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Abstract

Due to the growing applications involving Unmanned Aerial Vehicles (UAVs), Flight
Controllers for rotary wing UAVs are playing an important role in guaranteeing proper
flight performances and high stability. Many companies are investing to improve drones’
reliability and extend their use to several applications ten years from now. Flight perfor-
mance of drones needs to be improved to meet this increasing demand, and researches
about best-performing control strategies have been carrying on.
To increase flight performance and control strategies efficiency, an "open" platform is
needed, so that the Flight Controller software can be fully accessible and easily modifi-
able. In the following thesis, an Open-Source Flight Controller for rotary wing UAVs is
developed and tested in a real environment, while a Linear Quadratic Regulator (LQR)
controller is implemented to perform the auto-stabilizing function and maneuvres.

Arduino STM-32 board is chosen as the micro-controller, and it is programmed by
using Arduino Integrated Development Environment (IDE).
An Inertial Measurement Unit (IMU) is developed to perform sensor fusion between
accelerometer and gyroscope sensors. For this purpose, a complementary filter is im-
plemented in the discrete-time domain.
Particular attention is given to the software working frequency and the Pulse Width
Modulated (PWM) signals generated by the micro-controller: STM-32 interrupt logic
and timers documentation are analyzed in detail to avoid delays and provide a fast
response to disturbances by motors.
The developed software is also enabled to communicate with a GNSS/GPS module,
providing the Flight Controller with the longitude and latitude for position control and
autonomous flight.

Before implementing the control algorithm, a simulation model of the quadcopter
is developed in a Simulink environment to preliminary tune the LQR controller.
Finally, flight tests are performed, and satisfactory results about pitch, roll, and yaw
response to commands demonstrate the capability of the developed Flight Controller to
perform maneuvres properly. The LQR controller is found to be a valid alternative to
the most common Proportional-Integrative-Derivative (PID) controller, and an efficient
open-source platform to improve flight performances of quadcopters is provided.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) are aircraft without human pilots on board. UAVs
communicate with a ground station to send data and to receive commands from a trans-
mitter, while most of them are also able to perform the autonomous flight, following a
specific flight path or maintaining the hover flight condition.

At the beginning of the XX century, UAVs started to be considered a great resource
for military applications and the forthcoming World Wars contributed to the growth
of the research in autonomous flight and the production of these vehicles. After World
War I, some vehicles were converted to pilotless aircraft thanks to advances in radio-
controlling. It was the case of the de Havilland DH.82 Tiger Moth, which was renamed
as DH.82B Queen Bee (Fig. 1.1). The Queen Bee was developed for aerial target prac-
tice and almost 300 copies were produced [1]. Many consider the Queen Bee as the first
modern drone in history.

In 1943, First Person View Flights began: Boeing and the U.S. Airforce developed
the BQ-7 (Fig. 1.1) converting B-17 models to radio-controlled assault drones. The
aircraft was manned by a crew of two during the take-off and the initial climb, and
after activating remote control, it was able to fly to the target on its own.
During the late 1950s, research programs aimed at developing surveillance UAVs. The

(a) DH.82B Queen Bee. (b) BQ-7.

Figure 1.1: The Queen Bee (a) aerial target practice, and the BQ-7 (b)

1



1 – Introduction

US especially meant to flew them over China and North Vietnam, obtaining informa-
tion without risking the lives of pilots [2]. About ten years later, the first reconnaissance
drones were developed from the US like the Ryan YQM-98 R-Tern (also called Compass
Cope R, the Boeing YQM-94 B-Gull (also called Compass Cope B), and the Lockheed
D-21 (Fig. 1.2).
In the early 1980s, it was clear that drones would have a growing role on the bat-

(a) Ryan YQM-98 R-Tern (1974). (b) Boeing YQM-94 B-Gull.

(c) Lockheed D-21 (1964).

Figure 1.2: Surveillance UAVs for military service

tlefields of the future [1]. Israel’s UAVs program obtained great results, and some of
Israel’s models were purchased by the United States or produced under license. AAI
RQ-2 Pioneer (Fig. 1.3) is an unmanned aerial vehicle produced from 1986 to 2007. It
was developed by the Aircraft Armaments, Inc (AAI) Corporation, and Israel Aircraft
Industries, and it was able to accommodate a greater payload than its previous ver-
sions.
In the 1990s MQ-1 Predator (Fig. 1.3) was developed. It was born as an aerial re-
connaissance drone but later it was modified to carry and fire two AGM-114 Hellfire
missiles. The MQ-1 Predator was produced until 2018 and it was employed in many
missions such as the war in Afghanistan, Pakistan, the North Atlantic Treaty Organi-
zation (NATO) intervention in Bosnia, and recently in the 2014 intervention in Syria.

2



1 – Introduction

Figure 1.3: AAI RQ-2 Pioneer (1986-2007)

Figure 1.4: MQ-1 Predator (1995-2018)

1.1 UAVs typical configurations
Grouped in two categories, UAVs can be seen as rotary-wing and fixed-wing vehicles,
according to the task to be carried out [3].
Fixed-wing UAVs (Fig. 1.5) are generally categorized according to the shape of their
wing. Three main categories of fixed-wing UAVs exist, and they are straight wing,
swept wing, and delta wing UAVs. These vehicles generate the lift through the wing
itself, thanks to the forward airspeed provided by an internal engine or an electric
motor propeller [4].
Rotary wing UAVs provide lift by one or more electric motor propellers which generate
an upwards thrust. Multi-rotors are the most common rotary-wing UAVs, and they
are divided into specific categories based on the number and location of motors on
the frame. Common configurations are Tricopter, Quadcopter (Y, X configuration),
Hexacopter, and Octacopter (Y, X configuration).

Fixed wing UAVs provide a good stability thanks to their configuration and they are
able to perform a longer flight time than rotary wing UAVs because of the less power
requirement. They are the best solution for covering large areas in a short time but
they can not hover at a place or fly at low speeds. Another great limitation as regards
fixed wing UAVs is related to the take off and landing: due to their configurations,
these vehicles can only perform a Horizontal Take Off and Landing (HTOL), so they
are not suitable for several applications.
Multi-rotors are generally preferred to fixed wing UAVs, thanks to their capability

3



1 – Introduction

(a) Fixed straight wing UAV. (b) Fixed delta wing UAV.

Figure 1.5: Two examples of fixed wing UAVs

(a) Tricopter. (b) Quadcopter.

(c) Hexacopter. (d) Octacopter.

Figure 1.6: Most common configurations of rotary wing UAVs

to maintain hover flight condition and to perform the Vertical Take Off and Landing
(VTOL). Instead of fixed wing, rotor wing UAVs are intrinsically unstable but they can
provide good flight performance if robust control laws are implemented. In particular,
quad-rotor is the most common configuration as it merges requirements about flight

4



1 – Introduction

stability with a simple and feasibility configuration [5][6].
Quadcopters consist of four rotors that lift the drone and control its attitude and

position by varying the RPM of each rotor. In order to avoid them from spinning
around themselves, two opposite rotors spin in one direction, while the other two spin
in the opposite direction [7]. In the following sections, modern UAVs’ applications are
presented. Since in this thesis a Flight Controller for rotary wing UAVs is developed,
the attention is focused on rotary wings UAVs and, in particular, quadcopters.

1.2 Modern UAVs applications
During the last years, the role of UAVs drastically changed and their application re-
gions extended to civilian applications, agriculture, law enforcement, and in the future,
transport too. UAVs’ configuration changed in favor of smaller dimensions to be more
suitable for several applications, and researchers have been working on their design and
development to increase the autonomy and endurance of these vehicles.

For many applications, Vertical Take-Off and Landing (VTOL) is preferred and
good maneuverability and a stable hovering are required. Multi-rotor wing UAVs satisfy
these requirements ensuring a suitable solution for several applications. In particular,
the quad-rotor is the most common configuration which merges the requirement of
flight stability with a simple and feasibility configuration.

Aerial surveillance

In both military and civil applications, UAVs have been employed for many years to
perform aerial surveillance. The main task is to collect information from a specified
area, for instance: remote areas where access is hampered by mountains, vast land
areas without road networks, or areas afflicted by natural disasters. Surveillance appli-
cations include livestock monitoring, wildfire mapping, pipeline security, home security,
and road patrol. Therefore, UAVs are becoming a valuable alternative for some police
operations (Fig. 1.7) [8][9].

(a) Police service in an urban context per-
formed by an UAV.

(b) UAV employed in pipeline security.

Figure 1.7: Two quadcopter UAVs in modern aerial surveillance applications
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1 – Introduction

Package delivery

UAVs can significantly accelerate delivery times and reduce the human cost associated
with the delivery [10]. Considering the increasing delivery activity and the more and
more busy streets, exploiting the vertical dimension above cities would result in a
significant reduction of the delivery times. This is the reason why some companies
are investing in mini-drones for package delivery to consumers, especially during the
last mile phase (Fig. 1.8). Companies and researchers are working to overcome the
issues related to the safety of airspace, the privacy of citizens, and the tracking of these
vehicles to make package delivery more suitable [11][12]. Other issues are related to
the power supply which limits the delivery range and payload requirements.
In February 2021, the first test of an electric propulsion drone of 130 Kg (Fig. 1.9) has
been performed in Turin by Leonardo company [13]. The project, named "Sumeri: Si
salpa!", aims at delivering heavy goods up to hundreds of kilos in urban contexts.

Figure 1.8: Quadcopter UAV employed in package delivery

Figure 1.9: A capture of the 130 Kg drone employed by "Sumeri: Si Salpa" project [14]
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Surveying

A drone survey consists of the use of a drone to capture aerial data with downward-
facing sensors, such as Red Green Blue (RGB) or multi-spectral cameras, and Laser
Imaging Detection and Ranging (LIDAR) payloads (Fig. 1.10). During a drone survey
with an RGB camera, the ground is photographed several times from different points
of view, and each image is tagged with coordinates. Thus, photogrammetry software
can be used to create a 3D model of the project area (Fig. 1.11) [15]. Unlike aircraft
and satellites, UAVs can perform flight at a lower altitude, providing high-quality data
in a shorter period of time than other vehicles. Also, the costs and maintenance of
these activities are significantly reduced. [16]. The main tasks of survey operations
are related to cartography, urban planning, and landing management. Using remote
sensing cameras is also possible to detect water in dry areas and to find water leaks in
underground water pipes.

(a) UAV employed in surveying. (b) UAV used in construction in-
dustry.

Figure 1.10: Two UAVs employed in surveying operations

(a) Picture collected from UAVs for
mapping areas.

(b) UAV’s image used for urban planning.

Figure 1.11: UAVs’ photography for mapping areas (a) and urban planning (a)
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Agriculture

UAV technology has allowed for an optimized approach to various farming tasks, such
as field mapping, plant stress detection, biomass estimation, weed management, in-
ventory counting, and chemical spraying (Fig. 1.12) [17]. In the case of precision agri-
culture, it is necessary providing UAVs with additional devices such as multispectral
cameras, thermal cameras, RGB cameras, and LIDAR systems. UAVs are also required
to fly according to way-points, in order to maintain the hover condition and perform
the obstacle avoidance [18]. Thanks to their capability of adjusting their altitude and
following flight paths, UAVs can use their sensors to identify areas where performing
crop spraying quickly and with great precision. Indeed, UAVs perform crop spraying
five times faster than regular machinery.
Crop monitoring is another application of UAVs in agriculture: satellite imagery is very
costly and data quality is largely affected by weather conditions. UAVs can perform
crop monitoring more accurately and frequently providing higher quality data. To re-
duce excessive water usage, UAVs are also equipped with infrared and thermal sensors
able to identify areas receiving too much or too little water, allowing the irrigation only
to parts of a field which really need [19].

Figure 1.12: UAV employed in weed management

(a) Image from UAV’s thermal sensors
for crop monitoring

(b) Normalized Difference Vegetation Index
(NDVI) image to determine corp stress

Figure 1.13: Imagery collected from UAVs in agricolture applications
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Cinematography

With the advent of stable and powerful quadrotors, and high-quality cameras mounted
on controllable gimbals, quadrotors are becoming more and more useful cinemato-
graphic devices for both professional and amateur film-makers (Fig. 1.14) [20]. In the
cinema industry, movie-makers use drones to produce shots with complex camera mo-
tion, and sometimes they represent the only way to reach viewpoints that would be
inaccessible to other camera devices [21].

Figure 1.14: Quadcopter UAV on a cinematography set

Recreational flying

Several companies sell UAVs for hobbyists and recreational use (Fig. 1.15). From eco-
nomic to more professional ones, UAVs are available on the market providing satis-
factory performance for people who use them for filming and photographing, or drone
racing. Even Do It Yourself (DIY) UAVs is a spread leisure activity that involves hob-
byists who want to build up and customize their drones [22]. In compliance with the
rules established from every country, it is possible to fly UAVs for personal uses: EASA
and FAA respectively rule UAVs flying in European countries and USA [23] [24].

(a) DIY for recreational use (b) Racing drone

Figure 1.15: Two examples of drones for recreational flying
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1.3 State-of-the-Art of Flight Controllers for UAVs
A Flight Controller for UAVs is the hardware component that ensures flight stability
and makes Remote Control (RC) or autonomous flight possible. Its functions consist
of obtaining UAVs’ states (position, attitude, velocity, etc.) from sensors, converting
radio commanded signals into actuator pulses, and ensuring proper flight performance
while following signals or maintaining states (i.e. altitude and flight path).

Flight Controllers can be distinguished into two main categories: closed-source and
open-source software. Closed-source software can not be modified in code and appear
as "black boxes" to customers. To overcome this issue, some companies developed open-
source Flight Controller just to enable customers of modifying software on their own
and according to their purpose. Accessing to Flight Controller’s software, industries
and universities can collaborate on solving challenges related to UAVs platform, such
as functionality, reliability, fault tolerance, and endurance, which all are tightly linked
to the UAVs’ Flight Controller hardware and software [25].

A brief description of open and closed-source Flight Controllers developed by some
companies will follow. The main task of this section is to introduce Flight Controller’s
hardware and software this thesis takes inspiration from. Firstly, some open-source
products for academic and some industrial applications are described. Afterward, more
advanced Flight Controllers for professional applications are introduced.

1.3.1 PX4 series
The Pixhawk Flight Controller project started at the Computer Vision and Geom-
etry Lab of ETH Zurich, before becoming an independent Open Source Hardware
(OSH) platform project. Pixhawk collaborates with several partners, including the
Linux Foundation DroneCode project. These Flight Controllers are based on the PX4-
Flight Management Unit (FMU) and multiple versions have been developed. PX4 is
used in a wide range of applications, from consumer drones to industrial applications.
It is also the leading research platform for drones and has been successfully applied to
underwater vehicles and boats.
As regards multicopter control algorithm (Fig. 1.16), PX4 makes use of quaternion for
attitude control [26] and the desired angular rate is obtained through a PID controller.
Position pass through a simple Proportional Controller which gives the desired velocity
as output. Therefore, a PID converts velocity in a commanded acceleration.
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(a) PX4 Angle Controller. (b) PX4 Position Controller.

Figure 1.16: PX4 control scheme

PX4 FMUv5

PX4 hardware evolved to FMUv5 at the end of 2017, when the processor was updated
to STM32F7 with double-precision Floating Point Unit (FPU) and higher accuracy
attitude calculations based on the Bosch BMI055 IMU [25].
The hardware consists of two accelerometer/gyroscope sensors for redundancy, a mag-
netometer, a barometer, and a Global Positioning System (GPS) module. It also offers
from 8 to 16 PWM channels for Remote Control RC.
PX4 can be applied to several frame configurations, from different types of conventional
take-off and landing aircraft to multicopters (quadcopter, octocopter, tricopter) and
hybrid configurations, too.

Holybro PX4

It is based on the Pixhawk-project FMUv5 OHD and it is optimized to run PX4
version 1.7. It is suitable for academic and commercial developers, and it features more
computing power (two times the RAM than previous versions), additional ports for
better integration and expansion, new sensors, and integrated vibration isolation.

mRo Pixracer

This is a very small and light autopilot optimized for First Person View (FPV) racers
(Fig. 1.17). It can be the best solution for any small frame that requires no more than
6 PWM outputs, and it has in-built Wi-Fi. The Pixracer is designed to use a separate
avionics power supply. This is necessary to avoid current surges from motors or ESCs.
Indeed, some currents could flow back to the Flight Controller and disturb its delicate
sensors.

1.3.2 Paparazzi
Paparazzi UAV is an open-source drone hardware and software project that provides
autopilot systems for multicopters/multirotors, fixed-wing, helicopters, and hybrid air-
craft. The project is developed at Ecole Nationale de l’Aviation Civil (ENAC) UAV
Lab.
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(a) PX4 FMUv5. (b) mRo Pixracer.

Figure 1.17: PX4 series

Unlike other systems, Paparazzi UAV was designed with autonomous flight as the pri-
mary focus and manual flying as the secondary one. Actually, from the beginning, it
was designed to control multiple aircraft within the same system.
Paparazzi also features a dynamic flight plan system that is defined by mission states
and uses waypoints as variables. This makes it possible to carry on very complex and
fully automated missions without the operators’ intervention. The hardware consists
of IR sensors, inertial sensors, complete IMU heads, voltage regulators, GPS receivers,
converters, adapters, and programmers of all sorts [27]. In March 2017, ENAC Lab re-
leased a new autopilot named Chimera in collaboration with Paparazzi which is based
on STM32F7 MCU [25]. In Fig. 1.18 Chimera circuit board is shown.

Figure 1.18: Chimera Autopilot

1.3.3 Ardupilot Mega (APM)
The ArduPilot project provides an advanced, full-featured, and reliable open source
autopilot software system. The first ArduPilot open code repository was created in
2009. Since then, it has been developed by different teams of professional engineers,
academics, and computer scientists.
It is capable of controlling almost any vehicle system: conventional and VTOL air-
planes, gliders, multirotors, helicopters, sailboats, powered boats, submarines, ground
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vehicles, and even balance-bots. Also, the supported vehicle types are frequently up-
dated to extend its use to new and novel platforms [28].
The APM is an Arduino Mega-based autopilot, which has been developed by the DIY
Drones community. The software was originally developed for 8-bit ARM-based MCUs,
and to run on its own board ArduPilot. This board was however replaced by ArduPilot
Mega (APM), and the software was updated to be run on 32-bit ARM-based MCUs.
Nevertheless, the controller can run under Linux, enabling it to be used on a large class
of electronics, such as single-board computers and all full PC systems. ArduPilot has a
Geographic Coordinate System (GCS) desktop for mission planning, calibration, and
vehicle set-up for Windows, Linux, and Mac OSX [28][25]. Ardupilot Mega is shown in
Fig. 1.19.

Figure 1.19: Ardupilot Mega (APM)

1.3.4 TopXGun
TopXGun is a leader company in Flight Controller development and manufacture es-
tablished in 2009 and formally registered in 2015. TopXGun products are widely used
for agricultural purposes, security, delivery, survey, and mapping.

T1 Flight Controller

Especially for short-range activities, it’s considered one of the best alternatives in
agricultural application. T1 Flight Controller (Fig. 1.20) is suitable for multi-rotor
UAVs, and it supports point-to-fly mode and waypoint planning (up to 128 rout points).
A failsafe function is implemented, so the aircraft will return to the take-off point in case
of signal loss. T1 Flight Controller supports quadcopter, hexacopter, and octocopter
configuration [29].

M2 Flight Controller

M2 (Fig. 1.21) is a professional Flight Controller specially designed for the application
of the UAV industry. It adopts TopXGun hardware architecture of second-generation:
accuracy of the gyroscope is 20 times higher than the one of the previous generation,
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Figure 1.20: T1 flight controller

and the seismic capacity is increased by 10 times. IMU has a full temperature range
calibration, combined with a new sensor integration algorithm, and the accuracy of
attitude measurement can reach within 0.5 degrees. Thanks to its open Software De-
velopment Kit (SDK), customers can customize the drone’s functions according to their
needs. The M2 flight controller can communicate with Apollo onboard computer, which
is designed to fulfill more complicated tasks, as recognizing special shapes, objects, or
colors. M2 and Apollo are widely used in aerial surveying and mapping, pipe network
inspection, security police, and logistics and transportation industries [29].

Figure 1.21: M2 flight controller

1.3.5 DJI
DJI is a leader company in drone sector. They are involved in drone and UAVs’ com-
ponent production for several applications, from hobby and professional aerial photog-
raphy to agricultural and business services.

N3 Flight Controller

N3 Flight Controller (Fig. 1.22) supports quadcopter, hexacopter and octocopter con-
figurations. It provides a dual IMU redundancy and its flight control algorithm can
detect IMU failures during flight. N3 is equipped with a vibration dampening system,
providing better flight performances and reliability. Its robust flight control algorithm is
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ideal for controlling a broad range of industrial and DIY multirotor aircraft, providing
professional stability [30].

Figure 1.22: N3 flight controller

A3 Flight Controller

A3 (Fig. 1.23) provides Software Development Kit (SDK) and dedicated hardware in-
terfaces that allow customers to add actuators and sensors according to their needs.
A3 supports D-RTK GNSS for centimeter-level positioning accuracy compared to nor-
mal GPS and barometer solutions. Using dual antennas, its heading reference is more
accurate than a compass sensor and it can withstand magnetic interference from metal
structures. For redundancy, it is equipped with three IMUs and three GNSS units,
with additional analytical redundancy and advanced diagnostic algorithms. Thanks to
its accurate flight control and optimal flight performances, it is ideal for industrial and
cinematic applications [30].

Figure 1.23: A3 flight controller
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1.4 Focus and scope of this work

This thesis aims at developing a Flight Controller for a quadcopter UAV. Some of the
most critical aspects about the development of a Flight Controller are discussed: data
filtering from sensors and sensor fusion are performed to obtain accurate information
about quadcopter attitude, and particular attention is given to the software’s working
frequency. For this purpose, the STM-32 data-sheet is analyzed in detail, and signal
frequencies are carefully monitored. Indeed, control algorithms could be inefficient if
the software frequency is not high enough to ensure a fast response of motors to distur-
bances or commands. The same happens if delays due to different frequencies between
software and signals occur.
A simulation model of the quadcopter is also developed to preliminary tune controller
parameters before testing the Flight Controller on the drone. Quadcopter dynamics,
DC motors, and PWM logic are implemented in a Simulink environment, and a lin-
earized model is obtained to set controller parameters.
Additional tuning of controller parameters is performed on a test bench where only
rotational dynamics is allowed to the drone. This phase of the work is very useful but
can not give reliable results about drone response, because of the asymmetries and
frictions introduced by the joint.
To the best of the author’s knowledge, most commercial Flight Controllers implement a
PID controller, and actually with good results. However, since the growing applications
drones are involved in, best-performing controller algorithms are required to increase
flight performances and improve drones’ reliability. PID controller can not ensure good
flight performances for the whole flight envelope, and tuning based on experimental
tests can take a long time and can be dangerous for the drone. At the same time, using
a PID controller, some issues related to wind-up and noises can occur. Therefore, these
issues have to be solved to obtain suitable performances.
In this thesis, a fully accessible Flight Controller is developed using Arduino IDE,
which is very simple to use for everyone who has some skills in programming. Code is
intentionally made as simple as possible to be easily understandable for the ones who
want to test new control algorithms. At the same time, an LQR controller is imple-
mented and it is found to be a valid alternative to the more common PID controller
with some advantages: with respect to the PID, an LQR does not introduce wind-up
and noises issues and it can be tuned faster than a PID if a linearized model of the
drone is available.
Results shown in chapter 6 demonstrate satisfactory performances of the developed
Flight Controller. A 400 Hz software refresh frequency seems to be satisfactory to per-
form the auto-stabilizing, and follow commands. LQR is preliminarily tuned on the
simulation model and its parameters are adjusted on the test bench. During flight
tests, another tune is performed to obtain a fast response to the commands from the
transmitter.
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1.5 Flight Controller software architecture
In this section, the software architecture of the developed Flight Controller is intro-
duced. The Arduino STM-32 is chosen as the micro-controller and it is programmed
by using Arduino IDE.

The software architecture can be divided into two parts: set-up configurations and
main loop operations. Arduino IDE proposes two different sections whenever a new
file is opened, and they are setup and loop sections. Code written in the setup section
is executed only when the micro-controller turns on, while the code in the loop is
executed after the setup code over and over again. Variables are declared before the
setup section.

The architecture of the developed software is shown in Fig. 1.24. The set-up section
consists of PINs’ configuration, timers setting, and all operations that can be executed
only one time during the process (gyroscope calibration, controller settings, SD card
configuration, and so on). On the other hand, the loop section executes all operations
that are needed to perform flight and data logging.

Figure 1.24: Flight Controller architecture

1.5.1 Code structure

The developed software mainly consists of a main file where functions collected in
other schedules are called. Such a configuration is preferred to make the main as clean
as possible for debugging.
The main file is named FC_main, and it is necessary to load this file on the micro-
controller to execute the whole code. In FC_main all variables are declared and set-
up configurations are executed. The Fig. 1.25 shows the code architecture and each
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functions called from FC_main. Below, each schedule is introduced and the task of
every function is explained.

• Controller

1. PID_calc: evaluates control efforts according to the PID control algorithm
2. LQR_calc: evaluates control efforts according to the LQR control algorithm

• IMU

1. gyro_setup: starts the communication between STM-32 and gyroscope/ac-
celerometer sensor.

2. calibrate_gyro: evaluates the value to subtract to raw gyroscope data before
integrating angular rate.

3. gyro_signalem: accesses gyroscope and accelerometer registers to read data
and store them into variables.

4. angle_calc performs angle estimation from gyroscope and accelerometer data
and filters them to avoid noises and drifts.

• Print

1. SD_print: prints data collected from sensors (attitude, position) during flight
on the file "DATA.TXT" on an SD card.

2. Serial_print: prints variables for debugging if the micro-controller is con-
nected by serial.

• Reveiver

1. handler_channel_1: measures the pulse width from the transmitter and as-
signs it to some variables managing PPM signals.

• Timer

1. timer_setup: TIM2 and TIM4 are enabled to receive signals from the trans-
mitter and generate PWM signals.
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Figure 1.25: Code general structure
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Chapter 2

IMU implementation

An Inertial Measurement Unit (IMU) is an electronic device that provides the angular
orientation of a body with respect to an inertial reference frame. IMU typically consists
of a gyroscope, an accelerometer, and a magnetometer sensor whose data are merged by
the software to obtain accurate values about the body’s attitude. To develop a Flight
Controller, it’s necessary to provide the microcontroller with the vehicle’s orientation,
which is used from the controller algorithm to follow an attitude signal. In the following
section, an IMU is developed using a gyroscope and an accelerometer. Then, data are
combined to reduce noises and a sensor fusion is performed to have accurate information
about the vehicle’s attitude.

2.1 Gyroscope
A gyroscope is a sensor that provides angular rates of a frame with respect to the body
reference frame. Knowing how much time is passed from one measurement to another,
it is possible to integrate the angular rate provided by the gyroscope, finding the body’s
attitude.

In this work, an MPU-6050 (Fig. 2.1) is used to provide the Flight Controller with
the angular rates of the quadcopter. MPU-6050 is a Micro-Electro-Mechanical System
(MEMS) that consists of a 3-axis accelerometer and a 3-axis gyroscope. In section 6.1.2,
more information about this sensor is provided.

The gyroscope output is a 16 bit signed value and it is converted in to the code in
a number from -500 degrees per second (dps) to 500 dps. It means that the maximum
angular rate provided by the gyroscope will be 500 dps. According to needs and uses,
it is possible to modify this scale directly acting on the code. However, a 500 dps full
scale is more than enough considering quadcopter dynamics. Looking at the MPU-6050
datasheet Fig. 2.2 [31], it is found that to a 500dps full scale corresponds an output
of 65.5 when the gyroscope is rotating at 1 dps. So it becomes easy to find an angular
rate from the gyroscope in degrees per second.
When data from the gyroscope are collected and graphed, it is found out that gyroscope
output is not zero, despite it is not moving. The gyroscope needs to be calibrated, and
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in the developed software it is done by collecting 2000 measures and subtracting the
mean value to the gyroscope outputs (Algorithm 1). The gyroscope calibration starts
every time the code runs on the micro-controller, and it lasts a couple of seconds. Dur-
ing calibration, the gyroscope should not be moved to avoid affecting the mean value
measured during the process. When the calibration process is finished, the gyroscope
output is very close to zero and the gyroscope can provide accurate angular rates.
To obtain the quadcopter’s attitude from gyroscope data, angular rates need to be
integrated by the software. This is done by adding the traveled angle to the actual
one during the time passed from one lecture to another. Since the refresh frequency
of the developed software is equal to 400 Hz, the gyroscope provides data every 2500
us. It means that the traveled angle in degree can be obtained by the following relation:

traveled_angle = gyro_output
refresh_frequency ∗ 65.5 (2.1)

Figure 2.1: MPU-6050 gyroscope/accelerometer MEMS

Figure 2.2: MPU-6050 datasheet to read gyroscope full scale range
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Algorithm 1 Gyroscope Calibration
1: cal_int = 0;
2: if (cal_int != 2000) then
3: for (cal_int = 0; cal_int < 2000; cal_int ++) do
4: gyro_signalen();
5: ωxcal += ωx;
6: ωycal += ωy;
7: ωzcal += ωz
8: end for
9: ωxcal /= 2000;

10: ωycal /= 2000;
11: ωzcal /= 2000;
12: end if

The traveled angle is added to the previous angle evaluated by the code, and in this
way roll, pitch, and yaw angles of the drone can be obtained.

2.2 Accelerometer
An accelerometer provides the frame’s acceleration along the three body axes. In par-
ticular, an accelerometer is typically used to measure gravity acceleration and its com-
ponents along the three body axes. Knowing gravity accelerometer components, it is
possible to find the body’s attitude by trigonometry. Considering Fig. 2.3, the following
relationships between roll (φ), pitch (θ) angle, and gravity acceleration can be found:φ = arcsin(gy

g )
θ = arcsin(gx

g )
(2.2)

where gx and gy are the gravity acceleration components along Xb and Yb, and g = 9.81
is the module of gravity acceleration vector.
Looking at MPU 6050 datasheet (Fig. 2.4), it is possible to set the accelerometer
scale just like the gyroscope. In the developed Flight Controller, it is chosen a scale
from -8 g to 8 g and, according to MPU-6050 manual [31], an output of 4096 from
the accelerometer will correspond to 1 g. Using Eq. 2.2, roll and pitch angles of the
quadcopter can be obtained (Algorithm 3). Since gravity acceleration components don’t
change when the drone spins around itself, the yaw angle can not be evaluated by the
accelerometer. Actually, a magnetometer should be used to provide the yaw angle and
combine this information with the one provided by the gyroscope.
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Figure 2.3: Roll angle found by trigonometry
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Figure 2.4: MPU-6050 datasheet to read accelerometer full scale range

Algorithm 2 Gyroscope and accelerometer data storage
1: HWire.beginTransmission(gyro_address);
2: HWire.write(0x3B);
3: HWire.endTransmission();
4: HWire.requestFrom(gyro_address, 14);
5: ax = HWire.read() « 8 | HWire.read();
6: ay = HWire.read() « 8 | HWire.read();
7: az = HWire.read() « 8 | HWire.read();
8: ωx = HWire.read() « 8 | HWire.read();
9: ωy = HWire.read() « 8 | HWire.read();

10: ωz = HWire.read() « 8 | HWire.read();
11: ωy *= -1;
12: ωz *= -1;
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Algorithm 3 Roll and pitch angle evaluated from accelerometer data

1: a =
ñ
a2
x + a2

y + a2
z;

2: φacc = asin
1
ay

a

2
57.296;

3: θacc = asin
1
ax

a

2
57.296;

4: if (!first_angle) then
5: θ = θacc;
6: φ = φacc;
7: first_angle = true;
8: end if

2.3 Complementary filter
Through the gyroscope and the accelerometer, two measurements of roll and pitch
angles are available. Actually, none of them is enough accurate to provide the Flight
Controller with the quadcopter’s attitude, because of several errors introduced by both
sensors.
Angles calculated by integrating gyroscope signals are very useful to know how attitude
is changing over time, but they do not provide accurate information when the body
is not moving. This is because the software integrates angular rate, and sometimes
measures can drift from the true angle due to noises.
On the other hand, the accelerometer is very sensitive to vibrations, so angles evaluated
from Eq. 2.2 can be unreliable, especially considering the number of vibrations on a
quadcopter.

To overcome these issues, a complementary filter is used to combine the two mea-
surements obtained from the gyroscope and the accelerometer. A complementary filter
corrects angles estimated from the gyroscope providing angles estimated by the ac-
celerometer when the body is not moving. On the other hand, gyroscope angles are
used to estimate angles in the short term. This is because angles from the gyroscope
are less noised thanks to the integration. In practical terms, a complementary filter
acts as a Low Pass Filter (LPF) for angles obtained from the accelerometer and as a
High Pass Filter (HPF) for angles obtained from the gyroscope. A LPF (Eq. 2.3) and
HPF (Eq. 2.4) first-order transfer function, can be written as follows:

HPF = 1
τs+ 1 (2.3)

LPF = τs

τs+ 1 (2.4)

where s is the complex variable from the Laplace transformation, and tau is the cut−
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off frequency. In Fig. 2.5 and 2.6, the bode diagrams of the magnitude of a first-order
LPF and HPF with τ = 1 are shown. Looking at the LPF bode diagram, before a
cut-off frequency, the transfer function’s magnitude is almost constant with respect to
the frequency. When the frequency increases, and cut-off frequency τ is overcome, the
transfer function’s magnitude is significantly reduced. The HPF bode diagram behaves
exactly in the opposite way. In the next sections, it will be shown how to combine
these two filters to perform sensor fusion between gyroscope and accelerometer data,
obtaining an accurate estimation of the drone’s attitude.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 [rad/s]

-70

-60

-50

-40

-30

-20

-10

0

|G
(s

)| d
B

Figure 2.5: Low Pass Filter bode diagram for τ = 1
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Figure 2.6: High Pass Filter bode diagram for τ = 1
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2.3.1 Complementary filter implementation: continuous and
discrete form

As shown in Fig. 2.7, the angular rates from the gyroscope are integrated and then a
High Pass Filter (HPF) is used. On the contrary, accelerometer angles are filtered by
a Low Pass Filter (LPF). Defining:

G (s) = 1
τs+ 1 (2.5)

the first order LPF for acceleration angles, and

1−G (s) = τs

τs+ 1 (2.6)

the first-order HPF for gyroscope angles, it is possible to reduce the block diagram to
Fig. 2.8. By adjusting the τ value, the filter can be tuned properly.
Since the continuous form of a complementary filter can not be implemented on a

Figure 2.7: Block diagram continuous implementation of a Complementary Filter for
roll angle

Figure 2.8: Reduced block diagram of a Complementary Filter for roll angle

microcontroller, the discrete form is introduced in the block diagram of Fig. 2.9. A
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fixed fraction of one information and the complementary fraction of the other are
combined to obtain the estimation of the angle. Thus, this value is feedback at the
next time step. Looking at Fig. 2.9, K ∈ R and 0 ≤ K ≥ 1 is the fixed fraction, ∆t
is the elapsed time and 1

z block indicates that the output variable of the block is the
input of the previous time step.

Figure 2.9: Block diagram of a discrete Complementary Filter for roll angle
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2.3.2 Results
In Fig. 2.10 and Fig. 2.11, roll and pitch angles estimated by the gyroscope, the ac-
celerometer, and the complementary filter are shown and compared. Angles estimated
by the gyroscope are far away from the true angle of the drone but they are less affected
by noises if compared to accelerometer angles. Angles estimated by the accelerometer
seem to be closer to the true angles, but they are affected by a great number of noises.
Looking at angles estimated by the complementary filter, pitch and roll angles estima-
tion are combined and an accurate IMU is obtained.
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Figure 2.10: Comparison between roll angle estimated by the gyroscope, the accelerom-
eter and by the complementary filter
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Figure 2.11: Comparison between pitch angle estimated by the gyroscope, the ac-
celerometer and by the complementary filter
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Chapter 3

Transmitter and Receiver

A transmitter and a receiver are used to send signals to the Flight Controller. In this
section, Pulse Width Modulated (PWM) and Pulse Position Modulated signals are
introduced, and the STM-32 board is enabled to manage signals from the transmitter
by communicating with the receiver. STM-32 data-sheet is used to obtain informa-
tion about how to manage PWM signals properly and obtain desired PWM frequency
directly acting on the code.

3.1 Pulse Width Modulation
The pulse width modulation is a modulation technique that generates variable-width
pulses to represent the amplitude of an analog input signal [32]. According to the
PWM, the voltage is distributed through a series of pulses rather than a continuously
varying signal. Due to the duty cycle and high frequency of the signal, the voltage sent
to actuators is the average voltage of the signal. By increasing or decreasing the pulse
width, the average voltage can be increased and decreased as well (Fig. 3.1).

A PWM signal can be generated using a comparator as shown in Fig. 3.2. A mod-
ulating signal forms one of the inputs to the comparator, while the other input is fed
with a non-sinusoidal wave (or sawtooth wave), which operates at the carrier frequency.
The comparator compares the two signals and generates a PWM signal as its output
waveform. If the value of the Sawtooth triangle signal is more than the modulation
signal, then the PWM output signal is in the “High” state, else it’s in the “Low” state.
Thus, the value of the input signal magnitude determines the comparator output which
defines the width of the pulse generated at the output [33].

In this thesis, the width of the pulse is sent from a transmitter to a receiver, which is
connected to the STM-32 board PINs. Thus, the signal can be stored in some variables
and elaborated by the software which sends it to the motors through other board’s
PINs. Therefore, a PWM requires as many board PINs as any channel of the trans-
mitter. It would result in at least four wirings (throttle, roll, pitch, and yaw signals)
and four board’s PINs employed, which are too much if it’s needed to add some hard-
ware components to the Flight Controller. To overcome this issue, another modulation
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Figure 3.1: Duty cicle of a PWM signal with respect to the signal amplitude

Figure 3.2: PWM generation: comparison of the Sawtooth triangle signal with the
reference signal

technique based on PWM is introduced and implemented on the developed software.

3.1.1 Pulse Position Modulation
The Pulse Position Modulation (PPM) is a modulation technique where the position of
the pulsed carrier is varied according to the modulating signal. Actually, PPM is based
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on PWM: the position of the pulse in PPM signals depends on the trailing edge of the
pulses in PWM signals. As it is shown in Fig. 3.3 the length of the pulse is always the
same, but the position changes according to the width of the PWM signal.
By switching the output of the transmitter from PWM to PPM signal, such a mod-
ulation requires only one PWM signal from the board to manage all channels of the
transmitter. This means that only one PIN of the board is required, with the advance
of reducing wirings.

Figure 3.3: PPM signal from the trailing edge of PWM pulses

3.2 Input capture mode
In the previous section, it is stated that a PWM signal needs to be generated from
the STM-32 board, and changing the pulse length of the signal by the transmitter or
the software itself, quadcopter’s motors can be controlled. Moreover, there are many
requirements that the PWM signal generated by the STM-32 PINs needs to satisfy.
Therefore, in this section, the STM-32 data-sheet is analyzed in detail to find the more
efficient way to generate a PWM from the STM-32 PINs.

3.2.1 Interrupt
To generate a PWM signal, a microcontroller has to calculate the pulse length coming
from the transmitter. When the rising edge of the pulse is detected, the microcontroller
measures the start time. Then, when the falling edge is detected, the microcontroller
measures the end time and calculates the time of the pulse. Therefore, the microcon-
troller needs to interrupt the currently executing code to deal with the calculation of
the pulse length. Such a response of the processor is called interrupt, and it occurs
every time a command is sent from the transmitter to the microcontroller. In Fig. 3.4
an example about an interrupt is shown: while the code is calculating PID inputs, an
interrupt occurs and the start time of a pulse is measured. After that, the software
continues to run the main code and, when the falling edge of the pulse is detected,
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another interrupt occurs to calculate the pulse length.
The microcontroller communicates with the transmitter through some PINs connected
to the receiver. These PINs have to be enabled to manage with PWM signals and
generate an interrupt when the falling or the rising edge of a signal is detected. Thus,
the STM-32 datasheet is studied to configure properly these PINs.

Figure 3.4: An example of how interrupt occurs

3.2.2 STM-32 timers
The STM-32 datasheet introduces four timers (TIM2, TIM3, TIM4, TIM5) which
consist of a 16-bit auto-reload counter driven by a programmable pre-scaler. They may
be used for a variety of purposes, including measuring the pulse lengths of input signals
(input capture mode) [34]. A block diagram is purposed by the data-sheet to explain
how these timers work. In Fig. 3.5, the working principle it is resumed in a reduced
block diagram. A 16-bit timer (CNT) that counts from 0 to the value of an auto-reload
register (ARR), fixed at 65535 (the maximum value of a 16 bit counter). When a signal
from the connected input (TIM2_CH1) changes from low to high, the rising edge is
detected and the timer value of the counter (CNT) is stored in the capture register
(CCR1). When this happens, an interrupts is generated and some code can be executed
to store the rising edge time of the pulse. This is enough to generate a PPM signal, as
explained in section 3.1.1.

3.2.3 Code implementation
Following the example proposed in the datasheet, the TIM2 of the STM-32 is config-
ured. The STM-32 timers consist of some registers that are pre-defined 32-bit variables
fixed in the memory of the board. By setting the individual bits of a register, the spe-
cific function of the timer can be set. Fig. 3.6 shows the register map for a STM-32
timer. It should be noted that some bits of the register are reserved, and it is not
allowed to access them. However, the bits of the register that have to be set for input
capture mode are accessible.
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Figure 3.5: Input Capture block diagram
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Figure 3.6: Register map of a STM-32 timer

In the code below (Algorithm 4), some bits of the TIM2 registers are set to enable
a specific function and perform input capture mode properly:

• Timer2.attachCompare1Interrupt(handler_channel_1): every time an interrupt
occurs, the sub-rutine handler_channel_1 is executed

• TIMER2_BASE− > CR1 = TIMER_CR1_CEN : enables the timer counter

• TIMER2_BASE− > DIER = TIMER_DIER_CC1IE: enables the timer
to trigger an interrupt when a capture occurs

• TIMER2_BASE− > CCMR1 = TIMER_CCMR1_CC1S_INPUT_TI1 :
connect the input to the edge detector

• TIMER2_BASE− > CCER = TIMER_CCER_CC1E: enable the trigger
on the rising edge

• TIMER2_BASE− > PSC = 71: the pre-scalar is set in the corresponding reg-
ister

• TIMER2_BASE− > ARR = 0xFFFF : the auto-reload register is set in the
corresponding register

The other registers are unused and they are set back to 0.
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Algorithm 4 TIM2 set-up and input capture mode configuration
1: Timer2.attachCompare1Interrupt(handler_channel_1);
2: TIMER2_BASE->CR1 = TIMER_CR1_CEN;
3: TIMER2_BASE->CR2 = 0;
4: TIMER2_BASE->SMCR = 0;
5: TIMER2_BASE->DIER = TIMER_DIER_CC1IE;
6: TIMER2_BASE->EGR = 0;
7: TIMER2_BASE->CCMR1 = TIMER_CCMR1_CC1S_INPUT_TI1;
8: TIMER2_BASE->CCMR2 = 0;
9: TIMER2_BASE->CCER = TIMER_CCER_CC1E;

10: TIMER2_BASE->PSC = 71;
11: TIMER2_BASE->ARR = 0xFFFF;
12: TIMER2_BASE->DCR = 0;

3.3 Electronic Speed Controller
An electronic speed controller (ESC) (Fig. 3.7) is an electronic circuit that controls and
regulates the speed of an electric motor. ESCs contain a microcontroller that interprets
the input signal and appropriately controls the motor using firmware. An ESC receives
as input a signal, while the circuit and the firmware provide to send it to motors and
to control them.

In the previous section 3.2, the pulse length from a transmitter is measured but a
PWM signal should be also generated by the PINs the ESCs are connected to. STM-32
timers introduced in section 3.2.2 are used again and the PWM signal frequency is
adjusted from the software to equal the one of the code.

Figure 3.7: Electronic Speed Controller
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3.3.1 PWM generation
To describe how timers are used to generate a PWM signal, in Fig. 3.2 a block diagram
is shown. The working principle is very similar to the one explained in Fig. 3.5. Referring
to Fig. 3.8, a counter timer (CNT) counts from 0 to the value of the auto-reload register
(ARR), fixed to 5000 in this case. The channel 1 (TIM4_CH1) is set high whenever
the timer value is less than the compare register (CCR1) value. When the timer is
greater than the compare register (CCR1) the channel 1 (TIM4_CH1) output is set
low. Because the (ARR) register is set to 5000, the pulse frequency will be 200 Hz.
By reloading the counter, it is possible to adjust the PWM frequency according to
needs. In this work, a 400 Hz refresh frequency for the software is desired to obtain
good flight performance. It means that the developed Flight Controller will calculate
controller effort every 2.5 ms, providing a fast response to disturbances and commands
as well. The software will provide to reload the auto-reload register (ARR) manually
every 2.5 ms through the lines in Algorithm 5. When the first loop starts, the current
time is stored in loop_timer variable. After assigning the pulse length to each channel
of the TIM4, the ARR is set to 5000 and the counter is reloaded. esc1, esc2, esc3,
and esc4 are the variables where the pulse length for each motors (or ESC) is stored
in. Those variables are assigned to each channel of the TIM4 from line 1 to line 4 of
Algorithm 5: channel 1, 2, 3, and 4 corresponds respectively to PINs B6, B7, B8, and
B9 of the STM-32 board. When code operations end, a while loop occurs until the
difference between the current time and the loop_timer is less the 2.5 ms. Finally,
loop_timer variable is updated with the current time value and another loop can
become. In this way, the timer counter is reloaded every 2.5 ms, and a 400 Hz PWM
signal is provided.

Figure 3.8: TIM4 working pinciple shown in a block diagram
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Algorithm 5 Software frequency set at 400 Hz
1: TIMER4_BASE->CCR1 = esc_1;
2: TIMER4_BASE->CCR4 = esc_2;
3: TIMER4_BASE->CCR3 = esc_3;
4: TIMER4_BASE->CCR2 = esc_4;
5: TIMER4_BASE->CNT = 5000;
6:
7: while (micros() - loop_timer < 2500) do loop_timer = micros();
8: end while
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Chapter 4

GNSS/GPS Module

4.1 Global Navigation Satellite System
The Global Navigation Satellite System (GNSS) is a navigation system that uses satel-
lites for geo-spatial positioning. A GNSS consists of a constellation of satellites orbiting
Earth. These satellites continuously transmit signals that enable users to determine
their three-dimensional position with global coverage. The working principle of the
GNSS is based on an elemental geometric problem, involving the distances of a user
to a set of at least four GNSS satellites with known coordinates. The distances be-
tween the GNSS receiver and satellites are determined by using signals and navigation
data transmitted by the satellites. This will result in an accuracy of several meters
about the position of the user. However, more advanced techniques can be used for
centimeter-level positioning [35].

A GNSS consists of three main segments:

• The space segment: consists of all the satellites that provide the receiver with
signals and navigation data.

• The control segment: is responsible for the operation of the system.

• The user segment: comprises the GNSS module that provides, for instance, the
position and the velocity of the user.

The GNSS mainly consists of three main satellite technologies: GPS, Glonass, and
Galileo. Below, these satellite constellations are described.

GPS

The Global Position System (GPS) was developed by the United States Department of
Defense (DoD) for military purposes. The GPS constellation involves satellites that are
positioned in six equally spaced orbital planes surrounding Earth. Each plane contains
four ‘slots’, constituting a 24-slot arrangement. This ensures that there are at least four
satellites in view from any point of the planet. The satellites are placed in an orbit at an
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altitude of 20200 Km and an inclination of 55° relative to the equator which is named
Medium Earth Orbit (MEO). Orbits are nearly circular, due to their eccentricity of
less than 0.02. The semi-major axis measures about 26560 Km and the nominal period
is 11 hours, 58 minutes and 2 seconds [35].

Glonass

The nominal Glonass constellation consists of 24 MEO satellites. They are placed in
three different orbital planes that accommodate 8 satellites equally spaced. The orbits
are roughly circular, at an altitude of 19100 Km and with an inclination of about
64.8°. The nominal period is of 11 hours, 15 minutes and 44 seconds and the geometry
is repeated every eight sidereal days. Due to the lack of funding, the number of satellites
decreased from 24 to only 6 in 2001. Actually, in August 2001, the Russian government
invested new funding to recover the constellation and to modernize the system. A total
of 24 operational satellites plus 2 in maintenance were again available in December
2011, and the full constellations were restored.

Galileo

In its Full Operational Capability (FOC), the Galileo constellation consists of 27 op-
erational and 3 spare MEO satellites at an altitude of 23222 Km and with an orbit
eccentricity of 0.002. Each of the three orbital planes is occupied by three satellites,
and they are inclined at an angle of 56° with respect to the equator. The satellites are
spread around each plane with an orbital period of 14 hours, 4 minutes and 45 sec-
onds, repeating the geometry every 17 revolutions (10 sidereal days). This constellation
guarantees a minimum of six satellites in view from any point on Earth’s surface, with
an elevation above the horizon of more than 10°.

4.1.1 GNSS and drones

Since the GNSS was developed, armies have been using it to coordinate military activ-
ities. However, nowadays several civilian applications involve GNSS technology, from
surveying operations to smart-phones that use it frequently. In particular, GNSS can
be very useful if combined with drone technology: some of the applications mentioned
in section 1.2 can’t be even done without a GNSS module. In fact, the GNSS repre-
sents a way to perform the autonomous flight, which is one of the main objects to be
achieved to employ drones in more and more applications.
Therefore, It appears clear the importance of providing a Flight Controller for UAVs
with latitude and longitude for global positioning, and this is why the developed Flight
Controller is enabled to communicate with a GNSS/GPS module.
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4.2 u-blox receivers
On the market, several GNSS receivers are available. For this work, an u−blox receiver
is chosen. u − blox receivers are fully configurable with UBX protocol configuration
messages (UBX-CFG-XXX) that can be sent during normal operation to change the
so-called current configuration. All documentation about how to change an u− blox
receiver current configuration can be found in [36].

u−blox receivers support a wide range of different GNSS, such as the ones described
above (GPS, Glonass, Galileo), and some augmentation systems (SBAS, QZSS, IMES).
Sending the message UBX-CFG-GNSS, the users are able to specify which signals
should be processed by the receiver. The default settings provide the receiver with
a GPS signal, and it is the one used in this work. Actually, as it will be seen later,
GNSS module is employed to provide the Flight Controller with latitude and longitude,
despite the several and useful information a GNSS module can also provide (timing,
speed over the ground). However, latitude and longitude data can be enough to perform
the autonomous flight.

4.2.1 Serial communication and u-blox protocols
To transmit GNSS measurements from the u − blox receiver to the serial, Universal
Asynchronous Receiver/Transmitter (UART) ports are featured. The serial ports con-
sist of an RX and a TX line, which provides the serial with information about the
receiver’s status, positioning, timing, and more other data. The u− center software is
provided by u − blox to allow the users to read the serial data stream by only using
any serial to USB interface. Opening the u− center software serial monitor, data from
the communication between the receiver and satellites can be read. They are organized
in data blocks that are repeated at a certain frequency using the NMEA protocol. In
Fig. 4.1, the NMEA protocol is explained. More information about this protocol can
be found in [36].

In Fig. 4.2 a data block printed on the u−center serial monitor is shown. By default
settings, u− blox receivers output every data block at 1 Hz frequency. This is way too
slow for a Flight Controller to perform position-hold or autonomous flight but, looking
at u − blox manual, it is possible to increase the update frequency up to 10 Hz by
sending some messages to the serial port.
The baud rate is set to 9600 baud per second (bps), and it is not equal to the one of the
Flight Controller software fixed at 57600 bps. Again, looking at u− blox manual, some
messages need to be sent to the serial port to change the baud rate. As regards the
data stream, some lines in Fig. 4.2 are not needed to provide the flight controller with
latitude and longitude. Indeed, GGA and GSA lines contain all information that are
needed to evaluate the latitude and longitude of the receiver. All GSV messages depend
on the number of satellites in view from the receiver, and they are not needed to the
Flight Controller. They can be disabled by sending other messages to the serial port.
All these operations are executed from specified code lines, and they will be explained
in detail in the next section.
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Figure 4.1: Structure of a NMEA protocol message used by u-blox receivers

Figure 4.2: An example of a data block output following NMEA protocol

4.3 Module implementation

In this section, the GNSS/GPS module implementation is shown. Following the docu-
mentation provided by the u− blox, some messages need to be sent to the serial port
to change the default settings that are not consistent with the developed Flight Con-
troller. Then longitude and latitude in degree are found reading the data block printed
by the receiver on the serial monitor according to the NMEA protocol. All code lines to
change default settings, and the simple algorithm used to read latitude and longitude
are explained in detail, and finally, longitude and latitude values in degrees are stored
in some variables.
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4.3.1 GNSS module set-up and data reading

In the Algorithm 6, the gps_setup is shown. Its function are reading data written by
the receiver on the serial port, and setting the u − blox module according to Flight
Controller needs. As explained above, three default settings need to be modified in
reading GNSS data:

1. Disabling GSV messages that are not needed to know latitude and longitude.

2. Increase data update frequency that is default set at 1 Hz.

3. Increase serial baud rate from 9600 bps to 57600 bps.

Referring to Agorithm 6, line 4 disables GPGSV messages by writing an eleven charac-
ters string named Disable_GPGSV in the serial port. Line 8 set the update frequency
to 5 Hz by writing a fourteen characters string named Set_to_5Hz in the serial port.
In fact, a 5 Hz frequency is supposed to be enough to perform position-holding. How-
ever, checking the u − blox manual, the update frequency can be set up to 10 Hz.
Finally, line 12 set the baud rate of GPS data to 57600 bps by writing the twenty-eight
characters string named Set_to_57kbps.

Algorithm 6 GPS data reading from Arduino STM-32
1: Serial2.begin(9600);
2: delay(250);
3:
4: uint8_t Disable_GPGSV[11] = 0xB5, 0x62, 0x06, 0x01, 0x03, 0x00, 0xF0, 0x03,

0x00, 0xFD,0x15;
5: Serial2.write(Set_to_5Hz, 14);
6: delay(350);
7:
8: uint8_t Set_to_5Hz[14] = 0xB5, 0x62, 0x06, 0x08, 0x06, 0x00, 0xC8, 0x00, 0x01,

0x00, 0x01, 0x00, 0xDE, 0x6A;
9: Serial2.write(Set_to_5Hz, 14);

10: delay(350);
11:
12: uint8_t Set_to_57kbps[28] = 0xB5, 0x62, 0x06, 0x00, 0x14, 0x00, 0x01, 0x00,

0x00, 0x00, 0xD0, 0x08, 0x00, 0x00,
13: 0x00, 0xE1, 0x00, 0x00, 0x07, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE2, 0xE1
14: delay(200);
15:
16: Serial2.begin(57600);
17: delay(200);
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4.3.2 Latitude and longitude storage in variables
As explained above, once the receiver has written GPS data according to NMEA proto-
col, it is the task of the software to read these data and filtering latitude and longitude
information. In Fig. 4.3, an example of data block updated at 5 Hz frequency is shown.
It is possible to note that every line starts with a "$" character. In Fig., four data are
highlighted: the latitude, the longitude, the number of satellites used to calculate the
position and the fix type for quality indicator. It should be noted, that the number
of satellites in GGA messages will have a maximum value of twelve, even when the
satellites that are providing signals are more than twelve.

The NMEA protocol ensures that all characters will be always in the same position.
Therefore, lines can be filtered easily to access latitude and longitude. In Algorithm
7 the code implemented is shown. When a "$" character is found, a buffer named
incoming_message is cleared from the data of the previous loop. Every character
of each line written by the receiver is stored in this buffer. When a "*" is found the
new_line variables is set to 1 and some checks are executed to filter latitude and lon-
gitude data. The first check is executed to verify if latitude and longitude information
are available. Then, another check is executed to verify if the receiver is writing the
GGA message which provides latitude and longitude information. The NMEA proto-
col provides the serial port with latitude and longitude in degree-minute format. For
example, if the GPS receiver reports a latitude of 4717.112671 North, this means a
latitude of 47 degrees and 17.112671 seconds. Because minutes are not easily usable for
position-holding, in lines 34 and 45 the latitude and longitude are converted in degrees.
After that, longitude and latitude are stored in some variables and can be used from
the controller to perform position-holding.

Figure 4.3: An example of a data block output following NMEA protocol with GPGSV
lines disabled
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Algorithm 7 Latitude and Longitude data storage
1: while (Serial2.available() and new_line_found == 0) do
2: char read_serial_byte = Serial2.read();
3: if (read_serial_byte == $) then
4: for (message_counter = 0; message_counter <= 99; message_counter ++)

do
5: incomming_message[message_counter] = ’-’;
6: end for
7: message_counter = 0;
8: else(message_counter <= 99) message_counter ++;
9: end if

10: incomming_message[message_counter] = read_serial_byte;
11: if (read_serial_byte == ’*’) then new_line_found = 1;
12: end if
13: end while
14:
15: if (new_line_found == 1) then new_line_found = 0;
16: if (incomming_message[4] == ’L’ and incomming_message[5] == ’L’ and in-

comming_message[7] == ’,’) then
17: digitalWrite(STM32_board_LED, !digitalRead(STM32_board_LED));
18: l_lat_gps = 0;
19: l_lon_gps = 0;
20: lat_gps_previous = 0;
21: lon_gps_previous = 0;
22: number_used_sats = 0;
23: Serial.println("Errore");
24: end if
25: end if
26: if (incomming_message[4] == ’G’ and incomming_message[5] == ’A’ and (in-

comming_message[44] == ’1’ or incomming_message[44] == ’2’)) then
27: lat_gps_actual = (incomming_message[19] - 48)*10000000;
28: lat_gps_actual += (incomming_message[20] - 48)*1000000;
29: lat_gps_actual += (incomming_message[22] - 48)*100000;
30: lat_gps_actual += (incomming_message[23] - 48)*10000;
31: lat_gps_actual += (incomming_message[24] - 48)*1000;
32: lat_gps_actual += (incomming_message[25] - 48)*100;
33: lat_gps_actual += (incomming_message[26] - 48)*10;
34: lat_gps_actual /= 6;
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Algorithm 7 Latitude and Longitude data storage (continued)
35: lat_gps_actual += (incomming_message[17] - 48)*100000000;
36: lat_gps_actual += (incomming_message[18] - 48) *10000000;
37: lat_gps_actual /= 10;
38: lon_gps_actual = (incomming_message[33] - 48)*10000000;
39: lon_gps_actual += (incomming_message[34] - 48)*1000000;
40: lon_gps_actual += (incomming_message[36] - 48)*100000;
41: lon_gps_actual += (incomming_message[37] - 48)*10000;
42: lon_gps_actual += (incomming_message[38] - 48)*1000;
43: lon_gps_actual += (incomming_message[39] - 48)*100;
44: lon_gps_actual += (incomming_message[40] - 48)*10;
45: lon_gps_actual /= 6;
46: lon_gps_actual += (incomming_message[30] - 48)*1000000000;
47: lon_gps_actual += (incomming_message[31] - 48)*100000000;
48: lon_gps_actual += (incomming_message[32] - 48)*10000000;
49: lon_gps_actual /= 10;
50: end if
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Simulation model

In this chapter, a simulation model of the quadcopter is developed to test control al-
gorithms and preliminary tune controller parameters. The translational and rotational
dynamics of the drone are simulated using Newton’s law and Euler’s equation, while
DC motors are simulated through first-order transfer functions. PID and LQR control
algorithms are implemented to perform attitude control and controller parameters are
identified in order to decrease rising times and overshoots.

5.1 Quadcopter Flight Mechanics

A quadcopter is controlled by changing the rotor’s speed to generate control torques
along the three body axes and allow the quadcopter to roll, pitch, and yaw. Two
rotors and propellers are provided for each arm of the quadcopter: two opposite lying
rotors spin in one direction, while the other two spin in the opposite direction. This
prevents the quadcopter will spin around itself because of the contrast torque produced
by motors. Changing the rotor’s speed, the thrust of each motor changes itself, and
control torques can be generated. In Fig. 5.1 thrust, roll, pitch, and yaw maneuvers are
shown with respect to the thrust and angular rate for each motor. Such a configuration
allows the quadcopter to perform lateral, backward, and forward movements by rolling
and pitching respectively, while altitude is controlled by changing by the same amount
the thrust of each motor. It should be noted that every maneuver can be performed
separately from each other, thanks to the configuration and rotor’s spinning direction.
Due to its configuration, a quadcopter is intrinsically unstable: if the rotor’s speed
can not be changed, the quadcopter will be unable to perform the auto-stabilizing
flight. This means that when a disturbance occurs, the quadcopter will lose its stability
immediately. Therefore, a control algorithm to control motors is needed to have a
statically and dynamically stable vehicle.
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Figure 5.1: How quadcopters perform manoeuvres changing the thrust of each motor

5.2 Mathematical Model
Considering a quadcopter as a rigid body, its dynamics is described by Six Degrees Of
Freedom (6DOF), which are three relative to the rotational dynamics and three relative
to the translational one. Newton’s law and Euler’s equation provide respectively linear
velocities and angular rate of a rigid body in the body frames. To obtain the position
and the attitude of the rigid body, kinematics equations need to be implemented and
reference systems have to be introduced. In this section, a mathematical model of
quadcopter dynamics and kinematics is developed and a linearization of the model is
performed. The state-space form of the linear model is shown: such a representation
plays a key role in developing the control algorithm and making considerations about
the stability and dynamics of the quadcopter.

5.2.1 Kinematics Equations
Before developing the mathematical model, it is necessary to define reference systems.
North-East-Down (NED), defined as in [37] is used as the inertial reference system,
while the aircraft body reference system is chosen as shown in Fig. 5.2. The NED
frame is identified by x − y − z axes, and êx, êy, êz are the three unit vectors in the
three axes. The body frame is identified by xb − yb − zb, and ê1, ê2, ê3 are the three
unit vectors in the three axes.
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Figure 5.2: Earth Centered, NED and body frame

Euler angles are introduced in Fig. 5.3 to describe the orientation of a rigid body
with respect to a fixed coordinate reference system. A rotational matrix R can be used

Figure 5.3: A 3-2-1 Euler rotation sequence to obtain a vector in another reference
system

to find a vector known in body coordinates, in NED reference system. It can be found
as in [38]:

R =

c(θ)c(ψ) s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)s(θ)c(ψ) + s(φ)s(ψ)
c(θ)s(ψ) s(θ)s(φ)s(ψ) + c(φ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ)
−s(θ) s(φ)c(θ) c(φ)c(θ)


Defining V = [ẋ, ẏ, ż]T the velocity of the aircraft in the inertial frames and VB =
[u, v, w]T the velocity of the aircraft in the body frames, it is possible to write:

V = R · VB (5.1)
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As in [37], considering the angular rate of the quadcopter in NED frame ω =è
φ̇, θ̇, ψ̇

éT
and the angular rate of body frame with respect to NED frame ωB =

[p, q, r]T , it is possible to write:

ω = T · ωB (5.2)

where

T =

1 s(φ)t(θ) c(φ)t(θ)
0 c(φ) −s(φ)
0 s(φ)

c(θ)
c(φ)
c(θ)



Eq. 5.1 and Eq. 5.2 are the kinematics equations: the Eq. 5.1 expresses the velocity of
the aircraft in the inertial frame, while the Eq. 5.2 expresses the angular rate in the
body frame in terms of Euler angles. The kinematic equations can be written as follows:

ẋ = w [s(φ)s(ψ) + c(φ)c(ψ)s(θ)]− v [c(φ)s(ψ)− s(φ)c(ψ)s(θ)] + u [c(ψ)c(θ)]
ẏ = v [c(φ)c(ψ) + s(φ)s(ψ)s(θ)]− w [c(ψ)s(φ)− c(φ)s(ψ)s(θ)] + u [c(θ)s(ψ)]
ż = w [c(φ)c(θ)]− u [s(θ)] + v [c(θ)s(φ)]
φ̇ = p+ r [cos(φ)tan(θ)] + q [s(φ)t(θ)]
θ̇ = q [c(φ)]− r [s(φ)]
ψ̇ = r c(φ)

c(θ) + q s(φ)
c(θ)

(5.3)

5.2.2 Dynamics Equations
The Newton’s law (Eq. 5.4) and the Euler’s equation (Eq. 5.5) provide a mathematical
model for a 6DOF rigid body. The Newton’s law provides the translational dynamics of
a rigid body, while the Euler’s equation provides the rotational one. The two equations
are written as follows:

FB = m
1
ωB ∧ VB + V̇B

2
(5.4)

MB = I · ω̇B + ωB ∧ (I · ωB) (5.5)

where FB = [Fx, Fy, Fz]T is the vector containing the total force applied to the aircraft
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in body frames, m is the mass of the aircraft, I is the diagonal inertia matrix, and
MB = [Mx,My,Mz]T is the vector containing the total torque applied to the body in
body frame. The I matrix is defined as follows:

I =

Ix 0 0
0 Iy 0
0 0 Iz


where Ix, Iy, and Iz are the moment of inertia along the three body axes. Note that I
matrix is assumed to be diagonal due to the symmetry of the quadcopter’s frame with
respect to the body reference system.

The 6DOF quadcopter dynamics can be obtained by the following system:

Fx = m (u̇+ qw − rv)
Fy = m (v̇ + pw + ru)
Fz = m (ẇ + pv − qu)
Mx = ṗIx − qrIy + qrIz

My = q̇Iy + prIx − prIz
Mz = ṙIz − pqIx + pqIy

(5.6)

It should be noted that all quantities in Eq. 5.6 are expressed in the body frame. To
express the position and the attitude of the quadcopter in the inertial reference system
(NED), kinematics equations in Eq. 5.3 have to be considered.

5.2.3 Forces and Moments
The vector FB = [Fx, Fy, Fz]T contains the total forces applied to the quadcopter along
the three body axes and it is given by:

FB = mgRT · êz − Ftê3 (5.7)

where êz is the unit vector in the inertial z-axis, g is the gravitational acceleration, and
Ft is the module of the total thrust provided by the four motors. Note that the forces
due to the wind or other disturbances are neglected in this treatment. The module of
the total thrust provided by the four motors can be written as:

Ft = T1 + T2 + T3 + T4 (5.8)

where T1, T2, T3, T4 are the values of the thrust of each motor.
The vector MB = [Mx,My,Mz]T contains the total torques applied to the quad-

copter in the body frames and it is given by:

MB = τB + gm (5.9)
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where τB = [τx, τy, τz]T is the vector containing the control torques provided by the
quadcopter’s motors, and gm = [gmx, gmy, gmz]T is the vector containing the gyroscopic
torques caused by the combined rotation of the four rotors and the aircraft body. Note
that torques due to the wind or other disturbances are neglected in this treatment.
The vector τB is found referring to Fig. 5.4:


τx = (T1 − T2 − T3 + T4)Lsin(θ)
τy = (T1 + T2 − T3 − T4)Lcos(θ)
τz = −C1 + C2 − C3 + C4

(5.10)

where L is the length from the rigid body’s center of gravity to the motors, θ is defined

Figure 5.4: Top view of the quadcopter

as in Fig. 5.4, and C1, C2, C3, C4 are the contrast torques provided by each rotor.
The vector gm is given by the following relation:

4Ø
i=1

Jp (ωB ∧ ê3) (−1)i+1 Ωi (5.11)

where Jp is the moment of inertia of the propellers, ê3 is the unit vector in the body
z-axis, and Ωi is the angular rate of the ith rotor.
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5.2.4 Linearized model
The mathematical model of the quadcopter can be descried by the following non-linear
system:

ẋ = w [s(φ)s(ψ) + c(φ)c(ψ)s(θ)]− v [c(φ)s(ψ)− s(φ)c(ψ)s(θ)] + u [c(ψ)c(θ)]
ẏ = v [c(φ)c(ψ) + s(φ)s(ψ)s(θ)]− w [c(ψ)s(φ)− c(φ)s(ψ)s(θ)] + u [c(θ)s(ψ)]
ż = w [c(φ)c(θ)]− u [s(θ)] + v [c(θ)s(φ)]
φ̇ = p+ r [cos(φ)tan(θ)] + q [sin(φ)tan(θ)]
u̇ = rv − qw − gsin(θ)
v̇ = pw −−ru+ gsin(φ)cos(θ)
ẇ = qu− pv + gcos(θ)cos(φ)− Ft
θ̇ = q [cos(φ)]− r [sin(φ)]
ψ̇ = r cos(φ)

cos(θ) + q sin(φ)
cos(θ)

ṗ = Iy−Iz

Ix
rq + τx

Ix

q̇ = Iz−Ix

Iy
pr + τy

Iy

ṙ = Ix−Iy

Iz
pq + τz

Iz

(5.12)

where the first six equations are kinematic relations, while the other six equations
describe the translational and rotational dynamics.

To develop a controller algorithm, a linearized model is needed to easily obtain the
eigenvalues that give information about the stability and the dynamics of the system.
A linearized model can be used as well to obtain the frequency-domain form of the
system to analyze its dynamics through the Bode diagrams.

Assuming small Euler angles and linearizing around an equilibrium point, the system
in Eq. 5.12 can be written in this form:

ẋ = u

ẏ = v

ż = w

φ̇ = p

θ̇ = q

ψ̇ = r

u̇ = −gθ
v̇ = gφ

ẇ = −Ft

m

ṗ = τx

Ix

q̇ = τy

Iy

ṙ = τz

Iz

(5.13)
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Note that to linearize the model, it is assumed that Mx, My, and Mz are due only to
torques generated by motors along the three body axes.

Once a linear model of the quadcopter dynamics is obtained, the system can be
written in the state-space form as follows:I

ẋ(t) = Ax(t) +Bu(t)
y = Cx(t)

(5.14)

where x(t) = [x, y, z, φ, θ, ψ, u, v, w, p, q, r]T is the state vector, u(t) the control signal,
y(t) the controlled output, A the state matrix, B the input matrix and C the output
matrix. This form is useful to obtain informations about quadcopter dynamics, and
tune controller parameters (see 5.3 section).

Before defining A, B, and C, some considerations have to be done. As discussed in
chapter 3 the micro-controller is able to perform control actions by assigning to STM-32
board’s PINs some variables which store the pulse width of the PWM signal. This allows
motors to change the rotors’ speed according to control efforts. Therefore, the control
signal u(t) of the state-space representation (Eq. 5.14) should be the pulse length of
the PWM signal itself. It should be noted that the linearized model introduced in Eq.
5.13 needs as input the control torques provided by propellers and not the pulse length
of the signal. Such a model is useless to identify controller parameters for the developed
Flight Controller. Thus, a model able to convert the PWM signal for each motor into
torques applied to the quadcopter is needed, so that the controller parameters can be
found uniquely among the simulation model and the Flight Controller software.

Considering Fig. 5.4, it is possible to find a relation between the control torque
components τx, τy, τz, and the variation of the thrust vector defined as
∆T = [∆Tx,∆Ty,∆Tz]: 

∆Tx = τx

4Lsin(θ)
∆Ty = τy

4Lcos(θ)
∆Tz = τz

4

(5.15)

The variation of the thrust vector ∆T has as first component (∆Tx) the variation of the
thrust required by each motor to provide the quadcopter with a control torque along
the x-body axis (τx), as second component (∆Ty) the variation of the thrust required
by each motor to provide the quadcopter with a control torque along the y-body axis
(τy), and as third component (∆Tz) the variation of the thrust required by each motor
to provide the quadcopter with a control torque along the z-body axis (τz).
Afterwards, a relation between the pulse width
∆PWM = [∆PWMx∆PWMy∆PWMz] and the thrust variation vector ∆T needs
to be found to finally have as control input of the system the pulse width of the
PWM signal. For this purpose some experimental tests are carried out to find the
thrust provided by one of the motors with respect to the pulse width of the PWM
signal. After collecting these data, a linear interpolation can be performed and a linear
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relation can be found:
∆T = n∆PWM (5.16)

where n is the slope of the linear relation between the thrust of each motor T and the
pulse width of the PWM signal ∆PWM . Thus, the control torque components can be
found with respect to the pulse width as follows:

τx = 4nLsin(θ)∆PWMx

τy = 4nLcos(θ)∆PWMy

τz = 4n∆PWMz

(5.17)

Substituting the Eq. 5.17 in the linearized system of Eq.
refeq:lin, the rotational dynamics of the quadcopter can be written with respect to the
pulse width variation as follows:

ẋ = u

ẏ = v

ż = w

φ̇ = p

θ̇ = q

ψ̇ = r

u̇ = −gθ
v̇ = gφ

ẇ = −Ft

m

ṗ = 4nLsin(θ)∆PWMx

Ix

q̇ = 4nLcos(θ)∆PWMy

Iy

ṙ = 4n∆PWMx

Iz

(5.18)

Now the state-space model can be defined properly:

A =



0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 −g 0 0 0 0 0 0 0
0 0 0 g 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
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B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
− 1
m 0 0 0

0 4nLsin(θ)
Ix

0 0
0 0 4nLcos(θ)

Iy
0

0 0 0 4n
Iz


and C = I12, u(t) = [Ft,∆PWMx,∆PWMy,∆PWMz, ]T is defined as the control
input as desired. I12 ∈ R12,12 and it is the identity matrix.

5.3 Control Algorithms
Due to intrinsically instability of the quadcopter configuration, a control algorithm
needs to be implemented to control the rotor’s speed, allowing the quadcopter to per-
form the auto-stabilizing flight or following signals from a transmitter. The quadcopter
dynamics is simulated through the mathematical model developed in the last sec-
tion and two different controllers are tested. In this section the Proportional-Integral-
Derivative and the Linear Quadratic Regulator controller are both introduced and in
the next section they will be implemented and compared.

5.3.1 PID controller
The Proportional-Integrative-Derivative controller is the most common feedback con-
troller for several applications. It is described by the following equation:

u(t) = KPe(t) +KI

Ú t

0
e(t)dt+KD

de(t)
dt

(5.19)

defining y(t) as the measured process variable and ysp(t) as the reference variable, u(t)
is the control signal and e(t) = ysp(t)− y(t) is the control error. The reference variable
is often called the set-point and represents the signal to be tracked by the plant. The
control signal is thus a sum of three terms: the P-term (which is proportional to the
error), the I-term (which is proportional to the integral of the error), and the D-term
(which is proportional to the derivative of the error) (Fig. 5.5) [39]. The controller
parameters are the proportional gain KP , the integral gain KI , and the derivative gain
KD.
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Figure 5.5: PID controller scheme

5.3.2 Wind-up and high-frequency noises
Some issues are introduced by the integral and derivative component of a PID controller
and they have to be fixed to obtain a stable response to disturbances and commands.
Wind-up is a non-linear phenomenon that occurs when actuators saturate. In PID
controllers, the wind-up phenomenon occurs when the amount of the error increases,
so the integral contribute increases as well. When this happens, the plant operates
in open-loop dynamics, because actuators that are saturated can not perform control
action. This could be very dangerous, especially for a quadcopter that is intrinsically
unstable in open-loop dynamics. Another issue introduced by PID controllers is related
to the derivative contribute. Since the derivative contribution is related to the variation
of the error, high-frequency noises from sensors would largely increase the derivative
contribution, introducing instability in the response. This appears clear looking at the
Bode diagram of the s transfer function (Fig. 5.6) which is used to differentiate the er-
ror signal: at high frequencies the module goes to infinity, explaining how sensitive the
differentiator is at high frequency. There are several ways to overcome these issues and
they consist of algorithms for wind-up issues and filtering for noises. There are several
anti-wind-up methods such as back-calculation, observer approach, and many others
described in [40]. They mainly consist of algorithms that set to zero integrative con-
tribution when a condition is verified. Also, adaptive methods have been implemented
for some applications.

As concerns noises, input signals to the differentiator use to be filtered by a low pass
filter avoiding high frequency noises. Typically, a first-order low pass filter is employed
and it is more than enough for most applications.
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Figure 5.6: Bode magnitude of G(s) = s to show differentiator high sensitivity at high
frequencies
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5.3.3 LQR controller
The Linear Quadratic regulator controller is based on an algorithm to find a control
signal u(t) that minimizes a cost function. The problem consists of finding a linear
control law of the type,

u(t) = −Kx(t) (5.20)

where K is the feedback gain-matrix. To find the control signal u(t) that minimizes
the cost function, the performance index (PI) is introduced:

J(x,u) = 1
2

Ú ∞
0

1
xTQx+ uTRu

2
dt (5.21)

Substituting Eq. 5.20 into Eq. 5.21 yields:

J(x,u) = 1
2

Ú ∞
0
xT

1
Q+KTRK

2
dt (5.22)

The feedback gain matrix K has the form,

K = R−1BTP (5.23)

where P is the solution of algebraic Riccati equation given in Eq. 5.24:

ATP + PA+Q− PBR−1BTP = 0 (5.24)

whereQ ≥ 0,R > 0, P ≥ 0 are symmetric, positive definite and semi-positive matrices
respectively defined as the state and control weighting matrices,

Q = diag [Q1, Q2, ..., Qns] (5.25)

R = diag [R1, R2, ..., Rna] (5.26)

ns is the number of the states while na is the number of actuators.
K matrix is found in MATLAB by the lqr function that solves algebrical Riccati Eq.
5.24,

K = lqr(A,B,Q,R) (5.27)
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Figure 5.7: LQR controller scheme

Figure 5.8: Implementation of the model in Simulink environment

5.4 Model Implementation
MATLAB and Simulink are used to implement the simulation model based on quad-
copter dynamics described above (Fig. 5.8).

It mainly consists of the following blocks:

• Controller: provides the motors with the PWM signal to follow the set-point signal
from the receiver.

• DC motor: introduces DC motor’s dynamics.

• Plant: simulates quadcopter dynamics.

The Controller and Plant blocks have been discussed in previous sections 5.3 5.2. DC
motors are simulated by a first order transfer function to introduce in the model delays
due to DC motors dynamics:

PWMreal = 1
τs+ 1PWM (5.28)
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where τ is the time constant assumed to be 0.02 s.

The thrust coefficient n and the moments of inertia of the drone are evaluated
experimentally in App. A and they are given as input to the simulation model.

The linearized model shown in Eq. 5.18 and its state-space representation is used
to set controller parameters and find the gain matrix K of LQR controller introduced
in 5.3.3.

5.5 Simulation results
In this section simulation results about roll, pitch, and yaw response to commands
are shown. PID and LQR controller parameters are tuned to obtain a fast response
to commands with a low overshoot and a zero steady-state error. In the Table 5.1,
controller’s performance are compared. The controller parameters used for PID and
LQR design are shown in App. B. Both the controllers perform a satisfactory step
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Figure 5.9: Roll response to a step command

response for the quadcopter. This controller design shows that the LQR controller
performs quite better than the PID, because of the lower rising and settling time for
all three axes.

Note that, as opposed to the roll and pitch angle, the yaw attitude is controlled by
acting on the yaw rate r. This is done because a quadcopter is usually controlled by
commanding a yaw rate from the transmitter. Since a quadcopter often needs to spin
around itself, it is more intuitive to the pilot to command a yaw rate than an angle
from the stick of the transmitter. Actually, some quadcopters are driven commanding
an angular rate even for the roll and pitch angle. However, in this work, it is preferred
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Figure 5.10: Pitch response to a step command
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Figure 5.11: Yaw rate response to a step command

to drive the drone by commanding angles for the roll and pitch dynamics, and yaw
rates for the yaw.

In Fig. 5.12 and Fig. 5.13, commands sent to the drone from a transmitter during
a flight test are given as input to the model. These results confirm that the LQR
controller enables the drone to perform roll and pitch maneuver properly. Controller
parameters used in the simulation environment are tested during flight tests with good
results. Although during flight tests another tuning has been performed to obtain better
performance, the controller parameters identified by the simulation model results to
be very useful for the final design.
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Time Specifications Roll Pitch Yaw

Rising Time PID 0.71 s 0.75 s 0.51 s
Rising Time LQR 0,66 s 0.58 s 0.34 s
Settling Time PID 0.98 s 1.04 s 0.67 s
Settling Time LQR 0.97 s 0.81 s 0.48 s
Overshoot PID 0% 0.01% 0%
Overshoot LQR 0% 0% 0%

Table 5.1: Roll, pitch, and yaw: step response performance
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Figure 5.12: Roll response to commands
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Figure 5.13: Pitch response to commands
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Chapter 6

Hardware components

In this chapter, hardware components built on the developed Flight Controller and their
specifications are introduced. After soldering all components, the Flight Controller is
realized and a schematic shows all connections and components arrangement on the
PCB.

6.1 Introduction
To develop a Flight Controller for a rotary-wing UAVs, a micro-crontroller is pro-
grammed to elaborate information from sensors and manage signals from the trans-
mitter. Also, a micro SD card is used for data logging during flight and an SD card
adapter allows to write flight data on the card. Hardware components implemented on
the developed Flight Controller are:

• Arduino STM-32F103C8T6 microcontroller

• MPU-6050 gyroscope/accelerometer

• FlySky Fs-i6 transmitter and receiver

• GNSS/GPS module

• SD card adapter

6.1.1 Arduino STM-32
The STM32F10xxx is a family of microcontrollers with different memory sizes, pack-
ages, and peripherals [34]. As seen in section 1.3, STM-32 series of micro-controller
is largely employed in commercial Flight Controller. For this reason, it is chosen to
develop the Flight Controller on this board.
The STM-32F103C8T6 (Fig. 6.1), aslo known as blue pill, houses a 5V to 3.3 V voltage
regulator. The MCU operates at 3.3 V but most of its GPIO PINs are 5 V tolerant.
It is a 32 bit ARM architecture and "F103" stands to indicate the ARM Cortex M3
architecture. In Table 6.1 its specifications are shown [34].
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Figure 6.1: STM-32F103C8T6 board

STM-32F103C8T6
CPU Frequency 72 MHz
Number of GPIO PINs 32
Number of PWM pins 12
Analog input PINs 10 (12-bit)
USART Peripherals 3
I2C Peripherals 2
SPI Peripherals 2
Flash Memory 64 KB
RAM 20kB

Table 6.1: STM-32F103C8T6 specifications
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To program the STM-32 from Arduino IDE, an Ft232rl FTDI adapter is used (Fig.
6.2). In Fig. 6.3 the STM-32 pinout is shown [41].

Figure 6.2: Ft232rl FTDI adapter

Figure 6.3: STM-32 Pinout

6.1.2 MPU-6050
The MPU-6050 (Fig. 6.4) [42] is a sensor based on Micro Electro Mechanical Systems
(MEMS) technology. Both accelerometer and gyroscope are included in the sensor
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which makes use of the I2C communication protocol to interface microcontroller, such
as Arduino boards. It provides also a temperature sensor and it can be easily interfaced
with a magnetometer. Its PINs are shown in Fig. 6.4.

• SCL: is the I2C serial clock.

• SDA: is the I2C serial data pin.

• XDA: is the I2C master serial data pin. This pin is used for connecting external
sensors.

• XCL: is the I2C master serial clock. This pin is used for connecting external
sensors.

• AD0: is the I2C slave address LSB pin.

• INT: is the interrupt digital output pin

As it will be shown in Fig. 6.9, only SCL, SDA, and power supply is needed to enable the
communication between the MPU-6050 and STM-32 board. MPU-6050 specifications
are summarised in Table 6.2 [31].

Figure 6.4: MPU-6050 gyroscope/accelerometer MEMS
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MPU-6050
ADC 16 bits
FIFO buffer 1024 byte
Gyroscope range ±250, ±500, ±1000, ±2000°/sec
Accelerometer range ±2g, ±4g, ±8g,16g
Communication protocol 400 KHz fast mode I2C
Operating power supply 3-5 V

Table 6.2: MPU-6050 specifications

6.1.3 FlySky Fs-i6

In this work, a FlySky Fs-i6 transmitter and receiver (Fig. 6.6) [43] is employed to send
commands and drive the drone. The transmitter has six channels and four switches and
a power input of 6 V DC. The receiver is able to manage PPM signals if the transmitter’s
settings are changed from the default ones. The transmitter also provides a low voltage
alarm in case the voltage is less than 4.2 V. In Tables 6.3 and 6.4, transmitter and
receiver specifications are summarized.

Figure 6.5: FlySky Fs-i6 transmitter and receiver
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FlySky Fs-i6 transmitter
Channels 6
RF range 2.405-2.475GHz
Bandwidth 500KHz
Band 142
RF power less than 20dBm
Sensitivity 1024
Weight 392g

Table 6.3: FlySky Fs-i6 transmitter specifications

FlySky Fs-i6 receiver
Channels 6 Channels PWM PPM i-Bus
Frequency range 2.4–2.48GHZ
Band width number 140
Transmitting power not moer than 20dBm
RX sensitivity -105dBm
Antenna length 26mm
Input power 4.0-6.5V DC
Dimension 40 * 21 * 7mm
Weight 6.4g

Table 6.4: FlySky Fs-i6 receiver specifications

6.1.4 GNSS/GPS module
An u − blox GNSS module from the NEO-M8 series is used in this work. As said in
section 4.2, this module is able to provide concurrent receptions of up to three GNSS
signals (GPS, Galileo, GLONASS, BeiDou) and it also features a compass module.
The module used in this work is the NEO-M8M which is cost-effective, while other
modules such as the NEO-M8N and NEO-M8Q provide better performance and easier
RF integration. Some of the main features of the NEO-M8M module are collected in
Table 6.5.
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Figure 6.6: ublox NEO-M8M module

ublox NEO-M8M
Sensitivity -167 dBm
Update rate single GNSS up to 18 Hz
Update rate 2 concurrent GNSS up to 10 Hz
Position accuracy 2.0 m
Memory ROM
Oscillator Crystal
Supported Antennas Active and passive
Power supply 1.65 V to 3.6 V
Operating temp. -40 to +85

Table 6.5: u-blox NEO-M8M specifications

6.1.5 SD card adapter
A micro SD card is used to log data during flight. The STM-32 board is enabled to
create a test file by communicating with an SD card adapter shown in Fig. 6.7 [44].
Such an SD card adapter makes use of Serial Peripheral Interface (SPI) communication
to interface the STM-32 board. A pins overview follows:

• MISO: is SPI output from the Micro SD Card Module.

• MOSI: is SPI input to the Micro SD Card Module.
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• SCK: accepts clock pulses which synchronize data transmission generated by Ar-
duino.

• CS: is used by Arduino (Master) to enable and disable specific devices on SPI
bus.

It is used a 2 GB SD card (Fig. 6.8), which is more than enough to collect flight data.
Then, graphics can be obtained post-processing these data though a Matlab script.

Figure 6.7: SD card adapter used to interface STM-32 board

Figure 6.8: 2 GB micro SD card used to log filgh data

6.2 Hardware connections
In this section, a detailed schematic of the developed Flight Controller is provided (Fig.
6.9). Thick lines represent low current wirings while thick lines represent high current
ones. Then, dots are used to represents connections between two or more wirings.
Finally, all hardware components are soldered on a Printed Circuit Board (PCB).
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Figure 6.9: Flight Controller schematic
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Chapter 7

Experimental results

In this chapter, the test bench used to test the developed Flight Controller is shown
and its limitations introduced. Therefore, experimental results about roll and pitch re-
sponses to commands collected on the bench and during flight tests are shown. Finally,
a comparison between results obtained from the simulation model developed in section
5, and experimental data collected during flight is shown.

7.1 Test bench

Before testing the Flight Controller during flight, a test bench is realized to tune
controller parameters and verify that the auto-stabilizing flight was performed properly.
This phase, allowed to reduce tuning times and avoided damaging the drone or the flight
controller itself during first tests.

In Fig. 7.1 the test bench is shown: it consists of a joint fixed on a plywood plate
where the drone can be engaged on. Therefore, the drone is allowed by the joint to
perform only pitch, roll, and yaw, so that tests about the auto-stabilizing can be per-
formed properly and safely. Since tests are carried out in a laboratory, small propellers
shown in Fig. 7.1 are used to be safe during the first tests. Despite the small size of
propellers, the Flight Controller can perform the auto-stabilizing properly and, after
some tunings, a good reaction to disturbances is obtained. However, the test bench
results to be unbalanced and asymmetric: this introduces a large disturbance for the
drone, which is not able to balance itself with such small propellers when maneuvers
are commanded. It should be taken into account also the frictions introduced by the
joint, which could be not negligible especially for the yaw control. Another effect to
take into account is the ground effect: it is surely of another order of magnitude with
respect to the other effects introduced by the joint, but since small propellers are used,
it could affect the response quite enough to introduce instability. Therefore, propellers
used in flight tests are built on the drone, and controller parameters are tuned again.
In this phase, a small amount of current is given to motors to be safe, so again results
can not be reliable.
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(a) (b)

(c)

Figure 7.1: Pictures of the quadcopter on the test bench and the FlySky-fsi6 transmitter

7.1.1 Auto-stabilizing
In Fig. 7.2, results about the auto-stabilizing performed on the test bench described
above are shown.
The throttle is fixed at approximately half of the maximum value of the transmitter,
and the LQR controller performs the auto-stabilizing. As explained above, tests on
the bench are performed with small propellers to be safe. Therefore, when small errors
between attitude signals from sensors and references occur, the thrust of each motor
can’t be enough to bring the drone back to exactly 0° for both roll and pitch. However,
the error is quite small: approximately 0.5° for roll and 0.7° for pitch.

As discussed before, the joint on the bench introduces some effects that disturb a lot
of the drone’s dynamics, such as frictions, asymmetries, and ground effects. It should
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be considered that in this phase data have been collected from the serial port and a
wire was necessary to connect the Flight Controller to the USB port of a PC. The
wire introduces some other disturbances especially for the yaw control, because of the
small control torque that can be generated by the motor’s spin. Telemetry for wireless
communication has been considered in this phase but it was rejected because of the
small baud rate that can be achieved. Actually, it becomes computationally expensive
writing variables on the serial port and this will increase of an order of magnitude the
software working frequency. Therefore, results wouldn’t be reliable as the software will
be executed at 400 Hz frequency during flight. Despite all disturbances introduces by
the test bench, results about the auto-stabilizing are satisfactory.
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Figure 7.2: Test on the bench: roll and pitch angle during auto-stabilizing without
commands or disturbances

7.1.2 Response to commands
Some tests about roll and pitch response to commands are also performed, and results
are shown in Fig. 7.3.
These results are more and more affected by disturbances due to the joint and, during
pitch and roll maneuvers, the drone encounters some issues in controlling yaw angle too.
This is caused by the asymmetries introduced by the joint that unbalance the drone.
Thus, motors are required to provide more thrust, and when saturation occurs, they
will not be able to control the drone’s attitude anymore. Of course, it is also caused by
small propellers that are not capable to control the drone if such a disturbance due to
joint asymmetries occurs. However, results about pitch and roll angles demonstrate a
fast response of the drone to the commands: despite some overshoots, the drone results
to be controllable thanks to its fast response to commands. These results encourage
to start flight tests and collect flight data without all disturbances introduced by the
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joint and wirings. Also, bigger propellers are used during flight tests, so another tuning
of the controller parameters is performed.
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Figure 7.3: Test on the bench: roll and pitch response compared to reference signal
(set-point)

7.2 Flight tests and results
In this section results collected during flight tests are shown. Using as a starting point
the design tested on the simulation model, LQR controller parameters are tuned again
to obtain better performances. Two flight tests are performed and two different LQR
designs are implemented on the Flight Controller. Referring to the Table B.3, the graph
of Fig. 7.5 refers to "Flight Test 1", while the graphs of Fig. 7.6 and Fig.7.7 refer to
"Flight Test 2". The two designs differ on the first component of the Q matrix: this
is done to increase the rising time of the roll response and to make the drone more
controllable.

Due to the presence of the battery, pitch maneuvers are less accurate than roll
ones, especially as regards the steady-state error. Indeed, the battery increases the
moment of inertia with respect to the yb axis and can introduce asymmetries in the
mass distribution of the quadcopter.

However, results are satisfactory and the command is tracked properly by the quad-
copter. The rising time is estimated to be about 0.6 s for both roll and pitch angles,
as expected from the simulation model (see Table 5.1).

78



7 – Experimental results

Figure 7.4: Picture of the quadcopter and Flight Controller before flight tests
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Figure 7.5: Flight test: roll and pitch response compared with commands
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Figure 7.6: Flight test: roll and pitch response compared with commands
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Figure 7.7: Flight test: roll and pitch response compared with commands
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Figure 7.8: A picture of the drone during flight tests
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7.3 Comparison between flight tests and simulation
results

In this section results obtained from the simulation model are compared to flight tests
data. Commands given from the transmitter during flight tests are stored in a Matlab
vector, which is given as input to the simulation model.

In Fig. 7.9, the experimental and simulation data are compared with satisfactory
results. As regards to roll angle, the error between the simulation results and the flight
data is minor than 3° for almost the whole flight test. The error increases when fast and
great amplitude commands are sent to the drone, but it remains minor than 5°, except
for some peaks. It can be seen that the roll angle matches better the experimental
data than the pitch angle: the reason can be identified considering that probably the
IMU is not built on the drone at exactly 0◦, hence the true pitch angle could be
closer to the simulation results. Also, it is supposed that the battery is not placed
exactly symmetrically with respect to the drone’s body axes, instead of it is assumed
in the simulation model. However, the matching remains satisfactory, and the developed
model can be useful to preliminary set controller parameters and test the controller’s
performance in a simulation environment. In Table 7.1, the rising time for roll and
pitch angles evaluated from simulation results and flight tests is shown. All other
step response performance, such as overshoot, steady-state error, and settling time
are not evaluated: in fact, appropriate tests have to be carried out to evaluate these
quantities properly. However, as regards to quadcopters, the rising time represents
the most demanding time specification to make the drone controllable. Even with
a non-zero steady-state error, the drone would perform maneuvers properly and it
would be easily controllable. From this comparison, the model is found to be accurate
for the rising time approximation: with respect to the predictions of the model, the
experimental data show an error of about 0.1% for roll and 0.05% for pitch dynamics.

Simulation Results Flight Tests

Rising Time Roll 0.69 s 0.62 s
Rising Time Pitch 0.6 s 0.57 s

Table 7.1: PID parameters used in the simulation model
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(a) Roll angle
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(b) Pitch angle

Figure 7.9: Comparison between flight data and simulation results
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Chapter 8

Conclusions and future works

UAVs are getting more and more involved in several applications, and many companies
are investing in drones to improve their activities. These vehicles play already a key
role in agriculture activities, police service, and surveying, and in less than ten years
UAVs could be largely employed for delivering too.

A Flight Controller is the hardware component that ensures flight stability and
allows UAVs to perform maneuvers receiving data from sensors and controlling motors.
The control algorithm implemented in the Flight Controller’s software drives motors in
order to follow a reference signal given from a transmitter or a ground station. Flight
performance are associated with the control algorithm efficiency and many researchers
have been working for last years to improve UAV’s flight stability by testing more and
more advanced control strategies.

Open-source Flight Controllers are platforms that can be modified in software and
in hardware components too. They represent the best solution for the research activity
because their software is fully accessible by the users and it can be modified according
to the costumer’s needs. By accessing the code, not only the control algorithm but also
navigation and guidance algorithms, sensor fault detection and many other functions
can be implemented to improve UAVs’ reliability and extend their applications.

In this thesis, the software of an open-source Flight Controller for a quadcopter is
developed and tested on an Arduino STM-32 micro-controller. Flight tests are per-
formed, and experimental data show the capability of the developed Flight Controller
to perform properly the auto-stabilizing and the maneuvers during flight.

An IMU is developed to provide the Flight Controller with the drone’s attitude
and a complementary filter is used to perform the sensor fusion between a gyroscope
and an accelerometer. Thanks to the 400 Hz refresh frequency of the software, the
Flight Controller provides a fast response to disturbances and commands. To identify
the controller design, the most common procedure for the quadcopters is based on
experimental tests. For this reason, the PID controller is largely used due to its easy
implementation and tuning. Moreover, tuning controller parameters during flight tests
could be dangerous for the drone and the hardware components on board. Also, a
model-based approach is preferred when more advanced control algorithms have to be
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implemented. Instead of the most common PID controller, an LQR control algorithm is
implemented and tested with satisfactory results. A simulation model of the quadcopter
is provided, and experimental tests are carried out to find the thrust provided by each
propeller and the drone’s moments of inertia. From the comparison of the simulation
results and the data collected during flight tests, the simulation model is found to be
enough accurate to preliminary design a control algorithm in a simulation environment.
Especially as regards the rising time, the model approximates the experimental data
with an error no larger than 0.1% for the roll and pitch dynamics. In light of this, a
model-based approach can be followed in future works to test new control algorithms
and improve flight performance. In fact, once the controller has been tested in the
simulation model, a C/C++ code can be generated and implemented directly on the
Flight Controller. In order to improve the reliability of the model, other quantities can
be experimentally measured in future works (i.e. rotor’s torque, and motor’s constant).

The developed Flight Controller is also capable of communicating with an u− blox
GNSS/GPS module, even if the receiver is not yet included in the Flight Controller’s
circuit. However, in future works, the GNSS/GPS module will be connected to the
Flight Controller and a control algorithm could be implemented to perform position
control and autonomous flight.

With the task of making the quadcopter as autonomous as possible during flight, the
altitude hold or the obstacle avoidance function can be implemented in future works,
accessing the code and adding new sensors to the PCB.
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Appendix A

Experimental measurements

In chapter 5, a simulation model of the quadcopter is introduced: the model aims at
simulating the quadcopter dynamics, thus some experimental values such as moments
of inertia of the drone and the thrust provided by the propellers need to be evaluated.
In this appendix, two different test benches are used to evaluate the thrust provided
by one of the propellers and the quadcopter’s moments of inertia.

The thrusts of the propellers is evaluated through the software provided by RCBench-
mark company, while the moments of inertia are measured with a procedure involving
a pendulum built in the laboratory.

A.1 Propeller’s thrust measurements
Experimental data about the propellers are collected and interpolated to find a relation
between the PWM pulse width and the thrust provided by the propeller. Referring to
Eq. 5.16, a linear relation is supposed. Experimental tests are carried out to:

• verify that a linear relation can be assumed with a good approximation

• find the n value of Eq. 5.16 to perform the conversion from PWM pulse width to
thrust.

The RCBenchmark Series 1520 Thrust Stand (Fig. A.1) is a small size propeller test
stand, and it is used in this thesis to collect data about the quadcopter’s propellers
[45]. By communicating with an USB interface, this device is able to record the thrust
provided by the propeller, the RPM, and other quantities (i.e. voltage and current to
motors) with respect to the pulse width of the PWM signal. RCBenchmark provides
dedicated software to collect these data with respect to the PWM pulse width, which
can be changed directly by the software. Data are automatically stored in an Excel file
and can be analyzed properly.

As said above, the stand is used to obtain the propeller’s thrust, so other data are
not collected. In Fig. A.2 the test bench is shown: the motor is fixed on the stand
and an ESC is connected to the three PINs of the RCBenchmark. Tests have been
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performed outside to be safe and to reproduce similar atmospheric conditions during
flight tests.

Figure A.1: RCbenchmark Series 1520 Thrust Stand [45]

(a) (b)

Figure A.2: Pictures of the thrust stand to collect experimental data abut propellers’
performance
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Data collected during experimental tests are shown in Fig. A.3. A linear relation is
found to be a satisfactory approximation for the collected data. Data are interpolated
by a first-order polynomial using polyfit and polyval MATLAB function. Finally, the
linear relation between PWM pulse width and the thrust of one propeller is found:

T = nPWM + q (A.1)

where n = 0.010757 N
µs and q = −10.784300 N . Therefore, the n value obtained from

the interpolation of the experimental data can be substituted in Eq. 5.16 to convert a
PWM pulse width variation in a thrust variation, as explained in section 5.2.4.
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Figure A.3: Interpolation of experimental data

A.2 Moments of inertia measurements
The methodology described in [46] is applied to measure the quadcopter’s moments of
inertia with respect to xb and yb axes, that are respectively identified by Ix and Iy. Iz
is not evaluated in these tests because the model aims to give a model-based design
approach only for pitch and roll dynamics, which are actually the most critical ones.
Since other measurements should be taken for yaw dynamics, the yaw control design
is found experimentally by flight tests. However, in future works, physical quantities
related to yaw dynamics will be measured too.

The test bench consists of a pendulum where the drone is built on at the extremity
(Fig. A.4). By referring to [46], the kinetic and potential energy of the pendulum can
be found, and applying the Lagrangian equation the moment of inertia of a body built
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on the extremity of the pendulum can be found by Eq. A.2:

I = T 2

4π2

3
m1g

l1
2 +mg(l1 + d)

4
− m1l

2
1

4 −m (l1 + d)2 − Irod (A.2)

where I is the moment of inertia of the drone, T is the period of oscillation, m1 is
the rod mass, l1 is the distance between the joint and the Center of Gravity (CoG) of
the rod, d is the distance between the CoG of the bar and the CoG of the drone, and
Irod is the rod’s moment of inertia with respect to the rotation axis of the pendulum.
The period of oscillation is measured by changing the orientation of the quadcopter: to

Figure A.4: Pendulum used to measure Ix and Iy

measure Ix the xb axis of the drone has to be perpendicular to the rod, and the same
can be said for Iy and Iz. The measured periods are: TIx = 1.880 s for Ix and
TIy = 1.876 s for Iy. By using Eq. A.2, the drone’s moments of inertia are found:
Ix = 0.0231 Kgm2 and Ix = 0.0282 Kgm2. The small difference between the two
moments of inertia is caused by the asymmetry of the drone: in fact, the battery and
some hardware devices built on the drone increase Iy.
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Appendix B

Controller parameters

In this appendix controller parameters for PID and LQR design are shown. Although
numerical methods exist to determine PID and LQR parameters, in this work a trial
and error approach is preferred. In fact, the simulation model used to preliminary tune
the controller parameters have been validated after performing flight tests. It is worth
noting that, as explained in previous chapters, this thesis doesn’t follow a model-based
approach. An experimental approach has been preferred and the simulation model is
developed just to identify approximately the controller parameters to use during flight.

B.1 PID design
The PID controller is tuned by changing the value of the proportionalKP , the derivative
KD, and the integrative component KI . In Table B.1, the effect of each parameter
on the response is shown: referring to this table, the PID parameters are identified
following a trial and error approach.

The PID controller is tested only on the simulation model developed in section 5.
The parameters used to obtain results shown in section 5.5 are collected in Table B.2
Roll and pitch parameters are different because the moments of inertia Ix and Iy

Rise Time Overshoot Settling Time Steady State Error Stability
KP ↑ decrease increase small increase decrease degrade
KI ↑ small decrease increase increase large decrease degrade
KD ↑ small decrease decrease decrease minor change improve

Table B.1: How PID parameters affect the plant dynamics

are different as well. The derivative component KD of the pitch dynamics is higher
than roll to damp more the pitch response: in fact, because of the higher moment of
inertia due to the battery, the pitch response would show an overshoot with KD = 30.
It should be noted that the integrative component KI is zero for all angles. In fact,
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Roll Pitch Yaw

KP 70 70 130
KD 30 34 0
KI 0 0 0

Table B.2: PID parameters used in the simulation model

the KI component is used to have a zero steady-state error, but in the simulation
model this can be obtained even with KI = 0. Therefore, it is more correct to say
that a PD controller is used for roll and pitch dynamics and a P controller for the
yaw. Indeed, a proportional controller for the yaw is enough to obtain a fast response
without overshoot and a zero steady-state error.

B.2 LQR design
The LQR controller is tuned by adjusting the value of R and Q matrices. In literature,
some methods to identify R and Q matrices have been studied. However, as done for
the PID controller, a trial and error approach is followed. In the following table, the
LQR parameters used for simulation results, and flight tests are shown. With diag[...]
a diagonal matrix is defined, and the values inside the square parenthesis are the ones
of the main diagonal of the matrix. The controller parameters tested on the simulation

Test Q R

Simulation model diag [0.05, 0.07, 0.07, 0.001, 0.001, 0.001] diag [1, 1, 1] 10−6

Flight Test 1 diag [0.05, 0.07, 0.1, 0.001, 0.001, 0.1] diag [1, 1, 1] 10−6

Flight Test 2 diag [0.08, 0.07, 0.1, 0.001, 0.001, 0.1] diag [1, 1, 1] 10−6

Table B.3: LQR parameters

model are very close with the ones used during flight tests to obtain results shown
in section 7.2, beyond the third and sixth components of the Q matrix. This can be
explained considering that the contrast torque provided by motors is not experimentally
found but it is assumed from similar works. For this reason, the simulation model cannot
be reliable on yaw response, thus the LQR parameters for the yaw control are identified
directly during flight tests.
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