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Abstract

The hybridization degree of the vehicles is getting bigger due to the felt need
to fight and reduce tail pipe emissions. Internal combustion engine efficiency-
oriented optimization on its own is not effective in reducing fuel consumption to
withstand increasingly stringent regulatory restrictions. Hybrid Electric Vehicles
(HEVs) represent a viable and absolutely-concrete alternative to the conventional
powertrains. While the Battery Electric Vehicles (BEVs) are still an utopia, HEVs
exist and apply to replace non-hybrid vehicles in the near future. Full-electric
vehicles do not represent a credible solution for several reasons, two out of all,
the limited autonomy and the absence of infrastructures on the national territory.
Furthermore full-electric vehicles must be analyzed in terms of well-to-wheels to take
into account the entire electricity production chain. The ever-growing hybridization
degree of the powertrain requires intense research activity. One of the biggest
bottleneck that hinders the HEV proliferation is definitely represented by the
on-board energy system. Battery capacity and performance must be the best
possible to accommodate the transition towards e-mobility.

Battery compartment is more and more solicited and plays an increasingly
central role in this transition toward renewable energy for vehicles propulsion. Also
the battery represents an important cost in the total cost of the vehicle and it is
clear why an health-conscious management of the electrochemical system is crucial
in achieving the best possible benefit, not only in terms of fuel consumption. A
severe exploitation of the electrochemical system leads to an increase in HEVs
operating costs absolutely not legitimised by a costs reduction associated to the
fuel consumption reduction.

Furthermore battery performances change over time and as the time goes on
they decrease inexorably. Besides the "operative" reactions, within the battery there
are some side, undesirable, reactions which deplete battery performance. Complex
aging mechanisms take place inside the battery and involve different battery areas.
These aging mechanisms are strictly related to the battery operating conditions and
severely restrict battery characteristics in operation: the more severe the operating
conditions of the battery the higher the aging will be.

This work proposes an innovative way of looking at the on-board energy man-
agement problem. An ageing model has been parametrized and developed in the
first section of the thesis and used to solve the optimization problem in the second
part. More in detail, the model chosen is an energy-throughput-based aging model
that links the capacity fade to the operating conditions. The selection of this kind
of model is not casual, rather it has been done in view of the application in a
future hybrid control strategy. The strength of this aging-model has to be found in



its intrinsic simplicity and reliability. Moreover, this ageing model has been used
in tandem with an "hybrid" version of the ECMS to find an optimal compromise
between fuel consumption and battery degradation in time.

The main objective of the work is to make the traditional ECMS aware of the
battery performance fade mechanisms in order to gain the maximum benefit from
hybrid propulsion. The on-board electrochemical system represents an important
percentage in the total cost of a HEV hence it needs to be preserved in operation.
The "hybridization of the powertrain" is surely driven by the exigency to reduce
fuel consumption but the battery health acquires an increasingly pivotal role
in establishing the HEV control strategy. Its cost makes the battery a critical
component that has to be wisely managed in order to prolong its life dwindling
attached operating costs.
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Chapter 1

Introduction

Lithium-ion batteries are now the dominant rechargeable technology in the mar-
ket.For their high energy and power densities they have met with a great success
both in academia and industry, which has led to a steady and constant improvement
in their characteristics and performances accompanied by an important reduction
in their cost. They are largely adopted in portable electronics (e.g., cellular phones,
digital cameras, laptop) and are considered as the best candidates for the electric
mobility (e.g., electric vehicles (EV) and hybrid electric vehicles (HEVs)).

Unfortunately also lithium-ion batteries, as other electrochemical systems, suffer
capacity and power fade during both cycling and storage. Aging becomes crucial
for EVs and HEVs applications where longer lifetime is requested. Capacity fade is
mainly associated to different processes taking place within the battery such as:
the loss of cyclable lithium, the loss of active materials and impedance increase of
the cell (SEI film). Besides the cycling performance also storage performances are
important. Researchers usually talk about cycle aging and calendar life aging.

1.1 Lithium ion battery
Efficient energy storage is considered crucial for the transition to renewable energy
sources and definitely electrochemical energy storage technologies play a central role
to make this transition physically possible. Lithium-ion batteries are nowadays the
technology suitable for many different application: from the everyday electronics to
the electric vehicle. Their success has to be traced back to their very high energy
and power density, long cycle life, high safety and the continuous decreasing cost.

The revolution in the Li-ion battery was the substitution of lithium metal as
an anode active material by carbonaceous compounds, mostly graphite. Moreover
Li-ion batteries are better than other commercial rechargeable batteries in terms
of gravimetric and volumetric energy.
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Figure 1.1: Schematic illustration of the lithium-ion battery chemistry with a
composite of graphite and SiOx as active material for the negative electrode, a
lithium transition metal oxide as active material for the positive electrode, and a
liquid electrolyte based on organic carbonates [1].

A Li-ion battery is constructed arranging Li-ion cells in parallel, to increase
current, or in series, to increase voltage, or combined configurations. A Li-ion cell
is constituted by a cathode, the positive electrode, an anode, which is the negative
electrode and an electrolyte that contacts the two electrodes. The two electrodes
are isolated from each other by a separator which allows the exchange of lithium
ions between the electrodes but not electrons.

During the charging phase, the two electrodes are connected externally to an
external electrical supply. The electrons are forced to leave the cathode moving
towards the anode and they move externally. Similarly lithium ions move toward
the anode but internally. In this way the external energy is stored inside the battery
in the form of chemical energy in the anode and cathode materials with different
chemical potentials.

The opposite happens during discharging operation: electrons move from the
anode to the cathode externally, doing work on the external load connected, and
the lithium-ion move toward the cathode internally, through the electrolyte. This
is also known as "shuttle chair" mechanism, where the Li-ions shuttle between the
anode and the cathode during charging and discharging phases.

1.2 Aging mechanisms of lithium-ion batteries
Batteries convert chemical energy in electrical energy through electrochemical
reactions and they are widely used in very different field and applications. Among
all the available technologies definitely Li-ion batteries have taken over for their
improved performances with respect to the traditional technologies such as high
working voltage and long cycle life.

For a more conscious and wise use of lithium-ion batteries special requirements
have been placed on battery management strategy (BMS), especially in terms
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of all-climate, all-electricity ranges, full lifetime and high accuracy battery state
estimation like the state of charge (SoC), state of health (SoH) and others. The
estimation of these parameters is crucial for the battery optimal management.

Battery performances change in time and they progressively decrease. This
degradation phenomenon unfortunately can not be stopped and completely neu-
tralized but only slowed down to preserve longer battery characteristics in time.
Obviously if the battery properties change in time also the performances of the
vehicle, on which battery is installed, change as well. Not only performances of the
vehicle will be limited but also some safety issues may appear.

Data collected on-board do not allow for precise battery ageing status estimation.
It is necessary to study battery aging events for the establishment of a connection
between the degradation of the battery external characteristics and internal side
reactions, in order to provide reliable solutions to predict remaining useful life
(RUL), estimate SoH and guarantees safe EV operations.

Until a few years ago we did not know exactly what was going on inside the
battery and only with the advent of new and sophisticated technologies we are able
to describe precisely what happens inside the battery and aging mechanisms have
been better understood.

Figure 1.2: Aging mechanisms classification [2].
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A lithium ion battery mainly consists of an anode (graphite), a metal-oxide
cathode, a lithium salt electrolyte, and a separator that only allows lithium ions
passage. The life of the battery comprises both the cycle life and the calendar life.
The idea is that during the operation of the battery we have some side reactions
other than main reactions that jeopardise battery power and capacity with a
consequent increase in the internal resistance of the battery as the number of cycles
increases. This is the cycle aging: cycle aging in mainly related to the number of
charge/discharge cycles made by the battery. The calendar life, instead, is strongly
related to the chronological age of the battery.

In fig.1.2 extracted from [2] the aging mechanisms happening inside the battery
are classified according to the interested area of the electrochemical system. More-
over in the same figure it is also possible to see what are the external characteristics
of the battery eroded by the aging mechanisms. Xiong et al. in [2] also divides
these reactions into two main aging modes, the loss of lithium inventory (LLI) and
the loss of active material (LAM).

The main aging mechanisms are surely the formation of the solid electrolyte in-
terface (SEI) film at the electrode/electrolyte surface, lithium deposition, electrode
structure decomposition, dissolution of active material and electrolyte decomposi-
tion. Most of the aging mechanisms occur at the positive and negative electrodes.
Also the reaction involving the electrolyte are quite dangerous for the battery while
the reactions on inactive materials contribute less to battery aging.

There are two kind of capacity loss within the storage process: one is reversible
and the other one is irreversible. The first mechanism of capacity loss is related to
self-discharge and the other one is mainly due to the changes in battery storage
conditions. Calendar aging happens when the cell is stored without electric load [3].
Obviously the second kind of capacity loss happens irreversibly and the capacity
lost cannot be re-established or restored in any way.

1.2.1 Reactions at the carbonaceous anode
The main reaction involving the anode is the formation of the SEI film that more
precisely is a process of formation, growth, decomposition, and regrowth of the
SEI film. This mechanism not only causes loss of lithium inventory also the
anode/electrolyte surface diffusion resistance is likely to increase. When the battery
is first charged a primary formation of SEI film is going to happen due to the
reduced electrolyte on the anode surface.

It is convenient to underline that the onset electrolyte potential of SEI film
formation is not constant but is strongly related and linked to the composition of
the electrolyte. Also the presence of additives within the battery can modify the
above mentioned potential [2].

As said before this formation mechanism is not straightforward in the sense
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that it is not simply a formation process. This process comprises several reactions
which involve various components in the electrolyte. SEI film formation is a quite
complex mechanism and it is quite difficult to isolate the single reaction involved
within the process. The result of this mechanism is the formation of a film which is
roughly composed of the salt degradation products (inorganic components) and the
partial or total reduction products of electrolyte solvent (organic components) [2].

The formation of the SEI layer between the negative electrode and the electrolyte
hinders the transition of the lithium ions from one electrode to the other. This will
lead to LLI ageing mechanism since the amount of intercalated and deintercalated
lithium ions during charging and discharging is reduced.

Furthermore the chemical structure, firmness and stability of the solid electrolyte
interface mainly depend on the composition of the electrolyte and electrode but
current and temperature play a crucial role. SEI film formation cannot be avoided,
to retard battery aging it is convenient to maximize the stability of the film for
example by using proper additives and think properly to the anode surface.

Figure 1.3: Anodic reactions during different charging operations: (a) initial SoC
(50%), (b) fully charged battery under normal conditions, (c) high rate charging
operation and (d) overcharging [2].

The deposition of metal lithium at the anode usually happens during harsh
operating conditions like high charging rate and overcharging [4]. In fig.1.3 [2]
it can be seen that lithium deposition does not happen under normal operating
conditions. During extreme charging conditions instead lithium-ion enrichment is
likely to happen at the anode/electrolyte interface. In these conditions the solubility
of lithium ions in the liquid phase (electrolyte) greatly exceeds the solubility of
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lithium ions in the solid phase (carbonaceous anode). Lithium deposition verifies
because the solubility of lithium ions in the liquid phase becomes bigger than the
solubility in the solid phase (carbonaceous anode). The liquid phase (electrolyte)
house an higher amount of lithium ions and lithium deposition can be encountered.
This phenomenon brings to a series of problems. Firstly metal lithium deposition
intensifies the anode polarization and somehow restrains anode performances.
Furthermore metal lithium on the anode triggers some other side reactions together
with the electrolyte. Another part of metal lithium could sink in the cell threatening
safety during cell operation. This lithium foundering might create a short-circuit
within the cell if lithium dendrites emerge withing the electrolyte giving rise to
significant safety concerns.

Attenuation of active materials, fig.1.2, includes gas generated in reduction
reaction, mechanical stress in lithium insertion and delithiation and changes of
crystal structure. Lithium inclusion (insertion) and the subsequent delithiation, as
well as the gas generated during anodic reduction reaction, generates important
mechanical stress in the anode. When lithium-ions are inserted in the anode,
graphitic planes move away from each other and this fractures the SEI film (on the
outer surface of the anode). If the SEI film is cracked then part of "anodic active
material" contacts the electrolyte generating a new SEI film, leading to intense
lithium consumption. If lithium is consumed for these side reaction an irreversible
capacity loss is observed.

The evolution of passive layers, i.e. the solid electrolyte interphase (SEI) at
the anode and the solid permeable interphase at the cathode (SPI), takes on a
key role in the aging of lithium-ion cells. Whereas the SEI ideally prevents any
further reduction of the electrolyte at the anode after formation, the electrolyte is
continuously oxidized at the cathode due to the SPI’s incapability of full passivation.
As the thickening and reconstruction of passive layers consume active lithium, there
is a direct correlation to capacity loss [15], [16], [17], [18], [19], [20]. Under extreme
operational conditions such as a high state of charge (SoC) or high temperatures,
these layers can even isolate active material by growing into its porous structure or
clog the separator’s pores [16], [21].

1.2.2 Reactions at the metal oxide cathode
As illustrated in fig.1.2 the main reactions at the cathode are: electrode structure
decomposition, material phase transition, electrode material dissolution. According
to R. Xiong et al. the dissolution of active material is one of the most dangerous for
battery cycle aging since this reaction is coupled with the migration of the dissolved
products and the deposition at the anode. The dissolution reaction happening at
the cathodic side of the cell quickens the electrolyte decomposition intensifying the
formation of the cathode electrolyte interface CEI film.
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According to Balakrishnan et al. in [5] the dissolution of Mn-based cathode is
the most intense compared with the Ni-based cathode.

The CEI film is thinner than the SEI film, generally it does not entirely cover
the cathode surface. However the consequences of the CEI film are very similar
to that of the SEI film: as the film growth proceeds at the cathode/electrolyte
interface the internal resistance increases as well as the cathode polarization.

Cation mixing and lithium vacancies are at the base of the cathode structural
destruction. Some transition metal ions (Ni2+, Fe2+) and lithium ions have quite
similar radius and this is the reason why the cation mixing happens at the transition
metal cathode. This mechanism not only reduces battery capacity (some lithium
ions become unable to intercalate) but also prohibits the diffusion of lithium ions
leading to an increase in the overall battery polarization.

Also some phase transitions of the cathodic material may appear within the
battery as aging goes on. Some of these phase transitions result in very severe
mechanical stresses that sharply limit battery capacity.

1.2.3 Reaction involving other battery areas
Reactions at other parts of the battery mainly take place on the inactive materials
such as current collectors, separators, conductive agents, and binders. Current
collectors and binders will be consumed as the battery is progressively cycled. This
corrosion mechanism results in a resistance increase and a contact loss with active
materials [2]. Also, the separator within the cell acts as channel for ions, and its
porosity change affects the ion through-rate hence battery capacity.

Battery storage can also reduce battery capacity due to its self-discharge, and
some of the reduced capacity can be recovered through battery charging. Battery
self-discharge can be caused by many factors, such as internal or external electron
leakage, electrolyte leakage, electrode/electrolyte reactions, partial dissolution of
active material, electrode passivation and mechanical decomposition [6]. Among
those factors, the loss of active lithium ions, which is manifested by the growth of
the passive film at the electrode/electrolyte interface, dominated the performance
degradation during battery storage. It is pointed out by Kassema et al. [7] that
the reconfiguration of SEI film at the graphite anode stored at a potential of 3 V is
mainly driven by partial dissolution and secondary reaction with the electrolyte.

Furthermore Kassema et al. in [7] stored different graphite/LFP cells under
3 different conditions of temperature (30 °C, 45 °C, 60 °C) and SoC (30%, 65%,
100%) for 8 months. After 8 months with various non destructive electrochemical
tests they study calendar aging phenomena. After 8 months-storage all of the cells
exhibited capacity fade. The magnitude of capacity fade depends to a large extent
on the temperature and to a lesser extent on the SoC level. Lithium loss was
identified by Kassema et al. as the principal source of capacity fade. This lithium
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loss is a direct consequence of some side reactions happening at the anode (growth
of the SEI film). Also the existence of reversible capacity loss suggests that also
the cathode is subject to some side reactions which by the way are less important
than the reactions involving the anodic side.

Fig.1.4 taken from [7] shows the charge/discharge profiles of 3 different cells
at different storage periods at a fully charged state (SoCnom = 100%) and at
temperatures (a) 30°C, (b) 45°C, and (c) 60°C. Upon storage, the cells stored at
45°C and 60°C undergoes capacity fade [7], which is higher for the cell stored at
60°C.

Figure 1.4: Charge/discharge profiles measured at 1 Cnom and 25 °C for cells
under storage at SOCnom = 100% and at temperature (a) 30 °C, (b) 45 °C, and
(c) 60 °C [7].

1.3 External factors impacting battery aging
The study of capacity and power fade mechanisms by itself is not effective to fully
understand and model battery aging mechanisms: a more in-depth investigation is
needed to quantify and describe lithium-ion battery aging. Several experimental
evidences prove that the aging rate and the remaining useful life (RUL) of the
battery strongly depend upon external factors such as temperature, charge-discharge
rate and depth of discharge. These factors are also used to accelerate aging tests.
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In the following the effects of temperature, charge/discharge rate and depth of
discharge will be investigated and make explicit.

1.3.1 Temperature effects
As shown in many tests, temperature plays a crucial role in determining battery
capacity fade [8, 9]. Rodrigues et al. in [8] find that thermal fragility of the SEI film
is one of the most important source of characteristics dacay in graphitic anodes.
The researchers in [8] demostrate that the SEI can be strengthened by moving the
formation cycle at higher temperature levels. Under these conditions infact it is
possible to recreate a ticker and more protective layer to somehow retard aging.

Moreover the dominant aging mechanisms change for the different temperature
ranges. When the temperature is above 25 °C, the higher the temperature the
stronger the aging rate. For temperature level below 25 °C instead the lower the
temperature the higher the aging rate, as demonstrated by Waldmann et al. in
[10].

For temperature level lower than 25°C, lithium plating at the anode becomes
predominant and this lithium-covering can hinder the intercalation dynamics of
lithium ions. Moreover at such low temperature level lithium plating can give rise
to serious safety hazards.

For temperature levels higher than 25°C, the reactions that determine and drive
battery aging are those of thickening of SEI film and degradation of the cathode.
In [11] Guan et al. find that the capacity degradation associated to cathode
degradation at 45°C is 10 times higher than that of 25°C. High temperatures make
the SEI film brittle and could hinder anode performances.

1.3.2 Charge-discharge rate effects
As the C rate rises, lithium covering and deposition involve the anode surface,
accompanied by structure attenuation. The charge-discharge rates would deeply
affect the time when the inflection point is reached on the battery capacity retention
curve. When the inflection point is reached battery aging enters in the non-linear
zone fig.1.5 extracted from [12]. Smaller charge rate and larger discharge rate can
retards the emergence of the inflection point. A small charge rate tends to decrease
the over-potential and inhibit lithium plating, and a large discharge rate helps to
avoid severe delithiation of the anode [12].

According to Schuster et al. in [12] the evolution of passive layers (the solid
electrolyte interphase and the solid permeable interphase (SPI) at the cathode)
plays a vital and crucial role in lithium ion battery aging. While the SEI film
potentially prevents further electrolyte reduction (avoiding active materials to
contact electrolyte) the SPI is not capable of full passivation and electrolyte will be
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continuously oxidized at the cathode side. As discussed above the consumption of
active lithium is one of the most important reason of batter aging. Under extreme
operating conditions (e.g., high SoC and high temperature values) these layers
isolate active material by growing into its porous structure[13]. Vetter et al. in
[13] conclude that as the time goes on during cycling/storage operation the SEI
penetrates into pores of the electrode and in addition may also penetrate into the
pores of the separator. This may result in a decrease of the accessible active surface
area of the electrode and an increase of the internal battery resistance.

Figure 1.5: (a) Development of the relative discharge capacity versus EFC for a
graphite//NMC lithium-ion cell; (b) Nyquist plots of the impedance and (c) slow
discharge curves referring to the three spots in (a): New cell (blue), before the
start of nonlinear aging characteristics (cyan) and after the occurrence of these
(green) [12].

1.3.3 Depth of discharge effects
The cycle performances are also influenced by the depth of discharge (DOD) but the
effect of this parameter varies with the cathode material. Watanabe et al. in [14]
investigate the degradation of Li-ion cell during cycle with ∆DOD restriction. At
the end of their analysis Watanabe et al. find an important result: the deterioration
was not strictly related to the upper and lower limits of DOD but to the width of
the discharge cycle. When depth-of-discharge is limited to 10% and 70% battery
aging proceeds slower compared to a situation with DOD of 0% - 100%.

Furthermore they find that capacity fading and impedance increase were linked
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to ∆DOD and temperature. Even at 60 °C when ∆DOD was limited between
0-60% the effects on these two parameters turn out to be quite marginal. Conversely
the effect on capacity fade and resistance increase was significant when the battery
was tested with 100% DOD particularly for high temperature values.

Xiong et al. in [2] gather some indications to prevent battery aging or at least
to postpone it to happen. For example Markovsky et al. in [15] figure out that the
addition of some suitable additives in the electrolyte could be helpful and beneficial
for the battery. In [15] Markovsky et al. prove that some common additives (e.g.,
VC - or Li-organo-borate complex (25 CE)) can increase the stability of the SEI
film. This in turn prevent further side reaction to take place.

Obviously extreme temperature, large charge-discharge rate, and high DOD
accelerate battery aging.

In [12], Schuster et al. find that high charge rate, low temperature, and high
∆V could accelerate the transition from linear aging to non linear aging. These
conditions could shorten linear aging and speed up the non linear stage. The battery
will age sharply during the non linear stage and definitely its performances vertically
diminish. Lithium deposition rather than SEI film growth characterizes the non
linear stage and this mechanism severely threatens safe battery operation. Since
aging at low temperature risks prejudicing the safety the preheating method for
batteries makes a great contribution to improve battery performance simultaneously
reducing battery aging.

1.4 Aging diagnostic methods for LIBs
The aforementioned reactions severely restrict battery performances in operation
both in terms of power and capacity. Diagnosis methods are essential not only to
establish if the electrochemical system is compromised also they are very useful to
study aging mechanisms to understand how they are going on within the battery.
Nowadays there are three big families of diagnosis methods: disassembly-based
post-mortem analysis, curve-based analysis and model-based analysis.

1.4.1 Disassembly-based post-mortem analysis
Post-mortem analysis consists in dismount aged batteries in a dedicated environ-
ment to observe each component of the batteries to determine aging mechanisms
through material analysis. To be effective post-mortem analysis requires a dedi-
cated environment to avoid as much as possible contamination and to guarantee
safety during the disassembly operations. Some preliminary operations should be
carried out before opening the battery: to avoid short circuit within the cell some
non-destructive tests are used to identify the best cutting position to open the
electrochemical system[2]. All of the disassembly operations have to be performed
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in a sealed environment filled with inert gas and suitable humidity to ensure safety
and to give credibility to the test. During the disassembly process it is necessary to
avoid contacting different internal battery elements to avoid cross contamination.
Before proceeding with the test battery components are rinsed with dimethyl
carbonate (DMC), diethyl carbonate (DEC) or ethyl methyl carbonate (EMC).
According to the information we are interested in different post-mortem analysis
can be carried out: morphology analysis method, composition analysis method,
and structure analysis method.

Morphology analysis examines the morphology of the electrode surface and avails
itself of optical microscopy, scanning electron microscopy (SEM), and transmission
electron microscopy (TEM).

Composition analysis method studies the composition of the elements, the
concentration distribution of elements on the surface and along with the width,
and the chemical valence of surface elements.

The structure analysis focuses on the crystal structure information on the surface
like for example atomic arrangement, crystal size or crystal orientation.

1.4.2 Curve-based analysis
Curve-based analysis can be performed by means of two "special" curve. Incre-
mental capacity analysis (ICA) and differential voltage analysis (DVA) are widely
used in the field of curve-based analysis. The open circuit voltage (OCV) curve
unfortunately is not sensitive to battery operating conditions and for this reason
the two aforementioned curves are born: ICA and DVA.

For the ICA the first step is to obtain the IC curve based on the battery OCV
curve. This curve describes how the capacity increment dQ

dV
changes with battery

voltage. The curve cannot be used as it is because of the noise, which need to be
erased with a filter like the third-order polynomial Savitzky-Golay.

Figure 1.6: (a) IC curves and (b) DV curves of NCA battery for different cycle
number [2].
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As shown in fig.1.6 (a) the area between the IC curve and the horizontal axis
indicates the capacity charged in the corresponding voltage interval while the peaks
(numbered as P1, P2, P3, and P4) indicated various phase transition stages of
the nickel-cobalt-aluminum (NCA) battery. The following step of the analysis is
to understand the phase transitions for the two electrodes within the cell which
correspond to the different peaks of the curve. For example the NCA cathode
undergoes three phase transitions during battery charging: to initial hexagonal
to monoclinic, monoclinic to new hexagonal, and new hexagonal to another new
hexagonal. For the anode instead we have four different phase transitions. The
phase transitions of the two electrodes are superimposed on the IC curve. Basically
this analysis consists in different steps. The first step is to obtain the IC curve
starting from the OCV curve. The following step consists in making a quantitative
aging diagnosis. The diagnosis is done interpreting the IC curve in terms of
changes/alterations of the magnitude, width, and position of the IC peaks in
different cycles. For example the IC peaks shifting to the right (toward lower
voltage values) means that the polarization resistance of the battery has increased.

Similarly the DV curve is obtained differentiating battery voltage with respect
to the capacity dV

dQ
and it is used instead of IC as a diagnostic method for battery

aging. It is worth to notice that the two aforementioned curves are inversely
correlated meaning that the peaks of the IC curve become valleys when it comes to
the DV curve. In particular the valleys of the DV curve are symptomatic of phase
transitions of the electrode active material whereas a peak represents a single phase
of the active material. If DV curve is used as aging diagnosis method capacity loss
of each phase can be easily measured and quantified by measuring the distance
between two adjacent peaks. The DV curve has an important advantage with
respect to the previous mentioned IC curve since it allows quantifying degradation
effects and the corresponding contribution rates more easily and promptly compared
with the IC curve. Furthermore by using the DV curve we can distinguish the
anode and cathode capacity loss, and determine the electrode that has a greater
effect on battery aging. In practical applications these two methods are used jointly
meaning that they are applied to verify the other one: it is something like saying
that they are complementary.

1.4.3 Model-based analysis
Model-based diagnosis methods comprise the EIS-based method and the electro-
chemical parameter identification based method [2]. EIS stands for Electrochemical
Impedance Spectroscopy. In the following the two methods are briefly discussed
and commented.

The first mentioned method, the EIS-based method, has been developed to
analyze the performance fade due to an increase in battery internal resistance.
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Technically on the electrochemical system under the condition of an open circuit
state a small amplitude alternating current (AC) sinusoidal potential signal is
applied and the response is promptly measured. The response of the system will be
a sinusoidal current response with a certain phase shift with respect to the input
signal. The following step is to compute the electrochemical AC impendence in the
frequency domain exploiting the sinusoidal potential signal (input) and the output
signal.

This technique relates each of the resistors fitted from an Adapted Randles -
Equivalent Circuit Model (AR-ECM) to conductivity losses, LLI or LAM. Using the
EIS measurements, the AR-ECM is fitted based on the Non-Linear Least Squares
(NLLS) algorithm [16].

Figure 1.7: Relationship between a) EIS spectrum, b) AR-ECM and c) ageing
mechanisms [16].
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Fig.1.7 B) illustrates that the AR-ECM is composed of a voltage source connected
in series with a resistor, an inductor and resistor and Constant Phase Elements
(CPEs) parallel branches [16].

The electrochemical model (EM) instead describes the physics and the chemistry
hidden within the battery such as electrochemical reactions, diffusion, migration
of lithium and ohmic action. Technically speaking this method related internal
battery parameters with the external characteristics. To differentiate the aging
mechanisms taking place inside the battery and figuring out the corresponding
aging modes it is necessary to identify, compare and interpret the EM parameters.
Those parameters could be for example the volume fraction of active material, the
lithium embedding rate of the electrode, the diffusion coefficient of the solid or
liquid phase, and the SEI film resistance during battery aging [2].

However quantitative aging diagnosis and real time on-board application consti-
tute two major challenges for aging diagnosis methods. It is quite complex in real
applications to establish specific and robust relationships between internal aging
reactions and external characteristics. The same aging mechanisms could affect
different battery characteristics. Diagnostic methodologies should be able to give
both qualitative and quantitative information about battery aging. Battery physics
and chemistry make the determination of such relationships absolutely not trivial.
Qualitative aging diagnosis methods help us in solely understanding which aging
reactions are actually taking place within the battery. This information by itself is
not enough in providing a complete and comprehensive overview of what is going
on and how battery performances are changing. For this reason qualitative analysis
should be followed by a quantitative analysis. The existing quantitative analysis
consists of two steps [2]. The first one is the battery aging reactions classification
and the second one is to analyze the contribution rates of the each modes which
generally is expressed as the lost capacity of resistance rise. On-board application
of diagnosis methods is very different from the laboratory application. The main
differences are surely related with the required robustness, speed, accuracy and
real time characteristics. Hence curve-based analysis and EIS-based method have
drawn even more attention for on-board application and are the perfect candidates
for this kind of application. Disassembly-based post-mortem analysis has surely
the advantage of intuitive observation of the inside aging reactions. In the same
time this method irreversibly destroys the battery, it is complicated and it has high
experimental costs. Curve-based analysis instead is a non-destructive analysis thus
the battery could be potentially reused immediately after the test. This method
is quite flexible and versatile and has low computational efforts are required [2].
Cross-validation is needed and noise has to be carefully managed. Finally model-
based analysis is non-destructive, versatile and very accurate. The disadvantages of
this method have to be searched in its computational burden, interference between
EM parameters and difficulty to measure EIS.
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Chapter 2

Lifetime prediction of
electrochemical systems

It is important and somehow necessary to be able to foresee the useful life of a
battery in target applications in order to make sound technical and commercial
decisions at the system design stage. In general to accurately predict battery lifetime
other instruments have to be used besides the knowledge of ageing processes and the
availability of battery models. Precise battery lifetime forecasts become crucial and
extremely important for technical and commercial decision-making. On the basis
of these forecasts the most suitable battery type is chosen, operating conditions are
determined and replacement intervals for batteries are planned. The knowledge
about the ageing processes, the stress factors that cause battery performances to
diminish in time, and an understanding of the connections between the stress factors
and ageing processes is fundamental in achieving a precise lifetime prediction.

Different approaches for lifetime prediction of electrochemical systems are pre-
sented and commented in the following paragraphs. Three major models [17] are
used to forecast the useful life of different electrochemical energy storage devices
namely: 1) physico-chemical ageing model; 2) event-oriented ageing model; 3)
weighted Ah throughput ageing model.

However, when several ageing processes happen contemporary due to a complex
combination of operating conditions [17] (e.g., combination of cycling, partial state
of charge cycling, incomplete full charging, wide range of temperatures) attention
should be payed in studying all of these interactions (between ageing processes
and operating conditions). On an experimental basis is possible to reconstruct a
correlation between ageing processes and lifetime forecast but only up to a certain
point, as largely demonstrated in literature.
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2.1 Physico-chemical ageing model
A complete and detailed physico-chemical model of the ageing process is used for
time step simulation. This model gives the possibility to access some very local
information such as temperature, potential, current, SoC, electrolyte concentration,
etc. These parameters are also known as state-variables and they are the result of
the operating conditions. State variables are used to somehow uniquely characterize
the system under analysis. By knowing the relationship between aging effects and
state variables it is possible to quantify the effect of the ageing processes at any place
(and any time) within the system. It is interesting to notice that the ageing progress
is incorporated within the model thus the state variables are automatically adjusted.
For example if the grid resistance changes in time, the current distribution along
the electrode as well as the electrolyte density at different height is automatically
updated within the physico-chemical model.

Sauer et al. in [17] resume the general approach of this model with the scheme
presented in fig.2.1. According to Sauer et al., infact, this model consists of two
steps. In the first step battery is modeled by means of the fundamental equations
of the chemical and electrochemical reactions. The outputs of this first step are:
local potential, local current density, local state of charge, microstructure of active
material, local temperature, local oxygen reduction current, local corrosion current
and many others. It is possible to say that the main goal of this part is to model
the battery giving in output several local information to be used in the second part.
The second part of the physico-chemical ageing model is in charge of quantifying
ageing processes and their direct impact on battery external performance. The
two sections are not isolated and separated: they are complementary. The output
information of the first module are used as input in the second module and the
outcomes of the second module serve to state-variables automatic adjustment.

Figure 2.1: Physico-chemical ageing model [17]: general approach.

The simulation is based on a resistance network that is also named the equivalent
circuit diagram (in fig.2.2, taken from [17], only the positive electrode is reported).
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Figure 2.2: Equivalent circuit diagram of the positive electrode (left-hand side of
the figure: grid; right-hand side: electrical path way through the electrolyte to the
negative electrode). Electrode is split into three vertical levels and three horizontal
levels within the active mass [17].
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The equivalent circuit diagram is then solved at each time step and by means of
Kirchhof’s laws a full set of linear equations is obtained. Sauer et al. solve the
equivalent circuit diagram instead of solving a set of inhomogeneous, non-linear
and coupled differential equations. The solution of such a complex model can be
easily obtained using the most advanced tools in the field of electronic engineering.

The model described above is only concerning the first step previously introduced
of the whole physico-chemical aging model. By solving the first model, conditions
at each point of time and every point in the electrodes (and electrolyte) are
known. One of the advantages of this model is definitely the amount of information
available. The transfer of knowledge of the local conditions in the battery to a
quantified impact on the ageing processes and battery performance in carried out in a
two step approach by Sauer et al. in [17]. In the first step the general dependencies
of most ageing mechanisms on the state variables have to be extrapolated from the
literature. In the following passage specific tests are performed in laboratory and
finally this information is used to "correct" the dependencies found in literature.

From this very quick overview about the physico-chemical ageing model is clear
the reason why it is the most complex model. This model deals with a plenty of local
information. The physics and chemistry inside the battery are very scrupulously
described. With this approach every point of each battery component is fully and
completely characterized. However this in-depth modelling requires several input
information.

This model requires several input information and maybe some of these requests
are non-confidential data which are difficult to find/estimate. Given its intrinsic
complexity it is unthinkable to use the physico-chemical ageing model in on-board
application. Calculation speed is significantly lower than the two other models.
Resolution of the model should not be too high otherwise the simulation time
dramatically increases. On the other hand this model is quite flexible meaning
that once the parameters have been identified it can be used for a great variety of
operating conditions and control strategies. The physics and the chemistry behind
the model allow to have more reliable and precise results with respect to the other
models. Having more precise information allow to obtain better control strategies.

2.2 Event-oriented ageing model
This model takes its cue from the concept of SN or Wöhler curve after the German
railway engineer who first introduced the principle as a means to determine the
lifetime of railway components. This concept is associated with the concept of
cumulative damage: the lifetime before breaking is estimated by assigning the
incremental loss of lifetime associated with well-defined events and adding up the
loss of lifetime per event [17]. In the field of mechanical engineering each event is
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described by one scalar value (e.g. bending moment). Sauer et al. renamed this
scalar value as stress factor. If the magnitude of this stress factor changes, the
number of events before breaking changes as well: the greater the induced damage
the lower the number of events to breaking.

Two kinds of Wöhler curves [17] are used today to estimate the battery lifetime:

• The curve showing the number of cycles of a battery as function of the depth
of discharge until the end of lifetime. Battery-makers usually provide this
information in the datasheet;

• The curve showing the lifetime of a battery in days as a function of its float
charging voltage or temperature;

Nevertheless, both of the aforementioned Wöhler curves are one-dimensional
meaning that one only stress factor in considered as aging-inducing factor while
all the other stress factors are kept constant and fixed. This assumption unluckily
is not very realistic when it comes to battery and fuel cells: within these devices
infact several factors contemporary happen. In real applications there is an overlap
between different stress factors rather than one only stress factor.

The mathematical formulation of the event-oriented ageing model, Eq.2.1, is
quite simple and copies exactly the mechanical formulation of cumulative damage.
If NEi is the number of events i occured in the observation period and NEi

max is
the maximum number of events i that can occur during the lifetime of a battery
until the failure occurs (under the assumption that only events i happen) the loss
of lifetime can be easily evaluated.

LLi = NEi

NEmax
i

(2.1)

The portion of lifetime lost during an observation period is equal to the sum
extended over all the types of events during the same "sampling" period:

LL =
Ø

i

LLi (2.2)

The end of lifetime is reached when LL, eq.2.2, is equal to 1. Practically speaking
the meaning of eq.2.1 is that during the generic observation period a certain
percentage of useful life is lost or equivalently a damage is induced within the
system. The ratio in eq.2.1 compares the real number of cycles made by the battery
with the potential number of cycles (under the same conditions) the battery could
withstand before EOL. If the same procedure is applied also to the other conditions
- events different from i - it is possible to evaluate the cumulative damage, eq.2.2.
When this sum is equal to one end of lifetime is reached by the system.

Furthermore the use of this model is based on some assumptions [17]:
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1. The loss of lifetime per event is small;

2. The loss of lifetime for a given event does not depend on the sequence/order
with which events are executed;

3. The loss of lifetime related with the single event does not depend on the
accumulated damage;

4. Every point of time must be assigned to exactly one event for which data from
a Wöhler exist;

The first assumption is true for batteries under normal operation. Obviously
this is not the case of very severe operating conditions which deplete battery
performances after a few number of repetitions. For Sauer et al. the second
assumption is fulfilled in battery practice only if the battery at the end of the event
has returned to an appropriate condition.

The third assumption is the most difficult one for the researchers. In [17] Sauer
et al. highlight the fact that in the definition of an event there is an intrinsic
"allusion" with ageing: events are characterized by means of some parameters
which already incorporate ageing. As a consequence ageing effects are "indirectly"
considered and taken into account.

For the last assumption it is clear that a simple one-dimensional Wöhler curve
is not effective to solve the problem and also the definition of each event must be
carefully decided so that every point in time will be assigned to only one type of
event.

In many applications battery can be considered to be subject to a combination
of three different types of events: float operation, cyclic operation and cycling at
a partial state of charge. The "exact" definition of event does not exist: event
definition is application dependent. In [17] Sauer et al. define the main classes of
events as follows:

• Float operation: in railway application batteries remain fully charged for a
long period of time but external conditions might change. Floating mode is
interrupted for example when the battery has to provide high rate discharge
current to crank the internal combustion engine of the train.

• Cyclic operation: train batteries are occasionally discharged for example during
shunting manoeuvres. Not all the battery users are disconnected from the
battery and they continue absorbing power from the electrochemical system.
Battery remains at very low SoC level for a few hours. Battery damage under
these conditions happens very quickly. Recharging the battery always occurs
via a constant current/constant voltage charging regime with I5 and usually
up to a voltage of 2.35–2.4 V cell-1. In discharging operation battery current
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will tend to fluctuate as the loads are repetitively connected and disconnected
and also during charging operations the charging current may sometimes falls
below the set value as the availability of electrical power on board a train is
limited.

• Cycling at partial state of charge: sometimes, a discharge cycle starts prior
that battery has reached fully-charged conditions. Some undesirable reactions
could happen: sulphation and acid stratification are two meaningful examples.

Cyclic operation and cycling at partial state of charge are conceptually very
similar. In cycling operation battery is fully discharged and then fully charged. If
the discharging process is stopped by charging currents then we talk about cycling
at partial state of charge.

The weakest point of the model is surely the application-oriented definition and
classification of events and information concerning the number of these events until
the end of lifetime is reached.

2.3 Weighted Ah ageing model
Cycle lifetime is established by discharging the electrochemical system with a
constant current to a certain DOD and a subsequent full charge under a given
charging rules. The overall Ah-throughput until the capacity has fallen below a
pre-set level is thus quantified. For lifetime prediction purposes, battery useful life
corresponds to the time until the total Ah throughput - processed by the battery
- is identical to the Ah throughput measured under such constant conditions.
Nevertheless, real battery operating conditions might significantly differ from
the test-conditions. This divergence (real operating conditions are different from
standard operating conditions) makes the comparison between Ah-processed and
Ah-potentially-processable meaningless: the amount of charge processed by the
battery may be more or less damaging than during the standard operating conditions.
The idea is that the same amount of charge might be more or less damaging in
terms of battery health as function of the operating conditions under which this
charge is processed. The weighted Ah ageing model literally weighs the charge
processed by the battery depending on the operating conditions. The more severe
the operating conditions (for battery ageing) the higher the weights the model will
apply. The Ah effectively processed by the battery are then compared with the
Ah-potentially-processable (experimentally obtained).

In [17] researchers take these deviations into account and make the assumption
that the battery is at the end of its lifetime once the weighted Ah throughput has
exceeded the expected unweighted Ah throughput which has been measured under
nominal operating conditions.
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Per definition [17], the end of lifetime is reached once the capacity of the battery
under standard test conditions (e.g. 10 h discharge current, 25 °C) is below 80% of
the nominal capacity. Sauer et al. use lead-acid batteries as example to explain
different methods for lifetime prediction of electrochemical systems. In [17] some
important considerations regarding lead-acid batteries are reported. Firstly cycling
a lead-acid battery at low states of charge appears to be more damaging than
cycling the same battery at high states of charge. Hence, any Ah which is charged
or discharged to the battery needs to be weighted according to the SoC level. The
lower the state of charge the higher this weight will be. Furthermore, Sauer et al.
recognize that cycling of a battery while acid stratification is present is likely to
result in inhomogeneous current distribution along the electrode. As a result of this
uneven distribution some areas of the electrodes are stressed very much. Again, the
Ah throughput needs to be weighted with a factor which depends on the degree of
acid stratification. Also, long periods without a full charge of the battery are known
to be detrimental as well because the sulphate crystals grow [17]. This finally leads
to sulphation and capacity loss. Therefore the Ah throughput also needs to be
weighted with a factor depending on the time since the last full charge. Sauer et al.
in [17] develop a very detailed Ah throughput model for lead-acid batteries. In this
model weighting factors for acid stratification, bad full charges, SOC weight and
current amplitude are taken into account. The undoubted advantage of the model is
the high computational speed making it suitable for system design tools where/when
several systems have to be tested quickly. Additionally the structure of the model is
quite simple and readily understandable: it can be easily adapted and customized
for different battery technologies. Different battery technologies may have different
stress factors and their quantitative impact on ageing considerably varies with
battery specs. Stress factors identification and quantification are propaedeutic for
aging model application and implementation. However, the model can be seen as
a heuristic approach. Effectively this model does not represent ageing effects on
a physical or chemical basis: the model tries to correlate stress factors with the
battery performance fade. In other words, battery-makers cannot take advantage
of this "simple" model to enhance battery physico-chemical technology. On the
other hand this tool lends itself to all of those applications in which simulation time
is considered more important than detailed information. For example this model
seems to be an excellent choice for on-board control strategies in HEVs in which
the speed in getting the information is even more important than the information
itself.
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2.4 Life model for graphite - LiFePO4 cells
In [18] Wang et al. study cycling induced capacity fade of a LiFePO4 battery and
a cycle life model has been realized and experimentally validated. Cell life data for
ageing model construction have been gathered in a large test matrix that includes
three parameters: temperature, DOD, and discharge rate.

According to Wang et al. at low C-rates capacity fade was mainly linked to
exposure-time and temperature while the effect of the depth of discharge was prac-
tically negligible. At high C-rates, the charge/discharge rate related phenomenon
become increasingly important and significantly deplete battery performance. In [18]
a power law equation has been adopted: capacity loss is related to Ah-throughput
- or time - by means of a power law relation whereas an Arrhenius-like relation is
selected to describe temperature effect.

LiFePO4 batteries are considered to be one of the best technologies for large-scale
application such as automotive and space industry. Several efforts have been made
both in academia and industry to study performance-fade mechanisms affecting
this electrochemical system. The complexity of the problem makes everything
more complex. Researchers in [18] study battery behaviour in time under different
operating conditions taking advantage both of destructive and non-destructive tests
and the results indicate that capacity fade in LiFePO4 are mainly ascribed to loss
of active lithium which in turn is connected with anode degradation. An optimal
exploitation of the battery is enabled only by a detailed understanding of the aging
phenomena happening within the battery.

In [18] Wang et al. develop a semi-empirical life model based on the consumption
of active lithium, hence anode degradation. The researchers investigate the effect
of four different parameters on battery ageing: time, temperature, DOD and
charge/discharge rate. A general power law equation described by Bloom et al.
[19], where capacity fade is connected with time through a power law relation, has
been used as starting point in [18].

According to Bloom et al. useful cell life was strongly affected by temperature,
time, state-of-charge (SoC) and change in state-of-charge (∆SoC) [19]. During
calendar life experiments, cell life was strongly influenced by temperature and time.
In [19] is highlighted that the rates of area specific impedance (ASI) increase and
power fade follow simple laws based on a power of time and Arrhenius kinetics.
Bloom et al. using these two concepts model the data and finally they find that
the calculated data agree well with the experimental values [19]. The calendar
ASI increase and power fade data follow time(1/2) kinetics. This behaviour is
mainly connected with the SEI film growth. Cycle life experiments made in [19]
confirm this trend and in the same time indicate that power fade mechanism is
more complex than layer growth.

LiFePO4 cells, purchased by A123 Systems, are tested under several different
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conditions as reported in fig.2.3: five different temperature levels, five DOD levels,
and four discharge rates. In [18] the cell capacity is de-rated to 2Ah during the
definition of the DOD and c-rate.

Before proceeding with the cycling test, each cell has been characterized under
four different perspectives [18]: capacity characterization, relaxation test, electro-
chemical impedance spectroscopy (EIS), and hybrid pulse power characterization
(HPPC). For a more in-depth understanding about the characterization techniques
used by Wang et al. the reader is referred to the complete version of [18].

Figure 2.3: Test matrix used in [18] to build the cycle life model for LiFePO4
battery. Test matrix for accelerated cycle life study. Two cells are tested for each
condition. The numbers in the test matrix indicate the number of cycles attained
by the cell. Green background cells were still cycling when the paper was written
while the red ones have reached end of life conditions.

The test matrix of fig.2.3 is used by the authors of [18] to do some statistical
evaluation of the factors affecting cycle life and in the same time it provides enough
information to build the model. Wang et al. use capacity characterization data
to quantify the capacity fade rate for the model development. Fig.2.4, taken from
[18], reports the discharge curves acquired at C/2 rate for different cells tested
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under different conditions. It is interesting to notice, fig.2.4, that as the ageing
proceeds, the measured capacities inexorably decrease although the overall shape
of the curves remain quite identical.

Figure 2.4: Discharge curves of the battery cells cycled at three different conditions:
(Cell A) 90% DOD, C/2, 0°C; (Cell B) 90% DOD, C/2, 45°C, and (Cell C) 90%
DOD, C/2, 60°C. These results are extracted from [18].

In (2.3) Qloss is the lost capacity as the ageing goes on. This term depends on
different elements: time, temperature, depth of discharge and charge/discharge
rate.

Qloss = f(t, T, DOD, Rate) (2.3)
In fig.2.5 (a) [18] it is possible to see that for a given C-rate value the cell tested
at DODs higher than 50% reach end-of-life condition sooner than those cycles at
DODs lower than 50%. In fig.2.5 (b) [18], instead, the same data is plotted as
function of time. By having a closer look to fig.2.5 (b) it is possible to realize that
DOD has a very marginal influence on capacity fade. Thus, Wang et al. conclude
that the effect of cycling time is more important than DOD. The little effect of
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DOD suggest the authors of the paper to neglect DOD impact in the definition of
the model.

(a) (b)

Figure 2.5: (a) Capacity retention at 60°C and a discharge rate of C/2 plotted as
function of cycle number, data shown for 90, 80, 50, 20 and 10% DOD. (b) Capacity
retention at 60°C and a discharge rate of C/2 plotted as function of time (days),
data shown for 90, 80, 50, 20, and 10% DOD. The images have been extracted
from [18].

Given the negligible effect of the DOD, Eq.(2.3) becomes Eq.(2.4).

Qloss = f(t, T, Rate) (2.4)

By using the model introduced by Bloom et al. in [19] it is possible to connect the
capacity fade with time and temperature with the battery life model in Eq.(2.5).

Qloss = B · exp
3−Ea

RT

4
· tz (2.5)

Instead of using time in Eq.(2.5) Wang et al. decide to link capacity fade
to the Ah processed by the battery. In particular Ah-throughput is the charge
processed by the battery during cycling operation. For every C-rate value, the
charge processed by the battery is directly proportional to the time: using Ah-
throughput instead of time it is possible to quantify the capacity fading behaviours
for different charge/discharge rates.

Hence the battery life model previously introduced becomes Eq.(2.6). In Eq.(2.6),
Qloss is the percentage of capacity loss, B is named pre-exponential factor, Ea is the
activation energy in Jmol−1, R is the gas constant, T is the absolute temperature,
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and Ah is the charge processed by the battery.

Qloss = B · exp
3−Ea

RT

4
· (Ah)z (2.6)

Eq.(2.6) is rearranged as in Eq.(2.7) for analytical purpose.

ln(Qloss) = ln(B)−
3

Ea

RT

4
+ z · ln(Ah) (2.7)

Figure 2.6: Image taken from [18]. Fit achieved when using equation to predict
capacity loss as a function of temperature. Capacity loss is plotted as function of
Ah throughput at 0, 15, 45, and 60 °C. Linearity is obtained for each temperature
level.

In fig.2.6 the percentage of capacity loss is plotted as function of Ah-throughput
on a log-log scale for different temperature levels. The continuous line represent
the linear fit at each temperature. The lowest temperature value (-30°C) is not
reported in fig.2.6 since the cell cycled at this temperature does not cycle long
enough to have sufficient data. The slope of each line is the power law factor z.
The fitted lines are almost parallel to each other meaning that the temperature
effect is independent of the power law factor z. At 0°C the fitted line is steeper
meaning that at such low temperature level ageing might proceed in different ways.
Wang et al. conclude that at 0°C other ageing mechanism might happen hence
they decide to exclude this temperature level.
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2.4.1 Life model development for C/2 rate
A single step optimization has been implemented in [18] to determine the fitting
parameters by rearranging Eq.(2.7). As represented in the figure fig.2.7 ln(Qloss) +
Ea/RT is plotted versus ln(Ah). The activation energy Ea in [18] is obtained from
the intercept values of the best-fit non linear regression curves. By exploiting also
the data for different temperature values (at C/2 discharge rate) Wang et al. find
that the activation energy Ea is equal to 31,500 J mol-1. The effect of temperature
instead is described by an Arrhenius relation, which represents somehow the kinetics
of a thermally induced chemical process.

Figure 2.7: Eq.(2.7) to determine the fitting parameters for the life prediction
model in which ln(Qloss) + Ea/RT is plotted as a function of ln(time). The
activation energy was obtained from the best-fit values determined by non-linear
regression, R2. The slope and intercept of the linear fitting correspond to the power
law factor, z, and the pre-exponential value, A, respectively.

The pre-exponential factor B is evaluated from the intercept of the linear fittings,
reported in fig.2.7. The line slope, instead, represents the power law factor which
turns out to be equal to 0.552 (for C/2 rate). Furthermore the power law factor
is almost equal to 0.5 which corresponds to a square-root of time dependence.
Previous papers [20, 21, 22], recognized that this square-root time relationship
with capacity fade represents the irreversible capacity loss due to SEI film growth
that depletes and consumes active lithium content within the cell. This process is
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regulated and controlled by a diffusion process. As a result, the capacity loss life
model is expressed as in Eq.(2.8) and it can be used for qualitative simulation of
capacity fade phenomenon under different operating conditions.

Qloss = 30,300 · exp
3−31,500

8.314T

4
Ah0.552 (2.8)

In fig.2.8 [18] cycle-life model results are compared with experimental data.
By analyzing the plot in fig.2.8 it is possible to realize that a good agreement
between model results and experimental data exists. Although the model marginally
overestimates capacity loss at 45°C and underestimates capacity loss at 60°C the
agreement between model and experiment is quite good.

Figure 2.8: Simulation of cycle-life model prediction model (line) and experimental
data (dots) at 15, 45, 60 and a C/2 discharge rate. Source: [18].
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2.4.2 Life modeling for high C-rates
Wang et al. in [18] use Eq.(2.7) to fit the capacity fade profile at each discharge
rate (2C, 6C, and 10C). They found that the experimental data follow the power
law relation. For 2C discharge rate the activation energy and the power law factor
are quite similar to the values of C/2, see Tab.2.1. Based on these considerations
Wang et al. conclude that the aging-affecting factors remain similar for low and
high discharge rates and for this reason they decide to use this power law to fit the
capacity loss at 6C and 10C.

The optimal parameters, for each constant C-rate, of the pre-exponential factor,
activation energy and z have been found by minimizing the total error which by the
way is defined as in Eq.(2.9). More specifically the optimal values were found in
[18] using Newton’s iteration method solved in EXCEL with the SOLVER function.
The calibration thus obtained for different c-rate values are summarized in Tab.2.1.

Ôopt =
Ø
j=N

[Qmeasured
loss,j −Qmodel

loss,j ]2 (2.9)

C-rates Life model
C/2 Qloss = 30,300 · exp(−31,500/RT ) · (Ah)0.552

2C Qloss = 19,300 · exp(−31,000/RT ) · (Ah)0.554

6C Qloss = 12,000 · exp(−29,500/RT ) · (Ah)0.56

10C Qloss = 11,500 · exp(−28,000/RT ) · (Ah)0.56

Table 2.1: Capacity fade equations at a given discharge rate. Model parameters
have been obtained with the procedure explained before [18].

Furthermore the authors of [18] use the actual cell temperatures to fit the life
model equation at high discharge rates. Cell heating during cycling operation is
definitely more important at high discharge rate. At low environmental temperature
the real cell temperature tends to rise more in discharging operation. Also DOD
has an impact on the real cell temperature registered: several experimental tests
evidence that the cells cycled at higher DODs heat up more than those tested at
lower DODs.

In [18] the authors not only prove that battery life model for different discharge
rate can be easily obtained also they try to formulate a generalized battery life
model Eq.2.10 to explain capacity fade for very different operating conditions.

A closer examination on the activation energy reveals that the higher the
discharge rate the lower the activation energy. A mathematical correlation to
describe this trend can be derived. The power law factor, instead, varies from 0.552
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(C/2) up to 0.56 for the highest C-rate value (10C): it assumed equal to 0.55.

Qloss = B · exp
5−31,700 + 370.3 · Crate

RT

6
(Ah)0.55 (2.10)

Figure 2.9: Model simulation results (lines) and experimental results (dots) at
2C (a), 6C (b) and 10C (c) discharge rates. Image taken from the paper of Wang
et al. [18].

For the pre-exponential factor it seems that the higher the discharge rate the
lower the pre-exponential factor although the identification of a mathematical
relation to describe this trend is quite difficult. The authors of [18] to solve
the problem use the life model reported in Eq.(2.10) to simultaneously fit the
experimental data for all the c-rates. Even in this case Wang et al. try to get the
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values of the pre-exponential factor through a total error minimization, obtaining
the results reported in Tab.2.2.

c-rate C/2 2C 6C 10C
B values 31,630 21,681 12,934 15,512

Table 2.2: Generalized life model: pre-exponential factor values for different c-rate
values [18].

In fig.2.9 simulation results obtained with the life model equation are compared
with the measured capacity loss data for 2C, 6C and 10C rates. The model
projections are fully and entirely consistent with the experimental data for all the
C-rates.The power law factor is very close to 0.5 leading to a square-root of time
dependence. Some studies [20, 21, 22] claim that the active lithium consumption
rate at the anode (due to SEI film) has a square root time dependence. The authors
of [18] applying and taking advantage of both destructive physical analysis and non-
destructive analysis conclude saying that the major cause of battery performance
fade is associated with active lithium consumption.

The Arrhenius relation effectively describe the kinetics of the chemical processes
which are at the base of the side reactions leading to SEI formation. The major
achievement of [18] is the creation (and validation) of such a simple and immediate
model. The model created is in perfect sync with the experimental data. In
the following this method will be used to find the best control strategy which
contemporary minimizes fuel consumption and battery degradation.
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2.5 Life model for a A123 Systems cell

2.5.1 Model parametrization
Wang et al. proposed a generalized capacity fade model [18] starting from cycling
test results from an accelerated cycle life study on commercially available LiFePO4
batteries. In the first part of the paper [18] a life model is developed to describe
the time and temperature dependence of capacity fade at C/2 given that the effect
of DOD for such low c-rate is negligible. In the second section this information is
used to approximate the capacity fade behaviour at even higher c-rate (2C, 6C and
10C). In the last section the authors derive a generalized approach by a preliminary
fitting of the life-model to the experimental data set.

In order to use this model in our application a detailed understanding of the
model and its assumption is necessary. In our study the temperature of the cell is
kept fixed at 25°C while Wang et al. test the battery in a wide temperature range.
The test condition corresponding to 30 °C as highlighted before is not significant
since the cell, tested in these conditions, does not cycle long enough to obtain
sufficient data. The life-model obtained for C/2 rate seems to slightly overestimates
capacity fade at 45°C and underestimates capacity fade at 60°C; the model results
are instead perfectly aligned with the experimental data obtained at 15°C.

Figure 2.10: Linear interpolation of the experimental data sets. The blue points
represent the values of the pre-exponential factors determined by Wang et al.in
[18].Pre-exponential factor [-] as function of c-rate h-1.
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The depth of discharge of our cell is well below the DOD levels considered in
[18]. The model has been validated considering more severe operating conditions
in terms of depth of discharge.

The crucial point is to understand whether or not the life-model proposed by
Wang et al. is reliable even dealing with higher c-rate values. The A123 cell
under examination could reach very high discharge rate up to 23.68 h−1 while the
maximum value of c-rate for which the life-model has been validated is 10C.

The first thing to do in order to use the unified model is to understand how the
c-rate affects the pre-exponential factor. Actually in [18] the authors concluded
that identifying a simple mathematical correlation between the pre-exponential
factor and c-rate is not straightforward as for the activation energy. The first step
of our analysis has been understanding how this parameter varies as function of
charge/discharge rate. Starting from the experimental data for which the model
[18] has been validated it is possible to look for a linear interpolation (fig.2.10) of
the data set to establish a relation between B and c-rate. Given the impossibility to
have access to significant data for c-rates higher than 10C a conservative approach
has been used: pre-exponential factor is kept constant for c-rates higher than 10C.

Obviously the discharge rate of our application might be strongly different from
those foreseen in [18] and to apply the life-model the pre-exponential factor has to
be known for each c-rate. The information reported in fig.2.10 allow to know the
value of the pre-exponential factor for each c-rate value.

2.5.2 Unified life model for different c-rates
In this section the unified aging model [18] is applied on a A123 ANR26650m1B
cell that is tested under very different operating conditions in terms of c-rates.
The objective of this paragraph is to test the life-model [18] to better understand
whether or not it provides reasonable results.

Parameter Description Value
Q0(0) Nominal Capacity 7.3 Wh
Voc Open Circuit Voltage 3.34 V
T Cell Temperature 25 °C
m Cell Mass 0.07 kg

Table 2.3: LiFePO4 cell data made by A123 Systems.

The Ah-throughput along the WLTC driving cycle have been evaluated by
multiplying the number of cycles (treated as the independent variable) times the
depth of discharge times the nominal cell capacity. This information is used in
place of time given that at a fixed c-rate value the Ah is directly proportional to
time.
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Implementing the unified model Eq.2.10 it is possible to demonstrate that a
clear correlation between the c-rate and capacity fade exists and the results are
shown in fig.2.11. The higher the c-rate experienced by the cell the higher is the
capacity loss foreseen by the model. By definition the end-of-life is reached when
the battery capacity has dropped by 20%. For 2.5C and 5C the capacity loss seems
to be less severe and this is due to the fact that the calendar-life effects were not
isolated when the model was built: N cycles at low power expose the battery for a
longer period of time to calendar-life effects.

This concept is going to be clarified in the following chapters of the thesis.
Furthermore it is possible to notice that for the extreme values of c-rates the
capacity fade appears to grow at an alarming rate.

It is worth to notice that in fig.2.11 the c-rate is kept constant along the entire
driving cycle: in the real execution of the cycle the battery is not working with the
same charge/discharge rate.

The goal of this paragraph is to check the validity of the model rather than the
performance on the WLTC. This preliminary study is useful to check the validity
of the model, which by the way will be implemented and used in the following for
its simplicity and effectiveness.

Figure 2.11: Percent of capacity loss as function of total Ah throughput for
different c-rate values.

In fig.2.12 the same conditions of [18] are analyzed. The goal is to check the
correctness and the accuracy of the model by comparing the results obtained with
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the results reported in [18]. In fig.2.12 the discharge rate (2C) is kept constant
for all the curves. The blue curve is obtained with 50% depth of discharge and
15°C. The orange curve is obtained with 50% DOD and 45°C while the yellow
curve represent 10% DOD and 60°C.

The first consideration to make is that the parametrization chosen for the pre-
exponential factor of the model works quite well leading to have the same results
obtained by Wang et al. in [18].

By looking at the three curve it is immediate to identify the more severe
conditions for the battery: the cell cycled at 60°C (yellow curve) reaches the
end-of-life conditions before than the other two cells. In fig.2.12 it is possible to
realize the temperature effects on battery ageing: the DOD as explained in [18]
has a minor effect on battery cycle life. The higher the temperature the steeper
the curve: if the curve is steeper the end-of-life condition happen for a lower Ah
processed by the same electrochemical system. End-of-life is assumed to happen
when the original capacity drops of 20%.

Figure 2.12: Percent of capacity loss versus total Ah throughput: check with
[18].
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Chapter 3

State-of-health estimation

The State-of-Charge of the battery is evaluated as in Eq.(3.1) where the x1,0 is the
initial state-of-charge while Q0(0) is the original energy capacity of the battery
in Wh. Evidently the capacity Q0(t) decreases over time as the battery is used.
In Eq.(3.2) the time derivative of the SoC is reported given that negative power
values recharge the battery.

x1(t) = x1,0 −
1

Q0(0) ·
Ú t

0
Pi(τ)dτ (3.1)

ẋ1(t) = − Pi(t)
Q0(0) (3.2)

Capacity fade models are usually grouped into three families [17]: 1) electro-
chemical models; 2) event-based models; and 3) energy-throughput-based models.
Among these models the most suitable for on-board control strategies are the
event-based and the Ah-throughput based models.

In the following the energy-throughput model will be adopted to study capacity-
fade mechanism of the LIBs used in automotive application. As largely discussed
in the previous chapter this model is based on the assumption that the battery can
process a certain amount of charge under constant operating conditions.

Ebbensen et al.. in [23] define the state-of-health similarly to the state-of-charge,
Eq.(3.3). x2(t) is the State of Health of the battery in time whereas the x2,0 is the
original SoH of the battery. N is the total number of cycles before end-of-life. The
factor two in the denominator takes into acocunt that both positive and negative
power values are integrated. When x2(t) equals zero, the end-of-life of the battery
is reached.

x2(t) = x2,0 −
1

2 ·N ·Q0(0) ·
Ú t

0
|Pi(τ)|dτ (3.3)
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It must be noted that N is not constant but it strongly depends on the operating
conditions of the battery. Wang et al. in [18] concluded that for LiFePO4 the main
aging-inducing operating conditions are the discharge rate and temperature. The
effect of the other conditions is quite marginal and it can be overlooked. Ebbensen
et al.. in [23] reasonably fix the lumped cell temperature with a BMS. The only
time-variant parameter is the discharge rate hence the primary goal is to identify a
relation between c-rate and the number of cycles N.

Bloom et al. [19] found that, under constant operation, the capacity loss ∆Q0(%)
with respect to the original value as in Eq.(2.10). Eq.(3.4) is another form of the
Eq.(2.10). The activation energy dependency on the discharge rate can be expressed
as Ea(c) = (31,700− 370.3 · c) J/mol.

∆Q0 = B(c) · exp
3−Ea(c)

R · T

4
· Ah(c)z (3.4)

The first thing to do to obtain a meaningfull expression for the number of cycles
is to solve Eq.(3.4) for the amp-hours, see Eq.(3.5).

Ah(c) =
 ∆Q0

B(c) · exp(−Ea(c)
RT

)

 1
z

(3.5)

The number of cycle can be expressed as in (3.6).

N(c) = Voc · Ah(c)
Q0(0) = Ahprocessed

Ahbattery

(3.6)

Finally Ebbensen et al.. [23] using the linear transformation c = Pi/Q0 arrive at
the following governing equation for the SoH :

ẋ2(t) = − |Pi(t)|
2 ·N(|Pi(t)|) ·Q0(0) (3.7)

In fig.3.1 the number of cycle to end-of-life is plotted as function of the discharge
rate. Obviously the higher the c-rate the stronger the battery ageing will be. For
intermediate c-rate values the battery seems to withstand an higher number of
cycles and this can be explained by the fact that calendar-life effects were not
isolated when the model was build, i.e., the fact that N cycles take longer to process
at low power than at high power, thereby exposing the battery to more calendar-
life effects [23]. The same "phenomenon" can be seen also in fig.3.2 where SoH
trajectories in time are reported for different discharge rates. Even in this figure it
is possible to notice that initially increasing the discharge rate the battery seems
to behave better (lower aging). For 7.89C rate the number of cycle dramatically
decrease (indicating that aging is more severe) in fig.3.1.

39



State-of-health estimation

Figure 3.1: Influence of battery c-rate (or equivalently battery power) on number
of cycles before end-of-life.

Figure 3.2: State-of-health trajectories in time for different c-rate values.
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By applying the aforementioned procedure [23] it is possible to analyze battery
ageing for a PHEV running in pure E-mode along the WLTC driving cycle. The
PHEV under analysis is equipped with a 16 kWh battery but in this analysis the
behaviour of the single cell is assumed representative of the entire battery pack.
During the execution of the cycle the discharge rate experiences by the battery is
not constant but it varies significantly according to the current profile. In the upper
graph of fig.3.3 the WLTC speed profile is represented, in particular we are dealing
with a Class 3 WLTP for high power vehicles with PWr > 34. Four sections can be
identified: low, medium, high, and extra-high phase (according to the maximum
speed reached in each of them). The current profile appears to be quite dynamic
and it is likely to reach high value in the extra-high phase which is also the more
demanding phase. The implemented model, as said before, is highly driven by the
temperature and the discharge rate. Given that the temperature is kept fixed by a
proper thermal management system the only critical variable is the c-rate. Aging
is condensed in the last phase of the cycle, where the charge/discharge rates are
likely to assume quite high value. Also, an harmonious connection between the
current profile and the SoH exists.

Figure 3.3: Speed profile of the WLTC (upper plot), cell current in time (middle
plot) and State-of-health in time (lower plot). Results obtained with a battery pack
of 16 kWh and using the procedure indicated in [23].

Anselma et al. in [24] use a slightly different approach. Although the ageing
model used in [24] is still a throughput-based macroscale battery capacity fade
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model the results obtained might be significantly different. Anselma et al. evaluate
the state-of-health as in Eq.(3.8) and the instantaneous SoH variation is defined as
in Eq.(3.9). Eq.(3.8) is a rearrangement of Eq.(3.3), the main difference is how the
number of cycles to end-of-life is intendend.

SoH(ti) = SoH0 −
Ú t

0
˙SoH(c, T )dt (3.8)

˙SoH(c, T ) = c

3600 ·N(c, T ) (3.9)

In the paper written by Ebbensen et al.., infact, the number of cycles is computed
(as in Eq.(3.6)) considering only discharge cycles: the amp-hours processable by the
battery is simply divided for the cell capacity. Anselma et al. instead, account for
both charging and discharging phases in the battery roundtrip cycles, Eq.3.10. The
number of "useful cycles" are now computed as the ratio between the processable
charge and two times the cell capacity.

N(c, T ) = Ahtp(c, T )
2 · Ahbatt

(3.10)

(a) (b)

Figure 3.4: State-of-health trajectories in time along the WLTC. Results obtained
with a battery pack of 16 kWh. (a) State of Health trend obtained with the
procedure indicated in [23]. (b) State of Health trend obtained with the procedure
of Anselma et al. [24].

Ebbensen et al.. compute the number of discharge cycles the battery can
potentially withstand before reaching end-of-life conditions. On the other hand
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Anselma et al. compute the number of charge/discharge cycles for the battery to
reach end-of-life condition. Obviously the approach [24] is more severe than that
of Ebbensen et al. [23]. The increased severity is also demonstrated by the plot in
fig.3.4: State of Health trend appears to be definitely more severe in fig.3.4b. In
both there seems to be some inhomogeneities since in the SoH evaluation different
quantities are compared. In the following paragraphs the models will be compared
in detail.

If the vehicle repeats n times the WLTC driving cycle, with the same current
profile, it is possible to understand how many repetitions are needed for the cell to
reach EOL condition. The current profile in fig.3.3 leads to quite low discharge rate
and in any case lower than five. This is certainly beneficial for the battery point
of view. By integrating the speed profile in time is possible to know the distance
covered during the WLTC: battery life can be expressed in terms of distance km.

Ebbensen et al. Anselma et al. Ebbensen revised
SoH lost per cycle 2.5123e-05 9.6986e-05 4.8913e-05
WLTC repetitions 39804 10310 20444
Expiring distance 925,960 [km] 239,841 [km] 475,323 [km]

Table 3.1: SoH lost per cycle, WLTC repetitions and expiring distance for three
different SoH approaches. Results obtained considering a battery pack of 16 kWh.

In Tab.3.1 there are summarized the main results of this preliminary analysis
for three different approach. The approach named Ebbensen revised is basically
grounded on the approach discussed before [23] but in the evaluation of the SoH it
compares homogeneous quantities in terms of real cycles and cycles to end of life.

3.1 Results on different driving cycles
In this section a Plug-in Hybrid Electric Vehicle is tested on three different driving
cycles: Worldwide harmonized Light vehicles Test Cycles (WLTC), Highway Fuel
Economy Driving Schedule (HWFET), and Urban Dynamometer Driving Schedule
(UDDS).

The PHEV considered is powered by a 5.16 kWh battery pack which in turn is
constituted by a number of identical cell ANR26650m1B of A123 Systems arranged
both in series and in parallel. As usual the behaviour of the single cell is assumed
representative of the battery pack as a whole.

Fig.3.5 shows the speed profiles for the different cycles. The Worldwide har-
monized Light vehicles Test Cycles (WLTC) are chassis dynamometer tests for
the determination of emissions and fuel consumption for light-duty vehicles. The
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WLTC replace the New European Driving Cycle (NEDC) based procedure for type
approval testing of light-duty vehicles.

The Highway Fuel Economy Test (HWFET or HFET) cycle is a chassis dy-
namometer driving schedule developed by the US EPA for the determination of
fuel economy of LD vehicles. The HWFET is used to determine the highway fuel
economy rating, while the city rating is based on the FPT-75 test. The test is
run twice, with a break of maximum 17 s between the runs. The first run is a
vehicle preconditioning sequence, the second run is the actual test with emission
measurement.

The US FPT-72 (Federal Test Procedure) cycle is also known as Urban Dy-
namometer Driving Schedule (UDDS). The cycle simulates a urban route of 7.5 mi
(12.07 km) with very freqeunt stops. The maximum speed reached along this cycle
is 56.7 mph (91.25 km/h).

Figure 3.5: Speed profiles for different driving cycles: WLTC (upper plot),
HWFET (middle plot), and UDDS (lower plot).

By having a closer look to the main characteristics of the driving cycles some
conclusions can be drawn. The WLTC cycle is definitely the most severe driving
cycle in terms of time duration, covered distance and maximum speed reached. In
particular it can be subdivided in four different phases according to the maximum
speed reached in each of them. The extra-high phase is the phase with the maximum
speed and it would be representative of highway driving conditions. Nowadays,
the NEDC cycle has become outdated, since it is not representative of the modern
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driving styles. To achieve a more realistic driving conditions, WLTC is 10 minutes
longer than the NEDC (30 instead of 20 minutes), its velocity profile is more
dynamic, consisting in quicker accelerations followed by short brakes.

The Highway Fuel Economy Driving Schedule (HWFET) represents highway
driving conditions under 60 mph. In this case the time duration drops to 765 s,
the distance covered is 16.45 km and the maximum speed is 96.4 km/h.

The EPA Urban Dynamometer Driving Schedule (UDDS) is commonly called
the "LA4" or "the city test" and represents city driving conditions. It is used for
light duty vehicle testing. It presents a time duration of 1370 s, a distance of 12.07
km and maximum speed of 91.2 km/h. This cycle by the way is characterized by
frequent stops and this will have some repercussions in the following analysis.

The analytical procedure used for the State of Health estimation is basically the
same of that described in the previous section of the thesis. It may be helpful to
recap some of the most important steps:

1. Compute the charge/discharge rate as the ratio between the absolute value of
the current and the cell rated capacity in amp-hours;

2. Compute the total amp-hours that the cell could potentially elaborate before
its capacity drops of 20%;

3. Compute the total number of charge and discharge cycles before EOL is
reached [24];

4. Evaluate how the State of Health varies in time considering different c-rate
values for the different time instants;

For this analysis a battery pack of 5.16 kWh will be considered although the
elementary unit is always an A123 Systems ANR26650m1B cell. The different
battery pack capacity is reflected in a dirrent current profile. For a given power
request the lower battery pack capacity the higher the current supplied.
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3.1.1 WLTC driving cycle
If the PHEV runs through the WLTC driving cycle in purely electric mode then
the results are summarized in fig.3.6. At the end of the mission the SoH turns out
to be equal to 0.9993.

By analyzing together the SoH and the current (hence c-rate) profile in time it is
interesting to notice that when the current takes higher value, the c-rate increases
as well and the battery aging is more severe, leading to have some sharp descending
stages in the SoH profile. Clearly in the extra-high phase the cell experiences the
highest current values and as a consequence the aging is proceeding at a faster
pace with respect to the initial phases of the cycle.

Figure 3.6: WLTC: speed profile in time (upper plot), current profile and C-rates
in time (middle plot), and SoH variation in time (lower plot). Results obtained
with a battery pack of 5.16 kWh. The approach used is that of Anselma et al. [24].

3.1.2 HWFET driving cycle
Similarly for the HWFET the same results are provided in terms of SoH and current
profile in time fig.3.7. The SoH value at the end of the mission is in this case
0.99986.

Even in this case to have a clear overview on what is going on it is necessary to
see together all the plots. The last plot, SoH vs time, clearly identifies which are
the most severe phase during the cycle. The SoH quasi-linear trend is interrupted
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by some vertical stages which identify the most severe operating conditions for the
battery aging. The more "linear" trend can be justified by looking at the c-rate
profile which along the HWFET is definitely more "flat" than in the previous case.

The HWFET would be representative of constant-speed driving conditions which
are typical on the highway. These driving conditions clearly explain why the current
profile is more "stable" than that on the WLTC, which is more dynamic.

Figure 3.7: HWFET: speed profile in time (upper plot), current profile and
C-rates in time (middle plot), and SoH variation in time (lower plot). Results
obtained with a battery pack of 5.16 kWh. The approach used is that of Anselma
et al. [24].

3.1.3 UDDS driving cycle
The last cycle considered is the UDDS. Also in this case the results are reported
in terms of SoH and current profile in time fig.3.8. In this last case the SoH lost
per cycle is around 0.000145. Even in this test case the SoH trajectory seems to
decrease almost linearly except for some time instants.

After 200 s from the beginning of the mission the State-of-Health suddenly
decreases and only after stabilizes again. This sudden SoH decrease happens
in correspondence of the current peak, necessary to accelerate the vehicle up to
90 km/h. In the deceleration phase instead the current drops down to -10 A
(regeneration-phase) and also in this case the SoH diminishes almost vertically,
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since the c-rate suddenly increases.
This aging model is highly sensitive to the operating conditions. The evidence of

this can be sought in the SoH trend in time; whenever the cell experiences extreme
current values, both positive and negative, the model immediately recognises those
conditions as critical conditions for battery aging and in the State-of-Health is left
the trace of these conditions.

Figure 3.8: UDDS: speed profile in time (upper plot), current profile and C-rates
in time (middle plot), and SoH variation in time (lower plot). Results obtained
with a battery pack of 5.16 kWh. The approach used is that of Anselma et al. [24].

3.1.4 Conclusions
In this section there will be summarized some important conclusions of the analysis.
In fig.3.9 it is plotted the SoH as function of time for the three different test cases.

The red curve represents the state-of-health variation along the WLTC driving
cycle. As already mentioned the red curve reflects the severity of the operating
conditions experienced during the WLTC. Surely the extra high phase, the most
power demanding one, represents also the phase in which the battery aging is
proceeding quite fast. The last part of the curve appears to be quite "vertical"
meaning that battery aging is quite severe. On the contrary during the execution
of the first parts of the driving cycle battery aging seems to proceed in a controlled
manner. Above all the WLTC represent the most critical operation among the
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three test cases since it is not only the longest one but also the most severe one.

Figure 3.9: State of Health trajectories in time for different driving cycles: WLTC
(red), HWFET (blue), and UDDS (green). Results obtained with a battery pack
caapcity of 5.16 kWh. The SoH model used is that of Anselma et al. [24].

For the other two curves similar analysis can be done. The blue curve is referring
to the HWFET which would be representative of highway driving conditions. Vehicle
speeds during this cycle are quite high but their values remain almost constant
along the entire mission. On average highway driving conditions are characterized
by constant speed phases rather than frequent acceleration/deceleration which are
more to the case of urban driving conditions. However this driving cycle represent
the least severe in terms of operating conditions. This counterintuitive observation
can be explained by looking how the c-rate varies in time. Although the average
vehicle speed is quite high discharge rate appears to be quite stable, and quite low,
on the HWFET except in some acceleration/deceleration manoeuvres during which
the c-rate reaches high value (both in charge and in discharge) leading to more
battery aging.

The green curve, instead, represents the UDDS driving cycle which is typical of
urban driving conditions: speed profile appears to be much less stable. By looking
at the speed profile it is very clear that now acceleration/deceleration phases are
dominant in the driving scenario. Constant speed phases are almost non-existent.
Basically what is possible to see is that at around 200 s the c-rate is rising all of
a sudden up and as a consequence the State-of-Health decreases significantly. In
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the following time instants battery aging seems to be more "linear" and this is due
to the fact that from now on the c-rate is more stable and oscillates around lower
values.

These considerations allow to make some estimates about the mileage of the
battery in the three test cases Tab.3.2. Definitely the most severe condition is
represented by the WLTC cycle. If we apply the aging model of Anselma et al.
imagining the vehicle to repeat many times the speed profile of the WLTC we end
up having a mileage of about 31265.5 km in order to reach EOL. This result is in
line with the results of the previous analysis in which we considered a battery pack
of 16 kWh.

For the HWFET it is possible to find out about 114,327.5 km while for the
UDDS mileage forecast turn out to be about 83,234.7 km. Again the results are
perfectly those expected by considering only the c-rate profile in time. Generally
speaking in the HWFET the current profile in time appears to be smoother than
that in the UDDS. This characteristic can be ascribed to the driving scenario
itself: HWFET would like to represent highway driving conditions during which the
speed should remain as constant as possible. On the contrary the UDDS foresees
very frequent acceleration/deceleration phases which translate in a more dynamic
current profile. In conclusion, this result should not be surprising since the UDDS
is characterized by more ramps thus exposing the battery to a more intensive
operation

SoH lost per cycle Cycle repetitions Expiring distance [km]
WLTC 0.00074373 1344 31,265.5
HWFET 0.00014387 6950 114,327.5
UDDS 0.000145 6896 83,234.72

Table 3.2: SoH lost per cycle, number of repetitions such that SoH=0 and striking
distance. Results obtained with a battery pack of 5.16 kWh. Results obtained with
the SoH model of Anselma et al. [24].

It is interesting to notice that by decreasing the battery pack capacity from 16
kWh to 5.16 kWh the battery life dramatically decreases Tab.3.3. For a given power
demand, the lower the battery capacity the higher the discharge rate experienced
by the battery (higher current). The energy-throughput ageing model is mainly
driven by temperature and discharge rate: the higher the c-rate the stronger the
battery aging and the shorter the life of the battery.

50



State-of-health estimation

Pack capacity 5.16 kWh 16 kWh
WLTC 31,265 km 239,841 km

Table 3.3: Influence of battery pack capacity on the useful battery life along the
WLTC. Results obtained with the SoH model of Anselma et al. [24].

3.2 Comparison between different SoH models
In this section the different approaches used to evaluate state-of-health variations
in time will be analyzed and discussed. It has to be said that at the moment no
standardized and consolidated procedures exist and the existing ones are however
based on some assumptions. The final objective is to develop a reliable tool to
predict battery aging under several operating conditions. The ageing model chosen
is an energy throughput based one which basically connects the amp-hours processed
by the battery with the capacity fade mechanisms, in a heuristic manner.

By exploiting the ageing model is possible to evaluate the total amount of charge
that the battery can potentially process under specific operating conditions before
end-of-life is reached, Eq.3.5.

This information is used to quantify the total number of cycles the battery
could potentially withstand before its capacity drops of 20% respect to the original
capacity.

NEOL,ch/disch = Ahtp,max(c, T )
2 · Ahbatt

(3.11)

NEOL,disch = Ahtp,max(c, T )
Ahbatt

(3.12)

In Eq.3.11 the total number of cycles before EOL is intended as charging/discharg-
ing like while in Eq.3.12 the total number of cycles before EOL is discharging-only
like. This distinction may seem trivial and unnecessary but actually it is quite
important and the way NEOL is computed deeply affects the final results, as shown
before. Even for the state-of-health computation it is necessary to choose whether
to consider real cycles made by the battery as charging-discharging like or not.
Again this may seem trivial but actually it is not since the final results will be
deeply modified.

SoHt = SoHt−1 −
1

2 ·NEOL · Ahbatt

Ú t

t−1
|I(t)|dt (3.13)

SoHt = SoHt−1 −
1

NEOL · Ahbatt

Ú t

t−1
|I(t)|dt (3.14)
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By analyzing Eq.3.13 and Eq.3.14 it is simple to understand their meaning.
The integral of the absolute value of the current in time returns the amp-hours
that represents the charge effectively processed by the battery. In both of the
equation the integrated value is divided by the battery nominal capacity Ah and
this returns the number of discharge-only cycles made by the battery. The factor 2
in the denominator of Eq.3.13 is used to convert real cycles in charging-discharging
quantity. The outcome of these operation is then compared with the the total
number of cycles in order to quantify the damage brought by these specific operating
conditions. It is important to underline the fact that the choices we make in this
phase strongly and deeply affect the final results.

The literature proposes several approaches and each of them leads to have
different results. Ebbensen et al. [23] consider Eq.3.12 and Eq.3.13 meaning that
actually they are considering the total number of cycles before EOL as discharge-
only cycles and the real number of cycles as charging-discharging cycles. Anselma
et al. [24], instead, consider the total number of cycles before EOL as charging-
discharging cycles, Eq.3.11. Another solution can be consider in both the cases
charging-discharging cycles in order to compare homogeneous quantities in the
computation of the State-of-Health.

Figure 3.10: SoH trajectories in time for different driving cycles and with different
models. In blue the model of Ebbensen et al. [23]. In green the model of Anselma
et al. [24]. In yellow the model of Ebbensen revised, this model considers both Nreal
and NEOL as charge-discharge like.
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In fig.3.10 different state-of-health trajectories in time for different driving cycles
(and obtained with different models) are presented.

The blue curve has been obtained with the model of Ebbensen et al. [23], in
this case the State-of-Health has been evaluated considering the total number of
cycles before EOL as discharging-only like cycles. It is the least severe model since
it is actually comparing real charging-discharging cycles made by the battery with
discharge-only NEOL. This translates in lower SoH instantaneous variation.

The green curve has been obtained, instead, with the model presented in [24] in
which the State-of-Health has been evaluated as in Eq.3.15. NEOL is to be intended
as charge-discharge like. The instantaneous SoH variation now is expressed as the
ratio between c-rate and NEOL. This ratio defines the state-of-health degradation
in units of time. By integrating this ratio it is possible to know the capacity-fade
percentage induced by those operating conditions.

SoHt = SoHt−1 −
Ú t

t−1

c

NEOL(c, T )dt (3.15)

The yellow curve, representing an intermediate situation, has been obtained
comparing homogeneous quantities. In this case infact both NEOL and Nreal are
charging-discharging like quantities.

(a) (b)

Figure 3.11: WLTC: (a) comparison between different SoH models: in blue
the model of Ebbensen et al. [23], in green the model of Anselma et al. [24], in
yellow the model of Ebbensen revised, this model considers both Nreal and NEOL as
charge-discharge like. In (b) comparison between Mod1 (red) and Anselma et al.
model (dashed blue). Battery pack capacity: 5.16 kWh.
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(a) (b)

Figure 3.12: HWFET: (a) comparison between different SoH models: in blue
the model of Ebbensen et al. [23], in green the model of Anselma et al. [24], in
yellow the model of Ebbensen revised, this model considers both Nreal and NEOL as
charge-discharge like. In (b) comparison between Mod1 (red) and Anselma et al.
model (dashed blue). Battery pack capacity: 5.16 kWh.

(a) (b)

Figure 3.13: UDDS: (a) comparison between different SoH models: in blue
the model of Ebbensen et al. [23], in green the model of Anselma et al. [24], in
yellow the model of Ebbensen revised, this model considers both Nreal and NEOL as
charge-discharge like. In (b) comparison between Mod1 (red) and Anselma et al.
model (dashed blue). Battery pack capacity: 5.16 kWh.
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In fig.3.11a, fig.3.12a, and fig.3.13a three different SoH models are used to
evaluate the SoH degradation respectively along the WLTC, the HWFET and the
UDDS. No matter what is the driving cycle considered the model of Ebbensen et al.
[23] is the least severe one: SoH profile remains quite flat if compared with the other
two models. On the other hand the model of Anselma et al. is the most severe
one: it is quite sensitive to high c-rate values. The third model (Ebbensen Revised)
represents an intermediate solution between the two previous mentioned models.
Tab.3.4 compares in terms of analytical results the different models contemporary
highlighting the meaning of Nreal and NEOL for each model. Furthermore in Tab.3.4
some consideration about battery pack capacity can be easily derived.

LIB* life [km] LIB** life [km] Nreal NEOL
Ebbensen [23] 121,336.6 925,960.4 ch/dis dis
Anselma [24] 30,241.1 231,490.1 dis ch/dis

Ebbensen revised 60,668.3 462,980.2 ch/dis ch/dis

Table 3.4: Analytical comparison between different SoH models along the WLTC:
LIB* is the lithium ion battery life considering a capacity of 5.16 kWh while LIB**

refers to a battery capacity of 16 kWh.

Given that the meaning of the model [24] may not be immediate to understand
another analysis has been conducted. By applying Eq.3.16 and Eq.3.17 (instead of
using Eq.3.16 and Eq.3.18) the same results can be obtained. The combination of
Eq.3.16 and Eq.3.17 is named Mod1. The graphical comparison between these
two methods is showed, for different driving scenarios, in fig.3.11b, fig.3.12b, and
fig.3.13b. The intrinsic meanings of the two models is perfectly the same: SoH
profiles are identical. Mod1 is considering NEOL as charging/discharging cycles
while Nreal is discharge-only cycles. Given that the results are very similar it seems
that the model of Anselma et al. [24] is not considering real cycles made by the
battery as charging/discharging cycles as indicated also in Tab.3.4.

NEOL(c, T ) = Ahtp,max

2 · Ahbatt

(3.16)

SoHt = SoHt−1 −
1

NEOL · Ahbatt

·
Ú t

t−1
|I(t)|dt (3.17)

SoHt = SoHt−1 −
Ú t

t−1

c

NEOL

dt (3.18)

In conclusions it is possible to assess that the model of Anselma et al. is definitely
more conservative than the other ones leading to have an higher SoH degradation
in time which brings to a reasonable drivable distance before the battery has to be
replaced.
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3.3 Simulink model for SoH estimation
In this section a Simulink® macro-model is built and tested for the evaluation of
the State-of-Health variations on different driving scenarios.

The model reported in fig.3.14 takes in input the current and temperature profile
and returns in output the instantaneous SoH variation in time. The different blocks
have different tasks and compute different quantities that will be send to the last
block to compute the instantaneous SoH degradation.

In particular the model is actually computing SoH instantaneous degradation
following the procedure seen before. It may be useful to recall the main steps: 1)
compute the operating local c-rate; 2) compute the total amp-hours to reach EOL;
3) compute the total number of cycles to EOL; 4) evaluate how the SoH varies
in time. This is a forward model: the information travels from the left side to
the right side. The two red blocks on the right hand side of the model are two
to workspace blocks which basically transfer information to the workspace. The
raw results coming out from the model of fig.3.14 are manipulated in Matlab® to
establish the SoH profile in time.

The Simulink® model has been designed in such a way that it is founded on a
Matlab® script. Parameters setting happen in Matlab® and only after the simulation
is launched. Different driving cycles require different simulation times which are
set in the Matlab® environment.

Figure 3.14: Simulink model to evaluate the SoH instantaneous variation on
different driving cycles. The inputs for the model are the current and temperature
profiles. The outputs are the instantaneous SoH variations (for two different SoH
methods).

In order to provide a more clear understanding of the logic behind the model in
the following a description of each block is presented. Capacity-fade model area
is delegated to evaluate the maximum amount of charge (amp-hours) the battery
may potentially process before its capacity drops of 20%. This information is then
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used in the other block in order to evaluate the total number of cycles before EOL.
In this case NEOL is intendend to be charging-discharging like but it can be easily
tuned and modified. Finally the cycle current and the number of cycles (before
end-of-life) are inputs for the last block which returns in output the instantaneous
SoH variation.

3.3.1 Aging model block
In fig.3.15 it is reported the block containing the true and proper aging model
which takes in input current and temperature signals and returns in output the Ah-
throughput before EOL is reached for each time instant. Practically this block reads
the current and temperature profile and by applying Eq.3.5 computes Ahtp,max.

The fundamental idea is that of the energy-throughput based aging model. This
kind of model links the charge processed by the battery to the performance fade.
However this procedure is not straightforward: the amp-hours to EOL are measured
under standard conditions while real batteries may be subject to quite different
conditions.

Firstly this block computes the c-rate values as the ratio between the absolute
current value of the current and the cell nominal capacity. This information is then
used not only to compute the activation energy, which is function of the operating
conditions, but also to evaluate the pre-exponential factor. The discharge rate is
then linearly interpolated to obtain the value of B (the pre-exponential factor of
the aging model).

The switch block, representing an if statement, passes through the first input
port if the imposed conditions is true and passes through the second input port
if not. If c-rate is higher than 10 the pre-exponential factor, as explained in the
second chapter, is assumed to be constant.

Figure 3.15: Aging model block to compute the maximum amp-hours processable
by the battery before EOL.
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3.3.2 Cycles block
In this section the cycles block will be analyzed, fig.3.16, which by the way is a
very simple model. This block takes in input the amp-hours potentially processable
(computed in the previous block) and divides it for two times the cell nominal
capacity. The factor 2 in the denominator converts the number of discharge-only
cycles in charging-discharging cycles.

As said before this block is computing the number of charge/discharge cycles
for the battery to reach EOL: by changing the gain in the lower part of the block
it is possible to obtain the number of discharge cycles.

Figure 3.16: Total number of cycles block.

3.3.3 Instantaneous State-of-Health block
This block, the most important one, takes in input the current and the number
of cycles before EOL and returns in output the instantaneous state-of-health
degradation in time according to two different methods seen before.

The upper area in fig.3.17 considers the model of Ebbensen revised: in this
model both Nreal and NEOL are intended to be charging-discharging like quantities.
Unit delay block function is used to apply a unit delay to the current signal in
order to compute the integral in time. The result of the integral is then divided by
two times the cell nominal capacity in order to have the real cycles expressed in
terms of charge/discharge cycles.

The lower area, instead, is referring to the model of Anselma et al. [24] in
which the local SoH degradation is expressed as the ratio between the c-rate and
the total number of charging/discharging cycles before EOL. This ratio is then
integrated in time to know the damage applied to the battery under the specific
operating conditions. As underlined in the previous paragraphs this model is
actually comparing different quantities in the computation of the SoH but it is the
most conservative one.

The two outputs of the considered block represent the instantaneous SoH
variation in time and not the SoH profile in time. At this stage only the State-of-
Health variation at each time instant is known. In Matlab® the SoH profile in time
is reconstructed.
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Figure 3.17: Instantaneous State of Health block.
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3.4 Simulink model for battery life estimation
In this section it is presented the second model to estimate how many kilometres
the vehicle can do before its battery reaches EOL conditions.

In fig.3.18 in particular the mileage model implemented in Simulink® is presented.
The main objective of the model is to estimate the driveable distance before EOL.
This model takes in input the two end values of the SoH trajectories, manipulated
within the Matlab® script, and returns in output information about SoH lost
per cycle (Eq.3.19), number of cycle repetitions (Eq.3.20) and total number of
kilometres (Eq.3.21) such that SoH=0.

The central part of the model reads the speed profile in time - in [m/s] - and
integrates it in time to get the distance covered during each cycle in [km].

SoHlost = 1− SoH(tend) (3.19)

nrep = 1/SoHlost (3.20)

lifekm = nrep · dW LT C (3.21)

The upper branching is referring to the first model while the lower one is referring
to the second model in which the local SoH variation is expressed as the ratio
between the c-rate and the total number of cycles.

Figure 3.18: Battery life block.
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3.5 Results on different driving cycles
In this section the results obtained by testing the Simulink® macro model are
reported for different driving cycles. The results of the analysis have been obtained
testing a PHEV powered by a 5.16 kWh lithium-ion battery pack.

The .slx model has been tested and validated for different cycles and it gives
results in line with those expected. Furthermore the .slx model relies on a .m
file and it can be easily used to simulate very different driving scenarios and/or
different operating conditions even in terms of temperature.

Fig.3.19 shows the results obtained with the WLTC in terms of speed profile,
current profile and SoH in time. For the State-of-Health the red curve refers to the
Ebbensen revised: this model considers both Nreal and NEOL as charging/discharging
cycle. The blue trajectories instead are obtained applying the model of Anselma et
al. [24].

Similarly fig.3.20 and fig.3.21 show the results for the HWFET and UDDS
respectively. As discussed above the WLTC for the battery is more demanding
than the HWFET and the UDDS.

In this analysis also some real driving conditions are considered namely an uphill
real driving scenario (altitude progressively increase in time) and a downhill real
driving scenario. The main results for these two conditions are summarized in
fig.3.22 and fig.3.23 respectively.

By analyzing the SoH trajectories for the two driving scenarios it is clear that
the uphill real driving conditions appears to be definitely more severe than the
other one: State-of-Health in fig.3.22 decreases faster than in fig.3.23. The final
SoH for the uphill scenario is significantly lower than the final SoH value in case of
downhill conditions. In fig.3.23 the current profile is smoother and as consequence
the SoH trajectories are more flat. In fig.3.22 the battery is subjected to very severe
aging due to very high current level experienced by the battery.

The battery has a capacity of 5.16 kWh and it is actually responsible for ensuring
the longitudinal dynamic of the vehicle hence current profile is strictly related to
the vehicle speed. In the acceleration phase the battery is called to work with
very high discharge current levels whereas in the deceleration phases the battery is
called to work with very high charge current levels.

In Tab.3.5 there are reported the numerical results in terms of expiring distance
for the two real driving scenarios obtained with the two different methods. Even in
this case it is worth to notice that the uphill scenario is definitely more severe from
the battery health point of view than the downhill one during which vehicle inertia
is exploited. Another important consideration is that the second method (Anselma
et al) is actually more sensitive to high c-rate values hence the damage forecast
turns to be higher than in the other method.
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Ebbensen Revised Anselma et al.
WLTC 60,668.31 30,241.11 [km]
HWFET 218,629.25 108,415.02 [km]
UDDS 149,158.57 74,291.52 [km]
Uphill 9,007.05 3,538.48 [km]

Downhill 69,735.57 26,664.06 [km]

Table 3.5: Different SoH models and resulting mileage.

Figure 3.19: WLTC: speed profile in time (upper plot), current profile in time
(middle plot), and SoH in time (lower plot).
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Figure 3.20: HWFET: speed profile in time (upper plot), current profile in time
(middle plot), and SoH in time (lower plot).

Figure 3.21: UDDS: speed profile in time (upper plot), current profile in time
(middle plot), and SoH in time (lower plot).
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Figure 3.22: Uphill real driving conditions, starting from the upper part: speed
profile in time, current versus time, altitude profile in time, and SoH in time.

Figure 3.23: Downhill real driving conditions, starting from the upper part: speed
profile in time, current versus time, altitude profile in time, and SoH in time.
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Chapter 4

Equivalent Consumption
Minimization Strategy

The origin of HEVs dates back to 1899, when Dr. Ferdinand Porsche, then a
younger engineer at Jacob Lohner & Co, built the first hybrid electric vehicle,
the Lohner-Porsche gasoline-electric vehicle. After the attempt of Dr. Porsche
several other attempts were made in the early twentieth century in developing
HEVs but the internal combustion engine technology improved significantly and
hybrid technology disappears from the market.

Almost a century later hybrid vehicle technologies returned in vogue as a
concrete alternative to fossil fuel powered engines: Toyota launched the Prius
in 1998 and Honda proposed the Insight in 1999. The big step forward in the
electronics and control systems fields make the new-gen HEVs more successfull than
the first prototypes. A more sophisticated integration and on board cooperation
between electronics and control systems helps in maximizing as much as possible
the advantages of this technology.

The simple combination of two power sources within the vehicle is not enough in
fighting effectively emissions and reducing fuel consumption. Energy management
strategies are crucial to achieve the full potential of this technology, which can
reduce fuel consumption and emissions thanks to the presence of a reversible energy
storage device and one or more electric machines. Obviously the simultaneous
presence of ad additional energy storage system creates new degrees of freedom and
from this the necessity of finding an optimal strategy to split the power demand
between the traditional engine and the battery. Different approaches can be used
and very different results can be obtained. In the following a MO-ECMS will be
used to solve the optimal control problem for a PHEV.

HEVs are equipped with two energy sources: a high capacity storage (a chemical
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fuel in liquid or gaseous form), and a lower capacity rechargeable energy stor-
age system (REES) that can be used as an energy buffer. The REES can be
hydraulic/pneumatic, electrochemical or mechanical. This bidirectional energy
storage capability requires at least two energy converters. Generally speaking the
acronym HEVs refers to those vehicle powered both by a traditional combustion
engine, an electrochemical battery as REES and some electric machines (one or
more).

The REES can be used for regenerative braking and also performs as energy
buffer for the primary energy converter (ICE) which can immediately supply an
amount of power different from the required load. It is precisely the flexibility
in engine management which allows to place the engine operating points in high-
efficiency and/or low pollution zone. With HEVs the internal combustion engine
can be shut down when it is not needed (to reduce fuel consumption and tail pipe
emissions) and also the fossil-fuel machine can be downsized. The power supply
of the hybrid powertrain is now sum of the power supplied by the ICE and the
power supplied by the electric motor hence it is possible to replace the original
ICE with a smaller and less powerful engine. The downsized engine will operate
at higher average efficiency (the smaller the engine the higher the operating load
of the engine). In Plug-in Hybrid Electric Vehicles (PHEVs) the battery can be
recharged from the electric grid and they offer an interesting range in pure electric
mode. The Jeep Renagade 4xe PHEV analyzed in the following, for example, has
a purely-electric range of about 50 km.

However HEVs include one or more electric machines properly coupled with the
ICE and the wheel of the vehicle. According to the relative size of the electric
machine(s) and the internal combustion engine the following classification [25] can
be given:

1. Conventional ICE vehicles;

2. Micro hybrids (start/stop);

3. Mil hybrids (start/stop + kinetic energy recovery + engine assist);

4. Full hybrids (mild hybrids capability + electric launch);

5. Plug-in hybrids (full hybrid capability + electric range);

6. Full Electric vehicles (battery or fuel cell);

Conventional ICE vehicles and micro hybrids represent almost the same technol-
ogy and the hybridization degree is quite low. The most interesting and promising
technologies are those with an higher hybridization degree. In mild-hybrids vehicles,
for example, the ICE is coupled with an electric machine and this allows the engine
to be shut down whenever the car is stopping, coasting or braking even if pure
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E-Drive is not allowed. Full hybrid vehicle, instead, run on just the engine, just
the battery, or a combination of both. In full electric vehicles energy management
strategies are crucial to obtain the highest possible benefit in terms of fuel con-
sumption and emissions. PHEV battery can be recharged from the electric grid:
they are very similar to full hybrids with the difference that the battery capacity
can be easily restored from the external environment. Obviously by moving from
(1) to (6) the hybridization degree is actually growing until full electric vehicles
which are powered by a battery (recharged from the power grid) or a hydrogen fuel
cell. Also HEV architectures can be classified as follows [25]:

• series: the engines drives a generator which produces electrical power which
can be summed up with the electrical power coming from the battery and
then the sum is transmitted to the electric motor;

• parallel: the power summation happens mechanically (rather than electrically):
the engine and the electric machine are connected by means of a gear set, a
chain or any other mechanical device. Their torques are summed and then
transmitted to the wheels;

• power split: the engine and two electric machines are connected to a power
split device (generally a planetary gear set), thus the power from the engine
and the electric machines can be merged through both a mechanical and an
electrical path, thus combining series and parallel operation;

• series/parallel: the engagement/disengagement of one or two clutches allows
to change the powertrain configuration from series to parallel and vice versa,
thus allowing the use of the configuration best suited to the current operating
conditions;

The series architecture has the advantage of requiring only electrical connections be-
tween the power devices. Furthermore having the engine completely disconnnected
from the wheels offers an incredible opportunity to choose freely engine operations
(in terms of load and speed). By the way one of the weakest point of this solution is
that two energy conversions are needed which introduce losses, even in cases when
a direct mechanical connection of the engine to the wheels would actually be more
efficient. There are conditions in which a series HEV consumes more fuel than
a conventional vehicle, e.g. highway driving conditions. In parallel architecture,
instead, the flexibility in choosing the engine conditions is completely erased since
the engine speed is mechanically related to the vehicle speed. Finally Power Split
and series/parallel are the most flexible, and give a higher degree of control of the
operating conditions of the engine than the parallel architecture while applying the
double energy conversion (typical of series) only to a fraction of the total power
flow [25].
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4.1 HEV powertrain modeling

The objective of the energy management strategies is to minimize fuel consumption
while keeping the battery state of charge around a desired value. Usually HEVs
operates in charge sustaining or in charge depleting.

In order to apply the control strategy a preliminary powertrain modeling is
needed to create plant simulators. The model is in charge of reproducing the
energy flows within the powertrain and the vehicle, in order to obtain an accurate
estimation of fuel consumption and battery state of charge, based on the control
inputs and the road load.

The net amount of energy produced at the wheels is smaller than the amount of
energy introduced into the vehicle due to energy losses within the powertrain. When
the energy is converted in another form then conversion losses happen. Similarly,
when power flows through a connection device [25], friction losses and other kinds
of inefficiencies diminish the power in output. Generally speaking in powertrain
components energy losses are modeled and taken into account by using efficiency
maps which basically are tables reporting the efficiency values as function of the
operating conditions of the machine. These maps are built experimentally as a
set of stationary points [25], i.e., input and output power values are measured
only when the system has reached a steady-state configuration/condition. For this
procedure the efficiency maps might result inaccurate during transient manoeuvres.
Although this kind of model appears to be imprecise during transient operations it
is very used since it is able to provide quickly good results.

Vehicle fuel consumption during a driving cycle can be estimated using a
backward or a forward approach [25]. The first one, namely the backward quasi
static approach, is based on the assumption that the cycle is followed exactly by the
vehicle. The time axis is discretized hence divided in different time intervals and in
each of these intervals an average operating point approach is used: speed, torque
and acceleration remain constant. Somehow this means neglecting the internal
powertrain dynamics [25] (e.g., engine dynamics, gear shifting).

The forward, dynamic approach is grounded on a first-principles description of
each powertrain component, with dynamic equations describing the evolution of its
state [25]. According to [25] the degree of modeling detail depends on the timescale
and the nature of the phenomena that the model should predict. In the simplest
case, the same level of detail as the quasi-static approach can be applied, but the
evolution of vehicle speeed is computed as the result of the dynamic simulation and
not prescribed a priori.
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4.1.1 Equations of motion
If the vehicle is treated as a mass point then the following equations of motion
can be written. In Eq.4.1 Mveh is the effective mass of the vehicle while vveh is the
longitudinal speed of the vehicle. Eq.4.1 is saying that the inertia force is equal to
the tractive force generated by the powertrain minus the rolling resistance (due
to tire deformations), the aerodynamic resistance and the force associated to the
slope of the road.

Mveh
dvveh

dt
= Finertia = Ftrac − Froll − Faero − Fgrade (4.1)

More specifically the aerodynamic resistance is expressed as in Eq.4.2 where
ρair is the air density (1.25 kg/m3 in normal conditions), Af is the frontal area of
the vehicle and Cd is the aerodynamic drag coefficient.

Faero = 1
2ρairAfCdv2

veh (4.2)

Froll = croll(vveh, ptire, . . . ) ·Mveh · g · cosδ (4.3)

In Eq.4.3 Froll is computed as the product between croll, the mass of the vehicle,
the gravity acceleration and the cosine of δ which is the road slope angle. Obviously
the product Mvehgcosδ is the vertical component of the vehicle weight. The
coefficient croll actually depends on several parameters and those dependencies are
not always simply identifiable and for this reason a simple function is defined in
[25] (Eq.4.4).

croll = cr0 + cr1vveh (4.4)

The grade force corresponds to the horizontal component of the weight and it is
expressed as in Eq.4.5. This component opposes to vehicle motion if the vehicle is
moving uphill and facilitates vehicle motion if the vehicle is moving downhill.

Fgrade = Mvehgsinδ (4.5)

4.1.2 Forward and Backward modeling approaches
Eq.4.1 can be manipulated to calculate the tractive force the powertrain has to
produce, given the acceleration as in the following equation.

Ftrac = Fpwt − Fbrake = Finertia + Fgrade + Froll + Faero (4.6)

Eq.4.1 and Eq.4.6 correspond to the forward and backward modeling approaches:
in Eq.4.1 the acceleration of the vehicle is computed as a consequence of the net
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tractive force generated by the powertrain and the speed is subsequently obtained
integrating the acceleration profile in time: this is the forward approach and it
describes the physical causality of the system [25]. Fig.4.1 represents schematically
the information flow in a forward simulator [25].

Figure 4.1: Information flow in a forward simulator [25].

On the contrary, in the backward simulator described by Eq.4.6 forces follow
velocity and the powertrain generated force is calculated from the inertia force:
Ftrac is the force the powertrain must supply for the prescribed mission. Fig.4.2
represents schematically the information flow in a backward simulator [25]. The
forward approach is the option preferred in many simulators (fig.4.1). For example,
in [25] the authors write that in case of a hybrid vehicle the desired speed (driving
cycle) is compared to the actual speed and every braking or throttle command is
generated by a driver model (PID controller) in order to follow the requested speed
profile. As showed also in fig.4.1 the driver model provides to the engine map the
torque set-points according to the speed deviation registered by the controller.

Figure 4.2: Information flow in a backward simulator [25].

In a backward controller no driver model is needed, see fig.4.2; in this case the
speed profile of the driving cycle is the main input for the model and the outputs
are the engine torque and fuel consumption. Technically speaking the simulator
decides the net tractive force to be applied on the base of the velocity, payload, and
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grade. This is the starting point for the evaluation of the torque the powertrain has
to supply and only after the torque/speed of the different powertrain components
are calculated.

Both the forward and backward approaches have their relative advantages and
disadvantages. Fuel economy simulations [25] are conducted on predetermined
cycles hence the backward approach can be useful in this case to guarantee that the
results are entirely and fully comparable at the end of the analysis. In contrast a
forward simulator is not able to follow exactly the speed profile and at the end the
results might not be comparable. On the other hand the backward simulator does
not account for limitations of the powertrain actuators in computing the vehicle
speed and this opens a problem of evaluating demanding cycles which may ask
more power than the actual powertrain capability. A forward simulator does not
have this kind of problem and it can be used also for acceleration tests since the
speed is computed starting from the torque/force output.

4.2 Jeep® Renegade 4xe PHEV modeling
In this section, a HEV model with P4 configuration, which is based on Jeep®

Renegade 4xe PHEV, is realized in Matlab® with a backward quasi-static approach.
The Jeep® Renegade 4xe Plug-In Hybrid, fig.4.3, consists of a P4 parallel hybrid

electric drivetrain. The 1.3 l FireFly turbocharged gasoline engine is mounted on
the front axle while the rear axle is powered by a 44 kW electric machine and a
battery pack of 11.4 kWh. The driving cycle considered in the following is the
Worldwide harmonized Light vehicle Test Cycles (WLTC or WLTP).

More specifically the new Jeep® Renegade PHEV can rely on a gasoline engine
dedicated to the propulsion of the front wheels and an electric machine dedicated
to the rear wheels. The electric motor is powered by a 11.4 kWh Li-ion battery
that is recharged while driving (regenerative braking) or externally.

This architecture allows easily to realize all-wheels drive configuration and it
is also known as Through-The-Road (TTR). The mechanical coupling between
the two powertrains happens through the wheels, hence through-the-road. Fig.4.3
schematically shows how a P4 architecture is operatively realized: the traditional
powertrain is completely disconnected from the electrical one.

The internal combustion engine on the front axle is connected to the front wheels
by means of a gearbox and a differential whereas the electric machine is connected
to the wheels through a differential and in the same time it is electrically connected
to the energy source by means of a bidirectional DC-DC converter.

Fig.4.3 and fig.4.4 represent the same P4 architecture in two different ways. The
schematic representation presented in fig.4.4 has been used as the starting point to
model the hybrid powertrain.
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(a)

(b)

Figure 4.3: Source: https://www.jeep-official.it/4xe-ibrido/renegade-4xe. (a)
Jeep® Renegade 4xe Plug-In Hybrid and (b) P4 architecture insights and real
on-board implementation.
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In the backward quasi-static approach force follows velocity: the main input is
the speed profile. By knowing the velocity of the vehicle it is possible to compute
the angular velocity of the wheels with Eq.4.7 where v(t) is the vehicle velocity
(according to the mission) and rwh,dyn is the dynamic rolling radius of the tyres.
Front and rear wheels share the same angular (no slip between the two axles).
However this information can be used in two different ways: on the front axle to
compute the angular velocity of the internal combustion engine ωICE and on the
rear axle to evaluate the angular velocity of the electric machine ωMG. ωICE is
computed with Eq.4.8 while ωMG is the result of Eq.4.9.

ωwheel(t) = v(t)
rwh,dyn

(4.7)

ωICE(t) = ωwheel(t) · τgear(kgb) · τf,f (4.8)

ωMG(t) = ωwheel(t) · τf,r (4.9)
In Eq.4.8, τgear represents the gearbox transmission ratio which in turn depends

on the gear engaged (kgb) while τf,f is the transmission of the front final drive.
Similarly in Eq.4.9 τf,r accounts for the transmission ratio of the final drive insisting
on the rear axle. This methodology clarifies the modus operandi of the backward
quasi-static approach: from the wheels backward to the engine passing through
different elements looking out the driveline.

Figure 4.4: Schematic representation of a P4 Hybrid Electric Vehicle architectures.
Source: https://www.mathworks.com/help/autoblks/ug/explore-the-hybrid-electric-
vehicle-p4-reference-application.html

In Eq.4.6, Ftrac is the tractive force generated by the powertrain and the brakes
at the wheels. It is possible to define a resistive force as in the following equation. In

73



Equivalent Consumption Minimization Strategy

the previous paragraphs each of the terms presented in Eq.4.10 has been explained
in detail. However carmakers often provide the coast down coefficients to protect
sensitive information. Eq.4.11 allows to evaluate the resistive force with the coast
down coefficients: F1, F2, and F3.

Fres = Fgrade + Froll + Faero (4.10)

Fres = F0 + F1 · v + F2 · v2 (4.11)

The inertia force Fi is the product between the apparent mass and the accelera-
tion, as highlighted in Eq.4.12. mapp actually considers not only the static masses
(e.g., vehicle weight, battery weight) but also the inertia of the rotating masses.
The apparent mass can be evaluated with Eq.4.13.

Fi = mapp · a (4.12)

mapp = mveh + Jwh
1
r2 + JICE

τ 2
gearτ

2
f,f

r2 + JMG

τ 2
f,r

r2 (4.13)

Finally it is possible to evaluate the torque request at the wheel that represents
the starting point of the analysis, Eq.4.14.

Twh = (Fres + Fi) · rwh (4.14)

Given the powertrain configuration (P4) the torque (power) split between the
on-board power sources has to be decided at the wheels level. The optimal power
split in this study (between the ICE and the MG unit) is the power split that
contemporary minimizes the fuel consumption and the battery ageing. Given that
battery performances degrade in time and depending on the operating conditions it
becomes important to establish a control strategy able to contemporary account for
fuel consumption and battery aging. An unbridled exploitation of the battery will
severely deplete battery performances and the system is no more able to perform
according to the original design parameters. The variable u, introduced in Eq.4.15
represents the torque which has to be supplied by the MG unit. The variable u
decides the power split between the front and rear axle. Technically speaking in
Eq.4.15 the torque request at the wheels is dragged backward along the driveline to
obtain TICE which represents the torque the ICE has to supply at the crankshaft
level (before the gearbox). Eq.4.16 evaluates the torque demand seen by the electric
machine upstream the final drive. ηm,front and ηm,rear are the mechanical efficiencies
of the drivelines and definitely they are lower than one. In Eq.4.15 and Eq.4.16
mechanical efficiencies appear at the denominator and they increase the torque
the ICE (and the MG) has to supply: to compensate the losses along the driveline
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the engine has to supply an higher torque to comply with the "real" request at the
wheel.

TICE = (1− u) · Twh

τgear · τf,f · ηm,front

(4.15)

TMG = u · Twh + Tbrk

τf,r · ηm,rear

(4.16)

The ICE model is a map-based stationary engine model, fig.4.5. There is no delay
between the torque request and the torque response of the engine [26]: transients
cannot be explained by the model. As explained in the previous sections these
maps are obtained under steady state conditions: when the engine reaches the
steady condition the fuel flow rate is measured. By knowing the angular velocity
ωICE of the engine and the torque TICE it is possible to find the fuel mass flow ṁf

(Eq.4.17) handled by the engine (worked out by linear interpolation).

ṁf (t) = f(TICE(t), ωICE(t)) (4.17)

Figure 4.5: ICE map: brake specific fuel consumption as function of torque and
engine speed. The full load curve is reported in red.
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Similar to the ICE, the E-module is based on the characteristic diagram of
E-Drive, which takes the role for the conversion between mechanical and electrical
energy. Desired values of electrical power and or torque can be used as control input.
The efficiency map provides a relation between the torque at the shaft and the
electric power. Efficiency map can also include the power electronics between the
main electric bus and the machine to provide directly the electric power exchanged
with the battery [25]. It is possible to write down that the electrical power of
the E-Drive is depending upon the torque (from the operation strategy) and the
angular velocity of the machine. The efficiency map is shown in fig.4.6.

PMG(t) = f(TMG(t), ωMG(t)) (4.18)

Figure 4.6: MG map: MG efficiency as function of torque and engine speed.

If the functioning mode is the motoring mode then the mechanical power supplied
by the MG unit can be expressed as in Eq.4.19. The efficiency of the MG unit is
function of ηMG and Pelec. Obviously if the MG acts as a motor it has to convert
electric power into mechanical power but unfortunately the electric power is not
fully converted, because of losses and inefficiencies.

Pmech = ωMG · TMG = ηMG · PMG (4.19)
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If the MG unit is used as generator then the relation between mechanical and
electric power is quite different, Eq.4.20. In the generating mode the mechanical
power at the shaft is used to produce electric power (to recharge the battery).
Considering this transformation the efficiency operates in the other way around:
the electric producible power is lower than the mechanical input power at the shaft.

Pmech = ωMG · TMG = 1
ηMG

· PMG (4.20)

If the desired output is the electric power rather than the mechanical one, Eq.4.21
and Eq.4.22 are useful. Eq.4.21 is valid for the motoring mode while Eq.4.22 is
true for the generating mode.

PMG = 1
ηMG

· Pmech = 1
ηMG

· ωMG · TMG (4.21)

PMG = ηMG · Pmech = ηMG · ωMG · TMG (4.22)

The subsystem auxiliary includes a 12 V electric system, in which a constant
power demand Paux and a constant efficiency for DC/DC converter ηDC/DC are
assumed, [26]. The total electrical power demand in the battery Pbatt comprises
the total electrical power of the E-Drive and the electrical power demand coming
from the auxiliary systems, Eq.4.23.

Pbatt = PMG(t) + Paux

ηMG

(4.23)

The battery is simplified as an equivalent circuit model, as in [26], where Voc is
the open circuit voltage and Ri is the equivalent internal resistance and both of
them depend on the state-of-charge (Eq.3.1). According to Eq.4.24 and Eq.4.25,
Ibatt and ṠoC can be worked out.

Figure 4.7: Equivalent circuit model of the battery [26]: U oc is the open circuit
voltage while Ri is the equivalent internal resistance.

Ibatt(t) =
Voc(SoC(t))−

ñ
Voc(Soc(t))2 − 4 ·Ri(SoC(t)) · Pbatt(t)

2 ·Ri(SoC(t)) (4.24)
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ṠoC(t) = − Ibatt

Cnom

(4.25)

In the evaluation of the battery current Ibatt charging and discharging operations
must be distinguished since the internal resistance of the battery is deeply affected
by the functioning mode. The internal power of the battery is given by

Pi(t) = Voc · Ib(t) (4.26)

The battery model has been parametrized considering a LiFePO4 battery cell
made by A123 Systems (ANR26650M1). The maximum power of the electric
machine of 44 kW effectively limits the maximum charge and discharge current
of the battery to 132.5 A. The battery pack is composed by 120 elementary cells
connected in series to form a module. Twelve such modules are connected in parallel
to form a battery pack. At this point it is possible to compute the charge/discharge
rate as the ratio between the battery current and the nominal battery capacity.
With the c-rate the pre-exponential factor can be found and the Ahthroughput is
evaluated at each time instant. By knowing the amount of charge the battery
might potentially cope with the number of cycles EOL can be evaluated.

In fig.4.8 the information flow in the simulation model is presented. The starting
point of the analysis is the cycle information: namely the speed profile foreseen by
the mission. The modeling approach is a backward quasi-static approach. Vehicle
speed is used to compute the torque request at the wheel in the Vehicle Dynamics
module. The Vehicle Dynamics module is responsible for establishing the angular
velocity and the torque demand at the wheel. The torque requested at the wheel
Twheel is the input for the Operation Strategy module which is in charge of the torque
splitting between the front and rear axle. The Operation Strategy module chooses
how to split the torque between the two axles. The transmission sub-module, taking
into consideration the torque-split, evaluates the internal combustion engine torque
TICE and the motor generator unit torque TMG. The transmission sub-module is
also responsible for the kinematics of the powertrain. When Twheel is negative Tbrk

is activated and used to recharge the battery pack: under these conditions the
MG unit is functioning as generator. Knowing the angular speed and the torque
of the ICE it is possible to know the fuel flow rate, hence the fuel consumption
along the mission. Similarly, knowing the angular speed and the torque of the
MG it is possible to evaluate the electrical power of the MG (passing through the
efficiency). The power demand at the battery is the sum of the E-Drive power
and the auxiliary systems power. Finally battery operating conditions can be
described in terms of current (and discharge-rate) and the ageing model can be
applied. Battery operating conditions are used for both the SoC evaluation and
battery performances fade assessment.
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Figure 4.8: Signal flow in the simulation model.
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4.3 ECMS
Regardless of the powertrain topology, the essence of HEV control problem is the
instantaneous managament of power flows from energy converters to achieve the
control objectives, [25]. Control objectives are mostly integral in nature (e.g., fuel
consumption) or semi-local in time, such as drivability while the control actions
are local in time, as deeply explained in [25]. Besides that, the control objectives
are often subject to integral constraints like keeping the state-of-charge within a
predetermined range. Generally speaking, the energy management problem in HEV
can be transformed into an optimization problem over a finite time horizon [25],
whose solution can be found with optimal control theory methods. Those methods
are very useful in finding the control law for a given system such that a certain
"optimal criterion" is achieved.

The optimal energy management problem in HEV consists of finding the control
that leads to the minimization of fuel consumption over the considered mission,
see Eq.4.27. In Eq.4.27 ṁf is expressed in g/s and it is the fuel flow rate. The
solution of the problem would be the solution which minimizes the performance
index J. Obviously the minimization of J is subject to a number of constraints
[25] linked for example to the limitation in the energy stored in the REES and
the need to maintain SoC within a specific range. All these considerations make
the control problem a constrained, finite-time optimal control problem where the
objective function has to be minimized under several constraints [25].

J =
Ú tf

t0
ṁf (u(t), t)dt (4.27)

The Equivalent Consumption Minimization Strategy (ECMS) is a heuristic
method to address the optimal control problem. ECMS was firstly applied by
Paganelli in 1999 as a method to reduce the global minimization problem to a local
minimization problem to be solved at each time instant.

The ECMS is based on the notion that, in charge-sustaining HEVs, the difference
between the original and final SoC level is perfectly negligible. This means that
the energy storage system is mainly used as buffer: all energy comes from fuel, and
the battery can be seen as an auxiliary, reversible fuel tank. Any stored electrical
energy used during battery discharge must be restored/recovered at some point in
the future. Two cases are possible [25]:

1. The battery power is positive (discharge) at the present time fig.4.9a; this
implies that in the future the battery has to be recharged resulting in some
additional fuel consumption. How much fuel will be required to restore the
SoC lost depends mainly on two factors: (1) the operating condition of the
engine at the time the battery is recharged; and (2) the amount of energy that
can be recovered through regenerative braking.
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2. The battery power is negative (charge): the stored energy is used to help the
engine in satisfying the vehicle road load causing an instantaneous fuel saving
fig.4.9b.

(a) (b)

Figure 4.9: Energy path during discharge (a) and charge (b) in a parallel HEV
[25].

The main principle of the ECMS is that a cost is assigned to the electric energy
in such a way the use of electrical energy is made equivalent to use (or save) a
certain quantity of fuel. Obviously this weighting factor is not known a priori but
it has been shown that the cost can be related to the driving conditionn in a broad
sense.

In the discharge case of fig.4.9a the electric machine provides mechanical power
and the battery is discharging. The dotted red route represents a virtual fuel
consumption related to the need of future battery recharge: an approximate mean
efficiency is set given that the operating point of this recharge is not known a priori.

Conversely in the case of fig.4.9b the electric machine behaves as a generator
and technically it converts mechanical power into electrical power used to recharge
the battery pack on board. Even in this case the dotted red path represents a
virtual fuel saving due associated to the future use of electric energy to produce
mechanical power. This amount of mechanical energy has not to be supplied by
the ICE and for this reason it is a fuel saving.

In both discharge and charge phase an equivalent fuel consumption can be
associated with the use of electrical energy: the equivalent future (or past) fuel
consumption, ṁREES [g/s], can be summed to the present real fuel consumption
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- fuel mass flow rate ṁf(t) [g/s] - to obtain the instantaneous fuel consumption,
ṁf,eqv(t) as in the following equation.

ṁf,eqv(t) = ṁf (t) + ṁREES(t) (4.28)

As deeply explained in [25] similarly to a traditional ICE which consumes real
fuel, Eq.4.29, the electric machine "burns" a certain "virtual fuel" amount, Eq.4.30.

ṁf (t) = Peng(t)
ηengQlhv

(4.29)

ṁREES(t) = sfceq(t) · Pbatt(t) (4.30)

In Eq.4.29 Peng is the power supplied by the engine, ηeng is the operating
efficiency of the internal combustion engine and Qlhv is the fuel lower heating value
in [MJ/kg]. In Eq.4.30 the virtual fuel consumption is computed using a virtual
specific fuel consumption, sfceq [g/kWh] which in turn is directly proportional to
an equivalence factor s(t). Thus the virtual fuel consumption, ṁREES is evaluated
as in Eq.4.31.

ṁREES = s(t)
Qlhv

· Pbatt(t) (4.31)

The equivalence factor s(t) is a vector of values, one for charge and one for
discharge. The main objective of the equivalence factor as explained before is to
assign a cost to the use of electricity, converting electrical power into equivalent
fuel consumption. The equivalence factor s(t) represents the efficiency chain for
energy conversion (from mechanical to electrical and vice-versa).

Depending on the operating mode of the battery (charge or discharge), the
virtual fuel flow rate can be either positive or negative, thus increasing or decreasing
the equivalent fuel consumption with respect to the real fuel consumption ṁf .

Figure 4.10: ECMS algorithm flow [25].

The ECMS is used to reduce the global optimization problem of the total cost in
a local (instantaneous) optimization problem. At each time instant, the equivalent
fuel consumption should be evaluated with Eq.4.28 for different value of control
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variables which in our case is the torque of the electric machine. The following
passages [25] must be repeated at each time instant, as showed in fig.4.10, to realize
the ECMS:

1. Given the state of the system in terms of Twh, ωICE, ωMG, . . . , identify
the acceptable range of control [TMG,min, . . . , TMG,max] which satisfies the
instantaneous constraints;

2. Discretize the interval [TMG,min, . . . , TMG,max] into a finite number of control
candidates;

3. Calculate the equivalent fuel consumption corresponding to each control
candidate;

4. Select the control value TMG(t) that minimizes the equivalent fuel consumption
at each time instant;

It has been proven that this approach closely approximate the global optimal
solution. Moreover the instantaneous minimization problem requires a lower
computational effort if compared with the dynamic programming and it can be
applied real-worlds situations since it does not rely directly on information about
future driving conditions.
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4.4 Multi-Objective ECMS

Ebbensen et al. in [23] develop a causal optimal control-based energy management
strategy for a parallel hybrid electric vehicle. The control scheme of Ebbensen
et al. not only tries to reduce fuel consumption but to minimize battery wear.
The optimal control problem formulated by Ebbensen et al is reported in Eq.4.32
and Eq.4.32. Namely the control problem consists of finding the optimal control
strategy u that, subject to a number of constraints, minimizes the equivalent
fuel consumption on the mission. The optimization problem can be expressed
mathematically as in Eq.4.32 and Eq.4.32.

min
u

:
Ú T

0
Pf (u, v, a, t)dt (4.32)

ẋ1(t) = −Pi(u(t))/Q0(0)
x2(t) = −|Pi(u(t))|/(2 ·N(|Pi(u(t))|) ·Q0(0)
x1(0) = x1,0

x2(0) = 1
x1(T ) ≥ x1,0

x2(T ) ≥ 0
x(t) ∈ χ

u(t) ∈ U(t)

(4.33)

In [23] the state and input constraints are defined by the sets χ and U, respec-
tively. In [23], χin[0.3, 0.9] is fixed on the state of charge to preventively avoid
large discharge rate. The idea is to introduce a state of health perceptive energy
management strategy, as also done in [23] and in many other different papers. The
ECMS desribed before try to improve fuel economy by an online minimization
of a proper cost-to-go function composed by the sum of an instantaneous fuel
consumption and an equivalent fuel consumption, converted through an equivalence
factor. The ECMS derives from the Pontryagin’s minimum principle and under
certain hypothesis it leads to the globally optimum solution.

The Pontryagin’s minimum principle applied to the optimal control problems of
[23] leads to the definition of an Hamiltonian function as in Eq.4.34. Furthermore
Eq.4.34 can be rewritten as in Eq.4.35.

H(u(t), λ(t), t) = Pf (u(t))− λ1(t) · ẋ1(t)− λ2 · ẋ2(t) (4.34)
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H(u(t), λ(t), t) = Pf (u(t))
+ s1(t) · Pi(u(t))
+ s2(t) · w(u(t)) · |Pi(u(t))| (4.35)

Eq.4.35 is made by three main terms: (1) Pf is the chemical power introduced
through the fuel; (2) s1(t) · Pi(u(t)) is the term accounting for the use of electrical
energy and s1 is the actual cost of electricity; (3) s2(t) · w(u(t)) · |Pi(u(t))| is the
"ageing" conscious part of the model. s1 and s2 in Eq.4.35 are expressed in Eq.4.36
and in Eq.4.37 respectively. The weight w(u(t)) in Eq.4.35 is simply for Ebbensen
et al. the ratio 1/N(u(t)).

s1(t) = −λ1(t) · 1
Q0(0) (4.36)

s2(t) = −λ2(t) · 1
2 ·Q0(0) (4.37)

It is worth to notice that for s2(t) = 0 the Hamiltonian function Eq.4.35 reduce
to the traditional ECMS. If s2(t) > 0 an extended version of the ECMS is obtained
where the traditional ECMS is augmented by a term penalizing both battery
charging and discharging.

The optimal solution must satisfy the constraints reported in Eq.4.33 and also
the following adjoint equations:

ṡi(t) = − ∂H

∂xi(t)
i = {1,2}

Finally the optimal control trajectory is given:

u∗(t) = arg min
u∈U

H(u, s(t), t) (4.38)

The Hamiltonian function is independent of x(t). The adjoint equations say
that s1(t) and s2(t) are constants. In the following the same strategy of Ebbensen
et al. is used in the formulation of the cost-to-go function. The idea is to derive an
extended version of the traditional ECMS to preserve as much as possible battery
life. Although the standard version of the ECMS provides quickly reliable results it
is no longer suitable to meet the need of actual HEVs. Li-ion batteries constitute
an important part of the vehicle cost and from this the necessity to preserve their
performances in operation. Fuel consumption-only oriented control strategies tend
to minimize fossil fuel consumption by severely exploiting the REES. A severe
exploitation of the electrochemical system will lead to a severe aging hence battery
life is drastically diminished. This is the reason why a more "health-conscious"
control strategy is needed to account for both fuel consumption and battery ageing.
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4.5 MG power saturation level

In fig.4.11a and fig.4.11b some important results are presented. The control variable
u (the torque of the electric machine) is ranging from 0 up to 54%. Technically
speaking it means that the electric machine can provide up to 54% of the torque
request at the wheel. This value (54%) is not casual rather it is a direct consequence
of the MG power saturation level: if the electric machine is called to provide an
higher percentage the power saturation level is reached. In fig.4.11a the MG power
is reported in time considering different control candidates. The first candidate
u = 43% is within the operating power range of the electric machine and power
saturation level is not reached in operation. By choosing a more severe control
strategy power saturation level is likely to be reached especially in the extra-high
phase of the WLTC which is the most demanding phase (PMG,max = 44.7 [kW]).

(a) (b)

Figure 4.11: MG power saturation level: (a) MG power in [kW] in time for
different control candidates (43%, 57%, 70%, 85%, 100%) and (b) c-rate [1/h] in
time for different control candidates (43%, 57%, 70%, 85%, 100%). The driving
cycle considered is the WLTC.
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In fig.4.11b the c-rate is reported in time for different control candidates. Also
in this case with the least severe control strategy (u = 43%) power saturation
level of the electric machine is not reached. By increasing the percentage of the
torque request that burdens the MG unit, the power saturation level of the electric
machine is reached and the discharge-rate of the battery is capped and limited at
a value lower than 5 [1/h]. By fixing the power of the electric machine also the
c-rate experienced by the battery in operation is somehow limited. This choice
may be helpful in limiting battery ageing through an "indirect saturation" of the
discharge rate but at the same time severely restricts the potential of a PHEV.

Another interesting consideration is that the power saturation level of the
electric machine is reached only during discharging operation: when the MG is
functioning in motoring mode. When the MG unit is used in generating mode,
negative power values, the saturation level is not reached. The results presented
in fig.4.11 are not considering any regeneration-torque control meaning that Twh

is entirely regenerated and used to recharge the battery pack (obviously when
Twh < 0). This strategy may be helpful in guarantee the charge-sustaining mode
but surely battery ageing will proceed faster.

In fig.4.12 different regeneration-torque control-strategies are reported in terms
of MG power in time, Tab.4.1. In fig.4.12a no regeneration control is foreseen
meaning that the entire torque at the wheel (when Twh < 0) powers the generator
to recharge the battery pack. This is the worst strategy in terms of useful battery
life. In fig.4.12b the regeneration control is made with one only control variable (u).
In this case u, used in motoring mode, is also adopted to control the regeneration
phase. This is the most conservative strategy and leads to the longest battery life.
The third and last strategy, reported in fig.4.12c, differentiates the two control
(traction and regeneration) by using two different control variables (u and u1).

No Regeneration Control
6.39 [l/100km]
116,793 [km]
0,24854 [-]

Regeneration Control with u
6.49 [l/100km]
160,158 [km]
0,21318 [-]

Regeneration Control with u1

6.38 [l/100km]
119,098 [km]
0,2511 [-]

Table 4.1: Results obtained with different regeneration control strategies in terms
of fuel consumption, battery life and SoC at the end of the mission. Results
obtained with s1 = [1.93,1] and s2 = 88.2.
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(a)

(b)

(c)

Figure 4.12: Motor-Generator unit power in time for different regeneration-torque
control-strategies: (a) no regeneration control; (b) regeneration control with one
control variable (u); (c) regeneration control with two control variables.
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4.6 MO-ECMS calibration and results
The starting point of the calibration is the original ECMS (s2 = 0). By increasing
the value of the equivalence factor s2 battery degradation becomes crucial in deciding
the control strategy. The optimization cycle is constituted by two well distinguished
phases. Since the original ECMS is extremely demanding for the battery pack
the first step of the optimization cycle has been to find a better solution from the
battery-health perspective. The main driver of this phase is to preserve battery
health in operation. The battery-health oriented optimization phase effectively
leads to a lower battery ageing in operation but the fuel consumption increases
significantly. The MG unit is underused to target the first objective and by doing so
the potential advantages of HEVs are strongly resized/reduced. The last phase of
the optimization cycle is in charge of the fuel consumption reduction while keeping
under control battery ageing.

(a)

(b)

Figure 4.13: Original ECMS, s1 = [1, 1] and s2 = 0. Regeneration-torque control
with u. (a) State-of-Charge trend in time along the WLTC and (b) State-of-Health
trend in time along the WTLC.

In fig.4.14 the results in terms of operating points are presented on the ICE
and MG map. By imposing s2 = 0 the cost-to-go function (Eq.4.35) reduces to
the original ECMS. The original ECMS seeks to maximize fuel economy, it is not
"conscious" of battery degradation: this is evident looking at the State-of-Health
trajectory depicted in fig.4.13b. Given that the electric machine is mainly used as
motor the State-of-Charge is vertically depleted, fig.4.13a. From these considerations
it is clear that the traditional ECMS leads to have the best fuel consumption but
also the highest battery degradation. Fig.4.14b shows the operating points of the
electric machine: in the original ECMS the MG unit is extensively used. The
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operating points of the internal combustion engine, instead, are localized in a quite
limited area and they are characterized by lower torque value (the missing torque
with respect to Twh is provided by the electric machine). The key idea of this
work is to sensitize the ECMS to battery health preservation to achieve a optimal
solution both in terms of fuel consumption and battery life.

(a)

(b)

Figure 4.14: Original ECMS: operating points on the ICE map (a) and on the
electric machine map (b).
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By increasing the value of the equivalence factors s1 and s2 it is possible to obtain
a better solution from the point of view of the battery. By imposing s1 = [2.121]
and s2 = 100 the results reported in fig.4.15 and in fig.4.16 can be observed.

This simulation is an important step forward to preserve battery in operation
with respect to the traditional ECMS. Battery aging can be reduced and battery
life can be increased in terms of km. Obviously this has a cost and the cost is
hidden in the increased fuel consumption. Fuel consumption is 6.77 l/100km while
battery end on life happens after 230,533 km. By comparing fig.4.15 and fig.4.13 it
is immediate to see that with this calibration a charge sustaining mode is ensured
and the state-of-health, which provides a reliable measure of the battery health,
remains quite flat if compared with the original ECMS. This is definitely the first
big difference between the two calibrations. With the original ECMS, battery SoC
is severely depleted since the battery operates with important discharge currents
to power the MG unit.

By comparing instead the ICE and the MG maps, fig.4.16, it is possible to draw
other important conclusions: the operating points of the MG appears reduced and
in any case the electric machine is mainly used as generator. Motoring functioning
of the electric machine is strongly limited to preserve battery performances in time.
Furthermore the operating points on the ICE map are spread on a larger zone since
the internal combustion engine now has to provide an higher torque (to compensate
for the under-utilization of the electric machine).

(a)

(b)

Figure 4.15: s1 = [2.12, 1] and s2 = 100. Regeneration-torque control with u. (a)
State-of-Charge trend in time along the WLTC and (b) State-of-Health trend in
time along the WLTC.
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(a)

(b)

Figure 4.16: s1 = [2.12, 1] and s2 = 100. Operating points on the ICE map (a)
and on the electric machine map (b).
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The simulation showed in fig.4.16 allows the battery to last for about 230,000
km but with a fuel consumption of 6.77 l/100km. Given that the carmakers usually
offer an 8-years (or 160,000 km) warranty on the battery pack it is possible to
"convince" and force the control algorithm to take more advantage from the electric
part of the powertrain in order to achieve a reduction in the fuel consumption.
Practically speaking this corresponds to the second step of the optimization cycle.
With this calibration (s1 = [1.93, 1] and s2 = 88.2) the fuel consumption turns out
to be 6.49 l/100km while the battery life is of about 160,158 km.

Now the operating points on the ICE map, fig.4.18a, appear to be less while
the electric part is exploited more than the previous calibration to reduce fuel
consumption. The electric machine is mainly used as generator to recharge the
battery pack and to assist the internal combustion engine during sharp transient
operations. There are not significant differences in the SoH profile, reported in
fig.4.17b whereas the SoC profile is quite different with respect to that reported in
fig.4.15a. By decreasing the values of the equivalence factors s1 and s2 the control
becomes more fuel-oriented. By setting the equivalence factor for the electricity
consumption to 1.93 and the equivalence factor for the battery ageing to 88.2 it is
possible to find a better solution for the fuel consumption. The idea is to use part of
the 230,000 km of the previous simulation as margin to achieve a fuel consumption
benefit.

(a)

(b)

Figure 4.17: s1 = [1.93, 1] and s2 = 88.2. Regeneration-torque control with u. (a)
State-of-Charge trend in time along the WLTC and (b) State-of-Health trend in
time along the WTLC.

The leitmotif of these study is that s1 is impacting more than s2 and this
sentence can be explained simply by understanding how the cost-function (Eq.4.35)
has been defined. In the definition of the cost-function the absolute value of the
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battery internal power is weighted on the number of cycle to EOL thus the impact
of s2 on the calibration outcomes is somehow mediated by w(u(t)). On the contrary
s1 is impacting directly on the cost-to-go function.

(a)

(b)

Figure 4.18: s1 = [1.93, 1] and s2 = 88.2. Operating points on the ICE map (a)
and on the electric machine map (b).
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In Tab.4.2 the main results of the analysis in terms of fuel consumption and
battery life. The fuel consumption records in the table, and in the entire thesis
work, have been corrected according to the ECE/TRANS/180 standard according
to which whenever the State-of-Charge at the end of the mission is lower than the
initial value a fuel correction should be applied. Practically speaking if the SoC at
the end of the mission is lower than the initial value some fuel must be virtually
consumed to recharge the battery pack up to the original SoC.

Fuel Consumption [l/100km] Battery Life [km]
s1 = [1,1] and s2 = 0 4.9257 51,416

s1 = [2.12,1] and s2 = 100 6.7706 230,533
s1 = [1.93,1] and s2 = 88.2 6.4913 160,158

Table 4.2: Main results of the analysis in terms of fuel consumption and battery
life for the three calibration seen before. Results obtained with the SoH model of
Ebbensen revised.

In fig.4.19 the most important result of the analysis is reported: the Pareto front
between fuel consumption and battery life. This plot easily allows to explore the
trade-off between fuel consumption and battery life. By changing the value of s1
and/or s2 it is possible to move on the trade-off curve obtained.

The Pareto front has been obtained with a s2 sweep for different s1 values. The
stronger impact of s1 with respect to s2 is clearly demonstrated in the Pareto front.
The action of s1 is more effective in changing the outcomes of the analysis.

The blue part of the trade off curve has been obtained by sweeping s2 and keeping
fixed s1: in this part the trade off is quite sharp and appears to be quite vertical.
This verticality translates in an important dependency of the fuel consumption on
the equivalence factor for the battery ageing. By changing the value of s2 (for a
given value of s1) battery life remains almost unchanged while the consumption
sharply increases.

The yellow part of the trade off is the result of a s2 sweep with s1 = 1.4: this
zone is more flat meaning that by increasing the value of s2 fuel economy gets
worse but battery life increases almost in the same proportion.

The last part, the green one, has been obtained with a s2 sweep while maintaining
s1 = 1.8. It is the flatter zone: if s2 changes the effects on fuel consumption are
marginal while the effects on the battery life are significant. The "same" trade-off
can be obtained by keeping s1 fixed and sweeping only s2 toward very high values
(to obtain comparable values). By changing s1 it is possible to "move" faster on
the trade-off curve. According to the trade-off region the relative impact of s2 is
different. In the first zone the effect of s2 on fuel consumption is quite important
while its effects on battery life is marginal. In the last part the opposite is likely
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to happen: the effect of s2 on fuel consumption is "negligible" while the effect on
battery health is significant.

Figure 4.19: Pareto front between fuel economy and battery life for different s1
values. Each front has been obtained by sweeping the equivalence factor s2 (0, 20,
40, 60, 80, 100, 150, 200).

4.7 Gearshift strategy
In a PHEV two variables have to be controlled at each time instant: the gear
engaged and the torque split between the ICE and the electric machine. While
for the torque split a control logic based on the ECMS has been defined in the
previous paragraphs for the gear engaged a rule-based control is applied.

When the engine speed overcomes 2000 [rpm] an higher gear is engaged whereas
when the engine speed falls below 1000 [rpm] then a lower gear is chosen. Obviously
this gearshifts happen within the model with a certain delay (respect to the
attainment of the threshold rpm). This delay is not only induced by analytical
reason also it is used to give more credibility to the model trying to bring it
closer to what happens in reality. During real driving conditions the gearshift is
not performed instantaneously rather it happens with a certain delay. When the
threshold is reached (both for up-shift and down-shift) the "new" gear is engaged
only with a certain delay.
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Tab.4.3 shows the results obtained with different gear shift strategies in terms
of induced delays in terms of fuel consumption, battery life, final SoC and number
of gearshifts. For the fuel consumption the trend is quite clear: the higher the
induced delay the higher the fuel consumption. On the other hand for the battery
life the trend is not so clear: we can conclude that battery life is almost insensitive
to induced delay. Also the SoC registered at the end of the mission appears to be
not influenced by the gear-shift delay. The last row of Tab.4.3 reports the number
of gearshift along the WLTC driving cycle: the higher the delay the lower the
number of gearshifts.

1s delay 2s delay 3s delay
Fuel consumption [l/100km] 6.4913 6.5296 6.5653

Battery life [km] 160158 159640 160052
SoC @ the end [-] 0.21318 0.2129 0.21296
Gearshifts nr. [-] 128 124 112

Table 4.3: Analytical comparison between gear strategies with different induced
delay. The equivalence factors used in the ECMS to obtain these results are
s1 = [1.93, 1] and s2 = 88.2. Gearshift strategies are compared in terms of fuel
consumption, battery expiring distance, SoC at the end of the mission and number
of gearshifts.

Figure 4.20: Gearshift strategy with 1 [s] delay in time.

Figure 4.21: Gearshift strategy with 2 [s] delay in time.

In fig.4.20, fig.4.21 and fig.4.22 the gearshift profile, along the WLTC, is reported
for 1 [s], 2 [s] and 3 [s] respectively. In fig.4.23 the results of the analysis are reported
as operating points on the ICE and MG maps.
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Figure 4.22: Gearshift strategy with 3 [s] delay in time.

(a) (b)

(c) (d)

Figure 4.23: s1 = [1.93, 1] and s2 = 88.2. In (a) operating points on the ICE
map with 2 s delay in the gearshift; (b) operating points on the MG map with 2 s
delay in the gearshift; (c) operating points on the ICE map with 3 s delay in the
gearshift; (d) operating points on the MG map with 3 s delay in the gearshift.
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By increasing the delay in the gearshift strategy the angular velocity of the
internal combustion engine is likely to increase: if the delay increases the "actual"
gear is maintained for a longer time before engaging another gear and the ICE
speed progressively increases during this time interval. This is one of the most
important results of the analysis: if the gearshift takes longer time the internal
combustion engine has more time to continue raising its velocity. This effect can
be clearly seen in fig.4.23a and fig.4.23c in terms of operating points and also in
fig.4.24 where the engine speed in rpm is reported for the different induced delays.

(a)

(b)

(c)

Figure 4.24: Engine speed [rpm] with 1 [s] delay (a) in the gearshift strategy; (b)
engine speed [rpm] with 2 [s] delay in the gearshift strategy; (c) engine speed [rpm]
with 3 [s] delay in the gearshift strategy.
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4.8 Internal resistance analysis
The main goal of this section is to understand how the internal resistance of the
battery varies for different operating conditions trying to identify the best operating
conditions. Firstly it is necessary to distinguish discharging and charging operation
of the battery. Fig.4.25 shows how the internal resistance of the battery varies as
function of the State-of-Charge and the discharge rate during discharge operation.
The maximum internal resistance of the battery in discharging operation is of
about 0.3 Ω which is also representing the worst condition. This resistance value
verifies within the battery for low SoC value and high discharge rates. If the
battery operates under these conditions (low SoC and high c-rate) then it offers
the maximum resistance to the current flowing through.

Figure 4.25: Battery internal resistance as function of the c-rate and the State-
of-charge during discharging operation.
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Similarly, fig.4.26 shows how the internal battery resistance is affected by
operating conditions during charging. In this case the maximum resistance value is
well below the maximum value found in fig.4.25. Also during charging operation
the internal battery resistance surface appears to be quite flat meaning that the
variability of operating conditions is definitely more "impacting" when the battery is
discharging. However, in this case the battery shows the highest resistance for low
charge/discharge rate and low SoC values. Under these conditions the maximum
value is of about 0.1 Ω.

Figure 4.26: Battery internal resistance as function of the c-rate and the State-
of-charge during charging operation.

The internal resistance offered by the battery to the current flowing through
is highly influenced by the operating conditions. The resistance maps, reported
in fig.4.25 and fig.4.26, are useful to understand which are the best operating
conditions (in terms of SoC) for the battery. To isolate the SoC trend, the c-rate
dependency has been eliminated by assuming an average c-rate value on the mission
(crate,avg = 1[h−1]). This average value is not casual but it is the result of the most
aggressive control strategy for the battery pack. With u = 54% the discharge rate
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reaches the maximum (4.85 [1/h] saturated) and the average c-rate value on the
mission turns out to be equal to 0.98 [1/h]. To be conservative an average value of
1 [1/h] has been considered.

The two curves reported in fig.4.27 are technically two sections of the resistance
maps reported in the previous figures (fig.4.25 and fig.4.26). The plot reported in
fig.4.27 allows to spot the optimal SoC windows from the battery point of view.
Both the resistance curves (the red one and the blue one) reach a minimum in the
neighbourhood of a SoC of 0.9 (precisely SoC(rdisch,min) = 0.84 and SoC(rch,min) =
0.93 ). Definitely the optimal SoC window is located around a SoC of 0.9.

The discharge resistance function has a local minimum at around SoC = 0.6 and
in this range of SoC the charging resistance remains quite flat: it is an interesting
window.

Figure 4.27: Internal charging resistance, red, and internal (discharging) resis-
tance, blue, as function of the state-of-charge of the battery. Identification of the
local minimum.

The idea now is to exploit this knowledge to force the battery operates in the
best possible conditions. All the simulations done before consider an initial SoC of
25%. To place the battery in the best possible conditions an initial SoC of 84%
has been chosen. By keeping constant the ECMS calibration (s1 = [1.93, 1] and
s2 = 88.2) if the battery operates in one of the optimal SoC windows identified
before then the advantages are obvious, Tab4.4.
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In Tab.4.4 two situations are compared, namely the operation out of the first
optimal SoC window and the operation within the first optimal SoC window. The
initial SoC considered to force the battery operate under optimal conditions is
of 84%. If the battery works within the optimal SoC window (and the ECMS
calibration remains the same) the fuel consumption is slightly reduced (from 6.49
to 6.47 l/100km) and battery life is increased. By forcing the battery to operate in
this SoC window two benefits are recorded: fuel consumption reduces and battery
life increases (the lower the internal resistance the lower the aging the longer the
life).

Out of the SoC window Within the SoC window
F.C. [l/100km] 6.49 6.47

B.L. [km] 160,158 161,377

Table 4.4: Fuel consumption (F.C.) and battery life (B.L.) out of the optimal
SoC window (SoC0 = 25%) and within the optimal SoC window (SoC0 = 84%).
Results obtained with s1 = [1.93,1] and s2 = 88.2.

This dual advantage gives us a double operating margin: it is possible to use
this margin to lower fuel consumption or to further increase battery life. With a
new calibration of the ECMS it is possible to further lower fuel consumption. The
increased battery life (from 160,158 to 161,377 km) can be used to force the ECMS
to exploit more the electric part of the powertrain (to reduce fuel consumption).
By looking at the results reported in Tab.4.5 it is possible to see that the extra-km,
achieved by forcing the battery operates in the optimal SoC window, are cancelled
with the new calibration and the fuel consumption is further reduced. In the other
way around the advantage on the fuel consumption can be used to increase battery
life.

Re-calibrated ECMS
F.C. [l/100km] 6.45

B.L. [km] 159,619

Table 4.5: Fuel consumption (F.C.) and battery life (B.L.) with a new calibration
of the ECMS. Results obtained with s1 = [1.93, 1] and s2 = 81.84.

The same procedure is applied for the second optimal SoC window identified in
fig.4.27. By selecting an initial state-of-charge of 63% the battery is forced to work
within the window. The expected benefits are obviously lower than that obtained
for the first window since the resistance is higher. It is true that for a SoC of
60% the discharging resistance reaches a minimum but it is also true that very
small SoC fluctuations leads to a "vertical" increase of the discharge resistance. In
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Tab.4.6 some important results are reported. The operation out of the SoC window
is the same described before. If the battery, instead, operates within the second
optimal SoC window some benefits can be obtained: fuel consumption reduces up
to 6.47 l/100km while battery life increases until 160,971 km.

Out of the SoC window Within the SoC window
F.C. [l/100km] 6.49 6.47

B.L. [km] 160,158 160,971

Table 4.6: Fuel consumption (F.C.) and battery life (B.L.) out of the optimal
SoC window (SoC0 = 25%) and within the second SoC window (SoC0 = 63%).
Results obtained with s1 = [1.93,1] and s2 = 88.2.

Even in this case the battery suffers less and surely the operating conditions
are more favourable. The main difference with respect to the previous case has to
be found in the obtained margin Tab.4.7. Now the margin is smaller and the new
calibration of the ECMS has to take into account this feature. The idea is that
less km can be used to reduce fuel consumption. The difference between the two
windows reflects also in the new equivalence factors: in the first case the calibration
of the EMCS is more aggressive and it has been obtained lowering the equivalence
factor (s2) up to 81.84. In the second case the "new-ECMS" exploits more the HEV
potential but the calibration is more conservative.

Re-calibrated ECMS
F.C. [l/100km] 6.46

B.L. [km] 159,999

Table 4.7: Fuel consumption (F.C.) and battery life (B.L.) with a new calibration
of the ECMS. Results obtained with s1 = [1.93, 1] and s2 = 87.5.
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This study attempted to provide an answer to the question: "Are there realistic
solutions to account for battery cycle-aging in the definition of the optimal HEV
control strategy?". Several attempts have been made to give a credible answer
to this question and still many researchers work on this theme. In HEVs the
conventional internal combustion engine works in synergy with one or more electric
machines. In this context the role of the control strategy is to find the best split
possible contemporary satisfying external power demand. One of the main drivers
that enables the diffusion of this solution is the fuel consumption reduction if
compared with conventional powertrains. Fuel consumption can not be the only
concern of the control strategy if a compromise has to be found.

For the aforementioned reasons also the control strategy should be hybrid
meaning that two objectives have to be contemporary achieved. The first step of
the work aims at presenting the major aging mechanisms happening within the
lithium-ion batteries. The understanding of the performance fade mechanisms is
cardinal and pivotal to describe what happens within the electrochemical system
under very variegated operating conditions. Xiong et al. in [2] dissect in detail
the lithium ion batteries aging with an emphasis on the effect of the operating
condition. This knowledge is crucial to achieve an health-oriented control for HEV.
Wang et al. in [18] investigate the effect of several parameters on battery aging
by carrying out very accurate experimental tests. The experimental results have
been used by the authors to establish a link between the charge processed by the
battery, the operating conditions and the battery ageing. Definitely this model
does not pretend to describe the physics and the chemistry of the side reaction
rather it aims to represent them under a semi-empirical perspective. Its intrinsic
simplicity represents also its greatest strength.

The model presented by Wang et al. has been firstly adapted to operate with
a wider operating conditions spectrum (in terms of charge/discharge rate) and
then embedded within a State-of-Health model. The State-of-Health is an index
of battery-health and it is used as mainstream to evaluate the remaining useful
life (RUL) of the battery. Different SoH estimation procedures presented in the
literature ([23], [24]) in this work are compared, analyzed and used to built a
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Simulink® model able to simulate the operation of a HEV on different driving
scenarios. Since the very beginning it is important to assign the right meaning
to the real number of cycles made by the battery and the number of cycles the
battery might potentially withstand with (before end-of-life). The choices made
in this phase severely affect the outcomes of the analysis in terms of battery life.
The model of Guzzella et al. appears to be the least severe one while the model
of Anselma et al. appears to be the most conservative one. The model chosen
by the way represents an intermediate situation between the two and compares
homogenous quantities in the evaluation of the SoH index.

In the second section of the thesis, instead, an innovative energy management
strategy is presented and applied on a PHEV, namely the Jeep® Renegade 4xe
Plug-In Hybrid. An extended version of the ECMS has been proposed to solve the
optimal control problem and to establish the best possible power-split between the
internal combustion engine and the electric machine. While the traditional version
of the ECMS looks for a fuel-oriented solution of the control problem the proposed
version offers a new perspective to look at the same problem. The proposed ECMS,
infact, attempts to reach an optimal solution both in terms of fuel consumption
and battery ageing leading to satisfactory results. Battery life increases with a
moderate increase in the fuel consumption. The primary objective of the work has
been to sensitize the control logic to the battery health while deciding the best
control strategy. An health-conscious control strategy is the key to fully exploit the
potential of HEVs; a fuel-only-oriented strategy could seriously threaten battery
health, and safety, masking the advantages of electric propulsion.

The answer to the first question is definitely "Yes, there are!". The future HEVs
control strategies will be increasingly careful to safeguard battery in operation in
order to extend its useful life and to take at the same time the biggest possible
advantage. Although the physico-chemical reactions happening within the battery
are not always simply describable there are some effective instruments which allow
to have reliable results.
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