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”Remember to look up at the stars
and not down at your feet.

Try to make sense of what you see
and wonder about

what makes the universe exist.
Be curious.

And however difficult life may seem,
there is always something you can do

and succeed at.
It matters that you don’t just give up.”

Stephen Hawking
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Introduction

In recent years interest in space exploration is growing fast. The synergistic commitment
between many nations is allowing an impressing growth in terms of technology, which
expands the boundaries of what humankind can achieve.
With the ISS, humans have set a fundamental step for the understanding and study of
how the human body reacts to low gravity and therefore has set an important step towards
the possibility of long period mission in space.
A new space run has begun to make space more accessible for all the people, thanks to
the development of suborbital flights, but also less expensive, thanks to the progress in
terms of rocket reusable first stage. Furthermore, with NASA’s mission Artemis, what
seemed science fiction a few years ago is now becoming reality. A new human outpost will
be settled on the Moon and a Lunar Orbital Platform-Gateway (LOP-G) will be placed
on L2 of the Moon-Earth system.
The interest in L2 has therefore increased again, not only in the Earth-Moon system but
also in the Sun-Earth system.
The second Lagrangian point is expected to be the most suitable point where to place the
new Comet Interceptor mission. This mission is an ESA-JAXA collaboration, that aims
to leave a spacecraft at L2 of Sun-Earth system, where it will wait for a suitable target.
Once the target will be found, then the spacecraft will travel to the objective until the
three modules, which composed the Comet Interceptor spacecraft, separate a few weeks
prior to intercepting the comet. This mission is very ambitious and will help to explore
how comet-like bodies form and evolve in other star systems.
The study of evasion maneuver from L2 became fundamental for future missions, L2 is
also ideal for astronomy because a spacecraft is close enough to readily communicate with
Earth; can keep Sun, Earth and Moon behind the spacecraft for solar power and provides a
clear view of deep space. A small-sat could be left at the Lagrangian point as a piggyback
of a larger primary spacecraft and then can perform the evasion maneuver that will be
investigated in this thesis.
This thesis aims to describe the numerical and physical aspects of the optimization of the
Escape maneuver from the Sun-Earth collinear Lagrangian point L2. The method utilized
for the optimization process is an indirect method, based on the Optimal Control Theory,
that aims to the maximization of the payload fraction through the minimization of the
propellant consumption.
At the beginning an overview of past and future mission from L2 will be carried out.
Secondly, a brief outline of orbital mechanics and space propulsion will be given, in order to
furnish all the information necessary for a full understanding of the problem. Thirdly, the
general characteristics of indirect methods of space trajectory optimization are described,
with a focus on the Optimal Control Theory (OCT). Then, the model adopted will be
introduced, with the presentation of the main perturbations present and the specification
of the boundary conditions of the problem considered. In the end, the results are reported.
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Chapter 1

Mission from L2 Sun-Earth system

There are five special points where a small mass can orbit in a constant pattern with
two lager masses, these points are known as Lagrange Points. The Lagrange Points are
!Positions where the gravitational pull of two large masses precisely equals the centripetal
force required for a small object to move with them". This is what stated Joseph-Louis
Lagrange in his Essai sur le Problème des Trois Corps, 1772 where, for the first time, the
solution of the ”Three body problem” was found.
Lagrange was an Italian astronomer and mathematician, who was later naturalized French.
Of the five Lagrange points, is possible to identify two stable points, known as Equilateral
points, and three unstable points, known as Collinear points. The mathematical problem
will be discussed later in Chapter 2. Between all the Lagrangian points, one is extremely
interesting, and is the L2 point. This point is situated 1.5 million kilometres directly
’behind’ the Earth as viewed from the Sun. It is about four times further away from
the Earth than the Moon and orbits around the Sun at the same rate as the Earth.
Considering a spacecraft placed in this point, it is more distant from Sun than Earth and
so its orbital velocity should be lower than Earth’s one. Despite that, the extra pull of
our planet added to the Sun’s one, allows the spacecraft to move faster and so permit to
maintain the alignment between Sun, Earth and L2. This point is ideal for the observation
of the large universe and for astronomy in general. A spacecraft ubicated in this point
can readily communicate with Earth, can provide a clear view of deep space and can
keep Earth, Moon and Sun behind itself. This position is also very favourable because
a spacecraft in this position would not have to make constant orbits around Earth, and
thus it is not affected by the heat up and cool down caused by the passing in and out
of the Earth’s shadow which distort its view and therefore provides a much more stable
viewpoint.
In this chapter a brief overview of some missions that occupy L2 point is given. Initially
past mission will be considered, secondly present and future mission will be exhibited.

1.1 Past missions

Chang’e 2

Chang’e 2 is a CNSA mission that was launched in 2010. This probe belongs to the first
phase of the Chinese Lunar Exploration Program. It conducted research from a 100 km
high lunar orbit. After the success in its primary objective, the probe was moved to the
L2 Earth-Sun Lagrangian point in order to test its tracking and control network. In 2012
it has been decided to extend its mission, redirecting the probe toward the asteroid 4179
Toutatis. The probe is expected to return close to Earth in 2029 after the contact with
the probe was lost in 2014 due to distance.

3



4 CHAPTER 1. MISSION FROM L2 SUN-EARTH SYSTEM

Figure 1.1: Graphic representation of the position of L2 of Sun-Earth system. (Not in
scale)

Herschel Space Observatory

The Herschel Space Observatory was a space observatory built and operated by the Eu-
ropean Space Agency (ESA). It was the largest infra-red telescope ever launched and it
operated from 2009 to 2013. L2 Earth-Sun Lagrangian point was reached two months
later than its insertion in orbit in May 2009. The life of the mission was governed by the
amount of coolant available for its instrument. Once the coolant has run out the instru-
ments would stop functioning in the correct way.
The main task for this mission was to investigate about life-forming molecules, such as
water, form into star-forming clouds. In 2013, one year later than the expected, Herschel
probe run out of liquid helium, that was used to cool the instruments. In order to place
the probe on a known trajectory, the probe was placed into an heliocentric orbit where it
would not encounter Earth for at least several hundred years.

Wilkinson Microwave Anisotropy Probe (WMAP)

Wilkinson Microwave Anisotropy Probe was a spacecraft operated by NASA. Its main
purpose was to measure temperature differences across the sky in the cosmic microwave
background (CMB). The duration of this mission was of about 9 years, its last signal
was transmitted on August 2010. On October 2010 the spacecraft was placed into an
heliocentric graveyard orbit. During its 9 years long measurements, WMAP has obtained
lots of important results like the oval images that present the CMB temperature differences
distribution. Thanks the observations through the telescope during the mission these
results are obtained by the WMAP team. The results are a picture of the universe around
375,000 years after the Big Bang, that happened about 13.8 billion years ago.

Planck

Planck was a space observatory operated by ESA. Its main purpose was to map the
anisotropies of the cosmic microwave background (CMB) at microwave and infra-red fre-
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quencies. This mission is an improvement of the results obtained by WMAP mission. It
searched for information about early Universe and the origin of cosmic structure. Most
of the data obtained are defined as the most precise measurements, thanks the very high
sensitivity and small angular resolution of the payloads, of several key cosmological pa-
rameters, like the average density of ordinary matter and dark matter in the universe and
also the age of universe. On March 2013 was released the first all-sky map of the cosmic
microwave background.
The mission last three years more than the expected. On October 2013, at the end of the
mission, the probe was put into an heliocentric orbit and passivated in order to minimize
the probability of endangering any future missions.

1.2 Present missions

Gaia

Gaia is a space observatory of the European Space Agency (ESA). It was launched in
2013 and is expected it will operate since 2022, it is placed into a Lissajous orbit around
L2 of the Sun-Earth system. This orbit permit Gaia to avoid almost entirely to fall into
Earth’s shadow. The main objective of this mission is to create the most precise 3D space
catalogue ever made of the Milky Way. This is possible thanks to the incredibly precision
with which Gaia can measure position, distances and motion of stars but also planets,
comets and asteroids. The extreme precision with which the measurements are made are
linked with the fact that Gaia will monitor each of its objects for more than 70 times
during the first 5 year of the mission and it will continue doing so also after this period.
In addition Gaia mission is expected to detect Exoplanets beyond the solar system with
the size similar to Jupiter and also thousands of new asteroids.

Figure 1.2: Gaia’s map of the sky by star density
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1.3 Future missions

Comet Interceptor

Comet Interceptor is a robotic spacecraft mission led by the European Space Agency in
collaboration with JAXA. The spacecraft will be placed in L2 Sun-Earth and will wait
there for three years for a long-period comet to flyby. Its mission has the goal of visiting
an interstellar object or a distant comet making its its first journey into the inner solar
system. This mission has no a determined target yet, the planned spacecraft is meant to
be as a sentinel in space, awaiting a rendezvous opportunity.
In 2017 the so called asteroid ’Oumuamua was discovered. This object was classified as
the first interstellar asteroids known, before ’Oumuamua their existence were only on the
theoretical level. Now, the 1I/2017 U1 asteroid, is too far and too fast for any current
spacecraft to ever reach it and therefore a great occasion to investigate about interstellar
objects was lost. Considering that, the only way to encounter in a dynamic way new
comets or interstellar objects is to discover them inbound with enough warning to direct a
spacecraft to them. The main problem is that the time between the discovery, perihelion,
departure from the inner solar system is in terms of months or a year and therefore there
is no time to prepare a launch of a spacecraft. From this comes the idea of Comet Inter-
ceptor: a spacecraft that orbits around L2 of the Sun-Earth system, ready to perform the
rendezvous of a comet. From 2023, with the Large Synoptic Survey Telescope, that is now
under construction in Chile, will be possible to discover Long Period Comets much further
away and provide a true revolution in the understanding of their populations, making this
mission possible.
Comet Interceptor will target a comet visiting the inner Solar System for the first time,
maybe coming from the vast Oort cloud. The Oort cloud is a theoretical cloud, hypothe-
sized for the first time from the Dutch astronomer Jan Oort, that is thought to surround
the outer reaches of the Sun’s realm. The comet will contain material that has not experi-
enced much processing since the dawn of the Sun and planets. The mission will therefore
offer new information about the evolution of comets and as they migrate towards the
centre of the Solar System from the periphery. Another example of a potential target is
an interstellar interloper coming from another star system, like ’Oumuamua as introduced
before.
Comet Interceptor will be launched with ARIEL spacecraft, it also belongs to ESA’s mis-
sion, in 2029 and will be delivered to the Second Lagrangian point of Sun-Earth system
where it will wait for the spot of a notable target. Once the target has been found, a few

Figure 1.3: Sketch of mission phases of Comet Interceptor mission
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weeks or days before the flyby, the spacecraft will release two small sub-spacecraft. For
very active comets, separation will be earlier in order to optimize the separation of the
spacecraft elements, whereas for low activity targets separation will occur only a few days
before the encounter takes place. The spacecrafts will not land on its destination, instead
they will conduct a fast flyby, observing its target. The main craft will pass between the
Sun and the Comet, far from the major dust hazard, and will be used as a communication
relay and will do remote sensing. The other two small spacecrafts will travel closer to col-
lect more detailed data without risking to damage the main vehicle. The incoming data
from the three spacecrafts will allow to create a 3D profile of the object and characterize
its surface, composition, shape and structure.
The Launch mass of the mission is approximately 850 Kg, in this thesis the same mass
will be considered.

James Webb Space Telescope (JWST)

The James Webb Space Telescope is a space telescope developed under the collaboration
of NASA-ESA-CSA. This telescope is planned to succeed the Hubble Space Telescope as
main astrophysics mission lead by NASA.
The Webb telescope will be placed near the second Lagrange point L2 of the Sun-Earth
system, it will circle around this point into a Halo orbit, inclined with respect to the
ecliptic. This orbit, and thus position, will provide a much more stable viewpoint because
the shadow of Earth will be avoided and so the distortion caused by the transition from
a hot case to a cold case are bypassed. Due to the instability of this Lagrangian point,
station keeping maneuvers are required. The main objective of James Webb Telescope
is the investigation about the origins of the universe by observing infra-red light from
young galaxy and possibly first stars. It will allow a better understandings of how stars
and planetary systems form. In order to have an unprecedent view of the universe in the
mid-infrared wavelengths, it will operates a very low temperatures (-230 ˝C). The Webb
telescope is required to work for a minimum of five years, but it is planned for ten.
The launch of JWST is expected to be on 31 October 2021.

Figure 1.4: 3D render of James Webb Telescope
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Advanced Telescope for High-ENergy Astrophysics (ATHENA)

Athena is an X-ray observatory mission operated by ESA. This mission belongs to its
Cosmic Vision Program. Its main goal is to map hot gas structures, determine their
physical properties and look for supermassive black holes. This mission is expected to be
launched in the early 2030s, a large amplitude Halo orbit around L2 is the chosen orbit
where the probe will be placed. This orbit allow a very stable thermal environment but
also a good sky visibility and mostly, a high observing efficiency. Athena’s mission is
expected to last more than 4 year.

PLAnetary Transits and Oscillations of stars (PLATO)

PLATO is a space telescope which is under the development of ESA. The main goal of
this mission is to discover and characterize rocky extrasolar planets around yellow and
red dwarf stars or subgiant stars. Obviously the main target of the research are Earth-
like planets situated in the habitable zone around Sun-like stars. If these conditions are
satisfied, is possible that water can exist in liquid state. A secondary goal is to study
stellar oscillation in order to measure stellar masses and to define the characteristic of the
planet host star, including its age. The launch is planned for 2026.

Euclid

Euclid is a space telescope under development from ESA. The main goal of the mission
is to improve the knowledge about the dark matter and the dark energy by measuring
the acceleration of the universe. This spacecraft is expected to be placed on a Lissajous
orbit of large amplitude, of about 1 million kilometres, around thee Sun-Earth L2 point.
During the mission Euclid will observe almost one third of the sky, with a special focus
on the extragalactic sky. The launch is expected to be on the window between July and
December 2022 and is expected to last at least 6 years.



Chapter 2

Fundamentals of Orbital
Mechanics

Before dealing with the main topic of the thesis is important to give an overview of the
basis of space flight mechanics. In this chapter, in fact, are introduced the basics knowledge
and the physical aspect of the space flight mechanics.
The main topics covered will be the Two-Body Problem, the Three-Body Circular Problem
with a focus on the Lagrangian points and then an overview of interplanetary mission will
be given with a focus on the evasion maneuver.

2.1 Two-Body Problem - 2BP

As a starting point of every orbital mechanics problem, there is the Two-Body Problem.
The 2BP describes the motion between two bodies that interact one to each other only
thanks to the gravitational force.
The gravitational force is a central and attractive interaction, indirectly proportional to
the square of the distance of the two bodies and proportional to the product of the two
masses.

F “ G
Mm

r2
r

r
(2.1)

Where G “ 6.67 ¨ 10´11 m
3

kg s is the gravitational constant and r is the distance vector from
the mass of the primary body M and the mass of the secondary body m.
It is possible to simplify this problem by the introduction of five hypotheses, this new
formulation is known as the Restricted Two-Body Problem (R2BP). It is possible to apply
the R2BP where one of the mass is negligible compared to the other one, to systems like
Earth-Satellite or Sun-Earth. R2BP’s hypothesis can be summarized as follows:

1. M " m

2. Gravitational forces are the only present in this system

3. Spherical Symmetry of the mass distribution

4. Homogeneity of the mass distribution

5. Punctiform bodies, masses are concentrated in the centers of mass of the bodies

Thanks to these hypotheses, is possible to obtain the equation of motion:

:r “ ´
µ

r2
r

r
(2.2)

9
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Figure 2.1: Conic section

where µ “ GM is given by the product between the gravitational constant and the bigger
mass and is the gravitational parameter of the principal body. Solving this equation is
possible to obtain the equation that expresses the distance between the two bodies:

r “

h2

µ

1 ` e cospνq
(2.3)

where e is the eccentricity and ν is the true anomaly, these quantities will be defined and
explained in the next section.
Eq. (2.3) is important because generates trajectories that follow the shape of conic sec-
tions, that are represented in Figure 2.1.
It is also important to highlight that some physical quantities are constant during all the
motion, if only gravitational forces are present, and so considering R2BP.
The constant are two:

• Angular Momentum
h “ r ^ 9r (2.4)

Since the angular momentum is constant both in module and orientation, the motion
followed by the smaller body around the primary one in the R2BP is a planar
trajectory.

• Mechanical Energy

E “
v2

2
´
µ

r
(2.5)

where the first term is the kinetic energy while the second term is the potential
energy.

2.2 Orbital parameters

In this section, six orbital parameters will be introduced. The orbital elements introduced
later are only one of the possibilities and are called classical orbital parameters.
These parameters are extremely important because, thanks to them, is possible to identify
univocally the position of a body in the R2BP. The orbital elements are the following:
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1. Eccentricity e
Is connected to the form of the orbit. In particular, it can be demonstrated through
the analysis of the conic sections’ geometry. Figure 2.1 describes the families of
trajectories divided by the value of their eccentricity. In fact, if e “ 0 the trajectory
is circular, if 0 ă e ă 1 the trajectory is elliptic, if e “ 1 the trajectory is parabolic
and finally if e ą 0 the trajectory is hyperbolic.

2. Major Semi-axis a
Is connected to the dimension of the orbit and the energy of the orbit. It can be
demonstrated that, unifying the energetic analysis to the geometric one:

E “ ´
µ

2a
(2.6)

3. Right Ascension of Ascending Node Ω
The RAAN gives the position of the ascending node of the trajectory that is the point
where the secondary body enters the region of the positive values of the coordinate
z.

4. Argument of Periapsis ω
Defines the position of the periapsis, which is the closest point of the trajectory to
the principal body.

5. Inclination i
It is the inclination of the orbit’s perifocal plane, with respect to a fixed direction.

6. True Anomaly ν
Is the angular position of the secondary body, along the orbit, from the periapsis.
In the R2BP, this is the only variable element, while all the others are constant.

In Figure 2.2 are shown the classical orbital elements, the pic allows a better understanding
of the orbital parameters, this specific case is defined for a satellite orbiting around Earth.
Despite that, their definition can be broadened to any secondary body in revolution around
a primary one much bigger. Obviously these parameters are not the only can be used but
are only one of the choices possible.
Depending on the trajectory assumed for the mission, the orbital parameters will change,
in Table 2.1 is possible to understand better the relationship between eccentricity, semi-
major axis, energy, and the form of the orbit.

Figure 2.2: Classical orbital elements
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Trajectory Eccentricity Semi Major Axis Energy V8
Circular e = 0 a ą 0 E ă 0
Elliptical 0 ă e ă 1 a ą 0 E ă 0
Parabolic e = 1 a ÝÑ 8 E = 0 V8 = 0

Hyperbolical e ą 1 a ă 0 E ą 0 V8 ą 0

Table 2.1: Features of different kind of orbits and trajectories

2.3 Restricted Three-Body Circular Problem - R3BCP

To explain what is the L2 point, that is the initial point of the trajectory studied in this
thesis, is crucial to define what is a Lagrangian point. Thus, is necessary to introduce the
Restricted Three-Body Circular Problem. This is based on two main hypotheses:

• Three bodies: two are the principal bodies, while one is negligible in terms of mass.
The third body, the one who has a negligible mass, does not affect the other two
with its gravitational interaction.

• Circularity: the principal bodies are characterized by circular orbits around the
center of mass of the system.

Various systems can be modelled and studied under the hypotheses of R3BCP, for example,
the Moon-Earth-Spacecraft system or, as in the case of study, the Sun-Earth-Spacecraft
system.
Two constants can be defined:

M “ m1m2

µ “
m2

M

The positions of the principal bodies, with respect to the center of mass of the system,
can be easily derived:

m1 “

»

–

´µ r12
0
0

fi

fl (2.7)

m2 “

»

–

p1´ µq r12
0
0

fi

fl (2.8)

considering as reference scheme Figure 2.3.
The position of the secondary body, with respect to the primary ones, can be defined as:

r1 “

»

–

px ` µqr12
y
z

fi

fl (2.9)

r2 “

»

–

px ´ p1 ´ µqr12
y
z

fi

fl (2.10)

The reference frame is not inertial but is a rotating frame. The system rotate with the
angular velocity ω that is defined as follow:

ω “

d

GM

r12

3

(2.11)
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Figure 2.3: Three Body Problem (TBP) frame

Writing down the vectorial form of the equations of motion:

:r ` ω ^ pω ^ rq ` 2ω ^ 9r “
1

m
pF1 ` F2q (2.12)

where:

F1 “ ´G
p1´ µqMm

r13
r1 (2.13)

F2 “ ´G
µMm

r23
r2 (2.14)

Expliciting the components along the three coordinates, the Equation of Motion can be
written as:

:x´ ω2x´ 2ω 9y “´GM
1´ µ

r13
px` µr12q ´GM

µ

r23
rx` p1´ µqr12s (2.15)

:y ´ ω2y ´ 2ω 9x “´GM
1´ µ

r13
y ´GM

µ

r23
y (2.16)

:z “´GM
1´ µ

r13
z ´GM

µ

r23
z (2.17)

motion equation can be also written in a dimensionless form where, some substitution has
to be done. In fact is possible to write:

ρ “
r

r12
Ñ ξ “

x

r12
η “

y

r12
ζ “

z

r12
(2.18)

τ “ tω Ñ
d

dt
“ ω

d

dτ
(2.19)

Substituting the previous relations into the Eq. (2.15) Eq. (2.16) Eq. (2.17) is possible to
obtain:

ξ2 ´ ξ ´ 2η1 “´ p1´ µq
ξ ` µ

ρ13
´ µ

ξ ´ p1´ µq

ρ23
(2.20)

η2 ´ η ´ 2ξ1 “´ p1´ µq
η

ρ13
´ µ

η

ρ23
(2.21)

ζ2 “´ p1´ µq
ζ

ρ13
´ µ

ζ

ρ23
(2.22)

(2.23)
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Is important to introduce the definition of the gravitational potential function in the
Three-Body Circular Problem. It is defined as:

U “ G
m1

r1
`G

m2

r2
`

1

2

`

x2 ` y2
˘

(2.24)

that, in the dimensionless form can be written as:

u “
p1´ µq

ρ1
`
µ

ρ2
`

1

2

`

ξ2 ` η2
˘

(2.25)

From the derivation of the potential function with respect to the dimensionless coordinates
and the substitution into the system of the equation of motion, a new set of equation can
be derived:

ξ2 ´ 2η1 “
Bu

Bξ
(2.26)

η2 ` 2ξ1 “
Bu

Bη
(2.27)

ζ2 “
Bu

Bζ
(2.28)

2.3.1 Lagrangian Points

From the derivation of the Three-Body Circular Problem, is possible to identify five par-
ticular positions in space where gravitational interactions and inertial forces are at equi-
librium. These points are known as the Lagrangian points. They are characterized by the
following set of equalities:

ξ1 “ 0 ξ2 “ 0

η1 “ 0 η2 “ 0

ζ 1 “ 0 ζ2 “ 0

Lagrangian points are extremely important because, if a spacecraft is in one of them, it
rotates solidly with the system.
Given the definition of Lagrangian point, the equation of motion in these points become:

Bu

Bξ
“ 0 (2.29)

Bu

Bη
“ 0 (2.30)

Bu

Bζ
“ 0 (2.31)

this means that, the Lagrangian points are the minimum of the potential function of the
Three-Body System.
In order to satisfy Eq. (2.31):

ζ “ 0 (2.32)

This means that all the Lagrangian points lie in the same plane. Lagrangian points can
be divided into two families, the first one includes the collinear points, which have the
peculiarity of being unstable points, the other one includes the equilateral points that
are characterized by stability. The following discussion will explain in a better way the
differences between these two different families of Lagrangian points.
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Figure 2.4: Earth-Sun system Lagrangian points

Collinear Points

The conditions under these points are obtained are:

ζ “ 0 (2.33)

η “ 0 (2.34)

These points are spots of unstable equilibrium. Thus, if an external disturbance tends to
shift the satellite from one of these points, it continues to move away from the Lagrangian
point itself. If the goal of the mission is to maintain a spacecraft in one of these Lagrangian
points, station keeping maneuvers are needed. The name of these points results from the
peculiarity that they lie on the same line, which correspond to the x axis and are three:

• Lagrangian Point L1

It is found imposing:
´µ ă ξ ă p1´ µq (2.35)

solving the system:
$

&

%

ξ ´ p1´ µq ξ`µ
ρ1

3 ´ µ
ξ´p1´µq
ρ2

3 “ 0

ρ1 ` ρ2 “ 1

That is characterized by:

ρ “ 3

c

µ

3
(2.36)

• Lagrangian point L2

It is found imposing:
ξ ą p1´ µq (2.37)

solving the system:
$

&

%

ξ ´ p1´ µq ξ`µ
ρ1

3 ´ µ
ξ´p1´µq
ρ2

3 “ 0

ρ1 ´ ρ2 “ 1
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That is characterized by:

ρ “ 3

c

µ

3
(2.38)

obviously in the opposite direction with respect to L1

• Lagrangian point L3

It is found imposing:
ξ ą ´µ (2.39)

solving the system:
$

&

%

ξ ´ p1´ µq ξ`µ
ρ1

3 ´ µ
ξ´p1´µq
ρ2

3 “ 0

ρ2 ´ ρ1 “ 1

That is characterized by:
ρ1 “ 1 (2.40)

ρ2 “ 2 (2.41)

Equilateral Points

These points are obtained under the following conditions:

ζ “ 0 (2.42)

ρ1 “ ρ2 “ 0 (2.43)

As can be deduced by their definition, these points have the same distance from the two
masses. They can be retrieved, solving the system:

$

&

%

ξ ´ p1´ µqpξ ` µq ´ µrξ ´ p1´ µqs “ 0

η ´ p1´ µqη ´ ηµ “ 0

The equilater points are:

• Lagrangian point L4
$

&

%

ξ “ 1
2 ´ µ

η “
?
3
2

(2.44)

• Lagrangian point L5
$

&

%

ξ “ 1
2 ´ µ

η “ ´
?
3
2

(2.45)

The two equilateral points lies on the vertices of two equilateral triangles formed between
the two principal masses and the Lagrangian points. The two points rotates on the same
orbit of the mass m2 around m1. In particular L4 anticipate the second mass of 60˝ while
L5 follows m2 of the same angular distance. The equilateral points are spots of stable
equilibrium. If a disturbance arises, the spacecraft moves back to its position, in fact is
not necessary any maneuver in order to maintain the orbit.
Considering the three-body system Moon-Earth-Satellite is possible to identify:

• L1: Lies between Earth and the Moon.
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Figure 2.5: Location of the five Lagrange points of the Earth–Moon system.

• L2: Lies at the same distance ol L1 but it is opposite of his position, in fact it lies
in an orbit external to the Moon one.

• L3: Is simmetrycal to the position of the Moon with respect to the Earth.

• L4: Precedes the Moon of 60˝ on its orbit.

• L5: Chases the Moon of 60˝ on its orbit.

The position of these points are easier to understand and looking at the Figure 2.5 where
distances and angles are explicated.
Obviously in a real system, where no hypothesis are present, the Lagrangian points are
not punctiform. In fact they represent an area in which the third body is at equilibrium.

2.4 Interplanetary Missions

In order to describe the mission is necessary to introduce some fundamentals about in-
terplanetary missions. For a better understanding is necessary to introduce the Patched
Conics Method (PCM). This method is based on the hypothesis that space can be divided
into different zones called sphere of influence. The sphere of influence of a body is the
portion of space around it where the spacecraft can be supposed to interact only with the
body itself. Conics derive from the fact that Keplerian orbits are conic sections with the
focus at the attracting body, which means that in every sphere of influence there will be
a different trajectory derived from the conic section.
Is possible to divide the interplanetary trajectory into three different part:

1. Escape from the sphere of influence of the departure body

2. Heliocentric trajectory

3. Arrival in the sphere of influence of the target body
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During the Heliocentric trajectory, the spacecraft is outside the sphere of influence of
any planet, thanks to this, is possible to consider the Sun as the principal body, and
the spacecraft is only under its gravitational interaction. It is impossible to describe in
a general way the Heliocentric trajectory insofar it is strongly affected by the maneuver
effectuated during its duration. Most of the time, in literature, the heliocentric trajectory
is studied like a coasting arc of a Hohmann Transfert between the two bodies but this
description only fits with the concept of impulsive maneuver, that is not considered in
this work. Considering the Sun as the principal body and the Earth as the second body
is possible to calculate the Earth’s sphere of influence as follow:

r »

ˆ

mC

m@

˙
2
5

rC´@ » 106km (2.46)

where rC´@ is the mean distance between the Sun and the Earth and mC and m@ are
respectively the masses of the Earth and of the Sun.
Whereas when the spacecraft is inside the sphere of influence of the planet is possible to
identify a planetocentric trajectory. One of the most important trajectories in an inter-
planetary mission is the escape maneuver that will be studied in the following subsection.

2.4.1 Escape maneuvre

In order to escape to the sphere of influence of a planet, and thus to its gravitational pull,
is necessary a trajectory that allow the spacecraft to have a relative velocity v8 greater
than zero, where v8 is the hyperbolic excess velocity. If the hyperbolic excess of velocity
is equal to zero the spacecraft will not leave the sphere of influence, in fact it stays in
the same orbit of the planet and does not embark upon a heliocentric elliptical path. Is
possible to write the hyperbolic excess speed as follow:

v8 “

c

µ@

R1

ˆ

c

2 R2

R1 `R2
´ 1

˙

(2.47)

Usually the starting point of an escape maneuver is a circular parking orbit around the
the departure body. The radius of the parking orbit is equal to the periapse radius rp of
the departure hyperbola.
Writing the angular momentum as:

h “
µ1
?
e2 ´ 1

v8
(2.48)

and substituting into the definition of the periapse radius:

rp “
h2

µC

1

1` e
(2.49)

is possible to obtain the eccentricity in function of rp and v8.

e “ 1`
rpv8

2

µC

(2.50)

Substituting into Eq (2.48) is possible to explicit the angular momentum:

h “ rp

d

v82 `
2µC

rp
(2.51)

Given the hyperbolic excess speed, that is specified by the mission requirements, choosing
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Figure 2.6: Departure of a spacecraft on a trajectory from an outer planet to an inner
planet.

the correct rp is fundamental to the definitions of the eccentricity and the angular mo-
mentum of the departure trajectory. In order to calculate the ∆v necessary to perform
the escape maneuver, the periapse speed and the speed of the circular parking orbit are
needed, and they can be written as follows:

vp “
h

rp
“

d

v82 `
2µC

rp
(2.52)

vc “
µC

rp
(2.53)

Now can be easily calculated the ∆v necessary to accomplish the escape maneuver as
follow:

∆v “ vp ´ vc “ vc

¨

˝

d

2`

ˆ

v8
vc

˙2

´ 1

˛

‚ (2.54)

In addition of the magnitude of ∆v is important where the ∆v is given and so where the
position of the periapse is. Thus is necessary to introduce a new parameter that gives the
orientation of the apse line of the hyperbola to the planet’s heliocentric velocity vector,
this is β and can be calculated as:

β “ cos´1
ˆ

1

e

˙

“ cos´1

¨

˝

1

1`
rpv82

µC

˛

‚ (2.55)

Is important to underline how the evasion maneuver change depending on the position of
the planet. If the mission is to send a spacecraft from an outer planet to an inner planet,
the evasion trajectory has to emerge from the back side of the sphere of influence of the
planet with the velocity v8 that points opposite to the VC. This is necessary because the
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Figure 2.7: Departure of a spacecraft on a trajectory from an inner planet to an outer
planet.

heliocentric speed of the spacecraft VD has to be lower that the circular velocity of the
departure planet VC as shown in Figure 2.6.
On the other hand if the mission has as target an outer planet the spacecraft has to
emerge from the front side of the sphere of influence because the v8 has to point in the
same direction of VC in order to reach the higher heliocentric speed VD needed to reach
an outer planet as shown in Figure 2.7.

2.4.2 Two impulses escape maneuvre - Oberth Maneuvre

Is important to underline that there is not only the one impulse evasion maneuver but
there is also a two impulses escape maneuver that is also known as Oberth Transfert.
Oberth’s transfert is a two impulses maneuver where the first impulse is given in order to

Figure 2.8: Schematic representation of
Oberth’s maneuver.

Figure 2.9: ∆V necessary for Oberth’s
maneuver in function of v8 ad r2.
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bring the spacecraft into a less energetic orbit, is a braking impulse, moving the perigee
of the trajectory closer to the departure body and, once it has reached the perigee, the
second impulse is given to complete the evasion maneuver, accelerating the spacecraft
(Figure 2.8). The second impulse is given when the distance to the departure body is
smaller than the initial one, this lead to a more efficent burn and reduce the gravity losses
because minimize the time under the influence of gravity of the planet.
Oberth’s maneuver is not always advantageous, in fact in case of v8 ă

?
2Vc1 one impulse

maneuver is less expensive and therefore convenient (Figure 2.9).





Chapter 3

Space Propulsion Foundamentals

In this chapter will be collected all the fundamentals of space propulsion, which are essen-
tial for a better understanding of the mission. In the beginning, a global overview of the
principles that rule all the propulsion systems will be given, then a brief examination of
the basics of electric propulsion will be carried out. Propulsion can be defined as the ca-
pability to generate a force to change the velocity of the spacecraft and, as a consequence,
allow to modify or maintain the trajectory.

3.1 Introduction to Space Propulsion

”When one body exerts a force on a second body, the second body simultaneously exerts
a force equal in magnitude and opposite in direction on the first body”

This is what state the third Newton law of motion or action-reaction principle, propulsion
system to generate thrust lay on this concept. In order to generate thrust in space,
considering that space is a vacuum, is necessary to carry onboard something to exchange
momentum with: the propellant. There are other possibilities to generate thrust that does
not rely on the propellant, like the magnetic sails and the solar sails, but they will not
be specifically discussed in this thesis. The presence of propellant affects the capability of
motion in space since the spacecraft can carry only a limited amount of propellant. Once
it has run out there is no chance for the spacecraft to modify his orbit.
There are different methods to categorize the different kinds of space propulsion. One of
the most common is based on the purpose of the propulsor itself:

• Primary propulsion: it is designed and used in order to change the trajectory of the
spacecraft.

• Secondary or Auxiliary propulsion: it is designed and used in order to maintain the
desired trajectory and contrasting external disturbance actions.

Another way to classify the propulsor is based on what kind of propellant is used to
generate thrust. In this case propulsion can be divided into three different classes:

• Chemical propulsion: in order to create thrust are needed two propellant, the fuel
and the oxidizer, the reaction between this two elements generate the product of the
reaction which will be accelerated into a nozzle.
Chemical propulsion can be further divided into solid propellants, liquid propellants
and hybrid propellants.

• Electrical propulsion: the propellant is accelerated thanks to electromagnetic phe-
nomena. Also in this group are identifiable different kind of electrical propulsion,

23



24 CHAPTER 3. SPACE PROPULSION FOUNDAMENTALS

Figure 3.1: Typical small spacecraft in-space propulsion trade space

for example electrothermal propulsion, electrostatic propulsion and electromagnetic
propulsion.

• Nuclear propulsion: it exploits nuclear power to generate thrust.

Considering that all the propulsion system introduced are based on the action-reaction
principle, is possible to define some parameters and some concepts which are common in
all the categories.
A system can be considered as a ”closed system” if no external forces are applied on itself,
if this assumption is true, the global momentum is constant over time. Assuming a body
with mass m and velocity v at the initial instant, after an infinitesimal amount of time,
the body has ejected an infinitesimal part of his mass that correspond with the propellant
mass dmP . Thanks to the expulsion of the infinitesimal mass there is an increment of the
speed of the body that is related to the ejection velocity of the infinitesimal mass, the
velocity c is known as the effective discharge velocity. Is important to underline that c is
a velocity with respect to the spacecraft, accordingly with that, the global velocity of the
propellant is c´ v
In order to describe how the electric propulsors work, is important to introduce some
variables that describe the performances.
Imposing the conservation of the total momentum of the system

mv “ pm´ dmpqpv ` dvq ´ dmppc´ vq (3.1)

where the first term on the right is the total momentum of the body while the second
term is the total momentum of the mass of propellant ejected. Neglecting the second
order terms resulting from the Eq. (3.1) is possible to obtain:

m dv “ dmp c

It is possible to define the propellant flow as:

9mp “
dmp

dt
(3.2)
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and thus:

m
dv

dt
“ 9mp c (3.3)

Considering that the term on the left is a force given by the product of the mass with
the acceleration, the term on the right has to be a force too. Accordingly to Newton’s
second law of motion this force has to be applied on the body itself, the result of this
consideration is that the force examined is nothing more than the thrust, it follows that:

T “ 9mp c (3.4)

Is possible to introduce also the thrust power, that is the power necessary to accelerate
the propellant at the velocity that generate the thrust T and it can be expressed as:

PT “
1

2
Tc “

1

2
9mpc

2 (3.5)

After this brief overview is now possible to introduce four important variables for the
description of the performances of the propulsor.
For space propulsor, in general, the exit velocity is almost the same of the effective exhaust
velocity c that is defined as follow:

c “
T

9mp
(3.6)

Integrating the thrust is possible to obtain the total impulse:

ITOT “

ż tf

t0

Tdt (3.7)

that indicates the total propulsive power of the system. Obviously, with the increase
of total impulse also the propulsive cost of the mission, that the spacecraft can afford,
increase. Defined the total impulse is possible to obtain the specific impulse that is defined
as:

Isp “
ITOT
mp g0

(3.8)

where g0 is the gravity acceleration on Earth’s surface while mp is the total mass of the
propellant onboard. In order to explicit the relation between c and the Isp is necessary to
introduce two more hypothesis, in fact if the thrust is constant is possible to write down:

ITOT “ T∆t

with ∆t is the working time of the propulsor. If also c is constant also the propellant flow
is constant and it is equal to:

mp “ 9mp ∆t

Substituting now the expression of ITOT and mp in case of T and c constant into the Eq.
(3.8) is possible to obtain:

Isp “
c

g0
(3.9)

As can be easily seen from Eq. (3.9) the specific impulse have the same value of the
effective exhaust velocity, neglecting a constant term. Both the variables are a measure of
the efficiency with which the propellant is used to generate thrust. Obviously to increase
the performances is better have an higher value of specific impulse and effective exhaust
velocity. Considering a case study where the specific impulse of the spacecraft is high, it
can functioning for the same time of one spacecraft with lower Isp but with a higher thrust
or can generate the same thrust but can be used for a longer time, thus lead to the fact
that having an higher specific impulse is advantageous.
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Tsiolkovsky Equation

Every mission is characterized by an unique ∆V and it is linked to the propulsive effort
needed to reach the target. The most important equation utilized to calculate the ∆V as
a first approssimation is the Tsiolkovsky Equation, also known as the Rocket Equation.
This relation is fundamental because it relates the ideal propulsive cost of a maneuver
with the associated mass of propellant needed to reach the target orbit. It is important
to underline that this relation do not take into account any kind of external disturbances,
in fact is possible to refer to it with the term ideal.
Introducing the definition of propulsive cost that is the variation of velocity of the body
during the maneuver:

∆V “

ż tf

t0

T

m
dt (3.10)

Substituting the definition of Thrust is possible to obtain:

∆V “

ż tf

t0

c 9mp

m
dt (3.11)

In order to express the relation with respect to the variation of the mass, is fundamental
to underline that 9mp “ ´ 9m because the spacecraft’s mass decrease with the increase of
the propellant expelled.

∆V “ ´

ż tf

t0

c 9m

m
dt (3.12)

The integral can be easily solved if the assumption of c “ cost is adopted, but this is not
always possible, in this case is possible to use an average value of the effective exhaust
velocity.
By the integration is possible to obtain:

∆V “ c ln

ˆ

m0

mf

˙

(3.13)

and now from inverting the equation just calculated is possible to express the final mass
in function of the initial mass and the ∆V as follow:

mf “ m0 e
´∆V

c (3.14)

Thanks to the equation is possible to obtain important considerations. First of all there is
an exponential relation between the propellant consumption and the propulsive cost, this
means that during the acceleration of a payload, the propulsor is not only accelerating
the payload but it is also accelerating the propellant that is required to accelerate that
payload. So, if the payload increase, also the propellant mass increase but not following
a linear law but an exponential one. As a consequence the propulsor has not only to
accelerate the additional payload but also the additional propellant. Also in this equation
is possible to notice the importance of having an high specific impulse, the higher the
specific impulse the higher will be the final mass considering the same initial mass.

3.2 Electric Propulsion

Electric Propulsion is a class of space propulsion that count on the electrical power to
accelerate the propellant thanks to the electrical or magnetic properties of itself. The
use of electrical propulsion is the state of art for the unmanned mission and will be very
challenging, in the following years, to understand if this kind of propulsion can be a valid
alternative to chemical propulsion in manned mission. The use of electrical power increase
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the propulsive performances of electric thruster compared to chemical thruster, in fact
electric propulsion is not limited in energy but is only limited by the available electrical
power on board. Furthermore, electric propulsion requires a very little mass to accelerate
the spacecraft and can eject the propellant faster than from a classical chemical thruster,
this leads to an increased efficiency. The initial thrust is quite low but it can continue
accelerating for months or even years and it can also slow down and change direction and
this is one of the most important benefit of electrical propulsion. There are different way
to generate electrical power, the most common is using solar array.
Is possible to identify different categories of electrical propulsor, in this case the will be
classified considering how the energy to create thrust is generated. There are three main
categories:

• Electrothermal propulsion: Electrical power is used to heat the propellant that is
then expanded through a nozzle. During the expansion in the nozzle the thermal
energy is converted into kinetic energy and thanks to this thrust is generated. Is
important to consider that during the expansion there are losses and non ideal effects
to take into account.

• Electrostatic propulsion: The electrical power is used to ionize and accelerate the
propellant. Once the gas is ionized, the ions are accelerates trough an electric field.
In order to maintain a neutral charge on the spacecraft, an electron flow is used to
neutralize the flux at the exit of the propulsor

• Electromagnetic propulsion: Electrical power is used to generate the electric and
magnetic field. Thanks to the forces generated by the fields the propellant can be
accelerated, creating thrust.

It is important to underline that not all the propulsor can be used for all the missions,
in fact is important to categorize the propulsor on the basis of the characteristic power of
the thruster. They can be divided into:

• Microthruster: they are mainly used for precision control

• 1 kW propulsor: mainly used for station keeping (SK) or orbit/deorbit injection of
CubeSat or small satellites but also for small robotic interplanetary missions.

• 5 - 10 kW: mainly used for the deorbit operations of big satellites or for the GEO
insertion.

• 100+ kW: this class of thruster is not available yet but is under development, they
will be mainly used for human exploration and development of human presence in
space.

System Specific Impulse [s] Thurst [N]

Resistojet 200 - 350 0.2 - 0.3
Arcjets 400 - 1500 0.2 - 1

Ion thruster 2000 - 5000 ă 0.2
Hall thrusters 1500 - 2000 ă 2

Pulsed Plasma thruster 600 - 2000 ă 0.01
MPD thruster 2000 - 5000 ă 2

Table 3.1: Characteristics of electric propulsion system
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All the electrical thruster convert the electrical power into the useful effect that is the
thrust. Thus lead to some consideration that are common to all the electrical thruster. Is
possible to introduce the global efficiency that is how the conversion form electrical power
to thrust is close to the ideal process of conversion. The value of the global efficiency can
not be neglected and is important to know that can vary form one kind of propulsor to
the other.
Given:

ηPE “
1

2
Tc (3.15)

where η is the global efficiency, PE is the electrical power consuption and the term on the
right is the thrust power. By the inversion of Eq. (3.15) is possible to write explicitly the
effective discharge velocity as follow:

c “
2ηPE
T

(3.16)

From Eq. (3.16) is possible to extrapolate one of the most important concept of the
electrical propulsion, the effective exhaust velocity is strictly linked with the electrical
power consumption and the magnitude of thrust. In order to have an high c and as a
consequence an high specific impulse is possible to use or small thrust or having high
electric power consumption and as a consequence high power source’s mass. Making a
comparison to chemical thruster, is possible to understand why electrical propulsors, has
an higher specific impulse than the chemical ones. Low thrust (10µN ´ 1N) or heavy
power generation system can be identified as the cause of the higher specific impulse of
the electrical propulsor.

3.2.1 Ion Thruster

One of the most diffused category of electrical propulsor are, for sure, the Ion Thruster.
This kind of propulsors belongs to the Electrostatic propulsors and, as can be deduced by
the name, utilize a ionized propellant to create thrust thanks of the acceleration of the
ion themselves. The acceleration of the ion is possible thanks to the electric field that is
generated into the propulsor, also a magnetic field is present but it is not used for this
purpose. Is possible to identify three main steps to accomplish in order to permit the
correct operation of the propulsor:

• Ionization of the propellant

• Acceleration of the ion

• Neutralization of the accelerated ion beam

Thus the first step to create thrust is necessary to ionize the propellant. This is possible
thanks to the ionization process.
The ionization of a propellant is the process thanks to which is possible to separate elec-
trons from their initial atoms and therefore creating an ion. In order to create an ion is
necessary to provide an amount of energy that is higher to the first ionization energy εI ,
that is unique and different for each element of the periodic table.
The ionization reaction usually happens as follows

A ` εI Ô A` ` e´ (3.17)

where e´ is the free electron and A` and A are the ion of the propellant and the atom of
propellant itself. Even if the first ionization energy is given to an atom of the propellant,
only a fraction of the whole propellant will be ionized, because not all the atoms receives
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enough energy to lose an electron. As a consequence, if a ionization ratio is defined, this
will not be equal to one but it will be lower. In addition is necessary to consider that
electrical power is not only used to accelerate the ion but also to create themselves. As
a consequence, also in the more ideal case, the process has not efficiency equal to 100%,
and is therefore necessary to introduce an ideal efficiency defined as:

ηid “
1
2m`u`

2

1
2m`u`

2 ` εB
(3.18)

In this category of propulsion, ionization can be performed in two different ways:

• Electron Bombardment

• Radiofrequency

Considering the first method, an electron gun injects electron at high energy in the chamber
where is contained also the propellant. The electrons, once they are inside the chamber,
are subjected to an electric field and a magnetic field. The first accelerate the electrons, the
second one tends to confine them inside the chamber, increasing the permanence time and
protecting the chamber itself from the collision of high energy electrons. The movement
of the electrons from the cathode to the anode permit the collision of the electrons with
the propellant atoms. These collision lower the velocity of the electrons and may ionize
the atoms of the propellant. The second method is different from the first only for the
way in which the electrons are accelerated. In this case in fact the electrons are provided
with energy thanks to electromagnetic waves created by a radiofrequency coil.
In both cases the process is not ideal and thus not all the atoms are ionized.
Once ions are created, in order to generate thrust, is necessary to separate them from
electrons, otherwise if both are accelerated the net thrust will be null. This happens
because electrons and ion have the same charge, considering the module, but different
sign. In fact, explicating the force applied to a charge under the effect of an electric field
is possible to write:

F “ qE (3.19)

How forces act on the different type of particles is shown in Figure 3.2 and thanks to the
representation can be easily seen that electrons and ions are subjected to the same but
opposite force.
In order to separate the charge, in this specific type of propulsion, a magnetic field is

Figure 3.2: Schematic representation of electric forces acting on different species
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introduced, this allows the ion to be accelerated through an acceleration grid, while the
electrons are confined in the ionization chamber.
Once the ion are created and then separated from the electrons, they have to be acceler-
ated, this is possible thanks to an acceleration grid. Before explaining how the grid works
an overview of the physics of the grid is needed.
The acceleration of the ion is generated thanks to the application of an electric field on the
ion themselves. The electric field, is a conservative field and thus, can be connected to the
electrical potential, in fact is possible to identify the Net Accelerating Potential, defined
as VN , as the potential connected to the acceleration. Ions entering inside the acceleration
zone convert their potential energy into kinetic energy, thus lead to an increase of their
velocity. Mathematically, imposing the conservation of the total energy and neglecting
the efficiency of the conversion process between kinetic and potential energy is possible to
write:

qVN “
1

2
m`u`

2 (3.20)

where the left term is referred to the chamber, where propellant is static. Considering
that the only motion present in the chamber is due to the chaotic thermal motion, the
velocity is globally null. On the other hand the right term is only composed to the kinetic
term of the energy, m` is the mass of the ion and u` is the velocity at the exit section.
Considering that, the exit velocity can be considered almost equal to the effective exhaust
velocity, is possible to obtain :

u` “

d

2qVN
m`

(3.21)

by this equation is possible to understand that the only two parameters modifiable are VN
and m`.
Thus, in the propulsor is present a zone where ions are accelerated, this zone is between
two grids, the first is an higher potential grad and has the name of screen grid while the
second is with a lower potential value and is know as acceleration grid. Both of the grids
are curved and not flat in order to avoid buckling due to thermal expansion, molybdenum
is most common material used for their production because of its easiness in manipulation.
Grids are designed with millimetric holes in them, this choice is made in order to have a
more focused beam. Is important to design accurately the grid and the distance between
holes, otherwise is possible that ion beam interact one to the other causing the divergence
of the beam and the degradation of the propulsor itself caused bu the interaction of high
velocity ion with the walls of the propulsor. Fundamental is also the distance between the
two grids, they are posed at a millimetric distance but is important not to place the grids
too close one to the other and not with an high potential difference. If this happens, the
proximity of the two grids and the high potential difference could lead to the insurgence
of sparks but, in order to avoid this possibility is common to respect the relation:

VG
d
ă 2

kV

mm
(3.22)

where VG is the potential difference and d is the distance. Also their dimension has to be
limited, in fact in general:

D

d
ă 600 (3.23)

where D is the diameter of the grids.
Once the ion are created from the ionization and accelerated between the two grid they
are ejected into the void in order to create thrust.
If only ion are expelled from the propulsor it will become partially charged negatively,
and that is not positive for the spacecraft. Thus, is necessary to neutralize the ion beam
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Figure 3.3: Schematic representation of an Ion thruster

and restabilishing the global neutrality of the propulsor, this is possible thanks to the
neutralization. To avoid the insurgence of this unwanted event is necessary to neutralize
the ion beam with the same number of electrons. Thanks to an hollow cathode, that
extracts electrons from a fraction of the propellant flow, a sort of cloud of electron is
created at a certain distance from the exit section of the propulsor, the neutralizing current
is not accelerated because it is not utilized to produce thrust. Once the ion is ejected at
high velocity it passes through the cloud and interact with the electrons bringing with
itself one of the electrons and getting neutralized. It follows that, extending this process
to all the ions, a neutral beam of atoms is what exits from the propulsor. The process
that brings to the extraction of electrons for the neutralization brings with itself a loss. Is
possible in fact to define the efficiency of the propellant utilization as follows:

ηu “
9m`
9mP

(3.24)

where 9mP is the sum of the flow of the ion plus two losses, the first is 9mA that is the
non-ionized fraction and the second is 9mC that is the fraction that goes to the hollow
cathode for the neutralization beam.

9mP “ 9m` ` 9mA ` 9mC (3.25)

In Figure 3.3 is possible to observe a schematic representation of how is made an Ion
thruster. Is possible to easily notice the three different zones of the propulsor, fundamental
for the correct working of the propulsive system.
Finally is possible to explicit the fraction of the electrical power that is converted in thrust
power.
Considering that: if no electrical power losses are taken into account, and this lead the
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present tractation to an almost ideal case, is possible to define the global efficiency as:

ηg “ ηuηid (3.26)

and thus:

PT “
1

2
Tc “ ηgPE (3.27)



Chapter 4

Optimal Control Theory - OCT

The optimal control theory is based on variational calculus and will be explained, during
this chapter, choosing the most suitable form for the optimization of spatial trajectories
and to the method adopted for the solution of the differential problem within the limits
that arises from its application. The optimal control theory is applied to a generic system
that is described by a vector of state variables x, the differential equations that describe
the evolution of the system between the initial time and the final time are in function of
x, u (control vector) and the time t (independent variable). The generic form is:

dx

dt
“ f px,u, tq (4.1)

It is useful to divide the trajectory into n arc, o sub-ranges, within each of which the
variable are continuous but discontinuities can be present at the arcs’ interfaces. The
j-th interval starts at time tpj´1q` and finish at time tj´ and values that the variables
assume at its extremes are xpj´1q` and xj´ where the signs - and + indicate respectively
the values assumed immediately before or after the point considered. Thanks to this
strategy is possible to take into account any discontinuities of the variables and time
that apply to the junction points between the various intervals, such as discontinuities in
mass or velocity related to impulsive maneuver or time discontinuities. It is also possible,
thanks to this formulation, to make the second member of Eq. (4.1) assume a different
value depending on the sub-range considered, that will result, as will be shown later, very
convenient. The boundary conditions are, in general, both mixed and non-linear. Thus,
they involve non-linear relations between the state and time variables at the external and
internal boundaries. In the generic form, they can be expressed as following:

χ
`

xpj´1q` , xj´ , tpj´1q` ,tj´
˘

“ 0 j “ 1, ..., n (4.2)

Other kind of boundary conditions could involve the control vector u. The optimum
problem consist in the research of the extremal values of the functional, maximum or
minimum depends on the goal to reach. The functional can be expressed as follow:

J “ φ
`

xpj´1q` , xj´ , tpj´1q` ,tj´
˘

`
ÿ

j

ż tj´

tpj´1q`
Φpxptq,uptq, tqdt j “ 1, ..., n (4.3)

The functional J is formed of two components:

• φ: a function depending on the values of the variables vector and on the values of
the independent variable at the boundaries

• Integral of Φ function: depends on the time and on the values assumed by the state
and the controls in each instant

33
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It is possible to formulate the functional’s expression in order to present:

• ϕ “ 0 : Lagrange’s formulation

• Φ “ 0 : Mayer’s formulation

This is possible thanks to the introduction of particular auxiliary variables, that allows
to reformulate the functional. Introducing:

• µ : adjoint constant, related to the boundary conditions

• λ : adjoint variables, related to the state equations

Thus the modified functional can be written as follow:

J˚ “ φ` µTχ`
ÿ

j

ż tj´

tpj´1q`
pΦ` λT pf ´ 9xqqdt j “ 1, ..., n (4.4)

where 9x is the state vector derivative with respect to time.
Both functional J and modified functional J˚ depend on the time, the state vector, its
derivative and the control vector u. The values of time and state variables which affect the
functionals, are the ones related to each arch’s edges. In fact, if the boundary conditions
and the state equations are satisfied, the two functionals and thus their extremal values
coincide.
Integrating by parts is possible to eliminate the dependence of the modified functional J˚

from the derivatives of the state vector:

J˚ “ φ` µTχ`
ÿ

j

pλT pj´1q`xpj´1q` ´ λ
T
pj´qxj´`

`
ÿ

j

ż tj´

tpj´1q`
pΦ` λT pf ´ 9λTxqqdt j “ 1, ..., n

(4.5)

Differentiating the previous expression is possible to obtain the differential of the functional
itself:

δJ˚ “

ˆ

´Hpj´1q` `
Bϕ

Btpj´1q`
` µT

Bχ

Btpj´1q`

˙

δtpj´1q``

`

ˆ

´Hj´ `
Bϕ

Btj´
` µT

Bχ

Btj´

˙

δtj´`

`

ˆ

λT pj´1q` `
Bϕ

Bxpj´1q`
` µT

„

Bχ

Bxpj´1q`

˙

δxpj´1q``

`

ˆ

λT j´ `
Bϕ

Bxj´
` µT

„

Bχ

Bxj´

˙

δxj´`

`
ÿ

j

ż tj´

tpj´1q`

ˆˆ

BH

Bx
` 9λT

˙

δx`
BH

Bu
δu

˙

dt j “ 1, ..., n

(4.6)

Where H is the Hamiltonian of the system:

H “ Φ` λTf (4.7)

In order to find the optimal condition, it is necessary to impose the stationariness of
the functional. The derivative of the functional with respect to any possible variation
has to be null and has to be compatible with the differential equations and boundary
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conditions. With a convenient choice of the adjoint variables and constants, is possible to
contemporarily cancel the coefficient of each variation in equation (4.6), thus assuring the
stationariness of the functional expressed by the condition δJ˚ “ 0.
In particular, cancelling the coefficient of δx and δu, are possible to derive two important
relations:

• For the adjoint variables: Euler Lagrange differential equations

dλ

dt
“ ´

ˆ

BH

Bx

˙T

(4.8)

• For the controls: Algebraic equations

ˆ

BH

Bx

˙T

“ 0 (4.9)

The control laws have an interesting property, these laws are formal independent from the
stationary point searched, in fact seeking maximum or minimum of the functional J does
not affect the algebraic equations (4.9).
It is important to underline the importance of dealing with constrained controls infact
controls could be limited to a particular admissible domain.
For instance, the thrust provided by a propulsor has to be positive and can not exceed
a certain value, that is Tmax, peculiar of the thruster category. In this analysis, will not
be considered controls’ constraints variable with time or dependent from the state vector
variables. Thus, any boundary condition on the controls is constant and explicit. If such a
constraint is present, the optimal value of the bound control in any point of the trajectory
is the one that, belonging to the admissibility domain, maximizes (if maximum is seeked)
or vice versa minimizes the Hamiltonian in that point. This concept is explained in the
Pontryagin Maximum Principle (PMP).
There are two different possibilities:

• The optimal value for control is the one derived from Eq. (4.9) if it belongs to
the admissibility domain. In that point the constraint does not affect the system,
resulting in a locally non-constrained control

• The optimal value for control is at the domain extremes. Thus, if the optimal
control that derived from Eq. (4.9) falls outside the domain, the control assumes its
maximum or minimum value. In this case, the control is constrained

If the Hamiltonian is linear respect to one of the constrained controls, the system present
a peculiarity. Infact in the Eq. (4.9) the contrlo does not appear directly, so it can not be
determined. If this happen there are two different possibilities:

• The constrained control coefficient in equation (4.7) is not null. That means that
the Hamiltonian is maximized assuming the maximum value for the control if it is
positive or the minimum if it is negative. This derived from the PMP and it is often
referred to it as bang-bang control

• The constrained control coefficient in equation (4.7) is null within a singular arc. It
is necessary to impose the cancellation of every derivative of the coefficient itself,
with respect to the time, until one of them does not explicitly contain the control.
The optimal control is then determined by imposing the last derivative equal to
null. It is established that the derivative degree necessary is always even. Naming
the derivative’s degree n, the order of the singular arch is n/2
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In case the boundary conditions are missing it is convenient to refer o the j-th extreme.
It is possible to write down, for the considered boundary, the conditions deriving from
considering it as the final edge of the (j-1)-th sub-interval or as the initial point of the j-th
sub-interval. Different condition can be considered in this case by cancelling the coefficient
of δxj`, δxj´, δtj`, δtj´ in equation (4.6), they can be written as follows:

ˆ

´λT j´ `
Bϕ

Bxj´
` µT

„

Bχ

Bxj´

˙

“ 0 j “ 1, ..., n (4.10)

ˆ

´λT j` `
Bϕ

Bxj`
` µT

„

Bχ

Bxj`

˙

“ 0 j “ 1, ..., n´ 1 (4.11)

Hj´ `
Bϕ

Btj´
` µT

Bχ

Btj´
“ 0 j “ 1, ..., n (4.12)

´Hj` `
Bϕ

Btj`
` µT

Bχ

Btj`
“ 0 j “ 1, ..., n´ 1 (4.13)

where j´ and j` are the values assumed right before and right after the point j. As already
introduced, it is important to distinguish the two instants, as a discontinuity could happen
at the arcs’ conjunction points. Clearly, Eq. (4.10) and Eq. (4.12) can not be considered
for the starting point of the trajectory (j = 0), and Eq. (4.11) and Eq. (4.13) are not
significant at the end (j = n). Eliminating the adjoint constants µ from the set of equations
above, the Optimum Boundary Conditions can be defined as follow:

σ
`

xpj´1q`,xj´,λpj´1q`,λj´, tpj´1q`, tj´
˘

“ 0 j “ 1, ..., n (4.14)

The final system of differential equation is composed by Eq. (4.1), Eq. (4.2), Eq. (4.8).
Considering a generic state variable x, if subjected to particular boundary conditions, Eq.
(4.10) and Eq. (4.11) give particular optimal values for the relative adjoint variable λx.
In particular:

• If the state variable x value is known at the initial instant, which means that the
imposed boundary conditions vector χ contains the equation x0 ´ a “ 0, with a
explicit value, on the corresponding adjoint variable λx there are no conditions.
Thus, the adjoint variable’s initial value λx0 is free, this also applies for the final
instant if the state variable is explicitly defined in that point.

• If the initial value of the state variable x0 does not appear either in the function ϕ or
in the boundary conditions, the relative adjoint variable is null at the initial instant:
λx0. Also in this case, the consideration can be extended to the final instant.

• If a state variable is continuous but not explicitly defined at an internal point j
(which means that the vector χ contains xj` “ xj´), the corresponding adjoint
variable is continuous in that point: λxj` “ λxj´

• If a state variable is continuous and known at a defined internal interface, which
means that the equations xj` “ a and xj´ “ a are contained in χ vector, the
corresponding adjoint variable in that point presents a free discontinuity. This means
that its value after the point j is independent from the value it assumed before, and
has to be determined through the optimization algorithm.



4.1. BOUNDARY VALUE PROBLEM - BVP 37

Is possible writing down mathematically, what just explained, as follow:

if x0 ´ a “ 0 ÝÑ λx0 is free

if ϕ ‰ fpx0q ^ χ ‰ fpx0q ÝÑ λx0 “ 0

if xj` “ xj´ ÝÑ λxj` “ λxj´

if xj` “ xj´ “ a ÝÑ λxj` ‰ fpλxj´q

Same consideration can be done with the Hamiltonian, infact if the Hamiltonian does not
explicitly depends on the time, also Eq. (4.12) and Eq. (4.13) give some peculiar boundary
conditions. In particular:

• If the initial time t0 does not explicitly appear in the boundary conditions or in the
function ϕ, the Hamiltonian of the system is null at the initial point: H0 “ 0. As
always, the same conclusions can be extended to the final instant of the trajectory.

• If the internal time tj does not explicitly appear in the function ϕ, which means that
the only condition in which it is involved is the continuity of the time at the internal
boundary tj` “ tj´, the Hamltonian of the system is continuous in j: Hj` “ Hj´

• If the internal time tj is explicitly defined, which means that in χ appears the equa-
tions tj` “ a and tj´ “ a, the Hamiltonian of the system in that point has a free
discontinuity

4.1 Boundary Value Problem - BVP

The indirect method, that is used mainly to optimize orbital transferts and space missions
in general, relies on the application of the Optimal Control Theory at the system of
differential equations. The Optimal Control Theory, as explained in Section 4.1, formulates
the optimization problem as a mathematical problem subjected to both differential and
algebraic bounds. OCT can be studied as a BVP made up of the following systems:

dx

dt
“ f px,u, tq State Differential Equations

dλ

dt
“ ´

ˆ

BH

Bx

˙T

Euler Lagrange Equations

χ
`

xpj´1q` , xj´ , tpj´1q` ,tj´
˘

“ 0 Imposed Boundary Conditions

σ
`

xpj´1q`,xj´,λpj´1q`,λj´, tpj´1q`, tj´
˘

“ 0 Optimum Boundary Conditions

ˆ

BH

Bx

˙T

“ 0 Controls Algebraic Equations

Some of the variables’ initial value of the BVP are unknown, the solution of BVP consist
in finding the initial values which satisfy contemporarily all the boundary conditions: both
imposed and optimal. Such method relies on the numerical integration of the system of
differential equations.
The introduced problem is marked by some singular characteristic:
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• The integration domain is divided into sub-intervals called arcs. Within each arc
the formulation of the differential equations is constant, but may be different from
one arc to another

• The duration of each arc, or sub-interval, is in general unknown

• The variables may be discontinuous at the internal boundaries and their values after
such singularity might be unknown

• The boundary conditions may be non-linear, as well they can involve the values of
the variables both at the external boundaries and the external

A method for the solution of the BVP is a indispensable tool for the resolution of one
of the main difficulties of the indirect optimization technique that is the solution of the
boundary value problem.
The solution is achieved by reducing the BVP to a sequence of sub-problems, which is
then taken to convergence exploiting the Newton method.
In order to solve the problem related to indefiniteness of the duration of the arcs, the
independent variable t is replaced, only for the integration, with a new variable ε, that is
defined as follow:

ε “ j ´ 1`
t´ tj´1
tj ´ tj´1

“ j ´ 1`
t´ tj´1
τj

with τj is the duration of the arc. As a consequence internal and external boundaries
are fixed, in fact, thanks to the introduction of the unknown parameters τj , the interface
points are represented by the natural values of the new independent variable ε.
In order to describe the method, the differential equations are reformulated introducing
the new variables vector which include both the state variables and the adjoint variables,
y “ px,λq

dy

dt
“ f˚py, tq (4.15)

It is important to highlight that in the considered problem, some parameters are constant,
such as the duration of the arcs τ . It is therefore important to introduce a new vector
z “ py, c where z include state variables, adjoint variables and constant parameters.
Thus, the system of differential equations can be expressed as follow:

dz

dε
“ fpz, εq (4.16)

The second member of the Eq. (4.17), considering the state variables and the adjoint
variables, can be written in the following form:

dy

dε
“ τy

dy

dt
(4.17)

while the constants’ vector che be easily derived:

dc

dε
“ 0 (4.18)

The boundary conditions can be grouped in a single vector that takes into account both
the imposed ones and the optimal ones.

Ψpsq “ 0 (4.19)

where s is a new vector that includes the values of the variables at every boundary, external
and internal, and the unknown constant parameters. Thus it can be written as:

s “ py0,y1, ....,yn, cq (4.20)



4.1. BOUNDARY VALUE PROBLEM - BVP 39

The initial values of some variables are usually unknown, thus the research of the solution
coincides with the determination, through an iterative process, of the values they have to
assume to satisfy the boundary conditions in Eq. (4.19). The methodology here described
is the one which consider all of the initial values as unknown. If one or more are explicitly
defined, the method is simplified. The r-th iteration starts with the integration of Eq.
(4.16) using as initial values pr the ones found at the end of the previous iteration. This
means that the following equality is imposed:

zp0q “ pr (4.21)

then, the differential equations are integrated throughout the whole trajectory, taking into
account the discontinuities at the internal boundaries. In order to run the process it is
necessary to choose the values of the first attempt vector: p1. At each internal boundary
is determined the values of the state variables and, at the end of the integration process,
the error on the boundary conditions is computed. The error at the r-th is Ψr. The
variation ∆p brings changes to the error on the boundary conditions. Considering only
the first order terms, the error ∆Ψ can be expressed as:

∆Ψ “

„

BΨ

Bp



∆p (4.22)

The error has to be null in order to fulfil the boundary conditions Eq. (4.19), it is therefore
necessary that ∆Ψ “ ´Ψr. Thus result in a modification of the initial values at each
iteration of:

∆p “ pr`1 ´ pr “

„

BΨ

Bp

´1

Ψr (4.23)

this correction is applied until the boundary conditions are respected with the desired
accuracy. The matrix present in the second term of Eq. (4.23) can be calculated as a
product of two matrices:

„

BΨ

Bp



“

„

BΨ

Bs

 „

Bs

Bp



(4.24)

where the first matrix can be easily obtained derivating the boundary conditions with
respect to the variables they depend on while, the second matrix, takes into account the
derivative of the variables at the boundaries with respect to their initial values. Hence,
the second matrix represents the values assumed by the matrix at the boundaries:

„

Bz

Bp



“ rgpεqs (4.25)

which is obtained from the integration of the main system of differential equations (4.16)
with respect to each of the initial values:

r 9gs “
d

dε

„

Bz

Bp



“

„

B

Bp

ˆ

dz

dε

˙

“

„

Bf

Bp



(4.26)

where the 9 represents the derivative with respect to the new independent variable ε. The
Jacobian of the principal system (1.16) can be expressed, finding the following form for
Eq. (4.26):

r 9gs “

„

Bf

Bz

 „

Bz

Bp



“

„

Bf

Bz



rgs (4.27)

One of the peculiarities of the described method, for the solution of indirect optimization
problems, is the symmetry of some terms of the Jacobian. These properties are not
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described here. The initial values of the homogeneous system (4.27) can be retrieved
through the derivative of Eq. (4.22) so, the identity matrix, can be found:

rgp0qs “

„

Bzp0q

Bp



“ rIs (4.28)

It is important to underline that this method allows to deal also with discontinuities in the
variables. In order to take into account a discontinuity at point i, is sufficient to update
both the vector of variable z and the matrix g. This operation can be realized through the
relation h which connects the values of the variables before and after the discontinuity:

zi` “ hpzi`q (4.29)

rgi`s “

„

Bh

Bz



gi`s (4.30)

This is the explanation of why the vector s has been defined without a clear distinction
between yi` and yi´. In fact, one is a known function of the other and of the vector c,
through the relation h. The vector p is reduced to the estimate only of the unknown
components of the vector z(0) and the vector Φ consists only of the boundary conditions
which are unknown at the initial instant so, if some of the initial values are known, the
problem is simpler.
The matrix in the left term of equation (1.23) can be calculated numerically instead than
analytically. In fact, its i-th row can be obtained lightly changing the i-th component of
the vector p, through the addiction of a certain ∆p but keeping the other components
fixed during the integration. Thus, it is possible to calculate the related change in the
boundary conditions ∆Ψ “ p∆pq and, through linearization, to obtain the corresponding
row with the expression: ∆Ψ “ p∆pq. One benefit of using this method is that some times
it allows to cut down the computational times but on the other hand, the convergence is
not always reached. As a matter of fact, the numerical determination of the matrix in
equation (1.23) is way less precise than its calculation through the solution of the system
(1.27). Considering the sensibility of the problem, even adopting the most suitable value
of ∆p, that is usually between 10´7 and 10´6, the introduced numerical approximation
can compromise the convergence of the solution.
The numerical procedure is adopted in this work in order to calculate the Jacobian of the
system and the matrix

“

BΨ
Bs

‰

, this method is chosen in order to reduce the computational
times even if is less precise than the analytical method.
The linearization, introduced in order to calculate the correction ∆p of the first attempt
initial values, brings to errors that can invalidate the method’s convergence. In fact,
the linearization can bring the error on the boundary conditions to grow instead then
decreasing. In order to solve this problem, the following strategy is carried out:

• In order to prevent the method from distancing too much from the solution of the
problem, the correction applied is only a fraction of the one determined using equa-
tion (1.23). In particular:

pr`1 “ pr `K1∆p (4.31)

where K1 P r0.1, 1s and his value iis determined empirically during the first imple-
mentation of the , and depend on the distance of the first solution from the one
searched.

• Each iteration follow the same logic process.

1. Through the equation (1.31) the vector of the attemp initial values pr`1 is
determined.
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2. The motion differential equation are integrated.

3. The error on the boundary conditions Emax
r`1 is compared to the one calcu-

lated from the previous iteration step Emax
r. At this point if:

Emax
r`1 ă K2Emax

r

next iteration can be performed. The error on the boundary conditions may
grow in the first iterations. Thus, the value of K2 shall be greater than one. In
particular, a value K2 P r2, 3s brings satisfying results.

• If the error that concern to the latest iteration is too high respect to the previous,
the method proceeds with the bisection of the correction. That is, the equations of
motion are integrated with the attempt values:

pr`1 “ pr `K1
∆p

2
(4.32)

The new error is then compared to the one of the previous iteration step. If necessary,
the bisection can be applied to the correction value up to 5 times. If even after such
a procedure the new iteration determines an error greater than the previous one,
the computation is stopped. This means that the chosen attempt solution is not
compatible with the convergence of the method and has to be modified.





Chapter 5

Dynamic Problem

In this chapter the equations that describe the analysed problem will be introduced. Op-
timal control theory will be applied to these equations that will be specialized for the case
study. Then a description of the model will be given.
Is possible to study the problem adopting the two body problem. In order to describe the
motion of the satellite is necessary to introduce the vectorial differential equations:

dr

dt
“ v (5.1)

dv

dt
“´

µr

r3
`
T

m
` ap (5.2)

dm

dt
“´

T

c
(5.3)

where r is the position vector, v is the velocity vector of the spacecraft and T is the
thrust vector. The trajectory of the spacecraft is controlled by the thrust vector T and
the effective exhaust velocity c is assumed constant. The term ap on the right side of Eq
5.2 is the perturbing acceleration and is composed from three contributes,

ap “ aJ ` alsg ` asrp (5.4)

where aJ is the is the perturbation due to the Earth asphericity, alsp is the perturbation
due to the luni-solar gravity while asrp is due to the solar radiation pressure. These
perturbing acceleration will be explained better in the following section.
From the Optimal Control Theory is known that:

H “ Φ` λTf

that combined with the vectorial expression of the State Equation leads to:

H “ λTrV ` λ
T
V

ˆ

´
µ

r2
r

r
`
T

m

˙

´ λm
T

c
` aP (5.5)

Introducing the definition of Switching function:

SF “
λTV T

mT
´
λm
c

(5.6)

and substituting into Eq.(5.5) brings to the definition of the Hamiltonian as:

H “ λTrV ` λ
T
V

´

´
µ

r2
r

r

¯

´ T SF ` aP (5.7)

43
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Figure 5.1: Spherical coordinates frame

The maximization of the Hamiltonian is imposed by the optimal Control Theory in order
to obtain the optimal solution, thus lead to have the thrust parallel to the primer vector
λv, as a consequence is possible to define the switching function as:

SF “
λV
m
´
λm
c

(5.8)

The definition of the switching function and therefore its sign, define the strategy that
permit to maximise the Hamiltonian.

SF ă 0 ñ T “ 0 (5.9)

SF ą 0 ñ T “ Tmax (5.10)

In order to have all the quantities on a convenient reference frame, the set of vectorial
equation that describes the trajectory of the spacecraft has to be projected. The optimal
frame is an inertial frame where Coriolis and inertial accelerations are not taken into
account. In particular the reference frame adopted is The Earth Mean Equator and
Equinox of Epoch J2000 reference frame where I, J, K are the unity vector along the axes
of EME2000. In the model adopted precession and nutation are neglected.
Is possible to define the position vector in spherical coordinates in function of the radius
r, the right ascension ϑ and the declination angle ϕ as follow:

r “ rcosϑcosϕI ` rsinϑcosϕJ ` rsinϕK (5.11)

Topocentric reference frame is introduced, with i is the unit vector in the radial di-
rection, j is in the eastward direction and k is in the northward direction. Is therefore
possible to write the position vector with respect to the topocentric frame thanks to the
rotational matrix. Starting from the Eq. 5.11, it follows that r “ ri and the velocity
vector can be written as:

v “ 9r “ ui` vj ` wk (5.12)

where u, v, w are the components of the velocity radial, eastward and northward respec-
tively.
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5.1 State Variables and Adjoint Variables

By the projection of the State Equation into the chosen reference frame is possible to
obtain the following relations:

dr

dt
“u (5.13)

dϑ

dt
“

v

rcosϕ
(5.14)

dϕ

dt
“
w

r
(5.15)

du

dt
“´

µ

r2
`
v2 ` w2

r
`
Tu
m
` papqu (5.16)

dv

dt
“
´uv ` vwtanϕ

r
`
Tv
m
` papqv (5.17)

dw

dt
“
´uv ´ v2tanϕ

r
`
Tw
m
` papqw (5.18)

dm

dt
“´

T

m
(5.19)

where the initial state vector is x “ rr ϑ ϕ u v w ms, the component of thrust are defined
as Tu “ T sinγT , Tv “ T cosγT cosψT , Tw “ T cosγT sinψT where ψT is the heading
angle and γT is the elevation angle of the thrust.
The simpliness of these equation with this set of variables will facilitate the analytical
derivation of the necessary condition for optimality.
It is therefore possible to formulate the expression of the Hamiltonian as follow:

H “ λru` λϑ
v

rcosϕ
` λϕ

w

r
`

` λu

ˆ

´
µ

r2
`
v2

r
`
w2

r
`
T

m
sinγT

˙

`

` λv

ˆ

uv

r
`
vw

r
tanϕ`

T

m
cosγT cosψT

˙

`

` λw

ˆ

´
uw

r
´
v2

r
tanϕ`

T

m
cosγT sinψT

˙

`

´ λm
T

c

(5.20)

Imposing equal to null the partial derivatives of the Hamiltonian, argument addressed in
Chapter 4, is possible to obtain the optimal values of γT and ψT which are the control
that define the direction of thrust.
Mathematically is possible to write:

ˆ

BH

Bu

˙T

“ 0 (5.21)

with u “ rγT ψT s the control vector. This yields to the Algebraic Equations of Control:

sinγT “
λu
λV

(5.22)

cosψT cosγT “
λv
λV

(5.23)

sinψT cosγT “
λw
λV

(5.24)

(5.25)
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where λV is the primer vector’s module and can be expressed as:

λV “

b

λu
2 ` λv

2 ` λw
2 (5.26)

Is important to underline that the prime vector is parallel to the optimal direction of
thrust.
The Euler-Lagrange equations are used in order to define the only set of equation left that
is the differential equations for the adjont variables λ “ rλr λϑ λϕ λu λv λw λms For the
problem taken into account the Euler Lagrange Equations

dλ

dt
“ ´

ˆ

BH

Bx

˙T

(5.27)

becomes:

9λr “
1

r2

„

λϑ
v

cosϕ
` λϕw ` λu

ˆ

´
2

r
` v2 ` w2

˙

`

` λv p´uv ` vwtanϕq ` λw
`

´uw ´ v2tanϕ
˘



`
dH

dap

dap
dr

(5.28)

9λϑ “ 0 (5.29)

9λϕ “
1

rcos2ϕ

`

λϑvsinϕ´ λvvw ` λwv
2
˘

`
dH

dap

dap
dϕ

(5.30)

9λu “
1

r
p´λrr ` λvv ` λwwq `

dH

dap

dap
du

(5.31)

9λv “
1

r

„

´λϑ
1

cosϑ
´ 2λuv ´ λvpu´ wtanϕq ` 2λwvtanϕ



`
dH

dap

dap
dv

(5.32)

9λw “
1

r
p´λϕ ´ 2λuw ´ λvpvtanϕ` λwuq `

dH

dap

dap
dw

(5.33)

9λm “
T

m2
λV `

dH

dap

dap
dm

(5.34)

5.2 Perturbations

In order to describe in a better way the environment in which the spacecraft will work
and the forces to which the spacecraft is subjected, is necessary a wider view over the
three different perturbation presents into the model adopted. Common perturbations of
two-body motion include a nonspherical central body, atmospheric drag, solar radiation
pressure, and gravitational interactions with celestial objects like the Moon and the Sun
or a third body in general. In this thesis only three of these perturbations are taken into
account. In particular they will be explained in the following order: the first perturbation
considered is the perturbation due to the Earth asphericity aJ then the perturbation due
to the luni-solar gravity alsp and finally the solar radiation pressure asrp.

5.2.1 Earth Potential Model

The simplified gravitational potential of the Earth µ
r , is due to a symmetric mass body

and results in conic orbits. However, the Earth is not a spherically symmetric body
but is bulged at the equator, flattened at the poles and is generically asymmetric. The
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Figure 5.2: 3D representation of Earth Gravitational Model EGM2008

Earth Gravitational Model EGM2008 is utilized as description of the Earth potential and
provides the normalized harmonic coefficients for the Earth gravitational potential. The
”Tide Free” system is used in this thesis, but in case of the need of higher-degree terms
the code can be modified in order to implement the ”Zero Tide” system. The ”Zero
Tide” system is provided in order to minimize any chance of error that may occur while
converting from one tide system to another.
Is possible to express the potential correspond to the Earth asphericity, according to
EGM2008 as follow:

Φ “ ´
µ

r

N
ÿ

n“2

´rE
r

¯n n
ÿ

m“0

pCnmcosmλ` SnmsinmλqPmnpsinϕq (5.35)

where µ is the Earth gravitational parameter, rE is the semimajor axis of the Earth
ellipsoid and N is set as equal to 8.

Normalized quantities would allow a greater accuracy but are not necessary for the
present application, in fact unnormalized form is utilized using the associated Legendre
functions Pnmsinϕ and the spherical harmonic coefficients Cnm and Snm in order to reduce
the computational time.
Since the nutation is meglected, the terrestrial latitude coincides with the declination
angle ϕ while the longitude λ “ ϑ´ϑGref ´ωEpt´ tref q where ϑGref is the position of the
Greenwich right ascension at the reference time tref that coincides with 51544.5 MJD and
ωE is the rotational speed of Earth evaluated on the sidereal day, neglecting the precession
of the Earth.
In order to find the perturbing acceleration due to the Earth asphericity is necessary to do
the gradient of ´Φ. Considering the components along the topocentric frame is possible
to write:

pajqu “´
BΦ

Br
(5.36)

pajqv “´
BΦ{Bϑ

Brcosϕ
(5.37)

pajqw “´
BΦ{Bφ

r
(5.38)
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Particular attenction has to be paid to the derivatives with respect to ϕ, in fact requires
the derivative of the associated Legendre functions, which are obtained recursively using
the properties of the Legendre polynomials, on the other hand the differentiation with
respect to r and ϑ is easy to accomplish.

5.2.2 Luni-Solar Perturbation

Luni-Solar perturbation takes into account the effect of the gravitational attraction of the
Sun and the Moon over an orbiting spacecraft. Moon and Sun position are evaluated
considering DE405 JPL ephemeris, that directly provide the body position in rectangular
coordinates xb, yb, zb, with respect to the Earth in the International Celestial Reference
Frame and therefore in the EME2000 frame. The differences between these two reference
frame are vary small so they can be neglected in this problem. In order to explicit the
perturbing acceleration on the spacecraft caused by a body with µb as gravitational pa-
rameter and rb “ xbI ` ybJ ` zbK as position vector with respect to Earth (where b is
b “ l if Moon is considered while b “ s in case of Sun is considered) is necessary to do
the difference between the gravitational acceleration that the third body causes on the
spacecraft and the one caused by Earth. It follows that the perturbing acceleration is :

abg “ ´
´ µb
R3

¯

R´

ˆ

µb
rb3

˙

rb (5.39)

where R “ r ´ rb is the vector that represent the relative position with respect to the
perturbing body. In Fig. 5.1 is possible to see the schematic representation of the problem’s
geometry.
Projecting the acceleration into the topocentric reference frame is possible to obtain:

pabgqu “´
´ µb
R3

¯

rprbqu ´ rs ´

ˆ

µb
rb3

˙

prbqu (5.40)

pabgqv “´
´ µb
R3

¯

prbqv ´

ˆ

µb
rb3

˙

prbqv (5.41)

pabgqw “´
´ µb
R3

¯

prbqw ´

ˆ

µb
rb3

˙

prbqw (5.42)

where R “

b

rr ´ prbqus
2
` prbqv

2
` prbqw

2.

Figure 5.3: Schematic geometry of gravitational perturbation
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Expliciting the position’s components of the perturbing body in the topocentric ref-
erence frame, is possible to notice how the perturbing acceleration is only in function of
time and state variables, in fact is possible to write:

prbqu “ xbcosϑcosϕ` ybsinϑcosϕ` zbsinϕ (5.43)

prbqv “ ´ xbsinϑ` ybcosϑ (5.44)

prbqw “ ´ xbcosϑsinϕ´ ybsinϑsinϕ` zbcosϕ (5.45)

5.2.3 Solar Radiation Pressure

The Solar Radiation Pressure is a perturbing acceleration caused by the emission from the
Sun of Photons. In fact the photons in light emitted from the Sun move at the speed of
light and have momentum, because of that when they hit objects, and in this particular
case the spacecraft, transfert momentum to that object causing an increase of the velocity
in the Sun - Spacecraft direction.
Considering that the photon pressure at a distance R from the Sun is given by the relation:

p “
Ls

4πR2clight
(5.46)

where Ls is the total power radiated by the Sun and clight is the speed of light. Assuming
a reflectivity of η “ 0.7 the perturbing acceleration on a spherical body with mass m and
cross-section S is:

asp “ p1` ηqp
˚

ˆ

R˚

R

˙2ˆ S

m

˙

R

R
“

ΓR

mR3
(5.47)

where p˚ “ 4.55682 is the photon pressure at R˚ “ 1 AU.

Projecting the acceleration into the topocentric reference frame is possible to obtain:

pasrpqu “

„

Γ

mR3



rprsqu ´ rs (5.48)

pasrpqv “

„

Γ

mR3



rprsqvs (5.49)

pasrpqw “

„

Γ

mR3



rprsqws (5.50)

The solar radiation is therefore inversely proportional to the squared distance of the two
bodies and caused an acceleration on the Sun spacecraft direction, the same happens

Figure 5.4: Schematic geometry of Earth’s shadow for solar radiation pressure perturbation
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with the solar accelerations but with opposite directions. These two perturbations can be
treated simultaneously due to the similarity of the right term of Eq. (5.40), Eq. (5.41),
Eq. (5.42) with Eq. (5.48), Eq. (5.49), Eq. (5.50).
In order to take into consideration the eclipses period, when spacecraft is obscured by the
presence of the Earth between itself and the Sun, a conical shadow of Earth is considered;
when prsqu ă 0 Sun and spacecraft are on opposite sides with respect to the Earth.
The conic shadow determined by the presence of Earth has a semi angle γshadow “

arcsinprE{rsq where rE is the Earth radius and rs is the distance between Sun and
Earth. On the other hand, the spacecraft is on a surface of a cone with semi-angle
γ “ arcsinprsinδ{Rq where δ is the angle between the Earth centered vector that points
towards the Sun and the Earth centered vector that points towards the spacecraft and can
be evaluated as δ “ arcosrprsqu{rss.
It conveys that the spacecraft is in the Earth shadow when γ ă γshadow and prsqu ă 0 and
thus, the spacecraft is behind the Earth from Sun’s point of view.

5.3 Dimensionless Quantities

In order to formulate the problem in a more general form, dimensionless quantities are
taken into account and will be described below.

5.3.1 Dimensionless Distance

Instead of using distances in kilometres to define spatial variables all the distances are
expressed in a dimensionless form. If a geocentric trajectory is considered, the distance is
seen as a multiple of the Earth’s ellipsoid semimajor axis.

aC “ 6378.1363 km (5.51)

On the other hand if a heliocentric trajectory is considered, the distance is seen as a
multiple of the mean Sun-Earth distance which is also know as Astronomical Unit (AU)

1 AU “ 149597870.7 km “ rconv (5.52)

The adoption of the dimensionless distance is important in order to operate with smaller
and more accessible numbers, the quantities in fact are in the orders of units instead of
several millions.

5.3.2 Dimensionless Velocity

As already seen for the distance, also the velocity is expressed in a dimensionless form.
Also in this case if a geocentric trajectory is considered, the velocity is referred to a
characteristic velocity, the first cosmic velocity.

v1 “

c

G mC

RC

“ 7.9054 Km{s (5.53)

On the other hand if a heliocentric trajectory is considered, the velocity is seen as a
multiple of the circular velocity of the Earth around the Sun

V “

c

µ@

rconv
“ 29.7847 Km{s (5.54)
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5.3.3 Dimensionless Time

Also time is expressed in a dimensionless form and also in this case there is a differentiation
between a geocentric or heliocentric trajectory. In the first case, time become dimensionless
using the reference time

t “
aC

v1
“ 806.811 s (5.55)

In the second case time is related to the revolution of the Earth around the Sun. Thus,
radians are used to measure time instead years. Considering that in one year Earth
complete a revolution around the Sun is possible to write:

1 year “ 2π rad (5.56)

As a consequence is possible to write the reference time as follow:

tconv “
365 days

2π
“ 58.1324209 days (5.57)

In order to define univocally the date take into account is necessary to define a date from
which time is measured. As in most space mission analysis J2000 is the most used reference
date, that correspond to the 12 UT 1/1/2000.

5.3.4 Dimensionless Acceleration and Dimensionless mass

It is possible to refer to the Earth’s orbit to find the reference acceleration as already done
with the velocity in the case of heliocentric phase. This is

aconv “
µ@

rconv2
“ 5.930083517 ¨ 106 Km{s2 (5.58)

Also for the mass is possible to use a dimensionless form, in this case the final mass is
related to the initial mass in order to have at the beginning of the mission the ratio equal
to 1 while with the progression of the mission it decreases with value minor of 1.

mratio “
mfinal

minitial
(5.59)

5.4 Definition of the case study

Once the set of equations that define the problem are set and the dimensionless parameters
are introduced, is necessary to introduce the boundary conditions that characterize the
case study. As previously introduced, the starting point of the evasion maneuver will be
the Lagrangian point L2. As a consequence:

rpt0q “ rCpt0 ` 0.01 AUq

V pt0q “ VCpt0 ` 0.01 AUq

and the angle ϑ defined as ϑ “ ϑ@ ´ ϑSC :

ϑpt0q “ ´180 deg

considering that L2, and thus where the spacecraft is initially situated, is in opposition
with respect to the Sun.
At the end of the escape maneuver the spacecraft has to reach the end of the Earth’s
sphere of influence and thus the distance at final time has to be fixed:

rptF q “ 0.929 ˆ 106 Km
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In addition to the final position of the spacecraft, also the length of the evasion maneuver
is fixed to a defined value, but it will vary from one case to the other.
After the simulations carried out maintaining the value of the characteristic energy c3 free
to vary, also c3 will be fixed to a defined value.
In the case study considered, the trajectory is controlled by the thrust, this happens
modifying itself in magnitude and direction. The direction is fixed to be parallel to the
primer vector while the module follow the ”Bang Bang” control law. As a consequence the
magnitude of the thrust will change in function of the value that the switching function
assume, in fact:

SF ă 0 ñ T “ 0

SF ą 0 ñ T “ Tmax

All of the trajectories considered in this thesis are divided into two arcs, the first one is
a propelled arc where the SF ą 0 and thus the thrust assume the maximum value in
magnitude; the second one is a coasting arc where the SF ă 0 this mean that T “ 0 and
thus no thrust is present. In all the result presented in the next chapter, are visible both
the arcs, the length of these arches will define in almost the cases the amount of propellant
mass carriable in order to achieve the mission, this will be treaty deeper in Chapter 6.



Chapter 6

Results

In this chapter the results of the escape maneuver from the sphere of influence of Earth
will be discussed. The initial point of the trajectory is the Lagrangian Point L2 of the
Sun-Earth system. Initially only the departure date and the length of the mission will be
varied leaving c3 free to vary. In a second moment c3 will be fixed to a defined value, also
in this case the length of the mission and the departure date will be varied.

6.1 Evasion maneuvre from L2 Sun-Earth system, C3 free

Before entering the particulars of the solutions, it is necessary to describe some aspects
of the methodology followed. Different solutions in terms of duration of the mission and
departure date are taken into account. To understand better how the results vary, the
values of the dimensionless time (t0) and the period of the mission will change. As initial
values are chosen: t0 = 176, duration of the mission = 80 days, subsequently t0 will vary
with steps of 0.1 from 176 to 176.5 while the period of the mission will change from 80
days to 100 days with 5 days step each time. It is chosen to vary t0 within this range
because of the synodic period of the moon, in fact is almost 29 days long, that correspond
with 0.5 of the dimensionless time. This means that there should be a periodicity in the
results for each 0.5 of the dimensionless time so, results from t0=176 should be almost
the same as t0 = 176.5. In Table 5.1 are shown the date considered as departure date in
the dimensionless form, in the standard format (dd/mm/yyyy) and the angle between the
Moon and Earth in the day chosen.
The results obtained considering the free case, where c3 is not fixed to a defined value, will

be divided into two parts, the first part will show the results obtained for mission longer
than 80 days while the second part will show the results obtained for mission shorter than

Departure Date Departure Date Right Ascension Angle
(Dimensionless) (dd/mm/yyyy) (deg)

176,0 05/01/2028 13,5
176,1 11/01/2028 96,1
176,2 16/01/2028 179,8
176,3 22/01/2028 257,5
176,4 28/01/2028 329,9
176,5 03/02/2028 34,5

Table 6.1: Conversion between the dimensionless form and the standard format for the
departure date with the corresponding Right Ascension Angle between the Moon and
Earth in that day.

53
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Departure Data Duration Propelled Arc Propellant Mass
(dd/mm/yyyy) (Days) Length (Days) Utilized (Kg)

05/01/2028 100 2,79 1,208
11/01/2028 100 2,86 1,238
16/01/2028 100 1,76 0,762
22/01/2028 100 1,30 0,563
28/01/2028 100 1,89 0,820
03/02/2028 100 2,90 1,254

05/01/2028 95 3,18 1,377
11/01/2028 95 3,26 1,410
16/01/2028 95 2,15 0,930
22/01/2028 95 1,68 0,728
28/01/2028 95 2,28 0,987
03/02/2028 95 3,29 1,424

05/01/2028 90 3,67 1,591
11/01/2028 90 3,74 1,622
16/01/2028 90 2,62 1,135
22/01/2028 90 2,15 0,932
28/01/2028 90 2,76 1,196
03/02/2028 90 3,78 1,639

05/01/2028 85 4,30 1,862
11/01/2028 85 4,36 1,889
16/01/2028 85 3,20 1,388
22/01/2028 85 2,73 1,181
28/01/2028 85 3,36 1,456
03/02/2028 85 4,41 1,911

05/01/2028 80 5,08 2,200
11/01/2028 80 5,15 2,230
16/01/2028 80 3,94 1,707
22/01/2028 80 3,44 1,489
28/01/2028 80 4,10 1,774
03/02/2028 80 5,19 2,250

Table 6.2: Escape maneuver data for mission’s duration over 80 days

75 days.
As can be seen in Table 5.2 the same mission can be carried out in different period and
with different durations, resulting in non-identical durations of the propelled arc and final
mass. Comparing the mission with the same duration but different departure date is
possible to note that there is an oscillation of the length of the propelled arc and thus of
the final mass. In fact, is possible to identify a minimum in the length of the propelled arc
when t0 = 176.3, corresponding to a minimum of the propellant mass utilized and thus
a maximum of the final mass. This means that to reach the evasion from the sphere of
influence of the Earth is required less propellant because the propulsor have to work for
a shorter time and thus more payload can be allocated on the spacecraft. On the other
hand the longer is the propelled arc the lower will be the available mass for the payload
due to increased mass of propellant needed.
The causes that brings to the oscillation visible in the results is the lunisolar perturbation.
Is possible to observe that the maximum correspond to a precise departure date and thus
to a defined value of the right ascension angle between Moon and Earth at the initial time,
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Figure 6.1: Evasion maneuver from L2 Sun-Earth, t0=176; duration 80 days (black), 85
days (blue), 90 days (green), 95 days (red), 100 days (cyan)

that is θb » 257˝ .
Considering now the missions with different duration but the same departure date is
possible to note that leaving L2 in t0 = 176.3 is favourable in terms of final mass in almost
the cases. Comparing mission with length of 100 days and 80 days is possible to note that
the differences are mainly on the length of the propelled arc, in fact in the first case the
thrust effort has to be lower than in the second case. The first case has to be carried out
in a longer time and thus a smaller propellant output is needed, since relying on much
time achieve the mission there is a lower use of thrust and a higher final mass. The second
case, on the other hand, is linked to a broader use of thrust, resulting in a higher need
of propellant. Considering Figure 6.1 is possible to notice that the evasion maneuver is
not a perfect hyperbola because of the influence of Sun, in fact, when the distance from
Earth is wide, the influence of Sun tend to modify the trajectory. Considering Figure 6.2
that represent the missions with the same length but different departure date is possible
to identify how the starting point move, L2 in fact rotate at the same angular speed of the
Sun-Earth system, thus modifying t0 also the position of L2 with respect to the Earth will
change. On the other hand, by maintaining the same departure date but modifying the
length of the mission, can be easily seen that L2 do not vary his position but the trajectory
is different. If the mission has to be accomplished in 80 days the propelled arc last more
than in the case of 100 days, this place the spacecraft in a more energetic trajectory as it
can be seen from Figure 6.1.
From Figure 6.3 to Figure 6.8 are shown the position of the Moon, the spacecraft, and
the Sun during the escape maneuver. In order to make the figure more understandable,
Sun’s position vector has been scaled by 100. For a fully understanding of the result it
is proved necessary to decrease the duration of the mission varying, in the same way done
previously, the duration of the mission. The following result will take into consideration
mission with duration between 75 days and 45 days with 5 days step and t0 which vary
from 176 and 176.5 with 0.1 step. Simulation with duration of the mission lower than 45
days are not taken into account because the length of the propelled arc lasted more than
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Figure 6.2: Evasion maneuver from L2 Sun-Earth, t0 =176 (black),t0 =176.1 (blue),
t0 =176.2 (green), t0 =176.3 (red), t0 =176.4 (cyan), t0 = 176.5 (magenta); duration 80
days; moon orbit (black) with asterisk indicating the moon position at the initial time

Figure 6.3: Escape maneuver from L2
Sun-Earth; Sun orbit (blue), Moon orbit
(green), SC trajectory (80 days red, 100
days black), t0 = 176. The asterisk indi-
cate the final position of the Sun.

Figure 6.4: Escape maneuver from L2
Sun-Earth; Sun orbit (blue), Moon orbit
(green), SC trajectory (80 days red, 100
days black), t0 = 176.1. The asterisk in-
dicate the final position of the Sun.
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Figure 6.5: Escape maneuver from L2
Sun-Earth; Sun orbit (blue), Moon orbit
(green), SC trajectory (80 days red, 100
days black), t0 = 176.2. The asterisk in-
dicate the final position of the Sun.

Figure 6.6: Escape maneuver from L2
Sun-Earth; Sun orbit (blue), Moon orbit
(green), SC trajectory (80 days red, 100
days black), t0 = 176.3. The asterisk in-
dicate the final position of the Sun.

Figure 6.7: Escape maneuver from L2
Sun-Earth; Sun orbit (blue), Moon orbit
(green), SC trajectory (80 days red, 100
days black), t0 = 176.4. The asterisk in-
dicate the final position of the Sun.

Figure 6.8: Escape maneuver from L2
Sun-Earth; Sun orbit (blue), Moon orbit
(green), SC trajectory (80 days red, 100
days black), t0 = 176.5. The asterisk in-
dicate the final position of the Sun.
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the escape maneuver itself.
Is possible to notice from Figure 6.9 that the fold caused on the trajectory by the increase
influence of the Sun is much more closer to the initial point with the decreasing length
of the mission, this because the shorter is the mission the faster the spacecraft reach the
limit of Earth’s sphere of influence due to the increasing length of the propelled arch.
Considering Table 6.3 is possible to notice that the trend of the quantities, given the
same duration of the mission and varying t0 is the same of the Table 6.2. There is still a
minimum on the length of the propelled arc for t0 “ 176.3 thus lead to a minimum on the
propellant mass utilized as can be easily seen in Table 6.3.
On the other hand if is considered the same t0 but the duration of the mission is varied, is
possible to notice that the final mass decrease due to the longer duration of the propelled
arc, in addition is possible to underline that, the shorter is the mission the longer is the
propelled arc and compared to the duration of the mission it gains of importance, in fact
in the case of: t0 “ 176, Duration 45 days, the propelled arc last more than the half of
the total duration of the escape maneuver while in the case of t0 “ 176, Duration 75 days
it is less than 1/10th of the total time of the mission. This lead to a great decrease of the
final mass compared to the results obtained for mission longer than 80 days.
Comparing the results obtained for missions with duration = 70, 75 days; t0 “ 176 and
duration = 50, 45 days; t0 “ 176 is possible to notice that the differences of the final mass
between 75´ 70 days is almost 0.5 Kg while between 50 - 45 is around 3.5 Kg, this means
that the shorter is the mission the higher will be the loss in terms of payload’s mass, in
fact is necessary to take into account that the propellant mass needed for spacecraft to
perform the maneuver will rise due to the increase of the duration of the propelled arc.
The length of the propelled arc is not only linked to the duration of the mission itself but
also to other factors that will be introduced and discussed in the following pages.

Figure 6.9: Evasion maneuver from L2 Sun-Earth, t0=176; duration 75 days (blue), 70
days (green), 65 days (red), 60 days (cyan), 55 days (magenta), 50 days (black), 45 days
(orange); moon orbit (black) with asterisk indicating the moon position at the initial time
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Departure Data Duration Propelled Arc Propellant Mass
(dd/mm/yyyy) (Days) Length (Days) Utilized (Kg)

05/01/2028 75 6,05 2,620
11/01/2028 75 6,14 2,659
16/01/2028 75 4,88 2,116
22/01/2028 75 4,34 1,881
28/01/2028 75 5,01 2,171
03/02/2028 75 6,16 2,669

05/01/2028 70 7,27 3,149
11/01/2028 70 7,38 3,197
16/01/2028 70 6,09 2,637
22/01/2028 70 5,52 2,390
28/01/2028 70 6,19 2,681
03/02/2028 70 7,38 3,197

05/01/2028 65 8,85 3,835
11/01/2028 65 8,96 3,882
16/01/2028 65 7,62 3,299
22/01/2028 65 7,04 3,049
28/01/2028 65 7,74 3,353
03/02/2028 65 8,97 3,883

05/01/2028 60 11,00 4,765
11/01/2028 60 11,06 4,791
16/01/2028 60 9,60 4,157
22/01/2028 60 9,02 3,906
28/01/2028 60 9,81 4,249
03/02/2028 60 11,11 4,814

05/01/2028 55 14,00 6,065
11/01/2028 55 14,01 6,068
16/01/2028 55 12,30 5,325
22/01/2028 55 11,67 5,052
28/01/2028 55 12,61 5,460
03/02/2028 55 14,11 6,111

05/01/2028 50 18,42 7,979
11/01/2028 50 18,44 7,988
16/01/2028 50 16,28 7,050
22/01/2028 50 15,46 6,696
28/01/2028 50 16,62 7,196
03/02/2028 50 18,51 8,017

05/01/2028 45 26,15 11,325
11/01/2028 45 26,30 11,392
16/01/2028 45 23,06 9,986
22/01/2028 45 21,78 9,433
28/01/2028 45 23,31 10,095
03/02/2028 45 26,20 11,347

Table 6.3: Escape maneuver data for mission’s duration under 80 days
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Figure 6.10: Final mass compared in function of the duration of the mission considering
different departure time t0: 176 (blue), 176.1 (red), 176.2 (violet), 176.3 (light blue), 176.4
(orange), 176.5 (dark blue)

Considering Figure 6.10 is important to notice that one of the most important factors
that has an impact on the propellant mass consumed is the influence that the Moon has
on the spacecraft. This effect is more visible in the first phases of the escape maneuver,
where the spacecraft is closer to the Moon. Considering long mission the position of the
Moon slightly influence the amount of propellant needed to accomplish the escape maneu-
ver while, for shorter missions, the choice of the departure day is fundamental. In fact,
choosing correctly the departure date can allow to reduce the propellant mass The Moon
during its revolution around the Earth can push, or pull, the spacecraft. If the spacecraft
is in a favourable position will be pushed from the Moon and will gain velocity, on the
other hand it will lose velocity. Considering the case where t0 “ 176.3, at the beginning
the Moon is almost in opposition with the spacecraft, this means that, the spacecraft can
take advantage of the position of the Moon nearly for all the first phases of the maneuver,
even if in the initial part of the trajectory the spacecraft is not in the best position to
be accelerated, while when the effect of the Moon is unfavourable the distance is already
grown an thus the negative effect is lower. Considering, for example, the mission with
duration of 45 days, during this period the Moon will do almost one and a half rotation
around Earth, this mean that the spacecraft will only experience once the push or the pull
of the Moon. As a consequence that passage of the Moon will define any gain or loss in
term of speed due to the gravity of the Moon. On the other hand if the mission is longer,
the spacecraft will experience more time the pull or the push of the Moon and therefore a
flattening on the differences previously found on the values of the final mass is found (e.g.
100 days). As is expected the value for t0 “ 176 and t0 “ 176.5 are almost the same also
in terms of final mass.

The influence of the Moon is visible from Fig 6.11 to Fig 6.16. In all of the pictures
are present two curves, the blue one is the evolution of c3 during the evasion maneuver
considering the influence of the Moon, the red one, on the other hand, is the evolution
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Figure 6.11: Evolution of the value of c3 during the evasion maneuver considering the
perturbation due to the presence (blue case), or the absence (red case) of the Moon.
Departure day: 11/01/2028, length of the mission 45 days.

Figure 6.12: Evolution of the value of c3 during the evasion maneuver considering the
perturbation due to the presence (blue case), or the absence (red case) of the Moon.
Departure day: 22/01/2028, length of the mission 45 days.
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Figure 6.13: Evolution of the value of c3 during the evasion maneuver considering the
perturbation due to the presence (blue case), or the absence (red case) of the Moon.
Departure day: 11/01/2028, length of the mission 75 days.

Figure 6.14: Evolution of the value of c3 during the evasion maneuver considering the
perturbation due to the presence (blue case), or the absence (red case) of the Moon.
Departure day: 22/01/2028, length of the mission 75 days.
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Figure 6.15: Evolution of the value of c3 during the evasion maneuver considering the
perturbation due to the presence (blue case), or the absence (red case) of the Moon.
Departure day: 11/01/2028, length of the mission 100 days.

Figure 6.16: Evolution of the value of c3 during the evasion maneuver considering the
perturbation due to the presence (blue case), or the absence (red case) of the Moon.
Departure day: 22/01/2028, length of the mission 100 days.
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Figure 6.17: Final mass compared in function of the duration of the mission considering
different departure date: 22/01/2028, 11/01/2028. Blue case is considering the perturba-
tion of the Moon while red case are the results obtained without consider the Moon

of c3 in the case of the impact of the Moon is not considered. Two cases are taken into
account: in Fig 6.11, Fig. 6.13, Fig 6.15 are considered trajectories that have as a depar-
ture day the 11/01/2028, while in Fig 6.12, Fig 6.14, Fig 6.16 the departure day is the
22/01/2028. These two dates are chosen because the Moon in 11 days almost moves 180
degrees around Earth, and so, two different behavior of the spacecraft are deductible, as
visible in the following figures. Given a mission of 45 days, different considerations can be
deduced from Fig 6.11 and Fig 6.12. In the first case, on a given day, is possible to notice
that the value of c3, where the Moon is present, is slightly lower than where Moon is not
considered. This underlines the braking effect that the Moon has on the spacecraft. As
a consequence, to fill the gap of c3 caused by the effect of the Moon, an increase of the
propelled arc’s time is needed, and therefore an increase of the propellant mass utilized
as shown in Fig 6.17. On the other hand, considering 22/01/2028 as the departure date
is possible to observe how the position of the Moon influence positively the trajectory. In
this case, the influence of the Moon causes an increase of c3 compared to the case without
the influence of the Moon, with a consequent decrease of the propelled arc’s length and
therefore of the propellant mass. From Fig 6.17 is visible that, leaving the second La-
grangian point on 22/01/2028, causes a decrease of the propellant mass needed of almost
10%. Leaving on 11/01/2028, on contrary, causes an increase of the propellant mass of
almost the 10%, which corresponds to an increase of almost 1 Kg.
Given a longer mission, is possible to notice how the impact that the presence of the
Moon has, on both characteristic energy and consumption, tends to decrease. Considering
the mission that lasts 85 days and so Fig. 6.13 and Fig 6.14 is visible how the Moon
causes an oscillation on the value of c3 that has a periodicity over 27 days; this is heavier
when the spacecraft is close to Earth, but, with the increase of the distance, it tends to
disappear. Examining the most favorable case, (the one which considers the departure
date the 22/01/2028) is possible to notice how the push of the Moon causes not only a
decrease of the propellant mass needed but also a soft increase in the final value of c3.
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Same considerations but with opposite results can be made for the trajectory that leaves
the second Lagrangian Point the 11/01/2028. The solutions obtained for the 100 days
case follow the same trend analyzed for the mission of 85 days, the main difference stays
in the number of oscillations, which is increased due to the longer length of the evasion
maneuver and on the gain, or loss, in terms of mass.
As can be deduced from the results obtained, leaving L2 on 22/01/2028 is the best choice
in terms of payload mass carriable thanks to the positive influence that the Moon has on
the spacecraft.
The energy that the evasion trajectory has at final time is an interesting value to investi-
gate, this value is the energy that the spacecraft has when it leaves the Earth’s sphere of
influence.
Is therefore necessary to consider not only the influence of the Moon on the spacecraft
but also the influence of the Sun. The influence of the Sun is, in fact, one of the main
perturbative forces that acts on the spacecraft and the main accelerating source for the
spacecraft. Given the model, shown in Chapter 5, adopted in the thesis is possible to
notice that there are 2 possible positions where the accelerating effect of the Sun has a
maximum positive, and thus the most favourable accelerating effect on the spacecraft,
for ϑb “ ´135 and ϑb “ 45 deg and 2 positions where the accelerating effect of the Sun
has a maximum but negative, and thus the most unfavourable accelerating effect on the
spacecraft. Considering the escape maneuver to perform, and the initial position, that
is the L2 point of the Sun - Earth system, the initial angle between the Sun and the
Spacecraft is ϑb “ ´180 deg. The target is to allow the spacecraft to reach the angle of
ϑb “ ´135 deg with respect to the Sun in order to take advantage of the accelerating effect
of the Sun. This is possible because, thanks to the propelled arc, the spacecraft move to
a more energetic orbit and therefore to a slower orbit. This allow the Sun to reach the
wanted position. Obviously the length of the mission influence not only the angle, and
thus the perturbation of the Sun, but also the c3 known as the hyperbolic excess energy
or characteristic energy. The characteristic energy is defined as c3 “ v28 “ 2Ef “ ´

1
a .

As it is possible to see from Table 6.4 the values of the hyperbolic excess energy at final
time are quite low, the magnitude in fact is in the order of 10´1, this means that the
trajectory for the escape maneuver is almost a parabola. The value in Table 6.4 are in
the dimensional form, the dimensionless terms, in fact, are multiplied by the square of the
first cosmic velocity.

Duration Departure Date
(Days) 176 176,1 176,2 176,3 176,4 176,5

100 0,1578 0,1654 0,1801 0,1804 0,1609 0,1426
95 0,1712 0,1618 0,1647 0,1697 0,1703 0,1561
90 0,1834 0,1726 0,1589 0,1547 0,1624 0,1676
85 0,1788 0,1861 0,1677 0,1482 0,1480 0,1624
80 0,1649 0,1837 0,1831 0,1563 0,1410 0,1482
75 0,1554 0,1711 0,1850 0,1747 0,1487 0,1410
70 0,1604 0,1616 0,1751 0,1829 0,1701 0,1487
65 0,1845 0,1669 0,1677 0,1791 0,1862 0,1734
60 0,2109 0,1948 0,1754 0,1772 0,1911 0,1997
55 0,2314 0,2346 0,2095 0,1925 0,2001 0,2193
50 0,2653 0,2807 0,2683 0,2424 0,2351 0,2535
45 0,3699 0,3848 0,3638 0,3494 0,3396 0,3602

Table 6.4: Hyperbolic excess energy at final time in rkm
2

s2
s
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There is no periodicity in the results and also the oscillation that was identified into
Table 6.2 and Table 6.3 varying only the duration of the mission and fixing t0 is not
present. This is linked to the relative position between the spacecraft and the Moon but
also, and in a greater way, to the position and the influence of the Sun.

6.2 Evasion maneuvre from L2 Sun-Earth system, C3 fixed

In order to see how quantities vary for a fixed value of final energy, it has been decided
to fix c3 and varying the time of the mission and the departure date. Fixing the final
value of c3 is important because, if the final goal is to reach, an outer or inner, planet
is necessary to escape from the Earth’s sphere of influence with a well defined value of
hyperbolic excess energy and not with a random one. As starting point is decided to use
c3 “ 0.16

“

m2

s2

‰

and proceed as done before. As first iteration is chosen to analyse the
solution with departure at t0 “ 176 modifying the duration of the mission from 100 days
to the lowest possible, always with 5 days step from one length to the next one.
Also in this case the results obtained follow, for almost the cases, the trend previously
found. Is expected that the final mass has to be lower than in the case analysed before,
and this is visible from Table 6.5. In this case, in fact, the energy at final time has to
be fixed to a certain value, thus is necessary to increase the time of the propelled arc in
order to allow the achievement of the chosen c3. The values of the final mass are not
so far from the first case values for long mission but, when mission become shorter, the
differences between the two cases begin to increase. Due to the length of the mission and
to the fact that the spacecraft has to reach a fixed hyperbolic excess velocity, the shorter
is the mission the higher will be the duration of the propelled arc. Thus, in some cases is
proved impossible to reach the expected results with mission shorter than 50 days long,
in other mission is only possible to reach the limit of 55 days, thus because the duration
of the propelled arc will last more than the duration of the evasion maneuver itself and so
the results are not taken into account.
Before entering in the analysis of the results of the cases is important to underline that
in the case of 95 days long mission two results are found as possible trajectories, as is
possible to see in Table 6.6.

Plotting the evolution of the semi-major axis a in function of time is possible to notice
that in case (b), during the propelled arc there is a first phase where the semi-major axis
decreases, followed by a phase where a increase. The combination of these two phases
lead to an increase of the length of the propelled arc with a decrease of the final mass.
Since the goal of the mission is to perform an evasion maneuver maximizing the payload,

Duration (Days) Duration Propelled Arc (Days) Final mass (Kg)

100 2,80 848,79
95 3,36 848,55
90 4,53 848,04
85 5,05 847,81
80 5,17 847,76
75 6,23 847,30
70 7,28 846,85
65 14,54 843,70
60 18,19 842,12
55 22,53 840,24

Table 6.5: Escape maneuver result, mission length lower than 100 days, c3 fixed, Departure
day 05/01/2028.
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Case Duration End time Final mass
(Days) Propelled Arc (Kg)

(a) 95 359,40 848,54
(b) 95 3570,92 835,55

Table 6.6: Case (a) and case (b) results for a 95 days long escape maneuver

this solution will be discarded at the expense of case (a) where only the acceleration phase
is present with a reduction of the length of the propelled arc of almost the 90% of time
and an increase in terms of final mass of almost 7 Kg. The main difference between these
two solutions is the different strategy adopted in the propelled arc. From Fig 6.18 can be
easily seen also the discontinuity caused by the end of the propelled arc, this lead to have
values of the semi-major axis that does not change a lot but fluctuate. The fluctuation is
caused by the interaction of the spacecraft with the Moon while the trend that led to the
progressive growing of a is due to the increasing influence of Sun on the spacecraft. The
evolution of the trajectory from being elliptical to parabolic, initially, and then hyperbolic
can be seen from the evolution of the semi-major axis shown in Figure 6.19. In the last
part of Figure 6.19 is also possible to notice the discontinuity in a due to the transition
from a parabolic trajectory to a hyperbolic one.
Comparing the results obtained fixing c3 with the ones where it is free, is possible to
notice that; while in the second case with the decrease of the length of the mission an
exponential trend is visible in the duration of the propelled arc, in the first case this trend
is not visible. Is necessary to underline that the free case is the optimal case, in fact the
results take into account the trajectory that maximise the favourable accelerating effect
of the presence of the Moon and the Sun, as a consequence the final mass of all the cases
with c3 “ 0.16 will be lower or at most the same of the free solution.

Figure 6.18: Focus on the first part of the evolution of the semi-major axis in function of
time for the mission with duration of 95 days, case (a) in blue, case (b) in orange.
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Figure 6.19: Evolution of the semi-major axis in function of time for the mission with
duration of 95 days, case (a) in blue, case (b) in orange.

In order to respect the constraint, put over the c3, the spacecraft has to reduce, or
increase, its velocity depending on the value of c3 reached in the free, and so optimal, case;
this lead to a variation of the final mass that is strictly linked to the differences between
the two values of c3. In fact, plotting the final mass of the spacecraft in the free case and
in the fixed case (Fig 6.20) in function of the length of the mission, and comparing it with
Table 6.7, is visible that the further is the value of c3 from the free case, the higher will
be the loss in terms of final mass.

Figure 6.20: Evolution of the final mass in the case of c3 free and c3 “ 0.16, t0 “ 176
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Duration Escape Final Mass Final Mass Delta Mass c3 free Delta c3
Maneuver (days) c3 “ 0.16 c3 free

100 848,79 848,792 0,003 0,1578 0,0022
95 848,55 848,623 0,076 0,1712 0,0112
90 848,04 848,409 0,372 0,1834 0,0234
85 847,81 848,138 0,325 0,1788 0,0188
80 847,76 847,800 0,037 0,1649 0,0049
75 847,30 847,380 0,076 0,1554 0,0046
70 846,85 846,851 0,003 0,1604 0,0004
65 843,70 846,165 2,461 0,1845 0,0245
60 842,12 845,235 3,112 0,2109 0,0509
55 840,24 843,935 3,694 0,2314 0,0714

Table 6.7: Comparison between final masses of c3 free case and c3 “ 0.16 case , t0 “ 176

As is possible to see from Figure 6.20, the reduction of the length of the mission from
70 days to 65 days brings to an increase of the duration of the propelled arc, which almost
doubled with respect of the 70 days case as is visible in Table 6.5. The increased length
of the propelled arc is a consequence of the c3 value in the free case. The c3’s value in
this case is quite far from the imposed value of 0.16 Km2

s2
thus lead to an increase of the

thrust effort in order to satisfy the constraint with consequent reduction of the final mass
of almost 3 Kg. Is possible to extend this reasoning to all the cases.
The value of c3 utilized in Table 6.7 is in the dimensional form, it is obtained by multiplying
the dimensionless form of the characteristic energy with the first cosmic velocity squared.
In order to understand how the departure date influence the results, different t0 has been
used as initial date for the mission. In the following figures and tables will be shown the
results obtained for t0 “ 176.1, 176.2, 176.3, 176.4. Also in these cases the initial value
for the length of the mission is 100 days. The length will decrease of 5 days’ step each
time until the propelled arc will last less than the mission itself, when this condition is
not true anymore the solution will be discarded.

Figure 6.21: Evolution of the final mass in the case of c3 free and c3 “ 0.16, t0 “ 176.1
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Duration Escape Final Mass Final Mass Delta Mass c3 free Delta c3
Maneuver (days) c3 “ 0.16 c3 free

100 848,74 848,762 0,022 0,1654 0,0054
95 848,59 848,590 0,002 0,1618 0,0018
90 848,27 848,378 0,112 0,1726 0,0126
85 847,53 848,111 0,581 0,1861 0,0261
80 847,05 847,770 0,723 0,1837 0,0237
75 847,02 847,341 0,324 0,1711 0,0111
70 845,24 846,803 1,567 0,1616 0,0016
65 845,24 846,118 0,877 0,1669 0,0069
60 843,24 845,209 1,973 0,1948 0,0348
55 840,48 843,932 3,452 0,2346 0,0746

Table 6.8: Comparison between final masses of c3 free case and c3 “ 0.16 case, t0 “ 176.1

Figure 6.22: Evolution of the final mass in the case of c3 free and c3 “ 0.16, t0 “ 176.2

Duration Escape Final Mass Final Mass Delta Mass c3 free Delta c3
Maneuver (days) c3 “ 0.16 c3 free

100 848,933 849,237 0,305 0,1801 0,0201
95 849,049 849,069 0,020 0,1647 0,0047
90 848,863 848,864 0,002 0,1589 0,0011
85 848,541 848,612 0,071 0,1677 0,0077
80 847,524 848,293 0,769 0,1831 0,0231
75 846,465 847,884 1,419 0,1850 0,0250
70 846,265 847,363 1,098 0,1751 0,0151
65 845,577 846,701 1,124 0,1677 0,0077
60 844,909 845,842 0,933 0,1754 0,0154
55 842,454 844,674 2,220 0,2095 0,0495

Table 6.9: Comparison between final masses of c3 free case and c3 “ 0.16 case, t0 “ 176.2
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Duration Escape Final Mass Final Mass Delta Mass c3 free Delta c3
Maneuver (days) c3 “ 0.16 c3 free

100 849,057 849,437 0,380 0,1804 0,0204
95 849,166 849,271 0,105 0,1697 0,0097
90 849,027 849,067 0,040 0,1547 0,0053
85 848,602 848,819 0,217 0,1482 0,0118
80 848,478 848,510 0,032 0,1563 0,0037
75 847,546 848,118 0,572 0,1747 0,0147
70 845,406 847,609 2,204 0,1829 0,0229
65 844,523 846,950 2,427 0,1791 0,0191
60 844,773 846,094 1,321 0,1772 0,0172
55 843,339 844,947 1,608 0,1925 0,0325
50 839,476 843,303 3,827 0,2424 0,0824

Table 6.10: Comparison between final masses of c3 free case and c3 “ 0.16 case, t0 “ 176.3

Figure 6.23: Evolution of the final mass in the case of c3 free and c3 “ 0.16, t0 “ 176.3

Duration Escape Final Mass Final Mass Delta Mass c3 free Delta c3
Maneuver (days) c3 “ 0.16 c3 free

100 849,179 849,180 0,001 0,1609 0,0009
95 848,922 849,013 0,091 0,1703 0,0103
90 848,797 848,803 0,006 0,1624 0,0024
85 848,342 848,544 0,202 0,1480 0,0120
80 847,430 848,225 0,796 0,1410 0,0190
75 847,256 847,828 0,572 0,1487 0,0113
70 844,347 847,319 2,972 0,1701 0,0101
65 843,760 846,646 2,886 0,1862 0,0262
60 843,434 845,751 2,317 0,1911 0,0311
55 842,351 844,539 2,188 0,2001 0,0401
50 838,460 842,803 4,343 0,2351 0,0751

Table 6.11: Comparison between final masses of c3 free case and c3 “ 0.16 case, t0 “ 176.4
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Figure 6.24: Evolution of the final mass in the case of c3 free and c3 “ 0.16, t0 “ 176.4

Figure 6.25: Comparison of the final mass in the case of c3 “ 0.16, t0 “ 176, t0 “ 176.1,
t0 “ 176.2, t0 “ 176.3, t0 “ 176.4
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Comparing the results obtained varying both t0 and the duration of the mission is
visible that for shorter mission the influence of the position of the Moon is higher while
for longer mission this have not a great influence on the results. On the other hand,
the influence of the Sun is always present and has a great influence in all the cases, it is
necessary in fact that the spacecraft take advantage of the presence of the Sun in order
to increase its velocity without spending propellant. Also in this case, where c3 is fixed,
22/01/2028 seems to be the best departure date for almost all the length of the mission,
as already found in the free case. Even if the ∆c3 to overcome in the 176.3 case is higher
compared to the variation of c3 observed for different t0, the value of final mass is still the
highest in most of the considered length of mission, as visible in Fig 6.25. From the results
obtained is expected to find some correlations between the evolution of the value of the
characteristic energy, the angle between the Sun and the spacecraft, and the trajectory
followed by the spacecraft. It is important to remember that the goal is to understand how
the trajectories change for a given value of c3. In general, the velocity of the spacecraft is
composed of both tangential and radial velocity components.
The maximum accelerating effect, that the Sun has on the spacecraft, is present when the
angle ϑ, defined as ϑ “ ϑ@ ´ ϑsc is:

• If the tangential component of the velocity is considered ϑ = -135 deg, 45 deg.

• If the radial component of the velocity is considered ϑ = -180 deg, +180 deg, 0 deg.

Considering the departure day most interesting since now, and so the 22/01/2028, is
possible to acquire the following figures. In these four figures, three differents behavior can
be identified. Fig 6.26 and Fig 6.27 consider short missions, in these cases, the velocity is
almost radial for all the maneuver. As a consequence, to maximize the favorable effect of
the Sun, the angle between the spacecraft and the Sun, has to be close to -180 deg and this
is visible in the free, and so optimal, case. From Table 6.12 is visible how the final value
of the characteristic energy in the optimal case is higher than the fixed case, it is therefore
necessary that in the fixed case, the angle ϑ, is such to have a slightly unfavorable effect.
In Fig 6.26 the differences between the two trends are higher due to the higher difference
between the final value of c3, in fact, the angle ϑ tends to be further from the optimal
value, in Fig 6.27 the differences are lower due to the lower differences between the final
value of the hyperbolic excess energy in the free and fixed cases and so the values of the
angle between the spacecraft and the Sun are closer to the optimal ones.
On the other hand, considering longer missions, the velocity is almost tangential during
all the trajectory and so the optimal value, to maximize the favorable effect of the Sun,
of ϑ is close to -135 deg.

In Fig 6.28 and Fig 6.29 two long missions, with two different behavior, are shown. In
the first figure, the final value of c3 in the optimal case is lower than the fixed value, as
a consequence, the tendency of the spacecraft in the fixed case is to increase the positive
accelerating effect that the Sun has on the spacecraft moving closer to the optimal value
of ϑ “ ´135deg for increasing the hyperbolic excess energy. The opposite behavior is
present in Fig 6.28 where the spacecraft tends to increase the angle Theta in order to place
itself in a more unfavorable position and so reduce the characteristic energy.

Maneuver Length [Days] 100 85 55 50

c3 free case 0,1804 0,1482 0,1925 0,2424
Delta c3 0,0204 -0,0118 0,0325 0,0824

Table 6.12: Data from Table 6.10 for mission with length 100 days, 85 days, 55 days, 50
days.
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Figure 6.26: Evolution of ϑ during the evasion maneuver in the free and the fixed case;
length of the mission 50 days

Figure 6.27: Evolution of ϑ during the evasion maneuver in the free and the fixed case;
length of the mission 55 days
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Figure 6.28: Evolution of ϑ during the evasion maneuver in the free and the fixed case;
length of the mission 85 days

Figure 6.29: Evolution of ϑ during the evasion maneuver in the free and the fixed case;
length of the mission 100 days
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Figure 6.30: Evolution of ϑ during the evasion maneuver, departure day 22/01/2028,
length from 100 days to 45 days, optimal case

Obviously, no trajectory has only a component of the velocity, they are a combination
of both tangential and radial speed, as a consequence, the maximum favorable accelerating
effect of the Sun will not be at -180 deg or -135 deg but it will be between this two values,
in case of shorter mission the optimal value will be closer to -180 deg while for longer
mission will be closer to -135 deg.
If the trend of ϑ in function of time is plotted, considering the free case and the 22/01/2028
as departure day is possible to obtain Fig 6.30. Considering the mean angle that is present
between the Sun and the spacecraft is possible to see what previously anticipated. If 45
days long mission is examined, is possible to see that the mean value of ϑ is close to
-180 and is coherent with the fact that the main component of the velocity present is
the radial one. With the increase of the length of the mission, the radial component of
the velocity decrease while the tangential component increase and consequently the mean
value of Theta shifts towards higher values. Comparing the trends obtained from the free
case with the ones obtained from the final value of c3 fixed to 0.16 is possible to notice
how the evolution of ϑ does not follow the same sequential scheme. In Fig 6.31 is visible
how fixing the final value of the characteristic energy change the strategy adopted. The
hyperbolic excess velocity of the missions from 50 days to 65 days have a value that is
quite above the one desired. As a consequence, the tendency is to go away from the values
where the spacecraft is accelerated more efficiently from the Sun to where the Sun is in
a less favorable position. Thus the spacecraft is moved in a slower orbit. Also missions
with length 70 days and 75 days have a greater value of c3 in the final point of the free
case but, in contrast with the result obtained for shorter mission, the tendency is to move
the spacecraft into faster orbit in order to increase ϑ and so to have a minor accelerating
effect on the tangential component of the velocity that is the main component according
to the result obtained in the free case.

Looking at Fig 6.36 where the evolution of c3 is plotted during all the maneuver, is
possible to identify the two strategies. The family A’s one is characterized by an initial
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Figure 6.31: Evolution of ϑ during the evasion maneuver, departure day 22/01/2028,
length from 100 days to 45 days, c3 fixed

Figure 6.32: Zoom on the initial part of the evolution of ϑ during the evasion maneuver,
departure day 22/01/2028, length from 100 days to 45 days, free case
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Figure 6.33: Zoom on the initial part of the evolution of ϑ during the evasion maneuver,
departure day 22/01/2028, length from 100 days to 45 days, fixed case

Figure 6.34: Trajectory of the evasion maneuver in the xy plane for all the length of the
mission, t0 “ 176.3
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trend that is almost flat or slightly decrescent. This underlines a ’waiting’ phase where the
spacecraft accelerated not in a tangential way but mostly radial, causing the slowdown of
the spacecraft, and therefore, the value of the characteristic energy does not increase. On
the contrary, if family B is considered, is visible how the trend is similar to the optimal case
where no constraint over the hyperbolic excess velocity was utilized, the only difference is
that in some cases the propelled arc last more than in the free case and, as a consequence,
the spacecraft tends to be in a faster orbit, with a resultant crush towards Earth. This
behavior can causes also a switch between the trajectory with respect to the free case as
can be seen from Fig 6.34 where 70 days’ trajectory lies closer to Earth than 75’s one.
The trajectory resultant from the 65 days case can be considered as an extreme case of
’A’ Family’s trajectory, in fact, with mission longer than 65 days, the strategy has to be
changed to achieve the goal. The same strategy of family A can not be followed from
family B trajectory’s for a simple reason: considered that Sun almost does 1 deg/day,
after 100 days the Sun would have been in the first quadrant and, as a consequence, ϑ
would be too small and thus the effect of the Sun would be too unfavorable. Considering
the propellant mass utilized is possible to identify how the strategy influences the results,
the results of family A seems to be more expensive in terms of mass but it is necessary to
consider that in these cases the final value of c3 in the free case is higher due to the more
favorable effect of the Sun in the optimal case and thus, the effort in order to decrease the
characteristic energy has to be higher.
From Fig 6.35 can be easily identified the propelled arc, which is, in fact, visible in the
first part of the evolution of c3 until a discontinuity is found. In that point the propelled
arc finish and the coasting arc begin, during this phase, the spacecraft take advantage of
the presence of the Sun to accelerate itself. As is visible from Figure 6.35 the propelled
arc gives only a little amount of the energy needed to perform the escape maneuver (if
mission longer than 50 days are considered), the greatest amount of energy is given from
the Sun and is, therefore, necessary to maximize the positive effect that the influence of
the Sun has on the spacecraft.

Figure 6.35: Complete trend of the c3 during the evasion maneuver for all the length of
the mission, free case, departure date 22/01/2028
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Figure 6.36: Complete trend of the c3 during the evasion maneuver for all the length of
the mission, c3 fixed, departure date 22/01/2028

Figure 6.37: Focus on the c3 trend,
t0 “ 176.3, duration lower than 80 days

Figure 6.38: Focus on the c3 trend,
t0 “ 176.3, duration higher than 80 days
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Figure 6.39: Trajectory of the evasion maneuver in the xy plane for all the length of the
mission, t0 “ 176

In the following pages, and in the figure above, the results obtained for different de-
parture days from 22/01/2028 will be shown. In particular, the dates chosen are:

• t0= 176,0 ñ 05/01/2028

• t0= 176,1 ñ 11/01/2028

• t0= 176,2 ñ 16/01/2028

• t0= 176,4 ñ 28/01/2028

• t0= 176,5 ñ 03/02/2028

For the sake of simplicity each case will be shown in 4 different figures, the first represents
the trajectory followed by the spacecraft in order to accomplish the maneuver, the second
is the evolution of c3 varying the length of the mission and, last but not least, two figures
will show two focus on the first phase of the maneuver, where the propelled arc is visible,
one for missions longer than 80 days the other one for missions shorter than 75 days.
All the considerations done for the mission with the departure on 22/01/2028 can be
extended to the following cases. Obviously, since the behavior of the spacecraft is strictly
linked to the final value of c3 in the free case; the trajectories followed, the strategies
adopted and the trend of ϑ will be different from one case to the other.
As can be visible from Fig 6.43 and Fig 6.52 the trajectory of the mission 70 days long,
that in Fig 6.34 belong to Family B, in these two cases belong to Family A.
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Figure 6.40: Complete trend of the c3 during the evasion maneuver for all the length of
the mission, t0 “ 176

Figure 6.41: Focus on the c3 trend,
t0 “ 176, duration lower than 80 days

Figure 6.42: Focus on the c3 trend,
t0 “ 176, duration higher than 80 days
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Figure 6.43: Trajectory of the evasion maneuver in the xy plane for all the length of the
mission, t0 “ 176.1

Figure 6.44: Complete trend of the c3 during the evasion maneuver for all the length of
the mission, t0 “ 176.1
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Figure 6.45: Focus on the c3 trend,
t0 “ 176.1, duration lower than 80 days

Figure 6.46: Focus on the c3 trend,
t0 “ 176.1, duration higher than 80 days

Figure 6.47: Trajectory of the evasion maneuver in the xy plane for all the length of the
mission, t0 “ 176.2
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Figure 6.48: Complete trend of c3 during the evasion maneuver for all the length of the
mission, t0 “ 176.2

Figure 6.49: Focus on the c3 trend,
t0 “ 176.2, duration lower than 80 days

Figure 6.50: Focus on the c3 trend,
t0 “ 176.2, duration higher than 80 days
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Figure 6.51: Trajectory of the evasion maneuver in the xy plane for all the length of the
mission, t0 “ 176.4

Figure 6.52: Complete trend of c3 during the evasion maneuver for all the length of the
mission, t0 “ 176.4
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Figure 6.53: Focus on c3 trend,
t0 “ 176.4, duration lower than 80 days

Figure 6.54: Focus on the c3 trend,
t0 “ 176.4, duration higher than 80 days





Chapter 7

Conclusion

The results obtained by the utilization of an indirect method of optimization for escape
maneuver from the Sun-Earth L2 Lagrangian point have been presented and discussed in
the previous chapters. In this chapter, a summary of the fundamental concepts, which are
previously analyzed will be given, with a final focus on future developments of the present
work.
The mission refers to a satellite left in the L2 Lagrangian point as a piggyback of a primary
larger spacecraft, as Comet Interceptor’s mission. Even if this point is not characterized by
a stable equilibrium, only a little amount of propellant is needed to perform the station-
keeping maneuver that allows the spacecraft to maintain the orbit around this point,
waiting for the most favorable target and departure time. Evasion maneuver from this
point became more and more important with the increasing value that is being given to L2,
this point can be used as a starting point for an interplanetary mission, mission towards
interstellar objects, or comets. The maneuver studied in here, is always divided into two
different arcs, the first one is always a propelled arc and it aims to position correctly
the spacecraft for the second phase. The second arc is always a coasting arc where the
spacecraft takes advantage of the influence of the Sun to accelerate itself until the end
Earth’s sphere of influence.
The solutions obtained, using an indirect method based on the Optimal Control Theory,
are precise and reliable but are very sensitive to the precision of the first guess solution,
the solution, in fact, has to be varied by very little from one case to the other one to allow
the convergence of the system.
The results obtained underlined how both Moon and Sun influence the evasion maneuver.
Moon has a bigger effort in the first phase of the trajectory while Sun increases its influence
with the decrease of the distance between the spacecraft and itself. The influence of the
position of the Moon is mostly visible in missions with a duration lower than 55 days
while for a longer mission the effect tends to vanish in a sinusoidal oscillation of the
energy during the maneuver. A favorable position of the Moon can allow a reduction of
the propellant needed, considering the same length of the mission but different departure
dates. Sun’s influence on the other hand has the task of speeding up the spacecraft and
the maximization of this effect is visible in the results obtained for the free case.
In the second part of this thesis, the final value of c3 has been fixed to 0.16 in order
to understand how the trajectories and the strategies change with a constraint over the
characteristic energy.
Obviously, the best solution for an escape maneuver is the one found in the free case, as
a consequence if the escape velocity needed for a given mission is closer to the 80 days
escape maneuver this will be chosen as the one to follow. For both the free case and the
fixed case, the 22/01/2028 departure date seems to be the best considering the propellant
mass utilized and the excess hyperbolic velocity reached at the edge of the Earth sphere
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of influence even if in some cases of the c3 fixed case the 16/01/2028 departure date seems
better.
The results show the feasibility of the evasion maneuver from the second Lagrangian point
of the Sun-Earth system, possible future developments and refinements of the work here
discussed may include:

• Analyze deeply how the Moon influences the first phase of the evasion maneuver by
considering a denser range of dates during the same month. This would be necessary
to minimize the loss due to the unfavorable position of the Moon in missions shorter
than 55 days,

• Analyze how the trajectory and the propellant consumption change, modifying the
hyperbolic excess energy to a value closer to the one characteristic for interplanetary
missions or a mission towards NEA.

• Investigate how future technologies could help to achieve the escape maneuver in
lower time than the solutions found.

• Set the direction that the spacecraft need to have once it has reached the Earth’s
sphere of influence. The value of the hyperbolic excess velocity, in fact, is not the
only important parameters to satisfy in order to perform an interplanetary mission,
the direction is foundamental for the correct execution of the heliocentric phase and
the capture from the target planet.
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