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Abstract

The present thesis aims at evaluating the advantages of the transformation of a conven-
tional heavy-duty vehicle featured by a 4.5L diesel engine into a full hybrid version by
applying an Adaptive - Equivalent Consumption Minimization Strategy (A-ECMS). A
p2 parallel hybrid configuration has been simulated in a design optimization tool. The
controller has been integrated within the simulation environment under multiple formula-
tions, either extracted from the literature or proposed in innovative solutions. Simulations
have been carried out in MATLAB and validated by comparing the results obtained by the
Dynamic Programming optimization algorithm. In order to understand the behaviour of
the vehicle in multiple traffic scenarios, WHVC (Worldwide Harmonized Vehicle Cycle),
FTP-72 (Federal Test Procedure) and JC08 (Japan Cycle 08) have been used as driving
cycles for the testing campaign.

Il presente lavoro di tesi ha lo scopo di comprendere i vantaggi derivanti dalla trasfor-
mazione di un veicolo pesante spinto da un propulsore termico diesel convenzionale 4.5L
in un veicolo full-hybrid applicando l’algoritmo Adaptive - Equivalent Consumption Mi-
nimization Strategy (A-ECMS). Una configurazione ibrida parallela p2 è stata simulata,
a tal fine, in un tool di ottimizzazione. Il controllore è stato successivamente integrato
all’interno dell’ambiente di simulazione mediante formulazioni multiple, sia estratte dalla
letteratura sia proponendo soluzioni innovative. Le simulazioni sono state eseguite con
l’ausilio di MATLAB e validate confrontando i risultati ottenuti con l’ ottimizzazione for-
nita dall’ algoritmo di Programmazione Dinamica. Per comprendere il comportamento
del veicolo in diversi scenari di traffico, i cicli guida WHVC, FTP-72 e JC08 sono stati
utilizzati per la campagna di prova.
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Chapter 1

Introduction

1.1 Powertrain electrification towards emission control

As well as optimizing conventional drive concepts, motor vehicle manufacturers also rely
on alternative concepts in order to ensure that existing and future noise and emission
restrictions are complied with and reduce fuel consumption. The use of hybrid vehicles as
a means of reducing environmental pollution and increasing driving pleasure and comfort
is becoming increasingly popular. This is mainly driven by the tightening in pollutant
emission standards and fuel economy regulations in the transport sector.

Hybrid vehicles are so defined because their propulsion systems are equipped with two
energy sources, complementing each other: a high-capacity storage (typically a chemical
fuel in liquid or gaseous form), and a lower capacity rechargeable energy storage system
(RESS) that can serve as an energy storage buffer, but also as a means for recovering
vehicle kinetic energy or to provide power assist. The RESS can be electrochemical (bat-
teries or supercapacitors), hydraulic/pneumatic (accumulators) or mechanical (flywheel).
This dual energy storage capability, in which the RESS permits bi-directional power flows,
requires that at least two energy converters be present, at least one of which must also
have the ability to allow for bi-directional powerflows [19].

The powertrain of a conventional vehicle is composed by an internal combustion engine,
driving the wheels through a transmission that realizes a variable speed ratio between
the engine speed and the wheel speed. A dry clutch or hydrodynamic torque converter
interposed between engine and transmission decouples the engine from the wheels when
needed, i.e., during the transients in which the transmission speed ratio is being modified.
All the torque propelling the vehicle is produced by the engine or the mechanical brakes,
and there is a univocal relation between the torque at the wheels and the torque developed
by the engine (positive) or the brakes (negative).

1



1.1. POWERTRAIN ELECTRIFICATION TOWARDS EMISSION CONTROL 2

Hybridization can attempt to address the following points [21]:

• ICE efficiency improvement :the secondary power source assists the ICE, preventing
it from operating at inefficient conditions (e.g. at very high or very low engine
speeds), i.e. operating the ICE nearer its best efficiency.

• ICE downsizing/downspeeding : due to the assistance of the secondary power source,
a smaller ICE or a “longer” final drive can be chosen without compromising perfor-
mance.

• Power auxiliary/accessories electrically

• Higher control over the engine operating point and transients : improved drivability
and lower emissions

• Eliminate or mitigate the clutch losses and (potentially) continuously varying gear
ratio

• Regenerative braking : When the vehicle is braking, its kinetic energy can be recov-
ered by a generator and stored on-board.

• Start and Stop enabled

• Idling reduction: Depending on the sizing of the secondary power source, the engine
can be turned off at stops and lower speed conditions

A possible classification of today’s vehicles in the market can be given based on internal
combustion engine size and electric machine size as shown in Figure 1.1 and detailed in
the following:

Figure 1.1: Hybrid electric vehicles classification [19]
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1. Conventional ICE vehicles : in which the thermal power unit is the only source of
power available to satisfy the power demand from the driver.

2. Micro hybrids : in which start and stop systems allows to switch-off and restart the
ICE during idling, hence reducing fuel consumption and emissions.

3. Mild hybrids : here the ICE is coupled with an electric machine which is enabled to
substitute the ICE while coasting or braking, enabling start and stop plus regener-
ative braking.

4. Full hybrids : which is the classification here adopted, can run in pure-electric, pure
thermal or power-split operating mode. To coordinate such coupling, a proper
Energy Management Strategy (EMS) is required to fully exploit the after-mentioned
hybridization benefits.

5. PHEVs : are featured by the previous characteristics plus the ability to restore the
battery charge by connecting the vehicle to an external power source.

6. EVs : under this category there are vehicles fully propelled by batteries (as PHEVs)
or by hydrogen fuel cells.

Figure 1.2: Networking of control systems in the drivetrain - A. Actuator B. Sensor [17]

Hence, HEVs EMS are characterized by complex logics (Figure 1.2) but allow most
of the basic weaknesses of electric or internal combustion engine drive concepts to be
reduced or even overcome. Despite these advantages, the market penetration of HEVs
is still at its primal state since there are different alternatives in which the automotive
manufacturers are actually involved in their research and development investments:

• Alternative fuels

• Alternative propulsion systems based on conventional frame

• Improvement in engine efficiency mainly driven to the obtain a cleaner combustion
process
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1.2 HEVs battery aspects in a growing circular economy

HEVs are also a key technology to decarbonise the road transport sector, but this is true
until we consider their emissions from the on-board energy sources up to the tailpipe
according to a so-called Tank-to-Wheel Approach (TTW). At this point, by making ref-
erence to Figure 1.3 1, we have to underline that the effectiveness of the hybridization in
terms of emissions is clearly affected by the amount of renewable energy sources adopted
for the production of electric power, hydrogen and gaseous or liquid fuel to propel the
vehicle and, particularly, on the distribution grid across the Countries. Nevertheless,
there is still a certain awareness about the customer acceptance related to HEVs limited
driving range, deployment or failure of batteries and their recharging structures, increase
in vehicle weight, lack of smart grids to withstand with local peak current requests and
maintenance cost.

Figure 1.3: Roadmap for a zero impact mobility (*post Euro 6/VI)

This is enough to state that in the next decade a large number of vehicle manufac-
tured will be run by internal combustion engines - 80% to 85% - with a growing rate
of hybridization and improvements in terms of combustion and after-treatment efficiency.
This statement has been deeply investigated and confirmed by most of the Original Equip-
ment Manufacturers (OEMs) and international consulting groups, as depicted in Figure
1.4.

Moreover, one of the key-issue related to HEVs is the battery ageing and value chain.
At present, lithium-ion batteries are the most common type of battery used in these ve-
hicles; consequently, the projected diffusion of EVs is expected to increase demand for
lithium-ion batteries. The question of what will happen to the huge number of lithium-
ion batteries that reach the end of their life is important for the EU, which has set as a
priority the development of a full value chain for batteries in Europe. How the valuable
materials within each battery can be recovered and recycled will thus become more im-
portant, as will information on the impacts of developing a lithium-ion battery recycling
industry within the EU.

1The Road to Sustainable Fuels for Zero Emissions Mobility - Shell/OVK
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Figure 1.4: Global passenger car sales forecast - Source: Boston Consulting Group

In the paper [2] has been stated that increasing the collection and recycling efficiency
rates of EV batteries in the EU can mitigate dependence on imported materials and help
to retain the value of recovered materials in the EU economy.

• It is estimated that by 2030, e408 to e555 million in current prices could be recov-
ered from the four key materials included in the study, i.e. cobalt, nickel, aluminium
and lithium from EV batteries.

• In 2040, these figures could increase to around e1.9 billion to e2.6 billion

• Regarding cobalt, a critical raw material, 2,922 tonnes of material worth of e213
million could be recovered by 2030 up to 4,058 tonnes with a value of e295 million;
this amount is 41% of all cobalt imports into the EU in 2012. In 2040, 18,763 tonnes
of material worth around e1.37 billion could be recovered.

• The value of nickel that could be recovered in 2030 (e157 million) is around 9% of
the value of net EU imports in the year 2015.

• Further potential benefits include job creation in the lithium-ion recycling sector for
the collection, dismantling and recycling of EV batteries.

• The study also concludes that recycling certain materials in lithium-ion batteries,
as opposed to extracting the raw material, may mitigate CO2 emissions. The net
savings of over 1 million tonnes of CO2,eq in 2040 are equivalent to the CO2 emis-
sions of producing 261,000 tonnes of aluminium, which is comparable to the annual
production of two primary aluminium smelters.
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The lithium-ion battery value chain can be divided into six key segments (Figure 1.5),
starting with the mining and processing of the raw materials right up until the recycling
of the end product, with cell component, cell manufacturing, battery pack manufacturing
and electric vehicle manufacturing between.

The extraction of minerals and raw materials used in lithium-ion batteries along with
the processing of these materials generally takes place outside the EU. China is the leader
in cell-component manufacturing and cell-manufacturing; in 2014, it had a 41% share of
the global automotive cell manufacturing capacity, while the EU had a 5% share. The
next stage of the process is battery-pack manufacturing, which accounts for approximately
40% of the cost of an EV battery. Regarding EV manufacturing, similar to the US and
Japan, the EU has a global market share of 22% of the top 20 plug-in hybrid electric
vehicles (PHEV) and battery electric vehicles (BEV) producers, while China is the leader
with a 33% market share. As for the recycling of EV batteries, although the EU is in
a strong position (mainly due to the legislative requirements in the field) it is not yet
prepared to manage a large number of end-of-life batteries (Lebedeva et al., 2016 ). One
part of the value chain that seems to be missing from Figure 1.5 is the option for second-
life applications. This would typically appear between EV manufacturing and recycling,
and should be considered when interpreting the value chain.
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Chapter 2

HEVs Control Strategies Optimization

Hybrid Electric Vehicles (HEVs) offer improved fuel economy and lower emissions than
conventional vehicles, mainly due to the possibility of engine downsizing, recovery of
vehicle kinetic energy (regenerative braking) and power-split (thermal-to-electric) opti-
mization. Plug-in Hybrid Electric Vehicles (PHEVs) might also take advantage of an
external electrical charge - grid - leading to further fuel and pollutant reduction 1

Despite any hybrid vehicle requires a control strategy, as far as enough energy is
stored in the battery, PHEVs adopt a charge-depleting operation strategy: if the required
traction power can be fulfilled by the electrical source, which is usually bigger and more
performant than HEV, only the battery provides power until its almost total depletion
( SOCmin ∼= 10 − 15%). Given that HEVs can uniquely run in charge-sustaining mode
(SOCmin ≤ SOC ≤ SOCmax ), a smart control strategy is required to fully exploit the
potential of HEVs. In Figure 2.1 the two behaviour are easily depicted:

Figure 2.1: Charge-Sustaining vs. Charge-Depleting behaviour

1The last condition is even more true if the grid is not powered by carbon-based fuel sources, and if
we consider the tank-to-wheel emissions rather than well-to-wheel ones.

8
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The control strategy consists in an algorithm that regulates the operation of the power-
train and flashed into the Engine Control Unit (ECU). Potentially, there is a large number
of control strategies that can be applied on a given HEV architecture but the optimal
one(s) depends on the target of the control strategy, e.g fuel consumption, battery SOC,
operative costs, thermal management and classified according to the application and the
on-board implementation attitude. Thus, the algorithm takes input data, e.g. the vehicle
speed, the vehicle acceleration and the road grade, and makes decisions on the power
demand from specific vehicle components.

Several HEV Battery Management Strategies (BMS) have been proposed in literature
to identify the optimal control strategy. It follows that optimization methods can roughly
be divided into two main categories and 4 subsets [21]:

• Not on-board implementable

– Global Optimization Methods used for benchmark

1. Dynamic Programming

2. Genetic Algorithm

3. Pontryagin’s Minimum Principle

• On-board implementable

– Instantaneous Optimization Methods

1. Equivalent Consumption Minimization Strategy (ECMS)

2. Adaptive - ECMS

– Heuristic Methods

1. Fuzzy Logics

2. Rule-Based Methods

3. Neural Networks

– Artificial Intelligence based Methods

1. Problem-Supervised Machine Learning

2. Problem-Unsupervised Machine Learning

3. Reinforcement Learning

For the sake of simplicity, a detailed overview of the computational methods adopted
in the present work will be discussed in the following sections



2.1. GLOBAL OPTIMIZATION METHODS 10

2.1 Global Optimization Methods

Global optimization method are powerful tools to describe deterministic phenomena, i.e.
for which a condition exists for each time step and boundary conditions are known a-
priori, widely used as a benchmark stand in control application. For such methods, the
optimality is given by finding the best path between the value of a given state s at time t
and the value of its successor states at time t+1, hence finding the solution to the Bellman
equation [3]:

vπ(s) = Eπ[Rt+1 + γGt+1|St = s] (2.1)

where v is the value of an action at a given state s under the policy π; E is the
Expected value for the policy π; S is the global set of states; γ is known as discount
factor,usually closer to 1; R is the Reward, expressed as the rate of probability that a
condition could exists or not at time t+1; G is the Expected Return, i.e. the sum of
Rewards in the following time steps until the end of the mission.

Once the policies π (or F) - sets of control strategies - are defined, the one that
optimize the objective function over the entire mission is chosen. The optimal policy π∗

(or J) is derived by the following formulation:

π∗(s) = min
π(s)∈F (s)

J(π(s)) (2.2)

Problem states are thus defined for each time step of the mission as

π∗(t) = min
π(t)∈F (t)

J(π(t)) (2.3)

for which state-variable constraints (e.g. Battery SOC final value) are applied at each
time step.

SOCT = SOCt=0 ± ε (2.4)

where ε is a small number used for creating a thin tolerance band. The SOC con-
straint is fundamental for having comparison between different HEV architectures and
the conventional vehicle (regulation final SOC limitation).
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2.1.1 Dynamic Programming

Dynamic Programming (DP) algorithm is an optimization technique widely adopted in
the identification of the optimal control strategy in hybrid vehicles. The methodology
was first introduced by Richard Bellman and Robert E. Kalaba in 1965 [3] and consists
in finding the optimal solution - optimality - for specified sets of problem discretized on
n-stages, i.e. a multi-stage decision-making process, which involves:

1. A dynamic system

2. An objective function

3. Control and state grids

4. Control variables : Action taken by the system (e.g. power-flows)

5. State Variables : System operating conditions (e.g. Battery SOC, ICE ON/OFF)

The last two items build the computational grid expressed as a multi-level combination
of both. The grid is then formed by nodes.
The DP optimization algorithm consists of two phases [21]. The first phase is the Backward
phase in which the cost function is evaluated considering all the combination of State of
Charge and Engine States, i.e. the state variables at the end of the interval and all the
combinations of control variables (PF and GN) found within. The fuel consumption in this
interval is computed by reading from the configuration matrix the fuel consumption at the
extreme of the interval and integrating them over the time interval. Also the engine state
at the end of the interval is read and thanks to the battery model it is computed the SOC
value and a score is assigned. The tool detects the best combination of control variable for
all possible combinations of state variables. The procedure is iteratively repeated moving
backwardly in the time grid, from the last to the first interval defining step-by-step the so
called “Cost-to-Go” function, the “shortest route” . At each backward step is fundamental
to save the optimal function in order to follow the optimal path in the opposite direction
during the following Forward phase once the overall backward procedure is over. Table 2.1
summarizes advantages and disadvantages of a dynamic programming controller, while
Figure 2.2 represents an example of a DP computational grid.

Figure 2.2: Dynamic Programming Computational Grid
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Advantages Disadvantages
- Complete control on non-differential - Mission to be know a-priori

non-linear problem - Large constraints on discretization
- Wide application - Large memory requirements

- Convergence to the optimal solution for storing intermediate steps
- Benchmarking - Not on-board implementable

Table 2.1: Dynamic Programming advantages and disadvantages

2.2 Instantaneous Optimization Methods

These methods involve the identification of an Optimal Energy Management Strategy
(Optimal EMS) within the thermal and electrical power-unit output, based on the in-
stantaneous minimization of a cost function for each time step of the mission. If the cost
function is properly defined, the final result can be closer the global optimum derived by
a DP controller and can be implemented on-board due to its low computational cost.

2.2.1 Equivalent Consumption Minimization Strategy - ECMS

ECMS consists in minimizing the cost function expressed as the sum of the internal
combustion engine (ICE ) fuel consumption and the energy conversion performed by the
on-board energy sources, i.e. batteries and electric machines (EM ), in terms of equivalent
consumption through a suitable conversion factor. The latter must be tuned according to
the mission in order to reach the optimality and it is known as Equivalence Factor (EF).
ECMS Cost Function is thus expressed as:

Jt = ṁICE(PICE(t)) + ζ(PEM(t)) (2.5)

In literature there is a wide range of ECMS formulation; the commonest one was in-
troduced in 2005 by Musardo et al. [4], which expresses the equivalent fuel consumption
of the EM as:

ζ(PEM(t)) = γ · sdis ·
1

ηbatt(PEM)ηEM(PEM)
· PEM(t)

Hi

+

(1− γ) · schg · ηbatt(PEM) · ηEM(PEM) · PEM(t)

Hi

;

γ =
1 + sign(PEM(t))

2
(2.6)

where ηbatt and ηEM are the battery and the electric machine efficiencies as a function
of the actual mechanical power PEM(t) drawn by the electric machine, respectively, while
Hi is the lower heating value. schg and sdis represent the Equivalence Factors (EFs) and
they are the control parameters of the ECMS approach, kept constant during the whole
mission and cycle dependent.
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The last statement is a key-point, since one of the drawbacks of this algorithm implies
that an optimal solution is obtained if the cycle is known a-priori. PEM(t) > 0 in traction
for convention, so that:

• γ = 1 i.e., PEM(t) > 0 the equivalent consumption is related to the electric motor
only running in a pure electric mode

• γ = 0 i.e., PEM(t) < 0 the equivalent consumption is related to the ICE-side and
provides energy to increase the battery State of Charge (SOC) of the EM which
works as a generator i.e., vehicle running in Battery-Charging mode

• PEM(t) = 0 the equivalent consumption is null, and the vehicle operates in a pure
thermal mode

• Otherwise, the vehicle would run in Power-Split mode in which the EM acts as
a motor providing additional traction power to assist the ICE towards a higher
efficiency operating point

The traction efficiencies are at the denominator in order to get a positive value, given
that the onboard powertrains must hold a power to overcome losses and vehicle resistances
and satisfy the driver requests . The optimal criterion for each time step and the relative
boundary conditions (BCs) follow:

[Popt
ICE(t), P opt

EM(t)] = arg minPICE(t),PEM (t) Jt if Preq ≥ 0

[Popt
ICE(t) = 0, P opt

EM(t) = Preq] if Preq < 0

(2.7)



Preq(t) = PICE(t) + PEM(t)

SOCmin ≤ SOC(t) ≤ SOCmax

0 ≤ PICE(t) ≤ PICE,max

PEM,min(t) ≤ PEM(t) ≤ PEM,max

(2.8)

Apart the common formulation, a correlation at battery terminals is introduced with
the aim of reducing the control parameters needed for calibration:

Jt = ṁICE(PICE(t)) + ζ(η · Pbatt(t)) (2.9)

The battery power Pbatt appearing in the formula indicates the net electrical power as
seen at the battery terminals, which differs from the electrochemical power Pchem i.e., the
power correlated to the effective SOC variation. If one assumes that the relation between
this quantity and the electrical power can be represented as a battery charge/discharge
efficiency ηbatt, then:
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schg(t) = λ(t) · ηbatt while charging

sdis(t) = λ(t)
ηbatt

while discharging yields to

(2.10)

schg(t) = η2batt · sdis(t) (2.11)

Moreover, a SOC penalty function has been introduced [19] to guarantee the charge-
sustainability of the algorithm and to fix the SOC within the admissible range defined
by the upper and lower SOC value. The penalty function plays a critical role to achieve
a reliable online estimation of the battery SOC and its deviations from the target value.
Thus:

p(SOC) = 1−
( SOC(t)− SOC0

0.5 · (SOCmax − SOCmin)

)a
with a odd number ∈ N (2.12)

so that the ECMS objective function 2.5 can be modified by multiplying the equivalent
consumption by the penalty function 2.12 as:

Jt = ṁICE(PICE(t)) + ζ(PEM(t)) · p(SOC) (2.13)

• if p(SOC)<1 a lower cost is attributed to the battery energy, thus making the
discharge more likely when the SOC is above the reference value.

• if p(SOC)>1 a higher cost is attributed to the battery energy to make its discharge
less likely.

Those statements are summarized in Figure 2.3. Equation 2.5 has been used as the
objective function of the present work.

Figure 2.3: SOC penalty function
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2.2.2 Adaptive - ECMS

ECMS Algorithm has several drawbacks:

• Constant EFs : The algorithm cannot adapt to unpredicted variations in control and
state variables following different driving patterns or stochastic phenomena. The
design parameters i.e., the Equivalence Factor, are kept constant during the whole
mission

• Driving Cycle: Even if a proper calibration is made up for a certain layout, the EFs
are cycle dependent and a given pair cannot be used for different traffic scenarios.
This implies that the driving cycle must be known a-priori but this condition, which
is not deterministic, cannot be always satisfied even if we have a sophisticated Global
Positioning System

• Computational Cost : Despite the lower time required for solution with respect to
DP, ECMS requires a high level of hardware to be executed online

A solution to overcome the uncertainty and the lack of flexibility coming from ECMS
in defining the EFs is driven by the Adaptive – ECMS (A-ECMS), which adapts the
EFs as a function of a feedback obtained from vehicle components such as batteries,
tachometer, torque control or after-treatment system. Thus EFs can be instantaneously
or periodically updated, making the algorithm adaptable to stochastic phenomena and
more prone to be executed online with modern ECU.

In literature several adaptive formulations have been proposed. For the easiness of
consultation we can resort them in the following categories, listed in growing order of
implementation complexity:

• EFs adaptation based on SOC feedback from batteries [4], [5], [6], [19]

• Casual set-theoretic method for online EFs estimation [7]

• EFs adaptation based on speed prediction [8] [9]

• EFs adaptation based on driving style recognition [10], [11]

• EFs adaptation based on actual pollutant emissions [12]

• EFs adaptation based on torque control [13]

• EFs adaptation based on Intelligent Transportation System [14], [15], [16]

The present work will discuss the implementation of three different control strategies
with the aim of identifying and proposing the proper algorithm for the study case under
investigation. In particular:

1. Instantaneous (or continuos) A-ECMS

• EFs adaptation based on the instantaneous SOC feedback

• The algorithm initialization is based on EFs obtained from the Design of Ex-
periment Approach

• Highest computational time with respect to other approaches
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2. Discrete (or periodic) A-ECMS [19]

• EFs adaptation based on periodic SOC feedback and tuning performed by a
proportional derivative controller

• Requires high level of calibration

• Lower computational time with respect to the instantaneous approach

3. Hybrid A-ECMS

• It is a brand-new controller proposed after a deep understanding of the con-
troller and its literature

• EFs adaptation is based on a periodic update as a function of the SOC feed-
back and a PI controller, with similar characteristics compared to the discrete
approach, plus an instantaneous correction based on vehicle speed and accel-
eration

• Implies a computational time in the average between the previous strategies
and the highest level of calibration



Chapter 3

Model

The present work takes advantage of a pre-existing tool developed for layout and control
startegy optimization of HEVs called HEVBox [25]. Such optimization tool runs on
Matlab and it is used for HEVs Research and Development purposes. Its workflow can
be summarized as follows:

1. Model Input : the user defines the HEV architecture and characteristics (vehicle
setup and powertrain data), the driving cycle and a powerflow strategy

2. Data Processing : the main kernel of this optimization tool implies a pre-processing
phase - during which the vehicle virtualization and the time grid are performed based
on the model input - and a following one in which the feasible outputs obtained from
the pre-processing phase are used to compute the objective function and state the
optimal policy of the driving mission, called optimization phase.

3. Post Processing : Several scripts are available to report and analyse the solutions
obtained

In the following section, a detailed overview of these steps will be presented.

17
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3.1 Model Input

3.1.1 Architecture Definition

The optimization tool defines architecture the following dataset:

• Engine displacement [l]

• Electric machine peak power [kW]

• Power-to-Energy (PE) Ratio [W/Wh] 1

• Electric machine coupling speed ratio with the main shaft

• Final drive speed ratio

• Cratemax,dis

• Cratemax,chg

• Charging equivalence factor coefficient schg

• Discharging equivalence factor coefficient sdis

The C-rate is a measure of the rate at which a battery is being discharged. It is defined
as the discharge current divided by the theoretical current draw under which the battery
would deliver its nominal rated capacity in one hour. A 1C discharge rate would deliver
the battery’s rated capacity in 1 hour. A 2C discharge rate means it will discharge twice
as fast (30 minutes). Battery packs with higher PE ratios, have less storage capacity [Wh]
over which to distribute peak power demand [W], and hence require thinner electrodes
to deliver higher power. Thinner electrode cells, while enabling higher power outputs,
are more expensive on a per kWh basis due to higher costs associated with the inactive
materials, such as separators and current collectors.
As reported in the abstract, a p2 parallel hybrid configuration has been used to assess
the transformation of a conventional heavy-duty vehicle featured by a 4.5L diesel engine
into a full hybrid version.

The expression parallel hybrid drive (Figure 3.1 [17]) is used to describe an arrange-
ment of hybrid components in which the electric motor and the internal-combustion engine
can both individually deliver their output to the drive. If necessary, the outputs can be
combined by means of mechanically coupling the motor and the engine to the drive. The
possibility of power addition allows the machines to be made with relatively small di-
mensions without adversely affecting the driving performance. The components that are
required are designed according to the most frequent area of use.

There are different types of implementation. The electric motor can be directly flanged
to the crankshaft (crankshaft-mounted starter-alternator) or coupled to the internal com-
bustion engine by a belt drive. Both drive sources can be used together or individually
to propel the vehicle. Since only one electric motor is incorporated in the system, the
vehicle cannot be electrically powered while the battery is being charged.

1Source: http://energy.mit.edu/news/whats-cost-got-to-do-with-it/
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Figure 3.1: Parallel Hybrid configuration
1. Internal Combustion Engine; 2. Fuel Tank; 3. Electric Motor/Alternator;
4. Coupling devices; 5. Inverter; 6. Battery

The electric motor can only operate as an alternator or for drive purposes. If a coupling is
integrated between the electric motor and the internal-combustion engine (Figure 3.2 2),
the engine does not have to be carried along when the vehicle is being propelled using
purely electric power. Such arrangement is known as p2 single-shaft parallel hybrid archi-
tecture in which the electric motor is mounted between the engine and the transmission
unit, with the capability to decouple it from the engine through a specific clutch. The
power flows from the battery to the electric motor through an inverter and a torque cou-
pling device provides the connection to the ICE. All the power is transferred to the front
axle.

Figure 3.2: P2 Parallel Hybrid configuration

2Source: Mathworks
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Hence, given the mechanical coupling between the engine and the driven wheels, the
control of the parallel hybrid drivetrain is more complex but the major advantages of a
parallel configuration with respect to a series configuration are:

• A generator to transform the mechanical power coming from the thermal unit into
electrical power to sum up to the power coming from the batteries is not required

• The traction motor is smaller

• Multiple power conversion are not required - higher driveline efficiency

• Drag torque losses can therefore be avoided

These advantages lead the larger diffusion of the parallel configuration with respect
to the series one; in the present work a p2 configuration, perhaps, has been introduced.

Powerflow Strategy

Hybrid architectures can satisfy driver’s power request by using the thermal power unit
and electrical machines exclusively or in conjunction. The way in which this happens is
defined by the powerflow - from now on PF. In HEVbox, four powerflow categories are
defined:

1. Pure Electric (PE): the electric motor alone provides the power required to move
the vehicle and the engine is off. Regenerative braking is included in this category.

2. Pure Thermal (PT): the engine alone provides the power required to move the
vehicle and the electric machines are off. Electrical power drawn from ICE auxiliaries
are also accounted for in the battery SOC variation during this operating mode.

3. Power Split (PS): both the engine and electric machine(s) provide power to propell
the vehicle.

4. Battery Charging (BC): the engine is on and the electric machine acts as a generator.
The engine provides more than the power required to move the vehicle; the excess
power is converted into electrical energy by the electric machine and stored into the
battery. It is assumed that this operating mode is only allowed when the vehicle is
in motion.

The operating mode (Figure 3.3) is defined by the gearbox gear number (GN) and
the powerflow (PF), which represent the control variables of the simulation environment.
Based on the vehicle operating conditions, there may be some restrictions on the powerflow
that can be selected by the control strategy optimization algorithm. These restrictions
always apply to individual time-steps. In particular, the vehicle is forced to stay in pure
electric mode when braking, which means that regenerative braking is always performed
when possible. Moreover, is also forced to stay in pure electric mode when it is at stand-
still. For architectures featuring a single electrical machine on the primary axle, the
powerflow can be identified by a unique parameter that defines the share of the power
demand provided by the electric machine, expressed as:

α =
PEM,p

Preq
[−] (3.1)
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Figure 3.3: Hybrid Operating Modes

where PEM,p is the power provided by the electric machine (or absorbed, if negative)
and Preq is the power required for motion. p2 architecture powerflow strategy is hereby
reported in Table 3.1:

p2 powerflow PU involved α
PE EM 1
PT ICE 0
PS ICE+EM 0.25; 0.5; 0.75
BC ICE+EM −0.5;−1;−1.5

Table 3.1: p2 architecture powerflow strategy

3.1.2 Electric machine

The electric machine adopted is of the brushless permanent magnet type, that can work
either as a generator and as a motor. Such electric motors are commonly adopted in hybrid
vehicles given their high efficiency, compactness, easiness in maintenance and control plus
a high energy density. The electric propulsion system, thus is made up of three main
components:

• Electric machine: can propell the vehicle (PE,PS) or recharge the battery (BC)

• Power converters

• Electronic controllers
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3.1.3 Battery pack and electrical energy accumulators

Lithium-ion batteries have been adopted in this study as the secondary power storage
device. Irrespective of the design of the hybrid vehicle (serial, parallel or split-power
hybrid), the vehicle electrical system consists of at least two subsystems with different
voltage conditions:

• The traction power supply for supplying the electrical part of the drivetrain; the
nominal voltage is significantly above 42 V in this case, whereby the battery voltage
can be less than the traction power supply voltage

• The conventional 12 V vehicle electrical system for supplying the body components
(power windows, radio etc..) and the internal-combustion engine (engine control
unit, radiator fan, additional water pump etc.)

• A sub-power supply with different voltage conditions if necessary

Both the traction part and the body part of the vehicle electrical system are equipped
with an energy accumulator. A facility for connecting the voltage levels using a DC/DC
converter is usually provided. The provision of a power supply network with different
voltage conditions and the way in which it is connected to the other sub-power supplies
depends on the design of the respective hybrid vehicle. In order to ensure that the battery
operates reliably with a high voltage condition in a hybrid vehicle, a control unit (battery
management system) is needed that monitors the individual battery components and
controls charging and discharging, thermal management and various safety functions.

SOC: State of Charge

The energy accumulator is operated at an average charge level in order to achieve good
recuperation current absorption and good power output in order to assist acceleration.
High charge levels provide high power output, and low charge levels make it possible to
feed back large quantities of recuperated electrical energy. The SOC can be computed as:

SOCt = SOCt−1 −
∫

Ibatt
Cbatt

dt (3.2)

The limit thresholds of the SOC are imposed to be [0.4-0.8]; the battery life is assumed
to be 150000 Ah and the maximum current transferable through a cell is 120 A.
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Energy accumulator for Heavy-Duty Hybrid Systems

Nickel metal hydride batteries (NiMH) have been used in the last decade as standard
for hybrid vehicles. Nickel cadmium batteries are not used in modern vehicles given the
toxicity and the environmental harm. Lithium battery systems are undergoing further
development for use in hybrid vehicles. Compared to NiMH systems, lithium systems
provide even higher energy and power densities at cell voltages of approximately 3.6 V,
high energy efficiency and long life. These systems are therefore mainly used in portable
electrical systems (mobile phones, laptops), where they have essentially replaced NiMH
batteries. Efforts are currently being made to subject these cells to further development
for use in hybrid vehicles. Special attention is being paid to the use of low-cost and
reliable electrode materials (e.g. LiMn2O4, LiFePO4).
The use of lightweight Li metal and the properties of the other materials involved (graphite
as the anode material) make it possible to manufacture extremely thin electrodes (¡ 0.5
mm), which can be used to create structures with extremely high output (e.g. 3 kW/kg
with SOC 60 %, 25 ◦C and 10 s pulse duration).
Because of the high energy content of the electrode material and the high cell voltage,
special measures are required:

• Use of organic electrolyte with special conductive minerals

• Safety structures that prevent the cell from exploding if it becomes damaged

• Monitoring of individual cells in order to avoid overcharging and overheating

The positive electrode consists of special metal oxides (Ni, Mn, Co or mixtures) that
can store lithium ions. These ions can move to the counter-electrode and back during
the discharging/charging process in a reversible mechanism. During the discharge phase
the lithium ions migrates from the negative electrode to the positive one through the
electrolyte, while during the charge phase the process is reversed. The counter-electrode
is made from graphite and can also absorb Li ions because of its stratified structure. The
electrolyte is a liquid solution of dissociable lithium salt and an organic solvent.

Heavy-Duty vehicles have a considerable number of additional electrical consumers
such as a lift platform, radio equipment, a television or a coffee machine. The dry-charged
(i.e. the battery is ready for use after filling with electrolyte) heavy duty battery (HD
battery) is maintenance-free in accordance with European Standard EN and includes a
combination of measures for making the battery deep-cycle resistant and vibration-proof.
It ensures a reliable power supply even under conditions of high continuous loading caused
by a large number of electrical consumers. This type of battery is installed in commercial
vehicles which are subject to high levels of vibration and cyclical loading. The HD-Extra
battery features even more far-ranging characteristics. These are needed in order to
withstand unusually high levels of loading:

• Extreme cold-start reliability (up to 20 % higher starting reserve)

• Extremely long service life

• Extremely vibration-proof (100 % more than EN)

• Extremely deep-cycle resistant (four times greater than standard batteries)
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3.1.4 Internal Combustion Engine

Eurocargo truck family is powered by a turbocharged in-line 4 cylinder 4 strokes Diesel
internal combustion engine with an air-to-air intercooler. The one adopted in the present
work belongs to the Tector 5 engine series (Figure 3.4) designed by FPT Industrial SpA,
a branch of CNH Industrial N.V. which provides the propulsion system for the whole
segments of CNHi, including Iveco, Magirus, Magelys, etc.

Figure 3.4: Tector 5 engine series - Source: Iveco SpA workshop manual

The engine fuel system is electronically controlled and the fuel is directly injected in the
combustion chamber through a high pressure feeding pump and the common rail system,
right before the combustion and is ignited by the elevated temperature of the air with high
expansion ratio and lean air/fuel mixture. Intake and exhaust valve are actuated by the
camshaft via a rocker system. The engine lubrication is obtained through a geared pump
moved by the crankshaft, while a heater exchanger tunes the lubricant temperature.
In a hybrid vehicle the thermal unit is assisted by the electric machine in order to be used
more efficiently with respect to a conventional driveline, running at high power for longer
period of times. The engine performances are modelled using look-up tables derived from
experimental design. The mass flow rate related to the fuel consumption is expressed as
a function of the mechanical engine power PICE,mech and speed ωICE and recalled by a
2D interpolation map, while the corresponding CO2 emission is linearly determined as:

ṁCO2 = 2,65· ṁFC

ρ
(3.3)

3.1.5 Auxiliaries

Auxiliaries are accounted by means of a constant power demand related to a plausible
mean required power level, which is not hardcoded. They account for either electrical
auxiliaries, i.e. power drawn from battery, and ICE auxiliaries, only considered when the
engine is running.
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3.1.6 Equivalence Factor definition by means of the Model-Based calibration

As seen in section 2.2.1 the main design parameters of the Adaptive-ECMS algorithm are
the so-called Equivalence Factor, which represent the weight of the instantaneous equiv-
alent consumption generated by the electric machine, either in charge and in discharge,
over the objective function. One of the main issue regarding these factors is driven by
correctly defying their numerical value, since the final result of the mission would differ
even varying the third decimal value. To increase the chance of deriving the best set of
initialization factor for each layout tested, a sampling method based on Sobol sequences
has been introduced.
The Model-Based calibration toolbox [26] in Matlab uses the approach of the Design of
Experiment (DoE) to generate a set of virtual test-benches to be modelled according to
the declared input parameters. This is a mathematical and visual method of addressing
problems of calibration and control of complex systems such as engines. Engineers can
locate and correct errors early in system design when the time and financial impact of
system modification are minimized. To perform this task, several algorithm are available.
The one adopted in this work is the after-mentioned Sobol Sequence which belongs to
the family of quasi-random sequences which are designed to generate samples of multiple
parameters as uniformly as possible over the multi-dimensional parameter space (Saltelli
et al., 2010 ).
One criterion for assessing the performance of a good sampling method is the discrepancy
in the exploration of the multi-dimensional parameter space. The discrepancy metric was
defined by Ilya M. Sobol and is the maximum deviation between the theoretical density
dt = 1/N and the point density di in an arbitrary hyper-parallelepiped within the param-
eter space - hypercube (Saltelli et al., 2010 ). The sampling based on Sobol sequences is
designed to generate samples with low discrepancy.

Figure 3.5 [27] shows that the points produced by a sampling based on Sobol sequences
are more evenly distributed than the points produced with the other sampling techniques.
As a result, the discrepancy in the exploration of the multi-dimensional parameter space
is lower compared to the other sampling techniques.
The biggest difference with respect to pseudo-random numbers is that the sample values
are chosen under consideration of the previously sampled points and thus avoiding the
occurrence of clusters and gaps, this is the reason why such sequence has been chosen for
the generation of the EFs dataset, by means of the Space-Filling Design.
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Figure 3.5: Top to bottom: Pseudo-random, stratified sampling, Latin hypercube sam-
pling and sampling based on Sobol sequences
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3.1.7 Driving Cycle

Figure 3.6: Driving Cycle

Figure 3.6 highlights the chosen driving cycle for the testing campaign, which will be
analysed in the following to state their choice and their utility for the present work.

WHVC

The World Harmonized Vehicle Cycle (WHVC) is a chassis dynamometer test developed
based on the same set of data used for the development of the World Harmonized Transient
Cycle (WHTC). While the WHVC chassis dynamometer test is not identical to the WHTC
engine test, the WHVC results have been occasionally used to compare the respective
vehicle and engine emission levels for research purposes.

Figure 3.7: World Harmonized Vehicle Cycle (WHVC)
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The duration of the WHVC test is 1800 s. The test includes three segments, repre-
senting urban, rural and motorway driving. With reference to Figure 3.7:

1. The first 900 seconds represent urban driving with an average speed of 21.3 km/h
and a maximum speed of 66.2 km/h. This segment includes frequent starts, stops
and idling. Weighting factor: 0.50

2. The following 481 seconds represent rural driving with an average speed of 43.6
km/h and a maximum speed of 75.9 km/h. Weighting factor: 0.27

3. The last 419 seconds are defined as highway driving with average speed of 76.7 km/h
and a maximum speed of 87.8 km/h. Weighting factor: 0.23

The weighting applied each of the three segments can be varied between 0 and 1 to
represent different classes of vehicle operation. The sum of the three weighting factors
has to be 1.0.

FTP-72

The US FTP-72 (Federal Test Procedure) cycle is also called Urban Dynamometer Driving
Schedule (UDDS). The cycle simulates a urban route of 7.5 mi (12.07 km) with frequent
stops. The maximum speed is 56.7 mph (91.25 km/h) and the average speed is 19.6 mph
(31.5 km/h). It is representative of a mixed driving cycle, which is the most frequently
performed by the vehicle category under analysis.

Figure 3.8: Federal Test Procedure - 72

It consists of two phases:

1. 505 s - 5.78 km at an average speed of 41.2 km/h with a cold start - Weighting
factor: 0.43

2. 867 s - 6.29 km at an average speed of 28.7 km/h - Weighting factor: 0.57
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JC08

The test represents driving in congested Japanese city traffic (urban test cycle), including
idling periods and frequently alternating acceleration and deceleration. Measurement is
made twice, with a cold start and with a warm start. The test is used for emission
measurement and fuel economy determination, for gasoline and diesel vehicles. It is part
of a wider test procedure which is the JE05 transient test cycle based on Tokyo driving
conditions, applicable to diesel and gasoline vehicles.

Figure 3.9: Japan Cycle 08

The JC08 test had been fully phased-in by October 2011, with the following features:

• Duration: 1204 s

• Total distance: 8.171 km

• Average speed: 24.4 km/h (34.8 km/h excluding idle)

• Maximum speed: 81.6 km/h
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3.2 Data Processing

3.2.1 Pre-Processing Phase

The pre-processing phase consists in the following steps:

1. Input variables acquisition: Vehicle architecture

2. Battery sizing

3. Engine sizing

4. Components maps generation

5. Configuration space definition

6. Components requirements

7. Feasibility check on speed, power, battery and components requirements

The problem has been study both in space and in time domain. The space domain has
been discretized according to the Configuration Matrix Approach, while the time domain
according to the Interval-Grid Approach.

Configuration space

A configuration is defined as the combination of:

• a gear number (GN): Number of gear ratios of the transmission - 6

• a powerflow (PF): user-defined according to Table 3.1 - 8

• an engine state (ES): Engine ON/OFF - 2

PF and GN are defined as control variables, while the ES and the SOC represent the
state variables. The configuration space is simply defined as:

Sconf = SGN · SPF · SES (3.4)

while the whole number of possible configuration is:

Nconf = NGN ·NPF ·NES = 96 (3.5)

Such set of configurations is analysed by the optimization tool at each time step in
order to set the optimal configuration that minimize the objective function.
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Time Grid

The Interval-Grid Approach assumes the control variables to be constant over the entire
interval, while the state variables are evaluated at the extremes of each interval by means
of zero-dimensional kinematic equations. The intermediate variables are computed thanks
to linear interpolation. The velocity time history of the dynamic model and the road slope
are the input variable in the kinematic model . This procedure guarantees the vehicle
ability to satisfy the required power demand.
The computational grid is subdivided in Nint intervals whose length is determined in order
to reduce the size of the problem, i.e. the number of time steps. Each time interval has
finite length of 1 second. The configuration matrix associated to a specific variable is
Nint ·Nconf matrix, which contains the values of the inherent variable at each instant for
each possible configuration. Hence, it is possible to consider the physical discontinuity
that could occur at each node, reducing the simulation time and the memory requirements.

Components generation and sizing

Following the input definition, the engine and the electric machine map are generated
considering the reference map provided in the tool [25] by its respective manufacturers,
by means of a scaling factor (SF):


SFEM =

Ppeak,EM

Ppeak,ref,EM

SFICE = VICE

VICE,ref

(3.6)

Lithium-ion battery pack [25] is sized according to the maximum power of all the
electric machine and the PE ratio defined by the user in the Architecture definition, i.e.
the model input. Generally speaking, battery pack can be sized with two main approaches:

• Kinematic approach: Battery pack is sized in order to withstand with the power
required from motion, given the vehicle speed

• Tolerance approach: in which the battery pack is sized according to a tolerance
operating range based on the type of mission to be performed

Then, is well-known from course in electronics, that a battery pack is made up by
a set of reference cells in series, characterized by constant nominal voltage and whose
specifications are an input to the tool, which form the reference unit. A set of units in
parallel, holding the same electrical capacity, define a battery module. A set of battery
module in series define the required battery pack. The whole assembly has been depicted
in Figure 3.10.
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Figure 3.10: Battery pack

The input parameters provided by the optimization tool have been listed in Table 3.2:

Cell nominal voltage [V] 3.6
Number of cells in a unit 6

Cell capacity [Ah] 2.9
Battery nominal voltage [V] 300

Battery mass [kg] 170
Overall number of cells 1680
Coulomb efficiency [%] 100

Table 3.2: Battery input from optimization tool

The nominal energy of the battery is determined from the architecture parameters as
the ratio between the electric machine peak power and the nominal PE ratio:

Ebatt =
EMpower,tot

PErationom
[Wh] (3.7)

Then the number of parallel units in each module, which hold the same capacity:

Cbatt = Ebatt/Vbatt,nom [Ah] (3.8)

Npu = Cbatt/Cell Capacity [−] (3.9)

where Cbatt is the battery capacity while Npu is the number of parallel units. Then
the number of modules in series, with constant voltage, follows:

Vunit = Vmodule = Vcell ·Ncell [V ] (3.10)

Nsm = Vbatt,nom/Vmodule [−] (3.11)

Vbatt = Vmodule ·Nsm [V ] (3.12)

Ntot = Nsm ·Ncell ·Npu [−] (3.13)

Rbatt = Rmodule ·Nsm [Ω] (3.14)

which are the voltage per unit, the number of modules in series, the overall voltage of
the battery, the overall number of cells in the battery and the battery electrical resistance,
respectively.



3.2. DATA PROCESSING 33

Finally, the tool accounts for Li-on battery fading and compute the total battery mass
considering an additional weight given by the Battery Management System (BMS) - which
provides the battery cooling - as:

mbatt =1,7·mbatt,ref · Ntot

Ntot,ref
[kg] (3.15)

The battery is modelled as an equivalent resistance circuit at constant temperature,
with the inherent open-circuit voltage and resistance computed by interpolating a 1D map
generated on the basis of the previous quantities and the input parameters, and based on
battery SOC functions as follows:

Figure 3.11: Battery equivalent model

Voc(SOC) = Voc,base(SOC) ·Nsm ·Ncell [V ] (3.16)

Req(SOC) = Req,ref (SOC) · Nsm ·Ncell

Npu

[Ω] (3.17)

The maximum battery power is bounded by the maximum power transfer theorem and
considering electro-chemical phenomena, hence:

Pmax,el(SOC) =
Voc(SOC)2

4 ·Req(SOC)
[W ] (3.18)

Pchem(SOC) = Voc(SOC) ·Cbatt,dis
1h

·Cratedis,max−Req(SOC) ·
(
Cbatt,dis

1h
·Cratedis,max

)2

(3.19)
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During the optimization, the power limit curves together with Voc(SOC) andReq(SOC)
are used to determine the SOC variation and feasibility due to a given battery power de-
mand.

Ibatt =
Vbatt −

√
V 2
batt − 4 ·Rbatt · Pbatt
2 ·Rbatt

(3.20)

SOCt = SOCt−1 −
∫

Ibatt
Cbatt

dt (3.21)

Kinematic driveline and power unit mapping, instead, are computed according
to vehicle dynamics equations. The total power demand required for motion Pr is derived
from its multiple contribution - road grade resistance, driveline inertia, aerodynamic drag
and rolling resistance - and its sign defines the traction-braking working asset of the
vehicle [20]:



Prgrade = mveh · g · sinαr · vveh

Prinertia =

(
mveh + Iwh

Rwh

)
· vveh cot v̇veh

Praero =

(
1/2 · ρair · cx · Aveh · v2veh

)
· vveh

Prroll = mveh · g · cosαr · vveh yields

(3.22)

Pr = Prgrade + Prinertia + Praero + Prroll (3.23)

where

• mveh is the vehicle mass

• αr is the road inclination

• vveh is the vehicle speed

• Iwh is the wheel inertia

• Rwh is the dynamic wheel radius

• ρair is the air density

• cx is the aerodynamic drag coefficient in the direction of motion

• Aveh is the vehicle frontal area
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3.3 Post Processing

Multiple scripts are available in [25] for the post-processing task. The main issue regarding
HEVs control strategies is to correctly compare the simulations outcome about the same
reference in terms of fuel economy and CO2 emissions. To do so, the following section will
deal with the implementation of this correction task derived from international standard.

Equivalent CO2 Emission and Equivalent Fuel Consumption Tank-to-Wheel

Figure 3.12: SOC at the end of the mission

Figure 3.12 highlights a key-point of the post-processing phase. It is clear that one of
the main task of HEVs control strategies is too guarantee that at the end of the mission
the battery state of charge SOCf should be equal - or closer, at least - to the initial state
of reference SOC0. This cannot always ensured since the vehicle behaviour is influenced
either by internal and environmental aspects that cannot always be predicted. In order
to correctly compare architectures and configurations that guarantee at the same time,
over the whole set of layout tested:

• The minimum fuel consumption and CO2 emission

• A final SOC level equal or closer to the reference

• A SOC window closer to the reference SOC value

• A charge-sustainability SOC trend over the entire mission

the ECE/trans/180/Add.15 regulation standard [28] has been implemented in the
post-processing section of the algorithm. It prescribes the computation of the equivalent
CO2 emission and the equivalent fuel consumption to take into account the fuel that
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would have been consumed to take the battery SOC at the initial value when the final
SOC level at the end of the cycle is lower than the reference one. The regulation has
been prescribed for WLTP procedure but the core has been extended to the other driving
cycles adopted in this work. Then a correction factor has been evaluated for each single
layout (defined by the Architecture Parameters) and obtained by varying only the EFs
for a fixed driving cycle (WHVC, FTP 72, JC08 in the present work), using as design
parameters n-pairs of EFs corresponding to n-configurations. An example is reported in
Figure 3.13 and Table 3.3.

Figure 3.13: Example for CO2,ttw evaluation

Case 1 SOCfinal [-] CO2,ttw [g/km] CO2,ttw,eq [g/km]
1 0.5812 329.9 341.4
2 0.6017 339.4 339.4

Table 3.3: Example for CO2,ttw correction and evaluation

Looking at Case 1, the final CO2,ttw value, i.e. the gross one, would set a condition
to consider it as the optimal condition for the controller in terms of emissions, even if
the final SOC value is lower than the reference. The Case 2, as well, would define a-
priori an higher gross emission with respect to Case 1 but, at the end of the mission, the
SOC is higher than the reference, which means that the A-ECMS controller conditions
of charge-sustaining and SOC closer to the reference have been satisfied. By considering
the equivalent CO2 emission, the evaluation of the optimality is even more clear. The
correction is applied only when the final SOC value is lower than the reference so that, at
the end of the day, the net emission is higher for Case 1 with respect to Case 2, implying
the optimality for the latter.



3.3. POST PROCESSING 37

The corrected values of CO2,ttw,eq and FCttw,eq must be calculated at the end of each
phase of the test driving cycle starting from the following regression coefficient:

kCO2 =
n ·
∑(

EREESSi
· CO2,ttw,i

)
−
∑
EREESSi

·
∑
CO2,ttw,i

n ·
∑
E2
REESSi

−
(∑

EREESSi

)2 (3.24)

kfuel =
n ·
∑(

EREESSi
· FCttw,i

)
−
∑
EREESSi

·
∑
FCttw,i

n ·
∑
E2
REESSi

−
(∑

EREESSi

)2 (3.25)

where

• EREESSi
is the electricity balance measured for the i-th Rechargeable Electric Energy

Storage System [Wh/km]

• CO2,ttw,i is the tank-to-wheel emission measured for the n-th configuration [g/km]

• kCO2 is the CO2 emission correction coefficient [g/km/Wh/km]

• FCttw,i is the fuel consumption measured for the n-th configuration [l/100km]

• kfuel is the fuel consumption correction coefficient [l/100 km/Wh/km]

Then to account for the change in the energy content inherent to the on-board i-
th Rechargeable Electric Energy Storage System, the regulation prescribes the following
term:

∆EREESSi
=100·0.0036·RCB·UREESS

Efuel
[−] (3.26)

where

• RCB is the REESS charging balance over the phase [Ah] given by the battery
capacity Ctot times the SOC variation within the considered phase

• UREESS is the nominal REESS voltage [V]

• Efuel is the energy content of the consumed fuel [MJ]

Figure 3.14: Correction coefficient evaluation procedure

Figure 3.14 highlights the procedure to retrieve the correction coefficients. These are
determined for each phase of the driving cycle, e.g. urban, rural and motorway considering
WHVC. Then a unique value for the whole driving cycle is stated by a weighted average
based on the temporal duration of each phase.
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Finally CO2,ttw,eq and FCttw,eq are computed as:

CO2,ttw,eq = CO2,ttw − kCO2 ·∆EREESSi
(3.27)

FCttw,eq = FCttw − kfuel ·∆EREESSi
(3.28)

With reference to section 3.1.7 the following correction coefficients have been obtained
for the driving cycles used for the testing campaign:

Driving Cycle kCO2 kfuel
[g/km/Wh/km] [l/100 km/Wh/km]

WHVC 0.59660 0.02357
FTP-72 0.58947 0.02329

JC08 0.56726 0.02241

Table 3.4: Driving Cycle correction coefficients



Chapter 4

Control Strategy

The goal of the Adaptive formulation is to overcome the constraints given by the basic
ECMS algorithm, in order to make the design parameters i.e., the Equivalence Factor
(EFs), and the solution of its objective function cycle-independent 1.
The problem of designing a real-time on-board implementable energy management strat-
egy for hybrid electric vehicles and get, at the same time, a close-to-optimal solution has
been the goal of extensive research over the last decade, as seen at the end of the previous
chapter. In the following sections will focus the attention on the implementation of the
Adaptive - ECMS with the aim of deriving the most suitable formulation for the case
study under investigations. Multiple formulations are hereby proposed, either extracted
from the literature or proposed in innovative solutions.

1Recall: To guarantee the optimality and the charge-sustainability for any driving conditions, ECMS
should know the cycle a-priori

39
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4.1 Instantaneous A-ECMS formulation

The Instantaneous A-ECMS formulation is based on State of Charge (SOC) feedback
from on-board batteries and has been derived from [6] and modified to be run on the
optimization tool. The key-point of this strategy, highlighted in Equation 4.1, is to
instantaneously change the value of the EFs in order to avoid the SOC deviation from
the initial state, make it bounded about this value through a numerical formulation. The
EFs correlation at the battery terminals then, makes the design parameters continuously
dependent from each other, reducing the calibration complexity.

{
schg(t) = schg(0) +

schg(0)−sdis(0)
schg(0)

· SOChigh−SOC(t)

SOChigh−SOClow
; sdis(t) =

schg(t)

η2
if SOC(t) < SOC0;

sdis(t) = sdis(0) +
schg(0)−sdis(0)

sdis(0)
· SOChigh−SOC(t)

SOChigh−SOClow
; schg(t) = sdis(t)η

2 if SOC(t) > SOC0;
(4.1)

This formulation has been demonstrated to be, either in literature and in results
obtained:

• Robust and reliable as rely on SOC feedback and EFs obtained from the DoE

• Easy to implement as defined by known variables

• Computationally cheap and stable
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4.2 Periodic A-ECMS formulation

The Periodic A-ECMS takes its origin from the work Online energy management for
hybrid electric vehicles (2008) [23] by Kessels, Koot et al. and following revision in the
paper Adaptive equivalent consumption minimization strategy for hybrid electric vehicles
(2010) [24] by Onori S., Serrao L. and Rizzoni G.. In [23] an adaptation law based on a
proportional-integral (PI) controller of the type shown in Equation 4.2 was proposed:

s(t) = s0 + kp · (SOC0 − SOC(t)) + ki

∫ t

0

(SOC0 − SOC(τ) dτ (4.2)

where s0, kp and ki are the generic EF of initialization, the proportional and the integral
gains of the control law, respectively. The drawback of this formulation was evidenced
in the lack of ability of the battery to fully exploit its entire operating range [23], driven
by the attitude of the controller to instantaneously correct any small SOC deviation from
the target one. To allow the battery to span over a wider range of SOC, in [24] and [19]
a discrete formulation have been introduced as follows in Equation 4.3:


sdis(t) = sdis(t−T )+sdis(t−2T+1)

2
+ kp · (SOC0 − SOC(t)) + ki

∫ t
0
(SOC0 − SOC(τ) dτ

schg(t) = η2 · sdis(t) if t=p·T,with p ∈ N
sdis(t) = sdis(t− 1); schg = schg(t− 1) otherwise

(4.3)

Figure 4.1: Periodic Adaptation Law
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The algorithm proposed in the set of Equations 4.3 and represented in Figure 4.1
should be interpreted in this way: once the algorithm has been initialized by the EFs
derived from DoE, the adaptation law update the EFs at regular time intervals, period-
ically tuning their value. The correction is driven by both a proportional and integral
controller, which tune the discharge coefficient.
The former implies a correction proportional to the error i.e., the SOC difference from the
target value at the periodic instant T, and provides a large corrective action correction
when the instantaneous errors are large. Its main drawback is that it might introduces
a lack of precision when the phenomenon under control holds high variation frequencies,
implying the so-called overshoot - the system is too stiff and provides a correction which
is larger than needed.
The latter accounts for the SOC temporal evolution by means of an integral gain. It reacts
to the accumulation of errors and causes a slow-reacting control action. Its disadvantages
are mainly that it is insensitive to high frequencies and prone to cause instability [22].
This solution is computationally cheaper with respect to the instantaneous formulation,
while the main handicap is given by a higher amount of calibration parameters i.e.,(
s(t), T, kp, ki

)
.The control input so defined can be written as:

uc = kp ·
(

(SOC0 − SOC(t)) +
1

T

∫ t

0

(SOC0 − SOC(τ) dτ

)
(4.4)

where the term T = kp
ki

is defined as reset time and admits the correlation between the
two gains, reducing the calibration complexity and setting a control time consistent with
the gains adopted. The charge coefficient is then obtained by the correlation at battery
terminals. Within the discretized time windows, the EFs are kept constant. Finally, to
increase the robustness and the stability of the controller, EFs have been bounded between
the interval schg,min = 2 and sdis,max = 3, which have been demonstrated to be, either
by literature and simulation performed, the more suitable to get a stable and optimal
solution.
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(a) SOC trend for T=20s (b) EF trend for T=20s

(c) SOC trend for T=30s (d) EF trend for T=30s

Figure 4.2: Sensitivity Analysis of the Periodic Controller Gains - T=20s and T=30s

From Figures 4.2 (a) and (c), is noticeable that by adopting reasonable values for the
reset time a narrow SOC window could be obtained for time intervals between 20s and
30s. The latter case, in particular, shows a narrower SOC window and a charge-sustaining
behaviour more evident with respect to the former. As stated in the previous paragraph,
larger proportional gain must be tuned by larger integral gain, otherwise an intrinsic
unstable behaviour might be introduced from the controller. This can be easily solved by
the after-mentioned EFs saturation that it is clearly visible in Figures 4.3 (b) and (d) for
the same time frames.
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(a) SOC trend for ki = 0.2
T=20/30/40s

(b) EF trend for ki = 0.2
T=20/30/40s

(c) SOC trend for kp = 4
T=20/30/40s

(d) EF trend for kp = 4
T=20/30/40s

(e) SOC trend for T=30s (f) EF trend for T=30s

Figure 4.3: Sensitivity Analysis of the Periodic Controller Gains - WHVC

By making reference to WHVC Test Procedure, by increasing kp for ki = const, the
time interval of adaptation increases according to the reset time definition. As detectable
from Figure 4.3 (b) this leads to a lower oscillation of the discharge factor (hereby repre-
sentative also for the charging factor, given the correlation at battery terminals), which
means a stiffer controller with respect to SOC deviation from reference and less varia-
tion in battery management. Moreover, the higher kp the better is the charge-sustaining
attitude of the controller (Figure 4.3 (a)) On the other hand, increasing the time in-
terval of adaptation means making the controller less responsive to sudden SOC and
torque requests variations. Thus, a trade-off between controller stiffness and update must
be checked. Then from Figures 4.3 (c) and (d), is noticeable that by lowering ki for
kp = const, the time frame of adaptation is wider, as expected. By definition, ki causes
a slow-reacting control action and smaller value can stabilize the SOC window reducing
the drifts from the reference, even if the EF does not assume cyclic values as happen for
higher ki, increasing its uncertainty in the long term. Finally, from Figures 4.3 (e) and
(f) you can highlight that for T=const, according to the previous statements, the best
choice of controller gains can be obtained by using trade-off values for kp and ki as 6 and
0.2, respectively, to ensure optimal trends either for SOC and EF.
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4.3 Hybrid A-ECMS formulation

In the current section, a new adaptive formulation will be introduced. The idea behind
is to combine the potentials of the periodic adaptivity proposed in [19], in which the
computational time is lower than the instantaneous formulation and the adaptation law is
driven by a controlled linear system, with a further correction which accounts for a sudden
increase of torque requested by the driver or a strong deceleration, that can strongly affect
the battery SOC - depleting it or increasing it, respectively. The latter implies a vehicle
speed controller that instantaneously update the EFs based on the instantaneous speed
difference as proposed in [18]. Summing up, the proposed strategy is reported in the
Equation set 4.5:

{
sdis(t) = sdis(t−T )+sdis(t−2T+1)

2
+ kp · (SOC0 − SOC(t)) + ki

∫ t
0
(SOC0 − SOC(τ) dτ

schg(t) = η2 · sdis(t) if t=p·T,with p ∈ N otherwise{
sdis(t) = sdis(t− 1); if ∆v̄ > 1 km/h; kv = 0

schg(t) = schg(t− 1){
sdis(t) = sdis(t− 1) + kv · (v(t)− v(t− 1)); if ∆v̄ < 1 km/h; kv = const

schg(t) = schg(t− 1) + kv · (v(t)− v(t− 1))
(4.5)

(a) SOC trend (b) EF trend

Figure 4.4: Speed proportional gain for sdis,0 = const

From Figure 4.4 can be extracted similar conclusions to those seen in the previous
section, plus that lower kv are required for urban-kind missions in order to guarantee the
SOC stability over the reference and avoiding the controller overshoot.



Chapter 5

Results

The results of the implementation will be analysed according to the fitting with respect
to the benchmark provided by the Dynamic Programming optimization algorithm. The
equivalence factor reported will be the one used for the strategy initialization. The optimal
strategy will be choice with reference to the CO2,ttw,eq engine-out emission seen in Section
3.3, the SOC at the end of the mission, the ∆SOC window and the powerflow strategy
extracted by the controller. Moreover, a sensitivity analysis will be carried out on each
driving cycle, comparing the best and the worst case scenario to assess the robustness of
the controller. Finally, to state the improvement with respect to the conventional version
of the powertrain, the equivalent CO2 reduction and Fuel Economy have been reported,
making reference to the results highlighted in Table 5.1:

Driving Cycle CO2,ttw,DP CO2,ttw,PT FuelEconomyDP
[g/km] [g/km] [l/100km]

WHVC 337.86 393.55 15.55
FTP-72 332.25 449.54 17.76

JC08 327.33 403.37 16.62

Table 5.1: CO2,ttw and Fuel economy reference values for each driving cycle
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5.1 WHVC

Figure 5.1: SOC profile on WHVC - Best case scenario

Control Strategy
Quantity DP Instantaneous Periodic Hybrid

(kp=6, ki=0.2) (kp=6, ki=0.2, kv=0.015)
schg[−] - 2.2487 - -
sdis[−] - 2.2341 2.4055 2.3132

CO2,ttw[g/km] 337.86 338.33 342.60 343.31
CO2,ttw,eq[g/km] 337.86 338.81 342.60 343.31
FCttw[l/100km] 13.35 13.37 13.54 13.56
FCttw,eq[l/100km] 13.35 13.39 13.54 13.56
SOCfinal[−] 0.6000 0.5989 0.6047 0.6079
SOCmin[−] 0.5835 0.5843 0.5892 0.5918
SOCmax[−] 0.6000 0.6123 0.6105 0.6096
∆CO2%DP 0.0000 0.2811 1.394 1.613
∆CO2%PT −14.15 −13.90 −12.95 −12.76

∆SOC 0.000 −0.001 0.005 0.008
SOC Window 0.017 0.028 0.021 0.018

Table 5.2: Best case scenario on WHVC test cycle

With reference to Figure 5.1 and results reported in Table 5.2 for the best case sce-
nario, the leading control strategy on WHVC has been performed by the instantaneous
controller, even if the final SOC is under the reference. In this case the larger SOC window
adopted, compared to other controllers, led to fully exploit the battery operating range
for the majority of the driving cycle. The powerflow strategy, indeed, is similar to DP if
we compare the SOC profiles depicted in Figures 5.4 (a) and (b), in which is also visible
how the instantaneous controller is more prone to maintain a charge-sustaining behaviour
until the start of the motorway phase - which is characterized by higher speeds, hence
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Figure 5.2: Powerflow strategies on WHVC for different controllers - Best case scenario

higher request of power - that made necessary to switch to the pure thermal mode, where
the engine can be run at higher efficiencies, before ending up with a full battery charging.
Higher emissions have been obtained both for the periodic and the hybrid controller, even
if the fuel consumption and the CO2% difference with respect to the DP optimization
is lower than 2%, given a higher amount of battery charging within the cycle. The best
charge-sustaining behaviour over the whole cycle and the narrower SOC window, instead,
has been performed by the hybrid controller.
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Table 5.3 highlights the worst case scenario for the same controllers and test cycle,
while Figure 5.3 shows a comparison in powerflow strategies for the best and worst case
scenarios.

Control Strategy
Quantity DP Instantaneous Periodic Hybrid

(kp=6, ki=0.2) (kp=6, ki=0.2, kv=0.015)
schg[−] - 2.4748 - -
sdis[−] - 2.2248 2.6608 2.4343

CO2,ttw[g/km] 337.86 358.86 350.05 349.91
CO2,ttw,eq[g/km] 337.86 358.86 350.05 349.91
FCttw[l/100km] 13.35 14.18 13.83 13.83
FCttw,eq[l/100km] 13.35 14.18 13.83 13.83
SOCfinal[−] 0.6000 0.6147 0.6159 0.6198
SOCmin[−] 0.5835 0.5986 0.5869 0.5875
SOCmax[−] 0.6000 0.6147 0.6159 0.6198
∆CO2%DP 0.0000 6.2155 3.6071 3.5670
∆CO2%PT −14.15 −8.81 −11.05 −11.09

∆SOC 0.000 0.0147 0.0159 0.0198
SOC Window 0.017 0.0161 0.0290 0.0323

Table 5.3: Worst case scenario on WHVC test cycle

Figure 5.3: Powerflow strategies comparison on WHVC
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(a) DP (b) Best case scenario

(c) Worst case scenario (d) Comparison

Figure 5.4: EMS comparison on WHVC - Instantaneous controller

Focusing on the instantaneous controller and by making reference to Figures 5.4 and
5.5, which show a comparison between the best and worst case scenario, the instantaneous
controller in the latter made an intensive use (15 %) of the battery charging mode which
led to an emission higher than 6% compared to DP and the former scenario. This can be
driven by the higher weight chosen for the initialization charging factor, 2.4748 (worst)
compared to 2.2487 (best), that is conditioned by a large oscillation over the mission
while increasing the equivalent consumption given by the battery. This condition has
been highlighted in Figure 5.5 (b), in which is also visible the unstable behaviour of the
controller towards the end of the mission given the battery charging mode depicted in
Figure 5.4 (c).

(a) (b)

Figure 5.5: Powerflow strategies and charging factor comparison on WHVC - Instanta-
neous controller
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(a) DP (b) Best case scenario

(c) Worst case scenario (d) Comparison

Figure 5.6: EMS comparison on WHVC - Periodic controller

In the following, similar comparison are reported either for the periodic and the hybrid
controller, where the former performs a better strategy compared to the latter as stated
before and on the basis of the results reported in Table 5.2.

Figure 5.7: Powerflow strategies on WHVC - Periodic controller
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(a) DP (b) Best case scenario

(c) Worst case scenario (d) Comparison

Figure 5.8: EMS comparison on WHVC - Hybrid controller

Figure 5.9: Powerflow strategies on WHVC - Hybrid controller
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5.2 FTP-72

Figure 5.10: SOC profile on FTP72 - Best case scenario

Control Strategy
Quantity DP Instantaneous Periodic Hybrid

(kp=6, ki=0.2) (kp=6, ki=0.2, kv=0.015)
schg[−] - 2.1617 - -
sdis[−] - 2.3952 2.2842 2.3542

CO2,ttw[g/km] 332.25 331.83 334.13 333.55
CO2,ttw,eq[g/km] 332.25 332.56 334.13 333.62
FCttw[l/100km] 13.13 13.11 13.20 13.17
FCttw,eq[l/100km] 13.13 13.14 13.20 13.18
SOCfinal[−] 0.6000 0.5990 0.6005 0.5999
SOCmin[−] 0.5908 0.5873 0.5878 0.5900
SOCmax[−] 0.6155 0.6143 0.6165 0.6117
∆CO2%DP 0.0000 0.0924 0.5650 0.4134
∆CO2%PT −26.09 −26.02 −25.67 −25.79

∆SOC 0.000 −0.0010 0.0005 −0.0001
SOC Window 0.025 0.027 0.029 0.022

Table 5.4: Best case scenario on FTP72 test cycle
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Figure 5.11: Powerflow strategies on FTP72 for different controllers - Best case scenario

Looking at Figure 5.10 and Table 5.4 can be deduced that the best case scenario for
this driving cycle is obtained with the hybrid approach, which guarantee the best result
in terms of charge-sustainability and final SOC, while a good compromise in terms of
CO2 emission is reached with a difference of less than 0.5% with respect to the dynamic
programming. Moreover, it shows the narrower SOC window as seen for the WHVC case.
The FTP-72 driving cycle is a reference cycle for the American market and is characterized
by a urban phase and by a rural phase. This perhaps represents the type of route most
frequently performed by the vehicle type under investigation, which is mainly adopted for
massive transportation of building materials or wastes. Here the hybrid approach is more
prone to adapt to the change of road type and mission, while the periodic strategy would
deserve a lower update interval to keep the proper SOC window, hence increasing the
computational effort. The instantaneous formulation follows a similar trend with respect
to the dynamic programming but its EMS is more prone to use the battery in the urban
phase (Figure 5.11), leading to a faster discharge in the short-track, with respect to the
hybrid formulation that keeps its SOC about the reference. The whole set of controllers
oscillate about the reference SOC value, exploiting a wide operating range of the battery.
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As seen for WHCV, Table 5.5 highlights the worst case scenario for the same controllers
on FTP-72, while Figure 5.12 shows a comparison in powerflow strategies for the best and
worst case scenarios.
Compared to WHVC results, here the instantaneous formulation plays the worst strategy
compared to the other controllers in the worst case scenario. Moreover, if compared with
the hybrid strategy, the latter performs the best optimization either in the best and in
the worst case scenario, stating is validity for the cycle under investigation.

Control Strategy
Quantity DP Instantaneous Periodic Hybrid

(kp=6, ki=0.2) (kp=6, ki=0.2, kv=0.015)
schg[−] - 2.4997 - -
sdis[−] - 2.2331 2.7604 2.7385

CO2,ttw[g/km] 332.25 345.33 342.29 341.69
CO2,ttw,eq[g/km] 332.25 345.33 342.29 341.69
FCttw[l/100km] 13.13 13.64 13.52 13.50
FCttw,eq[l/100km] 13.13 13.64 13.52 13.50
SOCfinal[−] 0.6000 0.6072 0.6071 0.6068
SOCmin[−] 0.5908 0.5933 0.5867 0.5872
SOCmax[−] 0.6155 0.6186 0.6130 0.6130
∆CO2%DP 0.0000 3.94 3.02 2.84
∆CO2%PT −26.09 −23.18 −23.86 −23.99

∆SOC 0.000 0.0072 0.0071 0.0068
SOC Window 0.0247 0.0194 0.0263 0.0258

Table 5.5: Worst case scenario on FTP72 test cycle

Figure 5.12: Powerflow strategies comparison on FTP72
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(a) DP (b) Best case scenario

(c) Worst case scenario (d) Comparison

Figure 5.13: EMS comparison on FTP72 - Instantaneous controller

By looking at Figures 5.13 (c) and 5.14, a similar trend seen in the worst case scenario
for the instantaneous controller on WHVC (Figure 5.4 (c) ) is noticable. This can be a
proof of the cycle-independency of the controller and how the battery charging operating
mode can be addressed as a fault of the controller strategy if frequently performed during
the mission.

Figure 5.14: Powerflow strategies on FTP72 - Instantaneous controller
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(a) DP (b) Best case scenario

(c) Worst case scenario (d) Comparison

Figure 5.15: EMS comparison on FTP72 - Periodic controller

Generally speaking, the periodic controller shows the worst behaviour on FTP-72, if
compared to other strategies.

Figure 5.16: Powerflow strategies on FTP72 - Periodic controller



5.2. FTP-72 58

(a) DP (b) Best case scenario

(c) Worst case scenario (d) Comparison

Figure 5.17: EMS comparison on FTP72 - Hybrid controller

Making reference to Figures 5.17 (a) and (b), we can see the wider SOC operating range
performed by the hybrid strategy with respect to the Dynamic Programming optimizer,
particularly in the middle of the driving mission in between the two phases of the cycle,
where the EMS of the hybrid controller avoids to keep the battery away from the reference.

Figure 5.18: Powerflow strategies on FTP72 - Hybrid controller
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5.3 JC08

Figure 5.19: SOC profile on JC08 - Best case scenario

Control Strategy
Quantity DP Instantaneous Periodic Hybrid

(kp=6, ki=0.2) (kp=6, ki=0.2, kv=0.005)
schg[−] - 2.1458 - -
sdis[−] - 2.3776 2.2423 2.2482

CO2,ttw[g/km] 327.33 328.40 333.07 335.97
CO2,ttw,eq[g/km] 327.33 328.40 333.07 335.97
FCttw[l/100km] 12.93 12.97 13.16 13.27
FCttw,eq[l/100km] 12.93 12.97 13.16 13.27
SOCfinal[−] 0.6000 0.6004 0.6010 0.6085
SOCmin[−] 0.5825 0.5830 0.5829 0.5912
SOCmax[−] 0.6116 0.6093 0.6097 0.6085
∆CO2%DP 0.000 0.3272 1.7538 2.6393
∆CO2%PT −18.85 −18.59 −17.43 −16.71

∆SOC 0.000 0.0004 0.0010 0.0085
SOC Window 0.0291 0.0263 0.0268 0.0173

Table 5.6: Best case scenario on JC08 test cycle
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Figure 5.20: Powerflow strategies on JC08 for different controllers - Best case scenario

With reference to Figure 5.19 and results reported in Table 5.6, the controller imple-
mentation on JC08 driving cycle evidences a high level of fitting between the dynamic
programming and the instantaneous formulation. This result is the child of the instanta-
neous update of the EF within the cycle, which makes this kind of strategy more suitable
for urban mission rather than periodic ones, which are not able to adapt to sudden varia-
tion in acceleration and deceleration typical of a congested traffic context. As usual, the
hybrid formulation performs better than the instantaneous one if we consider the SOC
window, which is also the narrower among the controllers. This in turn would imply a
better battery health in the long term horizon and a more stable behaviour of the EMS,
which is able to end up the mission without strong current variation either in charge
and discharge phase. Similar conclusion can be drawn by the powerflow management re-
ported in Figure 5.20, where the higher use of the thermal unit performed with the hybrid
controller leads to an higher emission with respect to the other. Similarities between the
dynamic programming and the instantaneous controller are here clearly noticeable as well,
stating that similar SOC profile leads to comparable EMS. As a result, the best choice
for a strictly urban driving cycle could be represented by the instantaneous formulation,
which performed the best mission in terms of both emission and final SOC value, even if
the SOC window is not narrow as the hybrid strategy.
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The choice of the instantaneous controller for a mission JC08-like, can be addressed
also by looking at the charge-sustainability in terms of SOC window reported in Table
5.7 and by comparing Figures 5.22 (d) and 5.24 (d).

Control Strategy
Quantity DP Instantaneous Periodic Hybrid

(kp=6, ki=0.2) (kp=6, ki=0.2, kv=0.005)
schg[−] - 2.4748 - -
sdis[−] - 2.2248 2.3557 2.4011

CO2,ttw[g/km] 327.33 347.23 345.88 348.90
CO2,ttw,eq[g/km] 327.33 347.23 345.88 348.90
FCttw[l/100km] 12.93 13.72 13.67 13.79
FCttw,eq[l/100km] 12.93 13.72 13.67 13.79
SOCfinal[−] 0.6000 0.6142 0.6139 0.6199
SOCmin[−] 0.5825 0.5983 0.5839 0.5871
SOCmax[−] 0.6116 0.6142 0.6153 0.6199
∆CO2%DP 0.000 6.08 5.67 6.59
∆CO2%PT −18.85 −13.92 −14.25 −13.50

∆SOC 0.000 0.0142 0.0139 0.0199
SOC Window 0.0291 0.0159 0.0314 0.0329

Table 5.7: Worst case scenario on JC08 test cycle

Figure 5.21: Powerflow strategies comparison on JC08
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(a) DP (b) Best case scenario

(c) Worst case scenario (d) Comparison

Figure 5.22: EMS comparison on JC08 - Instantaneous controller

Even in the worst case scenario (Figure 5.22 (c) ) the instantaneous formulation keeps
the SOC about the reference, despite the sudden torque variation requested by the cycle
and the depleting trend followed by the Dynamic Programming optimizer (Figure 5.22
(a) ) and the best case scenario (Figure 5.22 (b) ) from the half-length of the mission.

Figure 5.23: Powerflow strategies on JC08 - Instantaneous controller
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(a) DP (b) Best case scenario

(c) Worst case scenario (d) Comparison

Figure 5.24: EMS comparison on JC08 - Periodic controller

Figure 5.25: Powerflow strategies on JC08 - Periodic controller
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(a) DP (b) Best case scenario

(c) Worst case scenario (d) Comparison

Figure 5.26: EMS comparison on JC08 - Hybrid controller

The hybrid controller, instead, performs the worst optimization both in the best and
in the worst case scenario.

Figure 5.27: Powerflow strategies on JC08 - Hybrid controller



Chapter 6

Conclusions and Future works

6.1 Conclusions

The present work is focused on evaluating the advantages of the transformation of a con-
ventional heavy-duty truck equipped with a 4,5L compression ignition engine into a full
hybrid version by applying an Adaptive - Equivalent Consumption Minimization Strategy
(A-ECMS) as instantaneous optimization method on-board implementable for the energy
management strategy.
These controllers are capable of defining in real time the control variable of the control
strategy, i.e. the gear number and the powerflow. The latter refers to the sequence of in-
stantaneous operating mode - pure thermal, pure electric, power split or battery charging
- that ensures the minimization of the global cost function of the optimizer. Once this
cost function is correctly implemented and proper constrained are fixed for each vehicle
component, the control algorithm is capable of defining the control parameters known
as equivalence factor, which represent the weight attributed to the battery equivalent
consumption, either in charge and in the discharge, on the whole instantaneous fuel con-
sumption, thermal unit included -Eqn. (2.5).
Given the wide range of formulation proposed in literature and to overcome the short-
comings derived from the ECMS formulation (see Chapter 2), such main logic has been
applied to three different adaptive control strategy optimizer proposed in Chapter 4. The
algorithms have been tested over three different driving cycles to assess their robustness
and validity in multiple traffic scenarios, by stating their best and worst attitude, and
compared to the benchmark given by the Dynamic Programming optimization algorithm.
The main outcomes of this study have been summarized as follows.

Reduction in computational time

Considering the hardware adopted for the thesis development 1 and the optimization
tool provided [25], the computational time required to simulate the control strategy and
derive the optimal control strategy for the mission is consistently reduced, passing from
10 minutes of the DP to the 8 seconds (as average) performed by the proposed controller.

1CPU: Intel(R) Core(TM) i7-6700HQ - 2.60 GHz; RAM: 16 GB

65
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A-ECMS and on-board implementability of the EMS

As detectable from Chapter 5, the best results have been obtained with the instantaneous
and hybrid optimization algorithms. The former, particularly, has been demonstrated to
be valid both for a mixed driving cycle and for a urban-type mission. Among the three
driving cycle, it shows the major fitting with the DP optimizer with respect to the other
strategies, even if the SOC window and the cycle-adaptivity is not competitive as the one
performed by the hybrid formulation, which perhaps should be improved given the good
results achieved. Moreover, it does not require high level of calibration and know the
mission a-priori, so that it can be implemented on-board. A charge-sustaining behaviour
has been always guaranteed together with a final SOC value closer to the reference, with
a significant reduction in terms of emissions and not-negligible benefits in terms of fuel
economy.

6.2 Future works

Adaptive Strategy based on Intelligent Traffic Systems or On-board Radar

By making reference to [14], [15] and [16], a future improvement would integrate the
adaptive strategy with the traffic informations or by implementing an Adaptive Cruise
Control (ACC) to assess the robustness of the controller given frontal obstacles of any
kind.

Inclusion of Power Take Off (PTO) operation

Hybrid vehicles are in the position to deliver power demands from PTOs partly from
recuperated energy and/or from engine operation in more favourable engine operating
points. Therefore PTO power demand could be delivered by a HD Hybrid vehicle at
lower specific emissions than by a conventional vehicle.
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