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Abstract 
The present thesis aims at evaluating the performance of a real-time implementable onboard 

energy management strategy (EMS) for Hybrid Electric Vehicles (HEVs), namely Equivalent 

Consumption Minimization Strategy (ECMS). A full hybrid heavy-duty vehicle with a 4,5L 

compression ignition engine has been chosen as reference vehicle. A P2 parallel hybrid 

architecture, with the electric machine located between the engine and the gearbox, has been 

simulated by means of a design optimization tool developed in MATLAB programming 

environment. The ECMS control strategy has first been implemented in the simulation tool 

following a detailed Equivalence Factors (EFs) calibration, then it has been tested on different 

driving scenarios and finally it has been compared with the Dynamic Programming (DP) global 

optimizer. Also, an ICE downsizing has been advanced, to furtherly reduce fuel consumption. 
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Sommario 
Lo scopo del seguente lavoro di tesi è di valutare le potenzialità di una strategia real-time di 

gestione del problema energetico per veicoli ibridi, la Equivalent Consumption Minimization 

Strategy (ECMS). Il veicolo di riferimento scelto è un ibrido heavy-duty con un motore ad 

accensione spontanea da 4,5L. L’architettura ibrida che è stata simulata è P2, con la macchina 

elettrica situata tra il motore e il cambio di velocità, attraverso uno strumento di ottimizzazione 

di design sviluppato su MATLAB. La strategia ECMS è stata implementata sullo strumento di 

simulazione in MATLAB, seguito dalla calibrazione degli Equivalence Factors (EFs) ed è stata 

testata su diversi scenari di guida e confrontata con un ottimizzatore globale, la 

Programmazione Dinamica. Inoltre, è stata avanzata una proposta di sottodimensionamento del 

motore termico, in modo da ridurre ulteriormente i consumi. 
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1. Introduction 
Regulations on pollutant emissions are stronger nowadays for the automobile industry, as 

persistent environmental issues and periodic energy crises are major concerns. In the last few 

years automobile industry has investigated different solutions to overcome the problem of 

reduction of fuel consumption of vehicles. In this sense, the solutions proposed regard mainly 

alternative powertrain technologies and advanced energy-saving vehicles. 

By one hand, Hybrid Electric Vehicles (HEVs) provide promising fuel efficiency in a 

comparison with conventional internal combustion engine (ICE) vehicles, due to their capacity 

to recover energy through regenerative braking and the fact that an additional degree of freedom 

is available to more efficiently meet required power from the driver. On the other hand, their 

energy management, defined as power and torque split selection and the amount of power and 

torque that each source has to satisfy the driver demand, is not an easy task since is has to 

improve overall vehicular energy efficiency and consequently fuel consumption. 

Unconventional fuels vehicles have the of a lower energy content that results in a shorter driving 

range, compared to regular gas-powered vehicles, minimal cargo space and general lower 

performances taking also into account of few fueling stations nowadays [1]. 

It is commonly acknowledged that improvements in fuel economy of HEVs with reduced 

emissions is crucially dependent on their energy management strategies (EMSs). Several 

approaches have been proposed in literature to tackle the energy management problem, noting 

that the performance of EMSs is strictly related to many factors such as the actual and future 

velocity, the road slope, driver behavior, traffic information and state of charge of the externally 

rechargeable energy source. However, the complexity and uncertainty of driving conditions 

often compromise the performance of established EMSs. How to reduce fuel consumption of 

HEVs and Plug-in HEVs (PHEVs) constitutes a significant research subject for promoting shift 

to a more sustainable mobility. 

The present thesis has the objective to describe the main PHEV control strategies, in a particular 

application of a hybrid truck and has the aim to prove the Equivalent Consumption 

Minimization Strategy (ECMS) as a reliable and easy implementable on-board algorithm that 

can reduce CO2 emissions and fuel waste. 
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1.1 Current EU regulation for CO2 consumption  

In the frame of the interest of this work it is necessary to describe European Union regulation 

for CO2 consumption. For what concerns passengers cars and Light Duty vehicles (LD), for 

each vehicle, a category is assigned according to a reference mass or payload and mass in 

running order, following the 2019/986 EU regulation [2]. The vehicles are tested according to 

the Worldwide harmonized Light duty Test Cycle (WLTC) obtained by the union of different 

driving cycles of representative countries. This cycle has substituted the New European Driving 

Cycle (NEDC). 

Before 2012, there was an intentional agreement between European Commission and the car 

manufacturers, with a target CO2 emission in the New European Driving Cycle (NEDC) of 140 

g/km, to be reached by 2008 [3]. From 2009, the maximum value is variable depending linearly 

on the mass of the vehicle, starting from 130 g/km at a reference mass that depends on the 

average of sold vehicles in the last 3 years (e.g., 1372 kg in 2016). The starting value has 

become 95 g/km in 2020 and will decrease of 25% and 37,5% in 2025 and 2030, respectively.  

Each car supplier declares an average of his fleet, if this average is over the reference value, the 

supplier has to pay a fee-there are incentives for suppliers producing Zero or Low Emission 

Vehicles (ZLEV). 

Regarding light duty commercial vehicles, the starting value depending on mass is 175 g/km, 

with the same percentage reductions in 2025 and 2030 [3]. 

Heavy Duty (HD) vehicles, buses and coaches are responsible for about 25% of CO2 emissions 

from road transport in the EU and for some 6% of total EU emissions. Emission in heavy duty, 

is related not only to the fuel wastes but also to the total cost of ownership (TCO), since a 

vehicle consuming less fuel has a higher market value. Even if fuel efficiency is increased in 

last years, the increase of road traffic in the same years lead to an increase in CO2 emission [2]. 

The European Regulation 2019/1242 sets CO2 emission standards for heavy-duty vehicles, HD 

vehicles are tested in Worldwide Harmonized Transient Cycle (WHTC) that is a dynamometric 

cycle based on the Worldwide Harmonized Stationary Cycle (WHSC), with a continuous 

measuring of power and torque. Since the test is done directly in the engine, the limit is imposed 

in g/kWh.  

1.2 Purpose 

The purpose of the thesis is to provide and test a real-time strategy for Hybrid Electric Vehicles 

control, in order to reduce CO2 emission and satisfy the request of energy of a defined driving 

scenario. The strategy will be implemented in a MATLAB optimization tool, that simulates a 
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driving cycle of a hybrid powertrain governed by a defined control strategy. Firstly, an 

architecture of the vehicle is defined by indicating the configuration (p2, p2p4…), engine 

displacement, the power to energy ratio, the speed ratio of the electric machines and final drive, 

and the maximum charge/discharge rate of the battery. The script has as input variables the 

velocity of the vehicle and road slope, at each time step selects its control variables (power flow 

and gear number) in order to minimize a desired objective function. Whenever a control strategy 

is not feasible in terms of required velocity, power or energy of the battery, the control strategy 

is discarded and flagged as unfeasible. The output of the simulation will be the State Of Charge 

(SOC) level of the battery through the cycle, fuel consumption and temporal duration of the 

power flow.  

ECMS will be simulated on a standard 4,5L p2 architecture, in different driving cycles (WHVC, 

FTP, JC08) and all results will be compared with Dynamic Programming (DP)-finally an ICE 

downsizing up to 3L will be proposed in order to furtherly reduce fuel wastes and the results 

will be compare with the global reduction of fuel wastes with respect to the reference pure 

thermal powertrain.  

1.3 Outline of the thesis 

This work is divided in 8 chapters: 

• In Chapter 1 a presentation of context and objectives of this work is shown,  

• In Chapter 2 is a brief definition of HEV and HEV architecture as well as differences 

with alternative propulsion systems will be proposed,  

• In Chapter 3 HEVs control strategies will be shown, with a particular focus on 

Dynamic Programming and Pontryagin’s Minimum Principle, 

• In Chapter 4 a description of the vehicle model of the MATLAB optimization tool 

will be shown,  

• In Chapter 5, Equivalent Consumption Minimization Strategy will be described 

deeply, alongside with calibration of EFs and results of above-mentioned tests and 

comparison with DP, 

• In Chapter 6, a proposal of engine downsizing is advanced and results and 

comparison with DP are shown, 

• In Chapter 7, a description of the Adaptive ECMS is shown, alongside with the 

different formulations, 

• In Chapter 8 the entire work will be resumed, and some comments on the results 

obtained as well as future outlook will be proposed. 
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2. HEVs (Hybrid Electric Vehicles) 
Hybrid Vehicles (HVs) are systems that combine two or more sources of power that can directly 

or indirectly provide propulsion. Hybrid electric vehicles (HEVs) represent the majority of 

hybrid vehicles on the road nowadays, they generally take energy from both a high-capacity 

energy storage (chemical fuel in liquid or gaseous form) and a lower capacity Rechargeable 

Energy Storage System (RESS). The RESS can be of different entities: electrochemical 

(batteries or supercapacitors), hydraulic/pneumatic (accumulators) or mechanical (flywheel). 

The energy from the two sources is then converted in power by means of a from an internal 

combustion engine (ICE) and an electric motor (EM) respectively, the latter is also able to 

recover vehicle kinetic energy to provide power assist, by means of an operative function called 

regenerative braking. This dual energy storage capability, in which the RESS permits bi-

directional power flows, requires that at least two energy converters be present, at least one of 

which must also have the ability to allow for bi-directional power flows (for the former 

functionality mentioned).  With respect to other types of conventional powertrains, HEVs 

guarantee a better efficiency management and add a supplemental degree of freedom to reduce 

fuel consumption. In this sense, HEV allow to utilize electric powertrain at low speeds and 

thermal at higher speeds, where they perform nearer to the optimal operating line (OOL).   

 
Figure 1-ICE characteristic plot [3] 

 
As can be seen from Figure 1, conventional vehicles generally operate in the lower left quadrant 

of the engine operating map, to reserve power for fast accelerations and transients. This means 
6/89

02IHDNE - Controllo delle emissioni di inquinanti

Typical ICE map

Why HEVs ?
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that engines are typically oversized significantly compared to the average power required, as 

the engine size is determined in terms of the maximum requirements, reached only for 

occasional transients. Furthermore, the choices of the operating point of the engine to meet the 

demand at the wheel are very discrete (only a few gear ratios available to match engine speed 

to vehicle speed along an iso-power curve). In addition, ICE powertrains provide a less 

convenient fuel economy because: 

• Engine fuel efficiency characteristics are mismatched with the real operation 

requirements: ICE is designed in terms of torque and power based on maximum vehicle 

speed, gradeability and acceleration, 

• High dissipation of vehicle kinetic energy during braking, especially while operating in 

urban areas, 

• Low efficiency of hydraulic transmission in current automobiles in stop-and-go driving 

patterns, 

• Impossibility to have an optimal gear shift strategy for best performance or fuel 

economy as it depends on driver’s behaviour. These limits can be partially overcome 

with AMT (Automated Manual Transmission: single or dual-clutch) or CVT 

(Continuous Variable Transmission) systems. 

 

On the other hand, HEVs lead to an optimized control of the efficiencies, as they take advantage 

of the characteristic curve of the e-motor (EM), as the one of Figure 2: 
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Figure 2-EM characteristic plot [4] 

 

Furthermore, HEV can realize following functions [3]: 

• Regenerative braking: when the vehicle is braking, its kinetic energy can be recovered 

by a generator and stored in the battery, 

• Idling reduction: depending on the sizing of the secondary power source, the engine can 

be turned off at stops and lower speed conditions, 

• ICE downsizing/downspeeding; due to the assistance of the secondary power source, a 

smaller ICE or a “longer” final drive can be chosen without compromising performance, 

• Mitigate losses during gear shifting: HEVs are provided with automatic transmission, 

and losses are furtherly decreased by systems such as EVT, 

• Reduce clutching losses: by not engaging the engine until the speeds are matched and 

do not require any slip 

• Beltless engines and electric driving of accessories 

• Possibility to have a more specific control over the engine operating point and engine 

transients: this impacts directly emissions (quasi-static and transients) as well as the 

drivability. 

Main HEVs issues are:  

• Currently more expensive than conventional vehicles, 
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• Heavier than conventional vehicles, due to additional weight from secondary power 

source and energy storage system, 

• High cost of components (i.e., battery, electric machines), 

• Reliability, still under study, 

• More complex control systems required to optimize fuel efficiency, 

• Might have drivability issues. 

Nonetheless, HEVs are becoming more diffused, due to their reduced CO2 consumption 

especially for urban mobility and lot of research efforts are continuously done in order to 

mitigate the issues listed above.  

2.1 HEVs types 

A first classification of HEVs can be made considering whether the batteries can be charged 

from an external electric source (plug-in HEVs or PHEVs) or not (non-plug-in HEVs). 

Plug-in hybrid electric vehicles (P-HEVs) have the potential of further reducing fuel 

consumption, as well as pollutant and CO2 emissions, compared to non-plug-in HEVs but they 

are usually equipped with larger battery packs than non-plug-in HEVs, in order to allow a 

higher all-electric range (AER) to be obtained. Moreover, the incremental battery cost of plug-

in HEVs might not be counterbalanced by the savings in fuel cost.  

A further classification can be possibly made considering the size of the internal combustion 

engine (ICE) with respect to the size of the electric motor (EM) and battery.  

 
Figure 3-HEVs classification as a function of the size of the ICE and EM [4] 

2 1 Introduction

1.2 HEV Architectures

The powertrain of a conventional vehicle is composed by an internal combustion
engine, driving the wheels through a transmission that realizes a variable speed ratio
between the engine speed and the wheel speed. A dry clutch or hydrodynamic torque
converter interposed between engine and transmission decouples the engine from the
wheels when needed, i.e., during the transients in which the transmission speed ratio
is being modified. All the torque propelling the vehicle is produced by the engine
or the mechanical brakes, and there is a univocal relation between the torque at the
wheels and the torque developed by the engine (positive) or the brakes (negative).

Hybrid electric vehicles, on the other hand, include one or more electric machines
coupled to the engine and/or the wheels [4]. A possible classification of today’s
vehicles in the market can be given based on internal combustion engine size and
electric machine size as shown in Fig. 1.1 [5] and detailed in the following:

1. Conventional ICE vehicles;
2. Micro hybrids (start/stop);
3. Mild hybrids (start/stop + kinetic energy recovery + engine assist);
4. Full hybrids (mild hybrid capabilities + electric launch);
5. Plug-in hybrids (full hybrid capabilities + electric range);
6. Electric Vehicles (battery or fuel cell).

Differences and main characteristics of the different types of vehicles are outlined
below [2, 6–8].
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1. Conventional Vehicle
(ICE only)

2. Micro Hybrids
(start/stop)

3. Mild Hybrids
(start/stop + kinetic energy recovery)

4. Full Hybrids
(mild hybrid + electric launch + engine assist)

5. Plug-in Hybrids
(full hybrid + electric range)

6. Electric vehicles
(battery or fuel cell)

Fig. 1.1 Spectrum of vehicle technologies [5]: pathway of increasing electrification starting with
ICE only—powered vehicles, going through different means of vehicle hybridization and ending
up with pure electric vehicles powered by batteries or hydrogen fuel cell
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In Figure 3, conventional vehicle represents the less electric extreme, while pure electric vehicle 

represents the opposite trend. In the middle it is possible to underline intermediate solutions 

such as Micro Hybrids, Mild Hybrids, Full Hybrids and Plug-in Hybrids with increasing 

features to possibly be installed.  

2.1.1 HEV series 

In series HEV, electricity generated by engine motive power turns an EM to drive vehicle 

wheels. Power is transmitted in a straight line from a low-output ICE operated at a nearly 

constant speed to reduce consumption and to turn a generator, and finally operate the motor. 

Also, all engine motive power is converted to electricity, energy conversion efficiency turns 

out being low. 

 
Figure 4-Series HEV scheme [3] 

 

Degree of hybridization defines the grade of presence of the thermal power component with 

respect to the electrical part, in the following way: 

 

𝑅!!"#$"! =
"$%"

"&'('#
							0 ≤ 𝑅!!"#$"! ≤ 1	                                  (2.1) 

 

Where 𝑃#$% stands for the power of ICE and 𝑃&'(') stands for the power of both electric and 

thermal engine. 𝑅!!"#$"! = 0 corresponds to a pure electric vehicle, 𝑅!!"#$"! = 1 corresponds 

to an electromechanical transmission. 
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Figure 5-Degree of hybridization for series HEV [3] 

Varying the degree of hybridization, it is also possible to distinguish between: 

• Range Extender: featuring a low degree of hybridization, is an electric vehicle 

assisted by a downsized ICE that works at fixed point and high efficiency, used to 

power the batteries. The battery pack can be reduced based on the need to have a 

sufficiently long range in pure electric conditions. It has the drawback of further 

reducing the efficiency of the power transfer between the ICE and the wheels 

• Load follower: Both ICE and generator are able to produce maximum steady-state 

power. The ICE follows the load time history during the cycle and during transient 

is assisted by the electric part. The system has higher efficiencies with respect to 

range extender configuration as charging/discharging cycles are reduced 

• Full performance: Both ICE and generator are designed to produce maximum peak 

power but are not generally used for ICE applications. 

 

2.1.2 HEV parallel 
 
In parallel HEVs, vehicle wheels are driven by motive power from both EM and engine, power 

goes in parallel flows from two sources. The motor can supplement engine motive power, as 

well as run the vehicle while charging the battery as a generator. Motor is more compact, since 

it is seldom used to drive the vehicle serving a supplementary role. Motor acts also as generator, 

unless the generated electric power is later stored in the battery, it can’t be used to run the 

vehicle.  
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Figure 6-Parallel HEV scheme [3] 

 

The main advantages of this kind of configuration are the fact that a generator is not necessary 

and loss of efficiency due to several power conversions from the engine to the driven wheels, 

that is now reduced. The main issue with parallel HEV is the control of the powertrain, that 

becomes more complex due to the mechanical coupling between the engine and the driven 

wheels. For the parallel HEV it is possible to derive a degree of hybridization as follows: 

 

 
Figure 7-Degree of hybridization for parallel HEV [3] 

 

𝑅!)*#*++"+ =
"$%"

"&'('#
			0 ≤ 𝑅!)*#*++"+ ≤ 1                                 (2.2) 

 



 
 

11 

𝑅!)*#*++"+ = 0 corresponds to an electric vehicle, 𝑅!)*#*++"+ = 1 corresponds to an ICE 

powertrain. 

Varying the degree of hybridization, a further distinction can be made: 

• Minimal hybrid: allow the ICE to idle when the vehicle is stopped, ICE shuts down 

and restart to reduce the amount of time spent idling. This feature is nowadays 

present diffused also in conventional vehicles, which are called micro hybrids. 

• Mild Hybrid: in this case ICE is coupled with an EM and the engine can be possibly 

turned off in some cases, when the vehicle stops. They are also able to employ 

regenerative breaking and some level of ICE power assist, but they are not able to 

provide a pure electric propulsion. 

• Full performance: have the possibility to run just the ICE, just the EM or both of 

them. They can gain the maximum potential of hybrid, but a high-capacity battery 

pack is needed, for battery-only operations such as the electric start-ups. Furtherly, 

in full hybrid vehicles energy management strategies result to be more complex 

 

2.1.3 HEVs series-parallel  
 
In series-parallel hybrids, engine motive power is divided into two parts by a power split 

planetary gear unit. One part directly drives the vehicle wheels while the other part generates 

power used to supply the motor and to charge the battery. This transmission has the advantage 

that is capable to control generator rotational speed smoothly as a stepless gearbox with a 

wide speed range [5]. 

 
Figure 8 Planetary gear for series-parallel hybrids [5] 

Mode can be switched according to driving condition between operation with only the motor 

or operation with both engine and motor. Has feature of both series and hybrid systems, 
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balances fuel economy with driving performance but the system and the corresponding controls 

are complex and expensive. In Table 1, a resuming table with the potentialities of the different 

hybrid types is proposed: 

 

 
Type 

Fuel consumption improvement effects Driving performance 

Idling 
stop 

Energy 
regeneration 

High-
efficiency 

drive control 

Total 
efficiency 

Acceleration 
performance 

High output 
sustainability 

Series Good Excellent Good Good Moderate Moderate 

Parallel Good Good Moderate Good Good Moderate 

Series-Parallel Excellent Excellent Excellent Excellent God Good 
Table 1-Resuming table for HEV types 

 
 
2.2 HEVs Configurations 
 
Majority of cars on the road feature nowadays parallel HEV, which can be furtherly classified 

considering how the linkage between propulsion system and the wheels is made [3]: 

• Double Drive (Through the road or TTR): each powertrain controls a couple of wheels, 

advantageous for the transmission of power but less convenient for energy management 

strategy and more expensive, 

• Double Shaft: the linkage is in the transmission it is a shorter configuration but les 

common, 

• Single shaft: feature a mechanical link between e-machine and thermal engine, more 

common 

 
Figure 9-Classification of parallel HEVs according to linkage between the machines [3] 
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(TTR HEV)

Parallel HEV
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Within single shaft configurations it is possible to distinguish between:  

• Non coaxial (Belt Alternator Starter BAS or Belt Starter Generator BSG): the ICE and 

the EM have different parallel axes and they are coupled by means of a belt or a chain, 

that represents a limit with respect to the transmissible torque, 

• Coaxial (FAS flywheel alternator starter): the EM, that is an AC e-motor, is aligned 

with the ICE is linked with the same through a flywheel, it reduces the problem of 

transmissible torque but has some start-up issues.  

 

A different classification can be possibly done according to the position of the electric motor 

(Figure 10): 

• P1 (P1f and P1r front and rear): the EMs are directly connected to the engine. If the 

electric machine is located in the front side, the regenerative braking efficiency 

results to be low because of the energy losses between the transmission and the e-

machine. P1f configuration coincides with non-coaxial configuration while P1r 

coincides with the coaxial configuration, 

• P2: EM is installed between the engine and the transmission unit can be decoupled 

by means of a clutch enabling the pure electric functioning,  

• P3: EM is in between the transmission and the differential unit, 

• P4: EM is on the secondary axis whereas the engine is on the primary one, coincides 

with double drive. 

 

            Figure 10-HEVs classification according to the position of the EM 

1 – Introduction

Figure 1.5: HEV classification based on e-machine position

7
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2.3 HEVs main components 
 
Considering the components that bring the power exploited by both the thermal and the electric 

engine to the wheels, a brief overview on some of them will be proposed.  

A Motor-generator (MG) has the task to provide supplemental motive power for the engine 

and can operate independently depending on vehicle running condition. Motor assists engine 

output to achieve superior power performance for smooth take-off and acceleration. Also, when 

regenerative brake is operating, MG is able to work as a generator to convert vehicle kinetic 

energy into electric energy to charge the HV battery. The generator additionally serves as a 

starter for the engine. It is made up of different stators and rotors that include permanent 

magnets and resolvers (rotational angle sensor). Transmission system configurations and 

construction (including the motor and the generator) differ according to the vehicle 

manufacturer and vehicle model. 

MG exploits its power by controlling the rotating magnetic field with respect to rotor rotational 

position and speed, permanent magnets attached to the rotor are pulled upon the magnetic field, 

generating torque, that is proportional with the intensity of the current. Rotational speed is 

controlled by the frequency of the AC and an elevated torque can be generated even at high 

speed by appropriately controlling the angle between rotating magnetic field and rotor magnets.  

Inverter converts current from the HV battery to the three phase AC that drives the motor. In 

addition, inverter converts AC to DC for the battery in the HV battery: AC produced by 

generator via engine motive power and AC produced by the motor via regenerative braking. 

Inverter is made of multiple insulated gate bipolar transistors (IGBT), a semiconductor 

switching element capable of switching large currents at high speeds. They are able, when 

turned off and on to convert from direct current to three phase alternate and viceversa and 

change the direction and magnitude of the current.  

DC-DC converter converts high voltage from battery to supply power to electrical auxiliary 

equipment (audio devices and light) and also has the task to charge the auxiliary battery. The 

DC-DC converter also converts high voltage DC from the HV battery into AC, this is stepped 

down into a low-voltage AC, rectified and then smoothed for output as a low voltage DC.  

The energy flows is: 

1) DC-AC converter: from high voltage DC to AC by operating a bank of transistors ON 

and OFF,  
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2) Transformer: Steps high voltage AC down to low-voltage AC using magnetic induction 

properties that cause an electromotive force to be generated in a coil when current is 

passed through an opposing coil, 

3) Rectifier: Converts stepped down AC into DC using the characteristics of a diode that 

allow only current flow in one direction, 

4) Smoother: Converts intermittent DC that follows rectification into a smooth DC using 

a condenser and a coil smoothing filter.  

Boost converter raises HV battery voltage to a higher value to supply the inverter, motor output 

is improved by raising the high voltage value. In addition, boost converter steps down the high 

voltage from the inverter to charge HV battery. Uses a characteristic of reactors that stores and 

discharges energy to generate a voltage output higher than the voltage input.  

HV battery is comprised of multiple modules connected in series. A cell is the smallest 

structural unit of the battery, a module is made of a several cell assemblies with different cells 

connected in series to create high voltage. For instance, in Toyota Prius 30, one module consists 

of 6 1,2-volt Nickel-Metal Hybrid (Ni-MH) cells with totally 28 modules used to generate high 

voltage with each module made by 6 cells. There are different battery types with voltage 

varying from 100 to 400 V, equipped with a manual power supply cut-off and power supply 

control relay to connect and disconnect high voltage circuit. Table 2 shows the main battery 

types: 

 

Type Construction Features 
Nickel-Metal Hydride 
(Ni-MH) Battery 

Uses nickel hydroxide for the 
positive terminal, hydrogen 
storing alloy for the negative 
terminal, concentrated aqueous 
solution of potassium 
hydroxide for the electrolyte. 

• Superior electrical 
discharge performance 
under large power/large 
currents, reduced danger 
of rupture, relatively 
cheaper than Lithium-Ion 

 
Lithium-Ion (Li-Ion) 
Battery 

Uses lithium metal oxide for 
the positive terminal, a carbon 
material such as graphite for 
the negative terminal, a non-
aqueous material for the 
electrolyte 

• Produces high voltages, 
and has a high energy 
density, no memory 
effect: phenomenon in 
which if battery with a 
sufficient amount of 
charge remaining is 
repeatedly charged, 
amount of usable 
capacity appears to 
decrease 

Table 2-HEV HV battery types 
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2.4 Comparison between HEVs and Battery Electric Vehicles (BEVs) 
 
Battery equipped electric vehicles (BEVs) have only a battery as the energy source, and 

traction power is provided by one or several electric machines. These vehicles are highly 

energy efficient and feature zero tailpipe emissions, while the well-to-wheel (wtw) emissions 

depend on the electric energy production process: if the electric energy is derived from a 

renewable source, wtw emissions can be reduced to a great extent. However, these vehicles 

have not a good diffusion on the market, due to higher costs, added weight of the vehicle, 

reduced load capacity, limited driving range and the lack of recharging infrastructures on the 

roads.  
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3. HEVs control strategies 
Energy management strategies are necessary to pursue the full potential of hybrid electric 

vehicles and furtherly reduce fuel consumption and emissions with respect to conventional 

vehicles. The presence of an additional energy storage device gives rise to new variables, which 

in turn translate into the need of finding the most efficient way of splitting the power demand 

between the engine and the battery. Consequently, control strategies have to deal with various 

control parameters, and sometimes can require high calculation times and are not easy to 

implement onboard.  

Controlling a HEVs is made essentially by two layers of tasks [4]: one is referred as component-

level control task, where each powertrain component is controlled by using classical feedback 

control methods. The second one, is a supervisory control, responsible for the optimization of 

the energy flow of the vehicle and maintain the battery state of charge within a certain range of 

operation and other requirements. 

 
Figure 11- Energy Management system for HEVs [4] 

 

This latter is referred as Energy Management System (EMS) that receives and processes 

information from the vehicle (ωeng, ωgb, ωmot) and the driver (vveh, aveh, δ) to obtain the optimal 

set-points sent to the actuators and executed by the low-level control layer. The EMS also 

32 3 The Energy Management Problem in HEVs
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Fig. 3.1 Two-layer control architecture in a hybrid vehicle. The EMS elaborates information from
the driving mission and the powertrain components to generate actuator set-points corresponding
to the optimal power split between the primary and secondary energy sources (high-level control).
The powertrain components control (lower level control) is then performed on single components
using traditional closed-loop control methods

In a conventional (non-hybrid) vehicle, there is no need for an energymanagement
strategy: the driver decides the instant power delivery using the brake and accelerator
pedals, and, in manual transmission vehicles, decides what gear is engaged at each
time. The driver’s desires are translated into actions by the low-level control: for
example, the engine control unit (ECU) determines the amount of fuel to be injected
given the desired torque request; the automatic transmission controller in the TCU
decides when to shift gear based on engine conditions and vehicle speed, etc.

In a hybrid vehicle, on the other hand, there is an additional decision that must be
taken: how much power is delivered by each of the energy sources on-board of the
vehicle. This is why all hybrid vehicles include an energy management controller,
interposed between the driver and the component controllers. As mentioned, the aim
of the energy management system is to determine the optimal power split between
the on-board energy sources. The decision on what to consider optimal depends
on the specific application: in most cases, the strategies tend to minimize the fuel
consumption, but optimization objectives could also include the minimization of
pollutant emissions, maximization of battery life, or—in general—a compromise
among all the above goals.

The role of the energy management system in a hybrid vehicle can also be rep-
resented as in Fig. 3.2. The outer layer in the figure is the speed control, which is
the human driver in a real vehicle and a driver model (typically a PI controller) in
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selects the best modes of operations of the hybrid powertrain, including start–stop, power split, 

and electric launch. Essentially, controlling a HEV consist in managing, for each instant of a 

driving pattern, the power flows in order to achieve precise requirements of the vehicle such as 

torque or power needed. 

This work is focused on testing an EMS that is responsible for the optimization of the power 

split on-board of the vehicle while maintaining the battery state of charge within a certain range 

of operation and reduce fuel consumption and CO2 emissions.  

In fact, it has been proven that there could be improvements in fuel economy for HEVs ranging 

from 10% for mild hybrids to more than 40% for full hybrid vehicles [6]. 

3.1 Control parameters 

State of charge (SOC) is an index that expresses the HV battery charge state as a percentage, is 

calculated starting from values such as battery voltage, input/output current and temperature. 

HV battery is repeatedly discharged during acceleration while using the EM, and continually 

charged during deceleration via regenerative braking. The drive power and amount of power 

generated from motor and generator are controlled to preserve the HV battery SOC value in the 

optimal state even when the battery is repeatedly charged and discharged. State of Charge (% 

of total capacity) of electrical accumulators (batteries, supercapacitors). It could also be applied 

to other accumulator types used for the secondary energy storage. 

  

 
 

Figure 12-Scheme of the energy chain from the battery to the ECU for HEV control 

 
Referring to SOC of the battery through the driving pattern, it is possible to distinguish between 

two trends: 

• Charge depleting is a SOC trend that allows battery to fully discharge to its minimum 

admissible value through the cycle. This SOC strategy is the more prone to minimize 

the use of the thermal part and the fuel consumption accordingly but is only compatible 

with P-HEV as it is strictly necessary to recharge the battery from an external source, 

• Charge sustaining is a SOC trend that allows the battery to recharge continuously during 

the cycle in order to maintain the SOC level as near as possible to the target or reference 

HV Battery Battery control ECU 
Hybrid Control ECU 

SOC value 
calculation 

Voltage, 
Current, 

Resistance 
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value. This trend is crucial for non-plugin HEVs, so that the battery SOC level is 

bounded to a minimum level to allow for a pure electric take-off. 

 
Figure 13-Comparison between charge depleting and charge sustaining behaviour [3] 

 
A visual representation of how the trends shown affect SOC variation in time is shown in Figure 

13. 

As regarding the modes that the model parallel HEV can perform, a distinction may be done: 

1) Pure thermal (PT): only the ICE is used for moving the vehicles, with EMs turned off, 

2) Pure electric (PE): only the EM is used for torque generation and thermal engine is 

switched off, it also includes generative braking, 

3) Power split (PS): both ICE and EMs are used to satisfy the power requirement of the 

driving pattern, 

4) Battery charging (BC): EM acts like a generator, when there is an excess of power by 

the thermal engine, in order recover energy in the battery.  

In the following section, main control strategies for HEVs will be shown alongside with some 

considerations, advantages and drawbacks of each of them. 

 
3.2 Types of Energy Management Strategies 
 
Firstly, it is possible to divide the state of the art of EMs in [3]: 

• Global optimization methods or benchmark methods such as Dynamic Programming, 

genetic algorithms, Pontryagin’s Minimum Principle, 

• Instantaneous optimization methods such as Equivalent Consumption Minimization 

Strategy, 

15/89
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• A plug-in hybrid vehicle is much like a conventional hybrid, but it has the capability of
being-plugged in to recharge the battery.

• Plug-in hybrids are designed to travel relatively-long distances with little or no help
from the ICE (all-electric range). Even before the charge is completely used up, the
engine may provide additional power for recharging the battery, accelerating, or in
order to climb a hill.

• The main difference between the plug-in hybrid and the conventional hybrid is that the
plug-in can potentially use the electric motor as the primary power source, and the
ICE to provide additional/needed power.

BMW i8

Toyota Prius Plug-in

Plug-in HEVs

Charge Sustaining vs. Charge Depleting HEVs

SoC = State of Charge (% of total capacity) of electrical accumulators (batteries, supercaps). It
could also be applied to other accumulator types used for the secondary energy storage.
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• Heuristic methods such as rule-based methods with offline maximization of 

components efficient or though control maps, 

• Artificial intelligence-based methods such as rule-based methods based on 

unsupervised learning. 

In this work, another proposal will be advanced by distinguishing between two types of control 

[4], that will be analyzed: rule-based and model-based control strategies. 

3.2.1 Rule-based energy management strategies 

Rule-based approaches on heuristic are based on the idea that the controlling decision is done 

with a precise set of rules, set a priori. In this sense, there is not the precise aim to minimize an 

objective function, but rule-based act with a prescribed set of information, that can be based on 

several factors. They can be based on a multiple decision layer scheme, in which different 

parameters are taken into account or either map-based decision strategies, that assign a decision 

in relation to two parameters. An example of the latter is shown on Figure 14: 

 
Figure 14-RBC example for a PHEV [3] 

 

Another rule-based control is through Genetic Algorithm (GA), that mimic the natural 

evolution process, generating an initial population of potential solutions by generating new 

individuals and maintaining only the best ones. Each individual is evaluated, and a score called 

fitness is assigned to it according to the value assumed by the objective function 𝐽. In the control 
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strategy optimization, the genome is constituted by the values of given control variables at each 

time instant of the mission (gear number and power flows).  

Due to a lean structure of the algorithm, map-based control strategies offer a fast 

implementation for real time application, but it has several drawbacks: 

• To obtain a proper map is a tedious process that needs long time, 

• It is not possible to obtain a single map that is optimal for different driving cycles.  

3.2.2 Model-based energy management strategies 

Model-based energy management strategies are based on decision done according to the 

minimization of a so-called objective or cost function, in a fixed driving cycle. In fact, to 

minimize the objective it is necessary to know both the actual and the future driving pattern.  

Model-based energy management strategies are in turn divided into numerical and analytical 

approaches. 

Numerical optimization strategies take into account the whole driving cycle and find the 

optimum numerically. On the other hand, analytical approaches use a formula appliable at each 

instant, and make the solution faster. The first category includes methods such as simulated 

annealing, genetic algorithms, and dynamic programming, that will be discussed in detail. The 

second category comprehends Pontryagin’s Minimum Principle (PMP) and Equivalent 

Consumption Minimization Strategy (ECMS) that will be deeply analysed, being the object of 

this work. Also, both DP and PMP are global control methods, due to the fact that, to be 

functional they need knowledge of the entire problem in advance and for this reason are 

generally used as benchmark for the instantaneous methods, such as ECMS, that can be 

implemented on-board. 

3.2.2.1 Dynamic Programming 

Dynamic Programming (DP) is a mathematical optimization tool developed by Richard 

Bellman in 1950s and counts different applications in economics and engineering fields. The 

idea behind DP is to face decisions dividing the problem in different stages. It has a great 

potential to solve complex problems on the downside that requires the whole information-in 

this case the driving cycle-in order to give an optimal solution. That’s why DP is widely adopted 

as benchmark for the identification of the optimal strategy in HEVs. The algorithm is based on 

the Principle of Optimality which essentially states that from any point of an optimal trajectory 

the remaining trajectory is optimal for the corresponding problem initiated at that point [4]. A 

sequential optimization problem is defined as follows: 
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𝑥* = 𝑓*(𝑥* , 𝑢*)	𝑤𝑖𝑡ℎ	𝑘 = 0,1, … , 𝑁 − 1                                 (3.1) 

 

𝑢* is the control variable whose time is chosen at time 𝑘, both 𝑢* and 𝑘 are discretized and 

bounded. Considering a control policy over 𝑁 time steps: 

 

𝑢 = {𝑢+, 𝑢,, … , 𝑢-.,	}                                             (3.2) 

 

A cost of the policy 𝑢 is defined starting from initial conditions 𝑥+: 

 

𝐽(𝑥+, 𝑢) = 𝐿-(𝑥/) + ∑ 𝐿*(𝑢* , 𝑥*)-.,
*0,                                  (3.3) 

 

Where 𝐿* represents the instantaneous cost function. This considered, the most optimal solution 

is defined as the one with: 

 

𝐽∗(𝑥+) = min 	𝐽(𝑥+, 𝑢)					                                        (3.4) 

 

And the corresponding optimal policies are:  

 

𝑢∗ = {𝑢+∗ , 𝑢,∗ , … , 𝑢-.,∗ 	}                                            (3.5) 

 
 

The DP computational grid also takes into account the backward process, starting from the final 

step 𝑁 the algorithm uses the control that gives the optimal cost-to-go and considering the 

terminal cost 𝑌*: 

 

𝑢* = 𝜇∗(𝑥* , 𝑘) = argminD𝐿*(𝑥* , 𝑢) + 𝑌*2,(𝑓*(𝑢* , 𝑥*), 𝑢*)E	                  (3.6) 

  				𝑓𝑜𝑟	𝑘 = 𝑁 − 1,𝑁 − 2,… , 1 

 

The optimal control sequence is consequently found by proceeding backward from the final 

step, choosing at each instant the control that minimizes the cost-to-go 𝑌*(𝑥* , 𝑢*), and storing 

in a matrix 𝜇∗ the optimal choice at each time instant 𝑘 and state 𝑥*. 

The logic behind DP can be visually seen considering that the algorithm consists in finding the 

optimal path or “cost-to-go” from the initial state to the final one (e.g., path from node A to 

node K in Figure 15). This can be done by proceeding backward from the final state to the 
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initial one and saving the optimal path at each time step (i.e., each level of the grid). Once we 

get the optimal solution, the algorithm can proceed forward along the optimal path. The optimal, 

and so the objective function 𝐽 can be set for different objectives (fuel consumption, NOx 

reduction etc.). Also, miscellaneous objective function can be considered, for instance: 

𝐽 = 𝑎 34
34#",

+ (1 − 𝑎) J -5-
-5-#",

K                                  (3.7) 

In this case, 𝑎 = 1 is Fuel Consumption oriented whereas 𝑎 = 0 is NOx oriented. 

For this application the intent is to reduce fuel and CO2 consumption, so the objective is set as 

the minimum of the 𝐽 function CO2 oriented.  

 

 
Figure 15-Dynamic Programming (DP) 

 
Applying the DP to HEV control, the control policy 𝑢* is the power split between the two 

propulsion systems whereas the cost related is to be ascribed to a precise objective function, 

referred to fuel consumption, CO2 or NOx emissions, any design objective. In the optimizing 

tool in MATLAB, a cost is related to the state of the powertrain and the power required. All 

possible power splits and the related feasibilities and costs are stored in the matrix of costs, with 

unfeasibility representing a control that does not give enough power for the mission or a control 

that exceeds the limits in SOC-unfeasible combination have an infinite cost in the matrix. For 

the latter reason, unfeasible strategies are automatically discarded and when the whole path is 

exanimated, in the backward phase, the path with lower cost represents the optimal solution.  

Here in Table 3, it is possible to see some advantages and downsides of DP:  
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Dynamic programming: example
There are 11 cities (A-K), and a network of one-way roads connecting them. The 
distance of each connecting road is indicated by the number associated to the 
arrows. Suppose that we want to define the minimum distance between A and K.
We proceed backwards to the initial node A. The optimal “cost-to-go” distance from 
A to K (i.e., the shortest distance from A to K), is 16 km, since the most convenient 
path is from A to C. It should be noted that, at each level of the grid, it is necessary 
to store the optimal “cost-to-go” functions, (as well as the optimal “cost-to-go” path), 
in order to be able to proceed forwards form node A to node K along the forward 
optimal path.

http://www.eolss.net/sample-chapters/c18/E6-43-18-05.pdf
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Dynamic Programming (DP) 
Advantages Drawbacks 

• Overall control of non-
differential non-linear problems 
 

• Wide range of application 
 

• The algorithm converges at the 
optimal real solution 

• Mission characteristics must be 
known a priori 
 

• Accurate discretization required 
 

• Complex definition of the 
computational domain 
 

• High level of programming and 
long time for reaching the 
convergence (not suitable for on-
board application but as a 
powerful benchmark tool) 

 

Table 3-Dynamic Programming advantages and drawbacks 

 
As will be seen through the thesis, DP represents one of the most optimal control strategies 

the results obtained by this type of controller will be set as benchmark in order to prove the 

validity of the controller tested. 

3.2.2.2 Potryagin’s minimum principle (PMP) 

Pontryagin’s Minimum Principle (PMP) defines an optimal control law, when a set of 

conditions are satisfied, this condition is referred as extremal [4]. So, a set of constraints is 

defined and in particular application of HEVs control strategies, there are constraints both on 

state and control variables. The state variable SOC, for instance, has to vary between two 

values, 𝑆𝑂𝐶&67 and 𝑆𝑂𝐶&#/, and also control variables do not have to exceed the admissible 

points (for instance, the power of both the ICE and the EM can’t go above the maximum 

nominal power). For the application in HEV control the Hamiltonian function is defined 

alongside with the power demand from the driver [4]: 

 

𝐻 P𝑆𝑂𝐶(𝑡), 𝑃86(((𝑡), 𝜆(𝑡), 𝑃)%9(𝑡)R = �̇�: P𝑃86(((𝑡), 𝑃)%9(𝑡)R + 

                                                                        +𝜆(𝑡) ∙ 𝑆𝑂𝐶̇ (𝑡)                                              (3.8) 

 
Where 𝜆 represents the co-state variable. The optimal control is the one that minimizes the 

Hamiltonian function and respects different conditions:  
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𝑃86((∗ (𝑡) = argmin𝐻 P𝑃86(((𝑡), 𝑆𝑂𝐶(𝑡), 𝜆(𝑡), 𝑃)%9(𝑡)R                        (3.9) 

𝑆𝑂𝐶∗̇ (𝑡) = 𝑓D𝑆𝑂𝐶∗(𝑡), 𝑃86((∗ (𝑡)E                                    (3.10) 

�̇�∗(𝑡) = D−𝜆∗(𝑡) + 𝑤(𝑆𝑂𝐶)E
𝜕𝑓
𝜕𝑆𝑂𝐶 D𝑆𝑂𝐶

∗(𝑡), 𝑃86((∗ (𝑡)E = 

= ℎ(𝑆𝑂𝐶∗(𝑡), 𝑃86((∗ (𝑡), 𝜆∗(𝑡))                       (3.11) 

𝑆𝑂𝐶∗(𝑡+) = 𝑆𝑂𝐶+                                                   (3.12) 

𝑆𝑂𝐶∗D𝑡:E = 𝑆𝑂𝐶(6);%( = 𝑆𝑂𝐶:#/6<                                    (3.13) 

𝑆𝑂𝐶&#/ < 𝑆𝑂𝐶∗(𝑡) < 𝑆𝑂𝐶&67                                       (3.14) 

 

Condition (3.13) represents the charge sustaining behaviour that has to be guaranteed for non-

externally rechargeable vehicles as the one tested in this work.  

Now the problem of PMP is on how to determine the co-state variable. A solution is to 

determine the value by using the shooting method namely by guessing an initial value and 

increasing or decreasing it starting with an initial value of 𝜆+, at each iteration of the shooting 

method the minimum principle conditions are verified in a particular segment of the driving 

cycle. At the end of the simulation, the obtained SOC value at each segment is compared to the 

desired state of charge, 𝑆𝑂𝐶(6);%(. Depending on the difference between the actual value and 

the target value, the value of 𝜆+ can be properly tuned (increased or decreased) and the 

simulation repeated, or the algorithm can finish when there is an acceptable difference between 

the reference and the actual SOC level. A bisection procedure can be used to obtain 

convergence in few iterations, making the minimum principle sensibly faster than dynamic 

programming. The calibration of co-state value 𝜆+ can be seen in the scheme in Figure 16:  

 
Figure 16-Scheme for co-state parameter calibration in PMP [4] 

56 5 Pontryagin’s Minimum Principle
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Fig. 5.1 Iterative mechanism to solve the Pontryagin’s minimum principle via shooting method

SOCmin ≤ SOC∗(t) ≤ SOCmax (5.20)

Equations (5.16) and (5.17) represent a system of two first-order differential
equations in the variables SOC and λ. Despite being completely defined, this two-
point boundary value problem can be solved numerically only using an iterative
procedure, because one of the boundary conditions is defined at the final time,
SOC∗(tf ) = SOCtarget .

The solution of the PMP’s necessary conditions is obtained via shooting method
according to the scheme in Fig. 5.1.

Starting with an initial guess of λ0, at each iteration of the shooting method the
minimum principle conditions are solved throughout the length of the optimization
horizon, [t0, tf ], typically corresponding to the duration of a driving cycle. At the end
of the simulation, the obtained value of the SOC(tf ) is compared to the desired state of
charge, SOCtarget . Depending on the difference SOC(tf ) − SOCtarget , the value of λ0

is either adjusted and the simulation repeated, or the algorithm ends if the difference
reaches the desired target (i.e., it is close to zero within a pre-defined tolerance). A
bisection procedure can be used to obtain convergence in few iterations, making the
minimum principle sensibly faster than dynamic programming.

The implementation of the PMP’s necessary conditions is shown in the schematic
of Fig. 5.2. At each instant of time over the optimization horizon [t0, tf ], given a
request of power, Preq, the Hamiltonian is built and minimized. This generates the
optimal control, P∗

batt(t) that is applied to the state and co-state dynamic block to
compute the state of charge and co-state variation at the next step.



 
 

26 

 
4. Vehicle model 
In this section, a brief description of MATLAB optimization tool and HEVs control will be 

given. It will provide an overview over the model of the main components and the driving 

cycles. The simulation of the driving cycle is a problem discretized both in time and in space 

domain, with an interval grid approach. All equations, subsequently, are considered at both 

extremes of the node. 

4.1 Input variables 

Input variables of the problem are vehicle velocity 𝑣# and the slope of the road, obtained by the 

driving cycle. For each time instant, the power required by the vehicle 𝑃= is calculated by 

considering the contribution of the rolling resistance 𝑃=,)'<<, the grade resistance 𝑃=,;)6?%, the 

aerodynamic drag resistance 𝑃=,?)6; and the inertia resistance 𝑃=,#/%)(#6, as follows:  

 

𝑃= = 𝑃=,)'<< + 𝑃=,;)6?%+𝑃=,?)6;+𝑃=,#/%)(#6                               (4.1) 

In which:  

𝑃=,)'<< = 𝑉= ∙ 𝑚= ∙ 𝑔 ∙ 𝑟= ∙ cos 𝛼)                                       (4.2) 

𝑃=,;)6?% = 𝑚= ∙ 𝑔 ∙ 𝑉= ∙ sin 𝛼)                                        (4.3) 

𝑃=,?)6; = P,
@
∙ 𝜌6#) ∙ 𝑐7 ∙ 𝐴= ∙ 𝑉=@R ∙ 𝑉=                                  (4.4) 

𝑃=,#/%)(#6 = P𝑚= +
A./
B./

R ∙ 𝑉= ∙ �̇�=                                     (4.5) 

 

In which, 𝑚= is the mass of the vehicle, 𝑔 is the acceleration of gravity, 𝑟= is the vehicle rolling 

resistance coefficient, 𝛼) the slope of the road, 𝜌6#) is the density of the air, 𝑐7 is the 

aerodynamic drag coefficient, 𝐴= the frontal area of the vehicle, 𝐼CD is the inertia of the wheel, 

𝑅CD is the dynamic radius of the wheel. The total power is used to calculate the power required 

for each component (front and rear axle, final drive) and finally to the ICE and the EM. For the 

ICE, the EM and the battery, a map is created using a scaling factor, obtained considering the 

reference map provided by the manufacturer. Each component is analyzed in order to verify if 

it is capable or not to supply power and velocity requirements by looking at the previously 

generated maps, when the power required is higher than the maximum one, an unfeasibility flag 

is set.  
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4.2 Control and state variables  

In the MATLAB optimization tool, the control variables are the gear number and the power 

flows. As stated in chapter 3, there exists 4 types of power flows in a Parallel HEV and 

consequently the control variable related to power flow 𝑁"3 varies from 1 to 4, with: 𝑁"E = 1 

𝑁"F = 2 𝑁"G = 3 𝑁H4 = 4. In addition, since the vehicle is equipped with a 6 gears 

transmission gearbox the control variable related to gear number 𝑁I- varies from 1 to 6. 

Considering that the engine has two states, since it can be turned off 𝑁EG = 0 and off 𝑁EG = 1, 

it is possible to define the total number of different configurations: 

 

𝑁$'/: = 𝑁"3 × 𝑁I- × 𝑁EG                                          (4.6) 

A matrix of configurations is generated by the values of the vehicle configurations defined as 

the combination of the working modes (gear number and power flows) and state variables 

(engine state and battery state of charge). The state variables are the variables which are 

essential to define the state of the main components of the architecture, for this application we 

will consider:  

• The engine state, 

• The battery SOC that can vary between a maximum and a minimum value 𝑆𝑂𝐶&67 

and 𝑆𝑂𝐶&#/ respectively. Furthermore, considering that, in the study case, the battery 

is not externally rechargeable, the SOC has to be kept as close as possible to the initial 

one, namely 𝑆𝑂𝐶J(6)(	or 𝑆𝑂𝐶(6);%(. 

4.3 Internal combustion engine 

The engine used for this application is a Compression Ignition (CI) engine, namely combustion 

occurs due to compression of a charge formed by air and burned gas. Fuel is injected at a high-

pressure level so that it atomizes, and this is what causes the spontaneous combustion (with no 

external energy source, such as Spark Ignition SI engines). CI engine are characterized by four 

operative phases, represented in Figure 17:  

1. Suction: intake valves open to allow air to enter. The piston goes from the upper 

dead centre (PMS) to the lower dead centre (PMI), during this journey the 

connecting rod makes one stroke and the crank rotates 180°. As it descends, it 
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creates a strong depression in the combustion chamber; and by filling the fuel by an 

injector, the chamber fills up, 

2. Compression: the valves close and the piston rises compressing the fuel inside the 

combustion chamber. Pressures reached at the end of this phase for CI engines are 

higher than those of SI engines to allow the self-ignition of the mixture, 

3. Expansion: in this phase, ignition occurs spontaneously due to the high temperature 

and pressure formed at the end of compression. After combustion, gases at very high 

pressure and temperature have formed inside the chamber, pushing the piston down 

to the PMI. Since all the pistons are connected to each other through the crankshaft, 

while one goes up the other goes down, and the mechanism goes forward, 

4. Exhaust: The piston, which has gone to the PMI after expansion is done, rises and 

emits the gases through the opening of the exhaust valves, which evacuate the gas 

from the cylinder, preparing it for a new cycle. The combustion residues are 

introduced into the exhaust manifold, connected to the exhaust system. 

 

 
Figure 17-CI engine phases [7] 

Diesels have the advantage to be able to deliver constant power for long time periods, they 

suffer less wear and can operate at higher efficiency. The diesel engine's high torque, combined 

with hybrid technology, may offer substantially improved mileage and autonomy for the hybrid 

vehicles. Nowadays, diesel-electric hybrid drivetrains are mostly common in commercial 

vehicles such as buses or delivery trucks. Nonetheless, diesel engines emit the following 

pollutants: 
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• NOx due to high temperatures reached in the diffusive combustion phase and the 

instantaneous reduction due to the apparent heat release rate (AHRR), 

• Unburnt hydrocarbons (HC) due to the zone in the combustion at the border of the spray 

where the mixture is too lean, due to a rich mixture at the core of the spray, overmixing, 

overfueling or spray impingement,   

• Particular matter (PM) or soot particles due to agglomeration of carbon particles 

produced in the hydro-carbon cracking phase.  

The maps of the engine, the fuel consumption map and NOx emission map are given in advance 

by the MATLAB tool, so look-up tables are used so that the mass flow rate of fuel �̇�:$ is 

evaluated by interpolating 2D map function of engine power and speed, as follows: 

 

                                                           		�̇�:$ = �̇�:$(𝑃A4E , 𝜔A4E)                                            (4.7) 

 

That also allows to obtain CO2 emission: 

                                                                		�̇�450 = 	2.65 ∙ &̇,%

L
                                               (4.8) 

With 𝜌 representing the density of the fuel. 

4.4 Electric Machines 

The electric machine model of the tool simulates the power conversion from the electric to the 

mechanical form, and vice-versa, considering the energy losses by means of efficiency maps, 

which are functions of the machine power and speed. The maps related to these conversions are 

pre-calculated:  

𝑃EM,% =	𝜂EM,&@%D𝑃EM,&, 𝜔EME ∙ 𝑃EM,&                              (4.9) 

𝑃EM,& =	𝜂EM,%@&D𝑃EM,% , 𝜔EME ∙ 𝑃EM,%                             (4.10) 

 

The power is bounded as function of the rotational speed 𝜔EM and this will influence the 

feasibility of the electric machine according to the power demand.  

4.5 Driving cycles 

ECMS have been tested in different driving cycles, precisely WHVC, FTP-72 and JC08, the 

cycles will be briefly described in this section. 

WHVC (World Harmonized Vehicle Cycle) is a chassis dynamometer test with 1800 seconds 

duration. It is made up by three phases: 



 
 

30 

• The first 900 seconds represent urban driving with an average speed of 21.3 km/h and 

a maximum speed of 66.2 km/h. This segment includes frequent starts, stops and idling, 

• The following 481 seconds represent rural driving with an average speed of 43.6 km/h 

and a maximum speed of 75.9 km/h, 

• The last 419 seconds are defined as highway driving with average speed of 76.7 km/h 

and a maximum speed of 87.8 km/h. 

FTP-72 (Federal Test Procedure) is a dynamometer urban route test cycle of 1372s with 

frequent stops. It reaches a maximum velocity of 91.25 km/h, has an average speed of 31.5 

km/h and is made up by two phases: 

• The first 505 seconds phase with a cold start and 41.2 km/h average speed,  

• Second 867 seconds phase. 

JC-08 (Japan Cycle) is chassis dynamometer test cycle for light vehicles representing driving 

in city traffic with frequent idling periods and alternating accelerations and decelerations. It has 

a duration of 1204 seconds with a 34.8km/h average speed (excluding idle) and a maximum 

speed of 81.6km/h. There is an initial idle for both cold and warm start. A visual representation 

of the cycles tested can be seen in Figure 18: 

 
Figure 18-WHVC, FTP-72 an JC08 driving cycles 

All these cycles are inserted in the input parameters of the MATLAB tool and tested. The idea 

is to test the controller ECMS in different driving conditions, both for the driving cycle for the 

reference vehicle (WHVC) as well as a more aggressive accelerations cycle (FTP-72) and a 
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frequent idles and start-ups typical of urban environment (JC08). In this sense it is possible to 

demonstrate that ECMS control is extendable also to different driving conditions. 

4.6 Battery 

The model utilizes Lithium-Ion (Li-Ion) batteries as power storage device. A structure of the 

battery and how is sized will be described in this section, alongside with parameters that can be 

tuned by the user. Essentially, the tool calculates the maximum power required to the battery, 

given the maximum power of all the electric machines and Power-to-Energy ratio (𝑃E ratio), 

defined by the user: 

 

𝑃E =
"&*-,"+
"&*-,2*((

                                                        (4.11) 

 
Figure 19-Battery model of the MATLAB tool 

 

The tool is able to determine the number of cells and how to connect them, starting from the 

battery nominal voltage and a reference cell whose specifications are an input to the tool. The 

data specified as input in the battery datasheet are the cell nominal voltage 𝑉$, the cell nominal 

capacity 𝐶$, the number of cells in a unit 𝑁$, the nominal reference battery voltage 𝑉/'&, the 

battery mass 𝑀86((,)%:, the battery total number of cells 𝑁('(,)%: and the maximum and 
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how to connect them, starting from the battery nominal voltage and a reference cell whose specifications 
are an input to the tool. 

 

FIGURE 3.1 BATTERY MODEL 

The data specified as input in the battery datasheet are the cell nominal voltage 𝑉𝑐, the cell nominal 
capacity 𝐶𝑐, the number of cells in a unit 𝑁𝑐, the nominal reference battery voltage 𝑉𝑛𝑜𝑚, the battery mass 
𝑀𝑏𝑎𝑡𝑡,𝑟𝑒𝑓, and the battery total number of cells 𝑁𝑡𝑜𝑡,𝑟𝑒𝑓. 

The battery energy 𝐸𝑏𝑎𝑡𝑡 is determined from the layout parameters, dividing the sum of the electric 
machines peak power by the PE ratio: 

 𝐸𝑏𝑎𝑡𝑡 =
∑ 𝑃𝐸𝑀𝑖,𝑝𝑒𝑎𝑘𝑖

𝑃𝐸
 (3.7) 

Finally, the maximum C-rate of the battery in charge and discharge 𝐶𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥 and𝐶𝑑𝑖𝑠,𝑚𝑎𝑥 are specified 
as layout parameters by the user (see section 4.1). 

HEVbox then scales the battery by redefining the number of units constituting a module and the number of 
modules itself. 

The following equations are implemented: 

unit capacity 𝐶𝑢 = 𝐶𝑐  (3.8) 

battery capacity 𝐶𝑏𝑎𝑡𝑡 =
𝐸𝑏𝑎𝑡𝑡

𝑉𝑛𝑜𝑚⁄  (3.9) 

number of 
parallel units 𝑁𝑝𝑢 =

𝐶𝑏𝑎𝑡𝑡
𝐶𝑢⁄  (3.10) 

unit voltage 𝑉𝑢 = 𝑉𝑐 · 𝑁𝑐  (3.11) 

module voltage 𝑉𝑚 = 𝑉𝑢 (3.12) 
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minimum discharge rates. Firstly, 𝑃E ratio used to get the energy of the battery 𝐸86((, by 

dividing the EM peak power by the 𝑃% ratio: 

 

𝐸86(( =
∑ "34$,)"*5$

"3
                                                 (4.12) 

 

Then the tool implements the following equations, in order to determine number of units 

constituting a module, and the number of modules itself (Figure 17), through the following 

equations: 

 

𝐶O = 𝐶$                                                         (4.13) 

𝐶86(( =
E2*((
P6'&

                                                     (4.14) 

𝑁QO =
42*((
47

                                                      (4.15) 

𝑉O = 𝑉$ ∙ 𝑁$                                                     (4.16) 

𝑉& = 𝑉O                                                        (4.17) 

𝑁J& = P6'&
P&

                                                     (4.18) 

 

Battery model is based on the internal resistance model, following the scheme of Figure 18: 

 
Figure 20-Battery internal resistance model 

In this way, it is possible to obtain the SOC of the battery, as a function of the battery open 

circuit voltage 𝑉'$ and its internal resistance 𝑅+. The reference battery’s open circuit voltage 
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number of 
modules in 

series 
𝑁𝑠𝑚 = 𝑉𝑛𝑜𝑚

𝑉𝑚
⁄  (3.13) 

Where 𝑉𝑛𝑜𝑚 is the nominal battery capacity. 

An alternative, in case the user does not want to scale the battery’s properties, is to evaluate the battery’s 
nominal energy content 𝐸𝑏𝑎𝑡𝑡 based on the nominal capacity and voltage, and then compute the 𝑃𝐸 ratio 

for each layout as:  

𝑃𝐸 =
∑ 𝑃𝐸𝑀𝑖,𝑝𝑒𝑎𝑘𝑖

𝐸𝑏𝑎𝑡𝑡
 

 

FIGURE 3.2 THE BATTERY RINT MODEL 

The battery model is based on the internal resistance model (also known as Rint model). In this model, the 

battery open circuit voltage 𝑉𝑜𝑐 and its internal resistance 𝑅0 are described as a function of the battery 

state-of-charge (SOC). The reference battery’s open circuit voltage 𝑉𝑜𝑐𝑟𝑒𝑓(𝑆𝑂𝐶) and internal resistance 

𝑅0𝑟𝑒𝑓(𝑆𝑂𝐶) characteristics are provided to the tool in the components data generation phase. 

Then, the characteristics for the current layout are determined by the tool as follows: 

 𝑉𝑜𝑐(𝑆𝑂𝐶) = 𝑉𝑜𝑐𝑏𝑎𝑠𝑒(SOC) · 𝑁𝑠𝑚 · 𝑁𝑐  (3.14) 

 Req(SOC) = 𝑅𝑒𝑞𝑟𝑒𝑓(SOC) ·
𝑁𝑠𝑚 · 𝑁𝑐

𝑁𝑝𝑢
 (3.15) 

The battery mass is then scaled according to its structure. Additionally, the battery management system is 

assumed to be 70% of the battery mass. 

 𝑀𝑏𝑎𝑡𝑡 = (𝑀𝑏𝑎𝑡𝑡,𝑟𝑒𝑓 
𝑁𝑠𝑚𝑁𝑝𝑢𝑁𝑐

𝑁𝑡𝑜𝑡,𝑟𝑒𝑓
)  ∙ 1.7 (3.16) 

The maximum battery power is limited by the maximum power transfer theorem, hence: 

 𝑃𝑚𝑎𝑥,𝑒𝑙(SOC) =
𝑉𝑜𝑐(𝑆𝑂𝐶)2

4 · 𝑅𝑒𝑞(𝑆𝑂𝐶) (3.17) 
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𝑉!"!"#(𝑆𝑂𝐶)	and internal resistance	 	𝑅0𝑟𝑒𝑓
	
(𝑆𝑂𝐶)	characteristics are provided to the tool in the 

components data generation phase. Then, the characteristics for the current layout are 

determined by the tool as follows:  

𝑉54(𝑆𝑂𝐶) = 𝑉54#",(𝑆𝑂𝐶) ∙ 𝑁J& ∙ 𝑁$                                (4.19) 

𝑅%9(𝑆𝑂𝐶) = 𝑅%9#",(𝑆𝑂𝐶) ∙
-!&∙-%
-)7

                                   (4.20) 

Maximum current in charge and discharge are obtained by the maximum charge and discharge 

rate, as follows: 

𝐼&67,$D =
42*((
,D

∙ 𝐶&67,$D                                               (4.21) 

𝐼&67,?#J =
42*((
,D

∙ 𝐶&67,?#J                                              (4.22) 

Power limits curves are finally used with 𝑉54(𝑆𝑂𝐶) and 𝑅%9(𝑆𝑂𝐶) to get the values of the 

battery current 𝐼86(( and SOC at each time step: 

𝐼86(( =
P2*((.SP2*((

0 .T∙B2*((∙"2*((

@∙B2*(
                                        (4.23) 

𝑆𝑂𝐶( = 𝑆𝑂𝐶(., − ∫
A2*((
42*((

∙ 𝑑𝑡	                                         (4.24)         
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5. ECMS 
The idea behind this work is to implement a fast and reliable way to control HEVs, capable to 

be on-board implementable. As discussed, different strategies can be used, but methods such 

as DP or PMP are not implementable online, due to their need to know the whole set of 

information in advance and long calculation times. On the other hand, Equivalent Consumption 

Minimization Strategy (ECMS) represents a promising approach for a real-time control and a 

development of the algorithm is proposed in this thesis, alongside with a fast method to calibrate 

the Equivalence Factors. This kind of controller is implementable in the supervisory control of 

the vehicle, that defines the points of the control and communicates them to the engine control 

unit, combined with the battery management system. ECMS has been deeply analyzed and 

tested yet and represents a commonly approved tool to solve the Energy Management Problem 

for HEVs since it is based only on the instantaneous information by the vehicle. The objective 

of this section is to show an application of ECMS in different powertrain configurations and 

driving scenarios with dedicated advanced features that increases the accuracy and efficiency 

of the control. Also, a fast way to find the optimal control parameters will be proposed, in order 

to reduce the calibration time and make the algorithm implementable on-board. 

5.1 ECMS formulation 

The idea behind ECMS is the application of the PMP for a dynamic problem. The original 

formula derived from an engineering intuition that has been proved being successful in different 

application, even without formal proof of optimality, due to the fact that is strictly related to 

PMP. Recalling the Hamiltonian function (Eq. 3.6) can assume the meaning of equivalent fuel 

consumption that can be intended as a sum between the actual fuel consumption from the ICE 

and an equivalent fuel consumption from the EM, with the same units of measurements, 

dependent from the SOC variation. In this sense, the co-state parameter 𝜆(𝑡) can be seen as the 

link between the fuel use and the battery use, and more intuitively an Equivalence Factor (EF) 

is defined: 

 

𝑠(𝑡) = −	𝜆(𝑡) 𝑄𝑙ℎ𝑣
𝐸𝑏𝑎𝑡𝑡

                                                       (5.1) 

 

With 𝑄<D= representing the lower heating value of the fuel and 𝐸86(( representing the energy 

capacity of the battery. Given this, the Hamiltonian function can be rewritten as the equivalent 

consumption: 
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𝐻(𝑥, 𝑢, 𝜆) = �̇�%9=(𝑥, 𝑢, 𝑠) = 𝑠(𝑡) ∙ 𝑄𝑙ℎ𝑣
𝐸𝑏𝑎𝑡𝑡

∙ 𝑓(𝑥, 𝑢) + �̇�:(𝑢)                        (5.2) 

Equation (5.2) represents the starting point for ECMS, that leads to the formulation with the 

following objective function [9]: 

 

𝐽( = �̇�#$%(𝑃#$%(𝑡)) + 𝜍(𝑃%&(𝑡))                                     (5.3) 
 

With: 
 

𝜍(𝑃%&(𝑡)) = 𝛾 ∙ 𝑠?#J
1

𝜂86(((𝑃%&)𝜂%&(𝑃%&)
𝑃%&(𝑡)
𝐻U!P

+ (1 − 𝛾) ∙ 𝑠$D; ∙ 𝜂86(((𝑃%&) ∙

∙ 𝜂%&(𝑃%&)
𝑃%&(𝑡)
𝐻U!P

 

 

𝑤𝑖𝑡ℎ	𝛾 = ,2J#;/V""&(()Y
@

                                                           (5.4)  
 
 
In which 𝜍(𝑃%&(𝑡)) represents the fuel equivalent of the electrical energy, 𝑠$D; and 𝑠?#J are the 

Equivalence Factors (EFs) for charge and discharge, respectively. The condition of optimality 

can now be defined: 

(𝑃&'(
)*+(𝑡), 𝑃(,

)*+(𝑡), = argmin 𝐽+                                          (5.5) 

 

⎩
⎪
⎨

⎪
⎧(𝑃&'(

)*+(𝑡) = 0, 𝑃(,
)*+(𝑡) = 𝑃-(.,																			𝑖𝑓	𝑃-(. ≥ 0

⎩
⎪
⎨

⎪
⎧ 𝑃-(.(𝑡) = 𝑃&'((𝑡) + 𝑃(,(𝑡)

𝑆𝑂𝐶,&/ < 𝑆𝑂𝐶(𝑡) < 𝑆𝑂𝐶,01
0 ≤ 𝑃&'((𝑡) ≤ 𝑃&'(,,01(𝑡)

𝑃(,,,&/(𝑡) ≤ 𝑃(,(𝑡) ≤ 𝑃(,,,01(𝑡)

							 𝑖𝑓	𝑃-(. < 0
                       (5.6) 

 

In this case, 𝑆𝑂𝐶&#/ and  𝑆𝑂𝐶&67are defined by the interval [0.4 0.8]. EFs are the control 

parameters of ECMS, that have to be properly calibrated. The advantage of having two different 

parameters allows to calibrate them in order to get a precise charging/discharging behaviour, 

namely define the frequency in which it is preferred a charge sustaining or a charge depleting 

tendency, respectively. Performance of ECMS strongly depends on the value of the control 

parameters that are severely linked to the driving cycle, and a detailed calibration method will 

be shown in the next sections. 

5.2 ECMS penalty function 

As is known, a crucial parameter in HEVs control is the SOC through the cycle. As stated 

before, it is crucial, especially for non-plugin HEVs, to guarantee that SOC does not exceed an 
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upper and a lower boundary and keep the SOC level as close as possible to the reference one. 

In this sense, a way of limit the SOC window, namely the difference between the values of the 

maximum and minimum SOC level reached through the cycle has been proposed. It consists of 

a penalty function, that gives a higher weight to all the power flows that lead to a SOC too 

different from the reference one [4]: 

 

𝑝(𝑆𝑂𝐶) = 1 − 	 t G54(().G54#",
89:&*-;89:&$6

0

u
6

                                     (5.7) 

 

With 𝑎 representing the exponent of the penalty. The objective function becomes: 

 

𝐽( = �̇�#$%(𝑃#$%(𝑡)) + 𝜍(𝑃%&(𝑡)) ∙ 𝑝(𝑆𝑂𝐶)                                 (5.8) 
 

In this way, when 𝑝(𝑆𝑂𝐶) < 1, namely when the SOC is above the reference, the discharge is 

more probable whereas when 𝑝(𝑆𝑂𝐶) > 1, SOC is over the reference value and the cost of the 

battery energy is increased to make its discharge less likely. 

 
Figure 21-SOC Penalty function p(SOC) 

In Figure 21, a detail of the influence of the exponent of the penalty function is shown. It is 

possible to underline that a higher exponent leads to a less severe penalty in proximity of the 

target SOC, for this application 𝑎 = 3 is chosen. 
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5.3 ECMS EF calibration 

As stated in the last chapter, performance of ECMS strongly depends on the EFs, that depend 

on the driving conditions and other parameters. Firstly, it is necessary to underline some criteria 

for defining optimal EFs. A proper EF pair is evaluated according to: 

 

• CO2 consumption, since the main task of the control strategy is to reduce emissions, 

• Final SOC level, as it as to reach at least the target SOC, 

• Minimum and maximum SOC level through the cycle (SOC window), as a too high 

SOC leads to higher consumption whereas low SOC level would not guarantee a 

pure electric take-off if the engine is turned off before the end of the mission,  

• Power flow set-up, because pure electric, and power split are preferred with respect 

to the more fuel wasting power flows (pure thermal and especially battery charging) 

 

Depending on different parameters, calibration of EFs is not an easy task. In literature, it is 

recommended to use the iterative method and find the pair that optimally satisfy all the 

constraints.  

There is a trend that allows to have indications to tune the EFs, based on the distinction between 

two different processes: 

w𝑠?#J ↑ y𝑠$D; ↓{											𝑐ℎ𝑎𝑟𝑔𝑒	𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑛𝑔	𝑡𝑟𝑒𝑛𝑑 

w𝑠?#J ↓ y𝑠$D; ↑{									𝑐ℎ𝑎𝑟𝑔𝑒	𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑖𝑛𝑔	𝑡𝑟𝑒𝑛𝑑 

 

Since this selection process is still complex, in the following sections a fast way to calibrate 

EFs will be shown consisting in the creation of an EFs set and a unique parameter in order to 

select the best EF pair. 

5.3.1 Model Based Calibration for EF calibration  

In this part of the work, it was helpful to use the Model Based Calibration toolbox (MBC) in 

MATLAB. This method allows to evaluate calibration parameters when the output is made of 

a high amount of data. In particular, Design of Experiment (DoE) is chosen for EF calibration 

because is a useful tool to evaluate factors influencing a process and the output, especially for 

complex nonlinear systems. It defines a proper testing plan and allows to save time enabling to 

perform only test that are needed to determine the output response.  It leads to a reduction of 

systematic errors and distortions, full exploration of factorial space, and reduction of number 

of tests to be made. The idea is to control the calibration parameters and check the influence on 
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the variation on one or more desired outputs, it is useful for addressing problems associated 

with designing complex control, signal processing and communication systems. The design 

editor allowed to choose Space Filling design, that is recommended when there is a low 

knowledge of the system that has to be studied. Since EF have influence on different 

parameters, Space Filling is the most suitable technique for generating a proper set. In fact, 

space filling design creates creating a simpler surrogate model of a highly complex 

deterministic computer simulation model, it minimizes bias both by spreading the design points 

out as far from each other as possible and by spacing them evenly over the design region. Also, 

space filling designs collect data in such as a way as to maximize coverage of the ranges of the 

factors and this characteristic is necessary since the control strategy is very case-sensitive and 

all possible pairs have to be tested. This aspect is also ensured by using a Sobol sequence that 

is a quasi-random low-discrepancy sequence which forms a finer uniform partition of the range 

set and then reorder the coordinates in each dimension and is able to cover the space more 

evenly. An example of quasi-random sequency is shown in Figure 22: 

 

 
Figure 22-Differences between Pseudo-random (left) and Quasi-random (right) sequence 

 

As a first step, it is necessary to choose a proper EF range to be tested, in the considered case, 

each point of the sequence represents an EF pair, with discharging factor on horizontal axis and 

charging factor on the vertical axis. Referring to literature, the EF range have been set to the 

interval [2,3].  To have proper accuracy, since the controller is very case sensitive, 1000 points 

have been chosen. Also, a first condition with 𝑠$D; > 𝑠?#J has been imposed in order to enhance 



 
 

39 

a charge sustaining trend. The EF set chosen for this application can be seen in Figure 23, in 

which each point represents an EF pair:   

 
Figure 23-EF set obtained by DoE with 1000 points 

5.3.2 EFs correlation 
 
Since the number of simulations to calibrate equivalence factor is very high, a way to reduce 

them is here proposed. The idea is to find a relationship between the EFs, and so to halve the 

number of control parameters with a consequent reduction of the tuning time. This can be done 

using the relationship between ECMS and the power based PMP formulation for which the 

Hamiltonian function becomes [4]: 

𝐻 = 𝑃:O%< + 𝜆 ∙ 𝑃%$D                                            (5.9) 
 

Recalling also the fuel consumption defined with the equivalent from the battery: 
 

�̇�:,%9= = �̇�: +
J

Z+/<
∙ 	𝑃86(( ∙ 𝑝(𝑆𝑂𝐶)                            (5.10) 

 
Multiplying all the terms for 𝑄<D=: 
 

𝑃%9= = 𝑃:O%< + 𝑠 ∙ 	𝑃86((                                       (5.11) 
 

𝑃86(( is the net electrical power at the battery terminals, while 𝑃%$D represents the 

electrochemical power, the power correlated to the effective SOC variation. It can be assumed 

that the relation between this quantity and the electrical power can be modeled with the battery 

charge/discharge efficiency 𝜂86((: 
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𝑃%$DD𝑆𝑂𝐶(𝑡), 𝑃86(((𝑡)E = �
"2*(((()

[2*(((G54,"2*(()

𝜂86(((𝑆𝑂𝐶, 𝑃86(()𝑃86(((𝑡)	
                    (5.12) 

 

In this way, the ECMS and the Hamiltonian are linked by the co-state 𝜆: 
 
 

	𝑠$D; = 𝜆𝜂86(( 

𝑠?#J =
𝜆

𝜂86((
 

By which: 
 

𝑠$D; = 𝜂86((@ 𝑠?#J                                                    (5.13) 

 

In this way there is no necessity of different equivalence factors, and the algorithm is made less 

computationally heavy and is easier for on-board implementation. In Chapter 6, where results 

of ECMS formulation will be showed, this correlation will be applied, and a proof of its 

efficiency will be provided.  

5.3.3 Criteria used to evaluate the optimal EFs 

Once a proper EF set is obtained, it is necessary to find the optimal pair, that leads to the best 

results in terms of CO2 and fuel consumption. It is important to state that the EFs strongly 

depend on the type of controller and design parameters (e.g. Engine Size, Final drive speed 

ratio, Size of the battery…), so each configuration has its optimal EF pair. The criteria for 

evaluating the optimality of an EF pair are the following in increasing importance: 

• CO2 consumption, that has to be as low as possible, 

• Final SOC level that has to reach the reference value (𝑆𝑂𝐶J(6)(), 

• Minimum and maximum SOC level trough the cycle 𝑆𝑂𝐶&#/ and 𝑆𝑂𝐶&67, 

• Level of battery charging and power split strategies through the mission. 

As stated, the main task of the ECMS controller is to reduce the fuel consumption, but this 

objective has also to be considered in relation to other parameters. Regarding final SOC level, 

it is crucial that the vehicle should end its driving cycle with a charging state as near as possible 

to the reference one in order to have sufficient battery charge for a pure electric take-off, once 

the engine is turned off. Also, for a non-plugin HEV the fuel consumption for a final charging 

level below the reference one would not be realistic, as the fuel consumed to take the battery to 

the reference level (for instance, through battery charging) should be taken into account. This 
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aspect will be furtherly analysed in section 5.3.4. An example of this aspect can be seen in 

Figure 24: 

 

Figure 24-Example: SOC level through the mission 

Case SOCstart [-] SOCfinal [-] CO2ttw [g/km] 
1 0,600 0,581 329.9 
2 0,600 0.602 339.4 

Table 4-CO2 consumption for the cases of Figure 22 

In the example of Figure 24, the fuel consumption of the Case 1 is lower, due to the fact that 

the final SOC level is strongly below the reference one. This simulation is considered not 

realistic due to the fact that the fuel consumption to take the SOC level at the reference one is 

not taken into account and discarded on behalf of the Case 2. Regarding maximum and 

minimum SOC level through the cycle, the same reasoning showed above can be done. In fact, 

it is necessary to guarantee that the SOC level does not move away too much from the reference 

one through the whole cycle, considering that the engine could be possibly turned off at any 

moment and still, should guarantee the sufficient battery charge for a pure electric take-off. 

Also, power flow set-up should be taken into account, as by increasing the presence of battery 

charging strategy in time, the emissions increase as well. Since EF calibration is a tedious 
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process, also due to the above presented constraints, it could be useful to find a unique output 

parameter that takes into account all of them and realistically calculates fuel consumption, for 

all the cases.  

5.3.4 Equivalent CO2 consumption 

For practical applications, final SOC level can’t possibly reach the reference one, it could reach 

a higher or a lower value either. In the latter case, the value of CO2 and fuel consumption 

obtained are not realistic, due to the fact that the emissions due to the additional fuel waste to 

bring the final SOC level at the reference one is not considered. In this sense, it is necessary to 

correct the value of both fuel and CO2 consumption, and this has been done according to the 

WLTP procedure (Worldwide harmonized Light vehicles Test Procedure-

ECE/trans/180/Add.15). Corrected values of CO2 and fuel consumption (𝐶𝑂@((C,%9 and 

𝐹𝐶((C,%9, respectively) can be obtained as: 

 

𝐶𝑂@((C,%9 = 𝐶𝑂@((C − 𝐾450	 ∙ 	∆𝐸BEEGG$                              (5.14) 

𝐹𝐶((C,%9 = 𝐹𝐶((C − 𝐾3O%< ∙ 	∆𝐸BEEGG$                               (5.15) 

 

With 𝐾450	and 𝐾3O%< representing the correction coefficients for CO2 and fuel consumption, 

respectively: 

 

𝐾450 =
/∙\E>3388$ ∙450	((.,$.\E>3388$ ∙450	((.,$

/∙\E>3388$
0 .(\E>3388$

0)
                             (5.16) 

𝐾3O%< =
/∙](E>3388$∙34$).]E>3388$∙]34$

/∙]E>3388$
0 .^]E>3388$

0
_

                                 (5.17) 

With: 

• 𝑛 is the number of configurations (defined, in the case with the number of EFs 

tested),  

• 𝐹𝐶# is the Fuel Consumption measured for the n-th configuration in L/100km, 

• 𝐶𝑂@	aab,# is the CO2 tank-to-wheel emission measured for the n-th configuration in 

g/km, 

• 𝐸BEEGG# is the electricity balance measured for the i-th Rechargeable Electric Energy 

Storage System (REESS) in Wh/km obtained as follows: 

𝐸BEEGG# =
G54,$6*+∙4('(∙P2*((

?#J(6/$%
                                      (5.18) 
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In which: 

• 𝐶('( is the nominal capacity of the battery in Ah, 

• 𝑉86(( is the nominal voltage of the battery in V.  

In (5.14) and (5.15), ∆𝐸BEEGG$ is change in the REESS energy content expressed as percentage: 

 

∆𝐸BEEG$ =
+.++de∙B4H∙f>3388

E,7"+
∙ 100                                 (5.19) 

 

• 𝑈BEEGG is the nominal REESS voltage in V, 

• 𝐸:O%< 	is the energy content of the consumed fuel in MJ, 

• With RCB indicating the REESS balancing balance on the whole cycle in Ah: 

 

 𝑅𝐶𝐵 = 𝐶('( ∙ Δ𝑆𝑂𝐶                                             (5.20) 

 

With Δ𝑆𝑂𝐶 indicating the difference between final SOC level and the reference one.  

According to ECE TRANS procedure, the correction coefficients 𝐾450 and 𝐾3O%< have to be 

obtained for each single layout varying only the calibration parameters (in our case the EFs) for 

each driving cycle tested. In the present work WHVC, FTP 72 and JC08 have been tested with 

two different engine sizes (4,5 and 3L). Both correction factors have to be calculated for each 

phase of the driving cycle (e.g., considering WHVC: urban, rural, motorway) and a unique 

value, assigned the engine size and the driving cycle, has been obtained considering a weighted 

average based on the temporal duration of each phase over the whole cycle. Regarding number 

of configurations 𝑛, firstly all EF set obtained by DoE has been considered, and then only the 

𝑁 feasible simulations for each phase of the driving cycle have been considered. For sake of 

clarity, an example of the procedure for the calculation of 𝐾450 in WHVC driving cycle case, 

is proposed in Figure 24: 

 
Figure 25-Example of KCO2 calculation for WHVC 
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Figure 26- Detail on KCO2 calculation for 4,5L engine displacement on WHVC cycle 

Driving cycle KCO2 
[g/km/Wh/km] 

KFuel 
[l/100km/Wh/km] 

WHVC 0.59660 0.02357 
FTP-72 0.58947 0.02329 
JC08 0.56726 0.02241 

Table 5-Results on correction coefficients for fuel and CO2 for 4,5L 

 
5.3.5 Optimal choice of EF pair 

Once obtained the correction coefficients, it is possible to underline the way the optimal EF 

pair, for each driving cycle and engine size, is chosen: 

1. A set of EFs is created with DoE as showed in section 5.3.1 and the whole set is 

simulated for assigned driving cycle and engine size, 

2. All results are filtered considering only the simulations leading to:	

𝑆𝑂𝐶(6);%( − 𝜀 < 𝑆𝑂𝐶:#/6< < 𝑆𝑂𝐶(6);%( + 𝜀						𝑤𝑖𝑡ℎ	𝜀 = 5% 

3. All results are sorted in ascending order of 𝐶𝑂@((C,%9 and the EFs with the lowest value 

of 𝐶𝑂@((C,%9are chosen as optimal ones for the assigned engine displacement and 

driving cycle, 

4. A final check on final SOC level and SOC window is done. 

It is necessary to underline that 𝐶𝑂@((C,%9 value allows a fast and fine search of an optimal EF 

pair, since the simulation with the lowest 𝐶𝑂@((C,%9value is considered as the best compromise 

between the criteria chosen in section 5.3.3. A proof of this aspect is shown in Figure 24: 

4,5L 



 
 

45 

        

 
Figure 27-Optimal choice of EF pair example 

All results are showed for increasing value of 𝐶𝑂@((C,%9: 

• in Case a, the EF pair leads to the lowest 𝐶𝑂@((C,%9 value and this also brings to a final 

SOC close to the reference one, 

• in Case b, the EF pair leads to a lower 𝐶𝑂@((C 	with respect to Case a but a lower final 

SOC, that makes the equivalent emission value 𝐶𝑂@((C,%9 higher with respect to Case a 

and consequently Case b is discarded.  

In any case, as proved, it is possible to directly seek the lowest 𝐶𝑂@((C,%9 value and define its 

EFs as the optimal ones.  

5.4 Results 

In this section, ECMS algorithm in an application for HEVs energy management strategy 

results for the reference configuration will be shown (4,5 L engine size) and a comparison 

between the correlated EFs relation and the uncorrelated EFs will be proposed, to proof the 

validity of the correlation with a consequent lower number of calibration parameters. Also, 

comparison with the benchmark control strategy DP as well as comparison with pure thermal 

model will be shown, in order to present the relative differences in terms CO2 emission. The 

output data to be evaluated will be: 

• SOC trend through the whole driving cycle, 

• 𝐶𝑂@((C and 𝐶𝑂@((C,%9 results, 

• Power flows through the cycle, 
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• Delta SOC, obtained as follows: 

 

𝑑𝑒𝑙𝑡𝑎𝑆𝑂𝐶 = 𝑆𝑂𝐶:#/6< − 𝑆𝑂𝐶J(6)(                             (5.21) 

 
5.4.1 Uncorrelated and correlated EFs comparison 

In this chapter the results for the most optimal EF pair for the tested cycles (WHVC, FTP 72 

and JC08) and the reference configuration (4,5L) will be presented. A comparison between the 

correlated and the uncorrelated EFs (called ECMS) relation is showed, with the objective to 

reduce the number of control parameters and, consequently, calibration time. The validity of 

the correlated relation between EFs will be validated directly on the results with a comparison 

directly on the results obtained by correlated and uncorrelated ECMS formulation. 

 
Figure 28-SOC level through the cycle, ECMS 4,5L on WHVC cycle 

 
 
 
Control Strategy s_chg[-] s_dis[-] CO2ttw 

[g/km] 
CO2ttw,eq 

[g/km] 
SOCfinal  

[-] 
SOCmin  

[-] 
SOCmax 

 [-] ΔSOC [-] PE [%] PT [%] PS [%] BC [%] 
ECMS 2.4421 2.3806 340.36 340.36 0.600 0.585 0.608 0.000 60.44    34.17    0.78 4.61     

Table 6-Results uncorrelated ECMS 4,5L on WHVC 
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Figure 29-SOC level through the cycle, correlated ECMS 4,5L on WHVC cycle 

Control Strategy s_chg[-] s_dis[-] CO2ttw 
[g/km] 

CO2ttw,eq 
[g/km] 

SOCfinal  
[-] 

SOCmin  
[-] 

SOCmax 
 [-] ΔSOC [-] PE [%] PT [%] PS [%] BC [%] 

ECMS corr \ 2.4172 338.26 338.60 0.599 0.585 0.615 -0.001  57.28    40.94 1.00    0.78    
Table 7- Results correlated ECMS 4,5L on WHVC 

Now a comparison between the correlated and uncorrelated formula is proposed, alongside with 

the benchmark control strategy DP in the same WHVC cycle: 

 
      Figure 30-Comparison between correlated, uncorrelated EFs and DP for 4,5L on WHVC cycle 
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Figure 31-Detail on power flow strategy for DP, ECMS and ECMS corr on 4,5L WHVC cycle 

 
Control 
Strategy s_chg[-] s_dis[-] CO2ttw 

[g/km] 
CO2ttw,eq 

[g/km] 
SOCfinal  

[-] 
SOCmin  

[-] 
SOCmax 

 [-] 
ΔSOC 

[-] 
ΔCO2DP  

[%] 
ΔCO2PT 

 [%] 
DP \ \ 337.86 337.86 0.600 0.584 0.600 0.000 0.00 -14.15 

ECMS 2.4421 2.3806 340.36 340.36 0.601 0.586 0.608 0.001 0.74 -13.52 
ECMS corr \ 2.4172 338.26 338.60 0.599 0.585 0.615 -0.001 0.25 -13.94 

Table 8-Results for DP, ECMS and ECMS corr on 4,5L WHVC 

For the above showed results, it is possible to underline that SOC trends shown in Figure 28 

and Figure 29 respect all the constraints of Eqs. 5.6 and a final SOC level close to the reference 

one is reached. ECMS in both cases and especially for the correlated formulation, leads to a 

low battery charging strategy, with a percentage duration over the whole cycle also lower that 

DP (0.78%). Regarding CO2 consumption that is the main objective of the control strategy, 

comparing the results with the ones of DP for the same configuration and driving cycle, ECMS 

has 0,74% higher CO2 consumption whereas correlated ECMS only 0,24%, still guaranteeing 

a reduction of consumption of 13,52% and 13,94% with respect to the pure thermal 

configuration. In order to move towards the validation of the correlated ECMS, to reduce 

number of parameters to be calibrated, now a comparison between ECMS, correlated ECMS 

and DP is showed for the same configuration (4,5L) on FTP 75 and JC08 driving cycles. Firstly, 

it is necessary to recalculate the correction coefficients 𝐾450 and 𝐾3O%<, indicated on Table 5 

and tune again the EFs for the new driving cycles, considering that same optimal values for 

WHVC can’t be extended for other cycles, as shown in Figure 32: 
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Figure 32-SOC trend comparison between WHVC, FTP 72, JC08 optimal WHVC EFs  

 
In fact, Figure 32 shows that the same calibration parameters that lead to an optimal solution 

for one driving cycle (red line) are not extendible to different driving cycles (blue and green 

line). Consequently, it is necessary to repeat the calibration for the other driving cycles, with 

the same EF set created through DoE and the same principle of looking at the lowest value of 

𝐶𝑂@((C,%9. Once recalculated the optimal EF pairs, here below the results for FTP 72 and JC 08 

are shown in Figure 33 and 35: 
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Figure 33- Comparison between correlated, uncorrelated EFs and DP for 4,5L on FTP 75 cycle 

 
 

 
Figure 34- Detail on powerflow strategy for DP, ECMS and ECMS corr on 4,5L FTP75 cycle 

Control 
Strategy s_chg[-] s_dis[-] CO2ttw 

[g/km] 
CO2ttw,eq 

[g/km] 
SOCfinal  

[-] 
SOCmin  

[-] 
SOCmax 

 [-] 
ΔSOC 

[-] 
ΔCO2DP  

[%] 
ΔCO2PT 

 [%] 
DP \ \ 332.25 332.25 0.600 0.591 0.616 0.000 0.00 -26.09 

ECMS 2.3996 2.3332 332.53 333.35 0.599 0.587 0.612 -0.001 0.33 -25.75 
ECMS corr \ 2.3435 333.25 333.25 0.601 0.589 0.615 0.001 0.30 -25.87 

Table 9- Results for DP, ECMS and ECMS corr on 4,5L FTP 75 cycle 

 



 
 

51 

 

 
Figure 35- Comparison between correlated, uncorrelated EFs and DP for 4,5L on JC08 cycle 

 

 
Figure 36- Detail on powerflow strategy for DP, ECMS and ECMS corr on 4,5L JC 08 cycle 

Control 
Strategy s_chg[-] s_dis[-] CO2ttw 

[g/km] 
CO2ttw,eq 

[g/km] 
SOCfinal  

[-] 
SOCmin  

[-] 
SOCmax 

 [-] ΔSOC [-] ΔCO2DP  
[%] 

ΔCO2PT 
 [%] 

DP \ \ 327.33 327.33 0.600 0.583 0.612 0.000 0.00 -18.85 
ECMS 2.4255 2.3073 329.64 329.64 0.600 0.582 0.610 0.0003 0.71 -18.28 

ECMS corr  \ 2.3195 329.50 329.50 0.602 0.584 0.609 0.002 0.66 -18.31 
Table 10-Results for DP, ECMS and ECMS corr on 4,5L JC 08 cycle 
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Looking at the results above showed, ECMS controller still leads to good results in terms of 

CO2 emission and SOC trend, leading to optimal results also on a more aggressive cycle (like 

FTP 75). Furthermore, comparing the CO2 consumption results obtained with ECMS and 

correlated ECMS the latter provides generally best results, or comparable in the case of FTP 

75. The SOC window, namely maximum and minimum SOC level reached through the mission 

are always lower for the correlated ECMS formulation and comparable with respect to DP. 

Also considering power flow through the cycle, correlated ECMS generally brings to better 

results, limiting the battery charging strategy with respect to the uncorrelated formula. Results 

obtained in this section allow to move uniquely to the correlated formulation as it is proved to 

bring to the best results in terms of the criteria shown on Chapter 5.3.3. Furtherly, this approach 

allows to strongly reduce calibration time and difficulty, as a unique calibration parameter 

namely 𝑠?#J is considered.  
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6. Internal Combustion Engine downsizing 
6.1 Purpose 

The idea behind HEVs is to compensate the low expertise of the thermal engine at some 

working conditions with an electric machine, that allows higher efficiency management. This 

idea can be pushed furtherly, considering an increase in use of the high-efficiency electric motor 

against the lower performances of thermal part, especially at lower regimes. The idea is to 

propose a reduction of the size of the ICE, to face these inefficiencies and furtherly reduce fuel 

wastes, considering that a smaller thermal part brings necessarily to lower emissions. In the 

automotive field, this procedure is commonly adopted and known as downsizing, that 

essentially consists in the reduction of the size of the Internal Combustion Engine with the 

extent to guarantee similar performances with a lower fuel cost, to comply with legislative 

standards. The common way to perform it is to reduce engine size while keeping the output 

power and torque almost constant by reducing the number of cylinders and adding a forced 

aspiration device such as charger or turbocharger or either by using techniques such as variable 

valve lift (VVL) and gasoline direct injection (DI) [10]. Downsizing leads to:  

1. Reduced mechanical and thermal losses, 

2. Lower engine weight and vehicle, 

3. The engine operates in its optimum fuel consumption area. 

1. and 2. are verified also for HEVs and 3. is especially true for full HEVs. In this section, 

engine downsizing is considered combined with the vehicle hybridization, in order to bring the 

reduction of the thermal engine to a higher extent and furtherly increase fuel economy, while 

providing sufficient power for propulsion. Considering that an additional electric part is present, 

it is not necessary to perform also a turbocharging system addition since the EM provides the 

sufficient torque and also, it is possible to reduce the thermal engine size substantially.  Due to 

the additional value of engine size to be determined, now the problem becomes a multi-

objective optimization procedure. In the following chapter, CI engine downsizing is proposed 

in the particular application of HEV. Results of a downsized 3L engine displacement with 

ECMS control will be shown alongside with a comparation with respect to the reference 

vehicle. 

6.2 Results 

Firstly, the correlated formula between the EFs has been proposed, in order to provide a further 

verification of the validity of the correlation, have been done, so another comparison test 

between the two strategies is proposed for the 3L downsized configuration. 
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Figure 37-SOC level through the cycle, ECMS 3L on WHVC cycle 

 
Control Strategy s_chg[-] s_dis[-] CO2ttw 

[g/km] 
CO2ttw,eq 

[g/km] 
SOCfinal  

[-] 
SOCmin  

[-] 
SOCmax 

 [-] ΔSOC [-] PE [%] PT [%] PS [%] BC [%] 
ECMS 2.4826 2.3732 334.08 334.52 0.598    0.584    0.629    -0.002 53.72    33.11    7.61    5.55    

Table 11-Results ECMS 3L on WHVC 

 

 
Figure 38- SOC level through the cycle, ECMS corr 3L on WHVC cycle 
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Control Strategy s_chg[-] s_dis[-] CO2ttw 
[g/km] 

CO2ttw,eq 
[g/km] 

SOCfinal  
[-] 

SOCmin  
[-] 

SOCmax 
 [-] 

ΔSOC  
[-] PE [%] PT [%] PS [%] BC [%] 

ECMS corr \ 2.4372 333.27 333.27 0.600   0.586    0.631    0.000 49.56    42.56    7.28    0.61    
Table 12-Results correlated ECMS 3L on WHVC 

By the results showed here above in Figure 37 and Figure 38, properly tuned ECMS control 

works and respects all the requirements for SOC and power requested. The results in terms of 

CO2 emission are lower than the reference configuration with 4.5L, and the required power is 

always reached (there are no unfeasibilities). In particular, correlated ECMS leads to lower CO2 

consumption and a better power flow management with a reduced use of the battery charging 

and so the reduction of the calibration parameters by the use of the correlated formula is 

confirmed also for this case. In Figure 39, a comparison with DP and pure thermal results for 

the downsized 3L configuration in WHVC cycle is also shown: 

 

 
Figure 39- Comparison between correlated, uncorrelated EFs and DP for 3L on WHVC cycle 
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Figure 40- Detail on powerflow strategy for DP, ECMS and ECMS corr on 3L WHVC cycle 

Control 
Strategy s_chg[-] s_dis[-] CO2ttw 

[g/km] 
CO2ttw,eq 

[g/km] 
SOCfinal  

[-] 
SOCmin  

[-] 
SOCmax 

 [-] ΔSOC [-] ΔCO2DP  
[%] 

ΔCO2PT 
 [%] 

DP \ \ 331.57 331.57 0.600    0.585    0.629    0.0000 0.00 -13.09 
ECMS 2.4826 2.3732 334.08 334.52 0.598    0.584    0.629    -0.002 0.76 -12.42 

ECMS corr \ 2.4372 333.27 333.27 0.600    0.586    0.631    0.000 0.51 -12.64 
Table 13- Results for DP, ECMS and ECMS corr for 3L on WHVC cycle 

Again, ECMS controller in its correlated formulation has provided a reduction of the CO2 

consumption up to -12.64% due to a reduced usage of battery charging with respect to the 

benchmark control strategy (DP). Furtherly, the downsizing of the thermal part led to a further 

reduction in consumption with respect to the pure ICE reference configuration on the same 

driving cycle of up to -15.23% (versus -12.64%). 

Regarding the other driving cycles, the pure thermal configuration with a 3L ICE did not 

provide sufficient power for propulsion. On the other hand, by adding an electric machine, the 

hybrid powertrain was able to give sufficient torque to complete both FTP-75 as well as JC08: 
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Figure 41-SOC level through the cycle ECMS corr on 3L FTP-75 cycle 

Control 
Strategy s_chg[-] s_dis[-] CO2ttw 

[g/km] 
CO2ttw,eq 

[g/km] 
SOCfinal  

[-] 
SOCmin  

[-] 
SOCmax 

 [-] 
ΔSOC  

[-] PE [%] PT [%] PS [%] BC [%] 
ECMS corr \ 2.4216 329.05 331.66 0.598 0.568 0.603 0.002 57.85 27.83 13.51 0.80 

DP \ \ 331.13 331.13 0.600 0.573 0.602 0.000 56.90 19.94 18.99 4.16 
Table 14-Results correlated ECMS, 3L FTP-75 

 

 
Figure 42- SOC level through the cycle ECMS corr on 3L JC08 cycle 
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Control 
Strategy s_chg[-] s_dis[-] CO2ttw 

[g/km] 
CO2ttw,eq 

[g/km] 
SOCfinal  

[-] 
SOCmin  

[-] 
SOCmax 

 [-] 
ΔSOC  

[-] PE [%] PT [%] PS [%] BC [%] 
ECMS corr \ 2.3776 326.10 326.58 0.600 0.579 0.603 0.002 66.72 21.88 10.61 0.80 

DP \ \ 326.24 326.24 0.600 0.579 0.606 0 66.79 18.31 13.52 1.38 
Table 15-Results correlated ECMS, 3L JC08 

ECMS controller has provided to give good results in terms of SOC trend on both FTP-75 and 

JC08 cycle. As expected, there is a low usage of battery charging strategy especially with 

respect to DP controller in FTP (4.16% against 0.80%). SOC always reaches a value that is 

close to the reference one and this does not affect fuel consumption. A comparison between 

hybrid powertrain and pure thermal is not feasible but, the emissions results obtained by ECMS 

controller are very similar to the benchmark strategy ones with only a 0.1% difference. 

Consequently, ECMS brings to the expected reduction in fuel consumption due to the 

hybridization of the powertrain, as expected. The results of the engine downsizing are here 

summarized: 
Driving cycle CO2ttw PT 4,5L [g/km] CO2ttw,eq HEV 3L ECMS [g/km] CO2 reduction [%] 

WHVC 393.55 333.27 -15.32 
FTP-75 449.54 331.66 -26.22 

JC08 403.36 326.58 -19.04 
Table 16-Resuming results for engine downsizing 

As can be seen from Table 16, the hybrid downsized powertrain brings out a substantial 

reduction of CO2 consumption for all the cycles tested, ranging from a 15% to a 26% reduction 

on WHVC and FTP-75, relatively.  
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7. A-ECMS 
The ECMS has proven to bring to good results, with the downside of the need to calibre EFs 

accurately, procedure that has to be done for each driving cycle and makes the algorithm not 

prone to adapt to various driving scenarios. When cycle is not known a priori, it is more difficult 

to find the proper values of 𝑠$D; and 𝑠?#J. In fact, the calibration parameters can’t be kept 

constant if different missions are reached: in this case, the solution can’t be considered as 

optimal or would not lead to the charge sustainability condition, as can be seen on Figure 43. 

An adaptive supervisory controller is necessary, that allows the calibration parameters to 

change through the cycle. That’s the idea behind the Adaptive-ECMS or A-ECMS, in which 

the EF are not kept constant through the cycle but change, according to a law in time, depending 

on the chosen parameters. 

 
Figure 43-Effect of non optimal parameters on the SOC trend for ECMS control [3] 

 The adaptivity can be done in different ways, in literature today are present [4]: 

• Adaptivity based on driving style prediction, 

• Adaptivity based on driving pattern recognition, 

• Adaptivity based on driving cycle prediction, 

• Adaptivity based on SOC of the rechargeable system. 

 

in Ingegneria Meccanica
Laurea Specialistica

02IHDNE - Controllo delle emissioni di inquinanti

Politecnico di Torino
Dipartimento Energia

ECMS drawback
Small perturbations of the control  parameters lead to feasible operations (e.g., non-
charge sustaining operation in the Figure).

Non charge-sustaining behaviour

Rizzoni et al, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seville, Spain, December 12-15, 2005

41



 
 

60 

Any type of controller is conceived to be executed online with low calibration times, with the 

downside that the values of consumption obtained by ECMS can’t be reached but still, an 

optimal solution with respect to the other controllers can be achieved.  

7.1 A-ECMS strategies 

7.1.1 Adaptivity based on driving style prediction 

Research has found that driving style strongly affects energy management problem in HEVs, 

and the adaptation of the EFs can be done basing on the information over the way the driver 

uses the throttle and the brakes. For these controllers, the actual data for velocity and 

acceleration are converted into driving style categories [11]: aggressive, conservative and 

moderate. Former category is generally characterized by strong accelerations and brakes, 

whereas the last is more related to less changes in the throttle position. Some offline tests in 

order to precisely determine the characteristics of the cluster have to be done through driving 

simulators. At each phase of the driving mission, a hybrid algorithm based on K nearest 

neighbor and expectation maximization methods, are designed to recognize the driver's driving 

style according to different features such as acceleration and braking points. A driving style is 

assigned and used in order to determine, at each step, the equivalence factor as follows: 

 

𝑠(𝑡) = 𝑠+ + 𝜓 ∙ (𝑠 − 𝑠+)                                                 (7.1) 

 

7.1.2 Adaptivity based on driving pattern recognition 

The data on the acceleration and velocity, can also be collected to identify a precise driving 

pattern similar to the driving conditions such as urban, suburban, motorway. More parameters 

are now needed, such as velocity, acceleration, average speed, stop total time. At each time 

step, the information is used to identify which pattern the vehicle is undergoing, and for each 

pattern a precise optimal EF set is assigned, that are pre-computed and stored in the memory of 

the controller.  

 
7.1.2 Adaptivity based on driving cycle prediction 

This type of controller is based on EF adaptivity on the vehicle speed through the cycle. An 

instantaneous adaptation can be done as follows: 

𝑠(𝑡) = 𝑠+ + 𝐾=(𝑣(𝑡) − 𝑣(𝑡 − 1))                                       (7.2) 

With 𝐾= representing the proportion gain of the EFs on the velocity, a parameter that have to 

be properly tuned. This type of controller provides a continuous adaptation, so that at each time 
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instant the EFs change. Due to the difficulty of the calibration of the proportional gain and the 

big variations in velocity that make the controller very responsive, it has generally the need to 

be associated to a limitation of the EFs, that is generally done in the interval [2,3] for the 

common driving scenarios.  

Adaptivity can also be managed by using a velocity forecast ability [5]: a neural network-based 

velocity predictor is constructed to forecast the short-term future driving behaviors by learning 

from history data. Then the velocity predictor is combined with adaptive-ECMS to provide 

temporary driving information for real-time EF adaptation. With driving simulations, the 

controller recognizes the driving behaviors from the sample driving profiles and the velocity 

predictor is able to forecast the future velocity with acceptable errors. 

 
Figure 44-Radial basis function scheme 

A scheme of the radial basis function is shown on Figure 44, in which radial basis function 𝑓 

are defined as activation function, namely they define an output of a node, given an input or a 

set of inputs, creating an output layer. The intermediate or hidden layer has a non-linear radial 

basis function activation, whereas the output is a linear function. Speed forecasting time 

strongly affects the performance of this kind of A-ECMS: it can vary from seconds to minutes, 

a higher forecast time can increase the accuracy of the A-ECMS controller and reduce 

emissions, but an higher time can lead to higher errors, as can be seen on Figure 45. Still, an 

offline training is needed, after collecting a proper number of driving cycles.  
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Implementation of an RBF Neural Network on
Embedded Systems: Real-Time Face Tracking

and Identity Verification
Fan Yang and Michel Paindavoine

Abstract—This paper describes a real time vision system that
allows us to localize faces in video sequences and verify their
identity. These processes are image processing techniques and the
radial basis function (RBF) neural network approach. The ro-
bustness of this system has been evaluated quantitatively on eight
video sequences. We have adapted our model for an application of
face recognition using the Olivetti Research Laboratory (ORL),
Cambridge, U.K., database so as to compare performance against
other systems. We also describe three hardware implementations
of our model on embedded systems based, respectively, on field
programmable gate array (FPGA), zero instruction set computer
(ZISC) chips, and digital signal processor (DSP) TMS320C62. We
analyze the algorithm complexity and present results of hardware
implementations in terms of resources used and processing speed.
The success rates of face tracking and identity verification are,
respectively, 92% (FPGA), 85% (ZISC), and 98.2% (DSP). For
the three embedded systems processing speeds for images size
of 288 352 are, respectively, 14 images/s, 25 images/s, and 4.8
images/s.
Index Terms—Digital signal processor (DSP), face localization

and identity verification, field programmable gate array (FPGA)
device, radial basis function (RBF) neural networks, real-time im-
plementation, zero instruction set computer (ZISC) chip.

I. INTRODUCTION

HUMAN face recognition is an active area of research
spanning several disciplines such as image processing,

pattern recognition, and computer vision. Different techniques
can be used to track and process faces [1], e.g., neural networks
approaches [2]–[5], eigenfaces [6]–[8], and the Markov chain
[9]. Most researches have concentrated on the algorithms of
segmentation, feature extraction, and recognition of human
faces, which are generally realized by software implementation
on standard computers. However, many commercial and law
enforcement applications of human face recognition such as
human-computer interfaces, model-based video coding, and
security control [10]–[12] need to be high-speed and real-time,
for example, passing through customs quickly while ensuring
security.
Liu et al. [13] realized an automatic human face recognition

system using the optical correlation technique after necessary
preprocessing steps. Buhmann et al. [14] corrected changes in
lighting conditions with an analog very large scale integration
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The authors are with the Laboratoire LE2I, Aile de l’Ingénieur, MirandeUni-

versité de Bourgogne, BP 400-21011 Dijon Cédex, France (e-mail: fanyang@u-
bourgogne.fr; paindav@u-bourgogne.fr).
Digital Object Identifier 10.1109/TNN.2003.816035

Fig. 1. Radial basis function neural network.

Fig. 2. Decision region mapping in a 2-D space.

(VLSI) silicon retina in order to increase the face recognition
rate. Matsumoto and Zelinsky [15] implemented in real time a
head pose and gaze direction measurement system on the vi-
sion processing board Hitachi IP5000. Our aim is to implement
on embedded systems an efficient model of unconstrained face
tracking and identity verification in arbitrary scenes. Thus, we
would elaborate a robustness algorithm that requires moderated
computation.
Rosenblum et al. [16] developed a system of human ex-

pressions recognition from motion based on an radial basis
function (RBF) neural network architecture. Ranganath et al.
[17], [18] performed an integrated automatic face detection and
recognition system using the RBF networks approach. Howell
and Buxton [19] compared RBF networks with other neural
network techniques on a face recognition task for applications
involving identification of individuals using low-resolution
video information. The RBF networks give performance errors
of only 5%–9% on generalization under changes of orientation,
scale, pose, and lighting. Their main advantages are computa-
tional simplicity and robust generalization. Howell and Buxton
showed that the RBF network provides a solution which

1045-9227/03$17.00 © 2003 IEEE
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Figure 45-Velocity forecast ability based on RBN [5] 

7.1.3 Adaptivity based on SOC  

A valid alternative to determine the change of the co-state variables in time, is to address it to 

the change in the SOC of the battery. In this way, a proper trend is guaranteed for the EFs, that 

can vary according to the instantaneous value of the battery charge. In this way strong SOC 

variations can be kept under control and guarantee the charge sustaining condition. The further 

advantage, is that this kind of method can be easily implemented onboard and robust, relying 

only on feedback from the battery. Among these controllers, two type can be defined: 

• Continuous A-ECMS, in which the variation of the EFs is done each 𝑇 seconds, 

• Discrete A-ECMS, in which a continuous variation of EFs is guaranteed.  

These adaptation laws are based on a proportional integrative controller (PI controller). 

7.1.3.1 Continuous A-ECMS 

The adaptation uses the target value of SOC, namely the initial SOC level as the reference, 

and calculates at each time step the EFs as follows: 

 

𝑠(𝑡) = 𝑠+ + 𝑘" P𝑆𝑂𝐶(6);%( − 𝑆𝑂𝐶(𝑡)R + 𝑘A ∫ P𝑆𝑂𝐶(6);%( − 𝑆𝑂𝐶(𝑡)R 𝑑𝜏
(
+          (7.3) 

 

Where 𝑘" and 𝑘A representing the proportional and integral contributions of the adaptation law. 

In this case, an integrative contribution is associated with a proportional one to provide more 

accuracy in the case that a constant value has to be tracked. There are, nonetheless, two 

additional parameters to be calibrated. This strict SOC follow-up can lead sometimes to 

undesired solution and a too severe correction when the SOC goes over the reference value. 

the actual driving profile and is used for comparison). As can be seen
from Fig. 8, in most cases, the forecast result would continue the
acceleration or deceleration trend delivered from the historical
velocity profiles. When the forecast output length is 10 s, the pro-
duced future driving profiles are quite similar to the actual driving
cycle. However, when the forecast output length grows up to 30 s,
the forecast results are more complicated compared with the 10-s
case. The velocity predictor generates a series of possible accelera-
tion or deceleration actions, trying to catch the future driving style.
The root mean squared error of the forecast results would generally
grow when the forecast driving profile is longer.

It’s difficult to observe and analyze the detailed forecast behav-
ior from Fig. 8. Four individual velocity forecast results are ran-
domly selected and plotted in Fig. 9, together with corresponding
accelerations. In case one, when time step is at 502, the actual
future velocity decreases gradually to 5 m/s in the next 30 s. Yet
the forecast velocity result maintains relatively high. This is partly
because the vehicle acceleration is still positive. When at time step

503 in case two, the acceleration changes from positive to negative,
thus the forecast velocity result declines to about 12 m/s instead,
but then returns to 15 m/s. The reason could be at this time, the
deceleration action is very slight, and there still is a big possibility
that the velocity would increase. Compared with case four, when
time step is 511, the deceleration action becomes greater, and then
the forecast velocity result also decelerates as the actual profile
does. The final velocity decreases to 6 m/s. Case three is similar
to case one, the acceleration becomes smaller compared with the
previous time step but is still positive, the forecast velocity result
tries to maintain the original velocity level and declines little by lit-
tle. However at this time, the forecast result is quite close to the
actual one.

Based on the above results and analysis, we can see that each
velocity forecast case represents a small part of the overall driving
characteristics from the sample database. The RBF-predictor suc-
cessfully learned these nonlinear characteristics and repeated
them in a new driving cycle.
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Proportional and integral coefficients have to be tuned, considered that an increase of the 

parameters leads to a charge sustaining behaviour, but a huge increment of especially the 

integral coefficient leads to instabilities, as can be seen in Figure 46: 

 
Figure 46-Influence of the proportional and integral coefficients in the continuous A-ECMS [4] 

 Continuous A-ECMS is characterized by good accuracy but a higher computational effort is 

required with respect to the discrete formulation and can lead to a quasi-constant SOC trend 

with an increase in fuel consumption.  

7.1.3.2 Discrete A-ECMS 

Discrete A-ECMS corrects the SOC of the battery at a defined time interval 𝑇, allowing the 

battery to go through different SOC states, still limited to the upper and lower limits. This leads 

to a less responsive approach that furtherly moves toward a reduction of fuel wastes, preserving 

the durability of the battery in time. Discrete formulation provides that the formula is applied 

each 𝑇 seconds: 

𝑠(𝑡) = 	 J((.F)2J((.F.,)
@

+ 𝑘"? P𝑆𝑂𝐶(6);%( − 𝑆𝑂𝐶(𝑡)R                         (7.4) 
 
In 7.4, a stabilization of the EFs is guaranteed with a bisection formula, based on the auto 

regressive moving average (ARMA) model. This formula imposes charge sustainability 

condition periodically in a discrete time interval, that has to be chosen depending on battery 

characteristics and has to be suitably chosen alongside with the proportional coefficient 𝑘".  

7.3 Adaptation Based on Feedback from SOC 85
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that converges to the reference value, but adding the contribution of kI immediately
helps in this respect (although an excessive integral gain generates oscillations).

Similar considerations can be observed for the discrete adaptation method (7.2).
Figure 7.5 shows the effect of the gain kdP and of the adaptation interval T on the SOC
and λ behavior.

Although the SOC behavior differs significantly, the overall fuel consumption is
generally not affected as much (when accounting for the SOC variation using (6.12)),
as long as the SOC boundaries are not reached: when they are, on the other hand,
the battery cannot be used and this may be detrimental to the overall efficiency (for
example, by preventing braking energy to be recuperated). Table7.1 shows the SOC
variation and corrected fuel consumption for each adaptive strategy and combination
of calibration parameters.
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Figure 47-Effect of the Discrete A-ECMS on the EF and SOC variation through time [11] 

As can be seen in Figure 47, the periodic formula allows to update the EFs periodically and this 

has a strong influence on the SOC profile over the cycle. It is also possible to notice that in the 

second part (𝑘 = 2) the absence of correction would lead to a charge depleting trend. 

Furthermore, in the last part (for 𝑘 = 3) the bisection formula allows to stabilize the SOC level 

and not undesirably exceed the upper bound.  

Still, as the continuous A-ECMS formulation two calibration parameters have to be properly 

chosen. Generally, a higher reset time 𝑇 leads to a charge depleting trend, whereas a high 

proportional gain leads to a charge sustaining trend, as the continuous formulation. This can be 

seen on Figure 48: 

 
Figure 48-Influence of proportional gain and reset time on the discrete A-ECMS [4] 
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T (plots on the right)

Table 7.1 Effect of calibration parameters on continuous and discrete A-PMP (Cycle Artemis
Urban)

4 6 8 2 4 8

0 –0.244 –0.167 –0.125 15 s 0.044 –0.028 0.051

0.1 0.007 0.007 0.007 30 s 0.093 0.025 –0.002

0.2 -0.006 0.000 -0.001 60 s 0.034 0.093 0.016

4 6 8 2 4 8

0 1.00 1.00 1.00 15 s 1.02 1.02 1.04

0.1 1.01 1.01 1.01 30 s 1.04 1.03 1.01

0.2 1.01 1.01 1.00 60 s 1.05 1.03 1.02

(a) Continuous A-PMP (b) Discrete A-PMP

kP kdP

T

kI

∆SOC

m f /m
∗
f

kP

kI

∆SOC

m f /m
∗
f

T

kdP

The values shown are the total SOC variation and the fuel consumption, normalized with respect
to the optimal value obtained with PMP



 
 

65 

A comparison between continuous and discrete A-ECMS is shown on Figure 47: 

 
Figure 49-Comparison between continuous and discrete A-ECMS 

It is possible to notice that the discrete adaptation changes the value of the co-state variable 

each 60 seconds, whereas the continuous adaptation constantly changes the value. Furtherly, 

Periodic adaptation provides a lower oscillation of the calibration parameter and also a less 

SOC sensitive control.  
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Fig. 8.14 Optimal solution (with constant co-state) compared to adaptive strategies (7.1) and (7.2).
The continuous A-PMP parameters are kP = 4, kI = 0.2; the discrete A-PMP parameters are kd

P =
8, T = 60 s. After SOC correction, the fuel consumption increase with respect to the optimal solution
is 2.4 % with continuous A-PMP, and 2.1 % with discrete A-PMP

λ0 for the entire driving cycle. Figure 8.13 shows a comparison of the two cases (each
with the optimal λ0 computed from the iterative search).

Figure 8.14, instead, compares the optimal solution to the results of the two adap-
tive strategies introduced in Sect. 7.3.1, i.e., the continuous and the discrete A-PMP.

8.3 Power-Split Architecture

8.3.1 Powertrain Model

The example of powertrain modeling presented in this section is based on the Toy-
ota Hybrid Synergy Drive (HSD) [3, 6]. Being the first successful hybrid electric
technology on the market, this system has been extensively studied in the literature
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8. Conclusions 
8.1 Summary  

The aim of this work was to provide a strong and implementable onboard HEVs control 

strategy, to manage the power-flow or the energy management problem between the electric 

machine and the thermal part on different driving cycles. A control strategy called Equivalent 

Consumption Minimization Strategy (ECMS) control was proposed and tested in a MATLAB 

optimization tool on a full hybrid heavy-duty vehicle with a 4,5L compression ignition engine, 

proposing a comparison with a benchmark control strategy (DP) on the same configuration. A 

way to rapidly calibrate the tuning parameters in ECMS, called Equivalence Factors was shown 

and has proven to give the optimal pair of control parameters, assigned a driving cycle, by 

means of a parameter called equivalent emission, or CO2eq,ttw. This criterion was applied in 

different driving cycles and has always given the optimal solution in all the cases. Once a basic 

ECMS formulation was implemented, a penalty function in order to furtherly limit the SOC 

operational range was proposed and tested. Then, ECMS application on different driving cycles 

is proposed (WHVC, FTP-75, JC08) and the results are compared with the benchmark control 

strategy and a pure thermal layout with the same thermal engine size. A correlated formula for 

the EF definition has been proven to always give the most optimal results, in terms of decrease 

of fuel wastes and SOC level requirements through the cycle. This has guaranteed a reduction 

of the calibration parameters and, consequently, calibration time. ECMS has proven to have a 

reduced calculation time with respect to other strategies and has proven a reduction in CO2 

consumption with values ranging from 13% to 26% with respect to pure thermal, depending on 

the driving cycles considered, amidst a slightly worse but comparable result with respect to DP. 

An engine downsizing of the reference configuration, combined with the hybrid powertrain is 

advanced and tested, leading to a reduction in CO2 emissions with respect to the reference pure 

thermal 4,5L powertrain of 15,3% in the WHVC cycle and 26,3% in FTP cycle. A brief 

overview of the different types of Adaptive-ECMS was shown in the last part, with a particular 

focus over the adaptivity based on the SOC of the battery. Table 17 provides a resume for all 

the results obtained: 
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Control Strategy s_chg[-] s_dis[-] CO2ttw [g/km] CO2ttw,eq [g/km] SOCfinal [-] ΔCO2PT ref 4,5L [%] 
DP 4,5L WHVC \ \ 337.86 337.86 0.600 -14.15 

ECMS 4,5L WHVC \ 2.4172 338.26 338.60 0.599 -13.94 
DP 4,5L FTP-75 \ \ 332.25 332.25 0.600 -26.09 

ECMS 4,5L FTP-75 \ 2.3435 333.25 333.25 0.601 -25.87 
DP 4,5L JC08 \ \ 327.33 327.33 0.600 -18.85 

ECMS 4,5L JC08  \ 2.3195 329.50 329.50 0.602 -18.31 
DP 3L WHVC \ \ 331.57 331.57 0.600    -15.75 

ECMS 3L WHVC \ 2.4372 333.27 333.27 0.600    -15.62 
DP 3L FTP-75 \ \ 331.13 331.13 0.600 -26.34 

ECMS 3L FTP-75 \ 2.4216 329.05 331.66 0.598 -26.22 
DP 3L JC08 \ \ 326.24 326.24 0.600 -19.12 

ECMS 3L JC08 \ 2.3776 326.10 326.58 0.600 -19.04 
Table 17-Resuming table for the results obtained 

8.2 Future outlook  

This study was uniquely a first step towards a reliable and on-line implementable algorithm for 

HEVs control, that can reduce fuel consumption. Some next steps should be done in order to 

make the algorithm computationally lighter and appliable to every driving scenario. In this 

sense, it would be crucial to implement the adaptive ECMS formulation the MATLAB 

optimization tool and furtherly analyze and test all the formulas present in literature, shown in 

Chapter 7. Also, it would be interesting to implement an algorithm to define a precise EF set 

that automatically tunes according to different driving conditions, depending on forecast speed 

of the vehicle, acceleration, driving style recognition or based traffic information.  
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