
POLITECNICO DI TORINO
Department of Mechanical and Aerospace Engineering (DIMEAS)

Master of Science in Aerospace Engineering
LM-20 (DM270)

Master Thesis

Study of SLAM State of the Art
Techniques for UAVs Navigation in

Critical Environments

Supervisors

Giorgio Guglieri

Simone Godio

Candidate

Francesca Suriano

April 2021

Abstract

In recent years, Autonomous Navigation for flying robots has become a global
challenge. Unmanned Aerial Vehicles (UAVs) have a high potential in both military
and civil applications such as aerial reconnaissance, surveillance, search and rescue,
product deliveries, agriculture, or infrastructure inspections. Autonomous Naviga-
tion of UAVs exploits an onboard Inertial Measurement Unit (IMU) which consists
of three-axis accelerometer and gyroscope providing the linear acceleration and the
angular velocity of the robot. The problem is that IMU measurements suffer from
noise and bias resulting in a drift on the pose estimation. Even if the drift is irrele-
vant, it will accumulate to a significant value over time. In outdoor navigation, this
issue seems to be solved by fusing IMU measurements with data from an onboard
GNSS/GPS. Unfortunately, in indoor navigation, there’s no possibility to use this
technology for the state estimation of the UAV because of the GNSS/GPS signal
which is usually degraded or totally not available. This means that Autonomous
Navigation of UAVs in GPS-denied environments is still an open challenge. Over
the last few years, the scientific community has focused attention on vision-based
navigation thanks to the latest innovations in embedded hardware solutions, which
allow us to have at the same time a high computational power and low weight to
satisfy the payload constraints of aerial platforms. This Master Thesis fits into
the context of the Leonardo Drone Contest, a three-year competition launched by
Leonardo to motivate young researchers to improve Artificial Intelligence applied to
UAVs, in which six Italian universities compete against each other. The purpose of
this work is to study the SLAM State of the Art Techniques for UAVs Navigation in
Critical environments. Therefore it provides a comparison between different visual-
inertial algorithms to assess which one is the best solution in terms of accuracy for
navigation in GPS-denied environments. The analyzed algorithms are the highly
optimized proprietary VI-SLAM algorithm of the Intel T265 Tracking Camera, a
semi-direct monocular VIO algorithm, SVO, an optimization-based VIO algorithm,
VINS-Fusion, and the VI-SLAM Systems, ORB SLAM 2 and its improvement,
ORB SLAM 3. The above-mentioned algorithms are tested along a path in a small
indoor environment full of features with artificial lighting using an INTEL T265
Tracking Camera. The algorithms’ performance is evaluated by the study of the
localization error with respect to the ground-truth reference path. The results show
that the best choice in terms of accuracy is VINS-Fusion. Nevertheless, its excellent
performance requires a high level of computational resource usage. Consequently,
using this algorithm onboard for state estimation needs a preliminary check on
how many computational resources will remain for navigation, control, and other
essential tasks.

i

Acknowledgements

I wish to express my heartfelt gratitude to all the people whose support was a
milestone in the completion of this project. First of all, I would like to thank my
supervisor, Professor Giorgio Guglieri, for giving me the opportunity to discover the
challenging and inspiring world of Autonomous Navigation. His priceless dedication
and humanity have been a huge inspiration to me. It was a great privilege and
honor to work under his guidance. Secondly, I would like to give a special thanks
to my supervisor, Dr. Simone Godio, for having been the best mentor I could have
wished for. Without his patience and expertise, this project would not have been
possible. Finally, I would like to thank my parents, Anna and Luciano, and my
sister, Valeria, for the unconditional love they gave me through the years. I will
always be grateful to them for their constant care and support during tough times.
I owe my success to them.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms xi

1 Introduction 1
1.1 History of Unmanned Aerial Vehicles 1
1.2 Autonomous Navigation of UAVs 5
1.3 Leonardo Drone Contest . 7

2 Visual-Inertial Odometry 10
2.1 Visual Odometry . 11

2.1.1 History of Visual Odometry 11
2.1.2 Formulation of the Visual Odometry problem 13
2.1.3 Fundamentals of Visual Odometry 15

2.2 Inertial Measurement Unit . 38
2.2.1 MEMS Gyroscopes . 38
2.2.2 MEMS Accelerometers . 41
2.2.3 Strapdown Inertial Navigation 44

2.3 Visual-Inertial Odometry Techniques 49

3 Visual-Inertial Odometry State of the Art Algorithms 51
3.1 SVO . 51

3.1.1 Algorithm architecture . 52
3.1.2 Motion Estimation . 53
3.1.3 Mapping . 57
3.1.4 Experimental results . 58

3.2 VINS-Fusion . 59
3.2.1 Algorithm architecture . 59
3.2.2 Measurement Preprocessing 60

iv

3.2.3 Estimator Initialization . 62
3.2.4 Visual-Inertial Odometry . 65
3.2.5 Relocalization . 67
3.2.6 Global Pose Graph Optimization 70
3.2.7 Experimental results . 73

3.3 ORB-SLAM2 . 73
3.3.1 System Overview . 74
3.3.2 Tracking . 76
3.3.3 Local Mapping . 78
3.3.4 Loop Closing . 80
3.3.5 Experimental results . 83

3.4 ORB-SLAM3 . 83
3.4.1 Algorithm architecture . 83
3.4.2 Visual-Inertial SLAM . 85
3.4.3 Map Merging and Loop Closing 88
3.4.4 Experimental results . 90

4 Intel® RealSense™ T265 Tracking Camera 91
4.1 Camera Modeling and Calibration 93

4.1.1 Pinhole Camera Model . 93
4.1.2 Lens Distortions . 97
4.1.3 Camera calibration . 98

4.2 IMU Allan Variance Analysis . 103
4.2.1 Allan Variance . 103
4.2.2 Representation of Noise Terms 104
4.2.3 Noise Analysis Results . 108

5 Results and Discussion 109
5.1 Data collection and analysis . 109
5.2 Comparison of the algorithms’ performances 110
5.3 The choice of VINS-Fusion . 114
5.4 Results validation on the EuRoC datasets 117

6 Conclusions and Future Developments 120

Bibliography 124

v

List of Tables

1.1 DRAFT PoliTO Drone Hardware Specifications and Components . 9

4.1 Intel® RealSense™ T265 Tracking Camera datasheet 92
4.2 Intel® RealSense™ T265 Tracking Camera calibration results 103
4.3 Intel® RealSense™ T265 Tracking Camera IMU parameters 108

5.1 Error analysis of the state of art VIO algorithms 114
5.2 Error analysis of VINS-Fusion . 115
5.3 Error analysis of VINS-Fusion on the EuRoC dataset 119

vi

List of Figures

1.1 Kettering Bug . 2
1.2 V-1 Flying Bomb . 3
1.3 MQ-9 Reaper . 4
1.4 Autonomous Navigation of drones 5
1.5 Vicon Motion Capture System . 6
1.6 Leonardo Drone Contest . 7
1.7 DRAFT PoliTO drone . 8

2.1 The Visual Odometry problem . 13
2.2 Global camera path . 14
2.3 Harris Corner Detector . 18
2.4 Harris Window . 18
2.5 FAST Corner Detector . 19
2.6 SIFT Feature Detector and Descriptor 21
2.7 SIFT Extracted Features . 22
2.8 SURF Extracted Features . 23
2.9 BRIEF image smoothing process 24
2.10 BRIEF sampling geometries . 25
2.11 Comparison of different feature detectors 26
2.12 Epipolar geometry . 33
2.13 RANSAC for Outlier Removal . 35
2.14 Pose-Graph Optimization . 36
2.15 Windowed Bundle Adjustment . 37
2.16 Vibrating mass gyroscope . 39
2.17 Vibrating mass accelerometer . 42
2.18 Strapdown inertial navigation algorithm 45
2.19 Loosely-coupled and tightly-coupled approaches 50

3.1 SVO system overview . 52
3.2 Sparse model-based image alignment 53
3.3 Feature alignment . 55

vii

3.4 Pose and structure refinement . 56
3.5 Mapping . 57
3.6 SVO experimental results . 58
3.7 VINS-Fusion system overview . 59
3.8 Visual-inertial alignment . 63
3.9 Visual-Inertial Odometry . 65
3.10 Marginalization . 67
3.11 Relocalization . 68
3.12 Global pose graph optimization . 70
3.13 Schematization of a pose graph . 71
3.14 Map merging process . 72
3.15 VINS-Fusion experimental results 73
3.16 ORB-SLAM2 system overview . 74
3.17 Covisibility and Essential Graphs 75
3.18 ORB-SLAM3 system overview . 84
3.19 ORB-SLAM3 experimental results 90

4.1 Intel® RealSense™ T265 Tracking Camera 92
4.2 Pinhole camera model . 93
4.3 Extrinsic and intrinsic parameters 94
4.4 Pinhole projective transformation 96
4.5 Radial and tangential distortion . 97
4.6 Calibration checkerboard . 98
4.7 Samples of pictures used for calibration 99
4.8 Samples of output pictures . 100
4.9 Allan standard deviation plot . 104
4.10 Angle (or velocity) random walk coefficient 105
4.11 Bias instability coefficient . 106
4.12 Rate random walk coefficient . 107
4.13 Noise parameters . 108

5.1 Testing environment . 110
5.2 Comparison of the state of the art VIO algorithms 111
5.3 Position error estimation . 112
5.4 Error analysis of the state of the art VIO algorithms 113
5.5 VINS-Fusion Mono+IMU and Stereo+IMU modes 114
5.6 Error analysis of VINS-Fusion . 115
5.7 The scale ambiguity problem . 116
5.8 EuRoC MAV Machine Hall 01 sequence 117
5.9 Results validation on the EuRoC dataset 118
5.10 Error analysis of VINS-Fusion on the EuRoC dataset 119

viii

6.1 Computational requirements of the algorithms 121
6.2 Computational requirements vs. RMSE 122

ix

Acronyms

AI Artificial Intelligence

BA Bundle Adjustment

BRIEF Binary Robust Independent Elementary Features

DOF Degrees Of Freedom

DoG Difference of Gaussians

DRAFT DRones Autonomous Flight Team

EKF Extended Kalman Filter

EuRoC European Robotics Challenges

FAST Features from Accelerated Segment Test

GNSS Global Navigation Satellite System

GPS Global Positioning System

HALSOL High Altitude Solar

HDR High Dynamic Range

IMU Inertial Measurement Unit

KLT Kanade-Lucas-Tomasi

LIDAR Laser Imaging Detection and Ranging

MAP Maximum A Posteriori

xi

MAV Micro Aerial Vehicle

MEMS Micro Electro-Mechanical Systems

MER Mars Exploration Rover

MSE Mean Square Error

NASA National Aeronautics and Space Administration

NCC Normalized Cross Correlation

ORB Oriented FAST and rotated BRIEF

PnP Perspective-n-Point

RANSAC RANdom SAmple Consensus

RGB-D Red Green Blue-Depth

RMSE Root Mean Square Error

ROS Robot Operating System

RVIZ Ros VIsualiZation

SAD Sum of Absolute Differences

SfM Structure from Motion

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SSD Sum of Squared Differences

SURF Speeded Up Robust Feature

SVD Singular Value Decomposition

SVO Semidirect Visual Odometry

STD STandard Deviation

UAV Unmanned Aerial Vehicle

VIO Visual-Inertial Odometry

VINS Visual-Inertial Navigation System

VO Visual Odometry

xii

Chapter 1

Introduction
This chapter starts providing a brief history of Unmanned Aerial Vehicles (UAVs),
from the first pilotless aircraft to the modern flying robots, to understand the
evolution of their application fields over time. After this historical overview, it
highlights the importance of Autonomous Navigation for the current military and
civil applications. One of the main challenges of this scientific field of research is
that of the Autonomous Navigation of UAVs in GPS-denied environments. For
this reason, after exploring some of the possible solutions in literature, the chapter
presents visual-inertial navigation as the best choice for indoor environments. In
conclusion, the purposes of the Master Thesis are described by placing the research
into the context of the Leonardo Drone Contest.

1.1 History of Unmanned Aerial Vehicles
Unmanned Aerial Vehicles (UAVs) are a class of aircraft that don’t require an
onboard human pilot. They can be fully autonomous or remotely controlled from
the ground. The first concept of UAVs dates back to 1849 when Austria launched
around 200 hot-air balloons equipped with bombs over the city of Venice. Each
balloon, designed by the Austrian artillery lieutenant Franz von Uchatius, contained
about 12 kg of explosives. Fortunately, the bombardment was mostly ineffective
because of the adverse weather conditions [1]. During the First World War military
technology was improved on both sides of the conflict. In 1916 the first pilotless
aircraft, called the Ruston Proctor Aerial Target, was developed. It was based on
the revolutionary radio-controlled techniques of the engineer Archibald Low [2].
In 1917 Charles F. Kettering designed the unmanned Kettering Aerial Torpedo,
commonly known as the Kettering Bug. The Bug, which used a system of pre-set
inertial pneumatics and electrical controls to stabilize itself, was launched from a
four-wheeled dolly. After a period of time, the engine shut off, and the wings were
removed, so that the Bug, which carried about 82 kg of explosives, could fall to the

1

Introduction

ground. Although it was considered a great success in military technology, it never
saw combat because the war ended before it could be involved in a conflict [1].

Figure 1.1: The Kettering Bug, a precursor of modern cruise
missiles, was the first unmanned aerial torpedo equipped with a
system of inertial pneumatics and electrical controls to stabilize
itself

During the interwar period, target practice for training pilots was usually done with
manned aircrafts trailing gliders as targets. Unfortunately, the above-mentioned
practice was ineffective because it couldn’t provide a realistic simulation of a live
battle. For that reason, the military field felt the need to find a successful method
for gunmen in training. It was thought about using unmanned aircrafts as aerial
targets. The first pilotless aircraft meant for target practice was the DH.82B Queen
Bee. The Queen Bee, derived from the De Havilland Tiger Moth biplane trainer,
was conceived as a low-cost radio-controlled target aircraft. It was responsible for
the introduction of the term drone in common usage [1, 3]. At the end of 1930s,
the US Navy designed the Curtiss N2C-2, a revolutionary UAV that was remotely
controlled by a manned aircraft that flew next to it. In the same period, the actor
and aviation enthusiast Reginald Denny developed the first mass-produced drone,
the OQ-2 Radioplane. Indeed, during the Second World War, the Radioplane
Company produced about 15.000 of these target drones for the US Army [2].
However, the most important event of the Second World War in terms of military
technology was the development of the V-1 Flying Bomb by the German Army.
This aircraft, also known as Buzz Bomb or Doodlebug, was the only production
aircraft equipped with a pulsejet engine instead of propellers. It was considered the

2

Introduction

world’s first cruise missile ever. In June 1944, German began the terror bombing
of London with thousands of V-1 Flying Bombs, killing more than 6.000 people in
a few months. After the Second World War, military innovations stalled until the
Vietnam War [1].

Figure 1.2: The V-1 Flying Bomb, used in 1944 by the German
for the terror bombing of London, was the world’s first cruise
missile ever equipped with a pulsejet for power

The Vietnam War, started in the 1950s, was a scenario of countless important
innovations, from the first deployment on a large scale of reconnaissance UAVs to
widespread use of unmanned aerial vehicles by the US Army to reduce pilot deaths
over enemy territory. In this context, drones started to be involved in a lot of
different applications, such as acting as traps in combat, launching missiles against
targets, or dropping flyers for psychological warfare. In these years, the need to
explore unmanned aerial technology began to interest many other countries around
the world [1, 4]. In the 1960s, there was a worldwide spread of RC planes due to the
improvement in the transistor technology that allowed to miniaturize them enough
to be sold on the commercial market at affordable prices. In this way, aviation
enthusiasts could delight themselves in flying RC planes as a hobby in both indoor
and outdoor environments. This event paved the way for the development of the
global consumer drone market [1]. In later years, the military field continued to
focus its attention on unmanned systems technology, but it was often considered
too unreliable and expensive to be used. The turning point of military drone
technology arrived in 1982 when the Israeli Army decided to deploy a great number
of UAVs against the Syrian Forces to triumph with minimal loss of Israeli soldiers.

3

Introduction

In the same period, as stated by the Armed Forces Journal International, the
United States admitted they carried out more than 3.435 UAV missions during the
Vietnam War for decoy and reconnaissance applications [4, 5]. In the 1980s the
United States launched the Pioneer UAV Program with the aim of developing an
affordable and reliable drone for military purposes. For that reason, in 1986, the
United States collaborate with Israel in the design of the AAI RQ-2 Pioneer, a
small size composite aircraft difficult to detect either visually and on the radar. It
could provide real-time reconnaissance and surveillance, target identification, and
combat damage information. In the same period, the military field decided to focus
its researches on renewable energy sources, such as solar power. This resulted in the
development of HALSOL, the first unmanned solar-powered prototype in history
[1]. In the 1990s, the United States developed the MQ-1 Predator, a long-endurance
unmanned aircraft for surveillance and reconnaissance applications. Its first flight
occurred in 1994. Predators, armed with AGM-114 Hellfire missiles, are still in
production for the US Air Force since 1997. The Predator inspired the development
of the MQ-9 Reaper [4].

Figure 1.3: The MQ-9 Reaper, a long-endurance unmanned
aircraft for surveillance and reconnaissance applications, is a
larger and more powerful version of the MQ-1 Predator

In 2006 the Federal Aviation Administration issued the first commercial drone
permit so widespread use of drones for non-military purposes began. Governments
started adopting drones for disaster relief and border surveillance while companies
began using them for commercial applications such as construction inspections or
agriculture. The following years saw an incredible take-off of the commercial drone
industry [1, 4].

4

Introduction

1.2 Autonomous Navigation of UAVs

Figure 1.4: Autonomous Navigation of drones is going to
deeply change the world, for example, increasing human safety
and sustainability

Nowadays, Unmanned Aerial Vehicles (UAVs) are being increasingly used in both
military and civil applications such as intelligence, aerial surveillance and reconnais-
sance, firefighting, search and rescue, emergency medical aid, product deliveries,
agriculture, or infrastructure inspections [6]. It’s important to highlight the need
for Autonomous Navigation to perform all the above-mentioned activities. In fact,
the remote control couldn’t always be possible for several reasons, for example,
because of the unavailability of a suitable data link or because the precision required
for a maneuver is beyond human capabilities [7]. One of the main challenges of
Autonomous Navigation is the localization problem in GPS-denied environments.
In order to autonomously navigate, performing a large number of tasks, such as
motion planning and control, decision making and obstacle sensing and avoidance,
the robot needs to be able to localize itself in its environment. For localization
Autonomous Navigation exploits an onboard IMU which consists of a three-axis
accelerometer and a three-axis gyroscope providing the linear acceleration and
the angular velocity of the robot. The problem is that IMU measurements suffer
from noise and bias resulting in a significant accumulated error over time on the
pose estimation [8]. In outdoor navigation, this issue seems to be solved by fusing
IMU measurements with data from an onboard GPS. Unfortunately, in indoor
navigation, there’s no possibility to use this technology for the state estimation of
the UAV because of the GPS signal which is usually degraded or totally absent [9].
One of the possible solutions for the localization of UAVs in an indoor environment
is represented by Vicon Motion Capture System. This system, which is used

5

Introduction

as an high-performance localization method because of its fast frame rate and
submillimeter accuracy, is composed of multiple low-latency cameras tracking the
UAVs trajectory through the detection of three or more retroreflective markers
that are rigidly attached to the UAVs body. If the drone is simultaneously in the
field of view of multiple cameras, its 6DoF pose estimation can be determined with
the highest order of positional and angular precision. The main drawback of a
Vicon Motion Capture System is that it requires a calibration procedure and the
environment preparation before it can be used [10].

Figure 1.5: A Vicon Motion Capture System, used in mo-
bile robotics as an high-performance localization method, is
able to achieve the state estimation of the robot with sub-
millimeter accuracy and a measurement update frequency
above 100 Hz [10]

The best solution for the UAVs localization problem in an indoor environment is
that of Visual-Inertial Odometry, a sensor fusion technique, based on the fusion
of the measurements from visual and inertial sensors, that improves the accuracy
of the state estimation of an aerial robot in GPS-denied environments because of
the complementarity of its sensors. The main advantages of using this technology
are the lightness, the low-power requirement, and the cheapness of both visual
and inertial sensors with respect to other technologies such as LIDAR (which is
forbidden in the Leonardo Drone Contest competition) [11] and the freedom from
the necessity to structure the environment before the UAVs navigation inside of it,
for example, as required by Vicon Motion Capture Systems [8].

6

Introduction

1.3 Leonardo Drone Contest
The purpose of this Master Thesis is to study the SLAM state of art techniques for
UAVs navigation in GPS-denied environments by providing a comparison between
different visual-inertial odometry algorithms to assess which one is the best solution
in terms of accuracy. The research was conducted in an indoor environment with
artificial lighting such as the competition area of the Leonardo Drone Contest. In
fact, the final goal of this Master Thesis is to put this research at the disposal of
the team representing the Polytechnic University of Turin for the improvement of
its drone in view of the second competition of the Leonardo Drone Contest.

Figure 1.6: Leonardo Drone Contest is a three-year compe-
tition launched by Leonardo in which six Italian universities
are involved in the development of an Autonomous Drone
Navigation System [12]

The Leonardo Drone Contest is a three-year competition launched by Leonardo
to motivate young researchers to improve Artificial Intelligence applied to UAVs,
in which six Italian universities compete against one another. The six Italian
universities involved in the competition are the Polytechnic University of Turin,
the Polytechnic University of Milan, the University of Bologna, Sant’Anna School
of Advanced Studies of Pisa, Tor Vergata University of Rome, and the University
of Naples Federico II. Each university, represented by a team of students, will be
involved for three years in the development and improvement of an Autonomous
Drone Navigation System. The universities will challenge each other in a scientific
symposium and in a competition of their drones, every year with an increasing
level of difficulty. The Leonardo Drone Contest started in 2019 and will end in
2022. The first competition between the university students took place on 17 and

7

Introduction

18 September 2020 at the Leonardo Aircraft Division in Turin. The competition
area was an indoor environment of 10 by 20 meters in which a reconstruction of a
city was done, resulting in a lot of cube-shaped obstacles up to three meters high
and ten different landing areas. The goal was to recognize and land on five QR
codes along the path for five seconds in a pre-defined sequence. The winner of
the first edition of the Leonardo Drone Contest was the Polytechnic University
of Milan. The autonomous system designed by the winning team reconstructed
the 70% of the competition area performing autonomously three landings in a
single flight. Next edition will see an increasing level of difficulty, both scientifically
and technologically. There might be different moving obstacles and targets, and
changing weather and fields visibility conditions.

Figure 1.7: The team representing the Polytechnic Univer-
sity of Turin monitoring the performance of its autonomous
system during the first competition of the Leonardo Drone
Contest

The Polytechnic University of Turin participates in the Leonardo Drone Contest
through the student team, DRAFT PoliTO, a young and dynamic community of
students from different fields and levels of engineering, represented by the Ph.D.
students Simone Godio, Luigi Mascolo, Dario Riccobono and Francesco Marino
and Professor Giorgio Guglieri. The team, made up of four different research
groups working together towards a common goal, developed the only autonomous
system equipped with 8 coaxial engines to maximize power while minimizing the
size. The hardware architecture of the drone consists of the following components:
an Embedded On-Board Computer (OBC) which represents the main processing
system; an Electric Power System, including a battery pack and a power distribu-
tion board, for main power generation, regulation and distribution; a Propulsion

8

Introduction

System, including BLDC motors, ESC and propellers, for flight actuation; a com-
mercial flight controller for Propulsion System control; a sensor suite, including
a rangefinder, ultrasonic sensors, and IMUs, for SLAM and proximity sensing; a
monocular camera, placed below the robot, for target and TOL pad detection, and
finally a stereo camera and a tracking camera, placed on the frontal part of the
drone, for depth mapping and visual SLAM. The hardware specifications of the
drone are presented in Table 1.1.

Leonardo Drone Contest
DRAFT PoliTO Drone Specifications

Dimensions 500 x 500 x 350 mm
Weight (Max Take-off Weight) 3300 g

Flight autonomy 15 min
Architecture OctaQuad X8

Thrust-to-Weight ratio 2.4
Electric Power System Li-Po battery 1200 mAh 14.8 V
Onboard computer NVIDIA® Jetson Xavier NX™
Sensor suite board Raspberry Pi 4 Model B
Flight controller Pixhawk 2.4.8

Navigation cameras Intel® RealSense™ D435 + T265
Precision landing camera Raspberry Pi Camera Module v2

Proximity sensors Ultrasound Adafruit® HC-SR04

Table 1.1: DRAFT PoliTO Drone Hardware Specifications and Components

9

Chapter 2

Visual-Inertial Odometry
Visual-Inertial Odometry (VIO) is a sensor fusion technique that performs the
state estimation of an agent (e.g. an aerial platform) by using the measurements
from one or more onboard cameras and Inertial Measurement Units (IMUs). This
technique requires the fusion of the measurements from inertial and visual sensors
because of the complementarity of their characteristics that compensate for the
errors made by each of them. In fact, as stated in [13], cameras working principle of
accumulating photons during the exposure time to obtain a 2D image means that
they are accurate in scenes characterized by low-speed motion and provide a lot of
information of the environment, which is useful for other fundamental tasks, such
as place recognition. Unfortunately, at the same time, they suffer from different
drawbacks such as a low output rate (up to 100 Hz), a scale ambiguity problem
caused by the absence of depth information in monocular cameras, and failure in
low-texture environments and in presence of motion blur and High Dynamic Range
(HDR). Conversely, Inertial Measurement Units (IMUs), which consist of a three-
axis accelerometer and a three-axis gyroscope providing the linear acceleration and
the angular velocity of the robot, are scene-independent, so they don’t suffer from
the above-mentioned drawbacks of cameras. This means that they are ideal for state
estimation in low-textured, high-speed, and HDR environments. In addition, their
high output rate reaches up to 1000 Hz. The problem is that IMU measurements
suffer from noise and bias resulting in significant accumulated error overtime on
the pose estimation. For these reasons, visual and inertial sensor fusion can provide
accurate localization of aerial robots in different situations. The main advantages
of using Visual-Inertial Odometry are the high accuracy, low-power requirements,
small size, and cheapness of both visual and inertial sensors [14]. This chapter
provides an overview of Visual Odometry and Inertial Measurement Unit, describing
how visual and inertial navigation individually perform the pose estimation of an
agent. In conclusion, the main Visual-Inertial Odometry paradigms are presented
to provide the reader with the basics to understand how the algorithms described

10

Visual-Inertial Odometry

in the next chapter are implemented.

2.1 Visual Odometry

Visual Odometry (VO) is a method for the ego-motion estimation of an agent (e.g.
an aerial robot) based on the examination of a sequence of images acquired from
a single or multiple onboard cameras [15]. This technique is considered a subset
of Simultaneous Localization and Mapping (SLAM), a process in which a robot
simultaneously builds a map of its environment and localizes itself within the map.
The main difference between the two techniques is that, while Visual Odometry
incrementally estimates the pose of the robot focusing on local consistency, the
SLAM purpose is to obtain global consistency of the path through loop closing,
which consists in recognizing previously mapped locations to reduce the accumulated
drift on the pose estimation [16]. There are three main different Visual Odometry
approaches: feature-based methods, based on the extraction and matching (or
tracking) of features over the frames for motion estimation, appearance-based (or
direct) methods, based on the intensity information of all the pixels of the images,
and hybrid methods, a combination of the previous two approaches. Feature-based
methods require the ability of extracting and matching features among the images
but have higher speed and accuracy with respect to appearance-based methods.
For this reason, the largest part of Visual Odometry pipelines is feature-based
[15]. The implementation of Visual Odometry can be done with different types
of sensors, for example, monocular, stereo, omnidirectional or RGB-D cameras
[17]. The assumptions required for optimal performance of Visual Odometry are
the presence of enough lighting and texture in the environment, the dominance of
static scene over dynamic objects, and sufficient scene overlap between adjacent
frames [15].

2.1.1 History of Visual Odometry

In this section, a historical overview of the early years of research in the field of
Visual Odometry is presented, describing some of the most important pioneering
works in this area. The problem of the ego-motion estimation of an agent from
visual input was first addressed in the 1980s by Moravec at Stanford University [16].
Moravec used a planetary rover equipped with a slider stereo, a monocular camera
sliding on a rail, in a stop-and-go system. At each stop, the camera would slide
horizontally on the rail capturing a total of 9 frames at equidistant intervals. Then

11

Visual-Inertial Odometry

the robot would start a process of features extraction and matching between all
the images acquired from the camera. The features matching was done using the
Normalized Cross Correlation (NCC), a similarity measure used to compare the local
appearance of the corresponding features. This process allowed the reconstruction
of the 3D structure of the environment. The motion estimation was obtained by
aligning the reconstructed 3D points observed from consecutive robot positions.
This research was a milestone for the computer vision community not only because
it presented the first Visual Odometry pipeline but also because it described one
of the earliest corner detectors, called the Moravec corner detector, a predecessor
of Harris detector [15]. In later years, Matthies and Shafer in [18] improved the
above-mentioned work using an error model based on 3D Gaussian distributions
instead of the scalar model used in Moravec’s implementation [16]. The term Visual
Odometry was chosen by Nister et al. in [19] for its similarity to wheel odometry.
In fact, as wheel odometry incrementally estimates the robot path through the
integration of the number of turns of its wheels, Visual Odometry incrementally
estimates the pose of the robot through the analysis of the changes that motion
induces in the pictures captured from its onboard cameras [15]. Nister et al.
introduced a lot of innovations in the panorama of Visual Odometry. For example,
they first addressed the problem of motion estimation in presence of outliers,
proposing a RANSAC scheme for outlier removal and introduced a highly accurate
RANSAC-based motion estimation procedure using the 3D to 2D reprojection error
instead of the Euclidean distance error between 3D points for both monocular
and stereo Visual Odometry implementations [16]. Most of the research in Visual
Odometry is well-known for its application in the Mars space mission, started in
2003 and still in progress, in which NASA’s twin Mars Exploration Rovers (MERs),
Spirit and Opportunity, were sent on Mars to explore the planet geology [16, 20].
Another pioneering research was that of Scaramuzza and Siegwart who presented
in [21] a monocular omnidirectional Visual Odometry implementation for outdoor
navigation of ground vehicles proposing a fusion of motion estimation from two
different approaches, a feature-based method and an appearance-based method [16].
Later, Kaess et al. in [22] introduced a novel approach to Visual Odometry based
on sparse flow separation in which the sparse flow was separated into flow of close
features and flow of distant features by disparity based on a threshold depending on
the vehicle speed. The set of distant features was involved in recovering the rotation
component with a two-points algorithm and the set of close features was involved
in recovering the translation component with a one-point algorithm. The reason for
adopting a sparse flow separation was that small changes in the robot translation
have an imperceptible influence on distant features [16]. Finally, Alcantarilla et al.
in [23] introduced the sparse flow separation method in their Extended Kalman
Filter Simultaneous Localization and Mapping (EKF-SLAM) implementation with
the aim of improving the robustness and the accuracy of their model [16].

12

Visual-Inertial Odometry

2.1.2 Formulation of the Visual Odometry problem

In this section, the formulation of the Visual Odometry problem is presented, as
discussed in [15]. Imagine a robot that is capturing pictures with a rigidly-attached
onboard camera at discrete time instants k while moving in the environment. For
a monocular camera, the set of pictures captured at discrete times k is indicated
by the relation:

I0:n = {I0, ..., In} (2.1)

For a stereo camera, the sets of right and left pictures captured at every time
instant are denoted by the relations:

Ir,0:n = {Ir,0, ..., Ir,n}
Il,0:n = {Il,0, ..., Il,n}

(2.2)

In this particular case, the origin is assumed to match the coordinate frame of the
left camera, as showed in Figure 2.1.

Figure 2.1: Illustration of the Visual Odometry problem.
The relative poses Tk,k−1 between consecutive camera frames
are computed performing feature matching. The global poses
Ck with respect to the initial coordinate frame are obtained
by concatenating the relative tranformations.

13

Visual-Inertial Odometry

Two consecutive camera positions at time instants k and k-1 are related by the
following rigid body transformation, Tk,k−1:

Tk,k−1 =
C
Rk,k−1 tk,k−1

0 1

D
(2.3)

where Rk,k−1 is the rotation matrix and tk,k−1 is the translation vector. The set

T1:n = {T1, ..., Tn} (2.4)

contains all the subsequent relative transformations. For the sake of simplicity,
from this point on, Tk will be used instead of Tk,k−1. Finally, the set of camera
poses

C0:n = {C0, ..., Cn} (2.5)

contains all the transformations of the camera with respect to the initial coordinate
frame, positioned on the right in Figure 2.1. In particular, C0 is the initial camera
pose with respect to the reference frame, which can be arbitrarily set by the user.
The final camera pose Cn can be computed by concatenating all the previous
relative transformations T1:n as follows:

Cn = Cn−1Tn (2.6)

The main goal of Visual Odometry is to estimate the global camera path C0:n
through a concatenation of all the relatives transformations T1:n. This means that
Visual Odometry incrementally estimates the camera trajectory.

Figure 2.2: Illustration of the global camera path - The camera
trajectory Cn is estimated incrementally by concatenating all the
relative transformations Tk pose after pose

14

Visual-Inertial Odometry

2.1.3 Fundamentals of Visual Odometry

As mentioned in the introduction, there are three main different Visual Odometry
approaches: the feature-based approach, based on the extraction and matching (or
tracking) of features over the frames for motion estimation, the appearance-based
(or direct) approach, based on the intensity information of all the pixels of the
images and the hybrid approach, a combination of the previous two approaches.
The feature-based approach requires the ability of extracting and matching features
among the images but has higher speed and accuracy with respect to appearance-
based methods. For this reason, in this section, a detailed description of the
feature-based Visual Odometry approach is provided. The feature-based Visual
Odometry pipeline is a block diagram composed of the following four fundamental
steps:

1. Feature detection

2. Feature matching (or tracking)

3. Motion estimation

• 3-D-to-3-D
• 3-D-to-2-D
• 2-D-to-2-D

4. Pose optimization

Feature detection and matching consist in selecting points of interest and finding
image correspondences across all the frames captured from the onboard camera.
Image correspondences are considered the image features of different frames that are
the reprojection of the same 3-D point of the environment. There are two different
approaches to perform the above-mentioned activity: feature matching and feature
tracking. The first one is the process of individually extracting features in all
frames and matching those features according to a similarity metric by exploiting
feature descriptors. This approach is particularly useful when a large motion or
viewpoint change is expected between two consecutive frames. Conversely, the
second one is the process of extracting features in the first frame and tracking those
features in the following frames using local search techniques, such as correlation.
This approach is useful when a small change in motion or viewpoint is expected
between two consecutive frames. In the last decades, the majority of the research
in the field of Visual Odometry preferred the feature matching approach because
the focus has shifted to large-scale environments in which significant changes in the

15

Visual-Inertial Odometry

appearance of features can be noticed because of the observation of those features
over longer sequences. In the following, every step of the feature-based Visual
Odometry pipeline is described in detail.

2.1.3.1 Feature detection

The first step of the Visual Odometry pipeline is that of feature detection. In this
step, the search of the points of interest is performed in the image by a feature
detector. There are three different types of features: corners, edges, and blobs. A
corner is defined as a point at the intersection of two or more edges where image
intensity has a significant variation in all directions. An edge is defined as a segment
through which rapid change in the image intensity can be observed. And finally, a
blob is defined as an image pattern that differs from its neighborhood in terms of
intensity, colors, and texture. A feature detector is an identification algorithm that
includes two different steps. The first one consists in applying a feature-response
function on the image, such as the corner response function in the Harris detector
or the difference-of-Gaussian (DoG) operator in the SIFT detector. The second one
consists in applying non-maxima suppression on the output of the first step in order
to identify all the local maxima of the feature-response function. The output of the
non-maxima suppression represents the extracted features. As discussed in [15],
an ideal feature detector must have the following properties: localization accuracy,
repeatability, computational efficiency, robustness, distinctiveness, and invariance
to both photometric (e.g. illumination) and geometric changes (e.g. rotation,
scale, and distortion). Feature detectors can be divided into corner detectors (such
as Moravec, Harris, and FAST) and blob detectors (such as SIFT and SURF).
Every feature detector has its advantages and disadvantages. For example, corner
detectors are faster to compute but less distinctive compared to blob detectors. For
this reason, the choice of the feature detector must be done according to several
factors such as the computational constraints, the type of the environment, and
the motion baseline depending on the particular situation. After the first step,
feature description can be performed in the image on the extracted features. In this
step, the area around an extracted feature is converted into a feature descriptor,
assigning the feature a distinctive measure that improves the accuracy of the
feature matching. The simplest feature descriptor is the local appearance of the
feature, measured considering the intensity of the pixels around the feature point.
Unfortunately, the local appearance of the feature changes if there is a variation
for example in orientation, scale, and viewpoint. For this reason, most feature
descriptors currently used in literature, such as SIFT and SURF, are invariant to
rotation, scale, illumination, and viewpoint changes. In the following, the most
common detectors and descriptors used in Visual Odometry, that is Harris, FAST,
SIFT, SURF, and BRIEF, are briefly described.

16

Visual-Inertial Odometry

Harris Corner Detector

Harris Corner Detector, based on Moravec Corner Detector, was first introduced
by Harris and Stephens in 1988 in their paper "A Combined Corner and Edge
Detector" [24]. In this case, the evaluation of the distinctiveness is performed by
measuring the amount of change that occurs in the intensity of the pixels when
moving every pixel window by a displacement (u,v) in a given direction [25]. The
aforementioned measurament is done by computing the sum squared difference
(SSD) of the intensity of the pixels before and after the shift using the change
function E(u, v):

E(u, v) =
Ø
x,y

w(x, y)[I(x+ u, y + v) − I(x, y)]2 (2.7)

where w(x, y) is the window function which is a rectangular or Gaussian function
that assigns weights to the pixels of the window. The extracted features of the image
are those pixels whose value of the change function E(u, v) exceeds a determined
threshold in all directions. The feature detection is performed by maximizing the
change function E(u, v). Applying Taylor Expansion to the second term of the
function, after some mathematical steps, we get the final equation:

E(u, v) =
è
u v

é
M

C
u
v

D
(2.8)

where the matrix M is defined as:

M =
Ø
x,y

w(x, y)
C
IxIx IxIy
IxIy IyIy

D
(2.9)

The eigenvectors of the matrix M indicate the directions for both the largest and
smallest increases in SSD. The corresponding eigenvalues indicate the amount of
the above-mentioned increases. For each window it is possible to compute a score,
R:

R = det(M) − k(trace(M))2 (2.10)
where:

• det(M) = λ1λ2

• trace(M) = λ1 + λ2

This means that the magnitude of the eigenvalues of M establishes whether a region
is a corner, edge or flat. In fact:

17

Visual-Inertial Odometry

• When |R| is small, which means that λ1 and λ2 are both small, the region is
flat.

• When R < 0, which means that λ1 >> λ2 or vice versa, the region is an edge.

• When R is large, which means that λ1 and λ2 are both large, the region is a
corner.

Figure 2.3: Harris Corner Detector -
Classification of image points using the
eigenvalues of the matrix M

Figure 2.4: Representation of the Harris window
on different regions

18

Visual-Inertial Odometry

FAST Corner Detector

FAST (Features from Accelerated Segment Test) is a corner detector that was first
introduced by Rosten and Drummond in 2006 in their paper "Machine Learning for
High-Speed Corner Detection" [26]. It is one of the most computationally efficient
feature extraction methods. In fact, it is considered ideal for real-time applications
because of its high-speed performance. This corner detector is based on the SUSAN
method [27] in which a circumference of 16 pixels is placed around the center pixel.
The intensity of each pixel of the circumference is compared to that of the center
pixel. The number of pixels belonging to the circumference that have an intensity
comparable to that of the center pixel decides whether a region is a corner, an edge
or flat [16]. In the following, the FAST Corner Detector algorithm is described in
detail.

Figure 2.5: FAST Corner Detector illustration. In the image
p is the candidate corner, white-highlighted squares are the 16
pixels used in the feature detection, and finally the dashed line is
a line that passes through 12 consecutive pixels that are brighter
than the center pixel

The first step of the algorithm is the selection of a candidate pixel p, whose
intensity is denoted by Ip, in the image above. After the first step, a Bresemham
circumference of radius 3 including 16 pixels of the image is placed around the
central pixel p to classify whether the candidate point is actually a corner. The
pixels of the circumference are denoted by integer numbers from 1 to 16. The
candidate pixel p is classified as a corner if there exists a set of 12 contiguous
pixels in the circumference which are all brighter than Ip + t or all darker than

19

Visual-Inertial Odometry

Ip − t, where t is a settled threshold. A high-speed test could be applied to remove
non-corner points. The high-speed test operates by examining the intensity of four
example pixels (1,5,9 and 13) of the circumference. The candidate point can be a
corner if and only if at least three of the four pixels satisfy the above-mentioned
threshold criterion. The test starts by examining the intensity of pixels 1 and 9.
If the threshold criterion is not satisfied for one or both pixels, it is certain that
the candidate point p is not a corner. Else if the threshold criterion is verified
for both pixels, the intensity of pixels 5 and 13 must be examined to check if
there are at least three of the four pixels that satisfy the criterion. If the previous
condition is verified, the full segment test criterion can then be applied to all the 16
pixels of the circumference to draw the final conclusion. As mentioned before, the
candidate point p is classified as a corner if there are 12 contiguous pixels in the
circumference that fall in the established threshold criterion. The procedure must
be repeated for all the pixels in the image. The main advantage of this method is
a high computational efficiency. At the same time, this algorithm presents a lot of
weaknesses, first of all, a great sensitivity to noise.

SIFT Feature Detector and Descriptor

SIFT (Scale Invariant Feature Transform) is a feature detector and descriptor
which was first introduced by Lowe in 2004 in his paper "Distinctive Image Features
from Scale-Invariant Keypoints" [28]. This algorithm is considered one of the
most robust feature extraction techniques available in literature mainly because
of its invariance to rotation, scale, illumination, and viewpoint changes. The
SIFT algorithm is articulated in four fundamental steps. The first step consists
in estimating scale-space extrema using a Difference of Gaussian (DoG) function
that searches over all scales and image locations for potential scale and orientation
invariant interest points. The second step consists in keypoint localization in which
a detailed model is applied to the keypoint candidates in order to determine their
location and scale. After this process, a keypoint refinement is performed to remove
low contrast points. The third step consists in a keypoint orientation assignment
based on local image gradient. In conclusion, the final step consists in feature
description, based on image gradient magnitude and orientation, that is robust
to significant levels of local shape distortion and change in illumination [29]. The
main drawback of this algorithm is that it is computationally expensive. In the
following, a qualitative description of the feature detection and description steps
is provided. Considering the illustration of Figure 2.6, the original image placed
at the top left of (a) is smoothed four times with a Gaussian filter characterized
by four different standard deviations. This process is repeated several times after
downsampling the image of factor two. At this point, the Difference of Gaussian

20

Visual-Inertial Odometry

(DoG) images are obtained as the difference between successive Gaussian-blurred
images. Finally, feature detection is performed by finding the local minima or
maxima of Difference of Gaussian (DoG) images across scales and space [30].

Figure 2.6: SIFT Feature Detection consists in finding the local minima
or maxima of the output of the convolution of the upper and lower scales
of the image with a Difference of Gaussian (DoG) operator across scales
and space

21

Visual-Inertial Odometry

The feature description step consists in the assignment of a feature descriptor to
all the extracted features. The SIFT descriptor is a histogram of local gradient
orientations. The region around the keypoints is divided into a 4x4 grid. For
each subregion, a histogram of eight gradient orientations is constructed. The
information is stored in a 4 x 4 x 8 = 128 elements description vector. The SIFT
descriptor can be computed either for corners or blobs. However, the performance
is better on blobs than on corners because corners are defined as the points at
the intersection of edges. For this reason, corner descriptors are necessarily less
distinctive compared to blob descriptors, which are placed in highly textured areas
of the picture [30]. In Figure 2.7 an example of the output of this feature extraction
technique is presented, showing the orientation and scale of each extracted feature.

Figure 2.7: An illustration
of the output of the SIFT fea-
ture extraction technique show-
ing the orientation and scale of
each extracted feature

SURF Feature Detector and Descriptor

SURF (Speeded Up Robust Features) is a scale and rotation invariant feature
detector and descriptor which was first presented by Bay et al. in their paper
"SURF: Speeded Up Robust Features" at the European Conference on Computer

22

Visual-Inertial Odometry

Vision in 2006 [31]. This method has a lot of points in common with the SIFT
feature detector and descriptor. At the same time, there are several differences
that let SURF outperform SIFT in terms of speed and computational efficiency.
This is achieved by employing box filters for the approximation of the Gaussian
and image integrals for the computation of the image convolution in order to
approximate the Hessian matrix. The keypoint detection is performed by analyzing
the determinant of the approximated Hessian matrix to find the local minima or
maxima across the scales. The feature description algorithm is largely inspired by
the previously proposed SIFT scheme. The dominant orientation of the points of
interest is estimated by calculating the sum of all Haar wavelet responses in both
x- and y-directions in a circular region around the keypoint. The description of
the region around the point of interest is performed by extracting a square region,
centered on the point and oriented along the previously assigned orientation. This
region is then divided into 4x4 subregions in which the Haar wavelet responses are
computed at 5x5 regularly spaced sample points and weighted with a Gaussian
kernel to obtain a robust performance against, for example, deformation and noise.
This results in a 64 elements description vector against the 128-D vector of the
SIFT descriptor. This is one of the reasons because SURF has a better performance
than SIFT in terms of computational efficiency [16].

Figure 2.8: An illustration of the output of the
SURF feature extraction technique showing the
orientation and scale of the detected features

23

Visual-Inertial Odometry

BRIEF Feature Descriptor

BRIEF (Binary Robust Independent Elementary Features) is the first binary feature
descriptor introduced in 2010 by Calonder et al. in their paper "BRIEF: Binary
Robust Independent Elementary Features" [32]. This descriptor creates a binary
feature vector that describes the patch around a keypoint by using a relatively
small number of pairwise intensity comparisons. For this reason, BRIEF easily
outperforms the previous descriptors in terms of speed and recognition rate in
absence of large in-plane rotation changes. A detailed representation of the feature
description process is provided in [33]. The descriptor, operating on the image at
the pixel level, is highly noise-sensitive. Consequently, the reduction of this noise
sensitivity is performed by smoothing the image with a Gaussian kernel, as shown
in the figure below.

Figure 2.9: Before and after the performance of the image
smoothing with a Gaussian kernel to reduce the noise sentitivity
of BRIEF

This process results in the improvement of the stability and repeatability of the
descriptors. The goal is that of creating a binary feature vector of the binary test
responses, where the binary test is defined as:

τ(p, x, y) =

1 : p(x) < p(y)
0 : p(x) ≥ p(y)

(2.11)

where p(x) and p(y) are respectively the intensity of the patch at the pixels x and y.
Choosing a set of n (x,y)-location pairs, where n is the length of the binary feature
vector, uniquely defines a set of binary tests. The random pairs that need to be
chosen for creating the binary feature vector are selected in the patch by using one

24

Visual-Inertial Odometry

of the five possible sampling geometries, shown in the figure below.

Figure 2.10: An illustration of the five possible sampling geometries for
the selection of the random pairs (x,y) needed to create the binary feature
vector

• G I: the pixels of the random pair are both sampled from a uniform distribution
or spread of S/2 around the keypoint.

• G II: the pixels of the random pair are both sampled from a Gaussian distri-
bution or spread of 0.04 · S2 around the keypoint.

• G III: the first pixel of the random pair (x) is sampled from a Gaussian
distribution centered around the keypoint with a standard deviation or spread
of 0.04 · S2 and the second pixel of the random pair (y) is sampled from a
Gaussian distribution centered around the first pixel with a standard deviation
or spread of 0.01 · S2.

• G IV: the pixels of the random pair are both drawn from discrete locations of
a coarse polar grid introducing a spatial quantization.

• G V: the first pixel of the random pair (x) is at (0, 0) and the second pixel of
the random pair (y) is sampled from discrete locations of a coarse polar grid.

25

Visual-Inertial Odometry

The BRIEF descriptor needs to be used in conjunction with a feature detector
such as Harris, FAST, SIFT, and SURF. In recent years, the ORB (Oriented FAST
and Rotated BRIEF) feature detector and descriptor, based on FAST detector and
BRIEF descriptor, has been introduced by Rublee et al. in their paper "ORB: An
efficient alternative to SIFT or SURF" [34]. In the following, a comparison between
the different feature extraction techniques described in this section is provided.

Figure 2.11: A comparison of the different features extraction techniques
described in this section using an image obtained from the Oxford dataset [35]:
(a) FAST (b) HARRIS, (c) ORB, (d) SIFT (e) SURF [16].

2.1.3.2 Feature matching (or tracking)

The second step of the Visual Odometry pipeline is feature matching (or tracking).
The feature matching approach consists in independently extracting features in all
frames and searching for correspondences across the frames by comparing feature
descriptors on the basis of a similarity metric. This approach is particularly useful
when a large motion or viewpoint change is expected between two consecutive
frames. In the event that the feature descriptor is the local appearance of the
feature then data association is based on visual similarity performed with the Sum
of Squared Differences (SSD) or the Normalized Cross Correlation (NCC), which
are described in detail in [16].

26

Visual-Inertial Odometry

Sum of Square Differences (SSD)

The Sum of Squared Differences (SSD) is a similarity measure computed by using
the squared differences between corresponding pixels in two different frames. This
measure is expressed through the following equation:

SSD =
nØ

i=−n

nØ
j=−n

[I1(u1 + i, v1 + j) − I2(u2 + i, v2 + j)]2 (2.12)

where I1 and I2 are the first and second image patches centered at (u1, v1) and
(u2, v2) respectively. Alternatively to the Sum of Squared Differences (SSD) it
is possible to use the Sum of Absolute Differences (SAD) which differs from the
previous approach in the computation of the absolute differences instead of the
squared differences between corresponding pixels in two different frames. The
Sum of Absolute Differences (SAD) has a greater computational efficiency but less
robustness compared to the Sum of Square Differences (SSD).

Normalized Cross Correlation (NCC)

The Normalized Cross Correlation (NCC) is one of the most common similarity
measures in literature computed by normalizing the sum of the product of the
corresponding pixels intensities by a factor based on the intensity of the above-
mentioned pixels. This measure is expressed through the following equation:

NCC =
qn

i=−n

qn
j=−n I1(u1 + i, v1 + j) · I2(u2 + i, v2 + j)ñ!qn

i=−n

qn
j=−n I1(u1 + i, v1 + j)2

"
·
!qn

i=−n

qn
j=−n I2(u2 + i, v2 + j)2

" (2.13)

The Normalized Cross Correlation (NCC) is an index of similarity, this means that
a high value of this index corresponds to a great similarity between two different
image patches. This method outperforms the previous approaches in presence of
changes in brightness between the compared images but it is slower because it deals
with complex operations such as multiplications and divisions.

27

Visual-Inertial Odometry

Conversely, when the feature descriptor is not based on the local appearance of the
feature, such as SIFT, the most common similarity measure used in literature is
the Euclidean distance. The process of feature matching results in the choice of the
best correspondence of a feature in the second frame as the feature with the closest
descriptor, for example, in terms of similarity. The problem is that the features of
the second frame could match with more than one feature in the first frame. This
problem is solved by performing the mutual consistency check which consists in
mutually matching features of the first frame with features of the second frame
and vice versa in order to choose only pairs of correspondences that mutually have
each other as a preferred match. Unfortunately, this approach is computationally
expensive because its computational cost is quadratic with the number of features.
For this reason, when the number of features is large, it is necessary to consider a
computationally efficient method. The best approach is the constrained matching
which consists in searching for corresponding features in predicted regions of the
second frame. The predicted regions are calculated as an error ellipse from the
uncertainty of the motion model and the 3-D feature position. If the 3-D position
of the features is not available, it is possible to perform the epipolar matching, a
process that consists in searching for a feature correspondence along the epipolar
line of the second frame. The epipolar line is the straight line at the intersection
between the epipolar plane, defined by a feature point and the two camera centers,
and the image plane, as shown in Figure 2.12 in the Motion Estimation section
[30]. The feature tracking approach consists in extracting features in the first
frame and then tracking this set of features across the next frames using a local
search technique such as correlation. This approach is suitable for Visual Odometry
applications in which a small change in motion or viewpoint is expected between
two consecutive frames. In this particular case, a visual similarity measure such
as the Sum of Squared Differences (SSD) or the Normalized Cross Correlation
(NCC) can be used. Otherwise, when the feature tracking is performed over long
image sequences, an affine distortion model, resulting in the Kanade–Lucas–Tomasi
(KLT) feature tracker, is required for each feature.

KLT Feature Tracker

The Kanade-Lucas-Tomasi (KLT) feature tracker is a feature tracking algorithm,
based on the early work of Lucas and Kanade [36], that was first presented by
Kanade and Tomasi in the technical report "Detection and Tracking of Point
Features" [37]. In the following, the problem statement for this feature tracker is
proposed. Let’s assume that I and J are the first and the second grayscaled images
in which feature tracking will be performed. The functions I(x,y) and J(x,y) are
respectively the intensity values of I and J at [x y]T . Defined u = [ux uy]T as the

28

Visual-Inertial Odometry

point of the first image I to be tracked on the second image, the goal is to find v
on the second image J, where I(u) and J(v) are similar. Remember that v = u+d
where d = [dx dy]T is the image velocity (or optical flow) at u. This process is
equivalent to minimize the residual function, ε(d):

ε(d) =
ux+ωxØ

x=ux−ωx

uy+ωyØ
y=uy−ωy

[I(x, y) − J(x+ dx, y + dy)]2 (2.14)

where the integration window size is (2ωx + 1) × (2ωy + 1). The distribution of
the features in the frames influences the accuracy of the motion estimation results.
The main requirements for robust and stable motion estimation are a large number
of features and a uniform distribution of features in the image. These requirements
can be satisfied by applying the feature detector to every cell of the grid in which
the image has been partitioned until a minimum threshold of features is reached in
every subregion of the image [19]. A general rule is to set the minimum threshold
to 1000 features for a 640 × 480 pixel image [30].

2.1.3.3 Motion estimation

The most important step of the Visual Odometry pipeline is motion estimation.
The motion estimation step consists in computing the relative transformation
Tk between the previous image Ik−1 and the current image Ik from the sets of
corresponding features fk−1 and fk at consecutive time instants. The full trajectory
of the agent is recovered by concatenating all the relative transformations computed
during the motion estimation step. There are three different approaches of motion
estimation depending on the dimensions of the feature correspondences:

• 3-D-to-3-D, in which the sets of corresponding features fk−1 and fk are both
specified in 3-D.

• 3-D-to-2-D, in which the features fk−1 are specified in 3-D and the features fk
are their corresponding 2-D reprojections on the image Ik.

• 2-D-to-2-D, in which the sets of corresponding features fk−1 and fk are both
specified in 2-D image coordinates.

29

Visual-Inertial Odometry

3-D-to-3-D Motion Estimation

The 3-D-to-3-D Motion Estimation is performed from corresponding 3-D-to-3-D
features obtained by triangulating the 3-D points from the 2-D image correspon-
dences at every time instant. The camera motion is computed by determining
the aligning transformation of the two sets of 3-D features. The transformation is
estimated by minimizing the 3-D Euclidean distance between the corresponding
3-D features as shown in the following equation:

Tk = argmin
Tk

Ø
i

ëX̃ i
k − TkX̃

i
k−1ë (2.15)

where X̃k and X̃k−1 are the corresponding 3-D-to-3-D feature points and i is the
minimum number of feature points required to constrain the transformation. The
minimum number of feature pairs is chosen according to the systems degrees of
freedom (DOF) and the model used for motion estimation. In this case, the minimal
solution involves three 3-D-to-3-D corresponding feature points. In the following,
the algorithm for the 3-D-to-3-D motion estimation, presented in [15], is described.

Algorithm 1 3-D-to-3-D Motion Estimation Algorithm
1: Capture two image pairs Il,k−1, Ir,k−1 and Il,k, Ir,k with a stereo camera
2: Extract and match features between the consecutive left frames Il,k−1 and Il,k
3: Triangulate the matched features for each stereo pair
4: Compute the transformation Tk from the 3-D-to-3-D corresponding feature

points Xk−1 and Xk

5: Estimate the current pose by computing Ck = Ck−1Tk
6: Repeat the entire procedure from 1

3-D-to-2-D Motion Estimation

The 3-D-to-2-D Motion Estimation, known as Perspective-n-Point (PnP), is per-
formed from corresponding 3-D-to-2-D features Xk−1 and pk. The 3-D feature
point Xk−1 can be triangulated, in the stereo case, from stereo image pairs and,
in the monocular case, from the sets of features pk−1 and pk−2 thus using image
correspondences across three frames for motion estimation. The transformation
is estimated by minimizing the image reprojection error as shown in the equation
below:

30

Visual-Inertial Odometry

Tk = argmin
Tk

Ø
i

ëpik − p̂ik−1ë2 (2.16)

where pik is the observed feature point in the current frame Ik and p̂ik−1 is the
reprojection of the 3-D point X i

k−1 into the frame Ik after applying the transfor-
mation Tk. The minimal case solution, called Perspective-3-Point (P3P), involves
three 3-D-to-2-D feature correspondences. In the following, the algorithm for the
3-D-to-2-D motion estimation, presented in [15], is described.

Algorithm 2 3-D-to-2-D Motion Estimation Algorithm
1: Do only once:

1.1: Capture two frames Ik−2 and Ik−1
1.2: Extract and match features between the captured frames
1.3: Triangulate the matched features from the captured frames

2: Do at every iteration:
2.1: Capture a new frame Ik
2.2: Extract and match features with the frame Ik−1
2.3: Compute the transformation Tk from the 3-D-to-2-D correspondences
2.4: Triangulate new feature matches between Ik and Ik−1
2.5: Repeat from 2.1

2-D-to-2-D Motion Estimation

The 2-D-to-2-D Motion Estimation is performed from 2-D-to-2-D feature corre-
spondences in those situations in which the triangulation of the 3-D points is not
possible, for instance, in the monocular case for the estimation of the transfor-
mation between the first frames. This approach, which is based on the epipolar
geometry shown in Figure 2.12, uses the epipolar constraint for the computation
of the transformation Tk between two consecutive camera frames. The epipolar
constraint is formulated by the following equation:

p̃ÍTEp̃ = 0 (2.17)

where p̃ and p̃Í are the feature correspondences in two consecutive frames and E is
the essential matrix, expressed by the relationship:

E Ä t̂kRk (2.18)

31

Visual-Inertial Odometry

where Rk is the rotation matrix and t̂k is the skew-symmetric translation matrix,
given by:

t̂k =

 0 −tz ty
tz 0 −tx

−ty tx 0

 (2.19)

The essential matrix can be computed from 2-D-to-2-D feature correspondences
solving the epipolar constraint with the Singular Value Decomposition (SVD). The
minimal solution, presented in [38], involves 5-point correspondences. The second
step is the decomposition of the essential matrix into the rotation and translation
matrices again using the Singular Value Decomposition (SVD). The four different
solutions, which can be disambiguated with the triangulation of a single point, are
the following:

Rk = U(±W T)V T

t̂k = U(±W)SUT
(2.20)

where:

W T =

 0 ±1 0
∓1 0 0
0 0 1

 (2.21)

The final step consists in performing a non-linear optimization of the rotation and
translation parts using the correct solution obtained from the decomposition of the
essential matrix as initial value. The solution is determined by searching for the
transformation that minimizes the reprojection error of the triangulated points in
each image [15]:

Tk =
C
Rk tk
0 1

D
= argmin

Xi,Ck

Ø
i,k

ëpik − g(X i, Ck)ë2 (2.22)

32

Visual-Inertial Odometry

Figure 2.12: Illustration of the epipolar geome-
try - The epipolar constraint determines the line
on which the feature correspondence p’ of p lies
in the second frame

At this point, the relative scales for the subsequent transformations need to be
computed as the absolute scale of the translation cannot be estimated from two
frames. The relative scale, after triangulating a pair of 3-D points from a couple of
consecutive images, is given by the relation:

r = ëXk−1,i −Xk−1,jë
ëXk,i −Xk,jë

(2.23)

A good rule of thumb is that of considering the mean value of the scale ratios
computed for many point pairs. The translation component of the essential matrix
is then multiplied by this scale factor at each iteration. In the following, the
algorithm for the 2-D-to-2-D motion estimation, presented in [15], is described.

Algorithm 3 2-D-to-2-D Motion Estimation Algorithm
1: Capture a new image Ik
2: Extract and match features between the captured frames Ik−1 and Ik
3: Compute the essential matrix from the captured frames Ik−1 and Ik
4: Extract Rk and tk from the essential matrix
5: Compute the relative scale to rescale tk
6: Create Tk
7: Estimate the current pose by computing Ck = Ck−1Tk
8: Repeat the entire procedure from 1

33

Visual-Inertial Odometry

The first approaches of motion estimation presented in this section require the
triangulation of 3-D points. The 3-D points are found at the intersection of the
back-projected rays from the image correspondences of no less than two frames.
In real conditions, the back-projected rays never intersect due to the presence of
image noise, camera model and calibration errors, and feature matching uncertainty,
thus the point at a minimal distance from the intersecting rays is considered. The
triangulated 3-D points show a great uncertainty if the images are captured at
nearby positions compared to the scene distance. For this reason, the 3-D-to-3-D
approach, which minimizes the 3-D position error instead of the image reprojection
error, has the worst accuracy compared to the other approaches. This problem
can be fixed by skipping some of the frames captured from the onboard camera
until the uncertainty of the 3-D points falls below a determined threshold. This
important process, which is called keyframe selection, should be performed at each
iteration before updating the motion.

RANSAC for Outlier Removal

The previous step of feature matching normally results in false matches, called
outliers, for several reasons such as illumination changes, motion blur, and the
presence of dynamic objects in the scene misleading the algorithm. The RANdom
SAmpling Consensus (RANSAC) is the most common technique used for robust
and accurate motion estimation in presence of outliers. The idea of this method
is that of verifying the hypotheses formulated from random samples of points on
the remaining points in order to choose as a solution the hypothesis that exhibits
the highest consensus with the remaining points [30]. The number of iterations
required for a correct solution is given by the following relation:

N = log(1 − p)
log(1 − (1 − ε)s) (2.24)

where s is the minimum number of matched features required for motion estimation,
ε is the percentage of outliers in the data and p is the desired probability of success.
RANSAC is a probabilistic and non-deterministic algorithm which provides a
reliable solution only with some probability that increases as the number of iteration
grows. In the following, the RANSAC algorithm, described in [39], is presented.

34

Visual-Inertial Odometry

Algorithm 4 RANSAC Algorithm
1: Let A be a set of N feature correspondences
2: Repeat until reaching the maximum number of iteration:

2.1: Randomly select a sample of s points from A
2.2: Compute the transformation using the selected points
2.3: Apply the transformation to the remaining points of A
2.4: Compute the distance between the transformed points and their corre-
sponding matches
2.5: Construct the inliers set (i.e. count the number of points whose distance is
below a certain threshold)
2.6: Store the inliers

3: The set with the highest number of inliers is chosen as the solution of the
problem

4: Re-estimate the transformation using the inliers

The influence of outliers on motion estimation, described by Scaramuzza in his
presentation "Tutorial on Visual Odometry" [39], is shown in the figure below.

Figure 2.13: Illustration of the influence of outliers on
motion estimation - The blue and red lines represent respec-
tively the odometry before and after the outlier removal is
performed

35

Visual-Inertial Odometry

2.1.3.4 Pose optimization

The final step of the Visual Odometry pipeline is the local optimization of the
camera pose. The most common approaches of pose optimization are the Pose-
Graph Optimization and the Windowed (or Local) Bundle Adjustment. In the
following, the above-mentioned approaches are described in detail.

Pose-Graph Optimization

Motion estimation is performed by concatenating the transformations obtained
from consecutive frames. The transformations can be computed also between
non-adjacent frames in order to be used as an additional constraint in pose-graph
optimization. The pose-graph optimization is an optimization method used in
Visual Odometry to refine the camera poses using a pose graph model. The pose
graph consists of nodes, representing the camera poses, and edges, representing the
rigid-body transformations between the camera poses, which are considered the
constraints between the nodes.

Figure 2.14: Illustration of Pose-Graph Optimization - Pose-
graph optimization is an optimization method that refines the
camera poses using a pose graph model, which consists of nodes,
representing the camera poses, and edges, representing the rigid-
body transformations between the camera poses [39]

This optimization method considers also the formation of loop constraints between
non-adjacent nodes by reobserving a landmark from a different location after not
seeing it for a long period of time. This kind of constraint can be determined by
finding visual similarity between the current and the past images captured from
the onboard camera with global or local image descriptors. The goal of pose-graph
optimization is that of finding the concatenation of poses that best satisfies the
above-mentioned constraints. This non-linear optimization problem consists in

36

Visual-Inertial Odometry

finding the camera poses that minimize the following cost function:

C∗ = argmin
C

Ø
i,j

ëCi − Ti,jCjë2 (2.25)

where C∗ = [C∗
1 , ..., C

∗
n]T is the vector of the optimized poses and Ti,j is the

transformation between the poses i and j. The outlined problem needs to be
solved using a non-linear optimization algorithm, such as the Levenberg-Marquardt
algorithm [30, 16].

Windowed (or Local) Bundle Adjustment

Figure 2.15: Illustration of Windowed Bundle Adjustment -
Windowed Bundle Adjustment is an optimization method that
jointly optimizes the camera pose and the 3-D point parameters

Windowed bundle adjustment is an optimization method, similar to pose-graph
optimization, that jointly performs the optimization of the camera pose and the
3-D-landmark parameters over a window of the last m keyframes. The goal of
windowed bundle adjustment is that of finding the concatenation of poses that
best satisfies the constraints between the frames incorporated in the window. This
non-linear optimization problem consists in finding the camera pose and the 3-D
structure parameters that minimize the image reprojection error:

C∗ = argmin
Xi,Ck

Ø
i,k

ëpik − g(X i, Ck)ë2 (2.26)

37

Visual-Inertial Odometry

where pik is the X i corresponding image point observed in the kth frame and
g(X i, Ck) is its image reprojection according to the camera pose Ck. This optimiza-
tion problem, as well as the previous one, needs to be solved using a non-linear
optimization algorithm, such as the Levenberg-Marquardt algorithm. The choice of
a window of the last m keyframes is done to make this optimization method suit-
able for real-time applications in which low computational resources are available.
The computational cost of bundle adjustment is O(qN + lm) where N and m are
respectively the number of points and camera poses and q and l are the number of
point and camera pose parameters.

2.2 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is a device that typically consists of a three-
axis gyroscope and a three-axis accelerometer providing the angular velocity and
the linear acceleration of an agent, respectively. These measurements are processed
to perform by dead reckoning the pose estimation of the agent without the need
for external references. The most common inertial system for aerial robots is the
strapdown system. In a strapdown system, gyroscopes and accelerometers are
rigidly mounted on the platform, reducing the mechanical complexity of the system
at the cost of higher computational complexity. In fact, in this configuration, the
sensor measurements are performed in the body frame, thereby requiring the trans-
formation of the measurements into the global frame to perform the pose estimation.
The best sensors used in strapdown systems are Micro Electro-Mechanical Systems
(MEMS) sensors because of their small size, lightness, cheapness, low-power con-
sumption, and short start-up time. In sections 2.2.1 and 2.2.2, MEMS gyroscopes
and accelerometers are described in detail, presenting the error characteristics of
this category of sensors. In section 2.2.3, the strapdown inertial navigation algo-
rithm is presented, describing how the errors that affect the sensor measurements
propagate through the algorithm [40].

2.2.1 MEMS Gyroscopes

A MEMS gyroscope is a sensor, produced using silicon micro-machining techniques,
that is based on the Coriolis effect. The Coriolis effect asserts that a mass m in
motion at velocity v within a frame of reference that rotates at angular velocity ω
experiences a fictitious force:

Fc = −2m(ω × v) (2.27)

38

Visual-Inertial Odometry

The Coriolis effect is measured using vibrating elements of different geometries,
such as vibrating wheel and tuning fork gyroscopes. The simplest geometry is
composed of a mass that is excited into vibration along a drive axis. At the moment
in which the gyroscope is subjected to a rotation, a secondary vibration arises along
the sense axis, perpendicularly to the drive axis, because of the Coriolis effect. The
measurement of this secondary rotation leads to the computation of the angular
velocity. The above-described vibrating mass gyroscope is presented in Figure 2.16.

Figure 2.16: Illustration of a vibrating
mass gyroscope - The secondary vibration
induced along the sense axis because of
the Coriolis effect allows the computation
of the angular velocity

There are different types of errors that arise in MEMS gyroscopes affecting the
measurements of the angular velocity. In the following a brief description of the
main errors is provided [40].

• Constant bias error

The bias of a gyroscope is the measurement of the angular velocity when the
gyroscope is not undergoing a rotation. This constant error, considered the
offset between the gyroscope measurement and the true value, when integrated,
causes an error that grows linearly with time. The compensation for this error
is done by subtracting the bias from the sensor measurement.

39

Visual-Inertial Odometry

• Angle random walk error

The measurements of a MEMS gyroscope are affected by a thermo-mechanical
noise fluctuating at a higher rate than the sampling rate of the gyroscope
that results in a white noise sequence of zero-mean uncorrelated random
variables. The main goal is that of understanding the effects of the noise on
the integration of the measurements. Let’s consider Ni as the i-th random
variable in the white noise sequence which is identically distributed with
zero-mean E(Ni) = E(N) = 0 and finite variance V ar(Ni) = V ar(N) = σ2.
The integration of the white noise signal ε(t) using the rectangular rule results
in the relation:

Ú t

0
ε(τ)dτ = δt

nØ
i=1

Ni (2.28)

where n is the number of samples and δt is the time between samples. The
properties of expectations for mean and variance E(aX+bY) = aE(X)+bE(Y)
and V ar(aX + bY) = a2V ar(X) + b2V ar(Y) + 2abCov(X, Y) led to the
following results:

E

AÚ t

0
ε(τ)dτ

B
= δt · n · E(N) = 0 (2.29)

V ar

AÚ t

0
ε(τ)dτ

B
= δt2 · n · V ar(N) = δt · t · σ2 (2.30)

The obtained results show that gyroscope white noise introduces in orientation
an angle random walk error with a standard deviation that grows with the
square root of time.

σθ(t) =
ñ
V ar(t) = σ ·

√
δt · t (2.31)

The most common measurement used to evaluate the effects of the white noise
on the attitude estimation is the angle random walk (ARW):

ARW [rad/
√
s] = σθ(1) (2.32)

40

Visual-Inertial Odometry

• Bias stability

The bias of a MEMS gyroscope starts fluctuating because of the flicker noise
that arises in electronic components. The effects of the flicker noise are only
appreciable at low frequencies because at high frequencies the white noise is
predominant. Bias fluctuations can be modeled with good approximation as
a bias random walk with a standard deviation that grows with the square
root of time. The effects of the noise on the orientation computed from the
integration of the gyroscope signal is a second-order angle random walk. The
most common measurement for manufacturers to evaluate the effects of the
flicker noise is bias stability. The bias stability measurement, which determines
the change of the bias over a period of time of 100 seconds in fixed conditions,
can sometimes be expressed in terms of a bias random walk measurement:

BRW
è
rad/s

3
2
é

= BS [rad/s]ñ
t [s]

(2.33)

• Temperature effects

Bias fluctuations can also be introduced because of temperature variations
attributed to changes in the environment and sensor overheating. The effect
of these bias fluctuations is an error in orientation that grows linearly with
time.

• Calibration errors

Calibration errors, including errors in scale factors, alignment, and linearities
of the gyroscope, induce a bias in the sensor measurements which is only
observable when the gyroscope is rotating. The effects of this bias on the
orientation is an error of magnitude proportional to the rate and duration of
the motion.

2.2.2 MEMS Accelerometers

A MEMS accelerometer is a sensor that consists of a mass in a spring-like structure
vibrating in a capacitive divider. The displacement of the mass is converted by the
capacitive divider into an electric signal proportional to the acceleration applied to
the mass along the input axis. In this case, damping is performed by the gas sealed
in the device. The above-described vibrating mass accelerometer is presented in
Figure 2.17.

41

Visual-Inertial Odometry

Figure 2.17: Illustration of a vi-
brating mass accelerometer - The
displacement of the mass is con-
verted by the capacitive divider
into an electric signal proportional
to the acceleration applied to the
mass along the input axis

As seen in the previous section, there are different types of errors that arises in
MEMS accelerometers affecting the measurements of linear acceleration. In the
following a brief description of the main errors is provided [40].

• Constant bias error

The bias of an accelerometer is the measurement of the linear acceleration when
the sensor is not undergoing an acceleration. This constant error, considered
the offset between the accelerometer measurement and the true value, when
double integrated, causes an error in position that grows quadratically with
time. The compensation for this error is done by subtracting the bias from
the sensor measurement. Unfortunately, the bias estimation is complicated
because of a component of gravity acting on the accelerometer that appears
as a bias. This problem is solved by performing the bias measurement during
calibration procedures in which the orientation of the device is known a priori.

42

Visual-Inertial Odometry

• Velocity random walk error

The measurements of a MEMS accelerometer are affected by a thermo-
mechanical noise fluctuating at a higher rate than the sampling rate of the
accelerometer that results in a white noise sequence of zero-mean uncorrelated
random variables. The white noise sequence introduces a velocity random
walk error in the sensor measurements. The goal is that of determining the
effects of the white noise on the position calculated by double integrating the
accelerometer measurements. Let’s consider Ni as the i-th random variable
in the white noise sequence which is identically distributed with zero-mean
E(Ni) = E(N) = 0 and finite variance V ar(Ni) = V ar(N) = σ2. The double
integration of the white noise signal ε(t) using the rectangular rule results in
the relation:

Ú t

0

Ú t

0
ε(τ)dτdτ = δt

nØ
i=1

δt
iØ

j=1
Nj = δt2

nØ
i=1

(n− i+ 1)Ni (2.34)

where n is the number of samples and δt is the time between samples. The
properties of expectations for mean and variance E(aX+bY) = aE(X)+bE(Y)
and V ar(aX + bY) = a2V ar(X) + b2V ar(Y) + 2abCov(X, Y) led to the
following results:

E

AÚ t

0

Ú t

0
ε(τ)dτdτ

B
= δt2

nØ
i=1

(n− i+ 1)E(Ni) = 0 (2.35)

V ar

AÚ t

0

Ú t

0
ε(τ)dτdτ

B
= δt4

nØ
i=1

(n− i+ 1)2V ar(Ni) ≈ 1
3 · δt · t3 · σ2 (2.36)

The obtained results show that accelerometer white noise introduces a second-
order random walk error in position with a standard deviation that grows
proportionally to t 3

2 .

σs(t) ≈ σ · t
3
2 ·
ó
δt

3 (2.37)

43

Visual-Inertial Odometry

• Bias stability

The bias of a MEMS accelerometer starts fluctuating because of the flicker
noise that arises in electronic components. The effects of the flicker noise are
only appreciable at low frequencies because at high frequencies the white noise
is predominant. Bias fluctuations can be modeled with good approximation
as a bias random walk with a standard deviation that grows with the square
root of time. The effects of the noise on the integration of the accelerometer
signal is a third-order random walk in position with a standard deviation that
grows proportionally to t 5

2 .

• Temperature effects

For an accelerometer, as well as for a gyroscope, bias fluctuations can be
introduced because of temperature variations attributed to changes in the
environment and sensor overheating. The effect of these bias fluctuations is
an error in position that grows quadratically with time.

• Calibration errors

Calibration errors, including errors in scale factors, alignment, and linearities
of the accelerometer, induce a bias in the sensor measurements which is
observable even when the accelerometer is stationary because of the presence
of gravitational acceleration.

2.2.3 Strapdown Inertial Navigation

The most common inertial system for an aerial robot is the strapdown system. In
a strapdown system, gyroscopes and accelerometers are rigidly mounted on the
platform, reducing the mechanical complexity of the system at the cost of higher
computational complexity. In fact, in this configuration, the sensor measurements
are performed in the body frame, thereby requiring the transformation of the
measurements into the global frame to perform the pose estimation. The strapdown
inertial navigation algorithm is presented in Figure 2.18. The gyroscope and the
accelerometer measure respectively the angular velocity and the linear acceleration
of the platform along the three main axes. The orientation of the system with
respect to the global frame is computed by integrating the angular velocity using
the original orientation as the initial condition. After performing the attitude
estimation, the linear acceleration is projected into the global frame using the
calculated orientation. The position of the system with respect to the global
frame is computed by double integrating the linear acceleration after subtracting

44

Visual-Inertial Odometry

gravity acceleration along the vertical axis. In this section, the strapdown inertial
navigation algorithm is described in detail showing how errors that affect the sensor
measurements propagate through the algorithm.

Figure 2.18: Strapdown inertial navigation algorithm - The linear accelera-
tions measured by the accelerometer require to be projected onto the global
frame using the orientation determined by the integration of the gyroscope
measurements

Orientation

The orientation of the system with respect to the global frame is computed by
integrating the angular velocity measurement performed by the gyroscope along
the three main axes. This measurement is denoted by the relation:

ω̃B(t) = ωB(t) + bg(t) + ng(t) (2.38)

where bg and ng are respectively the bias and the noise that arises in the gyroscope.
There are different attitude representations in literature such as Euler angles,
quaternions or direction cosines. In this section, the direction cosines representation
is chosen for the description of the attitude estimation. The orientation of the
system with respect to the global frame is represented by the rotation matrix:

R = RxRyRz (2.39)

where:

45

Visual-Inertial Odometry

Rx =

1 0 0
0 cosφ sinφ
0 −sinφ cosφ

 (2.40)

Ry =

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 (2.41)

Rz =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

 (2.42)

in which φ, θ and ψ are the rotations around the x,y and z axes. The rate of change
of the rotation matrix is defined as:

Ṙ(t) = lim
δt→0

R(t+ δt) −R(t)
δt

(2.43)

in which R(t+ δt) can be written as:

R(t+ δt) = R(t)A(t) (2.44)

where A(t) is the rotation matrix that relates the body frame in time instants t
and t+ δt. The small angle approximation can be used assuming that the rotations
δφ, δθ and δψ of the body frame between time instants are small. In this case, the
rotation matrix A(t) can be written as:

A(t) = I + δΨ (2.45)

where:

δΨ =

 0 −δψ δθ
δψ 0 −δφ

−δθ δφ 0

 (2.46)

The differential equation obtained by substitution can be written as:

Ṙ(t) = R(t) lim
δt→0

δΨ
δt

= R(t)Ω(t) (2.47)

46

Visual-Inertial Odometry

where Ω(t) is the skew-symmetric matrix of the angular velocity vector expressed
by:

Ω(t) =

 0 −ω̃bz(t) ω̃by(t)
ω̃bz(t) 0 −ω̃bx(t)

−ω̃by(t) ω̃bx(t) 0

 (2.48)

The solution to the differential equation has the following form:

R(t) = R(0) + exp

AÚ t

0
Ω(t)dt

B
(2.49)

where R(0) is the initial orientation of the system. Since the IMU provides samples
of the angular velocity at a certain frequency, it is necessary to use an integration
model for the integration of the sampled measurements. Using the rectangular rule,
the solution for a time interval [t, t+ δt] can be written as:

R(t+ δt) = R(t) + exp

AÚ t+δt

t
Ω(t)dt

B
= R(t) + exp(B) (2.50)

where:

B =

 0 −ω̃bzδt ω̃byδt
ω̃bzδt 0 −ω̃bxδt

−ω̃byδt ω̃bxδt 0

 (2.51)

The attitude update equation is obtained by performing the Taylor expansion of
the exponential term:

R(t+ δt) = R(t)
3
I +B + B2

2! + B3

3! + B4

4! + ...

4
= R(t)

3
I + sinσ

σ
B + 1 − cosσ

σ2 B2
4

(2.52)

47

Visual-Inertial Odometry

where σ = |ω̃Bδt|. In the previous sections, the different types of errors that arise
in gyroscopes affecting the measurements of angular velocity are described in detail.
The integration of the measurements performed by the attitude algorithm allows
the propagation of the errors through the algorithm resulting in an unreliable
attitude estimation. For a MEMS gyroscope, the most important sources of error
in orientation are uncorrected bias and white noise errors. The uncorrected bias
introduces in orientation an error that grows linearly with time. White noise causes
an angle random walk error with a standard deviation that grows with the square
root of time. In addition, there are quantization errors that arise in the attitude
algorithm because of the quantization of the angular velocity samples and the
integration model used for updating the orientation.

Position

The accelerometer provides the measurement of the linear acceleration along the
three main axes. The linear acceleration measurement is denoted by the relation:

ãB(t) = aB(t) + ba(t) + na(t) (2.53)

where ba and na are respectively the bias and the noise that arises in the accelerom-
eter. After performing the attitude estimation, the linear acceleration, measured in
the body frame, is projected into the global frame using the calculated orientation:

ãG(t) = R(t)ãB(t) (2.54)

The velocity of the system with respect to the global frame is computed by
integrating the linear acceleration after subtracting the acceleration of gravity along
the vertical axis:

ṽG(t) = vG(0) +
Ú t

0
[ãG(t) − gG] dt (2.55)

where vG(0) is the initial velocity of the system and gG is the gravity acceleration.
The position of the system with respect to the global frame is computed by
integrating the velocity using the original position of the system as the initial
condition:

p̃G(t) = pG(0) +
Ú t

0
ṽG(t) dt (2.56)

48

Visual-Inertial Odometry

Since IMU provides samples of linear acceleration at a certain frequency, as for the
attitude algorithm, it is necessary to use an integration model for the integration
of the sampled measurement. Using the rectangular rule, the following update
equations for velocity and position are obtained:

ṽG(t+ δt) = ṽG(t) + δt · [ãG(t+ δt) − gG] (2.57)

p̃G(t+ δt) = p̃G(t) + δt · ṽG(t+ δt) (2.58)

In the previous sections, the different types of errors that arise in accelerometers
affecting the measurements of linear acceleration are described in detail. The double
integration of the measurements performed by the position algorithm allows the
propagation of the errors through the algorithm resulting in a large drift in position.
The drift in position is also caused by the errors that arise in gyroscopes because
the orientation obtained from the attitude algorithm is used to project the linear
acceleration into the global frame. There are different types of problems caused
by an inaccurate projection of the linear acceleration into the global frame such
as an incorrect subtraction of the gravitational acceleration and the integration of
the measurements in the wrong direction. This results in a significant accumulated
error in position over time.

2.3 Visual-Inertial Odometry Techniques

The Visual-Inertial Odometry algorithms can be classified in loosely-coupled and
tightly-coupled approaches according to the type of information used for visual and
inertial sensor fusion. The loosely-coupled approach consists in fusing the motion
estimates obtained by processing visual and inertial measurements separately. Con-
versely, the tightly-coupled approach consists in performing the motion estimation
by using directly the raw camera and IMU measurements, that is feature positions
and IMU readings of angular velocity and linear acceleration. The tightly-coupled
approach improves the accuracy at the cost of a higher implementation complexity
compared to the loosely-coupled approach. The higher accuracy of the tightly-
coupled approach is caused by several reasons. First of all, the IMU can be used
for guided feature matching resulting in a greater number of inliers essential for
robust motion estimation. Secondly, minimizing the reprojection error and the
IMU error together places an additional constraint on the pose estimation. Finally,
the tightly-coupled approach, in contrast to the loosely-coupled approach, considers
the visual and inertial information coupling that allows for the drift compensa-
tion. The differences between the two paradigms are illustrated in Figure 2.19.

49

Visual-Inertial Odometry

These approaches can be further classified in full smoothers, fixed-lag smoothers,
and filtering methods according to the number of camera poses involved in the
estimation. Full smoothers, also called batch nonlinear least-squares algorithms,
estimate the entire history of the camera poses, fixed-lag smoothers, also called
sliding window estimators, estimate a window of the last m poses, and finally
filtering methods estimate just the latest pose. The main drawback of fixed-lag
smoothers and filtering methods is that, in contrast to full smoothers that allow
re-linearization, they marginalize older states locking the linearization error, re-
sulting in a less accurate estimation. In recent years, the research has focused
the attention on optimization-based methods such as full and fixed-lag smoothers
rather than filtering methods because of the improvements in the computing power
of computers [13].

Figure 2.19: Illustration of loosely-coupled (a) and tightly-coupled
approaches (b) - The loosely-coupled approach uses the output of
the individual systems while the tightly-coupled approach uses the
internal states

50

Chapter 3

Visual-Inertial Odometry
State of the Art Algorithms

The main purpose of this Master Thesis is to provide a comparison between different
visual-inertial odometry algorithms to assess which one is the best solution in terms
of accuracy for UAVs navigation in GPS-denied environments. The state of the art
algorithms chosen for the research are:

• Intel T265 Proprietary Algorithm

• SVO

• VINS-Fusion

• ORB-SLAM 2

• ORB-SLAM 3

These algorithms were chosen because they turned out to be the most user friendly
among the renowned pipelines in the panorama of visual-inertial odometry. They
are all feature-based algorithms except for SVO that uses a semi-direct approach
for pose estimation. This chapter provides a detailed description of the open source
algorithms among the ones mentioned above.

3.1 SVO

The Semi-direct Visual Odometry (SVO) algorithm is a visual-inertial odometry
algorithm that was first presented by Forster et al. in their paper "SVO: Fast

51

Visual-Inertial Odometry State of the Art Algorithms

Semi-Direct Monocular Visual Odometry" [41]. This algorithm uses a semi-direct
approach for state estimation. The semi-direct approach is a combination of the
feature-based approach and the direct approach. This approach is convenient for
several reasons. First of all, it requires less computational resources compared
to the other state of the art algorithms because it doesn’t require the process of
feature extraction and matching at every frame for motion estimation. In addition,
it achieves sub-pixel level of accuracy operating directly on the intensity of pixels
in the image. Finally, this algorithm is suitable for every situation as it supports
different types of cameras.

3.1.1 Algorithm architecture

Figure 3.1: The architecture of the algorithm is com-
posed of two parallel threads: the motion estimation
thread and the mapping thread [41].

The architecture of the algorithm is organized in two separated threads: the first
one is the motion estimation thread and the second one is the mapping thread.
The motion estimation thread is articulated in three different steps. The first step
is the sparse model-based image alignment that consists in the computation of

52

Visual-Inertial Odometry State of the Art Algorithms

the transformation between the current and the previous frame by minimizing
the photometric error between pixels observing the same 3D point. The second
step is feature alignment that consists in the optimization of the feature positions
in the image. The final step consists in the refinement of pose and structure by
minimizing the reprojection error generated in the second step. The mapping
thread is designated for mapping the environment. This thread uses a Bayesian
filter for depth estimation. The filter is initialized with a high uncertainty in
depth in the areas of the keyframes in which there is a small number of 3D-to-
2D correspondences. In the successive frames, the update of the depth estimate
is performed until the filter has converged. The filter convergence occurs when
the uncertainty in depth falls below a certain threshold. The 3D point is then
introduced in the map that is ready to be employed in the motion estimation
thread. In the following sections, the implementation of the algorithm is described
in detail.

3.1.2 Motion Estimation

The algorithm performs motion estimation by using a semi-direct approach. The
process of motion estimation is articulated in three different steps: the first one is
the sparse model-based image alignment, the second one is the feature alignment,
and the last one is the pose and structure refinement. In this section, the three
steps of the motion estimation thread are described in detail.

Sparse model-based image alignment

Figure 3.2: The sparse model-based image align-
ment consists in the computation of the transfor-
mation Tk,k−1 that minimizes the photometric error
between pixels observing the same 3D point [41].

53

Visual-Inertial Odometry State of the Art Algorithms

The sparse model-based image alignment consists in the computation of the transfor-
mation between the current and the previous frame by minimizing the photometric
error of the patches observing the same 3D point:

Tk,k−1 = argmin
Tk,k−1

1
2
Ø
i∈R̄

ëδI(Tk,k−1, ui)ë2 (3.1)

This nonlinear least squares problem can be solved by using the Gauss-Newton
algorithm. Consider an estimate of the transformation T̂k,k−1. The incremental
update T (ξ) to the estimate can be parameterized by using the twist coordinates
ξ = (ω, v)T . The computation of the update step T (ξ) is performed by using the
inverse compositional formulation. The best update step T (ξ) can be determined
by setting to zero the derivative of the previous equation:

Ø
i∈R̄

∇δI(ξ, ui)T δI(ξ, ui) = 0 (3.2)

This system of equations can be solved by linearizing the intensity residual as
follows:

δI(ξ, ui) ≈ δI(0, ui) + ∇δI(0, ui) · ξ (3.3)

Substituting this expression in the system of equations we derive the normal
equations:

JTJξ = −JT δI(0) (3.4)

where J is the Jacobian matrix obtained by stacking the Jacobians which are
calculated by using the chain rule. For example, the Jacobian Ji = ∇δI(0, ui) is
computed as:

∂δI(ξ, ui)
∂ξ

= ∂Ik−1(a)
∂a

a=ui

· ∂π(b)
∂b

b=pi

· ∂T (ξ)
∂ξ

ξ=0

· pi (3.5)

These equations can be solved for ξ. The transformation Tk,k−1 is computed by
applying the inverse of the update step T (ξ) to the estimate of the transformation
T̂k,k−1.

54

Visual-Inertial Odometry State of the Art Algorithms

Feature alignment

Figure 3.3: The feature alignment consists in the
optimization of the feature positions obtained by
the back-projection of the transformation Tk,k−1
[41].

The transformation Tk,k−1 determines by back-projection an estimate of the feature
positions uÍ

i of the 3D points of the map in the image. The feature alignment
step consists in the optimization of feature positions. The keyframe of reference r
observing every point from the nearest viewpoint is determined. The optimization
of the feature position uÍ

i is performed through the minimization of the photometric
error between corresponding pixels in the current frame and in the reference frame.
The optimized feature position is defined as:

u
Í

i = argmin
u

Í
i

1
2ëIk(u

Í

i) − Ai · Ir(ui)ë2 (3.6)

where Ai is the distortion applied to the patches of the reference frame. The
distortion needs to be applied because the reference frame is placed at a greater
distance with respect to the current frame compared to the previous frame. This
nonlinear least squares problem can be solved by using the Lucas-Kanade optical
flow method. The feature alignment step defines the feature positions in the image
with a sub-pixel level of accuracy by violation of the epipolar constraints.

55

Visual-Inertial Odometry State of the Art Algorithms

Pose and structure refinement

Figure 3.4: The camera pose and the structure
of the 3D points are refined by minimizing the
reprojection error determined during the feature
alignment step [41].

The pose and structure refinement consists in the optimization of the camera pose
and the position of 3D points by minimizing the reprojection error created during
the feature alignment. The reprojection error is defined as:

ëδuië = ëui − π(Tk,w wpi)ë2 (3.7)

The process of pose and structure refinement is articulated in three different steps.
The first one consists in the optimization of the camera pose by solving the following
nonlinear least squares problem:

Tk,w = argmin
Tk,w

1
2
Ø
i

ëui − π(Tk,w wpi)ë2 (3.8)

The second one consists in the optimization of the structure that is performed in a
similar way to that of camera pose outlined above. The third step is called local
bundle adjustment. This process consists in the refinement of both the pose of the
latest frames and the 3D position of the points together.

56

Visual-Inertial Odometry State of the Art Algorithms

3.1.3 Mapping

Figure 3.5: The mapping process consists in the
estimation of the depth required for the triangula-
tion of the 3D point to insert in the map by using
a Bayesian filter [41].

The mapping thread is designated for mapping the environment. The environment
is mapped by using a Bayesian filter for depth estimation. The filter is initialized
with a high uncertainty in depth in the areas of the keyframe in which there are only
a few 3D-to-2D correspondences. The observation of the successive frames is used
for updating the depth estimate by using the depth d̃ki computed by triangulation
from the point uÍ

i of highest correlation with the patch of the keyframe. The point
of highest correlation is found on the epipolar line that is computed from the
transformation Tr,k and the line passing through the point ui. The depth d̃ki is
defined by using a Gaussian-uniform mixture model:

p(d̃ki |di, ρi) = ρi N (d̃ki |di, τ 2
i) + (1 − ρi)U(d̃ki |dmini , dmaxi) (3.9)

where ρi is the inlier probability and τ 2
i is the variance of an inlier measurement.

The update of the depth estimate is performed until the filter has converged. The
filter convergence occurs when the variance of the distribution falls below the
convergence threshold. The 3D point is then triangulated by using the relationship:

kp = π−1(u, du) (3.10)

where π is the projection model, u = (u, v)T are the image coordinates, and du

57

Visual-Inertial Odometry State of the Art Algorithms

is the depth estimate. Finally, the 3D point is introduced in the map that is
ready to be employed in the motion estimation thread. This method provides a
better performance in terms of robustness and accuracy than the standard method
because the filter updates the depth estimate several times before the convergence
is reached. This results in a map with a smaller number of outliers.

3.1.4 Experimental results

The experimental results obtained by running the algorithm on a laptop set up
with ROS Melodic are displayed in Rviz. The left side of the figure shows the input
images of the camera in a monocular setup. The right side of the figure shows
the output of the algorithm that consists of the odometry data represented by a
blue line and the point cloud map of the environment represented by violet sparse
points.

Figure 3.6: Illustration of the algorithm performance in Rviz - The output of the
algorithm consists of the odometry data represented by a blue line and the point
cloud map of the environment represented by violet sparse points

58

Visual-Inertial Odometry State of the Art Algorithms

3.2 VINS-Fusion

VINS-Fusion is an optimization-based multi-sensor visual-inertial odometry al-
gorithm for state estimation of autonomous vehicles. The algorithm performs
state estimation by using a tightly-coupled nonlinear optimization-based approach.
This approach is used to obtain a high performance in terms of robustness and
accuracy by fusing pre-integrated IMU measurements and feature correspondences.
The other properties of the algorithm are: efficient IMU pre-integration with bias
correction, automatic estimator initialization, online spatial and temporal cali-
bration, visual loop closure, and global pose graph optimization and reuse. The
algorithm is considered an extension of VINS-Mono supporting both monocular and
stereo cameras in different configurations. The implementation of the algorithm
is presented by Qin et al. in their paper "VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator" [42].

3.2.1 Algorithm architecture

Figure 3.7: The architecture of the algorithm is composed of four
different threads: measurement preprocessing, estimator initialization,
Visual-Inertial Odometry with relocalization, and global pose graph
optimization and reuse [42].

The architecture of the algorithm is organized in four different threads: measurement
preprocessing, estimator initialization, Visual-Inertial Odometry with relocalization,
and global pose graph optimization and reuse. The measurement preprocessing
consists in performing feature detection and tracking and IMU pre-integration.

59

Visual-Inertial Odometry State of the Art Algorithms

The estimator initialization consists in computing the necessary variables for
the Visual-Inertial Odometry thread. The necessary variables are pose, velocity,
gravity acceleration, gyroscope bias and feature positions. The Visual-Inertial
Odometry thread with relocalization performs state estimation by fusing IMU
pre-integrated measurements and feature correspondences. Finally, the global pose
graph optimization is the process of refining the poses by removing the accumulated
drift to achieve global consistency of the path. This thread also provides the reuse
of the pose graph. The Visual-Inertial Odometry and pose graph optimization
threads are executed simultaneously.

3.2.2 Measurement Preprocessing

The measurement preprocessing is performed for both visual and inertial measure-
ments. The preprocessing of visual measurements consists in detecting and tracking
features across the frames while the preprocessing of inertial measurements consists
in the pre-integration of the measurements between two subsequent frames. In the
following, the operations of preprocessing are described in detail.

Visual Preprocessing

The preprocessing of visual measurements is articulated in three different processes.
The first one consists in the detection of features in the current frame. The number
of features must be maintained constant in each frame. A good rule of thumb is that
of detecting around 100-300 features in every frame. In addition, the distribution
of the features must be as much as possible uniform in the image. The second one
consists in tracking the detected features by using the KLT feature tracker. This
process is completed by using RANSAC for outlier removal. Finally, the third one
consists in keyframe selection. There are two different methods to perform the
keyframe selection: the parallax of features and the tracking quality. The first one
consists in selecting a new keyframe when the average parallax of features between
the current frame and the last keyframe is greater than a fixed limit. The second
one consists in selecting a new keyframe when the number of features involved in
the tracking process exceeds a minimum threshold. This method is useful to avert
the loss of feature tracks.

IMU Pre-integration

1) IMU Measurements: The accelerometer and gyroscope measurements are respec-
tively the linear acceleration and the angular velocity. These measurements are

60

Visual-Inertial Odometry State of the Art Algorithms

expressed by the following relationships:

ât = at + bat +Rt
wg

w + na

ω̂t = ωt + bwt + nw
(3.11)

where n and b are respectively the additive noise and the bias affecting the mea-
surements. The additive noise can be modeled as a Gaussian white noise and the
bias can be modeled as a random walk. The derivative of a random walk process is
again a Gaussian white noise.

na ∼ N (0, σ2
a) nw ∼ N (0, σ2

w)
ḃat = nba ∼ N (0, σ2

ba
) ḃwt = nbw ∼ N (0, σ2

bw
)

(3.12)

2) Pre-integration: There are a lot of inertial measurements between the two
subsequent frames bk and bk+1 due to the higher sampling rate of the inertial sensor.
The pre-integration terms are computed by integrating the inertial measurements
in the time interval [tk, tk+1] as follows:

αbk
bk+1

=
ÚÚ

t∈[tk,tk+1]
Rbk
t (ât − bat) dt2

βbk
bk+1

=
ÚÚ

t∈[tk,tk+1]
Rbk
t (ât − bat) dt

γbk
bk+1

=
ÚÚ

t∈[tk,tk+1]

1
2Ω(ω̂t − bwt)γbk

t dt

(3.13)

where:

Ω(ω) =
C
− åωæ× ω
−ωT 0

D
, åωæ× =

 0 −ωz ωy
ωz 0 −ωx

−ωy ωx 0

 (3.14)

The pre-integration is then obtained simply using the inertial measurements given
a bias estimate. The covariance P bk

bk+1
of the pre-integration terms propagates in

the same way.

61

Visual-Inertial Odometry State of the Art Algorithms

3) Bias Correction: The pre-integration terms can be corrected by using their
first-order approximations with respect to the bias if the estimation of the bias has
undergone a small variation:

αbk
bk+1

≈ α̂bk
bk+1

+ Jαba
δbak

+ Jαbw
δbwk

βbk
bk+1

≈ β̂bk
bk+1

+ Jβba
δbak

+ Jβbw
δbwk

γbk
bk+1

≈ γ̂bk
bk+1

⊗
C

1
1
2J

γ
bw
δbwk

D (3.15)

Conversely, the repropagation under the new bias estimation is performed if the
estimation of the bias has undergone a significant change. The IMU pre-integration
eliminates the need to propagate the inertial measurements continuously resulting
in a great saving of computational resources.

3.2.3 Estimator Initialization

The tightly-coupled visual-inertial odometry algorithm needs an initial guess to
start state estimation because of its highly nonlinear nature. The initial values are
computed by aligning the visual structure and the IMU pre-integration.

Structure from Motion (SfM)

The Structure from Motion (SfM) is a process that estimates a graph of camera
poses and feature locations. This process is performed in a sliding window in
order to reduce the level of computational resources usage. First of all, the feature
correspondences between the last frame and the previous frames are searched. The
relative rotation and the up to scale translation between two frames is computed by
using the five-point algorithm. The computation is performed only when there is a
stable feature tracking (at least 30 tracked features) and enough parallax (at least
20 pixels) between the frames. The features in the two frames are then triangulated
once the scale has been arbitrarily set. At this point, the perspective-n-point (PnP)
method is used to estimate the poses of the other frames in the sliding window. In
the end, a global bundle adjustment is performed by minimizing the reprojection
error of all feature correspondences. In the Structure from Motion process the first
camera frame (·)c0 is considered the reference frame. This means that the camera
poses (p̄c0

ck
, qc0
ck

) and feature locations are computed with respect to the first camera
frame. The poses can be translated from the camera frame to the body frame by

62

Visual-Inertial Odometry State of the Art Algorithms

using the extrinsic parameters (pbc, qbc) between the camera and the inertial sensor
as follows:

qc0
bk

= qc0
ck

⊗ (qbc)−1

sp̄c0
bk

= sp̄c0
ck

−Rc0
bk
pbc

(3.16)

Visual-Inertial Alignment

Figure 3.8: Illustration of the visual-inertial alignment - The
procedure consists in matching the up to scale vision-only struc-
ture and the IMU pre-integration [42].

1) Gyroscope Bias Calibration: The first step of the visual-inertial alignment process
is the initial calibration of the gyroscope bias bw. The gyroscope bias calibration is
performed by minimizing the following cost function:

min
δbw

Ø
k∈B

...qc0
bk+1

−1 ⊗ qc0
bk

⊗ γbk
bk+1

...2
(3.17)

where qc0
bk

and qc0
bk+1

are the rotations obtained from the SfM and γbk
bk+1

is the
relative constraint obtained from IMU pre-integration. Once the calibration of the
gyroscope bias is obtained, the pre-integration terms are repropagated by using
the new gyroscope bias.

2) Initialization: The second step of the visual-inertial alignment process consists
in the initialization of the other states of autonomous navigation, that are velocity,
gravity acceleration, and metric scale:

63

Visual-Inertial Odometry State of the Art Algorithms

XI =
è
vb0
b0 , v

b1
b1 , ..., v

bn
bn
, gc0 , s

é
(3.18)

where vbk
bk

is velocity in the body frame while capturing the kth frame, gc0 is the
gravity acceleration in the first camera frame, and s is the metric scale. The
following relationships are valid for two subsequent frames in the sliding window:

αbk
bk+1

= Rbk
c0

C
s
1
p̄c0
bk+1

− p̄c0
bk

2
+ 1

2g
c0∆t2k −Rc0

bk
vbk
bk

∆tk
D

βbk
bk+1

= Rbk
c0

1
Rc0
bk+1

v
bk+1
bk+1

+ gc0∆tk −Rc0
bk
vbk
bk

2 (3.19)

The equations (3.16) and (3.19) can be combined into the linear measurement
model:

ẑbk
bk+1

=
C
αbk
bk+1

− pbc +Rbk
c0R

c0
bk+1

pbc
βbk
bk+1

D
= Hbk

bk+1
XI + nbk

bk+1
(3.20)

in which:

Hbk
bk+1

=
C
−I∆tk 0 1

2R
bk
c0 ∆t2k Rbk

c0 (p̄c0
ck+1

− p̄c0
ck

)
−I Rbk

c0R
c0
bk+1

Rbk
c0 ∆tk 0

D
(3.21)

The velocities in the body frame for every image in the sliding window, the gravity
acceleration in the camera reference frame, and the scale factor are computed by
solving the following linear least-square problem:

min
XI

Ø
k∈B

...ẑbk
bk+1

−Hbk
bk+1

XI

...2
(3.22)

3) Gravity Refinement: The third step of the visual-inertial alignment process
consists in the refinement of the gravity vector. The gravity refinement is performed
by constraining the magnitude resulting in only two remaining degrees of freedom.
The gravity vector is then perturbed by g(¯̂g + δg) where g is the magnitude of the
gravity, ¯̂g is the direction of the gravity, and δg = w1b1 + w2b2 in which b1 and
b2 are two orthogonal basis spanning the tangent plane and w1 and w2 are the
perturbations along b1 and b2. The gravity vector in equation (3.19) is substituted
by the perturbed configuration. The equation is then solved to find δg and the

64

Visual-Inertial Odometry State of the Art Algorithms

other state variables. This iterative process is repeated a lot of times until the
convergence is obtained.

4) Completion of the Initialization: The last step of the visual-inertial alignment
consists in the computation of the rotation qwc0 between the world frame and the
camera reference frame by rotating the gravity to the z axis. The variables are then
rotated to the world frame. In addition, the translational components obtained
from the Structure from Motion are scaled to metric units by using the scale factor.
The values obtained from the estimator initialization are then ready to feed the
Visual-Inertial Odometry thread.

3.2.4 Visual-Inertial Odometry

Figure 3.9: Illustration of the Visual-Inertial Odometry process - The
Visual-Inertial Odometry module uses a tightly-coupled formulation that
fuses the inertial and visual raw measurements for high accuracy and
robust pose estimation [42].

The state vector in the sliding window is denoted by the expression:

X = [x0, x1, ..., xn, x
b
c, λ0, λ1, ..., λm]

xk = [pwbk
, vwbk

, qwbk
, ba, bg], k ∈ [0, n]

xbc = [pbc, qbc]
(3.23)

where xk is the IMU state that includes pose and velocity in the world frame and
accelerometer and gyroscope biases in the body frame, n and m are respectively the
number of keyframes and features in the sliding window and λ is the inverse distance
from the first observation of a feature. The statement of the problem is performed by
using a visual-inertial bundle adjustment formulation. The maximum a posteriori

65

Visual-Inertial Odometry State of the Art Algorithms

estimation is obtained by minimizing the sum of prior and the Mahalanobis norm
of the IMU and visual measurement residuals as:

min
X

I
ërp −HpX ë2 +

Ø
k∈B

...rB
1
ẑbk
bk+1

,X
2...2

P
bk
bk+1

+
Ø

(l,j)∈C
ρ
...rC

1
ẑ
cj

l ,X
2...2

P
cj
l

J
(3.24)

IMU Measurement Residual

The residual of the IMU measurements between two consecutive frames bk and bk+1
in the sliding window is defined as:

rB
!
ẑbk

bk+1
,X
"

=

δαbk

bk+1

δβbk

bk+1

δθbk

bk+1

δba
δbg

 =

Rbk
w

!
pwbk+1

− pwbk
+ 1

2g
w∆t2k − vwbk

∆tk
"

− α̂bk

bk+1

Rbk
w

!
vwbk+1

+ gw∆tk − vwbk

"
− β̂bk

bk+1

2
#
qwbk

−1 ⊗ qwbk+1
⊗ γ̂bk

bk+1
−1$

xyz

babk+1
− babk

bwbk+1
− bwbk

 (3.25)

where αbk
bk+1

, βbk
bk+1

and γbk
bk+1

are the IMU pre-integration terms and δθbk
bk+1

is the
3D error state representation of a quaternion.

Visual Measurement Residual

The majority of cameras, from wide angle to omnidirectional cameras, are modeled
by using a unit ray connecting the surface of a unit sphere. The residual of visual
measurements is then defined on a unit sphere as:

rC
1
ẑ
cj

l ,X
2

= [b1 b2]T ·
A

ˆ̄Pcj

l − Pcj

l

ëPcj

l ë

B
ˆ̄Pcj

l = πc
−1
C
û
cj

l

v̂
cj

l

D

P
cj

l = Rc
b

I
Rbj
w

C
Rw
bi

A
Rb
c

1
λl
πc

−1
C
ûci
l

v̂ci
l

D
+ pbc

B
+ pwbi

− pwbj

D
− pbc

J (3.26)

where [ûci
l , v̂

ci
l] and [ûcj

l , v̂
cj

l] are respectively the first observation of the lth feature
in the ith image and the observation of the same feature in the jth image, πc−1 is
the camera back projection model and b1 and b2 are two orthogonal bases spanning
the tangent plane of ˆ̄Pcj

l .

66

Visual-Inertial Odometry State of the Art Algorithms

Marginalization

Figure 3.10: Illustration of the marginalization strategy - When
the penultimate frame in the sliding window is a keyframe, the
oldest frame is marginalized out along with its visual and inertial
measurements. Conversely, when the penultimate frame in the
sliding window is a non-keyframe, the marginalization of the
oldest frame is not performed because the new frame is removed
by storing only its inertial measurements [42].

The strategy of marginalization is adopted to reduce the computational burden
of the algorithm. The marginalization process is now briefly described. When
the penultimate frame in the sliding window is a keyframe, the oldest frame is
marginalized out along with its visual and inertial measurements. The marginalized
measurements are converted into a prior. Conversely, when the penultimate frame
in the sliding window is a non-keyframe, the marginalization of the oldest frame
is not performed because the new frame is removed by storing only its inertial
measurements. The inertial measurements of non-keyframes are not marginalized
out to preserve the sparsity of the system. The marginalization strategy is used
to obtain sufficiently separated keyframes in the sliding window. The separation
of the keyframes is required to have a sufficient amount of parallax for feature
triangulation. The marginalization is performed by using the Schur complement.

3.2.5 Relocalization

The marginalization strategy causes a significant accumulated drift in the state
estimation. The integration of a relocalization process in the Visual-Inertial

67

Visual-Inertial Odometry State of the Art Algorithms

Odometry module is performed to remove the drifting. The relocalization process
is based on loop closure detection. Loop closing is the process of detecting whether
the robot has returned to a previously visited location. The feature correspondences
between the last frame and the loop closure candidates are integrated in the Visual-
Inertial Odometry module resulting in a highly accurate and robust state estimation.
The relocalization procedure is now described in detail.

Figure 3.11: Illustration of the relocalization procedure - The
first three plots show that relocalization is performed whenever
a loop is detected for the last keyframe in the window. The last
three plots show that the loop constraints can be incorporated for
multiple keyframes in the database because of the use of feature
correspondences for relocalization [42].

Loop Detection

The loop detection is performed by using a place recognition approach called
DBoW2. This approach uses the ORB feature detector and descriptor to detect
and describe 500 more features in addition to the features used in the Visual-Inertial
Odometry process. The additional features are required to obtain high precision

68

Visual-Inertial Odometry State of the Art Algorithms

in loop detection. The output of the algorithm are the loop closure candidates.
During loop detection, the descriptors are stored for feature retrieval while the raw
images are removed to bound the memory load.

Feature Retrieval

The feature retrieval step consists in finding the feature correspondences between
the newest frame in the sliding window and the loop closure candidate. The process
of feature matching generally results in false correspondences. The outlier removal
is then performed in two steps by using the RANSAC method:

1) 2-D–2-D: The first step is the fundamental matrix test performed by using
the 2-D observations of retrieved features in the newest frame and loop closure
candidate.

2) 3-D–2-D: The second step is the PnP test performed by using the 3-D locations
of features in the sliding window and the 2-D observations of features in the loop
closure candidate.

After the process of outlier removal, the loop closure candidate is considered a
correct loop detection so the relocalization is performed.

Relocalization

The relocalization process consists in the alignment of the sliding window to
the oldest poses. During relocalization, the optimization of the sliding window
is performed by using inertial and visual measurements and retrieved feature
correspondences. The visual measurement residual of the retrieved features observed
in a loop closure frame v is identical to that defined in the Visual-Inertial Odometry
thread. The only difference is that the pose of the loop closure frame (q̂wv , p̂wv)
in this case is considered constant. Therefore, the nonlinear cost function in the
equation (3.24) is modified by adding a loop term representing the reprojection
error in the loop closure frame as follow:

min
X

I
. . . +

Ø
(l,v)∈L

ρ
...rC

1
ẑvl ,X , q̂wv , p̂wv

2...2

Pl

cv

J
(3.27)

where L is the set of the features in the loop closure frames and (l, v) indicates
the lth feature observed in the loop closure frame v. Note that the dimension
of the states to be solved remains unchanged because the poses of loop closure
frames are considered constant. The optimization is performed by using the
feature correspondences from multiple loop closure frames simultaneously. The

69

Visual-Inertial Odometry State of the Art Algorithms

establishment of loop constraints in multiple frames of the sliding window results
in a high accuracy and robust relocalization.

3.2.6 Global Pose Graph Optimization

Figure 3.12: The global pose graph optimization - First of all,
the pose graph is updated whenever a keyframe is marginalized
out from the sliding window. The loop closure constraints
between the new keyframe and any other past keyframe in the
pose graph are also recorded. The global pose graph optimiza-
tion is performed by using all relative constraints between the
poses. The relocalization is performed by always using the
latest optimized pose graph [42].

The global pose graph optimization is performed to obtain global consistency of
the path. The roll and pitch angles are absolute states in the world frame that can
be determined by the horizontal plane from the gravity vector. Conversely, the
x,y,z and yaw angle change relatively with respect to the reference frame. This
means that the drift is accumulated only in x,y,z, and yaw states. The global pose
graph optimization is then only performed in 4 DOF.

Keyframe Addition in the Pose Graph

The pose graph is articulated in a large number of keyframes represented by vertexes
connected with one another by two different types of edges:

70

Visual-Inertial Odometry State of the Art Algorithms

Figure 3.13: Illustration of the pose graph -
A large number of keyframes represented by
vertexes are connected with one another by
sequential edges and loop edges [42].

1) Sequential Edge: A sequential edge consists in the relative transformation
between two keyframes computed during the Visual-Inertial Odometry process.
The sequential edge between a keyframe i and a keyframe j is composed by the
relative position p̂iij and the yaw angle ψ̂ij defined as:

p̂iij = R̂w
i

−1
1
p̂wj − p̂wi

2
ψ̂ij = ψ̂j − ψ̂i

(3.28)

2) Loop Edge: A loop edge consists in the relative transformation between the
keyframe and the loop closure frame. The loop edge is composed by the relative
position and the yaw angle between two keyframes as the sequential edge. The
value of the loop edge is determined in the relocalization process.

Pose Graph Optimization

The residual of the edge connecting the keyframes i and the keyframe j is defined
as:

ri,j(pwi , ψi, pwj , ψj) =
C
R(φ̂i, θ̂i, ψ̂i)−1(pwj − pwi) − p̂iij

ψj − ψi − ψ̂ij

D
(3.29)

where φ̂i and θ̂i are the drift-free estimates of roll and pitch angles obtained in the
Visual-Inertial Odometry process. The pose graph optimization of sequential edges
and loop closure edges is performed by minimizing the following cost function:

71

Visual-Inertial Odometry State of the Art Algorithms

min
p,ψ

I Ø
(i,j)∈S

ëri,jë2 +
Ø

(i,j)∈L
ρëri,jë2

J
(3.30)

where S is the set of the sequential edges and L is the set of the loop closure edges.
The Huber norm ρ(·) for loop edges is used to limit the amount of wrong loop
closures. Conversely, the use of the Huber norm is not necessary for sequential
edges that are obtained from the Visual-Inertial Odometry process which is in itself
equipped with robust processes of outlier removal. The pose graph optimization
and the relocalization are performed separately in two different modules. This
means that the relocalization is carried out by always using the newest optimized
pose graph.

Pose Graph Merging

Figure 3.14: Map merging - The yellow graph rep-
resents the map previously built and the blue graph
represents the newest map. The map merging is
performed on the basis of the loop closure edges. [42].

The pose graph merging consists in the fusion of the newest map and a map
previously built. The map merging is performed on the basis of the loop closure
edges available between the two maps. As depicted in Figure 3.14, the newest map
is pulled into the previous map by using loop connections. Since the vertexes and
edges are relative variables, the pose graph merging is performed by only fixing the
first vertex of the pose graph.

72

Visual-Inertial Odometry State of the Art Algorithms

3.2.7 Experimental results

The experimental results obtained by running the algorithm on a laptop set up
with ROS Melodic are displayed in Rviz. The left side of the figure shows the left
and right input images of the camera in a stereo setup. The right side of the figure
shows the output of the algorithm that consists of the odometry data represented
by a green line and the point cloud map of the environment represented by green
and white sparse points. In addition, it is possible to observe the left and right
camera lenses represented by two red rectangles and the system reference frame
represented by the triad of red, green and blue axes.

Figure 3.15: Illustration of the algorithm performance in Rviz - The output of
the algorithm consists of the odometry data represented by a green line and the
point cloud map of the environment represented by green and white sparse points

3.3 ORB-SLAM2
This section presents ORB-SLAM2 that is the first open-source SLAM solution
for monocular, stereo and RGB-D cameras. The system is able to compute in
real-time the camera trajectory and the map of the environment in a wide variety
of scenarios. The most important features of ORB-SLAM2 are an automatic and
robust initialization, loop closing, relocalization and map reuse. The system is
also equipped with a localization mode that is used for a lightweight and long-
term localization with the local mapping and loop closing threads disabled. The

73

Visual-Inertial Odometry State of the Art Algorithms

implementation of the algorithm is presented by Mur-Artal et al. in their paper
"ORB-SLAM: a versatile and accurate monocular SLAM system" [43].

3.3.1 System Overview

Figure 3.16: The architecture of the algorithm
is composed of three different threads: tracking,
local mapping, loop closing [44].

Architecture of the algorithm

The architecture of the algorithm is composed of three parallel threads: tracking,
local mapping and loop closing. The loop closing thread is meant to launch a
full bundle adjustment after a loop closure to compute a robust and accurate
solution. The system uses ORB features because they are extremely fast to extract
and match allowing for real time applications. In addition, they are robust to
rotation and scale and invariant to viewpoint and illumination changes. The
goals of the tracking are the localization of the camera and the insertion of new
keyframes. First of all, an initial estimation of the camera pose is computed by
matching features with the previous frame. The pose is then optimized by using
motion-only BA. It may happen to loose the tracking because of occlusions or
aggressive motion. The place recognition module is then activated to perform a
global relocalization. Secondly, a local map is constructed using the covisibility
graph. The correspondences between the features in the frame and the local map
points are searched by minimizing the reprojection error. The optimization of
the camera pose is then performed once more by using all matches. Finally, the
tracking thread is responsible for the insertion of new keyframes. The goals of the

74

Visual-Inertial Odometry State of the Art Algorithms

local mapping are the processing of new keyframes and the optimization of the local
map by using a local BA. The correspondences between the unmatched features
in the new keyframe and the features in the other keyframes of the covisibility
graph are searched for the triangulation of new points. The local mapping thread
consists also in the application of a point and keyframe culling policy to maintain
only high-quality points and remove redundant keyframes. The goal of the loop
closing is the detection of loop closures. A similarity transformation carrying the
information about the drift accumulated in the loop is computed after the detection
of a loop closure. The alignment of the two sides of the loop is then performed
by fusing doubled points in the map. Eventually a pose graph optimization is
performed using the essential graph to obtain global consistency of the path.

Covisibility Graph and Essential Graph

Figure 3.17: Illustration of the covisibility graph
(a) and the essential graph (b) - The essential graph
is a sparse subgraph of the covisibility graph in which
only the subset of edges with higher covisibility is
maintained [43].

The covisibility graph and the essential graph are graph structures that are useful
in different parts of the system. The covisibility graph is an undirected weighted
graph in which the nodes represent the keyframes and the edges between the nodes
are established only if the keyframes observe a certain number of the same map
points. The weight of the edge is the number of common map points. The essential
graph is a sparse subgraph of the covisibility graph that is composed of the same
number of nodes and a minimal number of edges. In fact, only the subset of edges
of the covisibility graph with higher covisibility is maintained. This graph structure
is still a strong network of nodes that brings high accuracy and robust results. The
structure of both these graphs is realized from a spanning tree of keyframes.

75

Visual-Inertial Odometry State of the Art Algorithms

3.3.2 Tracking

In this section, the steps of the tracking thread are described in detail. They are:
input pre-processing, map initialization, initial pose estimation, local map tracking,
and new keyframe decision. The map initialization is the only step to be performed
once at the beginning of the process. The other steps of the tracking thread are
performed with every frame captured from the camera.

Input Pre-processing

The first step of the tracking thread is the input pre-processing. The system
pre-processes the input images by extracting features at salient keypoint locations.
The process of feature extraction is performed at 8 different scale levels obtained by
scaling the image with a scale factor of 1.2. The main requirements for robust and
stable motion estimation are a large number of features and a uniform distribution
of the features in the image. The number of features ranges from 1000 to 2000
depending on the image resolution. The uniform distribution of the features in the
image is obtained by extracting at least 5 features in every cell of the grid in which
the image is partitioned. The minimum threshold of features fixed for every cell
of the image can be adapted if not enough features are found. The features are
then associated with a ORB descriptor that improves the accuracy of the feature
matching. The input images are then eliminated so that the rest of the system
operates independently of the type of camera.

Map Initialization

The map initialization is a procedure for the triangulation of an initial set of
map points. The procedure is only required in the monocular case because in the
stereo or RGB-D case the depth information is obtained from just one frame so
that the map can be immediately created. The goal of the initialization is the
computation of the pose between two frames. The main novelty of the process is
the computation of two geometrical models in parallel threads to ensure that the
procedure is independent of the scene. The geometrical models are a homography
assuming a planar scene and a fundamental matrix assuming a non planar scene.
The selection of the model is performed by using a heuristic. The relative pose
between the frames is computed by using a specific method according to the choice
of the model. The triangulation of the points is then performed by using the
relative pose. The method is able to detect the inconsistencies of the models such
as the twofold planar ambiguity and low-parallax configurations in order to avoid
the initialization of a corrupted map.

76

Visual-Inertial Odometry State of the Art Algorithms

Initial Pose Estimation

The initial pose estimation is performed by using a constant velocity motion model.
The process of feature matching is accomplished by searching for the map points
observed in the previous frame. The optimization of the pose is then performed
with all the found correspondences by using the motion-only BA. The motion-only
BA performs the optimization of the camera pose by minimizing the reprojection
error between the map points X i ∈ R3 and keypoints xi(.) ∈ R2:

{R, t} = argmin
R,t

Ø
i∈X

ρ
1...xi(.) − π(.)(RX i + t)

...2

Σ

2
(3.31)

where ρ is the Huber function and Σ is the covariance matrix associated to the
scale of the keypoint. The projection function π(.) is defined as:

π

XY
Z

 =

C
fx

X
Z

+ cx
fy

Y
Z

+ cy

D
(3.32)

where fx and fy are the focal lenghts and cx and cy are the principal point
coordinates. In case of tracking failure the place recognition module performs a
relocalization by using DBoW2. The frame is converted in a bag of words. The
query of the database results in different keyframe candidates. The process is
characterized by a high computational efficiency because the database includes an
index that informs in which keyframe every visual word of the vocabulary has been
observed. In addition the database returns all the keyframe matches that have a
score being over the 75% of the best score. The correspondences are then refined by
using an orientation consistency test for outlier removal. The camera pose is then
computed by using the PnP algorithm for every keyframe in a RANSAC scheme. A
guided search of the map points observed in the candidate keyframe is performed
to increase the number of matches. Finally, the optimization of the camera pose is
performed by using all the matches found.

Local Map Tracking

Once the computation of the pose and the initial set of feature matches is obtained,
the projection of the local map into the frame is performed in order to search for
new map point correspondences. The local map is composed of the set of keyframes
K1 that have common map points with the current frame and the set of keyframes
K2 that are neighbors to the keyframes of the previous set in the covisibility graph.

77

Visual-Inertial Odometry State of the Art Algorithms

In the first set of keyframes it is possible to identify a reference keyframe Kref that
has the highest number of common map points with the frame. The algorithm that
searches in the frame every map point observed in K1 is articulated in the following
steps. First of all, the projection of the map points in the frame is computed. The
points that lay out of the image bounds are discarded. Secondly, the computation
of the angle between the viewing ray of the frame v and the map point viewing
direction n is performed. The points for which v ·n < cos(60°) are removed. Thirdly,
the distance d from the map point to the camera center is computed. The points
whose distance is out of the scale invariance region d /∈ [dmin, dmax] are discarded.
The bounds of the scale invariance region are the minimum and the maximum
distances at which the point can be observed. Fourthly, the computation of the
scale in the frame is performed by the ratio d/dmin. The descriptor of the map
point is compared with the descriptor of the unmatched features in the frame at
the estimated scale. Finally, the map point is associated with the best match. The
optimization of the camera pose is then performed by using all the map points
found in the image.

New Keyframe Decision

The last step of the tracking thread consists in deciding if the current frame can
be considered a keyframe. The keyframe insertion is performed as fast as possible
to obtain a robust and accurate tracking against the challenging movements of the
camera. This process is possible only because in the local mapping thread a culling
policy is performed to remove redundant keyframes. There are four conditions
that must be satisfied to insert a new keyframe. First of all, the local mapping is
inactive or at least 20 keyframes must have passed from the last keyframe insertion.
Secondly, the last global relocalization has been performed more than 20 frames
earlier. Thirdly, the points tracked in the current frame are at least 50. Finally, the
points tracked in the current frame are less than the 90% of the points tracked in
the reference frame Kref. The main novelty of the ORB-SLAM system with respect
to the other state of the art systems is the usage of a minimum visual change
criterion that is represented by the last condition.

3.3.3 Local Mapping

In this section, the steps of the local mapping thread are described in detail. They
are: keyframe insertion, recent map points culling, new points creation, local bundle
adjustment and local keyframes culling. These steps are performed by the local
mapping with every new keyframe Ki.

78

Visual-Inertial Odometry State of the Art Algorithms

Keyframe Insertion

The insertion of a new keyframe requires the accomplishment of different tasks.
The covisibility graph and the essential graph have to be updated every time a new
keyframe is inserted. The update of these graphs is performed by adding a node
representing the new keyframe and updating the edges connecting the new keyframe
with the older keyframes. The computation of the bag of words representation of
the keyframe is also performed to achieve better accuracy in the data association
for the triangulation of new points in the map. The map points are then ready to
undergo a point culling policy that maintains only high quality points in the map.

Recent Map Points Culling

The point culling policy consists in the submission of a test to the map points
during the first three keyframes after the triangulation. The test ensures that
the map points are high quality points that are easily trackable. There are two
conditions that have to be satisfied to retain a point in the map. The first condition
states that the tracking must find the point at least in the 25% of the frames in
which the point is supposed to be observed. The second condition states that the
point must be in the field of view of at least three keyframes if more than one
keyframe has passed from the triangulation of the point. The point that at any
time is observed from not more than two keyframes can be discarded even if it has
passed the test. This situation could happen when the local bundle adjustment
removes the outliers or when the keyframe culling policy is applied.

New Map Point Creation

The triangulation of new map points is performed from the features of the keyframes
Kc that are connected in the covisibility graph. The process of feature matching
is performed by using a bag of words approach as described in the Initial Pose
Estimation paragraph. For every unmatched feature in the new keyframe Ki a
match is searched among the unmatched features of the other keyframes. The
matches that do not satisfy the epipolar constraint are clearly discarded. The
triangulation of the points is then performed from the feature pairs found. The
new map points are accepted only after a parallax, reprojection error and scale
consistency check. The projection of the map point is performed in the rest of
the keyframes of the covisibility graph. The correspondences are then searched by
using the method described in the Local Map Tracking paragraph.

79

Visual-Inertial Odometry State of the Art Algorithms

Local Bundle Adjustment

The local bundle adjustment is a process that consists in the optimization of the new
keyframe Ki and the other covisible keyframes Kc. The optimization is performed
also on the map points observed by those keyframes Pc. The other keyframes KF

that observe the same map points but are not connected to the new keyframe in
the covisibility graph are fixed in the optimization. The optimization problem is
defined as:

{X i, Rl, tl| i ∈ Pc, l ∈ Kc} = argmin
Xi,Rl,tl

Ø
Ki∈Kc∪KF

Ø
j∈Xk

ρ(EKij) (3.33)

with:

EKij =
...xj(.) − π(.)(RKi

Xj + tKi
)
...2

Σ
(3.34)

where Xk is the set of matches between the features in the new keyframe Ki and
the map points observed by the covisible keyframes Pc. The outlier observations
are removed at the middle and at the end of the refinement process.

Local Keyframe Culling

The keyframe culling policy consists in the removal of redundant keyframes. This
process is advantageous for several reasons: for example, it bounds the bundle
adjustment complexity that grows with the number of keyframes and allows a long-
lasting performance in the same environment because there is not a uncontrolled
growth of the number of keyframes. The keyframes in which the 90% of the map
points have been observed in at least other three keyframes at the same scale or
a smaller one are removed. The scale condition is necessary to preserve those
keyframes from which the map points are computed with the best accuracy.

3.3.4 Loop Closing
The loop closing thread is responsible for the detection and closure of loops for
the last keyframe Ki. The steps in which the loop closing thread is articulated
are: detection of loop candidates, computation of the similarity transformation,
loop fusion, and essential graph optimization. In addition, the loop closing thread
is meant to launch a full bundle adjustment after the pose graph optimization to
compute a robust and accurate solution. The steps of the loop closing are detailed
in this section.

80

Visual-Inertial Odometry State of the Art Algorithms

Loop Candidates Detection

The first step of the loop closing thread is the detection of loop candidates. The
computation of the similarity between the bags of words of the current keyframe
and the covisible keyframes that share with it at least 30 observations of map
points is performed. The lowest score of similarity is then stored. The database
is queried for loop candidates. The keyframes that have a score lower than the
stored one are discarded. Moreover the keyframes that are directly conneted to the
current keyframe in the covisibility graph are removed. The validation of a loop
candidate occurs only if three loop candidates that are consistent are sequentially
detected. The covisibility information is so used to obtain robustness and accuracy
in the process of loop closing.

Computation of the Similarity Transformation

The second step of the loop closing thread is the computation of the similarity
transformation. The similarity transformation between the current keyframe
Ki and the loop candidate Kl contains the information about the drift that is
accumulated in the loop. The process of feature matching is performed between
the current keyframe and the loop candidate following the method used in case of
tracking failure in the Initial Pose Estimation paragraph. The computation of the
transformation is then performed by using the found 3-D to 3-D correspondences.
Alternatively the similarity transformation is estimated by using the method of
Horn in a RANSAC scheme. The optimization of the pose is then performed after
a guided search of more correspondences. The loop candidate Kj is accepted if the
similarity transformation contains a sufficient number of inliers.

Loop Fusion

The third step of the loop closing thread is loop correction. The pose of the
current keyframe Tiw is corrected by using the similarity transformation Sij. The
propagation of the correction is then performed to the neighbors of the current
keyframe in order to perfectly align the two sides of the loop. The map points
observed by the loop candidate and its neighbors are projected into the current
keyframe and its neighbors. The search of the matches is performed in the area
around the projection of the points as explained in the Local Map Tracking
paragraph. Finally, the fusion of the duplicated map points and the update of the
covisibility graph is performed. The covisibility graph is updated by adding loop
closure edges to the keyframes involved in the loop correction.

81

Visual-Inertial Odometry State of the Art Algorithms

Essential Graph Optimization

The final step of the loop closing thread is the essential graph optimization. The
pose graph optimization is performed over the essential graph to distribute the loop
closing error along the graph. The error in an edge of the pose graph is defined as:

ei,j = logSim(3)(Sij Sjw S−1
iw) (3.35)

The logSim(3) transforms the pose in the tangent space to obtain the error in seven
degrees of freedom. The seven degrees of freedom are three translations, three
rotation and a scale factor. This is valid for the monocular case in which the scale
is unknown. The optimization of the keyframe poses is performed by minimizing
the following cost function:

C =
Ø
i,j

(eTi,j Λi,j ei,j) (3.36)

where Λi,j is the information matrix of the edge that is set to the identity. This
method is an approximation of a full bundle adjustment, but it demonstrates to
converge faster and better than it. After the optimization, the map points are
transformed on the basis of the correction of one of the keyframes observing those
points.

Full Bundle Adjustment

The loop closing thread launches a full bundle adjustment after a loop closure to
compute a robust and accurate solution. In the full bundle adjustment, all points
and keyframes in the map are optimized with the exception of the first keyframe
that remains fixed. This optimization is performed in a separate thread to allow the
system to continue map creation and loop detection. The decision to perform the
optimization in a separate thread requires the capability to merge the output of the
optimization with the latest state of the map. The detection of a new loop implies
the abortion of the optimization. The full bundle adjustment is then launched
again after the loop closure. Once the optimization is completed, the updated set
of keyframes and points is fused with the non-updated set of keyframes and points
that were added during the optimization. This process is performed by propagating
the correction to the non-updated set of keyframes in the spanning tree. The
non-updated set of points is then corrected on the basis of the transformation
applied to the reference frame.

82

Visual-Inertial Odometry State of the Art Algorithms

3.3.5 Experimental results

Unfortunately bad experimental results are obtained by running the algorithm in a
monocular setup. The algorithm suffers from severe scale drift and easily gets lost
in areas poor of features. These problems are mainly due to the lack of the inertial
sensor. The adoption of an inertial sensor can definitely solve the above problems
as it is scene-independent and provides metric information.

3.4 ORB-SLAM3

This section presents ORB-SLAM3 that is the first open-source SLAM library
capable of performing Visual, Visual-Inertial, and Multiple Map SLAM with
different types of sensors, including monocular, stereo, and RGB-D cameras. The
system is inspired by ORB-SLAM2 [44] and ORB-SLAM-VI [45]. There are several
novelties with respect to the previous approaches. The first novelty is a monocular
and stereo tightly-coupled visual-inertial SLAM solution that performs accurate
and robust pose estimation in a wide variety of environments. The second novelty
is the creation of ORB-SLAM Atlas that is the first multi-map SLAM system with
a high-recall place recognition that allows the system to survive to long periods of
poor visual information. The third novelty is the abstraction of the camera model
that lets the system use any type of camera by simply providing the corresponding
camera module. The implementation of the algorithm is presented by Campos and
Elvira in their paper "ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual-Inertial and Multi-Map SLAM" [46].

3.4.1 Algorithm architecture

The architecture of the algorithm introduces a lot of novelties with respect to the
previous approach. The main novelty is the introduction of the Atlas multi-map
representation in the system. The set of disconnected maps represented includes
the so-called active map. The active map is the map in which the last frames are
localized. This map is constantly enlarged and improved by the local mapping
thread. The other maps in the Atlas are called non-active maps. The Atlas
includes also a database of keyframes that is used in different operations such as
relocalization, loop closure, and map merging. The main goal of the tracking thread
is the pose estimation. The computation of the pose is performed by minimizing the
reprojection error of the map points observed in the current frame. The other tasks
of the tracking thread are the processing of visual and inertial information and the
new keyframe decision. The tracking thread performs relocalization by using all
the maps in the Atlas in case of tracking failure. The relocalization is performed

83

Visual-Inertial Odometry State of the Art Algorithms

by using the Maximum Likelihood Perspective-n-Point algorithm (MLPnP) that
works independently of the camera model used as it uses projective rays as input.
The algorithm only requires the back-projection function that passes from pixels to
projection rays to perform relocalization. The active map is switched if the frame
is relocated in a non-active map. Conversely, if the frame hasn’t been relocated in
any of the maps in the Atlas, the initialization of a new active map is performed by
storing the last active map as non-active. The goals of the local mapping thread are
the insertion of new keyframes and points in the active map and the optimization
of the map by using a visual or visual-inertial local bundle adjustment. The other
tasks of the local mapping thread are the IMU initialization and the application of
a point and keyframe culling policy. The main goal of the loop and map merging
thread is the detection of common areas between the maps in the Atlas. The loop
correction is immediately performed if the detection of a common area involves the
active map. Otherwise, the loop correction is performed after the non-active maps
involved in the detection of the common area are merged into a single map that
becomes the active map. The loop and map merging thread launches a full bundle
adjustment in a separate thread after a loop correction to compute a robust and
accurate solution.

Figure 3.18: The architecture of the algorithm is composed
of the Atlas multi-map representation and three parallel
threads: tracking, local mapping, and loop and map merging

84

Visual-Inertial Odometry State of the Art Algorithms

3.4.2 Visual-Inertial SLAM

This section describes in detail the main features of the first open-source tightly-
coupled visual-inertial SLAM system capable of performing accurate and robust
pose estimation with a wide variety of cameras.

IMU Initialization

The visual-inertial SLAM requires a fast and accurate initial estimation of the visual
and inertial parameters to obtain robustness and accuracy in the solution. The
goal of this step is the computation of the initial values of the inertial parameters
such as body velocities, gravity direction, and IMU biases. The IMU initialization
is articulated in the following steps:

1) Vision-only MAP Estimation: The first step of the initialization is solving
the vision-only problem to improve the performance of the initialization. A pure
monocular SLAM is run for about 2 seconds to obtain a robust and accurate initial
map. The only problem of this map is the scale ambiguity that will be solved in
the next step. The result of this process is an up-to-scale map that consists of
about ten camera poses and hundreds of points. The optimization of the map is
performed by using a visual-only BA. The transformation of the poses to the body
reference is then performed obtaining the trajectory T 0:k = [R, p̄]0:k.

2) Inertial-only MAP Estimation: The second step of the initialization is the
estimation of the inertial parameters that is performed in the form of an inertial-only
MAP estimation by using only the trajectory T 0:k and the inertial measurements
between the keyframes. The inertial parameters are represented by the inertial-only
state vector:

Yk = {s, Rwg, b, v̄0:k} (3.37)

where s is the scale factor, Rwg is the gravity direction, b = (ba, bg) are the
accelerometer and gyroscope biases and v̄0:k are the body velocities estimated from
the corresponding trajectory T 0:k. The inertial-only MAP estimation problem
results in the optimization problem:

Y∗
k = argmin

Yk

ërpë2
Σp

+
kØ
i=1

ërIi−1,i
ë2

ΣIi−1,i

 (3.38)

85

Visual-Inertial Odometry State of the Art Algorithms

where rIi−1,i
is the inertial residual and rp is a prior residual imposing that IMU

biases are close to zero with a covariance specified by the IMU characteristics. The
update of the gravity direction and the scale factor during the optimization is
performed by using the following expressions:

Rnew
wg = Rold

wg Exp (δαg, δβg, 0)
snew = sold exp(δs)

(3.39)

At the end of the inertial-only optimization, the camera poses and the map points
are scaled with the estimated scale and rotated to align the z axis with the
estimated gravity direction and the IMU preintegration is performed again as biases
are updated to decrease linearization errors. The initial estimation of the visual
and inertial parameters is so obtained.

3) Visual-Inertial MAP Estimation: The third step of the initialization is the
refinement of the visual and inertial parameters. The refinement of these variables
is performed by using a visual-inertial optimization. The visual-inertial optimization
uses common biases for all keyframes and includes the prior residual used in the
inertial-only step.

Visual-Inertial SLAM

In visual-inertial SLAM, the state estimation includes the body pose and velocity
in the world frame and the gyroscope and accelerometer biases. The state vector is
then defined as:

Si
.= {Ti, vi, bgi , bai } (3.40)

The IMU preintegration is performed between the frames i and i + 1 to save a
significant amount of computational resources since it eliminates the necessity to
propagate repeatedly the IMU measurements. This process results in the rotation
∆Ri,i+1, velocity ∆vi,i+1 and position ∆pi,i+1 preintegration terms. The inertial
residual is defined as:

rIi,i+1 = [r∆Ri,i+1 , r∆vi,i+1 , r∆pi,i+1] (3.41)

86

Visual-Inertial Odometry State of the Art Algorithms

where:

r∆Ri,i+1 = Log(∆RT
i,i+1R

T
i Ri+1)

r∆vi,i+1 = RT
i (vi+1 − vi − g∆ti,i+1) − ∆vi,i+1

r∆pi,i+1 = RT
i

1
pj − pi − vi∆t− 1

2g∆t2
2

− ∆pi,i+1

(3.42)

The visual residual is instead represented by the reprojection error rij between the
frame i and the map point j defined as:

rij = uij − Π (TCBT
−1
i ⊗ xj) (3.43)

where Π : R3 → Rn is the projection function of the specific camera model, uij is
the observation of point j in the frame i and TCB is the rigid body transformation
from the IMU to the camera frame. The visual-inertial SLAM can be considered a
keyframe-based minimization problem defined as:

min
S̄k,X

 kØ
i=1

ërIi,i+1ë2
ΣIi,i+1

+
l−1Ø
j=0

Ø
i∈Kj

ρHub
1
ërijëΣij

2 (3.44)

where S̄k is the set of states associated with the set of keyframes and X is the set
of states associated with the set of map points involved in the optimization. The
Huber norm is only used for the visual residual to reduce the impact of the outliers.

Tracking and Mapping

The visual-inertial optimization requires to be adapted for efficiency in the tracking
and local mapping thread. In the tracking thread, the optimization is adapted
by involving only the states of the latest frames maintaining fixed map points. In
the local mapping thread, the optimization is adapted by using a sliding window
of keyframes in which the covisible keyframes are fixed. The simplification of the
visual-inertial optimization is required by the local mapping thread to handle large
maps. In addition, the local mapping thread performs an IMU scale refinement
every ten seconds until a large number of keyframes is inserted in the map to obtain
a robust and accurate initialization of the inertial parameters even in presence
of slow motion. The scale refinement consists in an inertial-only optimization in
which the scale and the gravity direction are the only parameters to compute. All
the keyframes of the map and the IMU biases remain fixed in the optimization.

87

Visual-Inertial Odometry State of the Art Algorithms

3.4.3 Map Merging and Loop Closing

One of the main novelties in the ORB-SLAM3 library is a new place recognition
algorithm with a high recall for loop closing. The place recognition is launched
every time a new keyframe is inserted to detect a loop candidate among all the
keyframes in the Atlas. This approach is considered innovative for several reasons.
For example, the loop closing is immediately performed only when the candidate
keyframe is part of the active map. Conversely, when a multi-map data association
is found, the active map and the matching map are merged before closing the
loop. The innovations of the new place recognition algorithm are the reasons
for the better accuracy of the ORB-SLAM3 library with respect to the previous
implementations. This section provides a detailed description of the loop closing
process.

Place Recognition

Every time a new keyframe is inserted in the active map, the place recognition
is performed by querying the DBoW2 keyframe database for the most similar
keyframes in the Atlas among the non-covisible ones. The new keyframe in the
active map is denoted as Ka and each of the candidates for place recognition is
denoted as Km. The definition of a local window that includes the candidate and
its covisible keyframes and the map points observed by them is performed. The
candidate then undergoes a consistent geometrical verification. The geometrical
verification consists in the search of a set of matches between the keypoints in the
new keyframe and the keypoints in the local window of keyframes. The matches are
searched by comparing the ORB descriptors of the keypoints in a search window.
The computation of the transformation Tam that aligns the map points of the
local window and those of the active keyframe is then performed by using the
Horn algorithm in a RANSAC scheme. The hypotheses for the transformation are
determined by using a minimal set of three matches. The matches for which the
reprojection error obtained by applying the hypothesis to the map point in the
new keyframe is below a certain threshold assign a positive vote to the hypothesis.
The transformation Tam is chosen as the hypothesis with the highest number of
votes. The refinement of the transformation is performed by solving a non-linear
optimization problem in which all the matches obtained in a guided matching
refinement are used. The goal function of the optimization is the bidirectional
reprojection error. The refinement can be performed for a second time by using
a smaller search window if the number of inliers after the optimization is over a
threshold. Finally, the validation of the place recognition is performed in three
covisible keyframes. The candidate for place recognition is accepted if there are at

88

Visual-Inertial Odometry State of the Art Algorithms

least two keyframes covisible with the new keyframe in the active map in which the
number of matches with the points in the local window is above a threshold. In
the visual-inertial case, the validation of the candidate goes also through a gravity
direction verification. The verification is performed by checking if the pitch and
roll angles are below a defined threshold.

Map Merging

In case the place recognition finds a multi-map data association, the active map and
the matching map are merged into a single map before closing the loop. The map
merging is performed by bringing the active map into the matching map reference
so that the information in the matching map can be immediately reused to prevent
map duplication. The first step of the map merging is the assembly of a welding
window in which the merge is performed before the correction is propagated to
the rest of the map. The welding window is composed of the new keyframe and
the matching keyframe along with their covisible keyframes and the map points
observed by all of them. The active map and the matching map are merged in
the welding window to become the new active map. The removal of duplicated
points is performed by searching for the points of the active map in the matching
map. For every match, only the point of the matching map is retained. The update
of the covisibility and the essential graph is also performed by adding the new
edges between the keyframes in the active map and those in the matching map.
The optimization of the keyframes in the welding window is then performed by a
local BA. The poses, velocities, and biases of the new keyframe and the matching
keyframe along with those of their five last temporal keyframes are involved in the
optimization. The keyframe in the matching map that is immediately outside the
welding window is fixed in the optimization. The corresponding keyframe in the
active map is also included in the optimization but its pose remains optimizable.
The map points observed by all the keyframes involved in the optimization are also
optimized. Finally, a global pose graph optimization is performed to propagate the
correction from the welding window to the rest of the map.

Loop Closing

The process of loop closing is performed in a similar way to that of map merging.
The only difference is that the new keyframe and the loop candidate now belong
to the same map. The first step of the loop closing is the assembly of a welding
window. The fusion of the duplicated points is performed adding new edges in the
covisibility graph. The pose graph optimization is then run to propagate the loop
correction to the rest of the map. The final step of the loop closing is a global BA
that performs the pose estimation by using all the loop closure matches. This step

89

Visual-Inertial Odometry State of the Art Algorithms

is not always performed in the visual-inertial case to reduce the computational
burden of the process.

3.4.4 Experimental results

The experimental results obtained by running the algorithm on a laptop set up
with ROS Melodic are displayed in ORB-SLAM3 Map Viewer. The right side of
the figure shows the input image of the camera in a monocular setup. The left
side of the figure shows the output of the algorithm that consists of the odometry
data represented by the green line and the point cloud map of the environment
represented by black and red sparse points. The most interesting thing is the
observation of the essential graph of the whole map that is composed of the
spanning tree of keyframes represented by the blue rectangles and the subset of
edges of the covisibility graph with higher covisibility represented by the tangle of
green lines. The loop closure is represented by the link connecting the first and the
last keyframe.

Figure 3.19: Illustration of the algorithm performance in ORB-SLAM3 Map
Viewer - The output of the algorithm consists of the odometry data represented by
the green line and the point cloud map of the environment represented by black
and red sparse points

90

Chapter 4

Intel® RealSense™ T265
Tracking Camera

The Intel® RealSense™ T265 Tracking Camera is a tracking sensor that uses visual
and inertial sensor fusion to perform the pose estimation of the host system. The
hardware design includes two fisheye cameras (OV9282) with a 163-degree FOV,
an IMU module (Bosch BMI055), and an Intel® Movidius™ Myriad™ 2.0 Vision
Processing Unit (VPU). There are a lot of reasons because this sensor is considered
ideal for aerial robots. First of all, the camera is 108 x 25 x 13 mm in size and
weighs around 60 g. The small size and lightness of the sensor mean that this is the
first device capable of performing the pose estimation completely with embedded
computers. In addition, this sensor provides high performance with low latency
and low power consumption. The low power consumption is a crucial characteristic
because, as well as long battery life, it enables the use of small batteries thus reduc-
ing the overall size of the system. Finally, the wide field of view of the fisheye lenses
allows for feature tracking even in presence of high-speed motion. The tracking
camera features a highly optimized proprietary VI-SLAM algorithm running on the
Intel® Movidius™ Myriad™ 2.0 VPU for robust and accurate odometry estimation.
The interface between the camera and the host system is realized by the Intel®
RealSense™ Software Development Kit 2.0. The RealSense™ T265 tracking camera
can be jointly used with the RealSense™ D400 depth camera for advanced applica-
tions such as occupancy mapping construction and obstacle sensing and avoidance.
In Table 4.1 the Intel® RealSense™ T265 Tracking Camera datasheet is presented.
This chapter provides a discussion of the camera modeling and calibation and the
IMU noise modeling using the Allan variance. At the end of the chapter, the re-
sults of the camera calibration and the IMU performance analysis are presented [47].

91

Intel® RealSense™ T265 Tracking Camera

Figure 4.1: Illustration of the Intel® RealSense™
T265 Tracking Camera - The coordinate system is
composed of x direction towards the right imager, y
direction upwards toward the top of the device, and
z direction inwards toward the back of the device

Intel® RealSense™ T265 Tracking Camera
Datasheet

Model T265 Tracking Camera Depth FOV D:163
Dimensions 108 x 25 x 13 mm Color Monochrome
Weight 60 g Resolution 848 x 800
Voltage 5 V Baseline 64 mm
Current 300 mA Video Format 8bit, 10-bit RAW

Temperature 0 - 35 °C Shutter type Global Shutter
Power 1.5 W Filter type IR Cut Filter

Interface Type USB 3.0 IMU model Bosch BMI055
Imagers OV9283 Fisheye IMU Sample Rate 200 Hz

Table 4.1: Intel® RealSense™ T265 Tracking Camera datasheet [48]

92

Intel® RealSense™ T265 Tracking Camera

4.1 Camera Modeling and Calibration

This section provides a detailed description of the camera modeling and calibration.
First of all, the simplest projection model, called the pinhole camera model, is
discussed. In addition, the main distortions, called radial and tangential distortion,
are presented. Finally, the camera calibration procedure used to obtain the internal
and external camera parameters is described. The main goal of this dissertation is
that of recovering the 3D geometry of the world from the 2D images captured by
the camera.

4.1.1 Pinhole Camera Model

Figure 4.2: The pinhole camera model is the simplest projection
model that describes the projection of a 3-D point into the image
plane of a pinhole camera [49]

The pinhole camera model is the simplest projection model that describes the
projection of a point of the three-dimensional space into the image plane of a
pinhole camera. The model assumes that the rays of light emitted by the point
pass without deflections through a pinhole placed between the scene and the image
plane. Sometimes the image plane is placed in front of the pinhole at a distance
equal to the focal length in order to obtain the unrotated image of the scene.
In this particular case, the image plane is called the virtual image plane. The
pinhole camera model uses the extrinsic and intrinsic parameters to define the
transformation between the scene and the image plane.

93

Intel® RealSense™ T265 Tracking Camera

Figure 4.3: The extrinsic parameters are used to define the rigid body transfor-
mation between the 3-D world reference frame and the 3-D camera coordinate
frame and the intrinsic parameters are used to define the projective transformation
between the 3-D camera coordinate frame and the 2-D pixel coordinate frame.

Extrinsic parameters

The first step consists in mapping the point from the world reference frame to
the camera coordinate frame using the extrinsic parameters of the camera. The
extrinsic parameters are the camera position and orientation with respect to the
world reference frame. These parameters are external parameters that change as
the camera moves in space. Using the homogeneous coordinates, the rigid body
transformation between the world reference frame and the camera coordinate frame
is defined as:

Pc =

xc
yc
zc
1

 =
C
R t
0 1

D
xw
yw
zw
1

 =
C
R t
0 1

D
Pw (4.1)

where the extrinsic parameters are the rotation matrix R and the translation vector
t. There are different methods for obtaining the camera orientation angles around
the pitch, roll and yaw axes from the rotation matrix and vice versa. The goal
of the localization is that of performing the pose estimation of the drone after
recovering the extrinsic parameters of the camera [50].

94

Intel® RealSense™ T265 Tracking Camera

Intrinsic parameters

The second step consists in mapping the point from the camera reference frame
to the image plane using the intrinsic parameters of the camera. The intrinsic
parameters are the focal lengths in pixels fx and fy, the principal point coordinates
cx and cy and the skew coefficient, s, which is non-zero if the pixel axes are not
perpendicular. Most cameras have identical focal lengths and zero-skew. These
parameters are intrinsic properties of the camera that don’t change during the
pose estimation. This means that they can be computed once for all during
the calibration procedure. Using the homogeneous coordinates, the projective
transformation between the camera reference frame and the image plane is defined
as:

P Í = zc

uv
1

 =

fx s cx 0
0 fy cy 0
0 0 1 0

xc
yc
zc
1

 =

fx s cx 0
0 fy cy 0
0 0 1 0

Pc = MPc (4.2)

The transformation matrix can be decomposed into:

M =

fx s cx 0
0 fy cy 0
0 0 1 0

 =

fx s cx
0 fy cy
0 0 1

1 0 0 0

0 1 0 0
0 0 1 0

 = K
è
I 0

é
(4.3)

where:

K =

fx s cx
0 fy cy
0 0 1

 (4.4)

is called the intrinsic matrix. It is possible to notice that the camera provides infor-
mation up to a scale factor. This means that multiplying the camera coordinates
by a scalar results in the same image coordinates [50].

95

Intel® RealSense™ T265 Tracking Camera

Figure 4.4: Illustration of the pinhole camera model - The extrinsic
parameters define the transformation between the world coordinate
system and the camera coordinate system and the intrinsic parameters
define the transformation between the camera coordinate system and
the pixel coordinate system

In conclusion, it can be said that the pinhole camera model uses the extrinsic
and intrinsic parameters of the camera to describe the transformation between
the world reference frame and the pixel coordinate frame. This transformation is
defined as:

P Í = zc

uv
1

 =

fx s cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

xw
yw
zw
1

 = K
è
R t

é
Pw (4.5)

where P = K[R t] is called the projection matrix. This matrix provides the pixel
coordinates up to a scale factor, as mentioned before. This problem can be solved
immediately by normalizing the obtained pixel coordinates in such a manner that
the final coordinate equals one [49].

96

Intel® RealSense™ T265 Tracking Camera

4.1.2 Lens Distortions

Real cameras use lenses with defects in design and manufacturing that cause
distortion in the image. Lens distortion is "an optical aberration that causes the
lens a deviation from the rectilinear projection" [51]. The main types of distortion
are radial and tangential distortion. The radial distortion is divided into barrel
distortion and pincushion distortion depending on whether the image magnification
decreases or increases as a function of the distance from the principal point. The
fisheye cameras are heavily affected by barrel distortion. The tangential distortion
is an asymmetrical effect that consists in non-parallelism between the lens and the
image plane [49].

Figure 4.5: Illustration of the radial (a) and tangential (b) distortion
- The radial distortion can be classified as barrel distortion when the
image magnification decreases and pincushion distortion when the
image magnification increases [49]

The radial and tangential distortions are modeled with the Brown–Conrady dis-
tortion model. The Brown–Conrady distortion model was first presented in 1971
by Brown in his paper "Close-Range Camera Calibration" [52]. This model uses a
third order approximation for the first one and a second order approximation for
the second one resulting in:

xd = x(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xy + p2(r2 + 2x) (4.6)

yd = y(1 + k1r
2 + k2r

4 + k3r
6) + 2p2xy + p1(r2 + 2y) (4.7)

where xd and yd are the coordinates of the distorted point, x and y are the
coordinates of the undistorted point, ki and pi are the radial and tangential
distortion coefficients of the lens and r is the distance between the undistorted
point and the image center [50].

97

Intel® RealSense™ T265 Tracking Camera

4.1.3 Camera calibration

Camera calibration is the process of computing the intrinsic and extrinsic parameters
of the camera. There are different types of calibration procedures. The calibration
of the Intel RealSense T265 Tracking Camera has been performed using the
checkerboard-based method. The checkerboard calibration consists in using a
collection of pictures of a checkerboard pattern captured with the camera from
different points of view. The checkerboard pattern contains a set of points located at
the corners of the squares whose world coordinates and pixel location in the images
are used to calculate the camera parameters. In the following, the checkerboard-
based method is described step-by-step.

Figure 4.6: Illustration of the cali-
bration checkerboard - The camera pa-
rameters are calculated using the world
coordinates and pixel location of a set
of points located at the corners of the
squares in the checkerboard pattern

The first step consists in placing a checkerboard pattern on a planar surface such
as a wall or a hardcover book. The 9x6 checkerboard illustrated in Figure 4.6 has
been attached to a white wall in the room. The points of the checkerboard lie on
the same plane so that it can be arbitrarily chosen Z=0 for every point. The (X,
Y) coordinates of the points are obtained by defining the location of the corners
with respect to a reference point (0,0). The procedure is easy because the points
are equally spaced on the checkerboard. The coordinates obtained need to be
multiplied by the square size as they are in the scale of the size of the checkerboard
square. The square size of the checkerboard used for the calibration was 26 mm.

98

Intel® RealSense™ T265 Tracking Camera

The second step consists in capturing a collection of pictures of the checkerboard
under different points of view by moving either the camera or the checkerboard.
Several pictures of the checkerboard were taken at different orientations by moving
the camera in the room while keeping the checkerboard static on the wall. The
pictures were captured under different light conditions in order to obtain a robust
and accurate calibration.

Figure 4.7: Samples of pictures used for calibration - The
pictures were taken at different orientations by moving the
camera in the room while keeping the checkerboard static on
the wall

The third step is the process of computing the pixel location of the checker-
board corners in the images. This process is performed using the builtin function
cv2.findChessboardCorners() provided by OpenCV. The input data required are a
picture of the checkerboard and the pattern size. The function locates the checker-
board corners in the image after having determined whether the image is a view
of the checkerboard pattern. In fact, the output data are the array of the corner
locations and the retval value which is true or false depending on whether the

99

Intel® RealSense™ T265 Tracking Camera

pattern has been found or not in the image. At this point, it is possible to perform
the refinement of the chessboard corners using the function cv2.cornerSubPix()
that achieves a sub-pixel level of accuracy. The input data required are the image
of the checkerboard and the location of corners in the image. The algorithm
calculates iteratively the best location of the points in the neighborhood of the
original location. Consequently, the termination criteria for the process of corner
refinement (e.g. the number of iterations or the accuracy of the location) must be
specified. In conclusion, there is the possibility to draw the pattern on the images
using the function cv2.drawChessboardCorners() provided by OpenCV. The input
data required are the image of the checkerboard, the pattern size, and the location
of corners in the image. The function draws the corners on the checkerboard as
colored circles connected with lines. The pictures obtained from the third step of
camera calibration are shown in Figure 4.8.

Figure 4.8: Samples of pictures obtained from the third step
of camera calibration - The chessboard corners detected in the
pattern are drawn on the pictures as colored circles connected
with lines

100

Intel® RealSense™ T265 Tracking Camera

The final step consists in the calibration of the camera. This process is performed
by using the function cv2.calibrateCamera() provided by OpenCV. The function
calculates the intrinsic and extrinsic parameters of the camera for different views
of the checkerboard using the world coordinates and the pixel locations of the
corners obtained in the previous steps. The implementation that is described in this
section is based on the paper "A Flexible New Technique for Camera Calibration"
by Zhengyou Zhang [53]. The relationship between a chessboard corner and its
image correspondence is described by:

λ

uv
1

 = K
è
r1 r2 r3 t

é
X
Y
0
1

 = K
è
r1 r2 t

é XY
1

 (4.8)

where the homography H = [h1 h2 h3] = K[r1 r2 t] is a 3 × 3 matrix defined
up to a scale factor. The homography can be estimated from an image of the
model plane with a technique based on the maximum likelihood criterion. Once
the homography has been computed, it is possible to define the two fundamental
constraints on the intrinsic parameters. The definition of the constraints is based
on the observation that r1 and r2 are orthonormal. This results in the equations:

hT1K
−TK−1h2 = 0 (4.9)

hT1K
−TK−1h1 = hT2K

−TK−1h2 (4.10)

That said, the closed-form solution to the problem of camera calibration is now
presented. Define:

B = K−TK−1 =

1
f2

x
− s
f2

xfy

cys−cxfy

f2
xfy

− s
f2

xfy

s2

f2
xf

2
y

+ 1
f2

y
− s(cys−cxfy)

f2
xf

2
y

− cy

f2
y

cys−cxfy

f2
xfy

− s(cys−cxfy)
f2

xf
2
y

− cy

f2
y

(cys−cxfy)2

f2
xf

2
y

+ c2
y

f2
y

+ 1

 (4.11)

The symmetric matrix B is characterized by the vector:

b =
è
B11, B12, B22, B13, B23, B33

éT
(4.12)

101

Intel® RealSense™ T265 Tracking Camera

In this case, the following equation applies:

hTi Bhj = vTijb (4.13)

with

vij =
#
hi1hj1, hi1hj2 + hi2hj1, hi2hj2, hi3hj1 + hi1hj3, hi3hj12 + hi2hj3, hi3hj3

$T (4.14)

Based on the above, the two fundamental constraints on the intrinsic parameters
can be rewritten as two homogeneous equations in b:

C
vT12

(v11 − v22)T
D
b = 0 (4.15)

At this point, assuming that n is the number of images observed, it is possible to
stack the n above equations obtaining the following system:

V b = 0 (4.16)

where V is a 2n×6 matrix. The solution to the system of equations is the eigenvector
of V TV associated with the smallest eigenvalue. The estimate of the vector b is
used to compute the intrinsic parameters of the camera as follows:

cy = B12B13 −B11B23/B11B22 −B2
12 (4.17)

λ = B33 −B2
13 + cy(B12B13 −B11B23)/B11 (4.18)

fx =
ñ
λ/B11 (4.19)

fy =
ñ
λB11/B11B22 −B2

12 (4.20)

s = −B12f
2
xfy/λ (4.21)

cx = scy/fy −B13f
2
x/λ (4.22)

102

Intel® RealSense™ T265 Tracking Camera

Finally, the extrinsic parameters are easily calculated for each image from the
intrinsic matrix K:

r1 = λK−1h1 (4.23)
r2 = λK−1h2 (4.24)
r3 = r1 × r2 (4.25)
t = λK−1h3 (4.26)

where λ = 1/ëK−1h1ë = 1/ëK−1h2ë. The results obtained from the camera
calibration are presented in Table 4.2.

fx fy cx cy
276.15397757 276.08295983 417.72146588 406.29712124

Table 4.2: Intel® RealSense™ T265 Tracking Camera calibra-
tion results

4.2 IMU Allan Variance Analysis

The Allan variance is a time-domain analysis technique that was first presented
in the 1960s by the physicist David W. Allan to study the frequency stability of
precision oscillators. This technique can also be used to determine the characteristics
of the noise processes that affect the inertial sensor measurements. This section
provides a detailed description of the inertial sensor noise modeling and analysis
using the Allan variance technique based on the paper "Analysis and Modeling of
Inertial Sensors Using Allan Variance" by El-Sheimy et al. [54].

4.2.1 Allan Variance

Assume that the inertial sensor provides N samples of data with a sampling time
t0. The sequence of data can be divided into clusters of n consecutive data points
with n < (N − 1)/2. The data points contained in each cluster can be averaged
over the length of the cluster. The Allan variance is defined as the two-sample
variance of the data cluster averages:

σ2(T) = 1
2T 2(N − 2n)

N−2nØ
k=1

[Ωnext(T) − Ωk(T)]2 (4.27)

103

Intel® RealSense™ T265 Tracking Camera

where Ωk(T) and Ωnext(T) are the cluster averages of two consecutive clusters
defined as:

Ωk(T) = θk+n − θk
T

(4.28)

Ωnext(T) = θk+2n − θk+n

T
(4.29)

The noise parameters of the inertial sensor are determined by extrapolation from
the Allan standard deviation plot that is the log-log plot of the square root of the
Allan variance as a function of the time T.

Figure 4.9: The Allan standard deviation
plot is the log-log plot of the square root of
the Allan variance as a function of the time T

4.2.2 Representation of Noise Terms

The different types of random processes are identified in different areas of the plot
by using the relationship between the Allan variance and the two-sided power
spectral density (PSD) of the random process defined as:

σ2(T) = 4
Ú ∞

0
SΩ(f) sin4(πfT)

(πfT)2 df (4.30)

104

Intel® RealSense™ T265 Tracking Camera

Angle (Velocity) Random Walk

The thermo-mechanical noise fluctuating at a higher rate than the sampling rate
of the sensor results in a white noise sequence that characterize the gyroscope
angle (or accelerometer velocity) random walk. The power spectral density (PSD)
associated with this noise is:

SΩ(f) = N2 (4.31)

where N is the angle (or velocity) random walk coefficient. The substitution of this
expression in the original equation results in:

σ2(T) = N2

T
(4.32)

This equation is a line with a slope of -1/2 on the Allan standard deviation plot.
The value of the angle (or velocity) random walk coefficient can be determined by
reading the slope line at T=1.

Figure 4.10: The value of the angle (or ve-
locity) random walk coefficient can be deter-
mined by reading the line with slope of -1/2
at T=1 [55]

105

Intel® RealSense™ T265 Tracking Camera

Bias instability

The flicker noise that arises in electronic components causes bias fluctuations that
are appreciable at low frequencies. The power spectral density (PSD) associated
with this noise is:

SΩ(f) =

1
B2

2π

2
1
f

f ≤ f0

0 f > f0
(4.33)

where B is the bias instability coefficient and f0 is the cutoff frequency. The
substitution of this expression in the original equation results in:

σ2(T) = 2B2

π

C
ln 2 − sin3 x

2x2 (sin x+ 4x cosx) + Ci(2x) − Ci(4x)
D

(4.34)

where x = πf0T and Ci is the cosine-integral function. This equation is a line with
a slope of 0 on the Allan standard deviation plot. The value of the bias instability
coefficient can be determined by reading the value at the intersection of the line
with slope 0 and the Allan standard deviation curve. A scale factor of 0.664 must
be considered.

Figure 4.11: The value of the bias instabil-
ity coefficient can be determined by reading
the minimum value of the Allan standard de-
viation curve with a scale factor of 0.664 [55]

106

Intel® RealSense™ T265 Tracking Camera

Rate random walk

The rate random walk is a random process of uncertain origin characterized by
the red noise spectrum of the sensor output. The power spectral density (PSD)
associated with this process is:

SΩ(f) =
A
K

2π

B2 1
f 2 (4.35)

where K is the rate random walk coefficient. The substitution of this expression in
the original equation results in:

σ2(T) = K2T

3 (4.36)

This equation is a line with a slope of +1/2 on the Allan standard deviation plot.
The value of the rate random walk coefficient can be determined by reading the
slope line at T=3.

Figure 4.12: The value of the rate random
walk coefficient can be determined by reading
the slope line at T=3 [55]

107

Intel® RealSense™ T265 Tracking Camera

The Allan standard deviation plot with the noise parameters obtained with the
Allan variance analysis is illustrated in the following figure:

Figure 4.13: Illustration of the Allan stan-
dard deviation plot with the noise parameters
obtained with the Allan variance analysis [55]

4.2.3 Noise Analysis Results

The IMU performance of the Intel RealSense T265 Tracking Camera has been ana-
lyzed with the ROS package tool imu_utils based on the Allan variance technique.
The results of the Allan variance analysis are presented in Table 4.3.

gyro_noise gyro_walk acc_noise acc_walk
1.8491e-03 2.5482e-05 1.09387e-02 5.8973e-04

Table 4.3: Intel® RealSense™ T265 Tracking Camera
IMU parameters

108

Chapter 5

Results and Discussion

This chapter starts with a brief description of the methodology used for data
collection and analysis. After the data collection and analysis overview, in which
the testing environment is described in detail, the results of the experimentation
are presented and discussed. The comparison between the different visual-inertial
odometry state of the art algorithms is introduced. The algorithm that shows
the best performance in terms of accuracy is then tested in both Mono+IMU and
Stereo+IMU modes. Finally, the experimentation ends by testing the algorithm
on the EuRoC MAV MH 01 dataset to verify the results obtained in a realistic
situation.

5.1 Data collection and analysis
The experimental phase was performed in a home indoor environment with artificial
lighting using an Intel T265 Tracking Camera. The camera was mounted on an
HP Envy 15 Notebook PC in which Ubuntu 18.04 operating system with ROS
Melodic was installed. The testing environment was a one-room apartment in
which a red line, representing the ground truth reference, was drawn on the floor.
In the room, a large number of furniture and objects were placed on the floor and
different markers were fixed on the walls to help the camera not getting lost in
areas poor of features. An illustration of the testing environment is provided in
Figure 5.1. The methodology used for data collection and analysis is now briefly
described. First of all, the ground truth reference was measured manually with a
measuring tape. Subsequently, the testing was performed. The test consisted in
walking along the ground truth path holding the laptop with the camera looking
downward. The data were recorded once in a rosbag file that was then used to run
the different visual-inertial odometry algorithms offline. For every algorithm, the

109

Results and Discussion

odometry data were saved in a text file that was then imported in MATLAB for
data processing. The analysis of data was performed by computing the position
error with respect to the ground truth reference.

Figure 5.1: The testing environment was a room in
which a large number of furniture and objects were
placed on the floor and different markers were fixed on
the walls to help the camera not getting lost in areas
poor of features.

5.2 Comparison of the algorithms’ performances

The goal of the experimentation is to provide a comparison between different
visual-inertial odometry state of the art algorithms to assess which one is the best
solution in terms of accuracy for navigation in GPS-denied environments. The
following algorithms were tested:

• Intel T265 Proprietary Algorithm

• SVO

• VINS-Fusion

• ORB-SLAM2

• ORB-SLAM3

110

Results and Discussion

The comparison of the algorithms with respect to the ground truth reference is
presented in Figure 5.2.

Figure 5.2: Comparison of the state of the art VIO al-
gorithms - The odometry data of the different algorithms
were compared to each other with respect to the ground
truth reference

The performance of the algorithms was evaluated by computing the position error
with respect to the ground truth reference. In this particular case, the points of the
ground truth path were not known except for the corners because the measurements
had been performed manually with a measuring tape. For this reason, the process
followed for the computation of the position error is now briefly described. First of
all, for each point of the trajectory, the code looked for the closest corner of the
ground truth path. Secondly, the errors along the x and y axes were computed by
subtraction. Finally, the position error was chosen as the minimum value between
the obtained errors. This process, partially illustrated in Figure 5.3, is described in
detail in the MATLAB code presented on the following page. The choice of the
best algorithm was made by considering the mean error and the standard deviation
of the odometry data with respect to the ground truth reference. The results of
the error analysis are presented in Table 5.1.

111

Results and Discussion

Figure 5.3: Position error estimation - The plot shows
the errors along the x and y axes of a given point of the
trajectory with respect to the ground truth reference.

1 %% Error analysis of the state of the art VIO algorithms

3 figure (2)
sgtitle (’Error analysis of the state of the art VIO

algorithms ’)
5 subplot (1 ,4 ,1)

for i =1:100: length (t1) -1
7 err1(i ,:) = [min ([abs(yt1(i)-b) abs(xt1(i)-a)]) min ([abs

(yt1(i+1) -b) abs(xt1(i+1) -a)])];
plot ([t1(i) t1(i+1)], [min ([abs(yt1(i)-b) abs(xt1(i)-a)

]) min ([abs(yt1(i+1) -b) abs(xt1(i+1) -a)])],’ko’,’
MarkerSize ’ ,5);

9 xlabel (’time [s]’)
ylabel (’|E| [cm]’)

11 xlim ([0 60])
ylim ([0 35])

13 title(’INTEL T265 ’)
hold on

15 pause (0.02)
end

112

Results and Discussion

Figure 5.4: Error analysis of the state of the art VIO algorithms -
The choice of the best algorithm was made by considering the mean
error and the standard deviation of the odometry data with respect
to the ground truth reference.

113

Results and Discussion

Mean Error [cm] STD [cm]
Intel T265 5.9076 5.4471

SVO 7.0145 7.8013
VINS-Fusion 5.2388 3.6595

ORB SLAM 3 8.2290 9.6044

Table 5.1: Error analysis results of the dif-
ferent VIO algorithms

The best performance in terms of accuracy is provided by VINS-Fusion which
presents the smallest average error and standard deviation with respect to the
ground truth reference. The performances of Intel T265 and SVO provide also
reasonable results so these algorithms can be considered in case VINS-Fusion
does not satisfy the computational constraints of the aerial platform. The worst
performance is provided by ORB SLAM 2 that has shown to easily get lost despite
the obstacles and markers placed around the room.

5.3 The choice of VINS-Fusion
A comparison of the performances of VINS-Fusion in Mono+IMU and Stereo+IMU
modes was performed with the aim of verifying the impact of the advantages of a
stereo camera on the accuracy of the performance. The results of the comparison
are presented in Figure 5.4

Figure 5.5: Comparison of the performances of VINS-
Fusion in Mono+IMU and Stereo+IMU modes

114

Results and Discussion

The performances of the algorithm in Mono+IMU and Stereo+IMU modes were
evaluated by computing the position error with respect to the ground truth reference.
The choice of the best performance was made by considering the mean error and
the standard deviation of the odometry data with respect to the ground truth
reference. The error analysis of the algorithm’s performances is illustrated in Figure
5.5.

Figure 5.6: Error analysis of VINS-Fusion in Mono+IMU and
Stereo+IMU modes - The choice of the best mode was made by
considering the mean error and the standard deviation of the odome-
try data with respect to the ground truth reference.

The results of the error analysis in terms of mean error and standard deviation are
summarised in Table 5.2.

VINS-Fusion Mean Error [cm] STD [cm]
Mono + IMU 9.3987 8.1544
Stereo + IMU 5.2388 3.6595

Table 5.2: Error analysis results of VINS-
Fusion in Mono+IMU and Stereo+IMU modes

The algorithm has proven to perform best in Stereo+IMU mode. In fact, the
performance of the algorithm in Stereo+IMU mode presents a mean error that is
almost halved compared to that of the performance of the algorithm in Mono+IMU

115

Results and Discussion

mode. This means that the advantages of using a stereo camera have a great
impact on the accuracy of the performance. There are different advantages of
using a stereo camera. First of all, unlike monocular cameras in which the features
are triangulated from time separated frames, in stereo cameras, the features are
triangulated from a stereo pair in a single time step. For this reason, the stereo
performance presents less drift than the monocular performance in case of small
motions. Secondly, in the stereo case, the motion is estimated by observing only
two time separated frames. Contrarily, in the monocular case, the motion needs
to be computed from at least three different frames. Finally, the stereo camera
is not affected by the scaling problem computing the transformation directly in
the absolute scale. The scale ambiguity problem is one of the main problems of a
monocular camera. In fact, in monocular vision, the scale of the transformation
between the first two frames is unknown. Therefore, setting the scale to an arbitrary
value means that the scale of the following transformations will be relative to the
initial one. The scale ambiguity problem can be solved by using information from
other sensors such as an IMU. The inertial sensor provides metric measurements.
This means that the absolute scale can be recovered by simply integrating the
measurements of the inertial sensor.

Figure 5.7: Comparison of ORB SLAM 2 Mono and
ORB SLAM 3 Mono+IMU - The integration of the
IMU in the implementation solves the scale ambiguity
problem providing good results in terms of accuracy

116

Results and Discussion

5.4 Results validation on the EuRoC datasets

The experimentation ended by testing the algorithm on the EuRoC MAV datasets
with the purpose of verifying the results obtained in a realistic situation. The
EuRoC MAV datasets, that were recorded in the context of the European Robotics
Challenge (EuRoC), were first published by Burri et al. in their paper "The EuRoC
Micro Aerial Vehicle datasets" [56]. These datasets include eleven visual-inertial
sequences captured on-board an AscTec Firefly hex-rotor helicopter by a visual-
inertial sensor mounted in a front-down looking position. The visual-inertial sensor
is composed of a stereo camera capturing monochrome images at 20 Hz and an IMU
providing angular velocity and linear acceleration measurements at 200 Hz. There
are two different types of datasets. The first type of dataset includes five sequences
recorded in a machine hall at ETH Zurich in which the ground truth reference
was measured by a Leica MS50 laser tracker. The second type of dataset includes
six sequences recorded in a Vicon room in which the ground truth reference was
measured by a Vicon motion capture system. The number of the sequences indicates
the level of difficulty in terms of flight dynamics and illumination conditions. The
sequence used for the validation of the results obtained is Machine Hall 01 which
allows testing the algorithm in a realistic industrial scenario. The algorithm was
tested on the dataset in both Mono+IMU and Stereo+IMU modalities. The results
of the comparison are presented in Figure 5.8.

Figure 5.8: Illustration of the machine hall at ETH
Zurich used to record the Machine Hall sequences of the
EuRoC MAV datasets

117

Results and Discussion

Figure 5.9: Comparison of the performances of VINS-
Fusion in Mono+IMU and Stereo+IMU modes on the
EuRoC MH 01 dataset

The performances of the visual-inertial algorithm in Mono+IMU and Stereo+IMU
modes were evaluated by computing the mean square error with respect to the
ground truth reference. The mean square error is defined as:

MSE =
ñ
e2
x + e2

y + e2
z (5.1)

where:

ex = x− xg (5.2)

ey = y − yg (5.3)

ez = z − zg (5.4)

The choice of the best modality was made by considering the mean error and
the standard deviation of the performances. The error analysis of the algorithm
performances is illustrated in Figure 5.9.

118

Results and Discussion

Figure 5.10: Error analysis of VINS-Fusion on the EuRoC MAV
MH 01 dataset in Mono+IMU and Stereo+IMU modes - The choice of
the best performance was made by considering the mean error and the
standard deviation of the odometry data with respect to the ground
truth reference.

The results of the error analysis in terms of mean error and standard deviation are
summarised in Table 5.3.

VINS-Fusion Mean Error [cm] STD [cm]
Mono + IMU 88.0425 64.1824
Stereo + IMU 83.8275 61.1559

Table 5.3: Error analysis results of VINS-
Fusion on the EuRoC MAV MH 01 dataset

The findings of the experiments have been validated on the EuRoC MAV MH 01
dataset. The best performance of the algorithm happens in Stereo+IMU mode
providing smaller values of mean error and standard deviation. Besides, the error
analysis shows that VINS-Fusion Stereo+IMU provides also a smaller maximum
error compared to VINS-Fusion Mono+IMU. Nevertheless, unlike the previous tests,
in this case, the difference between the two modalities is not as clear. This mismatch
depends on several factors such as the number of features in the environment and
the type of inertial sensor used to collect data.

119

Chapter 6

Conclusions and Future
Developments

In the previous chapter, the comparison of the performances of different visual-
inertial odometry algorithms showed that the best algorithm in terms of accuracy is
VINS-Fusion. The performances of the algorithms were evaluated when running on
a laptop with high computational resources. Unfortunately, the power and payload
constraints of flying robots do not allow the deployment of a laptop onboard.
For this reason, the evaluation of the algorithms requires to be performed on a
hardware platform that is typical of a flying robot. This chapter provides the
results of the research conducted by Delmerico and Scaramuzza in their paper "A
Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for
Flying Robots" [57]. In this research, the most promising open-source visual-inertial
odometry algorithms were tested on the EuRoC Micro Aerial Vehicle datasets when
running on different hardware configurations that are typical of aerial platforms.
The algorithms of our interest are VINS-Fusion and SVO that showed the best
performances in terms of accuracy among the others. The hardware platform
considered is the Up Board. The Up Board is a 64-bit single-board embedded
computer with a small form factor (8.5 x 5.6 cm in size and 78 g in weight) and
low power requirements (12 W) that includes a quad-core Intel Atom x5-Z8350
CPU running at 1.44 GHz. The results show the performances of VINS-Fusion
and SVO on a Up Board in terms of CPU load, memory usage, and per-frame
processing time while performing the state estimation. In the box-and-whisker
plots illustrated in Figure 6.1 the whiskers represent the upper and lower quartiles
and the box represents the two quartiles in the middle. The results regarding the
performances of the algorithms on the laptop are included as a reference.

120

Conclusions and Future Developments

Figure 6.1: Computational requirements of the algorithms in terms of CPU
load, memory usage and per-frame processing time while running on a laptop
and on a Up Board [57]

121

Conclusions and Future Developments

The results of the research are also presented in terms of a trade-off between
accuracy and computational efficiency. In the scatter plots illustrated in Figure
6.2 the computational requirements are plotted as a function of the Root Mean
Square Error (RMSE). Once again the results concerning the laptop are included
as a reference.

Figure 6.2: Computational requirements in terms of
CPU load, memory usage and per-frame processing
time plotted as a function of the Root Mean Square
Error (RMSE) [57]

122

Conclusions and Future Developments

There are some conclusions that can be drawn from the results concerning the choice
of the visual-inertial odometry algorithm. The performance of VINS-Fusion is the
best one in terms of accuracy and robustness at the cost of a high computational
burden. Consequently, the usage of this algorithm onboard for state estimation
needs a preliminary verification on how many computational resources would remain
for the other tasks of autonomous navigation. The performance of SVO can be
considered a trade-off between accuracy and computational efficiency. For this
reason, SVO can be taken into account in case VINS-Fusion does not satisfy the
computational constraints of the platform. A future research direction could be
testing VINS-Fusion onboard the flying robot used by the Polytechnic University
of Turin in the Leonardo Drone Contest to verify if the remaining computational
resources are sufficient for the other activities of autonomous navigation.

123

Bibliography

[1] K. Vyas. A Brief History of Drones: The Remote Controlled Unmanned
Aerial Vehicles. 2020. url: https://interestingengineering.com/a-
brief-history-of-drones-the-remote-controlled-unmanned-aerial-
vehicles-uavs (cit. on pp. 1–4).

[2] N. Budanovic. The Early Days Of Drones – Unmanned Aircraft From World
War One And World War Two. 2017. url: https://www.warhistoryonline.
com/military-vehicle-news/short-history-drones-part-1.html (cit.
on pp. 1, 2).

[3] D. Daly. A Not-So-Short History of Unmanned Aerial Vehicles. 2020. url:
https://consortiq.com/short-history-unmanned-aerial-vehicles-
uavs (cit. on p. 2).

[4] J. Alkobi. The Evolution of Drones: From Military to Hobby Commercial.
2019. url: https://percepto.co/the- evolution- of- drones- from-
military-to-hobby-commercial/ (cit. on pp. 3, 4).

[5] M. Rouse. The history of drones. 2019. url: https://internetofthingsag
enda.techtarget.com/definition/drone (cit. on p. 4).

[6] J. Shahmoradi, E. Talebi, P. Roghanchi, and M. Hassanalian. «A Compre-
hensive Review of Applications of Drone Technology in the Mining Industry».
In: Drones 4.3 (July 2020) (cit. on p. 5).

[7] V. Becerra. «Autonomous Control of Unmanned Aerial Vehicles». In: Elec-
tronics 8 (Apr. 2019), p. 452 (cit. on p. 5).

[8] L. Galtarossa, L.F. Navilli, and M. Chiaberge. «Visual-Inertial Indoor Navi-
gation Systems and Algorithms for UAV Inspection Vehicles». In: Industrial
Robotics - New Paradigms. Ed. by Antoni Grau and Zhuping Wang. Inte-
chOpen, 2020. Chap. 9 (cit. on pp. 5, 6).

[9] G. Balamurugan, J. Valarmathi, and V.P.S. Naidu. «Survey on UAV Naviga-
tion in GPS Denied Environments». In: 2016 International Conference on
Signal Processing, Communication, Power and Embedded System. Paralakhe-
mundi, India, Oct. 2016, pp. 198–204 (cit. on p. 5).

124

https://interestingengineering.com/a-brief-history-of-drones-the-remote-controlled-unmanned-aerial-vehicles-uavs
https://interestingengineering.com/a-brief-history-of-drones-the-remote-controlled-unmanned-aerial-vehicles-uavs
https://interestingengineering.com/a-brief-history-of-drones-the-remote-controlled-unmanned-aerial-vehicles-uavs
https://www.warhistoryonline.com/military-vehicle-news/short-history-drones-part-1.html
https://www.warhistoryonline.com/military-vehicle-news/short-history-drones-part-1.html
https://consortiq.com/short-history-unmanned-aerial-vehicles-uavs
https://consortiq.com/short-history-unmanned-aerial-vehicles-uavs
https://percepto.co/the-evolution-of-drones-from-military-to-hobby-commercial/
https://percepto.co/the-evolution-of-drones-from-military-to-hobby-commercial/
https://internetofthingsagenda.techtarget.com/definition/drone
https://internetofthingsagenda.techtarget.com/definition/drone

BIBLIOGRAPHY

[10] B. Liu and N. Paquin. «Viconmavlink: A software tool for indoor positioning
using a motion capture system». In: (Nov. 2018) (cit. on p. 6).

[11] R. Munguía, I. Urzua, Y. Bolea, and A. Grau. «Vision-Based SLAM System
for Unmanned Aerial Vehicles». In: Sensors 16 (Mar. 2016), p. 372 (cit. on
p. 6).

[12] Leonardo Drone Contest: an open innovation challenge by Leonardo. url:
https://www.leonardocompany.com/it/innovation/open-innovation/
drone-contest (cit. on p. 7).

[13] D. Scaramuzza and Z. Zhang. «Visual-Inertial Odometry of Aerial Robots».
In: Encyclopedia of Robotics. Ed. by M. H. Ang, O. Khatib, and B. Siciliano.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2020, pp. 1–9 (cit. on pp. 10,
50).

[14] J. Gui, D. Gu, S. Wang, and H. Hu. «A review of visual inertial odometry
from filtering and optimisation perspectives». In: Advanced Robotics 29 (Sept.
2015), pp. 1–13 (cit. on p. 10).

[15] D. Scaramuzza and F. Fraundorfer. «Visual Odometry: Part I - The First 30
Years and Fundamentals». In: IEEE Robot. Automat. Mag. 18 (Dec. 2011),
pp. 80–92 (cit. on pp. 11–13, 16, 30–33).

[16] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad. «An Overview to Visual
Odometry and Visual SLAM: Applications to Mobile Robotics». In: Intelligent
Industrial Systems 1 (Nov. 2015) (cit. on pp. 11, 12, 19, 23, 26, 37).

[17] S. Poddar, R. Kottath, and V. Karar. «Evolution of Visual Odometry Tech-
niques». In: CoRR abs/1804.11142 (Aug. 2018) (cit. on p. 11).

[18] L. Matthies and S. Shafer. «Error modeling in stereo navigation». In: IEEE
Journal on Robotics and Automation 3.3 (1987), pp. 239–248 (cit. on p. 12).

[19] D. Nister, O. Naroditsky, and J. Bergen. «Visual odometry». In: Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Vol. 1. 2004, pp. I–I (cit. on pp. 12,
29).

[20] Y. Cheng, M. Maimone, and L. Matthies. «Visual odometry on the Mars
Exploration Rovers». In: 2005 IEEE International Conference on Systems,
Man and Cybernetics. Vol. 1. 2005, 903–910 Vol. 1 (cit. on p. 12).

[21] D. Scaramuzza and R. Siegwart. «Appearance-Guided Monocular Omnidirec-
tional Visual Odometry for Outdoor Ground Vehicles». In: IEEE Transactions
on Robotics 24.5 (2008), pp. 1015–1026 (cit. on p. 12).

[22] M. Kaess, K. Ni, and F. Dellaert. «Flow separation for fast and robust
stereo odometry». In: 2009 IEEE International Conference on Robotics and
Automation. 2009, pp. 3539–3544 (cit. on p. 12).

125

https://www.leonardocompany.com/it/innovation/open-innovation/drone-contest
https://www.leonardocompany.com/it/innovation/open-innovation/drone-contest

BIBLIOGRAPHY

[23] P. Alcantarilla, L. Bergasa, and F. Dellaert. «Visual odometry priors for
robust EKF-SLAM». In: June 2010, pp. 3501–3506 (cit. on p. 12).

[24] C. Harris and M. Stephens. «A combined corner and edge detector». In: In
Proc. of Fourth Alvey Vision Conference. 1988, pp. 147–151 (cit. on p. 17).

[25] D. Tyagi. Introduction to Harris Corner Detector. Mar. 2019. url: https://
medium.com/data-breach/introduction-to-harris-corner-detector-
32a88850b3f6 (cit. on p. 17).

[26] E. Rosten and T. Drummond. «Machine Learning for High-Speed Corner
Detection». In: Computer Vision - ECCV 2006. Ed. by A. Leonardis, H.
Bischof, and A. Pinz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 430–443 (cit. on p. 19).

[27] S. Smith and M. Brady. «SUSAN - A New Approach to Low Level Image
Processing». In: International Journal of Computer Vision 23 (2004), pp. 45–
78 (cit. on p. 19).

[28] D. Lowe. «Distinctive Image Features from Scale-Invariant Keypoints». In:
International Journal of Computer Vision 60 (Nov. 2004), pp. 91–110 (cit. on
p. 20).

[29] E. Karami, S. Prasad, and M. Shehata. «Image Matching Using SIFT, SURF,
BRIEF and ORB: Performance Comparison for Distorted Images». In: Nov.
2015 (cit. on p. 20).

[30] D. Scaramuzza and F. Fraundorfer. «Visual odometry: Part II - Matching,
robustness, optimization, and applications». In: IEEE Robot. Automat. Mag.
19 (June 2012), pp. 78–90 (cit. on pp. 21, 22, 28, 29, 34, 37).

[31] H. Bay, T. Tuytelaars, and L. Van Gool. «SURF: Speeded Up Robust Fea-
tures». In: Computer Vision - ECCV 2006. Ed. by A. Leonardis, H. Bischof,
and A. Pinz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404–417
(cit. on p. 23).

[32] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. «BRIEF: Binary Robust
Independent Elementary Features». In: vol. 6314. Sept. 2010, pp. 778–792
(cit. on p. 24).

[33] D. Tyagi. Introduction to BRIEF(Binary Robust Independent Elementary
Features). Mar. 2019. url: https://medium.com/data-breach/introdu
ction-to-brief-binary-robust-independent-elementary-features-
436f4a31a0e6 (cit. on p. 24).

[34] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. «ORB: An efficient
alternative to SIFT or SURF». In: 2011 International Conference on Computer
Vision. 2011, pp. 2564–2571 (cit. on p. 26).

126

https://medium.com/data-breach/introduction-to-harris-corner-detector-32a88850b3f6
https://medium.com/data-breach/introduction-to-harris-corner-detector-32a88850b3f6
https://medium.com/data-breach/introduction-to-harris-corner-detector-32a88850b3f6
https://medium.com/data-breach/introduction-to-brief-binary-robust-independent-elementary-features-436f4a31a0e6
https://medium.com/data-breach/introduction-to-brief-binary-robust-independent-elementary-features-436f4a31a0e6
https://medium.com/data-breach/introduction-to-brief-binary-robust-independent-elementary-features-436f4a31a0e6

BIBLIOGRAPHY

[35] K. Mikolajczyk and C. Schmid. «A performance evaluation of local descrip-
tors». In: IEEE Transactions on Pattern Analysis and Machine Intelligence
27.10 (2005), pp. 1615–1630 (cit. on p. 26).

[36] B. Lucas and T. Kanade. «An Iterative Image Registration Technique with
an Application to Stereo Vision». In: Proceedings of the 7th International
Joint Conference on Artificial Intelligence - Volume 2. IJCAI’81. Vancouver,
BC, Canada: Morgan Kaufmann Publishers Inc., 1981, pp. 674–679 (cit. on
p. 28).

[37] C. Tomasi and T. Kanade. Detection and Tracking of Point Features. Tech.
rep. International Journal of Computer Vision, 1991 (cit. on p. 28).

[38] G. Gallego, E. Mueggler, and P. Sturm. «Translation of "Zur Ermittlung eines
Objektes aus zwei Perspektiven mit innerer Orientierung" by Erwin Kruppa
(1913)». In: (Dec. 2017) (cit. on p. 32).

[39] D. Scaramuzza. «Tutorial on Visual Odometry». In: Aerial and Service
Robotics Summer School. ETH Zürich, July 2012 (cit. on pp. 34–36).

[40] Oliver J. Woodman. An introduction to inertial navigation. Research report
696. University of Cambridge, Aug. 2007 (cit. on pp. 38, 39, 42).

[41] C. Forster, M. Pizzoli, and D. Scaramuzza. «SVO: Fast semi-direct monocular
visual odometry». In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). 2014, pp. 15–22 (cit. on pp. 52, 53, 55–57).

[42] T. Qin, P. Li, and S. Shen. «VINS-Mono: A Robust and Versatile Monocular
Visual-Inertial State Estimator». In: IEEE Transactions on Robotics 34.4
(2018), pp. 1004–1020 (cit. on pp. 59, 63, 65, 67, 68, 70–72).

[43] R. Mur-Artal, J. Montiel, and J. D. Tardos. «ORB-SLAM: a versatile and
accurate monocular SLAM system». In: IEEE Transactions on Robotics 31
(Oct. 2015), pp. 1147–1163 (cit. on pp. 74, 75).

[44] R. Mur-Artal and J. D. Tardós. «ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras». In: IEEE Transactions
on Robotics 33.5 (2017), pp. 1255–1262 (cit. on pp. 74, 83).

[45] R. Mur-Artal and J. D. Tardós. «Visual-Inertial Monocular SLAM With Map
Reuse». In: IEEE Robotics and Automation Letters 2.2 (2017), pp. 796–803
(cit. on p. 83).

[46] C. Campos, R. Elvira, J. Rodríguez, J. Montiel, and J. Tardós. «ORB-SLAM3:
An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map
SLAM». In: (July 2020) (cit. on p. 83).

[47] Intel RealSense. Case study - Robust Visual-Inertial Tracking from a Camera
that Knows Where it’s Going. 2019. url: https://www.intelrealsense.
com/visual-inertial-tracking-case-study (cit. on p. 91).

127

https://www.intelrealsense.com/visual-inertial-tracking-case-study
https://www.intelrealsense.com/visual-inertial-tracking-case-study

BIBLIOGRAPHY

[48] Intel RealSense Tracking Camera T265 Datasheet. 572522-002. Rev. 002. Intel
RealSense. Mar. 2019 (cit. on p. 92).

[49] K. Hata and S. Savarese. «CS231A Course Notes 1: Camera Models». In:
Stanford University (), pp. 1–17 (cit. on pp. 93, 96, 97).

[50] B. Dehem. «Three Dimensional Monocular SLAM for Autonomous Drone
Navigation». Master Thesis. École polytechnique de Louvain, 2016/2017 (cit.
on pp. 94, 95, 97).

[51] V. Chari and A. Veeraraghavan. «Lens Distortion, Radial Distortion». In:
Computer Vision: A Reference Guide. Ed. by K. Ikeuchi. Boston, MA: Springer
US, 2014, pp. 443–445 (cit. on p. 97).

[52] Duane C. Brown. «Close-range camera calibration». In: Photogrammetric
Engineering 37.8 (1971), pp. 855–866 (cit. on p. 97).

[53] Z. Zhang. «A flexible new technique for camera calibration». In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 22.11 (2000), pp. 1330–
1334 (cit. on p. 101).

[54] N. El-Sheimy, H. Hou, and X. Niu. «Analysis and Modeling of Inertial
Sensors Using Allan Variance». In: IEEE Transactions on Instrumentation
and Measurement 57.1 (2008), pp. 140–149 (cit. on p. 103).

[55] MATLAB Documentation. Inertial Sensor Noise Analysis Using Allan Vari-
ance. url: https://it.mathworks.com/help/nav/ug/inertial-sensor-
noise-analysis-using-allan-variance.html (cit. on pp. 105–108).

[56] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. Achte-
lik, and R. Siegwart. «The EuRoC micro aerial vehicle datasets». In: The
International Journal of Robotics Research 35 (Jan. 2016) (cit. on p. 117).

[57] J. Delmerico and D. Scaramuzza. «A Benchmark Comparison of Monocular
Visual-Inertial Odometry Algorithms for Flying Robots». In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). 2018, pp. 2502–
2509 (cit. on pp. 120–122).

128

https://it.mathworks.com/help/nav/ug/inertial-sensor-noise-analysis-using-allan-variance.html
https://it.mathworks.com/help/nav/ug/inertial-sensor-noise-analysis-using-allan-variance.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	History of Unmanned Aerial Vehicles
	Autonomous Navigation of UAVs
	Leonardo Drone Contest

	Visual-Inertial Odometry
	Visual Odometry
	History of Visual Odometry
	Formulation of the Visual Odometry problem
	Fundamentals of Visual Odometry

	Inertial Measurement Unit
	MEMS Gyroscopes
	MEMS Accelerometers
	Strapdown Inertial Navigation

	Visual-Inertial Odometry Techniques

	Visual-Inertial Odometry State of the Art Algorithms
	SVO
	Algorithm architecture
	Motion Estimation
	Mapping
	Experimental results

	VINS-Fusion
	Algorithm architecture
	Measurement Preprocessing
	Estimator Initialization
	Visual-Inertial Odometry
	Relocalization
	Global Pose Graph Optimization
	Experimental results

	ORB-SLAM2
	System Overview
	Tracking
	Local Mapping
	Loop Closing
	Experimental results

	ORB-SLAM3
	Algorithm architecture
	Visual-Inertial SLAM
	Map Merging and Loop Closing
	Experimental results

	Intel® RealSense™ T265 Tracking Camera
	Camera Modeling and Calibration
	Pinhole Camera Model
	Lens Distortions
	Camera calibration

	IMU Allan Variance Analysis
	Allan Variance
	Representation of Noise Terms
	Noise Analysis Results

	Results and Discussion
	Data collection and analysis
	Comparison of the algorithms' performances
	The choice of VINS-Fusion
	Results validation on the EuRoC datasets

	Conclusions and Future Developments
	Bibliography

