
I M P L E M E N TAT I O N A N D C O M PA R AT I V E A N A LY S I S O F
M A C H I N E L E A R N I N G M E T H O D S F O R T H E C L O S E D - L O O P

C O N T R O L O F F L U I D F L O W S

lorenzo schena

S265722

Master of Science in Aerospace Engineering - Aerogasdynamic

Politecnico di Torino - von Karman Institute for Fluid Dynamics

Supervisors:

Politecnico di Torino
prof. S. Pieraccini

von Karman Institute for Fluid Dynamics
prof. M. A. Mendez

F. Pino (PhD)

Apr 2021

Lorenzo Schena: Implementation and Comparative Analysis of Machine
Learning methods for the closed-loop control of fluid flows, S265722, © Apr
2021

To my family and friends, for their unabated support during these years.

A B S T R A C T

The steep ascent of machine learning techniques has also had an im-
pact on fluid mechanics in the past few years. In the light of its great
achievements in solving complex problems, machine learning-based
techniques seem to be a very promising solution to address flow con-
trol problems. Due to its inherent nonlinearities, non-convexity, and
high-dimensionality, it offers a challenge for machine learning meth-
ods that learn by trial and error, such as the cutting-edge technique
known as Deep Reinforcement Learning (DRL). This work aims at
studying the performances of such an approach in three test cases: the
1D linear advection equation, the 1D Burgers equation, and the con-
trol of a von Kàrmàn Vortex Street behind a 2D cylinder at Re=100 (J.
Rabaud et al in [24]). The performance of two machine learning tech-
niques, DRL and Bayesian Optimisation (BO), was assessed. More-
over, a thorough hyperparameters optimisation campaign is carried
out, to find the best tuning for the RL algorithm at stake. Finally, a
benchmark will be carried out, to gain an overview of how machine
learning approaches relate to other optimisation approaches for opti-
mal closed-loop control.

v

A C K N O W L E D G E M E N T S

This Master Thesis project fits inside a broader research topic devel-
oped at the Von Karman Institute (VKI) by my advisor, F. Pino, and
my supervisor, prof. M. A. Mendez. I would like to thank both for
their assistance and their guidance during this Master Thesis project.
Their ingenuity towards ideas inspired me deeply.

I would also extend my sincere thanks to my supervisor at Politec-
nico di Torino, prof. S. Pieraccini, without whom this beatiful experi-
ence at VKI would not have been possible, for her support.

Lastly, I should also thank M. Desmet for his help with the code.

vii

C O N T E N T S

1 introduction 1

1.1 The grand challenge in Closed Loop Control 1

1.2 Framework of this Project 2

1.3 Scope of this work . 3

1.4 Thesis Outline . 4

2 methodologies 5

2.1 From Feedback Control to Reinforcement Learning . . 5

2.2 Machine Learning Background 6

2.3 Neural Networks . 6

2.4 Reinforcement Learning (RL) Basics Definitions 8

2.5 Importance of random seeds in Machine Learning ap-
plications . 13

2.6 Implemented Algorithms 13

2.6.1 Actor - Critic Methods 14

2.6.2 Trust Region Methods (TRM) 14

2.7 Hyper parameters optimisation: Boosting RL or a stan-
dalone alternative? . 17

2.7.1 Problem Statement 18

2.7.2 Bayesian Optimisation (BO) 19

2.7.3 Main Reinforcement Learning Hyper Parameters 22

2.7.4 Changing the Perspective: BO for optimal control 23

2.8 Linear Regression of RL Strategies 24

2.9 Other optimisations techniques: a brief review 25

2.9.1 Nelder-Mead method (or Simplex Method) . . . 25

2.9.2 Lipschtiz functions method 26

3 test cases and implementations 29

3.1 Reinforcement learning with Stable Baselines 29

3.1.1 Custom Callback: dynamically stopping the sim-
ulation . 31

3.2 Hyper Parameters Optimisation with Optuna 32

3.3 Optimizer Implementations 32

3.3.1 Nelder-Mead . 33

3.3.2 Lipschiz functions with Dlib: LIPO 33

3.4 Test case n.1 - Linear advection 34

3.4.1 Environment description 34

3.4.2 Implementations 37

3.5 Test case n.2 - Burgers’ Equation 39

3.5.1 Environment description 39

3.5.2 Implementations 41

3.6 Test case n.3 - von Karman vortex street after a cylinder 51

3.6.1 Environment Description 51

3.6.2 Implementation 52

ix

x contents

4 results 55

4.1 Advection Equation . 56

4.1.1 Neural Network Architecture (NNA) 57

4.1.2 DRL Control Performances 62

4.1.3 Improving the learning performances: Hyper pa-
rameters optimisation 64

4.1.4 Optimising the control action 68

4.1.5 Summary . 70

4.2 Burgers equation . 71

4.2.1 Neural Network Architecture (NNA) 72

4.2.2 DRL control performances 75

4.2.3 Improving the learning performances: Hyper pa-
rameters optimisation 76

4.2.4 Effects of dimensionless parameters on learning
performances . 78

4.2.5 A note on the the reward shape influence 80

4.2.6 Linear Regression of RL Strategies 80

4.2.7 Controlling the wave with a simpler parametriza-
tion: Bayesian Optimisation 82

4.2.8 Summary . 84

4.3 Control of the von Karman vortex street after a cylinder 86

4.3.1 Linear Regression of RL Strategies 86

4.3.2 Controlling the wave with a simpler parametri-
sation: LIPO + Nelder-Mead 87

4.3.3 Summary . 90

5 conclusions 91

bibliography 93

L I S T O F F I G U R E S

Figure 1 Approaches to Control from Brunton et al [4] . 1

Figure 2 Closed-Loop Feedback Control scheme 2

Figure 3 Project scheme 3

Figure 4 Growth of published reinforcement learning pa-
pers. Shown are the number of RL-related pub-
lications (y-axis) per year (x-axis) scraped from
Google Scholar 5

Figure 5 Machine Learning Categories 6

Figure 6 Neural networks overview 7

Figure 7 Reinforcement Learning steps 9

Figure 8 Deep Reinforcement Learning scheme 10

Figure 9 Importance of random seeds. In the pictures
above, a given DRL controller tries to control
a wave. All the parameters are the same: algo-
rithm and environment are identical. The only
difference is the initial seed. It can be noted
how the evolution of the system is significantly
different. 13

Figure 10 Actor-Critic Scheme from Sutton and Barto, 2018

[31] . 14

Figure 11 Policy Stable Update, from J. Hui post in [10] . 15

Figure 12 KL-Divergence example on two PDFs 15

Figure 13 Example of Bayesian Optimisation on a 1D func-
tion, from [11] 21

Figure 14 Two successive steps of the Nelder-Mead algo-
rithm applied to the Rosenbrock function . . . 26

Figure 15 Example of Lipschtiz function application . . . 28

Figure 16 Advection Equation environment rendering with-
out control . 36

Figure 17 Dimensionless parameters influence 40

Figure 18 Exact solution of the transformed Burger’s equa-
tion . 46

Figure 19 Validation of the numerical schemes for Burger’s
equation via Cole-Hopf transformation 46

Figure 20 Benchmark of tridiagonal matrix solving meth-
ods . 50

Figure 21 Velocity magnitude illustrating the effect of flow
control . 51

Figure 22 Results in J. Rabault et al. [24] 52

Figure 23 Advection Equation environment. Overview with-
out any control. 56

xi

xii List of Figures

Figure 24 Advection: Behaviour of the collected reward
for different Neural Network Architectures . . 58

Figure 25 Advection: Detail on dispersion for a given ar-
chitecture using different initial seeds. Plot of
σ per each time step. 58

Figure 26 Advection: Behaviour of the collected reward
for different Activation Functions 59

Figure 27 Advection: Activation Function, detail on dis-
persion for a given architecture using different
initial seeds. Plot of σ per each time step. . . . 60

Figure 28 Advection: MLPLSTM performances 61

Figure 29 Advection: MLPLSTM, detail on dispersion for
a given architecture using different initial seeds.
Plot of σ per each time step. 61

Figure 30 Advection: Controlled wave 62

Figure 31 RL Control Action against the theoretical one. 63

Figure 32 Advection: Fourier Transform of the control ac-
tion . 63

Figure 33 Advection: Power Spectral Density (PSD) . . . 64

Figure 34 Advection hyper parameters importances . . . 66

Figure 35 Hyper parameters comparison 67

Figure 36 Naive vs Optimised agent 67

Figure 37 Advection: HPO, detail on dispersions for dif-
ferent initial seeds. 68

Figure 38 Nelder-Mead Learning Curve 69

Figure 39 Advection: Rewards collected during an episode,
benchmark . 70

Figure 40 Burgers Equation environment. Overview with-
out any control. 71

Figure 41 Burgers Environment: influence of the NN ar-
chitecture . 72

Figure 42 Burgers Environment: dispersion of collected
rewards for different NN architecture. Plot of
σ per each time step. 73

Figure 43 Burgers Environment: influence of the NN ac-
tivation function 74

Figure 44 Burgers Environment: dispersion of collected
rewards for different NN activations 74

Figure 45 Burgers Equation: controlled wave 75

Figure 46 Burgers Equation environment: Learning curve,
for four different initial seeds. 76

Figure 47 Burgers Equation: optimization history 77

Figure 48 Burgers Equation: relative importance of hyper
parameters on learning performances 78

List of Figures xiii

Figure 49 Burgers Equation: dimensionless parameters in-
fluence on learning, rewards collected by the
trained agent . 79

Figure 50 Burgers Equation: dimensionless parameters in-
fluence on learning. number of interactions with
the environment 79

Figure 51 Reward shape influence on model performance.
Control applied by two different models im-
plementing Gaussian negative reward shape (green)
and Euclidean norm reward shape (orange), after
26M time steps of learning. 80

Figure 52 Comparison between linearised-DRL action and
DRL one, for different timesteps. 81

Figure 53 Burgers Equation: Pearson correlation coeffi-
cients . 82

Figure 54 Burgers Equation controlled via Bayesian Op-
timisation, two different time steps 83

Figure 55 Burgers Equation: comparison between BO-control
and DRL-control 84

Figure 56 Control of the Von Karman Vortex street after
a cylinder: linearisation of the control action . 86

Figure 57 Control of the Von Karman Vortex street after
a cylinder: residual between the DRL control
law and the linearised one against the number
of observations used for such a regression. . . 87

Figure 58 Control of the Von Karman Vortex street after
a cylinder: Nelder-Mead trials’ cumulative costs 88

Figure 59 Control of the Von Karman Vortex street after
a cylinder: actions and rewards with time . . . 89

L I S T O F TA B L E S

Table 1 Hyper Parameters list 22

Table 2 Review of Test case n.1 - Linear Advection Equa-
tion . 38

Table 3 Review of Test case n.3 - DRL control of the 2D
von Karman vortex street 53

Table 4 Advection simulation setting 56

Table 5 DRL agent settings 57

Table 6 Advection:NNA study 57

Table 7 Advection: reward and dispersion as a func-
tion of the Activation Function 59

Table 8 Advection: Long Short Term Memory perfor-
mances . 60

Table 9 Naive PPO simulation parameters 62

Table 10 PPO Hyper parameter space 65

Table 11 Advection: hyper parameters study 66

Table 12 Advection: DRL performances benchmark . . 66

Table 13 Advection: control performances benchmark . 70

Table 14 Burgers simulation setting 71

Table 15 DRL agent settings 72

Table 16 Naive PPO simulation parameters 75

Table 17 Advection: hyper parameters study 77

Table 18 Burgers simulation results 85

Table 19 DRL agent settings 86

Table 20 Von Karman Vortex street after a cylinder results 90

xiv

P Y T H O N C O D E S

Python Code 1 Designing a Custom Environment with Stable
Baselines . 29

Python Code 2 Starting a simulation with Stable Baselines . . 30

Python Code 3 Custom Callback 31

Python Code 4 Optuna example 32

Python Code 5 SciPy Nelder Mead 33

Python Code 6 Dlib LIPO . 33

Python Code 7 Advection time stepping 37

Python Code 8 Advection time stepping with external forces . 37

Python Code 9 Burgers equation time stepping 41

Python Code 10 Burgers implicit method 43

Python Code 11 Thomas algorithm 49

Python Code 12 From a tridiagonal matrix to a band one 49

xv

L I S T O F A L G O R I T H M S

1 PPO, Actor-Critic Style [28] 17

2 Bayesian Optimisation Algorithm 21

3 Nelder-Mead Minimization Algorithm 27

4 LIPO basic steps . 28

5 Thomas Algorithm . 49

xvi

A C R O N Y M S

ML Machine Learning

RL Reinforcement Learning

DRL Deep Reinforcement Learning

HPO Hyper Parameters Optimisation

BO Bayesian Optimisation

PSO Particle Swarm Optimisation

xvii

1
I N T R O D U C T I O N

1.1 the grand challenge in closed loop control

Manipulating the dynamics of a flow is a major interest in fluid me-
chanics. Controlling a fluid flow may lead to advantages that span
from suppressing or promoting instabilities to reduce drag and im-
prove efficiency. This research direction led to different achievements,
for example: aerodynamic drag reduction, lift increase or a minimisa-
tion of the environmental impact optimising combustion or reducing
noise pollution, just to name a few. Moreover, active flow control is
critical to off-design conditions in dealing with flow systems.
In order to design a control strategy, a simulation is needed most of
the time to model the flow behaviour with and without control. Flow
control problems are described by non-linear and high-dimensional
partial differential equations. In particular, to face the inherent high
dimensionality of the control problem applied to fluid flows, classic
approaches propose a variety of tools that rely on different kinds of
projection of the Navier-Stokes equations into some reduced basis - a
process called reduced order modelling (ROM).

This reduced model is finally used as a foundation of the controller
design. As it could be expected, different controllers lead to different
control performance and robustness - i.e.: the sensitivity to reduced
order model perturbation.

Figure 1: Approaches to Control from
Brunton et al [4]

However, besides this reduced
order model approach - also
called gray box - several other
approaches can be used: rang-
ing from using Navier-Stokes
equation to derive the control
law analytically - i.e.: white
box - or considering inputs/out-
puts relationship only, referred
as black box methods since they
are opaque to the underlying
physics of the system at stake.
From a theoretical point of view,
also directly dealing with the
Navier-Stokes is possible, an ap-

proach often called ultra-white box.

1

2 introduction

However, directly solving those equations in order to apply some
control in real time is still a prohibitive task from a computational
standpoint and it is seldom used if not in some simple test case.

Recently, thanks to the great availability of data, increasing com-
putational power and the wide spreading of Machine Learning and
optimisation techniques the idea of directly learning the control-law
relying on input/output data only - hence following the black-box ap-
proach - is becoming more and more popular. Furthermore, this black-
box approach requires little if any tuning in changing the application
area. This is a change of paradigm with respect to classical control de-
sign methods that rely on expertise in the modelling of the process at
stake and that generally are strictly linked to the operational design
condition.

This data-driven control problem then may be stated as a con-
strained optimisation problem where the objective is to discover a
mapping, from input of the system to its output, y→ u that satisfies
a given cost-functional J(s,u) where s is the performance measure-
ment - for example the information received by a sensor - and u is
the control input. Namely, using measurements in order to evaluate
and correct the control law is the very definition of closed-loop feedback
control.

Figure 2: Closed-Loop Feedback Control scheme

1.2 framework of this project

At the von Karman Institute for Fluid Dynamics, my supervisor prof.
Mendez and my advisor F. Pino (PhD) are applying this data-driven
approach - among many others - in an industrial framework: the con-
trol of an instability called undulation that appears in the jet-wiping
galvanisation process in certain operating conditions.
The galvanisation is an industrial process of coating iron and/or steel
with Zinc (Zn). When exposed to air, the pure Zinc react with the Oxy-
gen (O2) creating a layer of zinc oxyde (ZnO) which protects the ma-
terial underneath from corrosion. One of the most extensively used
technique hot-dip galvanisation.

1.3 scope of this work 3

Figure 3: Project scheme

As can be seen by the scheme in Fig. 3, this technique consists in im-
mersing a metal plate into a bath of molten zinc, withdrawing it and
then some impinging gas actuators allows to control the final coating
thickness. However, some instabilities occur in the process: the liquid
film trigger jet oscillations that combined with inertia engender the
formation of undulation patterns in the final zinc coating. Due to that
drawback, the operational condition are limited.

With such a complex physics to be handled, the design of a con-
troller following the black box approach, hence without the burden
of detailed modelling is of utmost interest. For this reason, in this
work black-box approaches are investigated, in order to preliminary as-
sess if such a mindset would allow to obtain satisfying performances
while simultaneously avoiding the burden of setting up a complex
mathematical formulation for the derivation of the control law.

1.3 scope of this work

This thesis rises inside the broader research topic illustrated above
and aims to contribute to it by addressing different questions:

i) What are the outcomes when Reinforcement Learning is applied to a
control problem of interest?

At first, a benchmark on a defined set of test cases will be per-
formed employing Reinforcement Learning techniques. Such a method
aims to learn directly the control law without any intermediate model

4 introduction

identification step - a powerful change in the whole control theory
paradigm.

ii) Can the performances of Reinforcement Learning on such a task be
improved? If yes, how?

Secondly, having collected the results on the test cases, some way
to improve the performances will be searched. Two approaches will
be followed:

• Improve the Reinforcement Learning model definition;

• Tailor hyper parameters of Reinforcement Learning method on
the problem at stake - a process referred to Hyper Parameters
Optimisation (HPO).

iii) Reinforcement Learning methods implicitly deal with non linearities.
How far is this results from a naive linear approach?

Being the performance review (on the test cases of interest) com-
pleted, a study of the control laws learnt in this way will be carried
out. Moreover, a comparison between those and a straightforward
linear approach will be performed.

1.4 thesis outline

This thesis is organised as follows: in Chapter 2 a general overview
on the main methodologies that will be tested during this work will
be given: at first, the Reinforcement Learning problem will be posed.
After that, the Hyper Parameters Optimisation framework will be anal-
ysed, investigating how these optimisation techniques could enhance
the performance of Machine Learning methods and how they could
also be a valid alternative to those altogether. After, the control laws
obtained in such a way will be studied trying to learn from those. In
Chapter 3 the test cases will be presented, including their implemen-
tations. Then, Chapter 4 presents an overview of the Results obtained.
Finally, Chapter 5 includes a discussion of such results.

2
M E T H O D O L O G I E S

2.1 from feedback control to reinforcement learning

Dealing with high-dimensional and non linear phenomena, diving
deeply in the formal modelling of a dynamical system can be time
and computationally heavy. A valid alternative to the former approach
can be offered by model-free control methods where the physics of the
system itself can be learnt from the output that such a system pro-
duces instead of relying on some beforehand modelling. This wide
category of data-driven control methodologies include, among many
others, Machine Learning Control (MLC). Moreover, these controllers,
often named "smart" controllers since they require little input by the
user, have the capability to be general-purpose as they can be applied
to different problems with no substantial modification. Under the um-
brella of MLC, one of the most promising state of the art method
is Reinforcement Learning and its combination with Neural Networks:
Deep Reinforcement Learning.

Reinforcement learning has been recently placed under the spot-
light of the scientific community after the groundbreaking result of
defeating the world greatest AlphaGo grand master achieved by Deep-
Mind in 2016 [30]. Since then, Reinforcement Learning has played a
major role in a broad range of control applications, from robotics (see,
for example [13]) to Healthcare problems, such as closed-loop blood
glucose control in [7].

Figure 4: Growth of published reinforcement learning papers. Shown are
the number of RL-related publications (y-axis) per year (x-axis)
scraped from Google Scholar

Being fluid dynamics historically concerned by high dimensional-
ity and non linearities, a great attention by the community was di-
rected towards this state of the art technique. For instance, in the work
by J. Rabaud et al. in [24], deep reinforcement learning is applied in
order to achieve a reduction in the aerodynamic drag generated by
the von Karman vortex street past a cylinder.

5

6 methodologies

2.2 machine learning background

The general purpose of any ML technique is generally to extract in-
formation from data. This data-driven process can be carried out in
different ways, each one with its pros, cons and field of applicability.
MLC is composed mainly by three paradigms:

Figure 5: Machine Learning Categories

• Supervised Learning: the learning relies on data labelled by an
expert, providing additional information to the algorithm. For
example, this kind of ML could be used to compute a regression
given a labelled data set such that it fits a mathematical criterion
defined by the user.

• Unsupervised Learning: the data here is not labelled before-
hand. Hence, the features have to be extracted directly from
data specifying some criteria. Example of problems assessed
with such an approach are dimensionality reduction and clus-
tering, among others.

• Reinforcement Learning (RL): is a framework oriented to suc-
cessive decision making ([31]) in order to maximise a reward
signal defined before of the simulation. The data is not labelled
nor given by an expert but the algorithm - or agent - generates
such a dataset by interacting with the system of interest - or
environment.

2.3 neural networks

Neural networks are the core elements on which Deep Learning is
built. As an high level definition it could be said that neural networks

2.3 neural networks 7

are multi-layer networks of neurons that are used for a wide range of
topics, from classifications to predictions. A neuron is a mathematical
function that takes some inputs, weights them and finally sum them
in order to produce some output. It receives some inputs through
the input layer that are further elaborated throughout the activation
function for a variable number of hidden layers and then, finally, an
output layer closes the structure.

Figure 6: Neural networks overview

Neural networks are essentially black-box and non linear, universal
functions approximators, where the "universal" adjective follows the
theory of K. Hornik et al. in [9] which affirms that any function can
be approximated by a neural network with the proper number of
neurons, its central computational element.
Looking at the picture above, it can be stated that:

yi,j = Σi,jfi,j(ωi,jxi,j + bi,j) (1)

where,

• yi,j is the output of the neuron i of layer j;

• fi,j is the activation function, a function that defines the output
of a neuron given its input;

• ωi,j is the weight of the i-th feature;

• xi,j the i-th feature;

• bi,j is the bias.

A cost function J(ω), function of the prediction (out) and the actual
data (out∗), is introduced to define the optimisation problem, com-
paring out and out∗. During training, the gradient gives information

8 methodologies

about the training direction - i.e.: on how to update the neurons pa-
rameters. Different architectures might be used, from which descend
different properties. However, for the purpose of this work only two
of them are briefly introduced:

I - Multi Layer Perceptron (MLP)
An MLP is a NN that contains more than one layer. Between the

input layer and the output layer there are now some intermediate
layers that are called hidden layers, because the computations carried
out here are not visible to the user. A simple MLP of in Fig. 6 where
all the neurons (or perceptrons) of one layer are connected to the
following one is called feed forward network because the information is
fed successively from layer to layer, from input to output.
It has to be noted that usually, when identifying the dimensionality
of the network - i.e.: describing how many layers are present and how
many neurons per each layer - the input layer is not included in the
count since it does not make any computation.
The characteristics of the NN can be expressed in a mathematical
form:

h̄1 = Φ(ωT1 x̄) (2)

h̄j+1 = Φ(ωTj+1h̄j) ∀ j in {1, ...,k− 1} (3)

ō = Φ(ωTk+1h̄k) (4)

Where Φ is the activation function, a function applied on the results
of the internal computation of the neuron before they are effectively
transmitted. The equations above represent the description of the in-
put layer with the first hidden one, the internal connection of the
hidden layers and finally the last hidden layer with the output layer.

II - Long Short-Term Memory Networks (LSTM)
Unlike the MLP, the LSTM architecture has feedback connections.

LSTMs are suitable to process not only instantaneous data but also a
sequence. This characteristic make them interesting when it comes to
making predictions based on time series data even if a computational
cost must be paid with respect to "classic" MLP.

However, instead of using this net as a standalone it could be com-
bined with an MLP, assolving the function of a feature extractor - a way
to transform the input data if the incoming information is too large
or too noisy, helping the overall learning of the net.

2.4 reinforcement learning (rl) basics definitions

Reinforcement Learning aims to train an agent to make decisions.
The agent receives the current state St and basing on that it makes

2.4 reinforcement learning (rl) basics definitions 9

an action At interacting with the environment. As a consequence of
such an interaction the environment evolves to a new state St+1 and
the agent receives a reward Rt+1 for its behaviour.

Figure 7: Reinforcement Learning steps

The action that the agent chooses starting from the current state St
is encoded inside the policy.

Definition 2.4.1. A Policy π is a function which maps elements of the
state space to elements of the actions space.

The policy fully defines the decision making process carried out
by the agent. It could be deterministic or stochastic if the output is a
parameter of a probability density function.

π : S→ A deterministic π : S×A→ [0, 1] stochastic

Intuitively, it is desired that a trained agent will be making actions
that have satisfactory results when interacting with environment.

Definition 2.4.2. The Reward (or reward signal) Rt is a number ob-
tained by the agent for each action it takes. The objective of the RL
agent is to maximise this reward on the whole simulation.

Rt =

∞∑
t=0

γrt γ ∈ [0, 1] (5)

where γ is the discount factor. The discount ensures that immediate
good rewards are preferred to future ones.

At first, since there is no labelled data available, the policy suggests
random actions in order to explore the action space. This phase is
called exploration. As a result of this phase, a preliminary dataset of
trajectories (τ) is created. These are sequences of states, actions and
rewards experienced by the agent in the environment:

τ = (s0,a0, r1, s1,a1, ..., rT , sT)

This dataset is passed to the neural networks inside the policy that
will take the state as an input and output an action. This combination
of RL with NNs is called Deep Reinforcement Learning (DRL).

10 methodologies

Figure 8: Deep Reinforcement Learning scheme

After having collected enough trajectories, the policy moves to an
exploitation phase in which the existing trajectories will be refined
in order to search for the highest reward. The exploration - exploitation
dilemma - i.e.: when to stop exploring and start exploiting - is an active
topic of debate in the ML community.

Automatically, if an action gets a low reward then the agent is not
likely to make it again. This continuous process of learning how to
behave inside the environment leads to an evolving policy across the
simulation. How the policy is updated splits the learning method in
two categories:

Definition 2.4.3. On-Policy learning: the policy improved during train-
ing is the same used for action selection.

In other words, in on-policy methods the agent learns "on the go" dur-
ing the simulation - or game. This approach is computational effective
but it is also dangerous: if the agent learns a bad policy it would be
quite difficult for it to recovery. This issue is called sub-optimal policy
learning. To partially face this problem, trust region policies have been
developed. These will be discussed later on.

Definition 2.4.4. Off-policy learning: the policy improved during train-
ing is different from the one used for action selection.

It can be easily understood how the reward shaping highly influ-
ences the decision making process of the agent inside the environ-
ment: carefully designing the attention can be posed on some facets
of the simulations or to others.

2.4 reinforcement learning (rl) basics definitions 11

Hence, a reward is an feedback for the action taken inside the envi-
ronment. On the other hand, another function keeps track of what is
best on "the long run": the value function.

Definition 2.4.5. The Value Function Vπ specifies the overall reward R
that the agent can expect to obtain from a given state s, given a policy
π.

Vπ(s) = E[R|s,π] (6)

where E is the expectation operator.

The expected value of a discrete random variable is the proability-
weighted average of all possible values. As an example, for a random
variable X, it can take value x1 with probability p1, value x2 with
probability p2, and so on, up to value xN with probability pN. Then
the expectation of this random variable X is defined as:

E[X] =

N∑
i=1

xipi (7)

Thus, the expected value is what one expects to happen on an av-
erage. The same holds for continuous random variables, except that
the sum is replaced by an integral and the probabilities by probabil-
ity density functions (PDFs). Let X be a continuous random variable
with range [a,b] and PDF p(x). The epected value of X is defined by:

E(X) =

∫b
a

xp(x)dx ≈ 1

N

N∑
i=1

xip(xi) (8)

An approximation of the above integral in a discrete sampled envi-
ronment is given by the sum of sampled variables multiplied by their
proability. The estimate of a function f(x) where the indipendent vari-
ble x follows a probability distribution p is defined by:

Ex∼p(f(x)) =

∫b
a

f(x)p(x)dx ≈ 1

N

N∑
i=1

f(xi)p(xi) (9)

As a consequence, actions that lead the agent into states of high-
est value would be preferred to highest reward. However, the value
function is far more complex to evaluate because it has to be com-
puted from the observations of the agent during the whole simula-
tion, while the reward is obtained directly interacting with the envi-
ronment.
A similar function is the Action-Value Function:

12 methodologies

Definition 2.4.6. The Action-Value Function - also called Q function -
is the expected return starting from state s, taking action a and from
then on following policy π:
Q : S×A→ R

Qπ(s,a) = Eπ[R|St = s,At = a] (10)

The relationship between Qπ and Vπ is given by:

Qπ(st,at) = r(st,at) + γVπ(st+1) (11)

Finally, it is possible to define the Advantage Function which speci-
fies the potential benefit of taking specific action a compared to other
actions, from the given state s and following a policy π.

A(st,at) = Qπ(st,at) − Vπ(st) (12)

The last element needed to fully define a RL problem is the environ-
ment.

Definition 2.4.7. The environment is a mathematical modelling of the
system that is going to interact with the RL agent. It is often possible
to state the problem as a Markov Decision Process (MDP). This ensures
that the state transition is affected by the previous state only and
not from the transitions history - i.e.: each state satisfies the Markov
Property.

Definition 2.4.8. The Markov Property is a characteristic property of
the state. The states for which the transition to the next state of the en-
vironment is predictable without any need for information from the
past states but only the present state. From a mathematical perspec-
tive, the necessary conditions for a state St to be defined as Markov
is that the state transition probability function is exclusively condi-
tioned by the present state:

P[St+1|St] = P[St+1|S1, ...,St] (13)

Definition 2.4.9. A Markov Decision Process is an environment in which
all states satisfy the Markov property. An MDP is often defined as a
tuple (S, A, P,R,γ) where S is the state space, A is a finite set of ac-
tions, P is the state transition probability function, R is the reward
function and γ the discount factor.

A method is called model-based if, instead of using only simulation
samples to estimate rewards, some kind of cost function is encoded in
the environment. Moreover, in such a case, possible actions and states
are considered possible even if they are not experienced yet. This pro-
cess is called planning. If otherwise such a model is not present a
model-free method is defined. In such a case the learning process is
based on trial-and-error solely.

2.5 importance of random seeds in machine learning applications 13

2.5 importance of random seeds in machine learning

applications

Stochastic algorithms rely on randomness. However, when a com-
puter is asked to generate a sequence of random numbers they are
pseudorandom - i.e.: the result depends deterministically by the num-
ber (or vector) used to initialise such a process: the seed.

In the context of this work, that means that the behaviour of the RL
agent is dependent on the random seed used to initialise the experi-
ment - for instance, the initial weights of the neural networks. This is
especially important when dealing with on-policy models which use
the same policy for learning and for action sampling, as explained in
Sec. 2.4. Hence, in order to achieve a meaningful portrait of the tech-
nique at hand, reporting only the best performance between the n
seeds tried might lead to some misinterpretation. To assess this prob-
lem, in this work four different seeds have been used in each simulation,
with the goal of obtaining more descriptive results.

Finally, it can be noted how the use of constant seeds certainly helps
reproducibility of performances in different settings - for a given al-
gorithm and task.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Position [m]

−10

−5

0

5

10

D
is

pl
ac

em
en

t
[u

]

Seed n.1

Seed n.2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Position [m]

−10

−5

0

5

10

D
is

pl
ac

em
en

t
[u

]

Seed n.1

Seed n.2

Figure 9: Importance of random seeds. In the pictures above, a given DRL
controller tries to control a wave. All the parameters are the same:
algorithm and environment are identical. The only difference is
the initial seed. It can be noted how the evolution of the system is
significantly different.

2.6 implemented algorithms

Recently, with an increasing interest of the community, illustrated
by Fig. 4, a variety of Reinforcement Learning algorithms have been
released open-source and it is therefore possible to use them in RL-
based research. In this broad spectra of tools available, Actor-Critic
methods stand out in terms of performance. To this broad category
belongs state of the art algorithms like Proximal Policy Optimisation
(PPO) and Trust Region Policy Optimisation (TRPO), introduced in 2018

by J. Shulman et al in [28] and [27] respectively.

14 methodologies

2.6.1 Actor - Critic Methods

The main idea is to split the model in two parts: one that computes
an action based on a state and another one to compute the Q values
(see Sect. 2.4.6) of the action. Following the convention in the papers
and books, the first one will be called the Actor and the second one
the Critic.

Figure 10: Actor-Critic Scheme from Sutton and Barto, 2018 [31]

Essentially the actor is responsible for the behaviour of the agent,
dealing with the learning process of the policy (policy - based). On
the other hand, the critic evaluates the value function (see Sect. 2.4.5)
of the action (value based). It is expected that both get better with
experience.

The actor can be a function approximator like a NNs (see Fig. 6)
that takes as input the given state and outputs an action. The critic
can be a function approximator as well, but the input is the action
chosen by the actor and the output is the Q value of this action - i.e.:
essentially the maximum future reward. Finally, the training of the
nets is performed separately and the weights are updated at each time
step, at the end of the i-th trajectory collecting phase (rollout) - a process
called temporal difference learning (TD Learning).
In the following the main actor critic methods that have been used in
this work are briefly introduced.

2.6.2 Trust Region Methods (TRM)

Notwithstanding their performances, actor-critic methods face two
major drawbacks:

(i) Unstable Update: The process of learning the policy is fundamen-
tal in order to achieve good results. In a context of gradient as-
sent if the learning rate is too small the overall learning process

2.6 implemented algorithms 15

would be slowed down. On the other hand, a overly large learn-
ing rate compromises learning, missing important trajectories.

Figure 11: Policy Stable Update, from J. Hui post in [10]

(ii) Data inefficiency: The data collected evaluating a policy is lost
right after gradient update. That means that every time a new
policy is created, this process must be repeated from the be-
ginning. Consequently, considering the amount of information
needed for a NN to be optimised, a major slowdown of the pro-
cess is obtained.

In order to face the unstable update, a constraint on how much the
policy can be updated for each step is imposed. Since the policy is es-
sentially a probability distribution, to compute the distance between
the current one and the updated one the Kullback - Leibler Divergence
is used. Considering two adjacent policies π1(a|s) and π2(a|s), the
KL-Divergence is computed as follows:

DKL(π1‖π2)[s] =
∑
a∈A

π1(a|s) log
(π1(a|s)
π2(a|s)

)
(14)

Figure 12: KL-Divergence example on two PDFs

To tackle data inefficiency, a replay buffer containing data collected
by another policy distribution is created. Here it comes to play a sta-

16 methodologies

tistical tool called importance sampling. The new surrogate objective
function can be derived:

J(θ) = E(st,at)∼πθ,old [
πθ(at|st)

πθ,old(st|at)
A(st,at)] (15)

It can be seen how this new cost function features the ratio of the
old (πθ,old) and the new (πθ) policy.
Finally, it has been mathematically proved from the Appendix in [27]
that trust region optimisation guarantees the monotonic policy improve-
ment.

2.6.2.1 Proximal Policy Optimisation (PPO)

Belonging to the Trust Region Methods (TRM), Proximal Policy Opti-
misation outperforms other methods for continuous control problem.
That is especially true for the version with a clipped objective. The
idea is firstly proposed in [28]. Essentially the ratio between the old
policy and the new one is clipped in a certain proximal range.

maxθÊt[
πθ(at|st)

πθ,old(at|st)
Ât] rt(θ) =

πθ(at|st)

πθ,old(at|st)

If the probability ratio (rt(θ)) exceeds a region defined by [1−ε, 1+ε],
the objective is clipped. The new clipped objective function is:

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1+ ε)Ât] (16)

During the implementation phase, a more complex objective func-
tion is used, adding a squared error loss of the critic and an entropy
bonus to ensure sufficient exploration.

LCLIP+VF+St (θ) = Êt[L
CLIP
t − c1L

VF
t (θ) + c2S[πθ](st)] (17)

where:

• LVFt is the squared-error loss for the critic network: LVFt = (vθ(st)−

V
targ
t)2

• c1, c2 are two constants. Changing their value conditions the ac-
tor and critic losses. c2 is also called entropy parameter. Increas-
ing it will encourage a more wider exploration.

2.7 hyper parameters optimisation : boosting rl or a standalone alternative? 17

Algorithm 1: PPO, Actor-Critic Style [28]

Initialise the Actor network πθ(s) and Critic network Vωπ (s)

with weights θ and ω;
for iteration=1,2,... do

for actor=1,2,..., N do
Run policy πθ,old in E for T timesteps ;
Compute advantage estimates Â1, ..., ÂT ;

end
Optimise surrogate L wrt θ;
θold ← θ;

end

It has to be noted how this method descends from Trust Region
Policy Optimisation (TRPO) from J. Shulman et al [27]; it can be even
interpreted as a first-order approximation of TRPO. Due to its better
empirical performances, the PPO will be preferred to TRPO in this
work.

PPO is one of the most widely used RL algorithm by the commu-
nity. For instance, OpenAI - a leading company in the RL research
field - refers to having made PPO their default RL algorithm inside
their framework for its ease of use and performance. Also different
published works that use RL in a variety of applications often turn to
PPO, for instance see its application in Fluid Mechanics by J. Rabault
et al. [24]. For this reason, it will also be the algorithm of choice in
this work.

2.7 hyper parameters optimisation : boosting rl or a stan-
dalone alternative?

Definition 2.7.1. In any machine learning framework, an hyperparam-
eter is a parameter initialised before training a model.

These are not to be confused with model parameters that are a prop-
erty set during the learning process. An example of model parameters
are the weights and biases of a NNs, while an example of hyperpa-
rameter is the learning rate.

Any Machine Learning framework has its own hyperparameters
and how to properly set them in order to maximise the performance
of a given algorithm is a crucial task carried out by what is called Auto
Machine Learning (ML) - this is especially true when dealing with neu-
ral networks. Hence, hyper parameters optimisation (HPO) is useful
to:

• Reduce the human effort in setting the model up to the simula-
tion;

18 methodologies

• Improving the performance of the algorithm for the problem at
hand, tailoring the right set of hyperparameters can lead to state-
of-the-art performances.

• Improve reproducibility and comparisons between different meth-
ods.

HPO is not anew, it has a long history and now with the increasing
attention of the scientific community into Machine Learning it has
returned to be focus of attention by many.

However, there are several challenges in applying HPO:

(i) When dealing with deep learning, function evaluation may be
very expensive to evaluate;

(ii) The hyper parameters space is often high dimensional and com-
plex (containining a mix of continuous, conditional and categor-
ical hyperparameters). Moreover, not all the hyperparameters
influence the objective function in the same way, and deciding
which is worthy to be tuned and which is not is not trivial;

(iii) Generally speaking, properties used in classical optimisation -
such as convexity and smoothness - are not applicable to this
cases;

(iv) The gradient of the loss function with respect to the hyperpa-
rameters is not usually available.

The structure of the chapter is the following: at first, the HPO prob-
lem will be mathematically stated. After that, a review of the main
HPO method that will be used in this work will be presented. Lastly,
a brief overview of the most important hyper parameters in the Rein-
forcement Learning methods presented in 2.4 is given.

For more insights about HPO and its influences on machine learn-
ing problems, the reader can refer to the Auto ML book written by
the researchers of the universities of Freiburg and Hannover, freely
available [11].

2.7.1 Problem Statement

Let A be a machine learning algorithm with N hyperparameters. The
domain of the n− th hyperparameter is denoted as Λn and the over-
all hyper parameter space as:

Λ = Λ1×Λ2× ... ×ΛN

A vector of hyper parameters is defined as λ ∈ Λ and A using
hyperparameters λ is denoted as Aλ.

2.7 hyper parameters optimisation : boosting rl or a standalone alternative? 19

The loss of a model defined by algorithm A with hyperparameters
λ on a training dataset Dtrain is defined as:

V(L,Aλ,Dtrain)

where L is the loss function of the problem at stake.
Finally, the Hyper Parameters Optimisation problem can be stated as
follows:

λ∗ = argminλ∈ΛEDtrain∼DV(L,Aλ,Dtrain) (18)

It has to be noted that if the loss function is evaluated in a dataset
different from the training one - operation called cross validations - the
definition changes:

λ∗ = argminλ∈ΛEDtrain,Dvalid∼DV(L,Aλ,Dtrain,Dvalid)

Now how to sample the hyper parameter vector λ ∈ Λ is discussed.

2.7.2 Bayesian Optimisation (BO)

Bayesian Optimisation is by far the most used Hyper Parameters Opti-
misation tool, outperforming in terms of robustness - i.e.: results have
a low sensitivity to the method parameters - other methods tried for
facing the HPO challenge applied to this work.

2.7.2.1 Bayesian Optimisation in a Nutshell

This section gives a brief insight on the internal working of the algo-
rithm. For a more complete discussion and overview, the reader is
referred to the tutorial of Shahriari et al in [29].

Bayesian Optimisation relies on a probabilistic surrogate model and
on a acquisition function. The first is a mapping of the current hyper-
parameters vector λ to a probability of score on the objective function
r, it is denoted as:

P(r|λ)

P is also called surrogate of the original objective function and it
is easier to optimise with respect to the latter. The algorithm essen-
tially suggests successive hyperparameters vectors that have a good
performance on the surrogate by mean of the acquisition function. Al-
though there are several acquisition functions available to be tested,
most often the expected improvement (EI):

E[I(λ)] = E[max(fmin − y, 0)] (19)

Is often chosen since it follows a normal distribution:

E[I(λ)] = (fmin−µ(λ)φ
(fmin − µ(λ)

σ

)
+σN(

fmin − µ(λ)

σ

)
(20)

Where:

20 methodologies

• φ(x): is the probability density function;

• N: is the standard normal distribution;

• fmin: is the best score observed so far;

• µ: is the mean of the distribution;

• σ: is the square of the ditribution variance;

• λ: is the current set of hyperparameters;

The acquisition function, proposing new points to be sampled, im-
plicitly deals with the exploration-exploitation dilemma, a common chal-
lenge in the ML community already presented in Sect. 2.4. Here, the
exploration try to find new points in regions where the uncertainty is
high, in order to try to explore all the available space. On the other
hand, exploitation suggests promising spots basing on the score ob-
tained on the surrogate. Dealing with the proper balance of the two is
a delicate matter and failing in this task could lead to being stuck in
local minima.

Finally, the surrogate objective function has to be defined. Usually,
Gaussian Processes G (GP) are employed. A Gaussian process is a stochas-
tic process defined as:

G(m(λ),k(λ,λ
′
)) (21)

Where:

• m(λ): is the mean;

• k(λ,λ ′): is the co-variance function.

Gaussian processes are often preferred to other alternatives because
of their smoothness and expressiveness. Moreover, the choice of rep-
resenting the objective function as a probability density function has
the benefit that it can be successively updated following probabilistic
Bayesian processes. However, GP properties are subject to the choice
of the covariance function. The most common choice in the literature
is the Màtern 5/2 kernel. Notwithstanding their reliability, GP have also
some drawbacks. The most important one is that they scale cubically
with the number of data points. Hence, their applicability is strictly
linked with the possibility of doing several function evaluations. This
problem can be avoided using sparse GP, but the discussion of these
methods is out of scope of this brief overview.
Finally, the algorithm may be generically written as follows.

By now, it should be clear how this optimisation technique belongs
to Bayesian statistics. The core of this algorithm is updating a prior
- i.e.: previous - belief accordingly to new information sampled and
finally generating a posterior - i.e.: successive.

2.7 hyper parameters optimisation : boosting rl or a standalone alternative? 21

Algorithm 2: Bayesian Optimisation Algorithm
Initialise the Gaussian Process surrogate function prior
distribution;

for each iteration do
Select new xn+1 optimising the acquisition function α;
xn+1 = argmaxx α(x;Dn);
Query objective function to obtain yn+1;
Update the Gaussian process prior distribution with new
data to produce a posterior;

Interpret the current Gaussian Process distribution to fin
the global minima;

end

In order to summarise the previous review on Bayesian Optimisa-
tion, Fig. 13 shows an example of Bayesian Optimisation at work is
shown for a 1D function.

Figure 13: Example of Bayesian Optimisation on a 1D function, from [11]

The goal is to minimise the dashed black line by means of the Gaus-
sian Process surrogate. The acquisition function has an high value
around points where the predicted function value is relatively low
and the uncertainty (light blue area in the picture) is high. On the
other hand, it has a low value nearby observation points i.e.: points
already sampled. It can be appreciated how, going on with the iter-
ations, the objective function is gradually reduced and how there is
almost no uncertainty in proximity of the minima.

22 methodologies

2.7.3 Main Reinforcement Learning Hyper Parameters

Taking over the description of the main algorithm that is going to be
used - PPO - in Sect. 2.6, the description can be now enriched with a
concise description of its main hyper parameters.

Hyper Parameters (from [8])

Name Description

PPO

Discount factor (γ) defines the discounting of future rewards

Number of steps steps to run for each trajectory (rollout)

Learning rate (α) determines the gradient assent step size

VF coeff. Value function coefficient in the loss calculation

Cliprange clipping parameter of the objective function

nminibatches defines the batches subdivision for learning

Ent. Coeff. Entropy coefficient for the loss calculation

Lam Factor for trade-off of bias vs variance for GAE a

Table 1: Hyper Parameters list

a Generalized Advantage Estimator

It can be understood how an optimisation with such a number of
parameters is computationally heavy. Moreover, the objective in this
optimisation is the collected reward by the agent during a simulation
that also requires its share of computational time.

Despite these challenging aspects, HPO has the chance of enhance
the performance of any Machine Learning model - from Deep Learn-
ing to Deep Reinforcement Learning - properly adjusting these pa-
rameters to the problem at stake. Again, it has to be kept in mind
that does not exist a set of hyperparameters "globally optimal" but
these have to be tailored on the problem at stake. On the other hand,
however, this technique may literally boost the performances of an
algorithm.

This is a so important challenge in the Machine Learning commu-
nity that renowned software companies such as Microsoft ([33]) or
Facebook ([6]) have released open-source their optimisation toolkits.

2.7 hyper parameters optimisation : boosting rl or a standalone alternative? 23

2.7.4 Changing the Perspective: BO for optimal control

Changing a bit the perspective followed so far, and looking at the
problem from a more high-level standpoint, the HPO problem is
nothing more than a constrained optimisation. In fact, we have a con-
straint - usually more than one - represented by the boundaries of
the parameters space to be searched and the purpose is to maximise
some objective function. It can be noticed how this definition well
suits a general control problem, such as the one assessed in this work.
In fact, recalling eq. (18):

λ∗ = argminλ∈ΛEDtrain∼DV(L,Aλ,Dtrain)

From the control point of view, now these elements change their
meanings but not their roles: λ∗ becomes an optimal set of control
coefficients that, combined with the observed state, give birth to an
action that minimise a given cost-functional EDtrain∼DV(...), objective
of the control problem at stake. For instance, following the DRL def-
inition these can be the reward of the controller interacting with the
system.

Therefore, it would be interesting if instead of using these meth-
ods in order to optimise the DRL agent parameters that performs the
control they might be used to directly perform the control by them-
selves. This idea will be applied in the following in order to assess its
applicability - in the limit of the test case hereafter examined.

24 methodologies

2.8 linear regression of rl strategies

Having applied the steps described so far, a control-law learnt by the
agent should be now available. Driven by curiosity, the next logical
step is to make a comparison of the control laws derived via RL and
other approaches.

Previously, in Sect. 2.4 it has been shown how the Deep Reinforce-
ment Learning uses a neural network to map states in to actions, fol-
lowing the actual policy available to the agent. Further, when neural
networks were briefly introduced in Sect. 2.3, it has been explained
how these are non linear by definition and how these are universal
approximators: that is, these are able to learn any function if a proper
number of layers is given.

Neglecting such complexities, an attempt in order to study these
laws is conducted assuming naively a linear control law - i.e.: a lin-
ear relationship between the input (or observations) and outputs (or
actions). That is, assuming that:

O︸︷︷︸
t×#obs

·
#obs×a︷︸︸︷
C = A︸︷︷︸

t×a

(22)

where O is the input array containing the states observations, A
is the actions array and C is the array containing the linear control
coefficients. The dimensions of these matrices are defined by the sim-
ulation: t represents the time span in which the controller is active,
#obs is the size of the input - i.e.: the states that are passed to the
agent - and a stands for the actions made by the controller.

As a next step, given a set of observations O and actions A taken
by the RL agent, it is of interest to find the best set of coefficients C.
This is a least square problem. However, the system might be harshly
not squared, and matrix inversion is not defined for matrices that are
not square. Further, depending of the dimensions ofO there could be
multiple solutions, if it is wider than tall, or no solutions at all, if it is
taller than wide.

The Moore-Penrose pseudoinverse allows these cases to be approxi-
mately solved. The pseudoinverse of a generic matrix A can be de-
fined as

A+ = VD+UT (23)

where U, D and V are the matrices corresponding to the singular
value decomposition of A, the pseudoinverse D+ of a diagonal ma-
trix D obtained by taking the reciprocal of its nonzero elements. The
definition in eq. (23) is also used in the NumPy algorithm used as ex-
plained in [22].

For a more detailed discussion of the Moore-Penrose pseudoin-
verse see J.C.A Barata et al. in [3].

2.9 other optimisations techniques : a brief review 25

Depending on the dimensions of the starting matrix, the pseudoin-
verse assumes different meanings. For instance, considering a general
system:

Ax = y

i. A has more columns than rows: in this case the linear system
would have many solutions. Hence, the minimal norm solution
exploiting the pseudoinverse returns the single solution

x = A+y

ii. A has more rows than column: in such a case it is possible that
the system may have no solutions at all. The solution yielded by
solving the system with the pseudoinverse here is the solution
for which Ax is the closest to y in a terms of Euclidean norm

‖Ax−y‖2

Our situation is surely part of the latter situation, being the t �
#obs. Hence applying the pseudoinverse in our case would lead to a
array of control coefficients defined as:

Cpinv = (OTO)−1OTA (24)

This solution yields to a least-square approximation of the control law,
that is presumably non linear, descending by a non linear mapping
operator such as a neural network. Thereafter, the least-square actions
may be computed as:

O ·Cpinv = Aapprox (25)

Now that both the control action applied by a deep reinforcement
learning controller and a linear one are available, an comparison
between the two can be conducted. This procedure might show at
glance the differences between these radically different approaches.

2.9 other optimisations techniques : a brief review

In addition to Bayesian Optimisation, other optimisations techniques
are used in this work. This section provides a general overview of
them.

2.9.1 Nelder-Mead method (or Simplex Method)

The Nelder-Mead [18] method is a non linear optimisation technique
based on a domain of n dimensions. One of the key features of this

26 methodologies

method is that it is gradient free. It belongs to the direct search category,
which is based on function comparison. The core of this technique is
a simplex, a polytope of n+ 1 vertices in n dimensions. The objective
function is computed in each vertex point, in order to search for a
new candidate point. Then a centroid point is computed discarding the
worst test point: if it is better of the best test point then the polytope
is stretched along this direction. Otherwise, a valley is reached and so
the simplex is shrunken, searching for a new best point, and so on.

Figure 14: Two successive steps of the Nelder-Mead algorithm applied to
the Rosenbrock function

Standard values of the empirical coefficients appearing in algo-
rithm 3 are:
α = 1, γ = 1, ρ = 1/2, σ = 1/2.
Usually, if the standard deviation of the current simplex values are in
a tolerance the cycle is stopped, even if other exit conditions might be
imposed.

2.9.2 Lipschtiz functions method

This parameter-free optimisation method, proposed by Malherbe et al.
[15] relies on the computation of the piece wise upper bound of f(x) in
order to find a new set of x to evaluate.

Fig. 15 shows an example of this application, with the upper limiter
in green.

U(x) = min
i=1,...,t

(f(xi) + k‖x− xi‖2) (26)

2.9 other optimisations techniques : a brief review 27

Algorithm 3: Nelder-Mead Minimization Algorithm

Trying to minimize the function f(x);
Current test points x1, ..., xn+1;
for trials = 1,..., N do

1. Order values at the vertices: f(x1) 6 f(x2) 6 ... 6 f(xn+1);
2. Centroid x0 updated computation, including all points
except xn+1;

3. Reflection: compute the new reflected point
xr = x0 +α(x0 − xn+1) (α > 0);

if f(xr) > f(xi) then
Update the new simplex vertices, substituting the worst
point xn+1, then go to step 1.;

end
4. Expansion: If the reflected point is the best point
computed, f(xr) < f(x1) then compute the extended point
xe = x0 + γ(xr − x0) with γ > 1;

if f(xe) < f(xr) then
Update the new simplex vertices, substituting the worst
point xn+1 wit xe, then go to step 1.;

end
else

Update the new simplex vertices, substituting the worst
point xn+1 with xr, then go to step 1.;

end
5. Contraction: At this step, f(xr) > f(xn);
Compute the contracted point xc = x0 + ρ(xn+1 − x0)
where 0 < ρ 6 0.5;

if f(xc) < f(xn+1) then
Update the new simplex vertices, substituting the worst
point xn+1 with xc, then go to step 1.

end
6. Shrink: replace all points except the best x1 with
xi = x1 + σ(xi − x1) and go to step 1.

end

28 methodologies

Figure 15: Example of Lipschtiz function application

Algorithm 4: LIPO basic steps
Initalisation with random x;
for trial = 1, N do

Compute the upper bound of x
if U(x) > U(x)best then

x is the new point to evaluate;
end

end

This simple algorithm of Alg. 4 is then further expanded compre-
hending several dimensions space and evaluating the importance of
each parameter - i.e.: computing a k per each.

Without dive too much inside this algorithm, it is anticipated that
it will be especially used in the first steps of the optimisation carried
out in Sect. 3.6. In fact, this algorithm has the ability to identify a
region in which the local optima are to be found.

3
T E S T C A S E S A N D I M P L E M E N TAT I O N S

This section presents the test cases analyzed in this work. Moreover,
the details of the implementations are explained, for the sake of re-
producibility.

3.1 reinforcement learning with stable baselines

As a framework for the experiments with deep reinforcement learn-
ing, Stable Baselines [8] is used. It descends from OpenAI Baselines [8]
and implements cutting-edge algorithms. Having a common baseline
in conducting Reinforcement Learning tests allows a more efficient
replication of results and ideas circulation.

Moreover, these frameworks are useful to unburden the weight
of low-level implementation issues, making easier to conduct a RL-
based research.

In order to make the RL-agent to interact with a given problem,
one must formulate such a problem in an environment (see Sect. 2.4 for
theoretical reference). A custom environment must have the following
structure:

1 import gym

from gym import spaces

class CustomEnv(gym.Env):

"""Custom Environment that follows gym interface"""

6 metadata = {’render.modes’: [’human’]}

def __init__(self, arg1, arg2, ...):

super(CustomEnv, self).__init__()

Define action and observation space

11 # They must be gym.spaces objects

Example when using discrete actions:

self.action_space = spaces.Discrete(N_DISCRETE_ACTIONS)

Example for using image as input:

self.observation_space = spaces.Box(low=0, high=255,

16 shape=(HEIGHT, WIDTH, N_CHANNELS)

, dtype=np.uint8)

def step(self, action):

...

return observation, reward, done, info

21 def reset(self):

...

return observation # reward, done, info can’t be included

def render(self, mode=’human’):

...

26 def close (self):

29

30 test cases and implementations

...

Python Code 1: Designing a Custom Environment with Stable Baselines

Therefore, a custom environment is organised as a class (see Python
docs for their peculiarities [20]) and it is composed by different blocks
- or, following the python proper terminology, functions ([21]):

• def __init__(self, arg1, arg2, ...): this function initialises
the main parameters that will be used throughout the simula-
tion;

• def step(self, action): this is function is the core of the sim-
ulation. The agent is interacting with the environment applying
an action. From this interaction, it receives the new state of the
system (observations), the reward linked with such an action
and if the game is finished (done). Moreover, info can give back
some additional information;

• def reset(self): this function resets the simulation to its start-
ing point;

• def render(self, mode = ’human’): if desired, the simulation
results may be shown through this function.

• def close(self): correctly closes the simulation.

After implementing the environment, the simulation can be launched:

Instantiate the env

env = CustomEnv(arg1, ...)

3 # Define and Train the agent

model = ALGO(’Policy’, env).learn(total_timesteps=N)

Python Code 2: Starting a simulation with Stable Baselines

where:

• ALGO: is the algorithm that is going to be used. Stable Baselines
offers a wide collection of methods available, including A2C,
PPO and SAC (explained in 2.6) and many others;

• ’Policy’: this argument defines how the policy is going to be
mapped, essentially it is the architecture of the net. The main
two architectures that are going to be tested are:

i. MLP: Multi Layer Perceptron;

ii. MLP Lstm: MLP with LSTM network for feature extrac-
tion.

• learn(total_timesteps=N): is a method defining the length of
the training phase, setting a constraint on the total agent-environment
interactions to be tested.

3.1 reinforcement learning with stable baselines 31

3.1.1 Custom Callback: dynamically stopping the simulation

As explained above, in the simplest implementation the model re-
ceives as an input the number of interactions it is going to have with
environment.

Another approach consists in stopping the training as soon as some
condition is reached, for instance the rewards obtained by the agent
are approximately constant with time. In fact, that would mean that
the agent has learnt the policy and there is little modification going
on in the policy. In this case, the agent is going to exploit what has
learnt so far.

This is done using a custom callback that interacts with the data
extracted by the simulation:

1 def _on_step(self) -> bool:

if self.num_timesteps > K*self.eval_freq: # to be sure that var != 0

self.activate = True

6 episode_rewards, episode_lengths = evaluate_policy(self.model, ...)

mean_reward, std_reward = np.mean(episode_rewards), np.std(

episode_rewards)

self.log_reward.append(mean_reward)

var = np.var(np.asarray(self.log_reward))

11

if self.activate and var < self.treshold:

’’’

If there is not a variation in the collected reward of the

treshold% minimum then the simulation is stopped

’’’

16 ...

return False

Python Code 3: Custom Callback

This piece of code (the full script may be found in the GitHub
repository) essentially is doing what explained above: during each
step (def _on_step()), the mean reward are stocked inside a deque
list (Doubly Ended Queue) called self.log_reward of a given length
that automatically erases the oldest data in memory if its size is ex-
ceeded. Finally, if the variance of the data stocked is lower than a user
imposed constraint (self.treshold) the simulation is stopped.

In order to avoid the variance to be zero and neglecting the first
noisy interactions with the environment, this whole process starts
after K*self.eval_freq steps, always defined by the user.

Therefore, using this tool, there is the reasonable certainty that the
simulation will go on until it is needed to the agent to learn, giving
back also a metric of the learning difficulty and/or the algorithm
efficiency.

32 test cases and implementations

3.2 hyper parameters optimisation with optuna

For what concerns the Hyper Parameters Optimisation (HPO), dis-
cussed in 2.7, the Optuna framework, developed by T. Akiba et al. [2],
will be the implementation of choice. This tool is widely recognised
as one of the most effective implementation of the Bayesian Optimisa-
tion algorithm and it is largely used by the whole machine learning
community.

The paper released by the developers contains the main features
included.

This black box optimisation technique essentially requires only a
given objective function to pursue and the boundaries of the hyper
parameter space to search into in order to start an optimisation - or
study. For instance, the following straightforward example may be
considered:

import optuna

3 def objective(trial):

x = trial.suggest_uniform(’x’, -10, 10)

return (x - 2) ** 2

study = optuna.create_study()

8 study.optimize(objective, n_trials=100)

study.best_params

Python Code 4: Optuna example

Among the various features included in such a package, one that is
particularly appreciated is the ability to define the search space typol-
ogy. For instance, the user can define if the next value to be suggested
by the acquisition function has to be chosen following a continue, dis-
crete or even logarithmic distribution. This possibility can lead to ma-
jor computational advantages when the topology of the space to be
searched for a given parameter is known. This is the case for some of
the parameters to be optimised in the following test cases.

Finally, it can be noticed that the objective to be minimised can
embody the whole system dynamics - i.e.: the total control problem
can be assigned to such an optimiser in order to be attacked.

3.3 optimizer implementations

Both for Lipschtiz functions (Sect. 15) and for Nelder-Mead (Sect. 2.9)
two stable open source implementations are used.

3.3 optimizer implementations 33

3.3.1 Nelder-Mead

Nelder-Mead is one of the many minimization techniques that SciPy
offers in its minimize method, for more information please refer to
[17]. The implementation of such a method for optimize the Rosen
function, as an example, is the following:

from scipy.optimize import minimize, rosen, rosen_der

>>>x0 = [1.3, 0.7, 0.8, 1.9, 1.2]

5 res = minimize(rosen, x0, method=’Nelder-Mead’, tol=1e-6)

res.x

array([1., 1., 1., 1., 1.])

Python Code 5: SciPy Nelder Mead

Where x0 is he initial guess for each value, and tol specifyies when
the simulation has to be stopped.

3.3.2 Lipschiz functions with Dlib: LIPO

The implementation of choice of this algorithm is the one proposed in
the C-based library Dlib in [12]. For a given function to be optimized,
an example of the implementation could be:

import dlib

2

def holder_table(x0,x1):

return -abs(sin(x0)*cos(x1)*exp(abs(1-sqrt(x0*x0+x1*x1)/pi)))

x,y = dlib.find_min_global(holder_table,

7 [-10,-10],

Lower bound constraints on x0 and x1

[10,10],

Upper bound constraints on x0 and x1

80)

12 # Number of trials

Python Code 6: Dlib LIPO

34 test cases and implementations

3.4 test case n.1 - linear advection

3.4.1 Environment description

The Advection equation is a first order linear PDE (partial derivative
equation). This equation is hyperbolic and can be explicitly solved
using the method of characteristics.

This equation reads:

∂u

∂t
+ c

∂u

∂x
= 0, (27)

where c is a non zero wave propagation speed. This equation then
describes the motion of a scalar u as it is advected by a known velocity,
c.

In this test case, a finite - difference discretisation was used. Fol-
lowing this approach, the computational domain is divided in a set
of points where the solution is stored. As a convention, the discre-
tised generic function will be expressed as ai = a(xi) where x(i) is
the i-th point of the discretised domain. Recalling 27:

∂u

∂t
+ c

∂u

∂x
= 0

Then, a first order discretization forward in time backward in space
would be:

un+1i − uni
∆t

= −u · u
n
i − uni−1
∆x

(28)

However, first order methods are not very satisfactory in a retained er-
ror point of view. For that reason, a second order accurate Lax-Wendoff
scheme has been implemented. Before writing the formulas it has to
be remembered that higher order methods would imply the computa-
tion of the Jacobian matrix. In order to avoid this step, that is usually
computationally expensive, that would slow down the simulations,
the Richtmyer method is applied. This method evaluates the Lax - Wen-
droff method in two steps:

u
n+1/2
i+1/2 = 1

2(u
n
i+1 + u

n
i) −

∆t
2∆x(f(u

n
i+1) − f(u

n
i))

u
n+1/2
i−1/2 = 1

2(u
n
i + uni−1) −

∆t
2∆x(f(u

n
i) − f(u

n
i−1))

(29)

And finally computing

un+1i = uni −
∆t

∆x
[f(u

n+1/2
i+1/2) − f(u

n+1/2
i−1/2)] (30)

Finally, in order to properly pose the discretised problem, the bound-
ary conditions have to be imposed. The Neumann boundary conditions

3.4 test case n.1 - linear advection 35

will be applied, also known as boundary condition of the second
kind. This typology of boundary condition prescribes the gradient
of the variable normal to the boundary. Generally,dφ

dx |x=x0 = α

dφ
dx |x=xL = β

(31)

Where α and β are indeed the prescribed values. In this test case these
values will be imposed equal to zero, hence leading to homogeneous
boundary conditions:α = 0

β = 0

After these preliminary considerations, the problem may be intro-
duced as follows:

∂a

∂t
+ a

∂u

∂x
= f(x, t)︸ ︷︷ ︸
disturbance

+ g(x, t)︸ ︷︷ ︸
control

(32)

Where f no longer represents the flux as in Eq. 29 but it is the distur-
bance:

f(x, t)︸ ︷︷ ︸
disturbance

= A sin (ωt) ·N(x− 5, 0.2) (33)

and

g(x, t)︸ ︷︷ ︸
control

= action(t) ·N(x− 18, 0.2) (34)

Having placed the disturbance at x = 5 and the control action at
x = 18.
Finally, the observation points and the reward are defined as follows:

O(u)︸ ︷︷ ︸
observations

= ū(t− 1), ū(t− 2), ū(t− 3) (35)

Where ū is the state observed at time t.
This control problem has an exact solution given by the time-shifted

sine wave.

g(x, t)︸ ︷︷ ︸
control exact

= A sinωt−ω
∆x

c
+ π ·N(x− (5+∆x), 0.2) (36)

where

• ω = pulsation

36 test cases and implementations

• ∆x = distance between sources

• c = propagation speed

In this test case, firstly posed in [19], a simple 1D advection equa-
tion with constants coefficients is disturbed by a Gaussian perturba-
tion in space and a sinus pulsating harmonically in time. The control
action is made by the RL agent through a Gaussian in space as well.
The action that the agent is going to make is defined by a policy that
bases its output on observations of the environment and the reward
obtained. The previous have been designed as follows:

• Observations: the states given back to the agent are six spatial
points at three different time steps. In particular, the observa-
tions at t, t− 1 and t− 2.

• Reward: In this first approach it is designed as an Euclidean
norm of the displacement in a space portion after the Gaussian
control.

R = ‖u‖2

0 10 20 30 40 50

Position [m]

−0.4

−0.2

0.0

0.2

0.4

D
is

pl
ac

em
en

t
[u

]

observation forcing action

Figure 16: Advection Equation environment rendering without control

The final goal for the RL agent is to cancel out the harmonic pertur-
bation generated by the disturbance, relying only on the information
given by the observation points and trying to minimise the reward
shaped as already described.

In this first linear test case, the efficiency of the algorithm will be
assessed comparing the control law learnt by the agent with the the-
oretical one, presented in eq. (36).

3.4 test case n.1 - linear advection 37

3.4.2 Implementations

Transposing what said so far in Python code, the advection equation
may be written as:

#--------------

Advance simulation one time step

3 #--------------

u_half_1 = 0.5*(self.u1[1:-1] + self.u1[:-2]) +

- (self.C/2)*(self.u1[1:-1] - self.u1[:-2])

u_half_2 = 0.5*(self.u1[1:-1] + self.u1[2:]) +

- (self.C/2)*(self.u1[2:] - self.u1[1:-1])

8

self.u[1:-1] = self.u1[1:-1] +

- (self.c*self.dt/self.dx)*(u_half_2 - u_half_1)

Boundary Conditions

13 self.u[0] = self.u1[1]; self.u[-1] = self.u1[-2]

Switch variables before next step

self.u3[:], self.u2[:], self.u1[:] = self.u2, self.u1, self.u

Python Code 7: Advection time stepping

Two terms were added to the RHS of the time-marching step, to
include the perturbation and the control action. The result reads:

#--------------

Advance simulation one time step

#--------------

4 u_half_1 = 0.5*(self.u1[1:-1] + self.u1[:-2]) +

- (self.C/2)*(self.u1[1:-1] - self.u1[:-2])

u_half_2 = 0.5*(self.u1[1:-1] + self.u1[2:]) +

- (self.C/2)*(self.u1[2:] - self.u1[1:-1])

self.u[1:-1] = self.u1[1:-1] +

9 - (self.c*self.dt/self.dx)*(u_half_2 - u_half_1) +

+ self.dt*(fun[1:-1] + action_vec[1:-1])

Boundary Conditions

self.u[0] = self.u1[1]; self.u[-1] = self.u1[-2]

14

Switch variables before next step

self.u3[:], self.u2[:], self.u1[:] = self.u2, self.u1, self.u

Python Code 8: Advection time stepping with external forces

It has to be noticed that the term denoted with C is the Courant
number:

C = c
∆t

∆x
(37)

This number is linked with the stability of the numerical scheme.
In fact, recalling briefly the Courant - Friedrichs - Lewy (CFL) condi-

38 test cases and implementations

tion, that is necessary condition for convergence of explicit numerical
methods for solving hyperbolic PDEs. The condition imposes

C = c
∆t

∆x
6 Cmax (38)

Where Cmax changes if we are using an explicit or implicit method.
In this test case, where we are using an explicit method,

Cmax = 1

From its definition in eq. (37) it can be easily reversed in order to
obtain a time step that will satisfy this very stability condition:

∆t = C
∆x

u
(39)

It can be shown that the CFL condition can be also obtained doing
a von Neumann stability analysis of this numerical scheme.

The following table summarises the main noteworthy parameters
that occurs in this test case.

Test Case n. 1 - Linear Advection Equation

Param. Description

Reward Signal ‖u[73 : 83]‖2
Neural Network spec. Mlp - 64x64

x disturbance x=5

x control x = 18.2

Nx, space elements Nx = 200

L length of the domain L = 50 m

T time domain T = 0.3s

dx, space discretisation dx = L/Nx

dt, time discretisation dt = C · dxc
Nt, time steps Nt = T/dt

c, wave propagation speed c = 330m/s

Table 2: Review of Test case n.1 - Linear Advection Equation

3.5 test case n.2 - burgers’ equation 39

3.5 test case n.2 - burgers’ equation

Having assessed the capabilities of RL in solving linear problems, the
natural next step is a non linear problem.

We here consider the Burgers equation, that is a non linear PDE that
embodies the key components present in the complete Navier Stokes
equations:

• A non linear advection term;

• A diffusion term

The experiment carried out was as in test case # 1: the RL agent
must control an external perturbation.

3.5.1 Environment description

As already stated before, this equation was introduced in order to
have a toy model that embodies all the key components of the Navier
Stokes equation. It has to be noted that these two terms often conflicts
with one another: while non linearity promotes shocks, the diffusion
term dumps them out.

The Burgers’ equation is expressed as follows,

u,t + uu,x = νu,xx (40)

In the following, Burgers equation will be concisely discussed. For
more insights on this influential equation, the reader is referred to
the book published by whom firstly formally posed it, J. M. Burgers
in [5].

A common procedure when dealing with the fluid dynamics equa-
tions is to normalise them, in order to:

• Facilitate the scaling of the results obtained throughout simula-
tions to other flow conditions;

• Avoid computational errors that may arise in dealing with too
large/small quantities;

• Assess the relative importance of different terms in the model
equation

For these reasons, the non dimensional formulation of Burgers may
also be of interest.
Starting from eq. (40):

u,t + uu,x = νu,xx

40 test cases and implementations

Each term can be related to a reference:

u = Urefû

t = Tref

x = Lref

u,x = U
L ûx̂

u,t =
U
T ût̂

f(x, t) = Fref ˆf(x̂, t̂)t

u,xx = U
L2

ˆux̂x

Substituting in the original equation, gives:

Uref
T
û,t̂ +

U2ref
Lref

ûu,x̂ = ν
Uref

L2ref
û,x̂x̂ + Ff̂

Then, dividing by Uref/T :

û,t̂ +
U2ref
L

T

Uref︸ ︷︷ ︸
U=L/T⇒=1

ûu,x̂ = ν
T

���Uref

���Uref

L2ref
+
FT

U
f̂

This equation can be rearranged as:

û,t̂ + ûû,x̂ = ν
T

L2ref︸ ︷︷ ︸
N

+
FT2

Lref︸ ︷︷ ︸
Φ

f̂ (41)

Where N = ν T
L2ref

andΦ = FT2

L represent two dimensionless param-
eters that will impact the structure of the equation itself. They can be
interpreted as a dimensionless viscosity and a dimensionless inertia pa-
rameter, respectively. The effect of such parameters is shown in the
next figure.

Figure 17: Dimensionless parameters influence

3.5 test case n.2 - burgers’ equation 41

3.5.2 Implementations

3.5.2.1 Explicit Method

Following the procedure that has been illustrated in the previous test
case, the first scheme tested is a finite difference scheme, composed
by:

• A forward derivative term for the time derivative term;

• A backward derivative for the advection term;

• A centred derivative approximating the diffusion term at the right
hand side.

The full set of the equation and the initial and boundaries condition
that will be studied are:

u,t + uu,x = νu,xx + f(x, t)

i.c. : u0 = 0

b.c. : u,x|0 = u,x|L = 0

(42)

Hence, from eq. (40) and substituting accordingly, one obtains:

un+1j = unj −
∆t

∆x
·unj (unj −unj−1) + ν

∆t

∆x2
· (unj+1 − 2 ·unj +unj+1)

Now, the external perturbation has to be inserted as already done in
the Advection test case, so that:

un+1j = unj −
∆t

∆x
·unj (unj −unj−1)+ν

∆t

∆x2
· (unj+1−2 ·unj +unj+1)+∆t · (f−a)

(43)

Translating into a Python code gives:

#--------------

Advance simulation one time step

#--------------

4 u_expl[1:-1] = u1_expl[1:-1] + (dt / dx) * u1_expl[1:-1] *
(u1_expl[1:-1] - u1_expl[:-2]) \

+ nu * (dt / (dx ** 2)) *
(u1_expl[2:] - 2 * u1_expl[1:-1] + u1_expl[:-2])

+ dt * (fun[1:-1] + action_vec[1:-1])

9

Boundary Conditions

u_expl[0] = u1_expl[1]

u_expl[-1] = u1_expl[-2]

14 # Switch variables before next step

self.u3[:], self.u2[:], self.u1[:] = self.u2, self.u1, self.u

Python Code 9: Burgers equation time stepping

42 test cases and implementations

3.5.2.2 Crank Nicolson Implicit Method

Recalling briefly the discretized Burgers equation:

un+1j − unj
∆t

+
unj (u

n
j − unj−1)

∆x
− ν

(unj−1 − 2u
n
j + unj+1)

∆x2

For the moment the force/action term will be neglected. It will be
added as a final step in the implicit system.

Writing the equation in the conservative form:

∂u

∂t
+
∂F

∂x
= ν

∂2u

∂x2
(44)

with the flux F being:

F =
u2

2
(45)

Substituting in the discretized equation, then

un+1j − unj
∆t

+
Fnj − Fnj−1
∆x

−
ν(unj−1 − 2u

n
j + unj+1

∆x2
= 0 (46)

A Crank - Nicolson implicit formulation can be expressed as fol-
lows:

∆un+1k

∆t
= −

Lx(F
n
j + Fn+1j)

2
+ ν

Lxx(u
n
j + un+1j)

2
(47)

with 
∆un+1j = un+1j − unj

Lx =
(−1,0,1)
∆x

Lxx =
(1,−2,1)
∆x2

The most efficient way to deal with such a system would be solv-
ing tridiagonal equations for computing the solution. Hence, using a
Taylor expansion and linearising with ∆t, gives:

Fn+1j = Fnj +∆t(
∂F

∂t
)nj +

∆t2

2
(
∂2F

∂t2
)nj + ... (48)

Substituting

A = (
∂F

∂u
)nj = unj (49)

Then the tridiagonal form is

un+1j +
1

2
∆t[Lx(u

n
j u
n+1
j) − νLxxu

n+1
j] = unj +

1

2
ν∆tLxxu

n
j (50)

3.5 test case n.2 - burgers’ equation 43

Concisely:

anj u
n+1
j−1 + bnj u

n+1
j + cnj u

n+1
j+1 = dnj (51)

Where

anj = ∆t
4∆xu

n
j−1 −

s
2

bnj = 1+ s

cnj = ∆t
4∆xu

n
j+1 −

s
2

dnj = 0.5 · s · unj−1 + (1− s)unj + s
2u
n
j+1

s = ν∆t
∆x2

(52)

That is unconditionally stable in the Von Neumann analysis sense and
has a truncation error of O(∆t2,∆x2). Turning all this procedure into
Python code:

#--------------

Advance simulation one time step

#--------------

for cont in range(Nt):

5 # --- DIMENSIONAL IMPLICIT BURGERS

s = (nu * dt) / (dx ** 2)

a = -(dt / (4 * dx)) * u1[:-2] - s / 2

a = np.concatenate((a, - (dt/(4*dx)) * u1[-2] - 0.5 * s), axis = None

)

b = (1 + s) * np.ones(Nx - 2)

10 b = np.concatenate((- (dt/(4 * dx)) * u1[0] + 0.5 * s + 1, b),axis =

None)

b = np.concatenate((b, (dt/(4 * dx))*u1[-1] + 0.5 * s + 1),axis =

None)

c = (dt / (4 * dx)) * u1[2:] - s / 2

c = np.concatenate(((dt/(4*dx)) * u1[1] - s/2, c), axis = None)

d = 0.5 * s * u1[:-2] + (1 - s) * u1[1:-1] + (s / 2) * u1[2:]

15 d = np.concatenate((d, 0.5 * s * u1[-2] + u1[-1]*((1 - s) + 0.5 * s))

, axis=None)

d = np.concatenate((u1[0]*((1 - s) + 0.5 * s) + 0.5* s * u1[1] , d),

axis=None)

k = np.array([a, b, c])

offset = [-1, 0, 1]

A = diags(k, offset).toarray()

20 # RHS terms

forcing = AMPLITUDE * (np.sin(2 * np.pi * FREQUENCY * t[kk]))

fun = forcing * np.exp(-((x - XF) ** 2) / (2 * SIGMA ** 2))

b = d + dt*fun

Solving for timestep

25 u = np.linalg.solve(A, b)

u1 = u

Switch variables before next step

self.u3[:], self.u2[:], self.u1[:] = self.u2, self.u1, self.u

Python Code 10: Burgers implicit method

44 test cases and implementations

Where the Neumann boundary condition this time is embodied in
the first and last equation, respectively. For instance, considering the
above eq. (51) in the first node:

an0u
n+1
−1 + bn0u

n+1
0 + cn0u

n+1
1 = dn0 (53)

But un−1 is outside the computational domain. In order to avoid this
problem a ghost node is introduced. Essentially, considering a back-
ward derivative at x = 0 one can write:

du

dx
|0 =

u0 − u−1
∆x

(54)

But the Neumann condition that is imposed prescribes that:

du

dt
|0 =

du

dt
|L = 0 (55)

Hence,

u0 = u−1 (56)

Substituting this relation into eq. (53), the problem of the computa-
tional domain is avoided, coming to:

an0u
n+1
0 + bn0u

n+1
0 + cn0u

n+1
1 = dn0 (57)

Arranging the terms,

un+10 (an0 + bn0)︸ ︷︷ ︸
B[0]

+

C[0]︷︸︸︷
cn0 un+11 = dn0︸︷︷︸

D[0]

(58)

For the other extreme of the boundary, at x = L the same passages
lead to:

anN︸︷︷︸
A[−1]

un+1N−1 + u
n
N

B[−1]︷ ︸︸ ︷
(bnN + cnN) = dnN︸︷︷︸

D[−1]

(59)

3.5.2.3 Validation of numerical methods via Cole-Hopf transformation

In order to validate the proposed numerical schemes, the theoretically
exact solution via Cole - Hopf transformed diffusion equation is used. This
transformation transforms the nonlinear Burger’s equation into a lin-
ear parabolic one. Hereafter a brief overview on how this transforma-
tion is achieved is given. For a more detailed discussion, the reader is
referred to [26].

Considering the Burger’s equation as an initial value problem:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(60)

3.5 test case n.2 - burgers’ equation 45

Given an I.C.:

u(x, 0) = u0(x) (61)

Eq. 60 can be linearised considering the Cole-Hopf transformation:

u(x, t) = −
2νφx

φ
(62)

Substituting,

u = Ψx (63)

Then,

Ψxt +ΨxΨxx = νΨxxx (64)

Using the chain rule:

Ψxt +
∂

∂x

(1
2
Ψ2x

)
= νΨxxx (65)

Integrating with respect to x yields:

Ψt +
1

2
Ψ2x = νΨxx (66)

Substituting in eq. 66:

Ψ = −2ν lnφ (67)

Leads to

φt = νφxx (68)

That is the heat equation.
At t = 0, solving eq. (62) for φ gives:

φ(x, 0) = Ce−
1
2ν

∫
u0dx (69)

Where C is a constant that has no influence on the final solution.
Finally, using:

u0(x) = sin x

And imposing a Neumann boundary condition such that:

u(0, t) = 0 = u(2π, t)

The initial-boundary value problem of a heat equation is obtained:


φt = νφxx

i.c. : φ(x, 0) = e
cosx
2ν

b.c. : φx(0, t) = 0 = φx(2π, t)

(70)

46 test cases and implementations

0 1 2 3 4 5 6

x

−1.0

−0.5

0.0

0.5

u

Cole - Hopf: Original plane solution

t=0 s

t=3 s

t=5 s

Figure 18: Exact solution of the transformed Burger’s equation

0 1 2 3 4 5 6

x [m]

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

u

Cole - Hopf: Validation of Numerical Schemes

Cole-Hopf

Implicit scheme

Figure 19: Validation of the numerical schemes for Burger’s equation via
Cole-Hopf transformation

Which gives to the exact solution of the Burger’s equation.
Hence, these solutions can be compared with the numerical scheme

proposed above in this section.
As it can be seen from Fig. 19 the implicit scheme is very accurate

and almost superpose itself with the analytical solution. However,
looking at the explicit scheme there is a significant difference, caused
by numerical diffusion.

3.5.2.4 Time discretisation

Even if the proposed scheme has been above validated, another con-
cern about the stability of this scheme is the time - discretisation step.
Recalling the Advection test case, in eq. 37 was discussed the neces-
sary condition (but not sufficient) to satisfy in order to have a sta-
ble numerical scheme. But in this case the wave propagation speed
(called c in the Advection analysis) is no longer constant. Following

3.5 test case n.2 - burgers’ equation 47

A. Quarteroni in [23], one can take up the previous CFL condition
and changing it as

∆t 6
∆x

supx∈R|c(x,t)|
(71)

Doing so, essentially the CFL condition is computed by assuming
the maximum velocity in the whole field. It has to be noted that the
very origin of non linearity is due to the wave propagation speed that
becomes a function of x. If this condition is satisfied, it can be shown
again that the Upwind numerical scheme is strongly stable in norm
‖ · ‖1.

As a consequence then, the time - discretisation step should be stud-
ied for every particular set of the computational domain and for each
boundary or initial condition applied, since with these parameters
also the maximum wave propagation may change. In order to be free
of such a study but without renouncing on the stability of the numer-
ical scheme, the implicit method is used.

3.5.2.5 Computational complexities of proposed schemes

Even if it does guarantee stability, the implicit method implies a
greater computational weight, requiring the solution of a system for
each timestep. In particular, given a IV (initial value) problem,ẋ = f(x, t)

x(0) = x0 x ∈ RN
(72)

the complexity for an explicit solver is the same of evaluating f(x, t).
For the sake of generality, assuming that f(x, t) depends on all the
x elements, it results O ∼ (N2), where N is the dimension of the
computational domain. This big-O complexity is intended per each
timestep.

On the other hand, implicit methods solve a linear system of equa-
tion for each timestep. This process gives birth to a matrix of di-
mensions (N×N). Solving such a linear system in the most naive
way, e.g.: using Gaussian elimination, is O ∼ (N3) complex, per each
timestep.

Finally, it is noted how this complexity can easily become more
restrictive than the effective time step imposed in the simulation, be-
coming then the effective complexity of the step.

3.5.2.6 Exploiting the structure of tridiagonal systems

Motivated by the discussion in Sec. 3.5.2.5, a more efficient way to
solve the tridiagonal system is searched.

Dealing with an implicit method to solve the Burgers equation for
each time step, the computational cost skyrockets with even limited

48 test cases and implementations

computational domains. Hence, summing up this computational cost
with the one implied in using RL algorithms, there would be a ma-
jor slowdown that could compromise the wall time required by the
simulation. In order to face this issue, the tridiagonal structure of the
matrix has to be exploited using some more efficient algorithm.

As a first approach Thomas algorithm is tested.
This algorithm is used to solve tridiagonal systems since it is proved to
retain the exact solution then requiring only O(N) operations instead
of the O(N3) for the classic Gaussian approach. However, this cannot
be always used since it is guarantee to be stable only if:

• The matrix is diagonally dominant (either by rows or columns)

• The matrix is symmetric positive definite

Generally a tridiagonal system of n unknowns may be written as:

b1 c1 0

a2 b2 c2
...

0 a3 b3 c3
...

...
.

...
...

.
...

...
. cn−1

0 an bn





u1

u2

u3
...
...

un


=



d1

d2

d3
...
...

dn


(73)

We now compute the new coefficients for the computation, that will
be denoted with primes:

c ′i =


ci
bi

for i = 1

ci
bi−aic

′
i−1

for i = 2, 3, ...,n− 1
(74)

and

d ′i =


di
bi

for i = 1

di−aid
′
i−1

bi−aic
′
i−1

for i = 2, 3, ...,n (75)

Then the solution can be obtained as

xn = d ′n (76)

and

xi = di − cixi+1 for i = n− 1,n− 2, ..., 1 (77)

Therefore, the algorithm may be concisely written as in algorithm
5:

In Python:

3.5 test case n.2 - burgers’ equation 49

Algorithm 5: Thomas Algorithm

for i = 2,..., n do
w = ai

bi−1
;

bi := bi −w · ci−1 ;
di := di −w · di−1 ;
xn = dn

bn
;

xi =
di−ci·xi+1

bi
;

end

1 def Thomas_solver(a, b, c, d):

’’’

Thomas algorithm implementation in Python.

’’’

nf = len(d) # number of equations

6 ac, bc, cc, dc = (x.astype(float) for x in (a, b, c, d))

for it in range(1, nf):

mc = ac[it - 1] / bc[it - 1]

bc[it] = bc[it] - mc * cc[it - 1]

dc[it] = dc[it] - mc * dc[it - 1]

11

xc = bc

xc[-1] = dc[-1] / bc[-1]

for il in range(nf - 2, -1, -1):

16 xc[il] = (dc[il] - cc[il] * xc[il + 1]) / bc[il]

return xc

Python Code 11: Thomas algorithm

As an alternative to such a method, also SciKit Solve Banded is tried
[16]. To do so, the starting matrix has to be rearranged in a more
compact way:

b1 c1 . . . 0

a2 b2 c2 0

0
.

0 . . . an bn

 ⇒


0 b1 c1

a1 b2 c2
...

...
...

an−1 bn 0


From a computational viewpoint, dealing with such matrices is al-

ways more advisable with respect to the full dimensioned matrices.
The complexity of performing operations, such as multiplications for
instance, is greatly reduced.

In Python:

1 N = len(b)

Ab = np.zeros((3, N))

Ab[0, 1:] = c

Ab[1, :] = b

50 test cases and implementations

Ab[2, :-1] = a

Python Code 12: From a tridiagonal matrix to a band one

Where a, b and c are the three diagonals of the tridiagonal matrix
respectively.

Finally, in order to make a comparison fair and robust between
the methods here proposed, a random matrix of different dimensions
Ns=[100, 500, 1000, 2000, 10000, 20000, 100000] has been used
for the test, and each function has been tried, imposing n_trials=100.
The results of this test are the following: Each method is represented

Figure 20: Benchmark of tridiagonal matrix solving methods

by a trend and the area coloured of the same colour is the area sub-
tended by the fastest and the slowest case for this method across
the 100 tests conducted. Hence, Solve Banded will be the method of
choice in this test case implementation.

3.6 test case n.3 - von karman vortex street after a cylinder 51

3.6 test case n.3 - von karman vortex street after a

cylinder

This test case has been published from J. Rabault et al. in [24] in which
a deep reinforcement learning agent has been made to interact with
a fluid flow computed through a step-by-step CFD simulation. This
test case stands for the leading interest in Fluid Mechanics in these
active flow control techniques.

This test case will not be solved in this work - since it has already
been studied deeply be the research team that defined this problem.
Instead, the focus in looking at this test case will be more didactic,
trying to understand the control law chose by the DRL agent.

Thereafter the main points of the experiment are recalled, but for
more information see the original paper.

3.6.1 Environment Description

Figure 21: Velocity magnitude illustrating the effect of flow control

In this environment, a 2D simulation of the non-dimensionalised
flow around a cylinder is described by incompressible Navier-Stokes
equations at Re = 100. The action of the agent is embodied by two jets
of angular width of 10◦ which are set on the sides of the cylinder and
inject fluid in the direction normal to the cylinder surface, directly
influencing the flow field.

These jets are controlled through their flow rates Q1 and Q2, and
a constraint is imposed in order to avoid net mass flow rate to be
introduced into the system:

Q1 +Q2 = 0 (78)

In this work the objective was to minimise the drag D through a
reduction of the vortex shedding past the cylinder. Hence, the reward
is defined as:

r = C̄DT − |C̄LT | (79)

that are the mean over one full vortex shedding cycle.

52 test cases and implementations

Finally, the results are expressed plotting the normalised value of
the drag:

CD,0 =
D

ρŪ2R
(80)

where Ū = 2U(0)/3 is the mean velocity magnitude, ρ is the volumet-
ric mass density of the fluid and R the diameter of the cylinder. U(0)
is the velocity profile at the inflow. Also the mass flow rates of the
two cylinders are normalised,

Q∗i = Qi/Qc (81)

where

Qc =

∫R
−R
ρU(y)dy (82)

is the mass flow rate introduced by the inlet profile that intersects the
cylinder diameter.

Figure 22: Results in J. Rabault et al. [24]

The results obtained by the research team applying this DRL con-
troller are the following: after around 120 training epochs (number of
updates on the trajectories), the drag coefficient is reduced by around
8% while the fluctuations in lift are reduced by around 75%. Finally,
the area A of the recirculating bubble is drastically increased by 125%.

3.6.2 Implementation

Since the agent is interacting with a fluid flow field a CFD solver is
needed. The authors chose the open source Python package FEniCS
[25].

3.6 test case n.3 - von karman vortex street after a cylinder 53

For what concerns the DRL framework they used Tensoforce and
TensorFlow, see M. Abadi et al. [1].

The main simulation’s parameters are recalled hereafter.

Test Case n. 3 - von Karman vortex street

Param. Value

R 0.05

L 2.2

H 0.41

ν 10−3

ρ 1

Re 100

dt dt = 5 · 10−4

θ1, jet 1 90◦

θ2, jet 2 270◦

γ, jets width 10◦

Table 3: Review of Test case n.3 - DRL control of the 2D von Karman vortex
street

Finally, in order to help PPO learn the correct set of continuous
control signal, two limitations have been applied:

i The control provided by the agent is held constant for a dura-
tion of roughly 10% of the vortex shedding period;

ii The control is made continuous in time. To this end, the control
is obtained for each jet as:cs+1 = cs+α(a− cs), where cs is the
control of the jet at the previous time step and a is the action
provided by the PPO agent. α = 0.1 is a numerical parameter.

4
R E S U LT S

results organisation

In this Section, the Results obtained on the three test cases will be pre-
sented. The organisation for each is the following: at first the neural
network architecture (NNA) for both the policy and value network is
studied. This study comprehends tests in the structure of the Neural
Network (NN) along tests on its activation function. One parameter
is varied at time, using as default settings - (64, 64) arcitecture, ReLU -
for all the others. Three Multilayer Perceptron (MLP) are investigated,
(64, 64), (150, 50, 25) and (400, 300). For what concerns the activation
functions, they are varied across tanh, ReLU and Leaky ReLU. These
choices are made following commonplace trends in the community.
Also the performances of MLPLSTM networks are evaluated. Sec-
ondly, the architecture with the highest performance will be studied
more in depth, giving an insight also on the main hyper parameters
that come into play. After this step, an Hyper Parameter Optimisation
(HPO) is carried out through Bayesian Optimisation (BO) to get the
best performance out of the Deep Reinforcement Learning agent. Be-
ing this DRL-study completed, this performances are compared with
more classical optimisation techniques - for instance Nelder-Mead’s
simplex method - and with Bayesian Optimisation, used here with
the purpose of control.
In the study of test case #3: the control of a von Kàrmàn vortex street
after a cylinder, the DRL-study of above is omitted since it is already
present in the published work of its authors in J. Rabaud et al. [24].

55

56 results

4.1 advection equation

The physical set-up of the experiment is the following:

Simulation settings

description value

L[m] length of the physical domain 50

T[s] simulation duration 0.3

Nx[-] space elements (2e2)

dx[-] space discretisation step L/Nx

c[m/s] wave propagation speed 330

dt[-] time discretisation step C · dx/c

Nt[-] time elements T/dt

f[Hz] perturbation’s frequency 0.5e2

A[-] perturbation’s amplitude 3e2

C[-] Courant number 1

Table 4: Advection simulation setting

0 10 20 30 40 50

Position [m]

−0.4

−0.2

0.0

0.2

0.4

D
is

pl
ac

em
en

t[
u]

observation forcing action

Figure 23: Advection Equation environment. Overview without any control.

The Deep Reinforcement Learning set-up is:

4.1 advection equation 57

Deep Reinforcement Learning settings

Method seeds A O reward shape r

PPO 4 (1,) (18,) −‖u‖2

Table 5: DRL agent settings

where A and O represent the action space and the observations
space, using Python notation, respectively.

4.1.1 Neural Network Architecture (NNA)

As a first step in studying the performances of the DRL agent in con-
trolling the wave perturbation, the architecture of the agent itself has
to be chosen. In particular, this implies a study of the neural network
structure and activation function. These tests are conducted using a
fixed number of steps (20M) for the agent to interact with the envi-
ronment. The evaluation metrics are: the mean reward obtained by
the agent after learning in 100 episodes, the dispersion (σ) using dif-
ferent seeds, where

σ∗ =
∣∣∣(max−min)

(max)

∣∣∣ (83)

Where max and min are the best and the worst performance respec-
tively, for a given seed.

4.1.1.1 Architecture

Advection: Neural Network Architecture

(150, 50, 25) (400, 300) (64, 64)

r̄t −9.324 −11.667 −8.245

σ 0.380 0.462 0.271

Table 6: Advection:NNA study

Table 6 shows that (64, 64) architecture not only achieves a better
reward across 100 episodes, but it is also less sensitive to initial seeds.
Moreover, the number of weights to be optimised influences the (tem-
poral) length of the training, for a given number of time steps. How-
ever, a metric about time is not presented here since different desktop
computers were used, and the training time also depends on the per-
formance of the machine in use.

58 results

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
N of steps ×107

−300

−250

−200

−150

−100

−50

0

re
w

ar
d:

r t
=
−
‖u
‖ 2

(150, 50, 25)

(400, 300)

(64, 64)

Figure 24: Advection: Behaviour of the collected reward for different Neural
Network Architectures

Looking at both Fig. 24 and Fig. 27 it can be appreciated how the
architecture (150, 50, 25) is the most sensitive to the initial random
seed.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
×107

0.25

0.50

(64, 64), σ =0.271

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
×107

0.0

0.5

(150, 50, 25), σ =0.462

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
×107

0.0

0.5

(400, 300), σ =0.380

Figure 25: Advection: Detail on dispersion for a given architecture using
different initial seeds. Plot of σ per each time step.

4.1 advection equation 59

4.1.1.2 Activation Function

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

N of steps ×107

−300

−250

−200

−150

−100

−50

0
re

w
ar

d:
r t

=
−
‖u
‖ 2

tanh

leaky ReLU

ReLU

Figure 26: Advection: Behaviour of the collected reward for different Activa-
tion Functions

Advection: Neural Network Architecture

tanh leaky ReLU ReLU

r̄t −11.900 −11.566 −8.245

σ 0.390 0.306 0.271

Table 7: Advection: reward and dispersion as a function of the Activation
Function

From the results in Tab. 8, ReLU is the activation function that both
limits dispersion and achieve a best overall reward over 100 episode
of test.

4.1.1.3 Long Short Term Memory (LSTM)

As a final test in this architecture study, the nature of neurons them-
selves that compose the net is changed. Long Short Term Memory
are used, and compared with the best MLP originated by the previ-
ous study: (64, 64) with ReLU activation function.

The observation about computational time made in Sect. 4.1.1.1 is
especially true in using LSTM networks. In fact, the additional com-

60 results

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
×107

0.25

0.50

ReLU, σ =0.271

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
×107

0.0

0.5

tanh, σ =0.390

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
×107

0.0

0.5

Leaky ReLU, σ =0.306

Figure 27: Advection: Activation Function, detail on dispersion for a given
architecture using different initial seeds. Plot of σ per each time
step.

Advection: MLP against MLPLSTM

MLPLSTM MLP

r̄t −12.011 −8.245

σ 0.306 0.271

Table 8: Advection: Long Short Term Memory performances

putations greatly slow down the simulation that requires almost dou-
ble the time of a standard MLP1.

Even though the MLPLSTM-agent is able to successfully control the
wave and to achieve a reward not so distant from the MLP-agent’s
one, the importance of dispersion with different seeds is of major
interest. In fact, important oscillations in the collected rewards are
present, as σ = 0.706 does testify. It is noted that, because of these
oscillations, the plot of Fig. 28 is rearranged as follows: instead of
plotting the mean and to fill between the best and the worst perfor-
mance for each time step, the coloured area represents the distance
between the maximum and the average performance. Being the min-
ima too low, it would have impacted the readability of the plot.

1 Keeping in mind that these performances are also desktop-dependent.

4.1 advection equation 61

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

N of steps ×107

−300

−250

−200

−150

−100

−50

0

re
w

ar
d:
r t

=
−
‖u
‖ 2

MLPLSTM

MLP

Figure 28: Advection: MLPLSTM performances

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
×107

0.2

0.4

0.6

MLP, σmean = 0.269

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
×107

0.0

0.5

1.0

MLPLSTM, σmean = 0.706

Figure 29: Advection: MLPLSTM, detail on dispersion for a given architec-
ture using different initial seeds. Plot of σ per each time step.

Hence, this complexity added on top of "classic" MLP not improves
the performances of the agent as hoped, at least in this environment.

62 results

4.1.2 DRL Control Performances

A more in-depth analysis of the control action made by the agent,
exploiting the best architecture, can be made.

Hyper parameters for this simulation were empirically chosen and
are reported below in Tab. 12.

Main Hyperparameters choices

Method n. of steps n. minibatches noptepochs learning rate cliprange

PPO 3.2 · 104 100 5 2.5 · 10−4 0.2

Table 9: Naive PPO simulation parameters

The agent successfully learned an effective control action relying
solely on the information obtained interacting with the environment.
Such information were passed by the observation points, as explained
in Sect. 3.4. As it can be seen looking at the displacement field, the
external perturbation is almost cancelled out.

0 10 20 30 40 50

Position [m]

−0.4

−0.2

0.0

0.2

0.4

D
is

pl
ac

em
en

t[
u]

observation forcing action

Figure 30: Advection: Controlled wave

Moreover, this control law can be compared with the theoretical
one, being formally known:

g(x, t) = A sinωt−ω
∆x

c
+ π ·N(x− (5+∆x), 0.2)

Hence, looking at Fig. 31 it can be seen how the control applied by
the DRL agent and the theoretical solution are almost superposing. A

4.1 advection equation 63

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Time [s]

−300

−200

−100

0

100

200

300

400

C
on

tr
ol

A
ct

io
n

RL Theory

Figure 31: RL Control Action against the theoretical one.

confirm of that can be searched in the plane of frequencies, using a
Fourier Transform of the control action.

0 25 50 75 100 125 150 175 200
Frequency [Hz]

0

25

50

75

100

125

150

175

200

A
m

pl
it

ud
e

[-
]

DRL Action

Opt. Action

Figure 32: Advection: Fourier Transform of the control action

The highest frequency among the DRL-control amplitudes is the
same of the exact solution at f = 50 [Hz]. The same frequency which
perturbs the system. However, the DRL appears to be more noisy,

64 results

due to its exploration and to the fact that the control law is obtained
as a sequence of trials and errors. How much of the control power is
wasted in these lower frequencies?. In order to answer to this question,
the concept of Power Spectral Density (PSD) is introduced. Essentially,
it should explain how the power is distributed across the frequency.

10−2 10−1

Frequency [Hz]

0

10

20

30

40

50

60

70

Po
w

er
PSD: power spectral density

DRL action signal

Opt. action signal

Figure 33: Advection: Power Spectral Density (PSD)

The power distribution of the DRL-control and the theoretical are
almost identical, that means that even if some other frequencies are
present in the Fourier transform of the control action, not a lot of
energy is employed therein.

4.1.3 Improving the learning performances: Hyper parameters optimisa-
tion

Now that a baseline of the DRL agent is obtained, an optimisation
operation is carried out with the scope of improving the overall per-
formances of the DRL agent. The hyper parameter space is defined as
in Tab. 10.

This ranges have been retrieved consulting main PPO published
papers and specialistic publication, see for a reference [32]. The hyper
parameter space is hence 8-th dimensional.

Bayesian Optimisation technique has been chosen for the completion
of this task, in particular the Optuna Python library ([2]). The optimi-
sation process is carried out as follows: at first the optimiser suggests

4.1 advection equation 65

Hyper parameter space

Hyper parameter boundaries type

n. of steps [8, 32 000] integer

discount factor (γ) [0.8, 0.9997] logarithmic

learning rate (α) [1e-5, 1.] logarithmic

entropy coefficient [5e-6, 3e-3] logarithmic

cliprange [0.1, 0.4] float

noptepochs [3, 30] integer

lam [0.9, 1] float

value function coeff. [0.5, 1] logarithmic

Table 10: PPO Hyper parameter space

a set of values, these values are used to define an agent that interacts
with the environment. Using the callback described in Sect. 3.1.1 if
the standard deviation of collected rewards across different episodes
is stable under a 15% range, the simulation is ended.

It took the optimiser 86 trials - i.e.: 86 simulations - to obtain the
best combination of hyper parameters for this environment.

This study also gives insights about the relative importance of the
different hyper parameters on the agents’ performance. The impor-
tances are represented by floating point numbers that sum to 1.0 over
the entire set. The higher the value, the more important is the hyper
parameter.

It can be seen from Fig. 34 how the learning rate is the most impor-
tant hyper parameter by far, followed by the value function coefficient
and by the number of steps. The importance of the learning rate does
not surprise: it defines the gradient descent update stepping, always a
crucial parameter, even more when dealing with on-policy methods,
such as PPO. It has to be stressed, however, how these results are
strictly linked to the problem at stake and to the method employed.

Finally, a direct comparison between the so-called naive agent - i.e.:
the not optimised - and the optimised one can be carried out, compar-
ing the hyper parameters value and the effectiveness of the obtained
best policy.

In Fig. 36 a learning curve of the two agents is proposed.
Hence, the optimal agent learns a robust policy interacting with the

environment for 455k timesteps with a much steeper learning curve
slope. Moreover, the sensitivity from the initial seed is extremely close
to the naive one, as Fig. 37 shows.

66 results

Figure 34: Advection hyper parameters importances

Hyper parameters comparison

Hyper parameter Naive Optimised

gamma 9.90E-01 9.84E-01

n. of steps 3.20E+04 3.33E+02

learning rate 2.50E-04 1.05E-04

vf. coef 5.00E-01 5.26E-01

ent. coef 1.00E-02 1.49E-04

noptepochs 5.00E+00 2.22E+01

lam 9.50E-01 9.82E-01

cliprange 2.00E-01 1.08E-01

Table 11: Advection: hyper parameters study

Naive vs Tuned agent benchmarking

Agent best reward timesteps σ r̄t over 100 episodes

Naive -14.13 16M 0.259 - 16.8

Optimised - 7.409 455k 0.287 -8.5

Table 12: Advection: DRL performances benchmark

4.1 advection equation 67

Figure 35: Hyper parameters comparison

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

N of steps ×107

−400

−300

−200

−100

0

R
ew

ar
d

Tuned agent

Naive agent

2 4 6

N of steps ×106

−300

−250

−200

−150

−100

−50

0

R
ew

ar
d

Tuned agent

Naive agent

Figure 36: Naive vs Optimised agent

It is recalled that σ is described in eq. (83).
Tab. 12 confirms the influence of the hyper parameters over the

DRL agent. Over one hundred episodes, the optimised agent per-
forms better even relying on a reduced number of steps in its train-
ing phase. Truth to be told, this number of steps may be misleading
since other 85 trials - with the corresponding number of steps - were
needed to obtain such a performance.

68 results

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
×107

0.0

0.2

0.4

0.6

Naive, σ =0.259

0 100000 200000 300000 400000

0.0

0.2

0.4

0.6

Optimised, σ =0.287

Figure 37: Advection: HPO, detail on dispersions for different initial seeds.

4.1.4 Optimising the control action

As a further step of this study, a simpler parametrisation for the con-
trol action is employed. In Sect. 2.9 Nelder-Mead and Bayesian Op-
timisation algorithms were introduced. Hereafter this techniques are
used in order to find a proper set of coefficients C that combined with
the observation passed step by step Oi give rise to the i-th action Ai,
where i is the timestep. Hence, the framework is the following:

O · C = A (84)

It can be preliminary noted how such a linear approach is signif-
icantly different from the Reinforcement Learning task. The former
imposes that the action has to be a linear combination between the
observed state and some control coefficient to be found, whereas the
latter is discovering a control law optimising the weights of an Artifi-
cial Neural Network that can - theoretically - result in a non linear
mapping between the action (output of the net) and the input (ob-
served state).

That being said, this test is conducted in order to assess the dif-
ferences in terms of performances of the control law and in terms of
learning costs using DRL or a much simpler approach.

4.1.4.1 Nelder-Mead

Fig. 38 shows the cost history during the optimisation phase. It can be
appreciated how almost a monotonic trend is observed. It took 1298
iterations in order to find a set of coefficients that combined with the
observations points are able to control the wave. Each iteration is a
whole episode inside the Advection Environment as it has been for-
mulated above. In order to give some metric that allows to compare

4.1 advection equation 69

0 200 400 600 800 1000 1200

N trials

0

50

100

150

200

250

300
C

um
ul

at
iv

e
C

os
t

Figure 38: Nelder-Mead Learning Curve

this performance to the DRL one, it can be noted how the total actions
(and rewards) to be sampled using this optimization algorithm is:

ΣNtrialsi=1 Ai = Ntrials ·Atrials = Ntrials ·
T

dt

With that the number of episodes being:

nepisodes =
timesteps

n. of steps

Since a trial is defined as a whole wave period and an action is
sampled at each timestep. As a result, the Nelder-Mead approach
required 514k actions evaluations, achieving a total reward of rt =

−9.926 over a episode with this set of coefficients. Finally, it is noted
that without the computational burden of training a neural net and
being completely gradient free, the simulation lasted roughly 4 min-
utes on a standard desktop.

4.1.4.2 Bayesian Optimisation

Following the same procedure and employing Bayesian Optimisation
as a controller, it requires 1168 iterations - i.e.: 431k evaluations - to
achieve a maximum reward across an episode of rt = −31.27. More-
over, even increasing the number of maximum iterations the result is
not improved, if not slightly.

70 results

4.1.5 Summary

As a conclusion of this chapter, the two best performances of DRL
control are compared with the two obtained with optimisation tech-
niques.

0 50 100 150 200 250 300 350 400
N timestep

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0
C

ol
le

ct
ed

re
w

ar
d:

r t
=
−
‖u
‖ 2

BO: Σtrt =-31.269

Nelder-Mead: : Σtrt =-9.926

Naive DRL: Σtrt = -14.13

Optimised DRL: Σtrt =-9.182

Figure 39: Advection: Rewards collected during an episode, benchmark

Control Performances

Method r̄t
a total sampled actions total number of episodes

DRL Naiveb −14.13 16M 40404

DRL Optimised −7.409 455k+ x 1149+ x

Nelder-Mead −9.926 514k 1298

BO −31.27 431k 1168

Table 13: Advection: control performances benchmark

a Collected reward over 100 episodes
b Here is used the agent that automatically detected when the standard deviation of

the collected rewards were under the 15%

4.2 burgers equation 71

4.2 burgers equation

The physical set-up of the experiment is the following:

Simulation settings

description value

L[m] length of the physical domain 20

T[s] simulation duration 5

Nx[-] space elements (1e3)

dx[-] space discretisation step L/Nx

c[m/s] wave propagation speed 330

dt[-] time discretisation step 0.001

Nt[-] time elements T/dt

f[Hz] perturbation’s frequency 0.005e2

A[-] perturbation’s amplitude 1e2

C[-] Courant number 1

Table 14: Burgers simulation setting

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Position [m]

−20

−15

−10

−5

0

5

10

15

20

D
is

pl
ac

em
en

t
[u

]

forcing action

Figure 40: Burgers Equation environment. Overview without any control.

The Deep Reinforcement Learning set-up is shown in Tab. 15,
where A and O represent the action space and the observations

space, using Python notation, respectively.

72 results

Deep Reinforcement Learning settings

Method seeds A O reward shape r

PPO 4 (1,) (36,) exp
(
−
‖u‖2
2σ2

)
− 1

Table 15: DRL agent settings

The solver implemented is a Crank-Nicolson method solved using
the optimised algorithm for banded matrices. For more on this topic,
please refer to Sect. 3.5.2.2.

4.2.1 Neural Network Architecture (NNA)

Following the same methodology of the Advection Equation study
(refer to Sect. 4.1.1.1) the neural network influence on the model per-
formances is studied. As already done for the previous study, the
activation function and architecture are changed one at time, starting
from the baseline choice of (64, 64) with ReLU.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

N timesteps ×107

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

R
ew

ar
d
r t

64x64

150x50x25

400x300

Figure 41: Burgers Environment: influence of the NN architecture

From Fig. 41 it can be seen how the architecture (64, 64) is the one
which has the best overall performance. Even though it has a notice-
able greater variance in its reward history, it reaches globally highest
reward than (150, 50, 25) and (400, 300). Moreover, for the last two
architectures, not all four starting seeds lead to an effective control,

4.2 burgers equation 73

while on the other hand (64, 64) does manage to control the environ-
ment with the only difference of the time steps required with seeds.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
×107

0.00

0.25

(400, 300), σ =0.171

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
×107

0.25

0.50

(150, 50, 25), σ =0.217

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
×107

0

1
(64, 64), σ =0.569

Figure 42: Burgers Environment: dispersion of collected rewards for differ-
ent NN architecture. Plot of σ per each time step.

Fig. 42 confirms what seen in Fig. 41: the (64, 64) NN has the greater
dispersion of the collected rewards over the simulation. This higher
variance turns out to be a point of strength for the learning process:
being the agent able to reach states that lead it to an high reward, it
seeks to come back in such a condition. The other architectures that
do not experience such good states tend to remain in this condition,
the exploration is not enough.

For what concerns the behaviour of different activation functions,
the overall results are reported in Fig. 43. This time the influence is
even more important: out of four seeds, the tanh activation did not
manage to control the wave in all of them. The situation is slightly
better for the leakyReLU activation, which initial greater exploration
lead to the control of the wave in one out of four initial seeds, al-
though not perfectly.

The dispersion across the learning phase, shown in Fig. 44, reflects
what said before, adding the information that even if the algorithm
embedded exploration, the agent is not able to reach good states that
gives good reward and so it is stuck in these bad states.

The behaviour encountered in this section is one of the drawback
of the on-policy methods, such as Proximal Policy Optimization (PPO),
algorithm of choice in this work. The fact that the agent learns directly
from its experience it’s a problem if it is not able to reach any good
state, because it will be stuck in such a region.

As a final note, if the reader finds the trends of leaky ReLU, tanh,
(100, 50, 25) and (400, 300) more coarse than the baseline (64, 64) −
ReLU the guess is correct. In fact, while the number of steps is kept

74 results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

N timesteps ×107

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

R
ew

ar
d
r t

ReLu

Leaky ReLU

tanh

Figure 43: Burgers Environment: influence of the NN activation function

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
×107

0.25

0.50
leakyRelu, σ =0.090

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
×107

0.00

0.25

tanh, σ =0.093

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
×107

0

1
ReLU , σ =0.569

Figure 44: Burgers Environment: dispersion of collected rewards for differ-
ent NN activations

constant, to compare effectively agents that have been learned for the
same number of interaction with the environment, for the simula-
tions of above Vectorized Environment have been used, from Stable
Baselines ([8]): Vectorized Environments are a method for stacking multiple
independent environments into a single environment. Instead of training an
RL agent on 1 environment per step, it allows us to train it on n environ-
ments per step.

4.2 burgers equation 75

4.2.2 DRL control performances

The overall setup of the model is reported in Tab. 16.

Main Hyperparameters choices

Method n. of steps n. minibatches noptepochs learning rate cliprange

PPO 3.2 · 104 100 5 2.5 · 10−4 0.2

Table 16: Naive PPO simulation parameters

The agent successfully learnt an effective control law in roughly
38M time steps.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Position [m]

−20

−15

−10

−5

0

5

10

15

20

D
is

pl
ac

em
en

t
[u

]

forcing action

Figure 45: Burgers Equation: controlled wave

Fig. 45 shows this control in action. The external perturbation is
almost dumped completely. However, looking at the learning curve
(for different initial seeds) in Fig. 46 it can be appreciated how the
learning phase is more noisy with respect to the simpler Advection
Test case.

In particular, taking aside from the undoubtedly influence on this
plot of the reward shape (the reader is referred to Sect. 4.2.5), the
learning appears to be more difficult for the agent. In fact, ' 24M

time steps are needed to learn a good policy. It is also interesting
to notice how, after these good results are collected, the quality of
the policy gradually deteriorates up to the exit condition. When exit-
ing the simulation - i.e.: the standard deviation of collected rewards
across successive episodes are stable under a 15% of tolerance - the
agent has learnt a bad policy.

76 results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

N timesteps ×107

−5000

−4000

−3000

−2000

−1000

0

R
ew

ar
d
r t

Naive Burgers - Gaussian reward

Figure 46: Burgers Equation environment: Learning curve, for four different
initial seeds.

Some speculations on that behaviour can be made. Being the RL
method belonging to the on-policy methods, it is very sensitive to the
trajectories in which it happens to end up, as stated in Def. 2.4.3.

Finally, the learning curve in Fig. 46 motivates the approach of us-
ing different initial seeds of the Neural Networks at play. It can be
appreciated at glance how the performances change deeply with re-
spect to such a condition: for the same time step, a simulation could
lead to a completely controlled wave and another is still very far to
achieve the control.

4.2.3 Improving the learning performances: Hyper parameters optimisa-
tion

Following the same steps of Sect. 4.1.3, an optimization of the hyper
paramters is carried out, with the goal of improving learning perfor-
mances.

However, the environment being optimized is slightly different from
the one experienced by RL agent. In particular, the time step dt has
been increased of one order of magnitude to achieve some apprecia-
ble results. The optimization performed with dt = 0.001 was unsuc-
cessful, either for the dt being too small or for a insufficient number
of trials.

Finally, the hyper parameter space given to the optimizer is the
same of illustrated in Tab. 11.

4.2 burgers equation 77

With such a setting, Bayesian Optimization (BO) is able to find a set
of hyper parameters good enough to speed up the learning phase. In
fact, it took 69 trials to get a set of parameters which, after a learning
phase of 1.75M time steps, led to an overall reward of rt = −83.609,
over a whole episode.

Figure 47: Burgers Equation: optimization history

Hyper parameters comparison

Hyper parameter Naive Optimised

gamma∗ 9.90E-01 9.48E-01

n. of steps 3.20E+04 3.17E+04

learning rate 2.50E-04 5.69E-03

vf. coef 5.00E-01 6.49E-01

ent. coef 1.00E-02 4.69E-04

noptepochs 5.00E+00 3.7E+01

lam∗ 9.50E-01 9.82E-01

cliprange 2.00E-01 3.23E-01

Table 17: Advection: hyper parameters study

The results shown in Tab. 17 have some similiarities with the best
set of hyper parameters obtained for the Advection test case2 but they
differ for almost all parameters. This result highlights how the best set

2 These are indicated with the * apex

78 results

of hyper parameters is not a unique property of the DRL-agent at hand, but
is also greatly dependent on the problem at stake - greatly.

Figure 48: Burgers Equation: relative importance of hyper parameters on
learning performances

Notwithstanding what said about the unicity of the set of param-
eters that yields to the best performance, it is possibile to see some
pattern looking at the relative importance of each in Fig. 48 and Fig.
34 - which shows the same plot for the Advection test case. In fact, in
both studies learning rate and value function coefficient have an upmost
influence.

This result can be used for setting a further optimization on a re-
duced search space, hence reducing the compuational burden of the
optimizator, focusing on the parameters that influences for the most
the learning performances.

4.2.4 Effects of dimensionless parameters on learning performances

Exploiting the dimensionless formulation, obtained in Sect. 41,

û,t̂ + ûûx̂ = Nû,x̂x̂ +Φf̂

then the influence of the two dimensionless parameters N, dimen-
sionless viscosity, andΦ, dimensionless inertia, can be investigated. More
generally, since the Burgers equation and its dimensionless formula-
tion have the same formal structure, this study allows to speculate
about the impact of viscosity and amplitude (of both control and dis-
turbance) on the learning phase of the agent.

These plots show how the agent generally manages to control the
problem, even though there are some parameters set that lead to poor
performances.

The overall trend that can be inferred from these figures is that for
an increasing intertia parameter (Φ) the agent has some difficulies in

4.2 burgers equation 79

500 600 700 800 900

Φ

2

4

6

8

10

N

Rewards Contour Plot

−105000

−90000

−75000

−60000

−45000

−30000

−15000

0

Figure 49: Burgers Equation: dimensionless parameters influence on learn-
ing, rewards collected by the trained agent

500 600 700 800 900

Φ

2

4

6

8

10

N

Time steps Contour Plot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
×107

Figure 50: Burgers Equation: dimensionless parameters influence on learn-
ing. number of interactions with the environment

converging to a good control-law. At the same time, the dimension-
less viscosity (N) dumps these effects, allowing a good control to be
discovered.

80 results

4.2.5 A note on the the reward shape influence

Following the insights provided in [14] the reward shape has been
changed from the Euclidean Norm of the displacement, applied in
the Advection test case, to the Gaussian Negative distribution:

r = exp
(
−
‖u‖2
2σ2

)
− 1 (85)

since it has been proved to improve the model performance in the
learning phase, applied to the Burgers environment.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Position [m]

−10

−5

0

5

10

D
is

pl
ac

em
en

t
[u

]

Free field Euclidean norm Gaussian negative

observation forcing action

Figure 51: Reward shape influence on model performance. Control applied
by two different models implementing Gaussian negative reward
shape (green) and Euclidean norm reward shape (orange), after 26M
time steps of learning.

As shown in Fig. 51, for a fixed time step, the model which tries
to maximise the Gaussian negative reward dumps almost completely
the external perturbation. On the other hand, if it seeks to maximise
the Euclidean norm during learning, its control action is not satisfac-
tory yet.
This behaviour is not seed-dependent.

4.2.6 Linear Regression of RL Strategies

Motivated by a search of a deeper understanding of the RL control
strategy, the methodology explained in Sect. 2.8 are applied hereafter.
In brief, that means that starting from the actions applied for each
time step by the DRL agent, Ai, a straightforward pseudo inverse
is applied to understand how far the control law effectively learnt
by the agent - hence parametrized by a Neural Network - is from a
simple linear control. This step can also be interpreted as a lineariza-
tion of the control law, that is potentially nonlinear, since it has been

4.2 burgers equation 81

parametrised by a Neural Network - a universal function approxima-
tor.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Position [m]

−20

−15

−10

−5

0

5

10

15

20
D

is
pl

ac
em

en
t

[u
]

DRL action

Linearised action

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Position [m]

−20

−15

−10

−5

0

5

10

15

20

D
is

pl
ac

em
en

t
[u

]

DRL action

Linearised action

Figure 52: Comparison between linearised-DRL action and DRL one, for dif-
ferent timesteps.

Fig. 52 shows a very unexpected result: the linearised control is
very close to the DRL one leading to a residual between the two of
res = 3.38e-01.
The agent learnt a linear control law, even though the NN parametrization
gave to it almost no constraint of the function to be learnt, being NN uni-
versal approximators.

It is now of interest to have an estimate of the correlation occurring
between the observations and the action took per each time step, to
be sure that the ability of NN to generalize is not compromised. To

82 results

do so, Pearson correlation coefficients are computed for each time step
between the observations and the action that from them descends.
From an high-level perspective, these coefficients are computed as,

ρX,Y =
cov(X, Y)
σxσY

(86)

where X and Y are the two variables object of study, cov(·, ·) repre-
sents the covariance between the two and σ· is the standard deviation
of (·). A value of ρX,Y = 0 means that there is no correlation between
X and Y. Otherwise, if ρX,Y = ±1 it would be that X and Y are linearly
correlated.

In this computation, X is the i− th observation point, while Y is the
action took by the agent at the successive time step - the action that
originates from these observations.

0 5 10 15 20 25 30 35

Observations

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

r

Pearson correlation coeff. rij = cov(ij)/(σiσj)

Figure 53: Burgers Equation: Pearson correlation coefficients

As a consequence from Fig. 53 it can be stated that there is a very
weak correlation between the observations and actions - if any.

But if the agent learnt a linear control law having the possibility
of learn a very non linear one through a Neural Network, a question
arise: What if a simpler parametrization of the control law itself is used?

This is the aim of the next section.

4.2.7 Controlling the wave with a simpler parametrization: Bayesian Opti-
misation

As a benchmark, the problem of controlling Burgers equation is now
attacked with Bayesian Optimisation (BO). In particular, BO is used to

4.2 burgers equation 83

search for the best set of coefficients C that linearly combined with the
observations O give birth to the action A. The environment is exactly
the same of the one used in DRL learning phase, which characteristics
are listed in Tab. 14.

It took 1144 episodes - i.e.: 5.72M time steps - for BO to come up
with a near optimal set of coefficients C. The control achieved with
such a control is almost perfect, collecting a reward of rt = −8.603
over the whole episode.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Position [m]

−10

−5

0

5

10

D
is

pl
ac

em
en

t
[u

]

observation forcing action

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Position [m]

−10

−5

0

5

10

D
is

pl
ac

em
en

t
[u

]

observation forcing action

Figure 54: Burgers Equation controlled via Bayesian Optimisation, two dif-
ferent time steps

The two control laws can now be compared. In particular, for each
time step, both the BO-control, the DRL-control and the external per-
turbation magnitude are plotted.

In Fig. 55 a comparison between the two control laws is shown. The
overall simulation period is increased from T = 5[s] to T = 10[s] to
observe this evolution for more time steps.

The difference between the two methods applied can be detected
at glance: while DRL method chooses an action in a stochastic man-
ner for a given distribution that is changing with time, the BO-based

84 results

Figure 55: Burgers Equation: comparison between BO-control and DRL-
control

approach is fully deterministic since the same coefficients are applied
for each time step.

Moreover, looking at Fig. 55, it can be seen how the BO control
has a component at the same frequency of the external perturbation -
being this control law a linear combination of the observations points,
the connection with the frequency of the perturbation acting on the
system is preserved - and another one at a more higher frequency.
On the other hand, even though the overall trend reminds of a noisy
sinusoidal wave, from DRL is difficult to extract any other useful
information.

4.2.8 Summary

The main results obtained in this test case are summarised in the table
below.

4.2 burgers equation 85

Burgers Equation results

Method time step r̄t

DRL Naive 38Ma −765.610

DRL Optimisedb −83.603 1.75M+ x

BO 5.72M −8.603

Table 18: Burgers simulation results

a The number of time steps needed to effectively end the training phase
b Note that here the time step dt is one order of magnitude greater, increased for

optimization reasons. Please refer to Sect. 4.2.3

86 results

4.3 control of the von karman vortex street after a

cylinder

In this test case there is no concern in studying the DRL-control per-
formances, that can be easily retrieved in the published work of J.
Rabault et al. [24]. Instead, the linearisation of the control strategy is
put in to place, in order to assess the quality of a linear control in
such an environment.

The Deep Reinforcement Learning set-up is shown in Tab. 19,

Deep Reinforcement Learning settings

Method A O reward shape r

PPO (2,) (151,) −| < CD > |− |CL|

Table 19: DRL agent settings

where A and O represent the action space and the observations
space, using Python notation, respectively and < · > means the aver-
age over the episode.

4.3.1 Linear Regression of RL Strategies

Following the same steps of Sect. 2.8, a pseudo inverse is carried out
to "linearise" (in a least square sense) the control law of the DRL-agent.
In this environment, the agent applies two actions per each time step,
these being represented by two jets, Q1 and Q2.

Figure 56: Control of the Von Karman Vortex street after a cylinder: lineari-
sation of the control action

4.3 control of the von karman vortex street after a cylinder 87

The linearised control superpose completely the DRL control law:
the agent is applying a linear control.

Being the observation space O so ample, it is now interesting to
evaluate this linearisation using a different number of observations
point, to understand how the number of observations affects the qual-
ity of such a procedure.

Figure 57: Control of the Von Karman Vortex street after a cylinder: residual
between the DRL control law and the linearised one against the
number of observations used for such a regression.

As it can be seen from Fig. 57, the residual between the two con-
trol laws is extremely low - up to 10−5 max -, as already shown in
the almost perfect match in Fig. 56. Moreover, this figure shows how,
increasing the number of observations points used in the regression,
the difference between the DRL-control and a linear one decreases,
finding its best spot in the range between 70-100 observations points.

Hence, the same question posed in studying Burgers Equation arise
again: what if instead of the complexity of a Neural Network a simpler
parametrisation was employed?

4.3.2 Controlling the wave with a simpler parametrisation: LIPO + Nelder-
Mead

As a benchmark, the problem of controlling this environment is now
attacked with a combination of Lipschtiz functions and Nelder-Mead.
In particular, these optimisators are used to search for the best set
of coefficients C that linearly combined with the observations O give
birth to the action A. The environment is exactly the same of the one
used in DRL learning phase, which characteristics are listed in Tab.
19.

88 results

0 5 10 15 20

N trials

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

C
ol

le
ct

ed
re

w
ar

d
Σ
t e
n
d

t=
0
r t

LIPO + Nelder-Mead best = 0.000271

RL best = 0.235

Figure 58: Control of the Von Karman Vortex street after a cylinder: Nelder-
Mead trials’ cumulative costs

In this simulation, Lipschtiz functions (LIPO algorithm) is used un-
til its cumulative reward is not stable. As soon as the trend is stabil-
ising, LIPO results are then passed to Nelder-Mead to search for an
"optimal" solution in this region.

The optimizer required 39 trials - i.e.: 3120 time steps - in order to
achieve such a result.

The instantaneous reward, listed in Tab. 19 is negative by defini-
tion. Hence, the agent (or the optimiser, in this case) has the goal of
reaching zero as fast as possible. Fig. 58 shows that Nelder-Mead al-
gorithm "learning curve" is almost monotonic in its trend. Moreover,
it has to be kept in mind that even if the cumulative reward over the
whole episode is close to zero, the instaneous reward is not: the opti-
miser is trying to find a solution that at the end of the simulation
gives the cumulative reward closest as possible to zero, as it can be
seen clearly in Fig. 59.

Fig. 59 compares the behaviour of the DRL agent and the optimi-
sation results. Looking at the action history with time, the analogy
between the two approaches can be seen at glance, especially in the
initial, transient phase. After this time, the agent reduces the mag-
nitude of its periodic action. From a collected reward perspective the
DRL agent is essentially stable close to zero for each timestep - with
the exception of the initial transient phase. The strategy applied by
the optimiser is somehow different: instead of being close to zero for
each time step, it seeks for an episode reward equal to zero. As already

4.3 control of the von karman vortex street after a cylinder 89

0 10 20 30 40 50 60 70 80

N timestep

−0.002

0.000

0.002

Q̇

LIPO + Nelder

RL

0 10 20 30 40 50 60 70 80

N timestep

−0.015

−0.010

−0.005

0.000

0.005

r t

LIPO+Nelder

RL

Figure 59: Control of the Von Karman Vortex street after a cylinder: actions
and rewards with time

been said before, this translates in a collected reward that changes
with time, but which overall sums to zero.

This control strategy is embedded in the time scale of the two exper-
iments. In fact, while the DRL agent receives a reward per each time
step, the optimiser collects its reward only at the end of an episode,
after nt time steps.

As a final note, it is underlined how the reward is computed di-
rectly from CFD simulations, and summing to this result a proxy
coefficient of 0.159 representing the CD coefficient with no control.
For this reason, the reward of both the DRL agent and the optimizer
may change sign. This behaviour has not a direct physical meaning,
but it is due to how the reward is effectively computed.

90 results

4.3.3 Summary

Von Karman Vortex street after a cylinder results

Method time step r̄t

DRL Naive 16000a 0.235

LIPO + Nelder-Mead 3120 0.000

Table 20: Von Karman Vortex street after a cylinder results

a These are the steps required for learning the robust control law which has been
compared in this section. However, as reported in the paper of J. Rabault et al. [24],
fewer epochs were needed to obtain a less stable control law

5
C O N C L U S I O N S

The goal of this thesis was to apply Reinforcement Learning in differ-
ent test cases and evaluate its performances. More interestingly, the
control laws learned and applied by the agent in such frameworks
were the purpose of this investigation.

The first core result is the highlighted sensitiveness of such a para-
digm to a variety of (hyper) parameters. Choices such as the acti-
vation functions or the size of the neural networks employed vastly
affect the performances of the model; the same is true for the param-
eters of the model itself.

The second - and unexpected - finding is that, even in nonlinear
frameworks such as the Burgers equation or the von Kàrmàn vortex
street after a cylinder - environment proposed by J. Rabault et al [24]
- the control law put in place by the agent was, with good approxima-
tion, a linear control. This result raise a question more then answers:
was such a complex parametrisation such as neural network needed
in the first place? If a linear control law is employed then there are
more robust methods for attacking this kind of problems, way more
efficient that dealing with the update of neural networks - plural for
both Actor and Critic, in this work applications. Statement that is
fairly supported by the Results (Sect. 4) of this manuscript. However,
when comparing the results of DRL and a simpler parametrisation,
the reader has to keep in mind that a fundamental difference occurs
between the two: the DRL learnt that - in these cases - a linear con-
trol law was the most suitable option, while on the other hand when
dealing with the optimizers such a control law was forced in the sim-
ulation itself.

Finally, it is noted how there is no sake of generalisation in this
findings. Large part of these results may be strictly linked with the
environment the agent was asked to solve. In fact, it might be that the
non linearities the agent faced were not non linear enough to make
it chose another, more complex, control law. However that may be,
it is clear how DRL may be over-complex for some tasks: while this
complexity allow to learn very difficult functions, in simpler environ-
ments this complexity turns out to be a burden over the shoulder of
the controller.

91

B I B L I O G R A P H Y

[1] Martín Abadi et al. TensorFlow: A system for large-scale machine
learning. 2016. arXiv: 1605.08695 [cs.DC].

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta,
and Masanori Koyama. Optuna: A Next-generation Hyperparame-
ter Optimization Framework. 2019. arXiv: 1907.10902 [cs.LG].

[3] João Carlos Alves Barata and Mahir Saleh Hussein. “The Moore–Penrose
Pseudoinverse: A Tutorial Review of the Theory”. In: Brazilian
Journal of Physics 42.1-2 (2011), 146–165. issn: 1678-4448. doi:
10.1007/s13538-011-0052-z. url: http://dx.doi.org/10.
1007/s13538-011-0052-z.

[4] Steven Brunton and Bernd Noack. “Closed-Loop Turbulence
Control: Progress and Challenges”. In: Applied Mechanics Re-
views 67 (July 2015). doi: 10.1115/1.4031175.

[5] J.M. Burgers. The nonlinear diffusion equation: asymptotic solutions
and statistical problems. 1st ed. D. Reidel Pub. Co, 1974. isbn:
9789027704948,9027704945.

[6] Facebook. Facebook Ax Optimisation Toolkit. https : / / github .

com/facebook/Ax.

[7] Ian Fox, Joyce Lee, Rodica Pop-Busui, and Jenna Wiens. Deep
Reinforcement Learning for Closed-Loop Blood Glucose Control. 2020.
arXiv: 2009.09051 [cs.LG].

[8] Ashley Hill et al. Stable Baselines. https://github.com/hill-
a/stable-baselines. 2018.

[9] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Mul-
tilayer feedforward networks are universal approximators”. In:
Neural Networks 2.5 (1989), pp. 359 –366. issn: 0893-6080. doi:
https : / / doi . org / 10 . 1016 / 0893 - 6080(89) 90020 - 8. url:
http : / / www . sciencedirect . com / science / article / pii /

0893608089900208.

[10] Jonathan Hui. RL - Proximal Policy Optimization. https://jonathan-
hui.medium.com/rl- proximal- policy- optimization- ppo-

explained-77f014ec3f12.

[11] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, eds. Au-
tomatic Machine Learning: Methods, Systems, Challenges. Springer,
2019. url: https://www.automl.org/book/.

[12] Davis King. A Global Optimization Algorithm Worth Using. http:
//blog.dlib.net/2017/12/a-global-optimization-algorithm-

worth.html.

93

https://arxiv.org/abs/1605.08695
https://arxiv.org/abs/1907.10902
https://doi.org/10.1007/s13538-011-0052-z
http://dx.doi.org/10.1007/s13538-011-0052-z
http://dx.doi.org/10.1007/s13538-011-0052-z
https://doi.org/10.1115/1.4031175
https://github.com/facebook/Ax
https://github.com/facebook/Ax
https://arxiv.org/abs/2009.09051
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://www.automl.org/book/
http://blog.dlib.net/2017/12/a-global-optimization-algorithm-worth.html
http://blog.dlib.net/2017/12/a-global-optimization-algorithm-worth.html
http://blog.dlib.net/2017/12/a-global-optimization-algorithm-worth.html

94 bibliography

[13] Jens Kober, J. Bagnell, and Jan Peters. “Reinforcement Learning
in Robotics: A Survey”. In: The International Journal of Robotics
Research 32 (Sept. 2013), pp. 1238–1274. doi: 10.1177/0278364913495721.

[14] M.A. Mendez M. Desmet F. Pino. Reinforcement Learning for Ac-
tive Flow Control.

[15] Cédric Malherbe and Nicolas Vayatis. Global optimization of Lip-
schitz functions. 2017. arXiv: 1703.02628 [stat.ML].

[16] Misc. SciKit, Solve Banded method. https://docs.scipy.org/
doc/scipy/reference/generated/scipy.linalg.solve_banded.

html.

[17] Misc. SciPy, Nelder-Mead method for minimization. https://docs.
scipy.org/doc/scipy/reference/optimize.minimize-neldermead.

html.

[18] J. A. Nelder and R. Mead. “A Simplex Method for Function
Minimization”. In: The Computer Journal 7.4 (Jan. 1965), pp. 308–
313. issn: 0010-4620. doi: 10.1093/comjnl/7.4.308. eprint:
https://academic.oup.com/comjnl/article-pdf/7/4/308/

1013182 / 7 - 4 - 308 . pdf. url: https : / / doi . org / 10 . 1093 /

comjnl/7.4.308.

[19] Fabio Pino. “PhD Intermediate Report”. In: (2020).

[20] Python. the Python tutorial, Classes. https://docs.python.org/
3/tutorial/classes.html.

[21] Python. the Python tutorial, Functions. https://docs.python.
org/3/tutorial/controlflow.html#defining-functions.

[22] NumPy: the fundamental package for scientific computing with
Python. Moore-Penrose pseudoinverse implementation. https : / /

github . com / numpy / numpy / blob / v1 . 19 . 0 / numpy / linalg /

linalg.py#L1916-L2012.

[23] Alfio Quarteroni. Numerical Models for Differential Problems. Springer
International Publishing, 2014. isbn: 978-88-470-5522-3. doi: 10.
1007/978-88-470-5522-3.

[24] Jean Rabault, Miroslav Kuchta, Atle Jensen, Ulysse Réglade,
and Nicolas Cerardi. “Artificial neural networks trained through
deep reinforcement learning discover control strategies for ac-
tive flow control”. In: Journal of Fluid Mechanics 865 (2019), 281–302.
issn: 1469-7645. doi: 10.1017/jfm.2019.62. url: http://dx.
doi.org/10.1017/jfm.2019.62.

[25] Miguel A. Rodriguez, Christoph M. Augustin, and Shawn C.
Shadden. “FEniCS mechanics: A package for continuum me-
chanics simulations”. In: SoftwareX 9 (2019), pp. 107 –111. issn:
2352-7110. doi: https://doi.org/10.1016/j.softx.2018.10.
005. url: http://www.sciencedirect.com/science/article/
pii/S2352711018300979.

https://doi.org/10.1177/0278364913495721
https://arxiv.org/abs/1703.02628
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_banded.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_banded.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_banded.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
https://doi.org/10.1093/comjnl/7.4.308
https://academic.oup.com/comjnl/article-pdf/7/4/308/1013182/7-4-308.pdf
https://academic.oup.com/comjnl/article-pdf/7/4/308/1013182/7-4-308.pdf
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
https://github.com/numpy/numpy/blob/v1.19.0/numpy/linalg/linalg.py#L1916-L2012
https://github.com/numpy/numpy/blob/v1.19.0/numpy/linalg/linalg.py#L1916-L2012
https://github.com/numpy/numpy/blob/v1.19.0/numpy/linalg/linalg.py#L1916-L2012
https://doi.org/10.1007/978-88-470-5522-3
https://doi.org/10.1007/978-88-470-5522-3
https://doi.org/10.1017/jfm.2019.62
http://dx.doi.org/10.1017/jfm.2019.62
http://dx.doi.org/10.1017/jfm.2019.62
https://doi.org/https://doi.org/10.1016/j.softx.2018.10.005
https://doi.org/https://doi.org/10.1016/j.softx.2018.10.005
http://www.sciencedirect.com/science/article/pii/S2352711018300979
http://www.sciencedirect.com/science/article/pii/S2352711018300979

bibliography 95

[26] L.S. Andallah Ronobir C. Sarker. “Numerical Solution of Burger’s
equation via Cole-Hopf transformed diffusion equation”. In:
International Journal of Scientific & Engineering Research (2013),
p. 1405. issn: 2229-5518.

[27] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jor-
dan, and Pieter Abbeel. Trust Region Policy Optimization. 2017.
arXiv: 1502.05477 [cs.LG].

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. Proximal Policy Optimization Algorithms. 2017.
arXiv: 1707.06347 [cs.LG].

[29] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Fre-
itas. “Taking the Human Out of the Loop: A Review of Bayesian
Optimization”. In: Proceedings of the IEEE 104.1 (2016), pp. 148–
175. doi: 10.1109/JPROC.2015.2494218.

[30] David Silver et al. “Mastering the game of Go with deep neural
networks and tree search”. In: Nature 529.7587 (2016), pp. 484–
489. issn: 14764687. doi: 10.1038/nature16961. url: http://
dx.doi.org/10.1038/nature16961.

[31] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:
An Introduction. Second. The MIT Press, 2018. url: http : / /

incompleteideas.net/book/the-book-2nd.html.

[32] Aurelian Tactics. PPO Hyperparameters and Ranges. https : / /

medium . com / aureliantactics / ppo - hyperparameters - and -

ranges-6fc2d29bccbe.

[33] Yang et al. Microsoft Neural Network Intelligence. https://github.
com/Microsoft/nni.

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-6fc2d29bccbe
https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-6fc2d29bccbe
https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-6fc2d29bccbe
https://github.com/Microsoft/nni
https://github.com/Microsoft/nni

	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Python Codes
	Acronyms
	1 Introduction
	1.1 The grand challenge in Closed Loop Control
	1.2 Framework of this Project
	1.3 Scope of this work
	1.4 Thesis Outline

	2 Methodologies
	2.1 From Feedback Control to Reinforcement Learning
	2.2 Machine Learning Background
	2.3 Neural Networks
	2.4 Reinforcement Learning (RL) Basics Definitions
	2.5 Importance of random seeds in Machine Learning applications
	2.6 Implemented Algorithms
	2.6.1 Actor - Critic Methods
	2.6.2 Trust Region Methods (TRM)

	2.7 Hyper parameters optimisation: Boosting RL or a standalone alternative?
	2.7.1 Problem Statement
	2.7.2 Bayesian Optimisation (BO)
	2.7.3 Main Reinforcement Learning Hyper Parameters
	2.7.4 Changing the Perspective: BO for optimal control

	2.8 Linear Regression of RL Strategies
	2.9 Other optimisations techniques: a brief review
	2.9.1 Nelder-Mead method (or Simplex Method)
	2.9.2 Lipschtiz functions method

	3 Test cases and Implementations
	3.1 Reinforcement learning with Stable Baselines
	3.1.1 Custom Callback: dynamically stopping the simulation

	3.2 Hyper Parameters Optimisation with Optuna
	3.3 Optimizer Implementations
	3.3.1 Nelder-Mead
	3.3.2 Lipschiz functions with Dlib: LIPO

	3.4 Test case n.1 - Linear advection
	3.4.1 Environment description
	3.4.2 Implementations

	3.5 Test case n.2 - Burgers' Equation
	3.5.1 Environment description
	3.5.2 Implementations

	3.6 Test case n.3 - von Karman vortex street after a cylinder
	3.6.1 Environment Description
	3.6.2 Implementation

	4 Results
	4.1 Advection Equation
	4.1.1 Neural Network Architecture (NNA)
	4.1.2 DRL Control Performances
	4.1.3 Improving the learning performances: Hyper parameters optimisation
	4.1.4 Optimising the control action
	4.1.5 Summary

	4.2 Burgers equation
	4.2.1 Neural Network Architecture (NNA)
	4.2.2 DRL control performances
	4.2.3 Improving the learning performances: Hyper parameters optimisation
	4.2.4 Effects of dimensionless parameters on learning performances
	4.2.5 A note on the the reward shape influence
	4.2.6 Linear Regression of RL Strategies
	4.2.7 Controlling the wave with a simpler parametrization: Bayesian Optimisation
	4.2.8 Summary

	4.3 Control of the von Karman vortex street after a cylinder
	4.3.1 Linear Regression of RL Strategies
	4.3.2 Controlling the wave with a simpler parametrisation: LIPO + Nelder-Mead
	4.3.3 Summary

	5 Conclusions
	Bibliography

