.5)

= dX ·C · dX

where C is the right Cauchy-Green deformation tensor.
Finally it is possible to define the deformation of the body from the difference of

the square distances as

(ds)2 − (dS)2 = 2 dX ·E · dX (3.6)

where the E is the Green-Lagrange strain tensor. It can also be expressed as

E = 1
2
(︂
F T · F − I

)︂
(3.7)

= 1
2
[︂
(∇0u)T + (∇0u) + (∇0u)T · (∇0u)

]︂

=

⎡⎢⎣ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎤⎥⎦
Note that the Green strain tensor can predict rigid body motion: the change in
squared length is zero if and only if E = 0, i.e. the body moves rigidly.
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An important property of this tensor is its symmetry: in fact its generic component
is [22]

εij = 1
2

(︄
∂ui
∂Xj

+ ∂uj
∂Xi

+ ∂uk
∂Xi

∂uk
∂Xj

)︄
(3.8)

expanding each component

ε11 = ∂u1

∂X1
+ 1

2

⎡⎣(︄ ∂u1

∂X1

)︄2

+
(︄
∂u2

∂X1

)︄2

+
(︄
∂u3

∂X1

)︄2
⎤⎦

ε22 = ∂u2

∂X2
+ 1

2

⎡⎣(︄ ∂u1

∂X2

)︄2

+
(︄
∂u2

∂X2

)︄2

+
(︄
∂u3

∂X2

)︄2
⎤⎦

ε33 = ∂u3

∂X3
+ 1

2

⎡⎣(︄ ∂u1

∂X3

)︄2

+
(︄
∂u2

∂X3

)︄2

+
(︄
∂u3

∂X3

)︄2
⎤⎦

ε12 = 1
2

(︄
∂u1

∂X2
+ ∂u2

∂X1
+ ∂u1

∂X1

∂u1

∂X2
+ ∂u2

∂X1

∂u2

∂X2
+ ∂u3

∂X1

∂u3

∂X2

)︄

ε13 = 1
2

(︄
∂u1

∂X3
+ ∂u3

∂X1
+ ∂u1

∂X1

∂u1

∂X3
+ ∂u2

∂X1

∂u2

∂X3
+ ∂u3

∂X1

∂u3

∂X3

)︄

ε23 = 1
2

(︄
∂u2

∂X3
+ ∂u3

∂X2
+ ∂u1

∂X2

∂u1

∂X3
+ ∂u2

∂X2

∂u2

∂X3
+ ∂u3

∂X2

∂u3

∂X3

)︄

3.2.2 Stress Tensors
Having defined the strain tensor, now the next step is the individuation of the

stress one: as equations of equilibrium are derived it is possible to introduce multiple
stress measurements.

The first stress to be introduced is the true stress or Cauchy stress tensor, i.e.
the stress of the deformed configuration. Calling df(n̂) the force acting in the
infinitesimal area n̂da = da of the deformed configuration at position x, the stress
vector is defined as

t(n̂) = df
da (3.9)

The Cauchy stress tensor is then determined as the force per unit deformed area

df = da · σ =⇒ t = σ · n̂ (3.10)

As the deformed configuration is unknown, reason why it is useful to adopt the
Lagrangian description, a new stress P is introduced to relate the force with the
undeformed area dA

df = dA · P (3.11)

where dA = dA · N̂ and N̂ is the unit normal to the undeformed area. Moreover,
P is called the first Piola-Kirchhoff stress tensor and it is not symmetric.
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Referring to equation (3.2) it is possible to express the distance of the points in
the reference configuration as

dX = F−1 dx
and in a very similar fashion, the force df , acting on the deformed area, can be
transformed into the one acting on the undeformed area dA

dF = F−1 · df = F−1 (dA · P ) = dA · P · F−T ≡ dA · S (3.12)

which allows to obtain the second Piola-Kirchhoff stress tensor S: this is the tensor
used in the Lagrangian formulation of geometrically nonlinear analysis. Thus, the
second Piola-Kirchhoff stress tensor gives the transformed current force per unit
undeformed area. Note also that this tensor is symmetric whenever the Cauchy one
is. [22]

Here, it might be useful to summarize the relationship between the tensors
obtained so far:

P = JF−1 · σ = S · F T (3.13)
S = JF−1σF−T (3.14)

where J is the determinant of F .
On an end note it may be worth to mention that many FEM codes use the

Piola-Kirchhoff tensors internally, but then return the Cauchy true stress as the
formers are projected into the latter, e.g. [see 25, p. 101]

3.3 Isoparametric Element
When any domain is divided into several smaller elements, the latter can take

on the most disparate shapes to adequately discretize the geometry of the former.
Therefore, in order to treat in a univocal and simple way the various elements of
complex and different shapes, a reference element must be introduced, having a
simpler shape, defined in a system of natural and adimensional coordinates. In this
way a biunivocal relationship is established between the cartesian system (x, y, z)
and the natural one (ξ, η, ζ), with −1 ≤ ξ, η, ζ ≤ 1: thus, the element in the physical
system is described by the projection of the reference element in the cartesian
coordinate system from the natural one

x =
n∑︂
i=1

ni(ξ, η, ζ)xi y =
n∑︂
i=1

ni(ξ, η, ζ)yi z =
n∑︂
i=1

ni(ξ, η, ζ)zi (3.15)

where xi, yi, zi are the cartesian coordinates of the n nodes of the element. Instead,
the shape functions, defined in the natural system, are labelled as ni. These are as
many as the number of nodes of the element.

Before diving into the description of the quadratic tetra element, it is good to
underline the properties that the shape functions must satisfy: [23]
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Figure 3.3: Quadratic Tetra Element Representation, [24]

• Be a continuous and isotropic function as the material itself is continuous and
isotropic, i.e. not dependent on the reference frame;

• Be differentiable with respect to the spatial coordinate up to the required order
so that both strains and stresses can be computed;

• Able to describe the rigid motion, leading to a vanishing elastic potential
energy;

• Describe a constant strain field if the overall deformation of the element dictates
so;

• Determine a deformed shape of each element that matches the shape of the
neighbouring elements.

If the first four conditions are met then the shape functions are said to be complete,
if the last requirement is satisfied the shape functions are compatible. If a shape
function is both complete and compatible then it is said to be conform.

3.3.1 Quadratic Triangular Element
Similarly to what has been done for coordinates, displacements can also be

expressed starting from nodal ones: this approach is called displacement based
formulation.

u =
m∑︂
i=1

ni(ξ, η, ζ)ui v =
m∑︂
i=1

ni(ξ, η, ζ)vi w =
m∑︂
i=1

ni(ξ, η, ζ)wi (3.16)

Note that the shape functions are not necessarily the same of equation (3.15): in
fact the index of the sum is m instead of n. However, for an isoparametric element,
the two coincides and therefore the shape functions are the same too.
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The equations are usually expressed in matrix form

u = [n] q (3.17)

where q is the vector of nodal displacements and [n] the matrix containing the shape
functions.

The choice of the shape functions, used for interpolation, falls on polynomials
defined in the natural system: this is an hypothesis as it constraints the possibility
of displacements distribution. For the quadratic tetra element the followings are
used [24]

n1 = (1 − ξ − η − ζ) [2(1 − ξ − η − ζ) − 1]
n2 = ξ(2ξ − 1)
n3 = η(2η − 1)
n4 = ζ(2ζ − 1)
n5 = 4ξ(1 − ξ − η − ζ)
n6 = 4ξη
n7 = 4η(1 − ξ − η − ζ)
n8 = 4ζ(1 − ξ − η − ζ)
n9 = 4ξζ
n10 = 4ηζ

Thus the shape functions matrix is assembled as

[n] =

⎡⎢⎣n1 0 0 . . . ni 0 0 . . . n10 0 0
0 n1 0 . . . 0 ni 0 . . . 0 n10 0
0 0 n1 . . . 0 0 ni . . . 0 0 n10

⎤⎥⎦
Having determined the displacements, it is possible to compute the strains

[ε] = [∂]u =⇒ [ε] = [∂] [n] q (3.18)

where [B] = [∂] [n] is the strain matrix, whose components for the i − th shape
function of the quadratic tetra element look like

[Bi] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ni/∂x 0 0
0 ∂ni/∂y 0
0 0 ∂ni/∂z

∂ni/∂y ∂ni/∂x 0
0 ∂ni/∂z ∂ni/∂y

∂ni/∂z 0 ∂ni/∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.19)

However, equation (3.19) poses the problem of how to differentiate with respect
to the physics coordinate the shape functions defined in natural ones. This is done
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by computing the so called Jacobian matrix

[J ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂η

∂y

∂η

∂z

∂η
∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.20)

that allows to compute the derivative of the shape functions with respect to the
spatial coordinates ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ni

∂x
∂ni

∂y
∂ni

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= [J ]−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ni

∂ξ
∂ni

∂η
∂ni

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.21)

As for the components of the Jacobian, they are easily computed as

∂x

∂ξ
=

n∑︂
i=1

∂ni
∂ξ

xi
∂y

∂ξ
=

n∑︂
i=1

∂ni
∂ξ

yi
∂z

∂ξ
=

n∑︂
i=1

∂ni
∂ξ

zi

∂x

∂η
=

n∑︂
i=1

∂ni
∂η

xi
∂y

∂η
=

n∑︂
i=1

∂ni
∂η

yi
∂z

∂η
=

n∑︂
i=1

∂ni
∂η

zi

∂x

∂ζ
=

n∑︂
i=1

∂ni
∂ζ

xi
∂y

∂ζ
=

n∑︂
i=1

∂ni
∂ζ

yi
∂z

∂ζ
=

n∑︂
i=1

∂ni
∂ζ

zi

But perhaps what is even more important is the fact that the Jacobian allows
the passage from one system to the other

dV = dx dy dz = det(J) dξ dη dζ (3.22)

and that its determinant can give an important indication on the distortion of the
element in the physical reference frame, reason why is often used as a quality check
parameter of the mesh.

The next step is the computation of the stiffness and mass matrices as well as
the excitation: the procedure treated follows the variational approach based on the
Lagrange equation.

d
dt

(︄
∂L
∂q̇

)︄
− ∂L
∂q

= Q (3.23)
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where L is the difference between the kinetic and potential energy, while Q are the
generalized forces acting on the system. Expressing the kinetic energy as

T = 1
2

∫︂
V
u̇Tρu̇dV

then, referring to equation (3.17), the kinetic energy can be written also as

T = 1
2 q̇

T
[︃∫︂
V

[n]T ρ [n] dV
]︃
q̇ (3.24)

with q̇ outside of the integral as the nodal displacements do not depend on the
reference frame chosen.

The generalized forces acting on the system are the external ones, in this case
only volume forces are taken into account:

Q =
∫︂
V

[n]T {f}V (x, y, z, t)dV (3.25)

Meanwhile, with the elastic energy

dU =
∫︂
V

{σ}T d {ε}

pre-stresses and pre-strains are taken into account through the material constitutive
law:

{ε} = [B] q (3.26)
{σ} = [E] ({ε} − {ε}0) + {σ0} (3.27)

where [E] is the linear elastic matrix, containing material properties.
By substituting them in the expression of the infinitesimal potential energy the

following is obtained:

dU = {σ0}T {ε} + 1
2 {ε}T [E] {ε} − {ε0}T [E] {ε} (3.28)

which allows to express the potential energy in the system

U =
∫︂
V

dUdV

=
∫︂
V

{σ0}T {ε} dV + 1
2

∫︂
V

{ε}T [E] {ε} dV −
∫︂
V

{ε0}T [E] {ε} dV

Moreover it is possible to link it to the nodal displacements, as done for the kinetic
energy and the generalized forces

U =
[︃∫︂
V

{σ0}T [B] dV
]︃
q + 1

2q
T
[︃∫︂
V

[n]T [E] [n] dV
]︃
q −

[︃∫︂
V

{ε0}T [E] [B] dV
]︃
q

(3.29)
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Finally, by computing the differentiation with respect to the nodal values, as per
equation (3.23), the following matrices are obtained:

K =
∫︂
V

[n]T [E] [n] dV =
∫︂ 1

−1

∫︂ 1

−1

∫︂ 1

−1
[n]T [E] [n] dξ dη dζ (3.30)

M =
∫︂
V

[n]T ρ [n] dV =
∫︂ 1

−1

∫︂ 1

−1

∫︂ 1

−1
[n]T ρ [n] dξ dη dζ (3.31)

f =
∫︂
V

[n]T {f}V dV +
∫︂
V

{ε0}T [E] [B] dV −
∫︂
V

{σ0}T [B] dV (3.32)

Note that the damping matrix has been neglected as its introduction heavily depends
on the assumptions made on how the system is damped. A simple, but popular,
hypothesis is to have a damping matrix obtained by linear combination of mass and
stiffness matrices.

Moreover, the integral is not computed analytically as it would prove both difficult
and not useful when trying to extend such formulation to a variety of elements:
therefore a numerical integration scheme, such as Gauss’ quadrature method, is used

K =
mi∑︂
i=1

mj∑︂
j=1

mk∑︂
k=1

ψiψjψk [B]Tijk [E]ijk [B]ijk (3.33)

This shows even further how important the determinant of the Jacobian is: in fact,
if equal to zero, it will lead to a singular stiffness matrix.

Finally stress and strains are computed thanks to material constitutive law,
already expressed by equation (3.26) and (3.27).

3.4 Building the Campbell Diagram
Having understood how the matrices and vectors of the physical problem are

created from the mesh of the geometric model, it is fair to ask what analyses have
to be carried out and subsequently how the Campbell diagram is to be constructed.

First of all, a static analysis is carried out to assess the average stress level acting
on the structure.

Kx = F

Usually the most significant load, albeit not the only one, is the centrifugal load:
the force per unit of volume can be defined as [25]

fV = ρΩ2

where Ω is the rotational speed and ρ is the material density.
The eigenproblem is obtained by formulating a perturbation problem, i.e. the

physical properties are updated following the results of the previous static step,
thus taking into account the rotational speed effect on the modal analysis.

Kϕ = λMϕ (3.34)
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where λ = ω2 is the eigenvalue and ϕ is the eigenvector.
Strategies for solving the eigenproblem can be found in the literature: in fact,

methods are used to avoid the inversion of large matrices because of the high
computational cost that this operation would require. [see 26, 27]

So by repeating the same procedure for multiple speeds in the operating range,
it is possible to construct the Campbell diagram: in fact it will be sufficient to
associate each eigenvalue with the speed of the centrifugal load and then connect
the eigenvalues corresponding to the same mode shape.

0 0.25 0.5 0.75 1
·104

0

0.5

1

1.5

Ω [rpm]

ω̄

Eigenvalue

Figure 3.4: Campbell diagram for a single mode shape

Given the properties of a cyclic symmetric structure, the Campbell Diagram will
look like the one shown in Figure 2.11. Moreover, it is possible to identify and show
the true resonances in the so called SAFE diagram, by remembering the relationship
between ND and EO highlighted in Table 2.1.
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Figure 3.5: SAFE diagram of a single mode shape
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In this chapter we have first seen how a continuous body can be discretized
into a finite number of degrees of freedom: the physical properties of the body are
obtained by choosing shape functions that approximate the distribution of unknown
quantities in the subdomains into which the body has been divided. In addition, it
has also been shown how the constitutive laws of the material are declined in the
finite element model, thus allowing to compute strains and stresses.

An example has been provided in order to show how the finite element method is
applied and how the mass and stiffness matrices of a quadratic triangular element
are computed.

Finally, the procedure followed to reproduce the diagrams necessary to determine
the dynamic behaviour of the bladed disc was also shown: in fact by performing the
prestressed modal analysis it is possible to identify the resonances, i.e. the potential
causes of HCF failure. Therefore, in the following chapters, the problem of how the
forced response of the system can be studied will be addressed.
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Chapter 4

Harmonic Balance Method

The harmonic balance is a widely used method to compute the steady-state
response of nonlinear differential equations: instead of computing the time domain
steady-state response, the harmonic balance technique is a frequency domain method.
Its applications extend to many engineering fields such as: fluid-dynamics, structures,
electrical circuits and dynamics of mechanical systems. This method allows to
compute the periodic solution and, for this reason, it is well suited to solve differential
equations with periodic time dependence such as the dynamic problem of rotating
machinery.

The core concept is to provide a formulation of the approximate periodic solution
in the form of a truncated Fourier series and carry on the study of the oscillation in
the frequency domain where the unknowns are the Fourier coefficients. The number
of unknowns depends linearly on both the number of the harmonics chosen and the
number of degrees of freedom of the studied system. In order to get the value of the
coefficients the equations are transformed into an algebraic set and then multiple
solutions techniques can be applied.

In this chapter an overview of the harmonic balance method will be provided:
starting by the simple example of the duffing oscillator, with only one dof, before
showing its application to a multi-degrees of freedom system.

4.1 Duffing Oscillator
A simple case of nonlinear mechanical system is the Duffing oscillator: a one

degree of freedom system where the nonlinearities are induced by a cubic spring.
The equation of motion for the system represented in Figure 4.1 is

mẍ+ cẋ+ kx+ γx3 = P cos(Ωt) (4.1)
whereas the goal is to find the periodic solution

x(t) = x(t+ T ) where T = 2π
Ω
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m
c

γ

k

P cos(Ωt)

Figure 4.1: Duffing Oscillator

The harmonic balance method consist of approximating the periodic solution
with a Fourier series

x ≈ xh(t) = x̃0 +
∞∑︂
i=1

x̃c,i cos(Ωt) + x̃s,i sin(Ωt) (4.2)

and then make an assumption on the number of harmonics that should be retained
to approximate the solution, which in this particular case is only the 1st harmonic

xh = x̃c cos(Ωt) + x̃s sin(Ωt) (4.3)
ẋh = −Ωx̃c sin(Ωt) + Ωx̃s cos(Ωt)
ẍh = −Ω2x̃c cos(Ωt) − Ω2x̃s sin(Ωt)

By expanding the cubic term, it is possible to notice the surge of other harmonic
components, as shown in [28]

x3
h = (x̃c cos(Ωt) + x̃s sin(Ωt))3

= · · · =

= 3
4(x̃3

c + x̃cx̃
2
s) cos(Ωt) + 3

4(x̃3
s + x̃sx̃

2
c) sin(Ωt) +

˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂

[. . . ] cos(3Ωt) + [. . . ] sin(3Ωt)

but having decided to approximate the response using only the first harmonic, these
new components have to be neglected in the new system equation of motion[︃

(k − Ω2m)x̃c + cΩx̃s + 3
4γ(x̃3

c + x̃cx̃
2
s) − P

]︃
cos(Ωt)+

+
[︃
(k − Ω2m)x̃s + cΩx̃c + 3

4γ(x̃3
s + x̃sx̃

2
c)
]︃

sin(Ωt) = 0 (4.4)

Balancing the cosine and sine coefficients separately, as the solution has to be
verified ∀t, a new set of algebraic equation is obtained⎧⎪⎪⎨⎪⎪⎩

(k − Ω2m)x̃c + cΩx̃s + 3
4γ(x̃3

c + x̃cx̃
2
s) − P = 0

(k − Ω2m)x̃s + cΩx̃c + 3
4γ(x̃3

s + x̃sx̃
2
c) = 0

(4.5)
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This simple example is helpful because it shows where the nonlinearities lie and
how they affect the system: although the forcing is exciting the system at the
frequency Ω, new harmonic components are generated by that, thus determining
the nonlinearities in the response. Multiple of the forcing frequency are called
super-harmonic, while denominators are called sub-harmonic.

Moreover it is important to note that as the superposition principle is no longer
valid, studying the dynamic uncoupled by the static solution may yield a bad
approximation as the initial condition in the nonlinear case may heavily affect the
solution.

4.2 Multi-Degrees of Freedom Systems
The harmonic balance method it is not limited to SDOF model only: in fact it

can be generalized to MDOF model as well. [1, 28] The generic equation of motion
of such system can be written as

Mẍ(t) +Cẋ(t) +Kx(t) = fext(t) − fnl(ẋ(t),x(t), t) (4.6)

The vector fext and fnl represent the external and nonlinear forces respectively;
M and K are the mass and stiffness matrices, the former is symmetric and definite
positive while the latter is only semi-definite positive as it takes into account rigid
body motion too.

Since the periodic solution is being sought, it is possible to write it as a Fourier
series.

xh(t) = x̃0 +
∞∑︂
k=0
x̃c,k cos(Ωt) + x̃s,k sin(Ωt) = ℜ

{︄ ∞∑︂
k=0
x̃ke

ikΩt
}︄
,

A further assumption is made on the number of harmonics retained: in [1] a general
overview on the common practices for harmonics choice can be found, while Grolet
et al. [29] have proposed a method where the harmonics are selected or neglected
based on their predicted associated energy. It is important to note that, even
considering an infinite number of harmonics, the periodic solution xh(t) is only an
approximation of the exact solution x(t).

xh = ℜ
{︄

H∑︂
k=0
x̃ke

ikΩt
}︄

ẋh = ℜ
{︄

H∑︂
k=0

ikΩx̃keikΩt
}︄

(4.7)

ẍh = ℜ
{︄

H∑︂
k=0

−(kΩ)2x̃ke
ikΩt

}︄
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By substituting them in the equation of motion (4.6), the following is obtained

ℜ
{︄

H∑︂
k=0

(︂[︂
K − (kΩ)2M + ikΩC

]︂
x̃k + f̃nl,k − f̃k

)︂
eikΩt

}︄
= r (4.8)

where r is the residue, i.e. the error associated to the approximated solution. Often
the dynamic equilibrium of the forces is indicated by

Rk =
[︂
K − (kΩ)2M + ikΩC

]︂
x̃k + f̃nl,k − f̃k (4.9)

Moreover the external forces contribution is computed as

fext = ℜ
{︄

H∑︂
k=0
f̃ke

ikΩt
}︄

(4.10)

while the nonlinear forces coefficients represent the true challenge: the formal
definition is

1
π

∫︂ 2π

0
fnl(x, ẋ)e−ikΩt dΩt =

{︄
2fnl,0
fnl,k k = 1, ..., H

(4.11)

but given the huge variety of possibilities, the so called Alternating-Frequency-Time
(AFT) scheme is used for determining those coefficients, where the Fast Fourier
Transform algorithm is used to compute the discrete Fourier transform.

f̃nl,k = FFT [fnl (iFFT [xk] , iFFT [ikΩxk])] (4.12)

Figure 4.2: AFT algorithm scheme, [1]
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The FFT allows to convert the signal from the time domain to the frequency
domain, while the iFFT (inverse Fast Fourier Transform) does the opposite. The
number of samples per period is determined according to the Nyquist-Shannon
theorem: the number of points used must be large enough to solve the highest
harmonics, guaranteeing the convergence of HBM.

The next step now is to find a way to solve the equation (4.8): naturally the goal
is to have a null error. The weighted residual method can be used here∫︂ T

0
r(xh, ẋh)ψkdt = 0 k = 0,1, . . . , H

and if the weighted function is selected from one of the functions used to approximate
the solution, then the method is of the Galerkin type. In particular the choice falls
on the function ψk = e−ikΩt, thus obtaining∫︂ T

0
r(xh, ẋh)e−ikΩtdt = 0∫︂ T

0
ℜ
{︄

H∑︂
l=0
Rle

ilΩt
}︄
e−ikΩtdt = 0

∫︂ 2π

0
ℜ
{︄

H∑︂
l=0
Rle

ilτ

}︄
e−ikτdτ = 0

this integral yields nonzero values only when l = k, thus the residue is null only if
the dynamic equilibrium is verified

Rk = 0 (4.13)

which translates to the following new set of equations⎧⎪⎪⎨⎪⎪⎩
R0(x̃0, . . . , x̃H) = 0
. . .

RH(x̃0, . . . , x̃H) = 0
This set of H + 1 complex equations can be transformed into an algebraic one of
2H + 1 real equations, obtained by using the sine and cosine notation instead of the
complex numbers. This means thatin order to find the periodic solution of a system
made up by N−dofs, a set of equations containing N · (2H + 1) unknowns has to be
solved. For this very reason a reduced order model, instead of the full one, is used.

A common technique to solve equation (4.13) is the Newton-Raphson method:
the idea is to perform a linearisation of the residual using a Taylor series at step
x(j) to compute the next step x(j+1), iterating until ||R|| ≤ err [28]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(j+1) = x(j) − ∂R

∂x

⃓⃓⃓⃓
⃓
x(j)
R(x(j)) iteration step

R(x(j+1)) ≈ R(x(j)) + ∂R

∂x

⃓⃓⃓⃓
⃓
x(j)

(x(j+1) − x(j)) = 0 residual linearisation
(4.14)
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However, when studying the response over a frequency range, this method always
causes difficulty in convergence at resonance frequency points or even fail at turning
points and bifurcation points. In order to enhance the stability of the nonlinear
solver, it is of interest to trace the loci of the solutions by introducing a continuation
parameter λ. [30]

R(λ,x) = 0
A predictor-corrector technique is used with the variation of parameter λ: first
a prediction of the response at the next frequency is performed to speed up the
iterative convergence, usually such estimation is based on the gradient computed at
the current converged point. Then a second step is performed iteratively until the
desired accuracy is obtained.

Figure 4.3: Continuation Algorithm: Rik’s method, [31]

The main features of this method is the computational efficiency as it avoids the
time-consuming computation of the physical transient and it usually requires a low
number of harmonics to capture the behaviour accurately. Moreover it allows to
compute unstable oscillations. Meanwhile the main limitations are certainly the fact
that its application is limited to periodic solutions, as well as the Gibbs phenomenon,
see Figure 4.5, near discontinuities such as impacts and stick-slip transition: the
cause is intrinsic to the choice of using a finite number of harmonic functions to
approximate the response.

In summary, the Harmonic Balance is an efficient numerical method for the
computation of periodic solutions of nonlinear ODEs: it yields, similarly to Galerkin’s
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Figure 4.4: Stability of the oscillation

π 2π

0.5

1

x

y

Reference
Fourier

Figure 4.5: Gibbs phenomenon

method, an algebraic equation system in the frequency domain. However, due to
the expansion of the problem into several harmonic components, the number of
degrees of freedom increases considerably, which is why a reduced order model is
preferred to complex models. Therefore, in the next chapter an overview of the
most common model order reduction techniques will be given.
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Chapter 5

Model Order Reduction

With time and the spread of finite element analysis, the size of models has kept
growing, but at the same time the computing power and efficiency of software has
also increased. However, interest has also increasingly shifted to nonlinear problems,
for example the continuous optimisation of structures and weight reduction in the
aerospace industry has required the use of a formulation that includes geometric
nonlinearities.

When dealing with a non-linear problem, though, the computational cost of
analysing the whole structure is simply too high: for this reason, a reduced order
model is used, i.e. one with fewer degrees of freedom, which is nevertheless accurate
enough to faithfully represent the behaviour of the structure. By reducing the dofs,
the size of the set of equations that need to be solved is decreased so that a good
compromise between accuracy and time efficiency is reached. In literature many
Model Order Reduction (MOR) techniques, for linear mechanical system, have been
introduced: two common approaches are either to estimate the frequency response
function matrix or, as in the so called component mode synthesis (CMS) methods,
to introduce an expression for the eliminated DOFs through retained DOFs, usually
using mode shapes obtained with specific boundary conditions. [32]

In this project, the need for a reduced order model is mostly due to the use of
the harmonic balance method: in fact, given a problem made up by N degrees of
freedom, the size of the forced response problem with the HBM is{︄

2H ·N if harminc 0 is not used
[2(H − 1) + 1] ·N if harminc 0 is used

where H is the number of harmonics used. As a coarse model of turbine sector can
easily have more than 105 DOFs and may require even more than 5 harmonics, it
is pretty easy to understand that there is a whole order of magnitude between a
modal analysis and a forced response, with the latter being an iterative intensive
process, as shown in Figure 4.2 & 4.3.
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5.1 Component Mode Synthesis Methods
Given a dynamic problem of the type

Mẍ+Cẋ+Kx = f (5.1)

where M is the mass matrix, C the damping matrix, K the stiffness matrix and f
is the external force vector.

The steps of a generic CMS method to build the reduced order model are:

1. Introduce a subspace V

2. Apply the modal transformation x = V q

3. Pre-multiply the governing equation by V T , the transpose of subspace V ,
obtaining the following expressions

V TMV q̈ + V TCV q̇ + V TKV q = V Tf

M∗q̈ +C∗q̇ +K∗q = f∗ (5.2)

It is evident how critical the choice of the subspace V is: in fact it must be able
to properly describe the dynamic behaviour of the model, while having a limited
size in order to reduce the computational cost of the problem.

5.1.1 Modal Truncation
One of the simplest reduction techniques is certainly the modal truncation: it

consists in describing the response of a linear system as the linear superposition
of its mode shapes. Those are obtained by the eigenvalue problem

(K − ω2
iM)ϕi = 0 (5.3)

where ωi is the i-th eigenvalue and ϕi is the corresponding i-th eigenvector. It is
then possible to build the matrix Φ, where each i-th column corresponds to the i-th
eigenvector ϕi.

Then a change in the system of coordinates is performed, passing from the spatial
to the modal ones

x = Φq (5.4)

This means selecting the eigenvector matrix Φ as the subspace V which lead to
the following description of the dynamic behaviour of the system

ΦTMΦq̈ + ΦTCΦq̇ + ΦTKΦq = ΦTf (5.5)

Now it is important to remember two fundamental properties:
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• The eigenvectors are M -orthogonal and K-orthogonal;

• The solution of the eigenproblem is not unique, meaning that the mode shape,
corresponding to a specific natural frequency, act as a basis of a space made
up by all the possible eigenvectors for said frequency.

This is helpful as it allows to simplify equation (5.5): in fact by normalising
the eigenvector with respect to the mass matrix and by assuming a proportional
damping, as the Rayleigh one C = αM + βK, the new matrices become⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΦTMΦ = I

ΦTKΦ = Λ2 = diag
(︂
ω2

1, ..., ω
2
N

)︂
ΦTCΦ = 2 · diag (ζω)

(5.6)

obtaining a simplified dynamic equation

Iq̈ + 2 · diag (ζω) q̇ + Λ2q = ΦTf (5.7)

Now a set of N independent ordinary differential equations has been obtained,
meaning that the size of the problem is still the same. To reduce the latter, the
subspace V is truncated to include only the first m < N mode shapes

V = [ϕ1, ...,ϕm] (5.8)

This type of reduction is not convenient for the dynamic analysis of nonlinear
system as it relies on a linear combination of the mode shapes, and it is not
particularly efficient as it may require to retain too many master DOFs.

5.1.2 Guyan Reduction
The Guyan reduction is based on the assumption that the slave generalized

displacements qs can be computed directly from master displacements qm. [23] In
order to link the two DOFs it introduces two important hypothesis:

• Negation of the forces applied to slave DOFs;

• Assumption of a static deflection as the relationship between qs and qm, i.e.
neglecting inertia forces and damping.

Before operating the reduction, divide the dynamic system separating the master
DOFs qm from the slaves qs[︄

M11 M12
M21 M22

]︄{︄
q̈m
q̈s

}︄
+
[︄
C11 C12
C21 C22

]︄{︄
q̇m
q̇s

}︄
+
[︄
K11 K12
K21 K22

]︄{︄
qm
qs

}︄
=
{︄
fm

��fs

}︄
(5.9)
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From the second hypothesis introduced we can express the relationships between
master and slave DOFs as

K21qm +K22qs = 0 ⇒ qs = −K−1
22 ·K21qm (5.10)

Thus, the transformation matrix corresponding to this condensation can be built
as

V =
[︄

I
−K−1

22 ·K21

]︄
(5.11)

The main takeaways from this condensation techniques are: [33]

• The inertia contribution from slave DOFs is not entirely neglected. It can be
seen by stating the condensed mass matrix

Mcond =M11 −M12K
−1
22 K21 − (M12K

−1
22 K21)T +K12K

−1
22 M22K

−1
22 K21

• Eigenvalues of the reduced system are always higher than those of the original
system;

• It is not a particular expensive technique as it requires the inversion of the
K22 matrix only;

• The quality of the eigenvalue approximation decreases as the mode number
increases.

5.1.3 Craig-Bampton Method
The Craig-Bampton methodology is a widely used technique in the aerospace

industry, particularly where two or more subsystems are connected. [34] It re-
characterizes large finite element models into a set of relatively small matrices
containing mass, stiffness and mode shape information, consisting of all boundary
modes expressed in physical coordinates and a truncated set of elastic modes
expressed in modal coordinates. [35]

Since the method requires the use of boundary and interior points, it is conve-
nient to partition the nodes in boundary nodes, identified with subscript B, and
independent elastic ones, indicated by subscript L

x =
{︄
xB
xL

}︄
(5.12)

thus obtaining the following dynamic equation[︄
MBB MBL

MLB MLL

]︄{︄
ẍB
ẍL

}︄
+
[︄
CBB CBL

CLB CLL

]︄{︄
ẋB
ẋL

}︄
+
[︄
KBB KBL

KLB KLL

]︄{︄
xB
xL

}︄
=
{︄
fB
fL

}︄
(5.13)
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The first step of this reduction technique is to transform the set of independent
elastic nodes from the physical coordinates xL to the modal coordinates QL. Then
the set is truncated into a smaller one qm: in this way it is possible to reduce the
size of the problem making it lighter from a computational perspective.

Therefore it is possible to summarise the relationship between the new set of
hybrid coordinates and the physical ones as{︄

xB
xL

}︄
=
[︂
B Φ

]︂ {︄xB
qm

}︄
where size(qm) < size(xL) (5.14)

Behind the matrices B and Φ lies the actual reduction technique: the vectors in
B are usually referred to as the Boundary Node Functions and the vectors in
Φ ∈ ℜN×m are usually referred to as the Fixed Base Mode Shapes.

First let start from computing the constraint modes: the matrix can be partitioned
as follows

B =
[︄
IBB
ΨB

]︄
∈ ℜN×B where

⎧⎨⎩IBB ∈ ℜB×B

ΨB ∈ ℜL×B (5.15)

ΨB is the transformation matrix relating rigid body displacements at the interface
xB to physical displacements of the elastic degrees of freedom xL [35], while I is
simply the identity matrix. To determine the former, a static deformation of the
structure is induced by successive unit deflections of each boundary DOF with the
remaining ones of the set held fixed, meanwhile all the internal DOFs are force-free
[34] [︄

KBB KBL

KLB KLL

]︄ [︄
IBB
uL

]︄
=
[︄
RBB

0LB

]︄
(5.16)

Then the transformation matrix is obtained by computing the lower row

uL = −K−1
LLKLBIBB = ΨBIBB (5.17)

Now the normal modes have to be computed: again it is convenient to partition
the transformation matrix

Φ =
[︄

0
ΦL

]︄
∈ ℜN×m where

⎧⎨⎩0 ∈ ℜB×m

ΦL ∈ ℜL×m (5.18)

Computing the matrix ΦL is fairly easy as it corresponds to the mode shapes
obtained by a modal analysis in which all the boundary DOFs are fixed, i.e. solving
the following eigenproblem [︂

KLL − ω2MLL

]︂
ΦL = 0 (5.19)

Note that the two matrices ΨB and ΦL are linearly independent.
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To summarize, the subspace used in the Craig-Bampton reduction is

VCB =
[︄
IBB 0
ΨB ΦL

]︄
=
[︄
IBB 0
ΨB ΦL

]︄
∈ ℜN×(B+m) (5.20)

and the reduced matrices are simply obtained as

MCB = V T
CBMVCB

KCB = V T
CBKVCB

(5.21)

whose size is equal to (B +m) × (B +m).
Bladh et al. [36] show the application of the Craig-Bampton technique to the

nonlinear analysis of a bladed disk, while Battiato et al. [7] have proposed to use
this method to study multi-staged bladed discs: in literature it is also possible to
find methods directly derived from the Craig-Bampton one, e.g. [37].

5.2 Hybrid Method
Petrov [32] has proposed a highly accurate and computationally efficient method

for reduced modelling of jointed structures in the frequency domain analysis of
nonlinear steady-state forced response. Therefore this method is particularly suited
to work together with the harmonic balance method and for this very reason is used
in Forse, the in-house software developed by Imperial College for nonlinear forced
response analyses.

The nonlinear dynamic problem to solve is

Mẍ(t) +Cẋ(t) +Kx(t) + f(ẋ(t),x(t)) = p(t) (5.22)

where f(ẋ(t),x(t)) is the vector of the nonlinear forces at the contact interfaces
and p(t) is a vector of periodic external excitation force.

The steady-state solution is represented by a truncated Fourier series, see Chap-
ter 4 for the explanation of the HBM

x(t) ≈ xh(t) = Q̃0 +
H∑︂
j=1
Q̃

(c)
j cos(mjωt) + Q̃(s)

j sin(mjωt) (5.23)

where mj is the j-th harmonic coefficient.
The idea of this technique is to keep only the nonlinear DOFs, where the nonlinear

forces act, while reducing all the linear DOFs. This reduction is done by using the
FRF matrix [32]

Q̃j = Q̃
(c)
j + iQ̃

(s)
j = A(mjω)(Pj − Fj(Q̃j)) (5.24)
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Model Order Reduction

where A = [K − ω2M + iωC] is the FRF matrix, while Pj = P
(c)
j + iP

(s)
j and

Fj(Q̃j) = F
(c)
j + iF

(s)
j are respectively the complex vectors of the external and

nonlinear forces.
The partition of the nodes in nonlinear and linear, for the j-th harmonic, is

written as {︄
Q̃l

Q̃n

}︄
=
[︄
All Aln

Anl Ann

]︄{︄
P l

P n − F (Q̃n)

}︄
(5.25)

from which the nonlinear DOFs equation can be retrieved

Q̃n = Anl(ω)P l +Ann(ω)P n −Ann(ω)F (Q̃n) (5.26)

The method is based on the idea of the building the FRF matrix by computing
its exact values at a certain frequency and providing its high-accuracy estimation in
a wide frequency range close to this frequency

A = A0 + Ã(ω) (5.27)

where A0 allows to capture the local elastic properties while Ã(ω) describes the
FRF matrix variation over the frequency range. The former is computed at a specific
frequency ω0 far enough from any natural frequency of the system, if the structure
has no possible rigid body motion then a null frequency can be chosen

[︂
(1 + iη)K − ω2

0M
]︂ {︄A0

ln

A0
nn

}︄
= I (5.28)

where η is the modal damping factor.
The frequency dependent contribution is obtained so that A is equal to A0 if

ω = ω0
Ã(ω) = A−A0 (5.29)

and since a generic FRF matrix can be estimated knowing the mode shapes as

FRF ≈
Nm∑︂
j=1

ϕjϕ
T
j

(1 + iηj)ω2
j − ω2

the frequency dependent is computed as

Ã(ω) =
N∑︂
j=1

ϕjϕ
T
j

(1 + iηj)ω2
j − ω2 −

N∑︂
j=1

ϕjϕ
T
j

(1 + iηj)ω2
j − ω2

0

≈ (ω2 − ω2
0)

Nm∑︂
j=1

ϕjϕ
T
j[︂

(1 + iηj)ω2
j − ω2

]︂ [︂
(1 + iηj)ω2

j − ω2
0

]︂ (5.30)

with Ã(ω) estimation limited only to the first Nm modes.
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The new formulation of the FRF matrix is then used to compute the harmonics
coefficient of the nonlinear DOFs

Q̃n = Q̃0 + Q̂n(ω) −
[︂
A0
nn + Ãnn(ω)

]︂
F (Q̃) (5.31)

where

Q̃0 = A0
nlP

l +A0
nnP

n (5.32)
Q̂n(ω) = ÃnlP

l + Ãnn(ω)P n (5.33)

Moreover Q̂n(ω) can be expressed as

Q̂n(ω) =
Nm∑︂
j=1

(ω2 − ω2
0)cj[︂

(1 + iηj)ω2
j − ω2

]︂ [︂
(1 + iηj)ω2

j − ω2
0

]︂ϕnj (5.34)

where

cj =
{︄
ϕlj
ϕnj

}︄H {︄
P l
j

P n
j

}︄
(5.35)

is the modal excitation force of the j-th mode. Both Q̃0 and the modal forces
cj can be calculated only once, independently, and beforehand of the nonlinear
forced response analysis. As a result, the analysis will involve solving the nonlinear
equation where explicitly only nonlinear DOFs are included. [32]
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Chapter 6

Free Vibrations of a
Rotationally Periodic
Structure

Here a simplified approach to the dynamics of bladed discs is presented by
studying simplified discrete models of cyclically periodic structures. These, however,
give important indications on the behaviour of the disc and on the boundary
conditions that need to be applied in the finite element method.

6.1 Tuned System Model
Assuming that all sectors are equal, the cyclic symmetry of the turbomachinery

can be exploited: a simplified model with one degree of freedom for the fundamental
sector of a bladed disc is reported in Figure 6.1. [38]

mi

ki

mi+1
kc

ki+1

mi−1
kc

ki−1

xi x(i+1)x(i−1)

. . .. . .

Figure 6.1: 1DOF Bladed Disc Model

The model presented considers only one mode of vibration per blade. This is a
rough approximation: in fact, when studying the dynamics of bladed discs, given
their high lightness, the disc can not be modelled as infinitely rigid but its elasticity
must be studied.
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Modal mass and stiffness of each blade, linked rigidly to the disc, are represented
by m and k, respectively. These quantities are expressed as

mi = mb + δmi i = 1,2, . . . , ns
ki = kb + δki i = 1,2, . . . , ns

For a mistuned system, δmi /= 0 and δki /= 0 [38], but in case of a tuned system the
following simplification can be made

mi = mb ki = kb

The structural coupling between adjacent sectors due to the disk flexibility is
represented by a spring with stiffness kc. Despite the many approximation, such
as the rigid disc or the absence of the blade coupling due to the shroud, from this
simple model it is still possible to capture the basic behaviour of a more complex
structure such as that of bladed discs and some general observations can be made.

The governing system of differential equations for each i− th sector is represented
by

miẍi + kixi + kc(xi − xi+1) + kc(xi − xi−1) = 0 (6.1)
It is important to observe that, due to the rotational periodicity, i+ 1 = 1 when
i = ns and i− 1 = ns when i = 1.

From the governing equation of the fundamental sector it is possible to build the
system of the entire bladed disc as

[M ] ẍ+ [K]x = 0 (6.2)
where the mass matrix is a block diagonal one

[M ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mb 0 . . . 0
0 mb

. . .
. . . . . . 0

... 0 mb 0 ...
0 . . . . . .

. . . mb 0
0 . . . 0 mb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the stiffness matrix is a block circulant one

[K] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kb + 2kc −kc 0 . . . 0 −kc
−kc kb + 2kc −kc 0 0

. . . . . . . . .
... −kc kb + 2kc −kc

...
. . . . . . . . .

0 0 −kc kb + 2kc −kc
−kc 0 . . . 0 −kc kb + 2kc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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6.2 Eigenvalues and Eigenvectors
The determinant of the eigenproblem

[K]ϕ = ω2 [M ]ϕ (6.3)
due to the properties of circulant block matrices [see 13] yields the following result:
[38]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

kb − ω2mb

ns−1
2∏︂
l=1

(︂
kb − ω2mb + 2kc (1 − cos (lθ))2

)︂
ns odd

kb − ω2mb

⎡⎢⎣
ns−2

2∏︂
l=1

(︂
kb − ω2mb + 2kc (1 − cos (lθ))2

)︂⎤⎥⎦ (︂kb − ω2mb + 4kc
)︂

ns even

This means that there are (ns − 1)/2 and (ns − 2)/2 repeated frequencies for ns
odd and even respectively. It can be shown that the corresponding eigenvectors are

ϕl = 1
√
nsmb

[︂
1 ejθl ej2θl . . . ej(ns−1)θl

]︂T
(6.4)

where
l = 0,1,2, . . . , ns − 1 j =

√
−1

The angle
θ = 2π

ns
is the intermass phase angle [38] and it corresponds to the angle swept by each
sector of the bladed disc, but it also, as will be explained later, affects the phase
shift of the response between adjacent sectors.

Usually the eigenvectors are scaled so that:
ΦH [M ] Φ = I ΦH [K] Φ = Λ2

where

Λ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω2
1
ω2

2
. . .

ω2
ns−1

ω2
ns

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Φ = [ϕ1 ϕ2 . . . ϕns−1 ϕns ]

and ΦH is the complex conjugate of Φ.
Since the number of pairs of equal natural frequencies is (ns−1)/2 and (ns−2)/2

for ns odd and even, it means that the number of unrepeated frequencies is 1 and 2
for odd and even number of blades:
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• for odd ns the unique frequency corresponds to the 0 degree phase shift

• for even ns the two unrepeated eigenvalues represent the 0 and 180 degrees
phase angle modes

For the pairs of equal eigenvalues, the eigenvectors obtained are not unique as
well: in fact the linear combination of two independent eigenvectors ϕl and ϕns−l,
corresponding to the value ωl, is still an eigenvector since

k (αϕl + βϕns−l) = ω2
lm (αϕl + βϕns−l)

Therefore, the expression for the generic eigenvector is:

αϕl + βϕns−l = α
√
nsmb

⎡⎢⎢⎢⎢⎣
1
ejlθ

...
ej(ns−1)lθ

⎤⎥⎥⎥⎥⎦+ β
√
nsmb

⎡⎢⎢⎢⎢⎣
1

e−jlθ

...
e−j(ns−1)lθ

⎤⎥⎥⎥⎥⎦

= α + β
√
nsmb

⎡⎢⎢⎢⎢⎣
1

cos(lθ)
...

cos((ns − 1)lθ)

⎤⎥⎥⎥⎥⎦+ j
α− β
√
nsmb

⎡⎢⎢⎢⎢⎣
0

sin(lθ)
...

sin((ns − 1)lθ)

⎤⎥⎥⎥⎥⎦
This lead us to describe the pair of independent eigenvectors for a repeated natural
frequencies in terms of their trigonometric component⎡⎢⎢⎢⎢⎣

1
cos(lθ)

...
cos((ns − 1)lθ)

⎤⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎣
0

sin(lθ)
...

sin((ns − 1)lθ)

⎤⎥⎥⎥⎥⎦

with l =

⎧⎪⎪⎨⎪⎪⎩
l = 1,2, . . . , ns − 1

2 for odd ns

l = 1,2, . . . , ns2 − 1 for even ns

which highlights one of the most important properties: the eigenvectors are orthogo-
nal

[︂
1 cos(lθ) . . . cos((ns − 1)lθ)

]︂
⎡⎢⎢⎢⎢⎣

0
sin(lθ)

...
sin((ns − 1)lθ)

⎤⎥⎥⎥⎥⎦ = 0

All the equations are dependent on the parameter l, called harmonic index,
which has a physical meaning: in fact it stands for the number of sign changes in the
displacements of the masses in the model. This parameter coincides with the nodal
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+

N.D. = 0

• = blade location
(a) l = 0

N.D. = 1

+

−

(b) l = 1, l = 5

N.D. = 2

+

−

−

+

(c) l = 2, l = 4

N.D. = 3

+

−

−

+

+

−

(d) l = 3

Figure 6.2: Nodal Diameter Visualization, 6 blade configuration

diameters number introduced for circular disc vibration. It is useful to remember
that the nodal diameters range from 0 to (ns − 1)/2 or ns/2 − 1, depending whether
the number of sectors is odd or even.

Another important result is the fact that the generic eigenvectors ϕl and ϕns−l
can be described only by their first term corresponding to the first sector eigenvector
ϕ

(1)
l and ϕ(1)

ns−l. In fact the complex relationship between the generic n-th sector
and the first one is

ϕ
(n)
l = ϕ

(1)
l · ej(n−1)lθ ϕ

(n)
ns−l = ϕ

(1)
ns−l · e−j(n−1)lθ (6.5)

In this case each sector has only one degree of freedom, but this applies to multi-
degree of freedoms systems too.

Following this observation, if we use the real coordinates to express the relation-
ship between the eigenvectors

{︄
ϕ

(n)
l

ϕ
(n)
ns−l

}︄
=
[︄
I cos(lθ) I sin(lθ)

−I sin(lθ) I cos(lθ)

]︄{︄
ϕ

(1)
l

ϕ
(1)
ns−l

}︄
(6.6)
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and focusing on the first line

ϕ
(n)
l = ϕ

(1)
l cos(lθ) + ϕ(1)

ns−l sin(lθ)

we can note that, since ϕ(1)
l and ϕ(1)

ns−l are orthogonal, this corresponds to obtaining
ϕ

(n)
l from a rigid rotation of ϕ(1)

l .

ϕ
(n)
l

ϕ
(1)
l · cos(lθ)

ϕ
(1)
ns−l · sin(lθ)

φ

Figure 6.3: Eigenvector Rigid Rotation

The angle of the rigid rotation is

φ = lθ = l
2π
ns

(6.7)

which is the phase shift between consecutive eigenvectors and it is called interblade
phase angle. This means that the eigenvectors of the first sector form an orthogonal
base of the space containing all the eigenvectors of the bladed disc: therefore it is
possible to describe the entire structure with an equivalent model of a single sector,
see 6.4.

Finally it is important to observe that the symmetry of the structure is re-
spected from eigenvectors relationship: i.e. when making a complete rotation the
equation (6.5) returns an identity since ejkφ = 1 for l = ns, φ = 2π and n = ns + 1.

6.3 Travelling and Standing Wave
The free vibration response of each modal vector

x(t) = α
√
nsmb

⎡⎢⎢⎢⎢⎣
1
ejlθ

...
ej(ns−1)lθ

⎤⎥⎥⎥⎥⎦ ejωt

can be seen as a travelling wave where the phase of sinusoidal vibration of each
blade changes by a constant value between each adjacent blade. The wave is said to
be travelling forward if clockwise and backward if anticlockwise.

54



Free Vibrations of a Rotationally Periodic Structure

The combination of a forward and a backward wave generates a standing wave

x(t) = α
√
nsmb

⎡⎢⎢⎢⎢⎣
1
ejlθ

...
ej(ns−1)lθ

⎤⎥⎥⎥⎥⎦ ejωt + β
√
nsmb

⎡⎢⎢⎢⎢⎣
1

e−jlθ

...
e−j(ns−1)lθ

⎤⎥⎥⎥⎥⎦ ejωt (6.8)

and as shown in [38], if α and β are chosen so that they are complex conjugates

α = |α|ejψ β = α∗ = |α|e−jψ

and substituting them in (6.8), it is possible to write it as

x(t) = 2|α|
√
nsmb

⎡⎢⎢⎢⎢⎣
cos(ψ)

cos(lθ + ψ)
...

cos((ns − 1)lθ + ψ)

⎤⎥⎥⎥⎥⎦ cos
(︃
ωt+ π

4

)︃

meaning that each blade vibrate with the same frequency albeit with different
amplitude.

6.4 Equivalent Model
It is convenient now to exploit the symmetric property of both the structure and

its modeshape, creating an equivalent model for each nodal diameter l with only
one degree of freedom.

The relationship between displacements of consecutive sectors can be retrieved
from (6.4) and expressed as

xi+1 = xie
jlθ xi−1 = xie

−jlθ (6.9)

therefore by substituting it in (6.1)

mbẍi + (kb + 2kc)xi − kcxie
jlθ − kcxie

−jlθ = 0 (6.10)

which lead to [38]

mbẍi +
[︄
kb + 4kc sin2

(︄
lθ

2

)︄]︄
xi = 0 → ωl =

⌜⃓⃓⎷kb + 4kc sin2
(︂
lθ
2

)︂
mb

where l = 0,1,2, . . . , ns − 1. This is an extremely important result and it is valid for
the analysis of bladed disc as well, meaning that only one sector instead of the full
structure can be analysed.
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mb

kb

x1

4kc sin2
(︂
lθ
2

)︂

Figure 6.4: Equivalent Model

6.5 Frequency Veering
The veering phenomenon consists of natural frequencies coming closer and

then veering away from each other as the nodal diameter varies; it is exhibited by
tuned bladed discs and periodic structure.

To catch this phenomenon the disk contribution to the modal behaviour has to
be considered: in fact, given the high lightness of the structure, the disc can not be
modelled as infinitely rigid but its elasticity must be taken in consideration.

md

k1

mb
k2

md
kc

k1

mb
k2

md
kc

k1

mb
k2

xi yi xi+1 yi+1xi−1 yi−1

Figure 6.5: 2 DOFs per Sector Model

The equations of motion of the system, depicted in Figure 6.5, are{︄
mdẍi + kdxi +kb (xi − yi) + kc (xi − xi−1) + kc (xi − xi+1) = 0
mbÿi +kb (yi − xi) = 0

(6.11)

whose matrix form is[︄
md 0
0 mb

]︄
z̈i +

[︄
kd + kb + 2kc −kb

−kb kb

]︄
zi −

[︄
kc 0
0 0

]︄
zi−1 −

[︄
kc 0
0 0

]︄
zi+1 = 0

where
z =

[︂
x1 y1 x2 . . . yns−1 xns yns

]︂T
; i = 1,2, . . . , ns
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md
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xi yi
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Figure 6.6: 2 DOFs Equivalent Model

Again it is convenient to reduce the size of the problem to an equivalent model
consisting of a single sector, as shown in Figure 6.6. In order to do so, it is important
to remind that

xi+1 = xie
jlθ xi−1 = xie

−jlθ

is still valid and by substituting it in (6.11), the following is obtained

mdẍi + (kd + keq + kb)xi − kbyi = 0 (6.12)

where
keq = 4kc sin2

(︄
lθ

2

)︄
The determinant of the new eigenproblem is [38]

det(Ks − ω2Ms) = mbmdω
4 − [(kd + keq + kb)mb + kbmd]ω2 + (kd + keq) kb = 0

(6.13)
where

Ms =
[︄
md 0
0 mb

]︄
Ks =

[︄
kd + kb + 4kc sin2

(︂
lθ
2

)︂
−kb

−kb kb

]︄

By comparing the natural frequencies obtained from the determinant (6.13) with
the one computed considering the blade and the disc alone

ωb =
√︄
kb
mb

ωd =

⌜⃓⃓⎷kd + 4kc sin2
(︂
lθ
2

)︂
md

it is possible to highlight the frequency veering phenomenon, see Figure 6.7. At
lower nodal diameters the lower frequencies are close to those of the disc alone, while
the higher are close to the ones of the blade. At nodal diameter l = 2 the frequency
difference of the bladed disc is at its minimum. After that the frequencies veer away
from each other and from then on the higher and lower frequencies become closer
to those of the disc and blade alone respectively, opposite to the previous situation.
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Figure 6.7: Natural Frequencies of the 2 DOFs Tuned System
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Chapter 7

Nonlinear Forced Response
of Bladed Disc

The aim of this chapter is to illustrate how a bladed disc is analysed using the
finite element method first, to compute a static or a modal analysis, and then with
harmonic balance in order to compute the forced response to the resonant engine
order excitation.

In fact is now common practice to reduce the model from the full assembly to a
single sector as it improves the computation efficiency without losing in accuracy:
the coupling of the sectors is taken into account for by specific boundary conditions
imposed at the interfaces where neighbouring sectors interact.

So an introduction to the use of cyclic symmetry when dealing with a finite
element model is provided, as well as a look at the contact models used within
harmonic balance method, and finally a strategy for solving the nonlinear forced
response.

7.1 Problem Definition
If a bladed disk is cyclically symmetric its equations of motion can be written in

the following form: [39]

Kqj +Cq̇j +Mq̈j + fi(qj) + fl(qj−1, qj) + fr(qj+1, qj) = pj(t) (7.1)

where j = 1, . . . , N is the sector number; K, C and M are respectively the
stiffness, damping and mass matrix of the single sector; fi(qj) are the internal
forces; fl(qj−1, qj) and fr(qj+1, qj) are the interaction forces with the left and right
adjacent sector; while pj(t) are the external forces applied to the sector.

If the latter is an arbitrary periodic excitation applied to each sector and
distributed similarly over the sector nodes, different only in a fixed phase shift,
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δt, between adjacent sectors, then it can be written as

pj(t) = p(t+ (j − 1)δt) = p(tj) (7.2)

Given the symmetry of the geometry, the excitation and the assembly properties
then also a relationship for the displacements of each sector can be written as

qj(t) = q(t+ (j − 1)δt) = q(tj) (7.3)

Thus by rewriting the equation of motion

Kq(tj) +Cq̇(tj) +Mq̈(tj) + fi(q(tj))+
+ fl(q(tj − δt), q(tj)) + fr(q(tj + δt), q(tj)) = p(tj)

(7.4)

one can see that these equations differ for different sectors by the phase of the time
variable only: once the solution is found, q(t), for one sector then it satisfies the
equations for all the other sectors. [39]

Finally it has to be noted how the interface forces fl and fr are also actually
linked by a relationship involving the phase shift

fr = fl(t+ δt) (7.5)

In literature, [12, 13], the correct mathematical description of the eigenvalue
problem is presented: however, it can be seen that the conclusions drawn from the
above observations are valid and the problem is indeed reduced to a description of
the single sector, albeit dependent on the nodal diameters.

When studying the steady-state response to a periodic excitation, the harmonic
balance method can be used: as the solution is also periodic, it is approximated by
a truncated Fourier series to the first NH harmonics [39]

q(t) ≈ q̃0 +
NH∑︂
j=1

(︂
q̃

(c)
j cos(mjωt) + q̃(s)

j sin(mjωt)
)︂

(7.6)

where q̃(c)
j , q̃(s)

j are the cosine and sine coefficients of the j-th harmonic; while mj is
the specific number of the j-th harmonic.

The same relationship can be written in matrix form

q(t) ≈ (HT ⊗ I)q̃ (7.7)

where q̃ =
{︂
q̃0 q̃

(c)
1 q̃

(s)
1 . . . q̃

(c)
NH

q̃
(s)
NH

}︂T
is the vector containing the harmonic

coefficients, while H =
{︂
1 cos(m1τ) sin(m1τ) . . . cos(mNH

τ) sin(mNH
τ)
}︂T

is
a vector of harmonic functions with τ = ωt and its Kronecker product with the
identity matrix I yields

HT

1×(2NH +1)
⊗ I

Nq×Nq
=
[︂
I cos(m1τ)I sin(m1τ)I . . . cos(mNH

τ)I sin(mNH
τ)I

]︂
(7.8)
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In addition, cyclic symmetry constraints must also be applied in this case: it is
convenient to partition the degrees of freedom as q̃ =

{︂
q̃l q̃i q̃r

}︂T
, respectively left

interface, internal and right interface DOFs. The constraints links the displacements
of DOFs at the interfaces and for the harmonic coefficients they result in imposing
[39]

(HT (τ) ⊗ I)q̃r = (HT (τ + φ) ⊗ I)q̃l (7.9)

where φ is the IBPA.
The relationship between H(τ) and the same matrix but shifted of φ is

H(τ + φ) = diag
[︂
1 t1 . . . tNH

]︂
H(τ) (7.10)

where
tj =

[︄
cos(mjφ) − sin(mjφ)
sin(mjφ) cos(mjφ)

]︄
So, by applying the cyclic symmetry constraints the number of degrees of freedom

is reduced to internal DOFs and the ones laying on one of the two interfaces. [39]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̃
(c)
l

q̃
(c)
i

q̃(c)
r

q̃
(s)
l

q̃
(s)
i

q̃(s)
r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
j

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0
0 I 0 0

cos(mjφ)I 0 − sin(mjφ)I 0
0 0 I 0
0 0 0 I

sin(mjφ)I 0 cos(mjφ)I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q̃

(c)
l

q̃
(c)
i

q̃
(s)
l

q̃
(s)
i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
j

= Gj

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q̃

(c)
l

q̃
(c)
i

q̃
(s)
l

q̃
(s)
i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
j

(7.11)

However, the full finite element method is often reduced in size to a limited
number of master DOFs as the harmonic balance method leads to a sharp increase
in the size of the problem.

The procedure used in the project is based on the hybrid technique shown in
Section 5.2: thus only a set of DOFs where the nonlinear forces are applied is
retained and the dynamic compliance is approximated through mode shapes and a
static correction. Therefore the residue of the reduced model is

r̃ = q̃n −
[︂
A0
nn + Ãnn(ω)

]︂
(Pn − F (q̃n)) = q̃n −An(ω)(Pn − F (q̃n)) = 0 (7.12)

Thus, after applying the constraint, the residue becomes

r̃ = Gq̃n,red −GTAn(ω)(Pn − F (q̃n)) = 0 (7.13)
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where G = diag
[︂
G0 G1 . . . GNH

]︂
, q̃n,red is the vector containing only internal

and left nonlinear DOFs, while P and F (q̃n)) are respectively the external and
nonlinear forces.

It should be noted that the local contact formulation is however determined by
the relative displacements, defined in a local contact reference frame in order to
have a simpler contact description. They are defined as

w(τ) = (HT (τ) ⊗ I)BT q̃r − (HT (τ) ⊗ I)BT q̃l =
= (HT (τ + φ) ⊗ I)BT q̃l − (HT (τ) ⊗ I)BT q̃l

w̃ = (diag
[︂
1 t1 . . . tNH

]︂
− I)BT q̃l (7.14)

where B is the transformation matrix from the global to local system of coordinates.
Due to the model used, the cyclic symmetry of relative displacements and Newton’s
third law, the nonlinear contact forces on the right side can therefore be directly
computed from the contact forces on the left one in the cyclic coordinate system.
[40]

fr(τ) = −fl(τ + φ) (7.15)

Hence why, in Equation (7.13), the entire residue is constrained with the G matrix.
In addition, the relationship between the nonlinear forces in the global coordinates

and local ones is [1]
F = Bf(BT q̃) (7.16)

7.2 Contact Model
At this point the contact model used has to be explicit as it determines the

formulation of the nonlinear forces. These laws link the kinematics of the gap
between the points with the local dynamics, i.e. the nonlinear forces that arise.
Both pressure and force based formulations are available, the two being linked by
the integral over the area. [1]

Also, it is worth to note that the geometry discretization can greatly affect the
results obtained: in fact, while a relatively coarse discretization is sufficient to
determine global vibrational quantities, a much finer local discretization is required
to accurately resolve the contact stress field. [1]

Figure 7.1 shows several formulations that can be used for both normal and
tangential descriptions: the choice of a rigid model over a compliant one may vary
depending on the specific problem. This question, in turn, is mainly of mathematical
nature, as it influences the solution method for the contact problem. Moreover the
ODEs can be stiff if the contact model is stiff compared to the underlying structure
stiffness, leading to an ill-conditioned problem: in this case a rigid model is not
suggested, instead a linear penalization method is used; thus, from mathematical
point of view, the problem becomes fully equivalent to the elastic formulation. [1]
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(a) Normal Contact Laws
(b) Tangential Contact Laws

Figure 7.1: Friction Laws, [1]

However, it is important to remember that the choice of which law to use for the
normal description and which one for the tangential motion cannot be unrelated,
instead the two must be consistent.

So, if the elastic Coulomb model is used, the contact element can be schematised
as in Figure 7.2. For sake of simplicity a 2D element is presented, but the approach
can easily be extended to a 3D model. [see 40]

Figure 7.2: Contact Element

If a force based formulation is used, then the normal force is defined as

fn =
{︄

0 g > 0 separation
N0 + knwn(τ) g ≤ 0 stick

(7.17)

where g is the gap between the pair of contact nodes: an initial value g0 = −N0/kn
can be prescribed by specifying a starting preload N0.
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Meanwhile the tangential friction is defined as [41]

ft =

⎧⎪⎪⎨⎪⎪⎩
0 separation
kt(wt − wt,c) stick
µFn sgn(wt,c(τ)) slip

(7.18)

where wt,c is the relative displacement at the start of the stick phase and µ is the
friction coefficient. A more in-depth description of the stick-slip transition and the
criteria used to determine each state can be found in [42].

As it will be later explained during the AFT description, the nonlinear forces are
determined in the time domain: thus the relative displacements are computed at N
discrete points. So, once a stable description of the damper motion is captured, the
wt,c at the l-th time point can be described as

wt,c(l) =

⎧⎪⎪⎨⎪⎪⎩
wt(l) separation
wt,c(l − 1) stick
wt(l) − ft(l)/kt slip

(7.19)

where

ft(l) =

⎧⎪⎪⎨⎪⎪⎩
0 separation
fpt (l) stick
µfn sgn(fpt (l)) slip

(7.20)

is the tangential nonlinear force at the time instant l, with

fpt (l) = kt(wt(l) − wt,c(l)) = kt(wt(l) − wt(l − 1)) + ft(l − 1)

7.3 Solution Technique
Cardona et al. [43] have proposed a general method to solve the nonlinear dynamic

problem by alternating between time and frequency domain to take advantage of the
ease with which nonlinear forces are evaluated in the time domain while capturing
the periodic behaviour in the frequency domain. However, to use this method the
following requirements have to be satisfied:

• Periodic loading;

• Solution assumed periodic.

In such cases, the solution q can be sampled at N instants in the time domain

ql = q(l∆t) l = 0, . . . , N − 1 (7.21)

with ∆t = h = T/N : T = np ·Tf is the period of the analysis assumed to be np times
the period of excitation Tf , allowing the search of sub-harmonics in the response.
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Since the solution is periodic and sampled at N instants it can be expressed as a
Fourier series

ql = 1√
2N

⎡⎣q̃0,0 + 2
N/2−1∑︂
n=1

(︂
Cnl,0q̃n,0 + Cnl,1q̃n,1

)︂
+ (−1)kq̃N/2,0

⎤⎦ (7.22)

with q̃n,m being the Fourier coefficients and Cnl,m defined as

Cnl,m = cos
(︃2πn
N

l −m
π

2

)︃
where m can be either 0 or 1, i.e. indicating the cosine and sine term respectively.

It should be noted that Equation (7.22) is equivalent to the inverse Fourier
transform of q̃n,m, also denoted as

ql = iftn,ml (q̃n,m) (7.23)

However, the actual number of harmonics NH , needed to approximate the solution,
is usually much smaller than N , therefore the Fourier expansion can be truncated
to the NH terms only

ql =
√︄

2
N

⎛⎝1
2 q̃0,0 +

NH∑︂
n=1

1∑︂
m=0

Cnl,mq̃n,m

⎞⎠
q̇l =

√︄
2
N

2π
T

NH∑︂
n=1

n
(︂
−Cnl,0q̃n,0 + Cnl,1q̃n,1

)︂

q̈l = −
√︄

2
N

(︃2π
T

)︃2 NH∑︂
n=1

n2
(︂
Cnl,0q̃n,0 + Cnl,1q̃n,1

)︂

(7.24)

where NH < N/2 − 1.
The local solution in time domain is obtained by imposing a null residue rl for

every instant tl

rl = Mq̈l +Cq̇ +Kq + F (ql, q̇l) − Pl = 0 (7.25)

However an averaged form of dynamic equilibrium is often verified instead of the
strong form of Equation (7.25) [43]

r̃k,m =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2

√︄
2
N

N−1∑︂
k=0

Ckl,0 (Mq̈l +Cq̇l +Kql + F (ql, q̇l) − Pl) k = 0,m = 0√︄
2
N

N−1∑︂
k=0

Ckl,m (Mq̈l +Cq̇l +Kql + F (ql, q̇l) − Pl)
k = 1,2, . . . , NH

m = 0,1
(7.26)
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This equation differs only for the r̃0,0 coefficient of one half from the direct Fourier
transform of rl, so it is convenient to refer to this relationship as

r̃k,m = fftlk,m(rl) = fftlk,m(r(ql, q̇l, q̈l(q̃n,m))) (7.27)

In fact, when using the Newton-Raphson method to search the solution of the
problem

q̃
(p+1)
nl = q̃

(p)
nl −

[︄
∂r̃(q̃nl)
∂q̃nl

]︄−1

r̃(q̃(p)
nl ) (7.28)

thus computing the Jacobian matrix of Equation (7.13)

J = ∂r̃

∂q̃nl
= I +A(ω)Js (7.29)

it becomes evident that only the tangent stiffness matrix Js has to be calculated

Js = ∂F̃ nl

∂q̃nl
= B

∂f̃nl
∂w̃

(7.30)

This means differentiating the nonlinear forces: the extension of the procedure
to compute the tangent stiffness matrix outlined by Cardona et al. [43] has been
extended to the case of nonlinear forces by Siewert et al. [41] and Afzal et al. [40].
Moreover, it is convenient to recall the derivative of the nonlinear forces with respect
to a generic quantity x [1]

∂f̃nl
∂x

= fft
[︄
∂fnl
∂x

+ ∂fnl
∂w

ift
[︄
∂w̃

∂x

]︄
+ ∂fnl

∂ẇ
ift
[︄
∂∇w̃
∂x

]︄]︄
(7.31)

In this particular case x is the relative displacement vector and the derivative
results in

∂f̃nl
∂x

= fft
[︄
∂fnl
∂w

ift
[︄
∂w̃

∂x

]︄]︄
(7.32)

The relationships between the time and frequency domain as well as the solution
scheme can be summarized in a diagram such as the one of Figure 7.3.

The normal force is dependent only on the w̃n displacement: thus the derivative of
its k-th Fourier coefficient with respect to the cosine and sine h-th Fourier coefficient
of the normal relative displacement are the only non zero derivatives

∂f̃
(k)
n

∂w̃
(h)
n,0

= 1
N

N−1∑︂
l=0

1∑︂
m=0

∂fn(l)
∂wn

Ckl,m cos
(︄

2πh
N

l

)︄

∂f̃
(k)
n

∂w̃
(h)
n,1

= 1
N

N−1∑︂
l=0

1∑︂
m=0

∂fn(l)
∂wn

Ckl,m sin
(︄

2πh
N

l

)︄ (7.33)
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Contact
Model

DFT

iDFT

Newton
Solver

Frequency DomainTime Domain

Figure 7.3: AFT Block Diagram

where the coefficient C is defined as

Ckl,m = cos
(︄

2πk
N

l −m
π

2

)︄

with m = 0,1 indicating either the cosine or the sine function.
Furthermore, Equation (7.33) also shows that the derivative can be compute as

the FFT of the corresponding derivative formulated in the time domain multiplied
by sine and cosine functions

∂fn(l)
∂w̃

(h)
n,0

=

⎧⎪⎪⎨⎪⎪⎩
0 separation

kn cos
(︄

2πh
N

l

)︄
contact

(7.34)

In a similar way the derivative of the tangential nonlinear forces can be computed:
first with respect to the tangential relative displacements

∂ft(l)
∂w̃

(h)
t,0

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 separation

kt

(︃
cos

(︃
h

2π
N
l
)︃

− cos
(︃
h

2π
N

(l − 1)
)︃)︃

+ ∂ft(l − 1)
∂w̃

(h)
t,0

stick

0 slip

(7.35)

and also with respect to the normal relative displacements

∂ft(l)
∂ŵn

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
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(h)
n,0
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µkn cos
(︃
h

2π
N
l
)︃

sgn(fpt ) slip

(7.36)
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So the Jacobian matrix can be constructed as

Js =

⎡⎢⎢⎢⎢⎣
1/2K̃0,0 . . . K̃h,0 K̃h,1

... . . . ...
K̃k,0 K̃k+h,0 + K̃k−h,0 K̃k+h,1 − K̃k−h,1
K̃k,0 . . . K̃k−h,1 + K̃k+h,0 K̃k−h,0 − K̃k+h,0

⎤⎥⎥⎥⎥⎦ (7.37)
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(7.38)

7.3.1 Continuation Algorithm

Figure 7.4: Solution Branch, [44]

Usually it is necessary to compute the response over frequency range, i.e. cal-
culating the solution while varying the Ω parameter as in Figure 7.4. One idea
might be choosing a sequence of frequency points Ω1 < Ω2 < . . . at which the local
solution is computed. Here it is important to recall that this local solution method

68



Nonlinear Forced Response of Bladed Disc

requires a good initial guess. Thus, a possible strategy could be taking the solution
for one frequency point as initial guess for the next: however, in cases where the
solution has turning points with respect to the free parameter, the solver might fail
to converge or require too many iterations to reach a solution. [45]

In fact, the Newton-Raphson iteration, defined in (7.28), fails to converge around
the turning point since the Jacobian matrix is close to singular. Therefore, a
predictor-corrector continuation method is used in order to avoid the convergence
problem: thus the system of equations is augmented with an additional constraint
equation. [40]

In the following steps the “pseudo-arc length” method, see Figure 4.3, will be
presented: albeit not the only possibility, this is the method later used in the
numerical analysis in Forse.

Predictor Step

Let M(i) be a point satisfying r(q(i),Ω(i)) = 0: the goal is to compute M(i+1), a
point that satisfies r(q(i+1),Ω(i+1)) = 0; where q(i+1) = q(i) + ∆q(i) and Ω(i+1) =
Ω(i) + ∆Ω(i). [31]

During the prediction step an initial guess for the solution at the next value of Ω
is made: in particular the guess will lie in a direction tangent to the solution branch.

The solution at the next point can be approximated as [31]

r(q(i+1),Ω(i+1))⏞ ⏟⏟ ⏞
=0

≈ r(q(i),Ω(i))⏞ ⏟⏟ ⏞
=0

+∆q(i)
∂r

∂q

⃓⃓⃓⃓
⃓
M(i)

+ ∆Ω(i)
∂r

∂Ω

⃓⃓⃓⃓
⃓
M(i)

(7.39)

while the norm of the tangent vector e(i) =
{︂
∆q(i) ∆Ω(i)

}︂T
is computed as

||e(i)||2 = ∆qT(i)∆q(i) + ∆Ω2
(i) (7.40)

Now if the norm is set at unity and a(i) = ∆Ω(i) with ∆q(i) = a(i)∆q̂(i), then it is
possible to determine the frequency variation

a(i) = ± 1√︂
∆q̂T(i)∆q̂(i) + 1

(7.41)

The sign is chosen so that the scalar product of two consecutive tangent vectors
yields a positive value.

By substituting the newly defined relationships and imposing a null residue,
Equation (7.39) becomes

��a(i)∆q̂(i)
∂r

∂q

⃓⃓⃓⃓
⃓
M(i)

+��a(i)
∂r

∂Ω

⃓⃓⃓⃓
⃓
M(i)

= 0 ⇒ ∆q̂(i)
∂r

∂q

⃓⃓⃓⃓
⃓
M(i)

= − ∂r

∂Ω

⃓⃓⃓⃓
⃓
M(i)

(7.42)
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Thus it is possible to compute ∆q̂(i) first, then a(i) and finally e(i).
Once the tangent vector is computed, the prediction is made [31]

q
(0)
(i+1) = q(i) + ∆s(i) · e(i) (7.43)

where q(0)
(i+1) is the initial guess for the local solution at next Ω, while ∆s(i) is the

step size.

Corrector Step

As it is only an initial guess, the prediction often does not satisfy the equilibrium:
therefore an iteration is performed until the residue is not zero. The generic k-th
iteration is equal to

r(q(k)
(i+1),Ω

(k)
(i+1))⏞ ⏟⏟ ⏞

r(k)

= q
(k)
(i+1) −An(Ω(k)

(i+1))(P − F (q(k)
(i+1))) (7.44)

Thus, if a Newton scheme is used and since each iteration is forced to be
orthogonal to the tangent vector e, the system that has to be solved is [31]⎡⎢⎢⎣

∂r(k)

∂q

∂r(k)

∂Ω
∆q̂T(i) ∆Ω(i)

⎤⎥⎥⎦
⎧⎨⎩∆q̂(k+1)

∆Ω(k+1)

⎫⎬⎭ =
{︄

−r(k)

0

}︄
(7.45)

where q and Ω are updated after each iteration.
In this chapter, it was shown how to compute the forced response to a periodic

excitation of a tuned bladed disc starting from the finite element model of a single
sector.

First, it was seen which boundary conditions are to be imposed due to cyclic
symmetry. Subsequently the large model was reduced to only a few degrees of
freedom for reasons of computational efficiency: in fact, the harmonic balance
method, used to perform the nonlinear analysis, determines an increase in DOFs
equal to twice the number of the selected harmonics.

Furthermore the contact element formulation has been explained as well as the
AFT scheme used to compute the local solution with the Newton-Raphson method.
Finally one predictor-corrector solution technique has been presented as this is an
optimal method when computing a solution with turning points as the Newton one
fails to converge in these cases.

This chapter therefore concludes the discussion of the theoretical aspects behind
the simulation of the bladed discs forced response: in the next one the results
obtained from a test case provided by Safran will be presented and discussed.
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Chapter 8

Numerical Analysis of a
Bladed Disc

In this chapter, a numerical analysis of a bladed disc, consisting of 24 sectors,
is carried out following the HCF verification guidelines: starting with the creation
of a 3D mesh of the fundamental sector up to the forced response, passing through
modal analysis and the model order reduction.

In addition, multiple sensitivity analyses of the forced response were carried out
to observe how different parameters affect the response level.

For the static and modal analysis as well as the MOR, the free FEM software
CalculiX [25] was initially used, and the results were then validated both with SC03,
a proprietary software of Rolls-Royce, and with Ansys. For the forced response, a
comparison of the results was made between the software developed by Imperial
College of London, FORSE, and the one developed by the Politecnico di Torino.
Finally, Matlab and Python were used for general post-processing.

8.1 Model Properties
The fundamental sector, provided by Safran, has been meshed in Salome with

quadratic tetra elements, as shown in Figure 8.2. An important feature of the
mesh created is to have the side faces of the disc and shroud symmetrical: in fact
this is a necessary condition to apply cyclic symmetry to the sector. This is due
to the fact that, in the cyclic repetition of the sector, the right and left faces are
constrained in a similar way to contact and, therefore, the distribution of the nodes
on the two must be the same.

As far as the material is concerned, it was decided to use standard titanium, see
Table 8.2, modelling only the elastic behaviour, i.e. assuming the absence of plastic
phenomena.
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Figure 8.1: Analysis Outline

Moreover, initially all analyses were carried out enabling the geometric nonlin-
earities: a verification of its effect is then studied later on.
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(a) Meshed Sector
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(b) C3D10, Quadratic Tetra Element

Figure 8.2: FE Model

Element Type N° of Elements N° of Nodes DOFs
C3D10 74470 118725 356 175

Table 8.1: Mesh Properties

8.1.1 Boundary Conditions
First and foremost, the inner ring of the disc is fixed in such a way as to replicate

a reference system integral with the disc. Moreover, the cyclic symmetry hypothesis
has also been used: a first case, see Figure 8.3b, where the boundary conditions
have been applied only to the disc leaving free the shroud, i.e. obtaining a
cantilever blade configuration, will be used to generate the reduced model. While a
second case, Figure 8.3c, where the boundary conditions include the shroud,
is analysed to produce the Diagrams useful for the identification of the resonances.
With cyclic symmetry, one of the side surfaces is considered as the master and the
other as the slave leading to neglect the degrees of freedom of the latter: the choice
is purely arbitrary and does not affect the final outcome.

8.2 Static Loading
Subsequently a centrifugal load is applied to the model at different rotational

speeds, Ω = 0 → 10000 rpm in order to be able to describe its behaviour in function
of the latter. The reasons behind this static analysis are two: first of all it allows to
estimate the mean stresses, necessary to construct the Goodman-Haigh diagram,
acting on the assembly but it is also an expedient, as explained by Genta [23], used
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Young Modulus Poisson’s Ratio Density
[MPa] [−] [kg/mm3]

Titanium 1.16 · 105 0.34 4.507 · 10−9

Table 8.2: Standard Titanium Properties

(a) Fixed Nodes (b) Cantilever Blade (c) Fixed Shroud

Figure 8.3: Boundary Conditions

to take into account the centrifugal stiffening term of the stiffness matrix in the
modal analysis as it is absent in the formulation of general purpose FEM software.
In fact the results of this static analyses then represent the initial condition of
the modal analyses which will lead to computing the prestressed modes.

Of the two configuration, it is clear that the second one is stiffer and rightfully
so as it is more constrained. Furthermore, the cyclic symmetry hypothesis not only
affects the amplitude of the displacements but also how their distribution: for the
cantilever configuration the maximum is at the tip of the shroud, while for the fixed
case it is right in the middle.

8.3 Modal Analysis
Then it was the turn of the modal analysis: each mode family is made up of

12 unique frequencies, equal to the maximum nodal diameter. Moreover, having
performed them for each centrifugal load, it has been possible to observe the variation
across the operating range.

First, compare the plot in Figure ref of the frequency vs. nodal diameters
obtained in the middle of the speed range at Ω = 5000 rpm: again it is evident how
the cantilever blade case is softer. Also it is possible to highlight the presence of
the frequency veering phenomenon in the fixed shroud configuration.
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(a) Ω = 1000 rpm (b) Ω = 10000 rpm

Figure 8.4: Static Displacements of the Cantilver Blade

(a) Ω = 1000 rpm (b) Ω = 10000 rpm

Figure 8.5: Static Displacements for Fixed Shroud

Besides determining different natural frequencies, the type of boundary conditions
also greatly influences the mode shape itself: in Figure 8.7, showing the zero nodal
diameter shape of the 1st mode family, it is possible to see that while the cantilever
configuration shows a bending (1F) of the blade, the other shows a flapwise (FW)
mode shape.
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Figure 8.6: Frequency vs. ND @ Ω = 5000 rpm

(a) Mode 1 @ ND= 0 (b) Mode 1 @ ND= 0

Figure 8.7: Mode Shape Comparison

8.3.1 SAFE Diagrams

The next step is to understand which mode shapes lead to resonances in the
operating range: the tool used here is the SAFE diagram as it highlights only the true
resonances compared to the much more crowded Campbell diagram. Furthermore
only the fixed shroud case is here analysed as it is considered more representative of
the real behaviour, where the contact between the adjacent shrouds lead to a stiffer
structure than a cantilever representation.

As usually only the lower modes are considered dangerous [10, 3], only the first
ten modes, twenty if considering the double multiplicity, for each nodal diameter
have been requested during the modal analysis.

Of these, only the first five are shown from Figure 8.8 to 8.12: where, on the
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left, it is possible to see the SAFE diagram in which the various engine order
excitation are represented with dashed lines, while the black dots indicate the true
resonances, i.e. the intersections between the EO and the correct nodal diameters
as per Table 2.1. Instead, on the right, the corresponding deformed shape for nodal
diameter 0 are pictured.
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Figure 8.8: Mode #1 (FW)
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Figure 8.9: Mode #2 (1E)

8.3.2 Analysis Validation
In order to validate the results from CalculiX, a cross comparison of the first

ten unique natural frequencies calculated in the modal analysis was made. The
comparison involved two FEM software: Ansys and SC03, an in-house software of
Rolls-Royce. In order to have a proper comparison of the results, the same mesh,
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Figure 8.10: Mode #3 (“Mixed”)
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Figure 8.11: Mode #4 (“Mixed”)

the same material, the same boundary conditions and the same set-up were used, i.e.
a first static analysis with centrifugal loading and geometric nonlinearities enabled
followed by a modal analysis of the prestressed modes. Finally, a new study carried
out in CalculiX, identical to the first one except for having disabled the geometric
nonlinear formulation, was also compared.

Figure 8.13 shows the maximum difference, in percentage terms, observed with
respect to the reference value obtained by CalculiX fixed shroud analysis when
comparing the first ten natural frequencies for each nodal diameter. The maximum
variation occurs at the second nodal diameter at speed Ω = 5000 rpm: however, the
peak corresponds to a mere 1.4 %, demonstrating the validity of the results.

It should also be noted that the use of a formulation with or without geometric
nonlinearities has almost no effect on the natural frequencies of the fixed shroud
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Figure 8.12: Mode #5 (1F)
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(c) Comparison @ Ω = 5000 rpm
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Figure 8.13: Fixed Shroud Frequencies Comparison

and indeed the range of variation is quite similar to that of results from Ansys and
SC03.

It would be fair to ask whether it is necessary to use the NLGEOM parameter in
simulations: Figure 8.13 would seem to suggest not, but if the cantilever configuration
is analysed, the situation change. In fact Figure 8.14 shows that for the cantilever
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Figure 8.14: Cantilever Frequencies Comparison

configuration, once a speed of Ω = 5000 rpm is passed, the difference between
turning NLGEOM on and having it off is not negligible at all.

Therefore, given that the reduced model is built from the cantilever configuration
and that the MOR requires the computation of about a hundred mode shapes, the
geometric nonlinearities ave to be considered.

8.4 Reduced Model
To create the reduced model, the hybrid method, discussed in Section 5.2, was

used, given the fact that it is already implemented in FORSE and the ease with
which the data can be obtained from CalculiX. In fact it requires only the mode
shapes of the nonlinear nodes, coming from the cantilever modal analysis, while
for the static correction is computed with the Green Functions card provided by
CalculiX.

80



Numerical Analysis of a Bladed Disc

However, the first choice to make is which nodes should be kept and how many
modes should be retained. The choice fell on 27 nodes on each side of the shroud
and one in the centre of the blade where the force will be applied and the response
measured.

(a) Sector

(b) Left side

(c) Right side

Figure 8.15: Nonlinear Nodes

The mode shapes of the nonlinear node set have been retrieved from the modal
analysis with the command *Node Print , while to obtain the static correction
matrix the *Green card have been used. This card allows to compute the Green
Functions Xj as follows

[K − ω0M ] ·Xj = Ej (8.1)

where Ej a unit force at degree of freedom j, which corresponds to a specific
coordinate direction in a specific node. This calculation is then iterated for every
nonlinear node, but always in the same direction requested in the *Green card.
It is clear then that this coincides with Equation (5.28) if the damping factor is
neglected. Also, this procedure can take into account the nonlinear behaviour if
defined in the previous *Static step.

Furthermore, Appendix A.2 contains the input files with the routine used to
generate the CalculiX outputs.
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Selection Value
N° of nonlinear nodes 55
N° of DOFs per node 3
N° of Modes Retained 100

Table 8.3: Reduced Model Properties

Once the results were obtained, they were post-processed with Python so as
to correctly produce input files in the format required by Forse. However, it is
important to note that this procedure has been later validated in two steps by
comparing:

1. results obtained with Forse using the reduced model built from CalculiX
result and the one obtained with SC03 routines;

2. mode shapes used to generate the input file from which the FRF matrix is
estimated

Starting with the one to one comparison of the results, shown in Figure 8.16,
of a nonlinear forced response, it is possible to notice that the two curves seem to
coincide perfectly showing no differences.

500 1000 1500 2000 2500 3000 3500

Exciting Frequency [Hz]

10
-8

10
-6

10
-4

10
-2

10
0

10
2

D
is

p
la

c
e

m
e

n
ts

 [
m

m
]

ROM comparison (with FLEX)

SC03 ROM

CCX ROM

Nat. Freq.

(a) ROM with static correction

500 1000 1500 2000 2500 3000 3500

Exciting Frequency [Hz]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

D
is

p
la

c
e

m
e

n
ts

 [
m

m
]

ROM comparison

SC03 ROM

CCX ROM

Nat. Freq.

(b) ROM without static correction

Figure 8.16: Comparison of the MOR ( for SC03, * for CalculiX)

As anticipated, in addition to comparing the response obtained with the two
reduced models, also the mode shapes, used to compute the approximated frequency
response function, were also compared: to compare the mode shapes, obtained with
CalculiX and SC03, of the nonlinear node set the Modal Assurance Criterion is used
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MAC(i, j) =
|ψT

i,kϕj,k|2

(ψT
i,kψi,k)(ϕTj,kϕj,k)

(8.2)

where subscripts (i, j) indicate the i-th and j-th complex mode shape vectors along
the k-th component of the global coordinate system, while ψ and ϕ are used to
reference the SC03 and CalculiX modes respectively.

So the final result is a matrix whose size depends on the number of vectors
compared: in this case a 1300 × 1300 matrix is obtained since for each nodal
diameter 100 mode shapes have been retained. In particular the mode shapes have
been ordered based on their nodal diameter: thus the first 100 corresponds to
ND = 0, the next 100 to ND = 1 and so on.

The MAC takes value between 0 (representing a poor correspondence) and 1
(indicating a perfect match): usually values larger than 0.9 indicate a good enough
correspondence, i.e. the mode shapes represent the same motion different only by a
scalar or by a small quantity, whereas small values indicate poor resemblance of the
two shapes. Moreover, it should be noted that even if the mode shapes are complex
the value returned is real. [46]
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Figure 8.17: MAC: complex mode shapes

Figure 8.17 maps the MAC: a good match can be seen in the main diagonal,
MAC(i, i), in all three cases as the values are greater than 0.9. It is also interesting
to note that a good correspondence can be seen on other diagonals: a pattern can
be recognized as these diagonals are found by subsequent shifts of 100 places, like
the number of the modes per nodal diameter, starting from the the main one.

A final verification observing where the peaks of a linear response for EO = 23,
obtained by imposing a very high level of preload N0 = 109 N, of the reduced order
model lie compared to the natural frequencies computed with the modal analysis.

As shown in Figure 8.19, the behaviour of the reduced model with the static
correction deviates greatly from what might be expected by comparing the position
of the response peaks with the natural frequencies obtained from modal analysis. In
addition, a response peak seems to be missing, whereas if the model without static
contribution is considered, then, although there is a deviation in terms of frequency,
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Figure 8.18: MAC: comparison of ND = 0 mode shapes only
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Figure 8.19: Linear Response for EO = 23: analysis of static correction

its behaviour is much closer to what one would expect.
So a new modal analysis has been performed, but this time the cyclic symmetry

boundary conditions have been applied only to the disc and to the nonlinear nodes
of the reduced model lying on the shroud instead of the whole shroud surface. By
looking at Figure 8.20, now the peaks are much closer in terms of frequency to the
natural ones, however the ROM with the static contribution still misses a peak.

What can be observed is that the number of nodes chosen on the shroud affects
the position of the peaks as it gives back a softer reduced model. Moreover the
model without static correction seems a stiffer than the full model constrained
only on the disc and nonlinear node set: this is somewhat expected as the static
correction is meant to introduce flexibility, i.e. local compliance on the shroud nodes.
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Figure 8.20: Linear Response for EO = 23: ωn from modal analysis with CS only
on disc and nonlinear node set only

As to the reduced model with the static correction a thorough investigation has to
be conducted in order to understand whether there is a bug in the code or if an
unexpected phenomenon appeared.

8.5 Forced Response
Having created the reduced model, now it is time to complete the model by

defining the contact elements on the shroud sides.
To model a 3D friction contact a combination of two 2D contact elements, applied

one perpendicular to the other, can be used. This approximation,as it treats the
tangential forces independently, is conveniently used here because it allows to exploit
the advantages of the 2D contact elements, such as computational efficiency and
robustness of calculations, without compromising the accuracy.

A sort of hybrid contact element available in FORSE has been used: this element
applies two 2D elements along the tangential directions, while excluding duplication
of the normal force defined by these elements. Table 8.4 shows the properties
assigned to the contact element: the chosen values for the stiffness and the friction
have been mainly taken from what is suggested in literature. [see 47, 18, 48, 49]

As for the excitation, the force acts on the node at the blade centre along a
direction that is parallel to the shroud side surface. Moreover the response has been

85



Numerical Analysis of a Bladed Disc

Property Value
N° of contact elements 27
kn [N/mm] 1 × 104

kt [N/mm] 1 × 104

Area [mm2] 2.398 976
Friction coefficient µ 0.4
Modal Damping Factor ζ 0.003

Table 8.4: FORSE Setup

measured at the same node.

F0

Figure 8.21: Force ∥ to z

8.5.1 EO Selection
As this particular shroud geometry lead to an impact type of problem, it lead to

convergence issues: therefore to find an out of plane mode shape, thus maximising
the excitation of the tangential sliding, a further CalculiX analysis in which the
normal DOFs of the shroud sides where fixed while leaving the tangential DOFs
free.

Then, by ordering the mode shapes based on their out of plane modal participation
factors and looking at the SAFE diagrams, few engine orders were selected. Table 8.5
shows the engine orders that led to a nonlinear forced response and the excited
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respective nodal diameter. Of these, only the first will be analysed in details in the

EO ND
23 −1
45 −3
52 4

Table 8.5: EO vs. ND

following sections.

8.5.2 Engine Order 52
In order to capture the nonlinear forced response to the 52ndEO, the harmonic

balance method has been used: the sub-harmonics components have been neglected
as their contribution was negligible compared to the super-harmonics one.

It should be noted that the problem here analysed is decoupled as the harmonic
0 is not taken into account, thus only the problem is captured by the forced response
while the static effect is neglected. This choice was made after encountering
difficulties with convergence when studying the coupled problem: as expressed by
Pesaresi et al. [50] while in the early stages this approach is acceptable, later on it
is recommended to study the coupled problem as the harmonic “zero” term plays a
key role in determining the dynamic response accurately, since the system response
may show a great sensitivity to a change of the mean vibrating position.

For the reference case, the blade has been excited by 100 N, with a preload
of 100 N assigned to the contact elements, i.e. assuming an interference between
adjacent shrouds. It should be noted that the response amplitude of the DOF Xi
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Figure 8.22: Nonlinear Forced Response (EO = 52, N0 = 100 N, F0 = 100 N, H = 7)

has been approximated as a summation of the harmonic cosine and sine coefficient
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like

Xi = x0 +
H∑︂
i=1

√︂
x2
c,i + x2

s,i (8.3)

The response over the operating range, pictured in Figure 8.22, shows five peaks
corresponding to the excitation of mode #1 to #5: with the biggest amplitude
registered for mode #3. By looking at the simulation output at the first peak,
it is possible to highlight a softening effect, i.e. the curve is leaning toward the
left, due to the nonlinear behaviour, with a contribution coming mainly from the
super-harmonics EO 104 & 156: even at the second peak a similar behaviour can
be noted while for the rest of the response the system acts linearly.

However, to better observe the nonlinear behaviour of the system, the preload
was reduced to 10 N. Figure 8.23 shows a much more pronounced nonlinearity
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Figure 8.23: Nonlinear Forced Response (EO = 52, N0 = 10 N, F0 = 100 N, H = 7)

resulting from the contribution of super-harmonics: in addition to curves that are
very different from the previous ones, the first peak is recorded at a lower speed.
However, it must also be said that the response levels are lower because of the
greater presence of nonlinearity: in fact, the friction due to the greater relative
displacement between the shrouds of two adjacent sectors causes an increase in
damping.

Clear evidence of how the contribution of super-harmonics is considerably stronger
in the latter configuration with smaller preload can be seen in the Figure 8.24, where
the steady state responses at the first peak of the two configurations are plotted.

As already explained the computed response with the harmonic balance method
is periodic: moreover, it is quite evident the contribution of multiple harmonics for
the system with smaller level of preload.

Before going on to carry out a sensitivity analysis of the system to the change of
parameters in the simulation, it is worth checking that the number of harmonics
used is sufficient as well as the number of mode shapes retained.
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Figure 8.24: Steady-state Response at 1st peak

Figure 8.25 shows almost no variation when looking at N0 = 100 N study: H = 1
is enough to capture the dynamic behaviour of such system as the curves overlap
perfectly. On the other hand, when dealing with a smaller preload as N0 = 10 N, the
number of harmonics needed increase to H = 5: in fact if H = 1 then the predicted
response will miss the important nonlinear contribution from the super-harmonics.

A final test has been done to check if the number of modes retained was enough
to describe the system behaviour. Looking at Figure 8.26, it can be seen that both
level of preloads, while it is clear that the curves are converging towards the 100
modes one, need all the modes retained to properly capture the system behaviour
as even the difference between 75 modes used and 100 is not negligible. Albeit the
level of the response decreases, it can be observed a softening of the system, i.e. the
peaks moves left, as the number of modes used increases.

Moving on to sensitivity analyses: a very important one for the designer is to
observe how the level of preload changes the response. A lower preload will increase
the nonlinearity of the system as the surfaces slide a lot more and they are not
stick any more. This is not necessarily a negative effect as increased work done by
friction results in a more damped system. However it is fundamental to find the
optimum preload, i.e. a balance in the middle of a high N0 resulting in stick contact
and N0 = 0 N equivalent to open shroud.

Figure 8.27 shows that by increasing the preload the assembly gets stiffer: the
peak frequencies moves to the right but the maximum displacement increases as
well, from the figure it is evident that for N0 = 10 N, while the system behaviour is
much more nonlinear, the level of the response is minimized.

Subsequent sensitivity studies focus on the characteristics of the excitation: first
the amplitude F0 is varied, then the direction in which it acts.

In Figure 8.28 a comparison of the receptance, rather than the absolute dis-
placements, obtained by different forcing level is shown: F0 = 10 N return a similar

89



Numerical Analysis of a Bladed Disc

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Speed [rpm]

10
-2

10
-1

D
is

p
la

c
e

m
e

n
t 

[m
m

]

3D

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Speed [rpm]

10
-4

10
-3

10
-2

D
is

p
la

c
e

m
e

n
t 

[m
m

]

v
x

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Speed [rpm]

10
-3

10
-2

10
-1

D
is

p
la

c
e

m
e

n
t 

[m
m

]

v
y

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Speed [rpm]

10
-4

10
-3

10
-2

10
-1

D
is

p
la

c
e

m
e

n
t 

[m
m

]

v
z

(a) N0 = 10 N

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Speed [rpm]

10
-3

10
-2

10
-1

10
0

D
is

p
la

c
e

m
e

n
t 

[m
m

]

3D

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Speed [rpm]

10
-4

10
-3

10
-2

D
is

p
la

c
e

m
e

n
t 

[m
m

]

v
x

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Speed [rpm]

10
-4

10
-3

10
-2

10
-1

10
0

D
is

p
la

c
e

m
e

n
t 

[m
m

]

v
y

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Speed [rpm]

10
-4

10
-3

10
-2

10
-1

10
0

D
is

p
la

c
e

m
e

n
t 

[m
m

]

v
z

(b) N0 = 100 N

Figure 8.25: Choice of the Harmonics

curve to F0 = 100 N, while for higher level a softening effect is experienced, i.e.
the peaks move to the left. In particular F0 = 1000 N shows a more pronounced
nonlinearity across the first three peaks and, similarly to what was experience in
Figure 8.27 for N0 = 10 N, the level of the receptance decreases as the nonlinearity
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Figure 8.26: Modes Retained

introduces a damping effect on the system.
Two new directions of the excitation have been studied: in one the force is parallel

to the global y axis, in the other is parallel to z. The results show that the direction
of the force does not have a negligible effect in the response level: a big difference
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Preload Sensitivity
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Figure 8.27: Preload Analysis
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Figure 8.28: Excitation Level (N0 = 100 N)

of one order of magnitude is registered at the second peak between the force in the
shroud direction and the other two cases.

In addition, the behaviour of the system when physical parameters are changed,
such as contact stiffness and damping, was observed.

92



Numerical Analysis of a Bladed Disc

F0

(a) Force ∥ to y

F0

(b) Force ∥ to shroud

Figure 8.29: F0 alternative directions
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Figure 8.30: Excitation Direction (N0 = 100 N)

First the stiffness parameters kn and kt were changed, albeit the equality kn = kt
has been retained: predictably, as stiffness increases, Figure 8.31 shows a shift of
the peaks to the right as well as a lowering of the response level due to the stiffening
of the assembly. However, there is also a greater nonlinearity of response due to the
increased coupling between adjacent sectors.
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Figure 8.31: kn and kt Effect on the Response (N0 = 100 N)

On the other hand, if one acts on the damping factor, as shown in the Figure 8.32,
it can be observed that not only can a more damped system produce a considerable
reduction in the level of response, with the fourth and fifth peaks almost disappearing,
but also its nonlinear behaviour is profoundly altered.
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Figure 8.32: Damping Effect on the Response (N0 = 100 N)
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8.5.3 Comparison with NOVA
In addition to the forced response analysis with Imperial College in-house code

Forse, these were also carried out with Nova, the code developed at Politecnico
di Torino.

For the comparison two different preload levels (N0 = 10 N, N0 = 100 N) for three
different engine orders (EO = 23, EO = 45, EO = 52) were selected.

However, before going into the details of the correlation between the two codes, it
should be noted that there are some significant differences between the two models:

• the reduced order model was built in Ansys for Nova using the Craig-
Bampton technique instead of the hybrid method

• the reduced model used in Forse misses a local compliance contribution since
the static correction was neglected as its implementation led to a bug

• the local coordinate system defined for the nonlinear contact element is different
as the two codes define the contact surface differently. However this should
not affect the overall response but only the local contact forces.

Therefore, when studying the correlation between the two responses, the first two
points in particular should be kept in mind as they have a non-negligible effect on
the final response.

Figure 8.33 to 8.35 shows the forced responses obtained with Forse (solid line)
and Nova (dotted line): the response is measured at the node in the centre of the
blade where the force is also applied. The three curves represent the three degrees of
freedom in the global system: blue for displacement along x, orange for displacement
along y and yellow for displacement along z.
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Figure 8.33: Comparison of Response (EO = 23)
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Figure 8.34: Comparison of Response (EO = 45)
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Figure 8.35: Comparison of Response (EO = 52)

Although not a one-to-one comparison, the correlation seem to give satisfactory
results: at lower frequencies EO = 23 and 45 gives back both similar curves and
peak location. However, at higher frequencies, in both cases it can be observed
that the Forse model acts more rigidly and the peak moves to the right compared
to Nova. A possible explanation could be that for higher modes the compliance
contribution of the static correction has a greater effect; thus, as it is missing in
Forse, it leads to stiffer system.

In general it seems that the correlation is mode-dependent: in fact for EO = 52
one can notice especially for the x displacement a bad correlation when N0 = 10 N:
the nonlinearity of the stiffer reduced model of Forse seems less pronounced and it
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is notable how the peaks lie at higher frequency compared to Nova.

8.6 A Different Shroud Geometry
Ultimately, the effect of a change in shroud geometry was observed: its most

protruding end was cut off and rotated to fit on the opposite side. Thus obtaining a
more balanced partition of the fundamental sector, but without affecting the overall
geometry of the assembly.

(a) Original (b) Modified

Figure 8.36: Geometry Comparison

The new geometry has then been meshed with the aim of generating a mesh of
similar size to the previous one.

Original Modified
N° of Elements 74 470 69 860
N° of Nodes 118 725 112 824
N° of DOFs 356 175 338 472

Table 8.6: Mesh Comparison

For the finite element model, the same boundary conditions were imposed, i.e.
two different configurations, cantilever and fixed, are used, and the same static and
modal analyses were carried out.
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Thus, the objective here is not only to compare the two forced responses but also
the various intermediate stages of the verification process.

8.6.1 Modal Analysis
First, the results of the modal analysis, i.e. the natural frequencies of the system,

were compared. In Figure 8.37 the comparison between the natural frequencies of
the cantilever configuration are shown: the modified geometry is generally stiffer,
the median of the increase is about 10 %. The explanation can be found in the
better weight distribution, as the shroud is not as unbalanced to one of the sides,
leading to a stiffer assembly.
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Figure 8.37: Cantilever Configuration: Natural Frequencies Comparison

However, when plotting the natural frequencies vs. nodal diameters, the mode
family curves behaviour is quite similar between the two, albeit the modified
geometry lead to higher values.

In contrast, the fixed configuration modal analysis returns a negligible difference
in terms of natural frequencies, Figure 8.39 shows that the maximum registered
difference is about 1.4 %. The reason for this small variation lies in the boundary
conditions, which in this case also interconnect the shroud and not only the disc, so
as the overall assembly is the same no significant difference is found.
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(b) Modified

Figure 8.38: Cantilever Configuration: Natural Frequencies vs. ND
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Figure 8.39: Fixed Configuration: Natural Frequencies Comparison

8.6.2 Forced Response

The first important step, leading to the forced response, is model order reduction:
here, too, efforts have been made to minimise the differences between the two, see
Table 8.7 for a breakdown of the differences.

However, given the “Z shape” of the new shroud, two models, see Figure 8.40 have
been created: one containing only the contact elements, same ones used previously,
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Original Modified
Technique Hybrid Hybrid
N° of NL nodes 55 77
N° of NL elements 27 32
N° of DOFs per node 3 3
N° of Modes retained 100 100

Table 8.7: MOR Comparison

and another one having gap element instead at the extremities.

(a) Contact Only Elements (b) Gap & Contact Elements

Figure 8.40: Modified shroud modelling

The gap element is designed to constrain displacement in the normal direction
between two nodes: a linear force is produced when the prescribed gap between the
two opens (in case of interference) or closes (in case of clearance).

For the forced-response setup, the same reference values of Table 8.4 were used
except for the area, while the gap element properties are shown in Table 8.8.

Engine Order 52

Response to the 52nd engine order excitation, with F0 = 100 N, is shown in
Figure 8.42: it is evident that the mixed contact-gap configuration is more prone to
nonlinear behaviour and that there are more peaks due to a greater contribution
from the super-harmonics. However, similar to the reference case, it can be seen
that for both, a lower preload not only introduces greater nonlinearities but also
reduces the level of response.

Before comparing them to the reference geometry, a sensitivity study on the
effects of the prescribed clearance was carried out. Figure 8.43 shows how moving
from clearance to interference results in a stiffening of the system which gradually
assumes a more linear behaviour. In terms of response, while the first peak seems
to be highly dependent on the gap, for the others the sensitivity to gap variation is
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Figure 8.41: Gap Element Normal Force

Property Element
Contact Gap

kn [N/mm] 1 × 104 1 × 104

kt [N/mm] 1 × 104 -
Area [mm2] 2.227 58 1.408 84

µ [−] 0.4 -
g [mm] - 1 × 10−3

Table 8.8: FORSE Setup

greatly reduced.
Moreover, it can be seen that by imposing an increasing interference, the response

obtained approaches that of the configuration with only contact elements.
Finally, the comparison between the original and the modified shroud geometry,

both configurations, is shown in Figure 8.44.
By first analysing the differences between the original geometry and the new one

with only contact elements, it can be established that the latter results in a more
rigid system and also in higher response levels. However, it is difficult to establish a
rigorous pattern: the stiffening seems to vary according to the excited mode, for
example for N0 = 100 N the first peak is at the same frequency while for the third
there is a difference of almost 1000 Hz and then for the fourth the deviation becomes
smaller again. Finally, it should also be noted that the two geometries also produce
different nonlinearity effects.

As for the reasons for this difference, in addition to the geometry it must be said
that the arrangement of the master nodes used in the construction of the ROM has
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Figure 8.42: Modified Shroud Forced Response for different preload levels

changed: they are no longer on a horizontal line in the middle of the shroud surface
but scattered throughout it. Moreover, the number of nodes and therefore also of
nonlinear elements used is different. It should also be mentioned that the strong
differences found in modal analysis with open shroud may have a significant impact
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Figure 8.43: Clearance Effect on the Response

when building the reduced model, especially when the static correction is omitted.
Finally, what is the impact of the gap elements has to be analysed: the response

obtained presents much more marked nonlinearities than the previous ones and
in general the peaks seem to be in the middle between the response with the new
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Figure 8.44: Forced Response Comparison of the different shroud discretizations

geometry and the original one, although once again it is difficult to draw general
conclusions.
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Chapter 9

Conclusion

In this last chapter, an attempt will be made to summarise what the project
was and what means are available to the designer to carry out the analysis of a
turbomachinery.

First of all, the efficiency with which it is possible to study the behaviour of an
entire bladed disc should be emphasised: the assumptions of cyclic symmetry have
made it possible to reduce the analysis time considerably, for example the creation
of the reduced order model with Ansys using 6 cores took around 4 hours. For the
forced response, harmonic balance method allows results to be obtained in just a
few minutes if the number of harmonics required is not too high.

From this point of view, the tools under development not only allow checks to
be carried out after the design has been completed, but also become a tool for the
design itself in order to better optimise the final product: especially in the early
stages where an extremely accurate result is not as important as it will be later on
when doing the final validation of the prototype.

However, there are also limitations such as being able to use it to study only
periodic vibrations, also there may be numerical difficulties for example in the
simulation of an impact problem or the study of the coupled static-dynamic problem.
Therefore these tools can not entirely replace physical tests, which instead are
necessary for the validation of the tool itself. For the virtual simulation of the
entire engine, however, we need to make progress: for example, the parallelisation
of calculations on several nodes and not just on several cores, which Dr. Salles’
research team is working on.

The project has certainly demonstrated the potential of the tools available: it
would certainly be more interesting to draw a parallel with experimental validations
as a final check on the validity of the methods used.

It must be said that the bug on the reduced hybrid model in Forse must be
corrected, and it must also be said that in addition to the simulations carried out,
the software also allows other simulations, as well as the use of a large library of
elements. It would be interesting to investigate better how much the set of master
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nodes affects the ROM and therefore the results, as well as to study more deeply
the effect of the shroud geometry.

As far as the correlation with Nova is concerned, it was not possible to make a
one-to-one comparison and therefore the results can only be partially interpreted:
however, they seem to be encouraging, further validating the goodness of the
methodologies used.
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Appendix A

CalculiX Input Files

A.1 Modal Analysis

*INCLUDE, INPUT=mesh.inp
**
*Material, NAME=Titanium
*Density
4.507E-09
*Elastic
1.16E+05, 0.34
**
*Solid section, Elset=Sector, Material=Titanium
**
*Surface, NAME=surf_left, TYPE=NODE
left
*Surface, NAME=surf_right, TYPE=NODE
right
*TIE,CYCLIC SYMMETRY,POSITION TOLERANCE=1.,NAME=tie_CS
surf_left, surf_right
*CYCLIC SYMMETRY MODEL, N=24, NGRAPH=1, TIE=tie_CS
0,0,0,0,0,1
**
*BOUNDARY
bot, 1, 3
**
** Static Loading
**
*Step, Nlgeom, Inc=100
*Static
1, 1, 1E-05, 1E+30
*Dload
Sector, CENTRIF, 274155.7, 0, 0, 0, 0, 0, 1
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*Node file
U
*End step
**
** Modal Analysis
**
*Step,Perturbation
*Frequency
20
*SELECT CYCLIC SYMMETRY MODES, NMIN=0, NMAX=12
*Node file
U
*End step

A.2 Reduced Order Model

A.2.1 Modeshapes

*INCLUDE, INPUT=mesh_free.inp
**
*Material, NAME=Titanium
*Density
4.507E-09
*Elastic
1.16E+05, 0.34
**
*Solid section, Elset=Sector, Material=Titanium
**
*Surface, NAME=surf_left, TYPE=NODE
left
*Surface, NAME=surf_right, TYPE=NODE
right
*TIE,CYCLIC SYMMETRY,POSITION TOLERANCE=1.,NAME=tie_CS
surf_left, surf_right
*CYCLIC SYMMETRY MODEL, N=24, NGRAPH=1, TIE=tie_CS
0,0,0,0,0,1
**
*BOUNDARY
bot, 1, 3
**
** Static Loading
**
*Step, Nlgeom, Inc=100
*Static
1, 1, 1E-05, 1E+30
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*Dload
Sector, CENTRIF, 274155.7, 0, 0, 0, 0, 0, 1
*End step
**
** Modal Analysis
**
*Step,Perturbation
*Frequency
200
*SELECT CYCLIC SYMMETRY MODES, NMIN=0, NMAX=12
*Node Print, NSET=NL
U
*End step

A.2.2 Static Correction

*INCLUDE, INPUT=mesh_free.inp
**
*Material, NAME=Titanium
*Density
4.507E-09
*Elastic
1.16E+05, 0.34
**
*Solid section, Elset=Sector, Material=Titanium
**
*Surface, NAME=surf_left, TYPE=NODE
left
*Surface, NAME=surf_right, TYPE=NODE
right
*TIE,CYCLIC SYMMETRY,POSITION TOLERANCE=1.,NAME=tie_CS
surf_left, surf_right
*CYCLIC SYMMETRY MODEL, N=24, NGRAPH=1, TIE=tie_CS
0,0,0,0,0,1
**
*BOUNDARY
bot, 1, 3
**
*Step, Nlgeom, Inc=100
*Static
1, 1, 1E-05, 1E+30
*Dload
Sector, CENTRIF, 274155.7, 0, 0, 0, 0, 0, 1
*End step
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*Step,Perturbation
*Green
*CLOAD, OMEGA0 = 0
NL, 1, 1
*Node file
U
*Node print, Nset = NL
U
*End step

*Step,Perturbation
*Green
*CLOAD, OMEGA0 = 0
NL, 2, 1
*Node file
U
*Node print, Nset = NL
U
*End step

*Step,Perturbation
*Green
*CLOAD, OMEGA0 = 0
NL, 3, 1
*Node file
U
*Node print, Nset = NL
U
*End step
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Ansys Input Files

B.1 Modal Analysis

finish
/CLEAR

! Parameters
E = 1.16e5 ! [MPa]
Nu = 0.34 ! [-]
rho = 4.507e-9 ! [ton/mm^3]
speed = 5e3*2*3.14/60 ! [rad/s]

/PREP7
! Assign Titanium Properties to mat #1
MP,ex,1,E
MP,nuxy,1,Nu
MP,dens,1,rho
MAT,1
! Mesh
/INPUT,’tetra’,’msh’
! Global BC
/INPUT,’bot_123’,’bou’
nlgeom,ON
cyclic, , , ,’FIXED’
! Centrifugal Loading
/SOLU
antype,0
OMEGA,0,0,speed,
rescontrol,define,last,last
solve
finish
! Modal Analysis
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/SOLU
ANTYPE,0,RESTART,,,PERTURB
PERTURB,MODAL
solve,elform
MODOPT,SUBSP,20
MXPAND,20,,,YES
solve

B.2 Reduced Order Model

finish
/CLEAR
/FILNAME,CBCMS,2

! Parameters
E = 1.16e5 ! [MPa]
Nu = 0.34
rho = 4.507e-9 ! [ton/mm^3]
speed = 5e3*2*3.14/60 ! [rad/s]
Nsector = 24

/PREP7
! Assign Titanium Properties to mat #1
MP,ex,1,E
MP,nuxy,1,Nu
MP,dens,1,rho
mat,1

! Mesh
/INPUT,’tetra’,’msh’

allsel
csys,1

! define right shroud local coordinate system
cs,11,cart,52,870,51
! define left shroud local coordinate system
cs,12,cart,4,348,3

! rotate nodal coordinate of right shroud contact nodes
cmsel,s,nl
nsel,r,node,,44000,45000
csys,11
nrotat,all
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! rotate nodal coordinate of left shroud contact nodes
csys,1
allsel
cmsel,s,nl
nsel,r,node,,4400,4500
csys,12
nrotat,all
csys,1
allsel
finish

/PREP7

! Cyclic Symmetry Definition
/INPUT,’high_surface’,’nam’
/INPUT,’low_surface’,’nam’
cmgrp,cyclic,cyclic_m01l,cyclic_m01h
cyclic,Nsector,360/Nsector,1,cyclic,1,,
allsel,all

! Prestress w/ NLGEOM
NLGEOM,ON
/SOLU
ANTYPE,0
! Global BC
/INPUT,BoundaryCondition,’bou’
OMEGA,0,0,speed,
RESCONTROL,DEFINE,LAST,LAST
solve
finish

! Generation of SuperElements
/SOLU
ANTYPE,0,RESTART,,,PERTURB
PERTURB,SUBSTR
allsel,all
SOLVE,ELFORM
SEOPT,CB_matrices,2,1
CMSEL,s,NL,node
M,all,all
ALLSEL,ALL
CMSOPT,FIX,200,,,,,,,,,,SUBS
solve
save
finish
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! Print Matricess for each HI
*do,i,0,Nsector/2

/aux2
file,CB_matricesHI%i%,sub
hbmat,CB_stiffHI%i%,txt,,ascii,stiff,no,yes
hbmat,CB_massHI%i%,txt,,ascii,mass,no,yes

*enddo
finish
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