
Corso di Laurea in Ingegneria Aerospaziale
- Spazio -

Tesi di Laurea II livello

Study of innovative sensor
configurations for evaluating

the loads acting on the
aircraft structure

Relatore: Prof. Maggiore Paolo
Co-relatori: Ing. Dalla Vedova Matteo Davide Lorenzo, Ing. Berri Pier
Carlo, Ing. Quattrocchi Gaetano

Candidato: Lanciotti Edmondo

POLITECNICO DI TORINO
Aprile 2021

ABSTRACT
In sizing a flight control system, one of the main required parameter is the hinge
moment. The hinge moment of a control surface is given by the forces acting on
the surface itself multiplied by the mechanical transmissions arm. This moment
is assumed to be evaluated on the hinge axis, which is generally the only rotating
component of an aircraft wing. Due to its high rate of variation depending on flight
attitude and conditions, hinge moment boundaries are often numerically evaluated
during design phase.

The present study aims to introduce a methodology and draft guidelines to collect
and analyze a great number of data entry, in order to fill a dataset to be used for
building a simple Deep Learning Network (DLN) model. The model will actually
represent a ”virtual sensor” able to estimate wing hinge moments during some
flight scenarios.
Even if it has been chosen a real case study in terms of geometry and structure, to
limit the complexity not all data have been measured by own from beginning. In
fact, every approach for the calculation of a wing hinge moment needs the engineer
to be informed at least about the aerodynamic characteristics of the wing, not to
mention flight conditions. Moreover, through the analysis of these characteristics
it is also possible to emulate a particular sensor detection, then to consider it as a
useful input for the aforementioned network.

Aerodynamic analyses have been performed through Xflr5, an analysis tool for air-
foils, wings and planes operating at low Reynolds Numbers. MatLab has been used
to capture and collect data about hinge moment value and parameters (aileron de-
flection, flight speed, angle of attack) which produced it. Several simulations have
been run to prepare a significant dataset and reach a dimension for DLN model to
be well trained. All about data exploratory analysis and DLN modelling (building,
training, results evaluation) has been performed through “Jupyter”, a non-profit,
open-source project evolved to support interactive data science and scientific com-
puting. After having trained the model on how to forecast hinge moment values
starting from some inputs, obtained predictions have been evaluated to better under-
stand performances and capabilities of the model itself.

The DLN has been optimized to maximize forecasting “goodness” without compli-
cate too much the adopted structure. Indeed, only if prediction error is under a
certain threshold, the model may be considered “ready to deploy”. The design has
been driven by a simple but fully modular approach, in which each component is
open for future developments, providing at the same time a guide line about the
expected output to move towards the DLN. It is also important to highlight how the
choice of some parameters can affect hinge moment magnitude and a simple model
makes this possible and easier.

C O N T E N T S

1 introduction 1
1.1 Purpose . 1
1.2 Objective . 2
1.3 Case study . 2

2 project overview 3
2.1 The hinge moment . 3
2.2 Procedure . 5
2.3 Data . 5

2.3.1 Geometry . 5
2.3.2 DLN inputs . 6

2.4 Tools . 8
2.4.1 Xflr5 [Web21] . 9
2.4.2 Jupyter and Python related tools 14
2.4.3 Limitations . 14
2.4.4 Assumptions . 15

3 aerodynamic model 17
3.1 Introduction . 17
3.2 2D Analysis . 17
3.3 3D Model . 22
3.4 Output file . 26

4 data handling and automation 29
4.1 Automation Strategy . 29

4.1.1 String updating and file location 29
4.1.2 Data extraction . 30

4.2 GUI . 31

5 dln background 33
5.1 Supervised Learning . 33
5.2 Statistical performances evaluation 34
5.3 Error metrics for regression models 35
5.4 Deep Learning Neural Networks 36

5.4.1 Perceptron Model . 37
5.5 Overfitting . 44

5.5.1 Bias and Variance . 45

6 anubi hinge moment forecasting model 49
6.1 Introduction . 49
6.2 Data Preparation and Exploration 49
6.3 Model building . 55

6.3.1 Datasets split/scale . 55
6.3.2 Model training . 57

6.4 Model evaluation . 60
6.5 Model optimization . 65
6.6 Final Model . 68

7 results and future developments 71

iii

iv Contents

7.1 Results . 71
7.2 Adding a structural input . 71
7.3 Hinge approximation . 72
7.4 Experimental studies . 73
7.5 GUI improvement . 74

8 conclusion 75

a appendix 77
a.1 Configurations Summary . 77

a.1.1 Configuration [3, 3] - Mk1 77
a.1.2 Configuration M[3, 3] - Mk2 79
a.1.3 Configuration [6, 4] - Mk3 81
a.1.4 Configuration [5, 10] - Mk4 83
a.1.5 Configuration M[5, 10] - Mk5 85

b references 87

L I S T O F F I G U R E S

Figure 2.1 Anubi technical draw (from ICARUS team) 6
Figure 2.2 ANUBI model visualization ([Tea17]) 6
Figure 2.3 Maneuver Diagram ([Tea17]) 7
Figure 2.4 3D Methods . 11
Figure 2.5 Separation bubble scheme 12
Figure 2.6 IBL strategies . 13
Figure 3.1 δ = 0◦ profile . 17
Figure 3.2 δ = ±1◦ profile . 18
Figure 3.3 δ = ±2◦ profile . 18
Figure 3.4 δ = ±3◦ profile . 18
Figure 3.5 δ = ±4◦ profile . 18
Figure 3.6 Atmospheric parameters interpolations 19
Figure 3.7 Batch analysis interface 20
Figure 3.8 Polars for δ = 0◦ . 21
Figure 3.9 ANUBI 3D model with Xflr5 22
Figure 3.10 3D Panels invalid mesh visualization example [Web21] 22
Figure 3.11 Wing modelling . 23
Figure 3.12 Hinge moment difference 25
Figure 3.13 CP contour map for δ = 0[deg],v = 12 [m/s],α = 0[deg] 25
Figure 3.14 Pressure vectors distribution for δ = 0[deg],v = 12 [m/s],α =

0[deg] . 26
Figure 3.15 .txt output sample for δ = 0[deg],v = 12 [m/s],α =

0[deg] . 27
Figure 3.16 Pressure coefficients for δ = 0[deg],v = 12 [m/s],α =

0[deg] . 27
Figure 4.1 File string name . 29
Figure 4.2 Format conversion . 30
Figure 4.3 GUI . 31
Figure 5.1 Machine learning flow chart 33
Figure 5.2 TP,FN,FP,TN meaning 35
Figure 5.3 Low impact of the greatest error 36
Figure 5.4 Neuron scheme . 37
Figure 5.5 Perceptron Model . 37
Figure 5.6 Multilayer network . 38
Figure 5.7 ReLu . 39
Figure 5.8 Step Function [Wik21d] 40
Figure 5.9 Sigmoid Function . 40
Figure 5.10 C function with different minimum values 42
Figure 5.11 Gradient descent features 43
Figure 5.12 Adam performances[Jos] 43
Figure 5.13 Notation in BP . 43
Figure 5.14 Bias and Variance [Jos] 46
Figure 5.15 Fitting problems [Gov] 47
Figure 6.1 Data loss . 51
Figure 6.2 H distribution . 52
Figure 6.3 Pressure distribution plot 52
Figure 6.4 H vs α for ”df2” . 53
Figure 6.5 δ = 0◦ configuration 53

v

vi List of Figures

Figure 6.6 δ 6= 0◦ configurations (2D) 54
Figure 6.7 δ 6= 0◦ configurations (3D) 54
Figure 6.8 v−H graph . 55
Figure 6.9 Mk1 Training . 59
Figure 6.10 Mk1 True labels line (red) VS Predictions 60
Figure 6.11 Mk1 Relative Errors . 62
Figure 6.12 Mk2 Training . 63
Figure 6.13 Mk2 True labels line (red) VS Predictions 63
Figure 6.14 Mk2 Relative Errors . 64
Figure 6.15 Optimization algorithm results - ”Test Set” 65
Figure 6.16 Optimization algorithm results - ”Validation Set” . . 66
Figure 6.17 Scatter plot for test set configurations 67
Figure 6.18 Mk3 Relative Errors . 68
Figure 6.19 Mk4 Relative Errors . 68
Figure 6.20 Mk5 Training . 69
Figure 6.21 Mk5 True labels line (red) VS Predictions 69
Figure 6.22 Mk5 Relative Errors . 70
Figure 7.1 .tex file layout . 72
Figure 7.2 Ailerons CAD view . 72
Figure 7.3 Pressure contour on HW (v = 12 [m/s],α = 0[deg]) . 73
Figure A.1 Mk1 Training . 77
Figure A.2 Mk1 True values (red) VS Predictions 78
Figure A.3 Mk1 Relative Errors . 78
Figure A.4 Mk2 Training . 79
Figure A.5 Mk2 True values (red) VS Predictions 80
Figure A.6 Mk2 Relative Errors . 80
Figure A.7 Mk3 Training . 81
Figure A.8 Mk3 True values (red) VS Predictions 82
Figure A.9 Mk3 Relative Errors . 82
Figure A.10 Mk4 Training . 83
Figure A.11 Mk4 True values (red) VS Predictions 84
Figure A.12 Mk4 Relative Errors . 84
Figure A.13 Mk5 Training . 85
Figure A.14 Mk5 True values (red) VS Predictions 86
Figure A.15 Mk5 Relative Errors . 86

L I S T O F TA B L E S

Table 2.1 Wing Geometry Data 5
Table 2.2 Input ranges of variation 8
Table 2.3 Input ranges of variation 8
Table 3.1 Wing Characteristics 24
Table 3.2 Mesh Characteristics 24
Table 5.1 Bias Variance trade off 46
Table 6.1 Dataset partition . 56
Table 6.2 Mk1 Overall Prediction Performances 61
Table 6.3 Mk2 Overall Prediction Performances 63
Table 6.4 Selected configurations 66
Table 6.5 Mk5 Overall Prediction Performances 70
Table A.1 Mk1 Overall Prediction Performances 77
Table A.2 Mk2 Overall Prediction Performances 79
Table A.3 Mk3 Overall Prediction Performances 81
Table A.4 Mk4 Overall Prediction Performances 83
Table A.5 Mk5 Overall Prediction Performances 85

vii

1 I N T R O D U C T I O N

The concept of ”Information Revolution” has been introduced in 1974 by
Donald M. Lamberton [Wik20c]. Since then, humanity explored and im-
proved the potential of computer technology. Nowadays the dawn of the
digital era is something passed: the world adapted to informatics changes
and got deeper in domination of these technologies.
One of the most discussed topics in terms of feasibility (and ethic), is the
application of artificial intelligence to different aspect of life. The AI has
the power to lighten and improve lots of tasks in a different way comparing
to the ”simpler” calculation algorithms. One can imagine what a computer
could be able to do if, over the fast calculation capabilities, it also could
master decision making.

Actually, the AI field is pretty young, and just a rudimentary emulation of
the human mind is possible. What is missing is the deduction/intuition
skill which characterize the human being. Moreover, even if it’s possible to
realize a complex brain-like structure just with informatic algorithms, hard-
ware availability and technology still represent substantial problems[Som19].
Therefore today these kind of technologies are not yet evolved enough to
completely replace the human component (and maybe this will never hap-
pen), but they are already used in fields like engineering and economy to
assist some of the tasks.

Machine Learning and Deep Learning are branches of artificial intelligence.
They are useful to estimate, to forecast, and to analyze datasets and trends
of functions. Generally speaking, they use statistical methods to increase
performances of an algorithm which has to identify patterns within data.
The great potential of these methods founds application in many disciplines.
For example, NASA uses algorithms based on decision trees to classify ce-
lestial objects for Palomar Sky Survey project. This sky mapping resulted
in 3 terabytes of image data, most of them automatically classified via AI.
An other kind of application is the automatic guide control for vehicles, for
example the ALVINN system, which used his own strategies to learn how
to drive without human assistance for 90 minutes at 70 miles per hours on
public roads (among other cars) [Wik19]. This is pretty near the topic of
the thesis because, with similiar techniques, most of the models based on
sensor controlling can be realised. According to this, what follows is the
implementation of a simple IA model in the aerospace field.

1.1 Purpose

The thesis will deal with the adoption of a cutting-edge technology to eval-
uate the response to a sensor input. Behind the analysis, there is the will
to show strengths and weaknesses of the implementation of this kind of
technology in the field of avionics.

1

2 introduction

1.2 Objective

The thesis will discuss the adoption of a deep learning network model based
on an artificial sensor input to forecast moment value on the hinge axis of
a wing. Basically, this will be the presentation of a procedure which starts
with the determination of the dataset and all related data-acquisition criteria
and ends with DLN model performances evaluation.

1.3 Case study

To reach the objective, it has been chosen a case study, ”ANUBI” aircraft.
It is a low winged monoplane with inverted T tail and tracting motor de-
signed to take part to the ”Air Cargo Challenge 2017”. The Icarus Polito
team, who made the aircraft,

”was born in Politecnico di Torino thanks to the passion for aerospace of the stu-
dents that decided to move a step in its creation in the year 2015. Among the
missions that Icarus decided to undertake the day of its constitution, the Air Cargo
Challenge represented a good starting point and a great opportunity to enrich the
personal expertise and knowledge of the students involved.”

(from ANUBI Project report for ACC [Tea17])

As it will be seen (sections 2.4.3 and 2.4.3), it has been necessary to make
some simplifications/assumptions (structure, flight conditions...) to better
adapt the objective to the case study.

2 P R O J E C T O V E R V I E W

2.1 The hinge moment

The hinge moment on a wing/tail is given by the forces acting on the control
surface multiplied by the arm of mechanical transmissions. Different kind
of forces can be classified:

• Mass Forces: if the gravity centre of the control surface is not placed
on the hinge axis. That means the presence of a further moment arm.
At the moment, these forces will be neglected, because a statically
balanced control surface is assumed.

• Aerodynamic Forces, which are:

– Pressure Forces;

– Friction Forces (neglected too);

A lift-like formulation may be considered both for wing and for tail hinge
moment evaluation:

H = CHSece
1

2
ρV2 (2.1.1)

It is implied that H is applied on the hinge axis, the only rotative component
of the wing. The hinge moment coefficient CH primarily depends on:

• Angle between:

– Control surface zero-lift axis CLt = 0

– Horizon αt

• Control surface deflection angle δ.

In the special case where control surface has a symmetric profile, the zero-
lift axis is coincident to the chord, so it can be defined:

αs = (αt)δ=δtab=0◦ (2.1.2)

Considering tail, there are three different kind of tabs, which vary depend-
ing on their own structure and function:

• Trim Tab;

• Servo Tab;

• Compensator Tab;

The hinge moment coefficient can be written as a linear combination of other
factors (tab deflection included), as follows:

CH = b0 + b1αs + b2δ+ b3δtab (2.1.3)

Where αs, δ and δtab have structural boundaries, so:

• The first parameter must be b0 = 0 when profile is symmetric;

3

4 project overview

• As regards CH variation on respect to the other angle parameters, a
linear relationship can be assumed:

b1 =
∂CH
∂αs

= cost

b2 =
∂CH
∂δ

= cost

b3 =
∂CH
∂δtab

= cost

b1, b2, b3 have a negative value because positive rotations of the element
to which they refer correspond to a diving bent for the aircraft. Theoretical
treatments for the exact calulation of these coefficients are complex. Never-
theless some geometric features have been found having a more noticeable
influence in the calculus. Precisely:

• Profile type;

• Chord Ratio between elevator and whole tail surface cect ;

• Chord ratio cb
ce

, where cb is that chord portion which goes from hinge
axis to leading edge of the control surface, called ”beak”;

• Elevator’s beak shape;

• Chink between stabiliser and elevator. (if exists and depending on
entity and shape);

• Angle defined by the trailing edge of the profile β;

• Trailing edge shape;

• Reynolds and Mach numbers: this last dependency is the reason why
b1, b2 and b3 couldn’t always be taken as constant for the whole flight
envelope;

The hinge moment can be written with an alternative formulation, consider-
ing that the incidence αs is:

αs = αwb

(
1−

∂ε

∂α

)
− i

Where αwb is:

αwb = α+
αt

a

St

S
i

By substitution in CH expression, following relationship can be obtained:

CH = b0 − b1
i

1+ F
+ b1(1−

∂ε

∂α
)α+ b2δ+ b3δtab (2.1.4)

Some terms of the previous formulation can be grouped as follow:

CH0 = b0 − b1
i

1+ F

CHα = b1

(
1−

∂ε

∂α

)
That is the relationship between equations 2.1.3 and 2.1.3 coefficients.

However, for the present work, hinge moment is numerically evaluated,
using pressure force distribution.

2.2 procedure 5

2.2 Procedure

The study has been divided in 3 main steps:

1. Aerodynamic Study: to evaluate the pressure coefficient on the whole
wing area and the hinge moment of the interested part of the wing;

2. Dataset preparation: using Matlab as main code language to automa-
tize the activities as possible;

3. Creation of the model: using Python as main code language to train
the forecasting model.

Each phase uses previously acquired data, so what follows can be consid-
ered as a procedure (one of many) to build a specific model with a specific
goal, that is to forecast the hinge moment of an aircraft’s wing.
At the end it will be discussed the preparation for further developments of
the project in terms of:

• Structural studies: realizing a wing FEM map using the obtained pres-
sure distribution;

• Different input consideration: to start looking to the final goal of the
whole project, that is to realize a forecasting model able to use actually
installed (or to be installed) sensors, to perform the hinge moment
prediction on ANUBI. This means a correlation between moment and
other inputs, which may be different or cumulative with respect to the
used ones.

2.3 Data

2.3.1 Geometry

As regard starting data, it was primarily necessary to know the geometry
of the case study. These informations are contained in ICARUS databases.
Here is reported just what it’s strictly necessary to understand the project.
The hinge moment problem has been studied considering only the wing of

Element Value Misure

Wingspan 3.8 m

Aspect Ratio 18.56

Wing
Surface

0.778 m2

Max Chord 0.27 m

Min Chord 0.15 m

Wing Mass 0.62 kg

Table 2.1: Wing Geometry Data

the aircraft, so table 2.1 already contains most of what is needed to start

6 project overview

modelling.
By the way, during the first part of the design, other data have been used to
produce CADs and draws, useful to better understand the situation. Unfor-
tunately, these informations are confidential and not much can be showed
here. Note that the half wing is partitioned in three portions. Each one

Figure 2.1: Anubi technical draw (from ICARUS team)

has its own control surface. From 3.4 it cannot be seen the hub control sur-
face because of its exclusive nature. It has been drawn as part of the fixed
surface, but it’s actually a retractile flap (see 2.1).

Figure 2.2: ANUBI model visualization ([Tea17])

2.3.2 DLN inputs

As it will be seen, a forecasting model works learning from a bunch of
samples and using acquired skills to forecast something new. To clarify the
nomenclature:

2.3 data 7

• Example: it is a input to which correspond a well known output. In
other words, it is the set of data the designer give to the calculator,
accompanied by the expected response which the calculator has to
learn and interpret;

• To forecast: once the calculator had seen a right number of examples
it becomes able to understand the correlation between inputs and out-
puts and, moreover, to predict a particular output even if it receives
in input something it has never seen before, provided it is of the same
type of what it learned from.

For the present project, it has been chosen to predict the hinge moment
value (output), basing on three parameters (inputs):

• Control surface deflection δ;

• Flight velocity v;

• Angle of attack α;

As regard velocity, ICARUS maneuver diagram (fig. 2.2) shows that, in ex-
tended flap configuration (black line), ANUBI goes from 12 [m/s] to 22 [m/s].
Velocities:

Figure 2.3: Maneuver Diagram ([Tea17])

• VsTO: stall speed with extended flap;

• Vs: stall speed with retracted flap;

• Vc: cruise speed;

• Va: maneuver speed;

• Vd: design speed (diving speed);

8 project overview

Note that the used range of velocities considers a mission profile that in-
cludes take off, climbing and cruise. By the way, the range of incidences
considered does not take into account a particular mission profile phase. It
can be seen as a series of incidence perturbation during a constant cruise
flight at a certain speed.
Last parameter, δ, is defined by construction in a specific range of variation.
Table 2.2 shows detailed informations about what has been said. These

Parameter Min
Value

Max
Value

Mean
Value

Step Nodes Misure

Control
surface

deflection

−4 4 0 1 9 [deg]

Velocity 12 22 17 0.5 21 [m/s]

Angle of
attack

−5 10 2.5 1 16 [deg]

Table 2.2: Input ranges of variation

ranges of variation had been used to generate a certain number of complete
examples. What was expected is a number of examples equal to the number
of combinations that could have been obtained from the parameters them-
selves. Table 2.3 shows this, considering a first hypothesis of final dataset
dimension and partition in:

• Total examples: total number of parameters combinations;

• Training examples: to train the model;

• Test examples: to test if the model is training well;

• Validation examples: to evaluate the finished model performances.

Dataset Percentage
of ”Total”

Data Points

Total 3024

Training 70 2116.8

Test 20 604.8

Validation 10 302.8

Table 2.3: Input ranges of variation

2.4 Tools

To perform the job, different softwares and IDE have been used:

• Xflr5

• Excel

2.4 tools 9

• Matlab

• Jupyter

• Hyperworks (future developments)

2.4.1 Xflr5 [Web21]

XFLR5 is an analysis tool for airfoils, wings and planes operating at low Reynolds
Numbers. It includes:

• XFoil’s Direct and Inverse analysis capabilities;

• Wing design and analysis capabilities based on the Lifting Line Theory,
on the Vortex Lattice Method, and on a 3D Panel Method.

In every CFD problem, everything starts with the Navier-Stockes equations.
They are for aerodynamics what Maxwell equations are for electrostatics.
One of the millennium problem is to find an exact solution to these equa-
tions:

∂δ

∂t
ui +

n∑
j=1

uj
∂ui
∂xj

= v∆ui −
∂p

∂xi
+ fi(x, t) (x ∈ Rn, t > 0)

div u =

n∑
i

∂ui
∂xi

(x ∈ Rn, t > 0)

with initial conditions

u(x, 0) = u(x) (x ∈ Rn, t > 0)

(2.4.1)

By now, just a numeric solution can be evaluated. To deal with so complex
problems, it is commonly used to make assumptions:

• Viscosity is neglected, so that Euler equations can be obtained;

• Flow is considered irrotational, so it can be assumed potential;

• Mach number is considered under a certain value (0.3/0.4), so the flow
can be considered compressible and the velocity potential equation can
be reduced to Laplace equation.

notes on virtual singularities [Cor09] This paragraph deals with
elementary solutions for Laplace equation. As it will be seen, a body (lifting
or not), can be modelled as a distribution (or a combination of distributions)
of some ”singularities” which depend on some boundary conditions. Even
if their intensities are unknown at the beginning of the problem, it can be
said that they consist in the elementary solutions of the Laplace equation
and their meaning is in analogy with the electrostatics: they are for the
aerodynamics, what ”charge” and ”dipole” are for electrostatics:

• Source and Sink

φ(r, θ) =
ṁ

2π
log(r)

ϕ(r, θ) =
ṁ

2π
θ

Where:

10 project overview

– ṁ→ mass flow, emitted by the source itself 1;

– r→ distance from the source;

– θ→ angular distance from the source;

• Vortex
φ(r, θ) =

Γ

2π
θ

ϕ(r, θ) =
Γ

2π
log(r)

Where:

– Γ → Vortex Intensity, or Circulation

– Vortex is the dual motion field with respect to the source.

• Dipole, or Doublet

φ(r, θ) = −
µ

2π

cos(θ)
r

ϕ(r, θ) =
µ

2π

sin(θ)
r

Where:

– µ = qd → a dipole is the effect combination between a source
and a sink (source opposite) placed at a distance d → 0 so that
the product µ always keeps a finite value.

With the previously mentioned assumptions, Laplace equation can be solved
with high precision, but one other problem raise: neglecting the viscosity
term is a strong approximation which describes a different behaviour, if
compared with real fluids. Here is where Xfoil (and all its related codes, as
Xflr5) gains its merit.

The main effect of viscosity is to create a thin boundary layer on all sur-
faces (lifting and not), so that it is necessary to confront with a 3D boundary
layer equation. This can be done in different ways, but in these pages, the
focus will be on xflr5 method.

The Xflr5 job is divided in two main steps:

1. Xfoil’s direct analysis combines theoretical and empiric methods of
turbulence and transition, producing its results. It uses integral equa-
tions to solve the boundary layer.

2. Xflr5 interpolates the results obtained from the direct analysis and
reintroduces them in a 3D inviscid model.

It can been already seen that this is an approximated solution, but it suites
the objective of the thesis.

3d problem The models usually used to solve Laplace equation are:

• Lifting Line Theory

• Vortex Lattice Method

• Panel Method

and they are all implemented in Xflr5

1 The source is placed in the centre of the reference system

2.4 tools 11

Figure 2.4: 3D Methods

notes about panel methods [Cor09] [Cac06] Panel Methods is the
name of some recent techniques able to solve the Laplace equation of a
generic body. Mathematical formulation is made on the Green identity,
while numeric formulation uses to discretize the whole geometry with sim-
ple mesh element.
Without getting too deep, it is possible to write down the potential of a
generic point, not belonging to body’s contour and identified by ~r0, by:

φ(~r0) =
1

4π

(∫
∂V
φ
∂(1~r)

∂~n
dS−

∫
∂V

1

~r

∂φ

∂~n
dS

)
According to what is reported in table 2.4, the first term of the previous
formulation represents a doublet (intensity: φ) potential, while the second
one is a source (intensity: ∂φ∂~n) potential.
Considering a lifting body, an other contribute must be taken into account:
the wake. It is modelled as a doublet distribution equivalent to a vortex
layer.
The main purpose of the problem is to evaluate the intensity of the unknown
aerodynamic singularities, in order to use these results to evaluate velocities
and forces in every point of the system.
However, the numeric formulation consists in solving the problem in some
specific control points, which are the ”panels”, i.e. mesh elements. Every
panel is generally described by a polynomial. The great is the desired ac-
curacy, the great should be the polynomial order. By the way, a first order
polynomial is the most common choice. Every panel has a centroid, which is
the control point itself, but is identified by its vertexes, named ”grid points”.
Xflr5 uses flat panels and applies the singularities according to the geomet-
ric mesh:

• Sinks and sources densities are uniform on every panel;

• Every doublet sheet is equivalent to a vortex ring.

No matter what is the method, the next step consists in solving the linear
system:

[
aij

]

µ0

µ1

...

µN−1

 =

RHS0

RHS1

...RHSN−1

 (2.4.2)

12 project overview

where aij coefficients represent the potential influence of a panel on an
other.
Last thing to do is to calculate lift and drag starting from the density of the
vortex singularities. Some years ago it was commonly used to sum forces
acting on each panel. However, tests showed that this is a not so precise
method. It’s preferred to determine lift and drag on the Trefftz far field
plane. Surfaces moments are evaluated with pressure forces on the wing2.

2d problem Once it has been done, all that remains is to reintroduce vis-
cosity, in order to consider something closer to a real problem.
Xfoil does this operation solving Laplace equation of inviscid field all around
the profile in a first moment.
This because the viscous analysis needs the inviscid solution of this problem
to continue. Note that the presence of a laminar or quasi-laminar regime is
something that make sense only considering viscosity in the study.
The viscous solution shows that there are some favorable pressure gradients
in those zones where there is a higher density of fluid fillets, as on the lead-
ing edge, where the flow accelerates from zero to its maximum value (then
it decelerates going towards the trailing edge, where there is an adverse
pressure gradient).

low reynolds numbers For low Reynolds numbers (6 5 · 105) it can be
said that the flow meet a profile in the stagnation point, then it splits on the
two surfaces, upper and lower, in laminar regime. Nevertheless, sooner or
later, surface velocity switches from a zero value to a negative one. That is
what is called ”separation bubble”. It’s nothing but a region where the flow
separates from the surface and becomes progressively turbulent, and then,
eventually, it joins again the surface, with positive velocity.

Before the end of the path, other bubbles can show up and, anyhow, a

Figure 2.5: Separation bubble scheme

separation occurs at the trailing edge, where it forms the wake, but with a
positive value of velocity because of the absence of the no-slip condition3.
Xfoil analyses show the boundary layer limit speed, from the leading edge to

the trailing one. Transition from laminar to turbulent flow is a very complex
problem in 2D, and even more in 3D. In 2D analyses it is important to note
that:

2 Velocities obtained from the solved potential field are used within Bernoulli equation to evalu-
ate pressure distribution

3 Flow zero velocity condition at the contact point with the surface.

2.4 tools 13

• Transition happens when a space wave amplification factor reaches a
critic value, i.e. the ”Ncrit” factor;

• Turbulent flow starts with small sparks that can extends along the
profile till a complete turbulence condition.

For low Reynolds numbers, the transition is induced by the separation, and
that is what Xfoil tries to predict, evaluating what happens inside the bub-
ble.

The 2D problem is solved in two steps:

• Numerically solving the inviscid potential problem (Laplace equation
for velocity field);

• Using the solution as an input for the boundary layer problem.

But this is not the end. Until now, the problem didn’t face the ”Goldstein
singularity”:
the boundary layer significantly disturb the inviscid flow, because the profile
acts as it has a local additional thickness. In other words, it happens that the
inviscid flow tries to ”handle” the boundary layer, but the boundary layer
doesn’t reply correctly, and viceversa.
This additional thickness is called ”displacement thickness, δ∗”.
To solve the issue it is necessary to introduce a constant updating of the
boundary layer condition in the process, to inform every time the inviscid
flow about δ∗. This iterative form of calculus is called ”Interactive Boundary
Layer-IBL”, and it can be done in different ways:

Figure 2.6: IBL strategies

”Simultaneus” scheme is the one developed by Mark Drela and H.Youngren
in 90’s with Xfoil.

14 project overview

2.4.2 Jupyter and Python related tools

Project Jupyter [Jup] exists to develop open-source software, open-standards,
and services for interactive computing across dozens of programming lan-
guages. For the present work it has been used the Jupyter Notebook IDE.
The Jupyter Notebook is an open-source web application that allows to cre-
ate and share documents that contain live code, equations, visualizations
and narrative text. Uses include: data cleaning and transformation, numer-
ical simulation, statistical modelling, data visualization, machine learning,
and much more. All of the project has been performed according to the
skills acquired from ”Python Crash Course for Data Science and Machine
Learning” by Pierian Data [Jos].

2.4.3 Limitations

Aerodynamics (Xflr5) [Web21]

• Viscosity:

– Lack of interaction loop between boundary layer and inviscid
flow for VLM and 3D Panel method;

– Estimation of viscous drag;

• Panel Modelling:

– Flat quad panels;

– Uniform strength singularities;

– Incomplete modelling of body-wing interactions.

However, limiting the analysis to the evaluation of the hinge moment, all of
this does not affect the problem so much, or at least, numerical errors are in
agreement with the abstraction level of the project phase.

Xflr5 has been used from lots of users to analyze different problems. Dur-
ing these tests, the software resulted in reasonable behaviour, in terms of Cp
and Cl evaluation, if compared with a more complex CFD software [Cas19],
[Ami08].
Two main issues have been observed:

• The analysis fails around stall configurations;

• Drag is underestimated (probably in its viscous term) when the soft-
ware interpolates the 2D polars.

During the present work, the aforementioned stall issue has been experi-
mented and caused the loss of some data, and it has been decided not to
push the analysis to its limits (i.e. α > 10◦), in order to get reliable results.
The second one is something which can be neglected, due to the very small
contribution of the viscous drag to the hinge moment evaluation, because
of the short force arm with respect to the hinge.

General

• Computational cost (mesh quality);

• Time cost (number of analyses).

2.4 tools 15

2.4.4 Assumptions

• Flight altitude: maximum value allowed during ”Air Cargo Challenge
2017”, i.e. 100 [m];

• All wing analysis: Body and tail are neglected, according to the ab-
straction level of the present work;

3 A E R O DY N A M I C M O D E L

3.1 Introduction

In order to generate a great number of configurations, model precision had
to meet computational time requirements. Different kind of strategies have
been taken into account in order to gain hinge moment data, but at the
end it was decided to use Xflr5, the same software used by ICARUS for
preliminary evaluations on Anubi. The trade off was about:

1. model precision;

2. computational time required;

3. software ability to handle batches of data;

4. process automation capabilities.

The best choice would have been to get real data, then to conduct experi-
ments. Even a CFD simulation would have been a good compromise. It has
been decided to adopt Xflr5 because it met three trade off elements out of
four, at the expense of a slightly less precise analysis. However, the objective
is about creating a complete procedure, to be improved in further analyses.

3.2 2D Analysis

For the direct foil analysis, it was necessary first of all to identify the profile
type. For the wing, ICARUS chooses the Selig Donovan 7037, whose coor-
dinates can be obtained online. After having adjusted the coordinates file
format, it has been imported in Xflr5, obtaining the visualization in fig. 3.1
for a 0 flap configuration.

Figure 3.1: δ = 0◦

During this phase, Xflr5 allows to modify the profile according to what is
possible to do in Xfoil too. So the user is able to scale camber and thickness,
to edit coordinates, to normalize and refine the profile and even to to set
flaps, trailing edge gap and leading edge radius.
All of the 9 flap configurations could have been created in a single window,

17

18 aerodynamic model

but it was decided to realize different models using 9 different ”.xfl” files.
Once the profile is ready, the program needs to calculate a family of polars

(a) δ = 1 (b) δ = −1

Figure 3.2: δ = ±1◦

(a) δ = 2 (b) δ = −2

Figure 3.3: δ = ±2◦

(a) δ = 3 (b) δ = −3

Figure 3.4: δ = ±3◦

(a) δ = 4 (b) δ = −4

Figure 3.5: δ = ±4◦

to be interpolated in order to estimate the viscous contribute. This family of
polars can be obtained considering the following elements:

• Flight Reynolds Conditions;

• Variation range of the angle of attack.

The second parameter is an input of the analysis, as it can be seen in section
2.3.2. On the other hand, flight Reynolds conditions have to be evaluated.

One of the hypothesis is to assume an altitude of 100 [m] (sec. 2.4.4), that
is to consider air temperature and density values not so different from the
standard ones. By the way, interpolating some online reference data ([Met]),
figures 3.6a and 3.6b have been obtained, accompanied by the values:

• T = 287, 35 [K]

• ρ = 1.2137 [kg/m3]

3.2 2d analysis 19

(a) Temperature vs Altitude (b) Density vs Altitude

Figure 3.6: Atmospheric parameters interpolations

Now, Reynolds number is a measure of the ratio of inertia forces to viscous
forces: the greater the speed, the lower the impact of viscous forces. It can
be evaluated as follows:

Re =
u ∗ c
ν

(3.2.1)

where:

• u: local speed value;

• c: local chord length;

• ν: kinematic viscosity.

ν is in turn a function of dynamic viscosity µ and density ρ:

ν =
µ

ρ
(3.2.2)

so, knowing speed and chord length, all that remains is to evaluate the
dynamic viscosity and insert the result in the equation system. For this
purpose, it can be used Sutherland equation:

µ = S · T
3/2

T + χ
(3.2.3)

where:

• S = 1.46 · 10−6 → Air Sutherland constant
[

kg
m·s·K0.5

]
• χ = 110→ Air reference temperature [K]

Note that the purpose is to evaluate a range of Reynolds values which can
be used to describe viscosity conditions during all the flight. It can be done
observing that, at fixed altitude (and so ν), a maximum and a minimum
value for equation 3.2.1 are linked to the maximum and minimum values of
c and u:

• u = [12 , 22][m]

• c = [0.15 , 0.27][m/s]

Substituting, it can be obtained:

Re = [1.2206 , 4.0281] · 105

20 aerodynamic model

Figure 3.7: Batch analysis interface

All the polars in this range are eligible for Xfoil interpolation.

Figure 3.7 shows Xflr5 batch analysis interface. As it can be seen there
are two ways to pass Reynolds number values to the software: from a list
and from a range. In both cases it is necessary to pass at least one Mach
value. The difference between these data entry methods is that the list type
allows to proceed with a variable Mach analysis, which means a different
speed condition. As regard range data entry, just one value of Mach num-
ber is needed. The choice between this two criteria is strictly subjective: the
program will always evaluate a local Mach value as a function of a fraction
of unit length chord (true chord value will be considered during 3D mod-
elling) and will use it to perform its calculations. Usually, for these analyses
the standard Mach value is zero for every Re, because under a value of
M = 0.3− 0.4 compressibility effects can be neglected. By the way, for the
present study, sound speed can be calculated as follows:

a =

√
γ · R

M
T

With:

• R = 8314.4626
[
J

kg·K

]
→ Gas universal constant

• M = 28.96
[g
mol

]
→ Air molar mass

So it results:
M =

u

a
= [0.0353, 0.0647]

The mean Mach value had been chosen, in combination with a range data
entry for Reynolds number (with an overestimated value in both directions,

3.2 2d analysis 21

to be sure to cover all the flight situations).
Before starting the analysis, it has been considered a proper range of inci-
dences, with a variation step small enough to guarantee a dense family of
polars (fig. 3.8). These polars will be interpolated to estimate the viscosity
effects for the 3D wing, as said in section 2.4.1.

Note, from the top left graph, that there’s a sort of dependency between

Figure 3.8: Polars for δ = 0◦

drag coefficient CD and Reynolds number. Assuming CD as the sum of two
contributes:

CD = CDi +CDv

Where:

• CDi → Induced drag coefficient. Speed independent;

• CDv → Viscous (or Profile) drag coefficient. Speed dependent.

It can be said that in 2D analyses, the induced contribution does not exist,
so CD = CDv . In this analysis, drag coefficient depends on speed, so on
Reynolds number.
Moreover, remembering the meaning of Reynolds number, figure 3.8 shows
that in high Re zones, CD is low because inertial forces are stronger than
viscous ones. When Re falls, CD raises.

22 aerodynamic model

3.3 3D Model

Xflr5 provides a smart 3D interface that allows to model in terms of CAD
and mesh a lot of plane architectures. Small aircrafts like ANUBI can be
virtually built knowing geometric characteristics and disposition of masses
and one of the four available type of analyses can be run knowing a few
data about flight conditions.
At the beginning of the study, a full ANUBI configuration was realized, as
it can be seen in fig. 3.9.

Figure 3.9: ANUBI 3D model with Xflr5

However, it was decided to dispose this strategy for many reasons:

• First of all, the target is to evaluate the hinge moment on a particular
portion of the half wing;

• Tail geometry is still in updating and data are difficult to find;

• It was demonstrated that body interaction with lifting surfaces rep-
resent a noise, more than a real information [Web]. Morover, 3D
Panel analysis usually results in errors since it needs closed and non
intersecting volumes: this hits limitations of Xflr5, which has some
non-intersection issues between volumes (wing-body, tail-rudder, tail-
body).

Figure 3.10: 3D Panels invalid mesh visualization example [Web21]

At the end, an all-wing model has been considered enough for the project
objective.

3.3 3d model 23

From the ”Wing Edition” panel of the ”Wing and Plane design section” of

Xflr5 it is possible to model a wing plane by inserting its dimensions in
terms of local chords, and wingspan. Note that inputs must be related to
the half wing. The program will automatically generate a specular portion.

It has been decided to divide the half wing in three portions with four
profile sections. Sections are useful to generate a right mesh and allows to
use different profile configurations for each wing portion. Each section has
been placed in a particular position along wingspan, to recreate the parti-
tioning previously shown in figure 2.1. Knowing these wingspan values, it
has been easy to interpolate local chords values via Matlab, considering a
linear taper.
Last things to do, assuming no dihedral and no twist for the wing, were
to set the offset parameters to each profile and to assign the foil previously
analysed in Xfoil section. All of the operations have generated the sizing

Figure 3.11: Wing modelling

reported in tab. 3.1.
”Wing Edition” panel is also the place where the mesh has to be prepared.
Xflr5 usually suggests a superficial mesh it finds reasonable to connect ele-
ments from a wing portion to the adjacent one. For this analysis it has been
chosen the suggested mesh, whose characteristics are reported in tab. 3.2.

mesh strategy Xflr5 suggests a mesh it finds reasonable. By the way it
has been considered to study some different path. For example it has been
observed the effect on the hinge moment adopting twice as many suggested
panels. Resulting comparison can be seen in figure 3.12.
As shown, the double size1 mesh produced greater values for hinge mo-
ment. Generally speaking, the larger the number of panels, the better the

1 in terms of ”number of panels”

24 aerodynamic model

Parameter Value Misure

Wing Span 3.80 [m]

Wing Area 0.8 [m2]

Mean Geometry Chord 0.21 [m]

Mean Aero Chord 0.22 [m]

Aspect Ratio 18.11

Taper Ratio 1.8

Table 3.1: Wing Characteristics

y [m] x-panels x-dist y-panels y dist

0 11 Cosine 4 Sine

0.409 11 Cosine 11 Sine

1.404 11 Cosine 5 Sine

1.9

Table 3.2: Mesh Characteristics

analysis accuracy. In any case, real experiments should be conducted to
assess accuracy and this is something that transcends the objectives of the
thesis. Moreover, the maximum difference between the two mesh hinge out-
put is 15% with respect to the suggested mesh (blue line), and it decreases
with α reaching the value of 3% as minimum difference.

Once the plane is ready, Xflr5 wants the user to define the analysis. From
”Define an Analysis” panel it can be chosen one of four analysis type.

As regard the project, final database needs pressures and hinge moments
informations in terms of a velocity v input2, so ”type 1” analysis (Fixed
speed) has been chosen. Same panel, but in ”Analysis” it can be selected
the solver method, referring to one of the following:

• Lifting Line Theory;

• VLM1 - Horseshoe Vortex;

• VLM2 - Ring Vortex;

• 3D Panel.

VLM and 3D Panel were both good for the analysis, but it was chosen the
second, because it allows to obtain pressure distribution on both top and
bottom surface (VLM method plots pressure distribution just on the camber
line).
Inertia and air temperature and density have been set with the values early

2 Control surface deflection δ has been fixed during foil design and angle of attack will be
defined later

3.3 3d model 25

Figure 3.12: Hinge moment difference

calculated (pag. 18). Note that Xflr5, to make up for the underestimation
of drag, allows to add different source of extra drag. But this function has
been neglected for the present study.
Last thing to do is to define the range of incidence to perform the analysis
within. Range and variation step have to be the same chosen during DLN
input definition (tab. 2.2).

Starting the analysis, Xflr5 solves Laplace equation with the chosen method
(3D panel), then tries to interpolate Xfoil viscous results with the one ob-
tained in the 3D analysis.
Lots of errors can be obtained in this phase, because of the limitations of
Xflr5, causing dangerous loss of precious data. By the way, it has been pos-
sible to avoid some of this errors because of the moderate flight conditions
in terms of speed, incidence and control surface deflection.

Figure 3.13: CP contour map for δ = 0[deg],v = 12 [m/s],α = 0[deg]

For the end of the analysis, Xflr5 features lots of visualization options, going
from CP contour maps to pressure vectors display and others (Lift, Induced
drag, Downwash speed...). For each operation point has been possible to

26 aerodynamic model

Figure 3.14: Pressure vectors distribution for δ = 0[deg],v = 12 [m/s],α = 0[deg]

extract a .tex file, containing all of the calculations, to be used in the next
project phase.

3.4 Output file

Xflr5 works considers ”Operating Points”. After wing analysis, which uses
the Xfoil direct analysis results too, an OP si created.
”An operating point of a given foil is defined by its angle of attack and its
Re number. Always associated to a foil and to a Polar object, the OpPoint
stores the inviscid and viscous results of the analysis.
Any number of OpPoints may be stored in the runtime database, the only
limitation being computer memory” (Xflr5 Guidelines [Uns09]). OpPoints
may use significant memory resources, but this was not the case (after all
Xflr5 was chosen to minimize computational requirements and to produce
a lot of simulations).

For every OP, a .txt file can be extracted. It contains every information
about calculated values. Figure shows the heading of one of these files. As
shown, almost all required data for the DLN model can be acquired from
the heading of the Xflr5 output file. Actually, the program is able to evaluate
a flap moment for every wing partition considering the hinge axis position
given as input during foil designing. It stands clearly up to the user to
create a proper partitioning on the wing, and for the present project it has
been decided to realize a ”ready to use” sizing even before discover the flap
moment feature.
In any case, the output file also provides the pressure coefficients all over
the mesh, in a way that can be seen in figure 3.16. This could be useful to
evaluate hinge moment with a different solver, as a FEM software.
Cp values are displayed as a function of the x,y, z coordinates of the plane,
accompanied by an ”Area” value of the single mesh panel. As said, they
can be used to evaluate pressure forces considering that:

P = q · S ·Cp

Where:

• S = Area→ Panel Surface;

3.4 output file 27

Figure 3.15: .txt output sample for δ = 0[deg],v = 12 [m/s],α = 0[deg]

• q = 1
2ρv

2 → Dynamic Pressure.

Also reference system coordinates of each centre of pressure could be used
for a different purpose: they are eligible to generate a map to import pres-
sures on a different solver. After having explored the output file, the analy-

Figure 3.16: Pressure coefficients for δ = 0[deg],v = 12 [m/s],α = 0[deg]

sis proceed towards data handling and process automation to operate with
lots of files.

4 DATA H A N D L I N G A N D
A U TO M AT I O N

4.1 Automation Strategy

Since Xflr5 has a closed interface, it was not possible to automatize the gen-
eration of all output files. Moreover, each analysis had to be supervised in
order not to operate with wrong data. So, the first part of the project has
been to realize all of the DLN examples manually.
On the other side, for data handling phase it has been possible to a single
Matlab code able to select each Xflr5 output file and explore it taking out
desired data.

4.1.1 String updating and file location

string updating This code is a triple ”for” loop that passes through
each value of δ, v and α vectors to update the different strings’ key words
contained in the name of each file. This is necessary to identify the target
output file.
All that follows could have been possible because of the way Xflr5 names
its output, using the characteristics of the operating point. For example, the
string ”MainWing a = 0.00 v = 12.00ms” refers to a particular simulation.
It can be seen that there are some indication (a = α, v) which can be update
every time in a ”for” loop to identify different simulations. The only not
showed parameter is δ, because it doesn’t identify an OP point itself, but
just a profile edition, so Xflr5 doesn’t use it to classify its results.

Figure 4.1: File string name

The problem can be solved easily including Xflr5 outputs in different folders,
depending on the δ value used for the analysis itself.
At the and, available information are enough to build an updating algorithm
using a triple loop a the three vectors of the main variables.

file location Since Xflr5 outputs must be included in proper folders
(related to δ), every iteration of the previous loop has to locate each file by
string comparison and move it in the work folder, in order to operate on
it. To generalize the process as possible, a Matlab ”isfile” function has been
used to check if the file is present in the specified folder. This allows to add

29

30 data handling and automation

or remove simulation outputs, to make the code eligible for future analyses,
just modifying main inputs, as the δ/v/α range (and obviously producing
aforementioned simulations with Xflr5). Basically, the ”location” part of the
code is about generating updated strings which identify a particular system
path. At the end of the external loop, the same path string is used to bring
back the input file to its initial position.

4.1.2 Data extraction

All the process has the main purpose to extract a set of values that identifies
a complete DLN example. This means that the code must provides four
values per iteration (full 3 loops):

• δ→ Taken from external loop present index;

• v→ Taken from middle loop present index;

• α→ Taken from inner loop present index.

• H→ To be extracted from .txt file.

The problem is just to extract hinge moment. The fastest way is to extract
the ”Flap Moment” of the right partition from the .txt file. This can be done
creating a function able to ”explore” the the .txt in some way. It was chosen
to declare the exact position (in terms of rows and columns) of the desired
flap moment value. That was possible thanks to Matlab ”textscan” function.
This function store its results in a cell array, and it’s easy to take them out
and evaluate them as needed.

Including before the loop an Excel file generation command it has been pos-
sible, at this point of the process, to add elements to this ”.xls” file, having
care not to overwrite previous data.

excel file adjusting In order to import the full dataset in DLN envi-
ronment it has been necessary to convert the final database from ”.xls” tab-
ulated (fig. 4.2a) to ”.csv” comma separated (fig. 4.2b). It has been possible
thanks to Excel basic functions.

(a) ”.xls” t. (b) ”.csv” c.s.

Figure 4.2: Format conversion

4.2 gui 31

4.2 GUI

In order to simplify future developments, a simple graphical user interface
has been built. This GUI allows the user to start the data handling by simply
entering some known data.

Figure 4.3: GUI

As shown in figure 4.3, one must only fill some fields with a description
of the three analysis input ranges (minimum, maximum and step value).
These values can be obtained from table 2.2,
Pressing ”Insert” button, a summary of tables 2.2 and 2.3 will be displayed,
then all that remains is to start the analysis. Pressing ”Start Analysis”, the
background data handling code described so far will start and will look for
Xflr5 output files considering user input. This means that after each epoch,
the code updates the string to look for using defined ranges: every time it
finds a string match inside a particular folder, it opens the file, reads and
stores desired informations. It does not matter if, after a complete epoch,
results no match: if a particular file does not exist, the code will simply skip
to the next search. This allows not to worry about data loss during data
handling.

5 D L N B A C KG R O U N D

5.1 Supervised Learning

As previously said (sec. 2.3.2), DLN algorithm adopted in the present
project needs a bunch of examples to be trained on. In the field of ma-
chine learning this paradigm is known as ”supervised learning”. In short,
what happens is that the network receives a set of ”labelled” inputs, i.e. the
set of examples, then it trains on these inputs comparing each time its own
output with the right one (the label), looking for errors and adjusting its
own parameters to meet correct output requirements. This is exactly what
is shown in fig 5.1.

Figure 5.1: Machine learning flow chart

1. Data acquisition: first context analysis. Data origin (customers, infor-
mation collections, sensors...);

2. Data cleaning: data should be ”cleaned” (or elaborated), before the
network is able to process them. A sort of cleaning is what has been
done within Excel (page 30). In the present context, data cleaning is
something more complex, like dealing with missing or non numeric
values. This step has been avoided through Matlab, directly creating a
ready to use database (chapter 4.2).

3. Test Data and Model Training/Building: this phase starts as an exten-
sion of the previous one: dataset still has to be managed, in terms of
partition creation.
At least two main dataset partition should be created:

• Training data: usually 70% of whole dataset;

• Test data: usually the remaining 30% of whole dataset.

However, this is a simplified approach: to be sure that the model will
work, it has to be tested on data it has never seen. By including just
one test set, the algorithm will use it not only to determine the hy-
perparameters to be changed, but also to validate its results, and this
procedure does not constitutes a strong limitation [Jos].

33

34 dln background

For the present project, a triple partition has been chosen by including
a third set of about 150 examples to validate the model on brand new
values. Note that in literature [Jos] the meaning of the words ”valida-
tion set” and ”test set” is exchanged with respect to what each of this
nomenclature means in the present context. It was decided to adopt
this terminology to better comprehend some python functions which
call ”test” the ”validation” set.
Once the datase is partitioned, the first iteration proceeds building the
model.

4. Model testing: the model built with the training data is ready to be
tested so, by including test set input in the model, results can be com-
pared with the true labels. If error is too large, the algorithm will step
back and adjust hyperparameters.

5. Model deployment: assuming good results not only in the test set,
but also in the validation set, the model can be considered ready to
deploy. After this moment, it is not possible to get back and improve
performances of the same model.

A complete model is described by accuracy indices that show its ability to
work in real world situations. Those are the results of the application of
some evaluation metrics to the last validation analyses.

5.2 Statistical performances evaluation

Performance is typically measured by four parameters scale:

• Accuracy;

• Recall;

• Precision;

• F1-Score.

A generic prediction will always result in one of two possible scenarios:
correct or incorrect prediction1.

• Accuracy

It is the ratio between the number of correct predictions (CP) and the
whole set of predictions (CP+ IP):

Accuracy =
CP

CP+ IP
(5.2.1)

Accuracy, is a useful parameter for all kind of problems but those
categorical problems2 in which classes are not balanced.

• Recall and Precision

1 For sets containing continuous values set of values, a correct prediction can be assumed as a
prediction whose error lies below a certain threshold

2 ”In statistics, a categorical variable is a variable which can take one of a limited, and usually
fixed, number of possible values, assigning each individual or other unit of observation to a
particular group or nominal category on the basis of some qualitative property”. [Wik21a]

5.3 error metrics for regression models 35

Recall is the ability of the model to detect (or recall) all relevant cases
within a dataset. According to this definition, recall formulation is:

Recall =
TP

TP+ FN
(5.2.2)

The ratio between the number of true positive cases (TP) and the sum
of true positive and false negative cases (TP + FN). The meaning of
these terms is presented in figure 5.1. Precision is the amount of data

Figure 5.2: TP,FN,FP,TN meaning

which the model consider relevant, and which actually turns out to be
such.

It is often established a trade off between Recall and Precision param-
eters, to get more consistent informations.

• F1-Score

F1-Score is a method to get an optimal balance of recall and precision
parameters. It consists in the harmonic mean of the two parameters:

F1− Score = 2 · Precision ·Recall
Precision + Recall

(5.2.3)

However, these metrics were not meant to be used in regression problems,
which is faced in the present context, and they could lead into bad evalua-
tions. It has been preferred to switch towards a different set of metrics.

5.3 Error metrics for regression models

Facing a regression problem means trying to forecast continuous values hav-
ing continuous inputs. These problems are different from categorical ones,
like classification (where the results can be just ”A” or ”B”). For regression
problems it is preferred to use following metrics:

• Mean Absolute Error;

• Mean Squared Error;

• Root-Mean Squared Error.

36 dln background

• Mean Absolute Error - MAE

The mean of the errors absolute value:

MAE =
1

n

n∑
i=1

|y1 − ŷi| (5.3.1)

Unfortunately, this metric does not ”punish” great errors, as it can be
seen in fig. 5.3.

Figure 5.3: Low impact of the greatest error

• Mean Squared Error - MSE

Born to overcome MAE limitations on great errors, the MSE is defined
as:

MSE =
1

n

n∑
i=1

(y1 − ŷi)
2 (5.3.2)

It is one of the most useful metric parameter but it has the issue to be
(sometimes) hard to be interpreted because of the square power, that
acts on values but also on measure units.

• Root-Mean Squared Error - RMSE

As in the name:

RMSE =

√√√√ 1

n

n∑
i=1

(y1 − ŷi)2 (5.3.3)

RMSE in the most common metric parameter because it easily takes
the merit of the MSE and overcome the interpretation problem by
adopting the square root.

At the end, each metric has its limits. Error needs to be studied in depen-
dency with the context: sometimes, even a small error cannot be neglected.

5.4 Deep Learning Neural Networks

The historical inspiration of ”deep learning” models is the will to build an
artificial imitation of a biological, natural intelligence. As previously said,

5.4 deep learning neural networks 37

this is not completely possible for now, but some sort of useful neuron-
based algorithms can be realized nowadays. To understand the meaning
of ”neuron-based” algorithms, and so the code used in this project, it is
necessary to clarify some theoretical aspects.

5.4.1 Perceptron Model

A human brain is characterized by neurons. A neuron has a central body, the
nucleus, and some highly specialized ramifications. To adapt its functions
to what is necessary for the analysis, neuron architecture can be simplified
as shown (fig. 5.4). Figure reminds a sort of analogy with informatics:

Figure 5.4: Neuron scheme

• Dendrites→ Inputs;

• Nucleus→ Generic couplig function;

• Axon→ Output.

A sufficiently simple mathematical model based on a biological architecture
is the Perceptron.

The perceptron is an elementary neural network form and it is depicted
in figure 5.5. Characteristics:

Figure 5.5: Perceptron Model

38 dln background

• xi → Inputs;

• wi + b→ Hyperparameters term;

• f(x)→ Coupling function;

• y→ Output.

In other words, a perceptron is a structure in which a particular function
associates a number of inputs in order to produce a single output. By ne-
glecting the hyperparameters term, and considering a ”sum” function, the
behaviour of the perceptron in fig. 5.5 may be associated, in a first instance,
to the formulation:

y = x1 + x2

But the real potential of a DLN can be expressed as the ability to ”perceive”
the input in a different and user-defined way. Here lies the meaning of the
”weight” terms wi:

y = x1w1 + x2w2

A particular situation may occur when one of the input is xi = 0. In that
case, the relative weight does not modify the interpretation of xi. This is
the reason why a further term is needed. This term is the ”bias” b, which
instructs the code over a simple statement: ”the product xiwi must be larger
than b to generate some effect on the output”:

y = (x1w1 + b1) + (x2w2 + b2)

Final formulation should consider the presence of more than two inputs,
weights and biases:

ŷ =

n∑
i=1

(xiwi + bi) (5.4.1)

Note that the formulation above refers to just one neuron, but a network
must be provided with a multitude of them for handling complex systems.
Fortunately, single neurons can be coupled in order to produce a multilayer
model, as shown in figure 5.6. Referring to previous picture:

Figure 5.6: Multilayer network

• Characteristics:

– Every neuron is connected to all of the ones belonging to the next
layer (”Fully Connected System”);

5.4 deep learning neural networks 39

– Each neuron has a single output value which is passed to multi-
ple neurons.

Basically, what allows the network to learn a complex task is the re-
peated composition of affine and simple non linear functions.

• Nomenclature:

– Input layer: first input acceptor layer (left green layer);

– Output layer: last output layer (right green layer). For some prob-
lems, this layer may host more than one neuron.

– Hidden Layers: intermediate layers. This is the core of the model,
where most of the calculation is processed. These levels are usu-
ally hardly interpreted during debug sessions because of infor-
mation ”distance” from both the input and the related label.

Hidden levels are what distinguishes a Simple Neural Network from a
Deep Neural Network: DLN means the presence of at least two hidden
levels.

activation function The weighted sum is just a part of the whole core
function. For instance, recalling formulation 5.4.1, consider to assign the
hyperparameterized term to a generic variable zi:

zi = wixi + bi

One other step must be done to produce the input: there is the need to ”in-
terpret” zi.
For this reason, the ”Activation Function - AF” will be the specific f(zi)
which applies some sort of interpretation to zi. There are many of them in
literature and each one is used for a particular DLN job, depending on the
context.
As concerns the present project, it has been adopted the ”Rectified Linear
Unit” function, ReLu. This is the most used function since 2011 for regres-
sion problems and it is basically easy to understand, because it operates:

f(zi) = max(0, z)

In other words, if the output is less than zero, it will be treated as zero.

Figure 5.7: ReLu

If the output is higher, it will be treated as the maximum acquired value.
”Rectifying activation functions were used to separate specific excitation and
unspecific inhibition” (Wikipedia [Wik21c]).

40 dln background

[Bri20] The output of the activation function is used to build the ”Cost
Function” (next paragraph) and, as it will be seen, its importance lies in
its derivative: during the backpropagation (paragraph 5.4.1) process the AF
derivative is used and if it results in some near zero value, it will cause a
gradual error vanishing. This vanishing is not a good news, because the
learning process, without the guide represented by the error itself will slow
down epoch after epoch. In order to obtain a proper output interpretation,
in terms of backpropagation utility, a different kind of activation function
should be used, depending on problem type. One example is the ”step func-
tion”, the first activation function adopted in the machine learning field. It
was directly involved in the definition of ”Perceptron3” itself. It applies:

f(zi) =

{
1 x > 0

0 x < 0
(5.4.2)

Figure 5.8: Step Function [Wik21d]

An other example is the ”sigmoid, or logistic function” (fig. 5.9).

Figure 5.9: Sigmoid Function

f(z) =
1

1+ e−z
(5.4.3)

3 To be rigorous, all perceptron formulation but the one implementing the 5.4.2 should be re-
ferred as some sort of ”modified” perceptron.

5.4 deep learning neural networks 41

This was the most common AF before 2011 but it turns out to have a ”small”
derivative with a maximum value of 0.25, which soon tends to the zero
value:

f ′(z) =
−e−z

(1+ e−z)2
→ max|f ′(z)| =

1

4

This function can be observed in the picture (horizontal tangent y = [01]).
For this reason the ”ReLu” function is generally preferred. It has a deriva-
tive equal to 1 on the right side and to 0 on the left side. This means
that, when the first network iteration will be started (generally with ran-
dom hyperparameters) about half of the neurons will result in an AF output
f(zi) 6 0, which means in turn that their derivative AF forms will be null
and they can be considered ”turned off” during cost evaluation. This opera-
tion is called ”Dropout” and is a technique to avoid overfitting, reducing the
number of cost evaluation to do during the most critical phase of training.

The ReLu function, summarizing, brings two beneficial effects:

• It helps to reduce overfitting;

• It is easy to implement, by an easy sign confront, without calculations:

if (z <= 0)
return 0;
else
return z;

The main ReLu limitation is the impossibility to be derived in x = 0 and
this may yield some bad consequences during backpropagation. However,
an in-depth study on the subject transcends the objectives of the thesis.

cost functions Each time the output layer produces its result, this has
to be evaluated by comparison with true labels, and eventually adjusted.
Adjusting the output means to step back and change hyperparameters. Note
that in this phase, the algorithm is using the train dataset.
Performed comparison is tracked by a Cost Function which averages the
results and produces a single output value i.e. the general ”loss” of the
process.
Considering:

• y→ true value;

• a→ predicted value;

• z→ input definition;

• σ→ activation function;

training iteration can be formulated as:

σ(z) = a

That is: input z is passed to the activation function σ and the result is as-
signed to the variable a.
The prediction in turn may be used in relation to y to evaluate a cost func-
tion. For instance, one of the most common one:

C =
1

2n

∑
x

||y(x) − aL(x)||2 (5.4.4)

42 dln background

which is the Squared Cost Function.
”L” apex indicates the last level after which the cost function is applied. It
allows the user to track the number of levels needed to reach a reasonable
result.
As written, cost function appears to include many terms:

C(W,B,ST ,ET)

Where:

• W → Network weight;

• B→ Network biases;

• ST → Single training sample input;

• ET → Single training sample desired output.

If the problem contains vector inputs, C may become difficult to interpret,
due to the number of different incorporated terms. This is the reason why
applicative cost functions are designed to depend just on weight multiplic-
ity:

C(w1,w2,w3, ...,wn)

Assuming this form, it is interesting to observe that it could exist a weight
value which leads to a minimum in the cost function. This doesn’t neces-
sary mean that evaluating the point with null derivative is the right path to
follow. As shown in the picture, weight vectors may be n-dimensional and

Figure 5.10: C function with different minimum values

associated cost functions may be a lot complex.
It is commonly used to adopt the strategy of the ”gradient descent”, which
consists in a series of iterations with the purpose of evaluating the slope of
the tangent to the function in different points at x growing. The convergence
of the tangent slope to the null value implies the presence of a minimum
in that point. A small iteration step guarantees the convergence at the ex-
panse of the computational time. On the other hand, if iteration step is too
large, convergence point could be missed.The optimal step value is called
”Learning Rate”. Gradient descent with constant step is not the only or best
method to use. It can be used a different version of GD which assumes a
variable step value. These values will be larger when tangent slope is high
and smaller when tangent slope approaches the null value. This new ver-
sion has been named ”Stochastic Gradient Descent” and it is a standard
tool in machine learning.
For this project, a stochastic optimization method called Adam has been
implemented in order to minimize the cost function. With respect to other
known methods it has been shown having great performances (fig: 5.12).

5.4 deep learning neural networks 43

(a) Gradient descent meaning (b) Large step failure

Figure 5.11: Gradient descent features

Figure 5.12: Adam performances[Jos]

backpropagation In order to step back and adjust hyperparameters, the
algorithm implements the ”backpropagation - BP”. Basically, the idea be-
hind this operation is to establish, after each iteration, a criterion which
introduces a variation in the weights as a function of the C values.
Considering a simple network as the one shown (fig. 5.13), the process de-
scribed so far may be called ”forepropagation - FP”. As for backpropagation,
a different kind of notation should be used.

Figure 5.13: Notation in BP

Where:

n = L− 1

The first neuron on the left is indicated as L−n = L− L+ 1 = 1 for the red
notation (backward). This may appear counter-intuitive but it is made to
consider that, as regard BP, the process starts from the right.

44 dln background

Adapting this to previous formulations (page 5.4.1), right neuron input ex-
pression may be written as:

zL = wLxL−1 + bL (5.4.5)

where xL−1 = aL−1 is the output of the second neuron from the right. The
expression above yields:

aL = σ(zL) (5.4.6)

To which corresponds the cost function:

C0(...) = (aL − y)2 (5.4.7)

(”0” subscript means that this is the first iteration across the network.)

To estimate the cost function sensitivity with respect to the weight vector,
some already known relationships may be used within the chain rule4:

∂C0
∂wL

=
∂zL

∂wL
∂aL

∂zL
∂C0
∂aL

(5.4.8)

Note that it is possible to obtain each derivative form from previous rela-
tionships (eqs.5.4.5, 5.4.6, 5.4.7).

To evaluate the minimum value for the cost function it is necessary to op-
erate with a gradient method. Then, this can be used to evaluate the error
vector δ, using ”Hadamard product”, as follows:

δ = ∇aC� σ ′(zL) (5.4.9)

where ∇aC = (aL − y). ”a” subscript means that the speed variation of C
must be expressed as a function of the output ”a”.
From now on, ”l” will be meant to identify the generic level but the last,
which will be named L. The formulation above can be generalized and
expressed as a function of the backward direction, as follows:

δl = (wl+1)Tδl+1 � σ ′(zl) (5.4.10)

Transposed weight vector is what ”pushes” the error backward to level
”l”, along with Hadamard product for σl(zl), which pushes the error even
through the activation function, in order to evaluate a sort of weighted error
δl for the ”lth” input.
At the end, partial derivatives of the cost function can be evaluated for each
level using the following relationships:

∂C
∂wljk

= al−1k δlj

∂C
∂blj

= δlj

In conclusion, all that has been said so far in this chapter, may be consid-
ered enough to understand the building of ANUBI DLN project in terms of
theoretical background.

5.5 Overfitting

Before dealing with overfitting, it is strongly recommended to introduce the
concept of ”bias and variance”.

4 mathematical expression which allows to evaluate a derivative relationship using some others.

5.5 overfitting 45

5.5.1 Bias and Variance

One of the main feature behind the machine learning idea is the ”generalization”
capability, which is the ability of a model to apply information learned dur-
ing training to brand new input.

”The difference between optimization and machine learning arises from the
goal of generalization: while optimization algorithms can minimize the loss
on a training set, machine learning is concerned with minimizing the loss on
unseen samples. Characterizing the generalization of various learning algo-
rithms is an active topic especially for deep learning algorithms.” [Wik21b]

A good generalization needs the model to be able to recognize the differ-
ence between ”bias” and ”variance”:

• ”Bias” is how a statistic mean is different from the actual value. For in-
stance, it is know that 100 is the mean global intelligence quotient (IQ).
Anyway, taking as samples just the physics Nobel prizes (IQ > 130

[Bru]), evaluated mean would be different from the actual world-based
one.

• ”Variance” is how samples differ from the mean value or, equivalently,
how data population is distributed around ”true” value. For instance, if the
mean global IQ is 100, there will be more people within the [90, 110]
range and less outside. Besides, people outside this range can be seen
as the ”outlayers” of a hypothetical IQ estimation problem.

These concepts can be applied to machine learning, where they represents
[Gov]:

• Bias → systematic error. Error between mean prediction and mean
true value. Great bias means a too simple model, able to produce
relevant errors during both training and testing phase;

• Variance→ sensitivity to training data randomness. It is the prediction
variability, considering to train the model multiple times on different
datasets. Great variance means the model pays attention to training
data but is not able to generalize new data, producing relevant errors
on testing phase.

Some sort of visualization of what has been said can be found in figure 5.14,
which has to be interpreted as follows:

• Every point is a mean prediction in the training set of the model after
a training;

• Points differ each other because a variation in the training set is as-
sumed for each training;

• The centre of the target means the perfect prediction.

Previous figure may be associated to table 5.1. Table meaning is:

• LB-LV → Training dataset is able to produce very good predictions
because it describes a particular standard situation (low bias) and does
not contain outlayers (low variance). Referring to previous example,
this is like considering a bunch of standard (between 90 and 100) and
not so different people IQs to estimate mean world IQ. Definitely a
non realistic problem, unable to operate in case of outlayer estimation.

46 dln background

Figure 5.14: Bias and Variance [Jos]

Low Variance - LV High Variance - HV

Low Bias -
LB

Simple Dataset - Correct
prediction

Overfitting

High Bias -
HB

Underfitting Tough Dataset -
Uncorrect predictions

Table 5.1: Bias Variance trade off

• LB-HV→ Training dataset produces lots of different results (high vari-
ance) in what is assumed as a standard situation (low bias). Referring
to previous example, this is like considering a bunch of standard but
very different IQ values, to describe mean world IQ. Definitely a sit-
uation in which some data could behave as ”noise” for the training.
When it happens, the system is referred to as ”overfitted”.

• HB-LV → Training dataset produces a localized (lo variance) and no-
ticeable error (high bias) because it is not able to recognize data pat-
tern. It can be observed that the error is systematic and it depends
on data quality and quantity. As regards quantity, this is the main
problem behind ”underfitted” models.

• HB-HV → Training dataset produces different and significant errors
because data are not descriptive of the actual problem and they also
lead to a noisy training. Referring to previous example, this is like
considering a bunch of very different outlayered IQ values to describe
mean world IQ.

Concluding, underfitting is surely a problem, but it is easy to recognize,
while overfitting is the main issue which can be found while operating
with DLN. One of the main overfitting alert is given by the comparison
between training predictions and test predictions. If training set prediction
are too better than test set prediction, system may be overfitted with noise.
A perfect visualization of the phenomena discussed so far is figure 5.15.
Overfitted systems are also called ”flexibles”, because of their appearance,

5.5 overfitting 47

(a) Underfitting (b) Overfitting

(c) Correct fitting

Figure 5.15: Fitting problems [Gov]

referring to the same figure, green dot represents a generic new test label
to be forecast. One can immediately see that the error is greater in the over-
fitted dataset than in the correctly fitted one and this well summarize the
consequence of the problem.

6 A N U B I H I N G E M O M E N T
F O R E C A S T I N G M O D E L

6.1 Introduction

After having performed data cleaning (chapter 4.2), a couple of dataset have
been produced in order to use them in this way:

• Dataset ”df1”: contains data regarding all δ, v,α configurations but
the δ = 0 ones;

• Dataset ”df2”: contains data about δ = 0 configurations.

Each dataset provides labelled inputs needed to train, test and validate the
model. In particular:

• ”df1”: train/test set;

• ”df2”: validation set.

The model has been created and validated in a Jupyter IDE:

the jupyter notebook is an open-source web application that allows to
create and share documents that contain live code, equations, visualizations
and narrative text. Uses include: data cleaning and transformation, numer-
ical simulation, statistical modelling, data visualization, machine learning,
and much more [Jup]

6.2 Data Preparation and Exploration

First of all, to perform data preparation and exploration it is necessary to
import some libraries:

[1]: import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from matplotlib import cm

from matplotlib.ticker import LinearLocator

from scipy.spatial import ConvexHull

from mpl˙toolkits import mplot3d

To understand:

• ”panda” library may be associated to a powerful Excel version, and it is
useful tu handle series, dataframes and so on. It is a sort of high-level
building block for data analysis;

• ”numpy” library provides a multidimensional array object, various de-
rived objects (such as masked arrays and matrices), and an assortment

49

50 anubi hinge moment forecasting model

of routines for fast operations on arrays, including mathematical, logi-
cal, shape manipulation, sorting, selecting, I/O, discrete Fourier trans-
forms, basic linear algebra, basic statistical operations, random simu-
lation and much more [Num];

• ”matplotlib” is the native python library for data visualization methods.
It was created by John Hunter to emulate Matlab plotting capabilities;

• ”seaborn” library is useful for statistic plotting and it is well made for
working with panda objects.

• Other imported tools are for graphical design.

Once having imported df1 and df2 as ”pd.dataframes”, through a simple
command it is easy to get a description about each set:

[6]: df1.describe().transpose()

[6]: count mean std min 25% 50% 75% \
delta 2401.0 -0.088297 2.705032 -4.0000 -3.0000 -1.0000 2.0000

v 2401.0 16.963140 3.033321 12.0000 14.5000 17.0000 19.5000

alpha 2401.0 2.102041 4.142463 -5.0000 -1.0000 2.0000 6.0000

H 2401.0 -0.089814 0.051890 -0.2692 -0.1217 -0.0803 -0.0505

max

delta 4.0000

v 22.0000

alpha 9.0000

H -0.0035

[7]: df2.describe().transpose()

[7]: count mean std min 25% 50% 75% \
delta 314.0 0.000000 0.000000 0.0000 0.000000 0.00000 0.00000

v 314.0 16.984076 3.024089 12.0000 14.500000 17.00000 19.50000

alpha 314.0 2.022293 4.316120 -5.0000 -2.000000 2.00000 6.00000

H 314.0 -0.090132 0.040610 -0.2096 -0.116175 -0.08165 -0.05915

max

delta 0.0000

v 22.0000

alpha 9.0000

H -0.0253

At the beginning of the project, it had been estimated to get 3024 examples,
to be split in three main dataset, as described in table 2.3.
However, python count (second column) shows that the sum of all available
datapoints is:

Total = 2401+ 314 = 2715

That means a loss of 309 configurations.
Introducing a new dataframe, such as ”df=df1+df2”, it can be plotted the
total data loss as a function of α:

[8]: plt.figure(figsize=(12,8))

sns.countplot(df1[’alpha’])

6.2 data preparation and exploration 51

[8]: ¡matplotlib.axes. subplots.AxesSubplot at 0x1a4a5296250¿

Figure 6.1: Data loss

Figure 6.1 clearly shows that all missing values are related to two different
incidence values, which means that the problem is not in the data handling
code or python implementation, but it is due to the aerodynamic analysis
itself.
The reason behind this loss is easy, Xflr5 solver limitations have been hit:
during 3D analyses with some configuration of δ and v, the solver has not
managed to interpolate boundary values of the α range.
This loss is not a problem for the project, since it does not affect model
performances so much, considering that df2 input values (i.e. validation
elements) lie inside δ, v, α ranges.

Continuing with discussion, it is very useful to plot the distribution of H
values, to estimate both:

• The range of variation;

• Some form of density of the distribution.

This can be done using the distribution plot provided by seaborn:

[8]: plt.figure(figsize=(12,8))

sns.distplot(df1[’H’])

Figure 6.2 shows an approximated distribution of hinge moment values. y-
axis represents the probability density function and also a kernel density
estimation (blue line) is plotted. Anyway, what really matters is that from
the figure it can be observed that most of results are −0.12,−0.11 < H <

−0.02,−0.03. For further convenience, it will be assumed the notation R for
the range H = [−0.12,−0.02] . This graph gives some important information
about what the model will be. A higher density of the output in a particular
region means that the model could perform better predictions in that range.
But it is not necessarily true and sometimes a model can even reach its
training limit (i.e. overfitting) in less time (therefore training less), due to
this high local density. This eventually results in worse predictions for some
values.

52 anubi hinge moment forecasting model

Figure 6.2: H distribution

However, this is a common issue in DLN models, and the reason why DLN
is still to be face with a trial and error approach.
An other aerodynamic feature can be observed from 6.2. All hinge moments
have a negative value, meaning the control surface is always trying to rotate
around its axis in the same direction, no matter the magnitude and the
combination of the inputs. This can be easily referred to two reasons:

• There is no combination among considered parameters which is able
to generate a pressure resultant, on the upper side of the control sur-
face, bigger than the lower side one. So the control surface always tries
to rotate towards the upper profile surface;

Figure 6.3: Pressure distribution plot

• Profile geometry is such that the flow:

– Always expanses on top surface (after a first compression at the
leading edge) → Pressure right before trailing edge has a mini-
mum value;

– Expanses during a first moment on bottom surface. Then it starts
compressing from half chord till the trailing edge → Pressure
right before trailing edge has not a minimum value.

Aforementioned compression is due to the buckling geometry of the
profile, a feature which becomes evident right after x = c/2.

Figure 6.3 shows a pressure distribution for:

6.2 data preparation and exploration 53

• δ = 0 [deg]

• v = 12 [m/s]

• α = −5 [deg]

As it may be guessed, python is a useful tool for evaluating trends of func-
tions and data. For instance, considering the dataframe df2 as a fixed δ

bunch of configurations, it can be observed what happens to H by varying
v and α:

[170]: plt.figure(figsize=(12,8))

sns.scatterplot(x=’alpha’,y=’H’,

data=df2,hue=’H’,

palette=’coolwarm’,edgecolor=None,alpha=1)

Figure 6.4: H vs α for ”df2”

From fig 6.4 it can be observed that hinge moment has a sort of linear be-
haviour with respect to the incidence, in agreement with what has been said
in section 2.1. For every α, more than one H value is plotted, because there
are about 20 different speed values per incidence to consider. A better ex-

Figure 6.5: δ = 0◦ configuration

planation may be featured in figure 6.5, where a 3D view perfectly shows
minimum and maximum hinge coordinates in terms of v and α.

54 anubi hinge moment forecasting model

However, all of this was just to set the field for the larger ”df1” analysis.
In this case there is one more dimension to consider and this can lead into
mistakes. By the way, with respect to 6.4, it is useful to remember that δ
values must result in similar behaviour of H, because of what has been said
in section 2.1:

[14]: plt.figure(figsize=(12,8))

sns.scatterplot(x=’delta’,y=’H’,

data=df1,hue=’H’,

palette=’coolwarm’,edgecolor=None,alpha=1)

Figure 6.6: δ 6= 0◦ configurations (2D)

Figure 6.6 shows that by varying δ, hinge moment (considering fixed speed
and incidence) has a linear trend. In other word, as δ steps forward, the
range of resulting hinge moments shifts towards smaller values. Besides,
in this graph it is more evident that by increasing aileron deflection, hinge
moment range of values becomes larger. It implies low H results density in
the R range for positive δ configurations. Figure 6.7 shows this feature and
not only.

Figure 6.7: δ 6= 0◦ configurations (3D)

As regard dependency from speed, it can be observed (fig. 6.8) a slightly

6.3 model building 55

quadratic trend, something which is in agreement with the classic expres-
sion of H (eq. 2.1.1). Using different views of previous graphs, minimum H

Figure 6.8: v−H graph

value position may be estimated at [δ, v,α] = [4, 8, 22]. Actually, that is the ex-
act set of parameters which yields to the minimum value HMIN = −0.2692,
because every representation is clear enough, as well as the trends. Never-
theless, different analyses strategies or a multitude of other configuration
would have led to other not so easy conclusions.

6.3 Model building

6.3.1 Datasets split/scale

In order to realize the model, libraries set has to be extended with Tensor-
flow and Scikit Learn tools:

[1]: import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import tensorflow as tf

from matplotlib import cm

from matplotlib.ticker import LinearLocator

from scipy.spatial import ConvexHull

from mpl˙toolkits import mplot3d

from sklearn.model˙selection import train˙test˙split

from sklearn.preprocessing import MinMaxScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Activation

56 anubi hinge moment forecasting model

from tensorflow.keras.optimizers import Adam

from sklearn.metrics import

↪→mean˙squared˙error,mean˙absolute˙error,explained˙variance˙score

First thing to do is to split dataset ”df1” in training and testing data. Per-
formed splitting turned out to be slightly in disagreement with what was
assumed in chapter 2.4.4 (Table 2.3), for two main reasons:

1. Data loss, as discussed in previous section;

2. Before thinking about the model, it has been chosen to manually ex-
trapolate a bunch of examples from the whole set (δ = 0 configu-
rations) to perform a clearer data analysis. Afterwards it has been
decided to use this set as the ”‘Validation Set”.

Considering this, actual established partition is reported in table 6.1. Par-

DataFrame DF
Percentage

Assigned to Data Points

df1
70% Train 1.680.7

30% Test 720.3

df2 100% Validation 314

Table 6.1: Dataset partition

tition is performed directly by ”train test split” function, passing the argu-
ment ”test size= 0.3”. The problem of decimals approximation, such as in
df1 splitting, is handled within the function itself.

Once all datasets are split, it is time to face a particular problem. Con-
sidering the range of possible values for H (fig. 6.2), it is evident that the
model will deal with small values:

0 < |H| < 1

meaning ∂C
∂w (from eq. 5.4.8), may yield to the common issue of ”vanishing

gradient”.

”In machine learning, the vanishing gradient problem is encountered when train-
ing artificial neural networks with gradient-based learning methods and backprop-
agation. In such methods, each of the neural network’s weights receives an update
proportional to the partial derivative of the error function with respect to the current
weight in each iteration of training. The problem is that in some cases, the gradient
will be vanishingly small, effectively preventing the weight from changing its value.
In the worst case, this may completely stop the neural network from further train-
ing.(...) Backpropagation computes gradients by the chain rule. This has the effect of
multiplying n of these small numbers to compute gradients of the early layers in an
n-layer network, meaning that the gradient (error signal) decreases exponentially
with n while the early layers train very slowly.” [Wik21e].

To avoid this problem, different scaling strategies may be adopted. For
the present code, Scikit Learn provides an handy function which creates
a scaler parameter based on the minimum and maximum values of a par-
ticular dataframe. This scaler has been generated on the training set and

6.3 model building 57

applied to all dataframes. This is all about datasets preparation.

6.3.2 Model training

To be trained, the model needs its architecture, which has been created ac-
cording to what has been said in chapter 5.5.1:

[9]: model = Sequential()

model.add(Dense(3,activation=’relu’))

model.add(Dense(3,activation=’relu’))

model.add(Dense(3,activation=’relu’))

model.add(Dense(1))

model.compile(optimizer=’adam’,loss=’mse’)

What is shown in the code is just the first experimented architecture, that is:

• 3-neurons input layer;

• 3-neurons hidden layers (x2);

• 1-neuron output layer.

Output layer will always have 1 neuron, reason for which all considered
configurations will be referred to as:

[N,L]

meaning a structure made by N neurons for each of L levels (input+hidden).
So the code above is about a [N,L] = [3, 3] architecture.
”Adam” is the stochastic optimizer introduced at page 42, while ”mse” refers
to the metric used for loss evaluation during the training (Mean Squared
Error).

The model can now be trained on the train set. It will try to predict val-
ues in the test set at the end of every epoch, to adjust hyperparameters1. An
”epoch” can be considered as a complete pass on the train set.

[10]: model.fit(x=X˙train,y=y˙train,

validation˙data=(X˙test,y˙test),

batch˙size=16,epochs=200)

As regard ”batch size”, a longer discussion is needed.

the batch size problem ”The batch size is a hyperparameter that defines the
number of samples to work through before updating the internal model parameters.
Think of a batch as a for-loop iterating over one or more samples and making predic-
tions. At the end of the batch, the predictions are compared to the expected output
variables and an error is calculated. From this error, the update algorithm is used
to improve the model, e.g. move down along the error gradient” [Jas21].

In other words, training on data batches allows to perform a certain number

1 The model will not train on the test set, but it will use it just to verify its calculations.

58 anubi hinge moment forecasting model

of output comparison (with predicted values) before evaluating the correc-
tion to be applied to the model. This affects network generalization2 capa-
bilities in a way which is still under study.
”It is often reported that when increasing the batch size for a problem, there exists
a threshold after which there is a deterioration in the quality of the model” ([17])
which may lead to overfitting. Nevertheless, LBs allow to speed up the
training and may provide as good generalization capabilities as SB (strictly
context-related).
SBs, on the contrary, tend to reduce the risk of overfitting at the expense of
the computational time. It appears that they can offer a regularizing effect
[17], perhaps due to the noise they add to the learning process.
Something about this has been experimented for the present model, as it
will be seen.

Back on topic, at the end of each epoch, two loss values are printed. For
simple networks, losses gradually decrease with time.

(...)

Epoch 6/200

105/105 [==============================] - 0s 3ms/

↪→step - loss: 0.0015 - val loss: 0.0014

Epoch 7/200

105/105 [==============================] - 0s 3ms/

↪→step - loss: 0.0012 - val loss: 0.0013

Epoch 8/200

105/105 [==============================] - 0s 2ms/

↪→step - loss: 0.0012 - val loss: 0.0012

Epoch 9/200

105/105 [==============================] - 0s 3ms/

↪→step - loss: 0.0010 - val loss: 0.0010

Epoch 10/200

105/105 [==============================] - 0s 2ms/

↪→step - loss: 9.1057e-04 - val loss: 7.5188e-04

Epoch 11/200

105/105 [==============================] - 0s 3ms/

↪→step - loss: 6.4231e-04 - val loss: 5.1092e-04

Epoch 12/200

105/105 [==============================] - 0s 2ms/

↪→step - loss: 4.3388e-04 - val loss: 1.8984e-04

Epoch 13/200

105/105 [==============================] - 0s 3ms/

↪→step - loss: 1.7430e-04 - val loss: 1.2261e-04

Epoch 14/200

105/105 [==============================] - 0s 3ms/

↪→step - loss: 1.1582e-04 - val loss: 9.4359e-05

Epoch 15/200

105/105 [==============================] - 0s 2ms/

↪→step - loss: 1.0976e-04 - val loss: 7.8603e-05

(...)

2 model ability to predict on brand new inputs

6.3 model building 59

”loss” indication refers to training set loss, because the model learns by
estimate train data, then it applies acquired knowledge to predict test labels.
From this operation, ”val loss” indication is produced: fig. 6.9 shows the
learning trend in terms of losses as a function of epochs.

(a) Normal plot

(b) Semi-log plot

Figure 6.9: Training

From the semi-logarithmic view, model seems to well behave although there
is some low order fluctuation in the convergence zone. Noise itself does not
necessarily mean that model will be bad, since it may be caused by the
low batch size adopted in the training. Indeed, this is a problem just when
fluctuations rise with time in terms of amplitude and frequency.
By the way, all produced model have been tested on both ”test set” from
df1:

[13]: predictions = model.predict(X˙test)

and ”validation test” from df2 (brand new data):

[20]: newpredictions = model.predict(X2˙scaled)

60 anubi hinge moment forecasting model

6.4 Model evaluation

As regards previous model testing, two different scatter plot (fig. 6.21) may
be generated. These images are built as the superposition of two graphs:

• First graph has x-axis= Htrue and y-axis= Htrue, so that the red line
represents the bisector of the quadrant, as well as the points locus of
exact H values (true labels);

• Second graph has x-axis = Htrue and y-axis = Hpredicted.

This kind of superimposition allows to show a comparison between true
and predicted values as a vertical distance between the points (prediction)
and the red line (true labels).

(a) Test set prediction

(b) Validation set prediction

Figure 6.10: Mk1 True labels line (red) VS Predictions

From 6.10a it can be observed that something went wrong during training,
because of the weird behaviour near zero value (flat prediction placing),
perhaps due to overfitting or to the lack of training data in that range, most
likely the first. By the way predictions on validation set (fig. 6.10b) seem to
be nice and very close to true values.
Conclusions must be provided in terms of numbers and for this reason,
some evaluation metrics have been adopted:

6.4 model evaluation 61

1. Mean Absolute Error: from section 5.3;

2. Root Mean Squared Error: from section 5.3;

3. Explained Variance Score;

4. Relative Error.

Explained Variance Score is basically an index from 0 to 1 of model good-
ness. EVS = 1 means a perfect prediction. Considering:

• P: Predictions;

• Y: True values;

• Ŷ: True values mean;

for evaluating explained variance of N datapoints, user needs to:

1. Evaluate all Absolute Deviations AD = |Pi − Ŷ|;

2. Evaluate explained deviance or Summary Squared Regression SSR =
1
N

∑
iAD

2
i ;

3. Final calculation:

EV =
SSR

N
(6.4.1)

The dual index is Residual Variance:

1. Evaluate all Absolute Errors AEi = (Pi − Yi);

2. Evaluate residual deviance or Summary Squared Error SSE =
∑
iAE

2
i ;

3. Final calculation:

RV =
SSE

N
(6.4.2)

The less is RV , the best is the model.
According to this, tab 6.2 shows results for the two present situations.

Test set Validation set

MAE 0.006618908 0.004382582

RMSE 0.008927034 0.005339941

EVS 0.971682142 0.988075351

H Mean
Value

Ĥdf1 = −0.089814244 Ĥdf2 = −0.090131528

Table 6.2: Mk1 Overall Prediction Performances

As it can be seen, the model works well enough on forecasting brand new
data, but it has to be considered that validation set barely meet that range of
values in which the model seemed to train worse: in other words validation
set prediction are performed with the ”well trained side of the model”. This
may be clearer looking x-axes of figure 6.9 and will surely be, during the
next step of the discussion.

It was previously said that EVS is a goodness index, and in this case, model

62 anubi hinge moment forecasting model

performances seems to be very good, neglecting the issue forH→ −0.01,−0.02.
Anyway, there is an other parameter which allowed to make more practical
considerations about the error entity:

RE =
|AE|

Ŷ
(6.4.3)

Relative Error allows to quickly estimate if a generic error is small or big
with respect to a specific measured quantity. In other words, it let under-
stand if a measured error is tolerable in the present system. It is used as a
percentage of the correct value.

It makes sense to evaluate the relative error on the validation set, which
summarizes model generalization capabilities.

[23]: Rel˙Err=[]

Mean˙Prep=0

Range=range(y2˙resh.size)

for k in Range:

Err=(y2˙resh[k][0]-newpredictions˙resh[k][0])/y2˙resh[k][0]

Rel˙Err.append(Err)

type(Err)

In order not to write down all numeric values, a scatterplot has been realized
(fig. 6.11).

Figure 6.11: Mk1 Relative Errors

• RE max range: 0.6221 → It is a quite large range of variation, but it
has to be considered that most of values are placed around the zero
line, so it is a ”no-weighted” estimation of error entity;

• RE arithmetic mean: 0.0456→ A simple arithmetic mean offers a more
statistic description of what will most likely happen using this model.
4.56% of mean tolerance is a good value.

By the way, picture shows a particular growing behaviour which warns
about what has been said at the very beginning of the present section. Model
works bad around H = −0.025 [Nm] and beyond (till Hmax).

6.4 model evaluation 63

improving performances To improve training performances, it was
firstly chosen, maintaining the same [N,L] configuration, to lower the batch
size, resulting in a slightly noisier training (6.12).

(a) Normal plot (b) Semi-log plot

Figure 6.12: Mk2 Training

By the way, according to what has been said before about batch size, training
resulted in a better model, well trained also around H = −0.025 [Nm] (fig.
6.13). By the way Comparing 6.13b and 6.10b, it can be observed that batch

(a) Test set prediction (b) Validation set prediction

Figure 6.13: Mk2 True labels line (red) VS Predictions

size changing affected the whole training, since last predictions are more
precise than the first ones. Improved model performances are reported in
table 6.3. However, the best way comprehend the meaning of these values

Test set Validation set

MAE 0.0043127210 0.003862890

RMSE 0.0053392147 0.004976332

EVS 0.9950987408 0.991969700

H Mean
Value

Ĥdf1 = −0.089814244 Ĥdf2 = −0.090131528

Table 6.3: Mk2 Overall Prediction Performances

is to consider the RE trend (fig. 6.14).

• RE max range: 0.5255→ Again, this is a quite large range of variation,
but same considerations as before may be done.

• RE arithmetic mean: 0.0500 → A bit greater then before, 5% of mean
tolerance.

64 anubi hinge moment forecasting model

Figure 6.14: Mk2 Relative Errors

Comparing these two indications with the Mk1 ones, it may be said that
error maximum range has been lowered by 0.1 at the expanse of a little
shifting for the mean value. This is a good compromise: by shifting by 0.5%
the mean tolerance, it has been reduced by 10% the worst case error.
In conclusion, Mk2 is a good model, able to perform quite nice predictions
from Hmin to H = −0.05 [Nm]. As well as Mk1, after this threshold, RE
stretches in both negative and positive directions. This is something normal
and it depends on dataset composition: this is the ”R” range of dataset
(page 51) , the most susceptible to overfitting and related prediction error
growing.

6.5 model optimization 65

6.5 Model optimization

Mk2 model is not ”ready to deploy” yet. 40% error, even if on 5 out of 314
predictions on validation set, is something that cannot happen on a true ap-
plication. A better model has to be created.

Generally speaking, the great is the number of neurons and levels, the better
the model will perform in terms of training goodness and computational
time. However, there might be situations in which a ”less” powerful con-
figuration performs better than a slightly ”higher” one. In other words,
sometimes a right combination of neurons and levels may be better than an
”all maximum” in terms of computational and time cost. For this reason it
has been chosen to realize an optimization algorithm which tries to evaluate
the right combination of neurons and levels within a prearranged range, for
reaching the best result in terms of relative error and computational time.
Combined set of levels and neurons were:

N = [1, 2, 4, 6, , 8, 10]

L = [1, 2, 3, 4, 5, 6]

The algorithm basically trains 36 different models and evaluates relative
errors and related features of each one.
Figure 6.15 shows relative errors (absolute values) on ”test set” with a 3D
view. It appears that there is a form of threshold at [N,L] = [4,L] and
[N,L] = [N, 3]. For less neurons/levels, model seems to generate huge errors
(blue points), at least for used batch size and epochs number.
Other configurations work well enough. The same visualization is provided
for ”validation set” prediction REs (fig. 6.16).

Figure 6.15: Optimization algorithm results - ”Test Set”

66 anubi hinge moment forecasting model

Figure 6.16: Optimization algorithm results - ”Validation Set”

In order to select the best model, it has been chosen to evaluate the configu-
ration with smaller value of:

∆RE = REmax − REmin

This means that highest RE density configurations have been selected, both
from test and validation set predictions. Results are described in table 6.4.
Results must be explored under different prospectives:

Set Configuration REmin Configuration ∆REmin

N L N L

Test 8 4 0.000007 10 5 0.255799

Validation 2 2 0.000396 6 4 0.511165

Table 6.4: Selected configurations

• Configuration [8, 4] leads to the minimum RE value on test set, while
the minimum on validation set is reached for configuration [2, 2]. How-
ever, none of this configurations is representative for the present study.
This because the minimum RE may be reached even for bad models,
exactly what happened with validation set predictions;

• Configuration [10, 5] leads to the minimum ∆RE value on test set,
while the minimum on validation set is reached for configuration [6, 4].
Between these two choices it has been decided to adopt the configura-
tion which performed better on the test set, because it has been taken
into account the problem of ”randomization”.

the randomization feature Some algorithms are stochastic. ”This
means that their behaviour incorporates elements of randomness”. Nevertheless,
”stochastic does not mean random. Stochastic machine learning algorithms are not
learning a random model. They are learning a model conditional on the historical

6.5 model optimization 67

data user has provided. Instead, the specific small decisions made by the algorithm
during the learning process can vary randomly. The impact is that each time the
stochastic machine learning algorithm is run on the same data, it learns a slightly
different model. In turn, the model may make slightly different predictions, and
when evaluated using error or accuracy, may have a slightly different performance”
[Jas20].

By adding randomization, algorithm may improve its performances. It’s
not a bug, it’s a feature. By the way it also means that every building of the
model may be slightly different from the previous one, but considering that
the main trend must be the same each time.

Back on topic, it has been judged unwise to select the configuration with
the ∆REmin evaluated on validation set because of the randomization fea-
ture of the algorithm. Starting the code many times indeed, has shown that
∆REmin for validation set switches among different configurations, while
the one evaluated on the test set switches from two configurations, [10, 5]
and [8, 3], mainly the first. Figure 6.17 actually shows that ∆RE is quite close
between these two cases, something that explains this behaviour.

In conclusion, to be sure, both [6, 4] and [10, 5] have been separately realized
and tested ([8, 3] as been considered unimportant for present treatment).

Figure 6.17: Scatter plot for test set configurations

68 anubi hinge moment forecasting model

6.6 Final Model

As regards configuration [6, 4], training phase resulted in an overall better
behaviour with respect to previous model. The main difference surely is
the reduction on RE indices. However, even if it has been obtained a mean

Figure 6.18: Mk3 Relative Errors

tolerance of 0.4% is great, ∆REmax could be better. Turned out that the
optimized [10, 5] configuration was able to improve this model feature (fig.
6.19). Here, REs appear to be more scattered, but just because y-axis has a

Figure 6.19: Mk4 Relative Errors

reduced range to show, with respect to the previous case: ∆REmax has been
reduced by about 0.1.
Nevertheless, this wasn’t the ultimate model, because something more suit-
able has been reached working with a low batch size. Figure 6.20 shows
a quite noisy training during final epochs, something normal for what has
been previously said (page 57).

6.6 final model 69

(a) Normal plot (b) Logarithmic plot

Figure 6.20: Mk5 Training

Training has resulted in a very coherent trend, as regards predictions. Re-
calling the H distribution plot (fig. 6.21c), figure shows that the more data
density is high, the more model local performances are good, at least until a
threshold inside the ”R” range after which it starts to make some noticeable
errors (on ”validation set” predictions).

(a) Test set (b) Validation set

(c) Distribution plot

Figure 6.21: Mk5 True labels line (red) VS Predictions

As regard the relative error (fig. 6.22), it can be observed a drastic improve-
ment, comparing to Mk1 model (fig. 6.11). This time:

• RE max range: 0.192 → Still quite large, but only 5 REs stretched
around 0.16;

• RE arithmetic mean: 0.0053 → A bit greater then before, but 0.53% of
mean tolerance allowed to reduce RE maximum range in value and
primarily in terms of points which reach it.

Table 6.5 summarizes final model features. All graphics and details about
every model is reported in appendix A.1.

70 anubi hinge moment forecasting model

Figure 6.22: Mk5 Relative Errors

Test set Validation set

MAE 0.001597852 0.001153364

RMSE 0.002226205 0.002050664

EVS 0.998240684 0.998442156

REmean 0.005320076

∆REmax 0.192899931

H Mean Value Ĥdf1 = −0.089814244 Ĥdf2 = −0.090131528

Table 6.5: Mk5 Overall Prediction Performances

7 R E S U LT S A N D F U T U R E
D E V E LO P M E N T S

7.1 Results

Present study has shown feasibility and limits of some hinge moment fore-
casting models. Last one is able to predict with accuracy H values in most
of configurations.
Anyway, the entire study has shown the hinge moment is able to vary very
quickly for little modifications in input parameters. Indeed, this is the rea-
son why all of the models fail in some points inside the R range. Obviously,
for the last model the entity of this failure is small enough: about 1.6% of the
predictions may be affected by an error of about 15% of the correct value.
Moreover, it has to be considered that hinge moment high variation ratio
(with δ,v and α) means that, as regard real applications, the model will
quickly switch from one result to an other, meaning in turn that wrong val-
ues may be easily recognized among all correct ones. Nevertheless, some-
thing might be done to reduce the error on validation set, and future devel-
opments will take this into account, not strictly improving the code itself,
but even adding more analysis, in order to build a more complex database.
Some solutions are described in further sections.

7.2 Adding a structural input

For the present model, it has been used a particular set of inputs, which
were also aerodynamic analysis parameters. This does not mean δ, v,α are
the only possible inputs to estimate hinge moment through a neural net-
work. Moreover, it is not so easy to calibrate flow incidence sensors, because
most of them need to acquire pressure distribution data. It might be easier
to have displacement/strain sensors available. Assuming this, for every con-
sidered input configuration it would be possible to extrapolate a particular
strain input to feed the DLN model with. It could be a feasible improve-
ment for the model to provide a structural analysis of the control surface for
evaluating the strain on the hinge axis, where a strain gauge is assumed to
be placed.
For this purpose, adopting a Data Handling strategy which is slightly dif-
ferent from the one described in chapter 4.2 it is possible to map a mesh for
a pre-modelled surface to use Xflr5 pressure distribution as an input for a
FEM analysis. Actually, this code, along with the model has been realized
during the first phases of the project and it works like this:

1. From a triple loop cycle, as previously done, each Xflr5 .tex output file
may be explored;

2. Inside the .tex file it can be found the coordinate position of every
force application point. These forces are pressure vectors and points
the centroid of each mesh element.

71

72 results and future developments

Figure 7.1: .tex file layout

3. By extraction of this coordinates, a pressure distribution can be real-
ized on a FEM software. For the present study, it has been chosen
Altair Hyperworks.

The model has been realized using the same geometry discussed in chapter
2.4.4. From CAD model, it has been isolated the central control surface (red

Figure 7.2: Ailerons CAD view

aileron), in order to import it on HW.
After having applied the same mesh used on Xflr5, it has been possible to
realize the pressure distribution through a field generator function. This
powerful tool recognized the coordinates of the centroids (mesh control
points) and adapted related pressure forces on the present FEM mesh (fig.
7.3). Built model can be associated to a fixed surface FEM model to evaluate
hinge axis strain as a function of the aerodynamic features. This strain could
be used to replace one of the inputs used in the present job, or additionally.
By the way, as previously said, this operation requires more studies and all
the process is demanded to future developments.

7.3 Hinge approximation

Calling back equation 2.1.3, it can be observed that hinge moment coefficient
can be evaluated knowing the variation of CH as a function of other angular
values:

CH = b0 +
∂CH
∂α

α+
∂CH
∂δ

δ+
∂CH
∂δtab

δtab

7.4 experimental studies 73

Figure 7.3: Pressure contour on HW (v = 12 [m/s],α = 0[deg])

For a symmetric profile with a single tab, it can be said that:

CH =
∂CH
∂α

α+
∂CH
∂δ

δ

Using software simulation, some sort of ∂CH∂α and ∂CH
∂δ δ trend may be esti-

mated, or at least approximated using some interpolation feature. After all,
it has be observed that hinge moment has a sort of linear behaviour with
respect to α and δ (see sec. 6.2).
All of this means the possibility to estimate hinge moment with a differ-
ent analysis tool, probably faster than a whole wing aerodynamic analysis:
given two points and a function which connects them, it is possible to eval-
uate a third point between the first two. In other words, with a bunch of
aerodynamic analysis, it is possible to estimate inputs and outputs of other
configurations.
However, also this strategy is demanded to future studies. By now, all that
can be said is:

• Process accuracy depends on the user and on the case study (it should
be performed as a semi-empiric process);

• Ideally, this process should be able to double the size of a DLN dataset
with small costs.

7.4 Experimental studies

The best way to produce a good forecasting model is, whenever possible,
to acquire data using real tests. For example, a wind tunnel, combined
with a proper angular position sensor on the control surface would be able
to provide all data to build all DLN example in the way Xflr5 did for the
present work. Obviously, there would be high costs behind this choice and
one might prefer to adopt this strategy only at the end of the whole project,
just to deploy a perfectly customized forecasting model.

74 results and future developments

7.5 GUI improvement

A graphical interface is a powerful tool to speed up the data handling de-
velopment process. Different users may find the code tough to be red, but
using the GUI, every analysis variation may be implemented to the DLN
network without any problem. However, it has to be improved. For exam-
ple:

• The code depends on the specific folders where the Xflr5 output files
are placed in. This means that every reached string match will point to
a series of separated sub-folders. This is necessary using the present
aerodynamic tool because it allows to generate different file with a par-
ticular auto-updating string name which does not take into account
flap configuration (δ) but just speed and incidence (v and α). This
means, for instance, that the file corresponding to the configuration
[δ, v,α] = [−2, 12, 5] will have the same string name as the one corre-
sponding to the configuration [δ, v,α] = [4, 12, 5]. This issue has been
solved using three iteration loops which are used to point the specific
δ folder and the specific file inside this folder. Considering this, some
sort of folder selection tool inside the GUI would be useful for lots
reasons, first of all to allow the user to select at least the main work
path without entering the code;

• An even more useful tool would be the possibility to set a sample of
the string to find directly inside the GUI. For instance, present output
files have the following string name:

”MainWing a=(value) v=(value)ms”

The only varying parameters inside the string are a (incidence) and
v (speed). A nice improvement would be the possibility to set the
fixed part of the string inside the GUI itself. This operation, by now, is
still performed inside the code and it is not user friendly;

• A less important improvement, at the end, would be to allow the user
to see more information or previews like some sort of loading bar
with an estimated remaining time information, or a preview of the
final result.

Obviously, these improvements are not as important as the others, and easy
to be implemented, so they may be neglected to focus on what has been
said in previous sections of the present chapter.

8 C O N C L U S I O N

The analysis performed so far has shown that machine learning can be ap-
plied to the present avionic problem with good results. Summarizing:

• Good precision may be reached in forecasting hinge moments using a
quite small quantity of data (less than 3000 examples);

• IT computational costs are low, and the greatest part of time costs is
about producing the samples (aerodynamic and, eventually, structural
analysis or others);

As a procedure, the whole job has been made to easily adapt to changes,
so each phase may be refined and improved by just paying attention to re-
quired outputs for the next step: indeed, present work could be considered
the beginning of a bigger project, which has to be improved with other stud-
ies and experiments, in order to be able to represent, one day, a suitable
solution for different scopes, such as:

• Automatic flight stabilization assistance for RC aircraft models;

• Design sizing of servo motors used to move control surfaces on a spe-
cific aircraft;

• A tool for fast preliminary analyses and checks;

However, a cutting edge technology hides by definition some disadvantages:

• A powerful network needs a great quantity of data, which means a
great number of real experiments or accurate analyses;

• Considering a real situation, various nature effects take part to the
generic phenomenon. This means that related DLN model should be
fed with lots of input parameters to well describe the system;

• DLN based algorithms can handle just one problem at the time. It
is not possible (yet) to realize models able to perform different tasks
(multitasking) at the same time;

• Some effects like overfitting and batch size consequences are still un-
der study.

By the way, ”neural networks are certainly not new, they have been taught at uni-
versity for some time. What happened is that algorithms were written in order to
make machine training operations more efficient. Simultaneously, GPUs and lan-
guage libraries came out” [Tre].
This means that DLN future is strictly in dependence with IT progress itself
and may reach great performance in the future.

By now, for the present avionic application, it can be said that the state
of the art of DLN technology is more than enough and that further devel-
opments will primarily focus on data acquisition criteria and on alternative
input choices and experimentations.

75

A A P P E N D I X

A.1 Configurations Summary

Model performance details and graphics are reported here. Type ”M” near
configuration indication, means ”batch size modification” for improvement.

A.1.1 Configuration [3, 3] - Mk1

Test set Validation set

MAE 0.006618908 0.004382582

RMSE 0.008927034 0.005339941

EVS 0.971682142 0.988075351

H Mean Value Ĥdf1 = −0.089814244 Ĥdf2 = −0.090131528

REmean 0.045615970

∆REmax 0.622115186

Table A.1: Mk1 Overall Prediction Performances

(a) Normal plot

(b) Semilogarithmic plot

Figure A.1: Mk1 Training

77

78 appendix

(a) Test set prediction

(b) Validation set prediction

Figure A.2: Mk1 True values (red) VS Predictions

Figure A.3: Mk1 Relative Errors

a.1 configurations summary 79

A.1.2 Configuration M[3, 3] - Mk2

Test set Validation set

MAE 0.0043127210 0.003862890

RMSE 0.0053392147 0.004976332

EVS 0.9950987408 0.991969700

H Mean Value Ĥdf1 = −0.089814244 Ĥdf2 = −0.090131528

REmean 0.049982570

∆REmax 0.525476595

Table A.2: Mk2 Overall Prediction Performances

(a) Normal plot

(b) Semilogarithmic plot

Figure A.4: Mk2 Training

80 appendix

(a) Test set prediction

(b) Validation set prediction

Figure A.5: Mk2 True values (red) VS Predictions

Figure A.6: Mk2 Relative Errors

a.1 configurations summary 81

A.1.3 Configuration [6, 4] - Mk3

Test set Validation set

MAE 0.0026338365 0.002714916

RMSE 0.0033046255 0.003814072

EVS 0.9961214854 0.991167269

H Mean Value Ĥdf1 = −0.089814244 Ĥdf2 = −0.090131528

REmean 0.004153418

∆REmax 0.375617169

Table A.3: Mk3 Overall Prediction Performances

(a) Normal plot

(b) Logarithmic plot

Figure A.7: Mk3 Training

82 appendix

(a) Test set prediction

(b) Validation set prediction

Figure A.8: Mk3 True values (red) VS Predictions

Figure A.9: Mk3 Relative Errors

a.1 configurations summary 83

A.1.4 Configuration [5, 10] - Mk4

Test set Validation set

MAE 0.0028237234 0.001966437

RMSE 0.0035050066 0.002522917

EVS 0.9960847812 0.996256053

H Mean Value Ĥdf1 = −0.089814244 Ĥdf2 = −0.090131528

REmean −0.00391814

∆REmax 0.216450786

Table A.4: Mk4 Overall Prediction Performances

(a) Normal plot

(b) Logarithmic plot

Figure A.10: Mk4 Training

84 appendix

(a) Test set prediction

(b) Validation set prediction

Figure A.11: Mk4 True values (red) VS Predictions

Figure A.12: Mk4 Relative Errors

a.1 configurations summary 85

A.1.5 Configuration M[5, 10] - Mk5

Test set Validation set

MAE 0.001597852 0.001153364

RMSE 0.002226205 0.002050664

EVS 0.998240684 0.998442156

H Mean Value Ĥdf1 = −0.089814244 Ĥdf2 = −0.090131528

REmean 0.005320076

∆REmax 0.192899931

Table A.5: Mk5 Overall Prediction Performances

(a) Normal plot

(b) Logarithmic plot

Figure A.13: Mk5 Training

86 appendix

(a) Test set prediction

(b) Validation set prediction

Figure A.14: Mk5 True values (red) VS Predictions

Figure A.15: Mk5 Relative Errors

B R E F E R E N C E S

Bibliography

[17] ”ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GEN-
ERALIZATION GAP AND SHARP MINIMA”. ICLR, 2017.

[Ami08] Donato Amitrano. ”Ricostruzione ed analisi di incidenti aerei. Il caso
studio dell’aliante acrobatico Grob G103C Twin Astir Acro.” Napoli,
Italy, 2007/2008.

[Cac06] Paolo Caccavale. ”Un moderno metodo a potenziale per analisi fluido-
dinamiche”. Napoli, 2005/2006. url: %7Bhttp://www.din.unina.

it/tesi%5C%20dottorato/Un Moderno Metodo a Potenziale per

Analisi Fluidodinamiche.pdf%7D.

[Cas19] Pietro Casalone. ”Interazione fluido-struttura di hydrofoil in materi-
ale composito”. Torino, Italy, 2018/2019.

[Cor09] Cesare Corrado. ”Moti di fluido ideale irrotazionale: metodologie di
soluzione”. Padova, 2009. url: %7Bhttp://www.image.unipd.it/s.

lanzoni/teaching/PDF/Irrotational Inviscid Flows.pdf%7D.

[Joh84] Jr.. John D. Anderson. ”Fundamentals Of Aerodynamics”. United
States of America: McGraw-Hill, inc, 1984.

[Tea17] Icarus Team. ”Report Anubi”. Torino, Italy, 2017.

Consulted web sites

[Bri20] Alessandro Bria. Perché la funzione di attivazione ReLU è la più uti-
lizzata nelle reti neurali? [Online; in data 13-dicembre-2020]. 2020.
url: %7Bhttps :// it .quora .com/Perch%5C%C3%5C%A9- la -

funzione-di- attivazione-ReLU-%5C%C3%5C%A8- la-pi%5C%

C3%5C%B9-utilizzata-nelle-reti-neurali%7D.

[Bru] traduzione di Samuele Bolotta Bruno Campello de Souza. Qual è
il QI medio dei premi Nobel? [Online; in data 18-Marzo-2021]. url:
%7Bhttps://it.quora.com/Qual-%5C%C3%5C%A8-il-QI-medio-

dei-premi-Nobel%7D.

[Gov] Lorenzo Govoni. L’Overfitting e l’Underfitting nel machine learning.
[Online; in data 18-Marzo-2021]. url: %7Bhttps://lorenzogovoni.

com/overfitting-e-underfitting-machine-learning/%7D.

[Jas20] Jason Brownlee. Why Do I Get Different Results Each Time in Ma-
chine Learning? [Online; accessed 21-February-2021]. 2020. url:
%7Bhttps://machinelearningmastery.com/different-results-each-

time-in-machine-learning/%7D.

[Jas21] Jason Brownlee. Difference Between a Batch and an Epoch in a Neural
Network. [Online; accessed 19-February-2021]. 2021. url: %7Bhttps:

//machinelearningmastery.com/difference-between-a-batch-and-

an-epoch/%7D.

87

%7Bhttp://www.din.unina.it/tesi%5C%20dottorato/Un_Moderno_Metodo_a_Potenziale_per_Analisi_Fluidodinamiche.pdf%7D
%7Bhttp://www.din.unina.it/tesi%5C%20dottorato/Un_Moderno_Metodo_a_Potenziale_per_Analisi_Fluidodinamiche.pdf%7D
%7Bhttp://www.din.unina.it/tesi%5C%20dottorato/Un_Moderno_Metodo_a_Potenziale_per_Analisi_Fluidodinamiche.pdf%7D
%7Bhttp://www.image.unipd.it/s.lanzoni/teaching/PDF/Irrotational_Inviscid_Flows.pdf%7D
%7Bhttp://www.image.unipd.it/s.lanzoni/teaching/PDF/Irrotational_Inviscid_Flows.pdf%7D
%7Bhttps://it.quora.com/Perch%5C%C3%5C%A9-la-funzione-di-attivazione-ReLU-%5C%C3%5C%A8-la-pi%5C%C3%5C%B9-utilizzata-nelle-reti-neurali%7D
%7Bhttps://it.quora.com/Perch%5C%C3%5C%A9-la-funzione-di-attivazione-ReLU-%5C%C3%5C%A8-la-pi%5C%C3%5C%B9-utilizzata-nelle-reti-neurali%7D
%7Bhttps://it.quora.com/Perch%5C%C3%5C%A9-la-funzione-di-attivazione-ReLU-%5C%C3%5C%A8-la-pi%5C%C3%5C%B9-utilizzata-nelle-reti-neurali%7D
%7Bhttps://it.quora.com/Qual-%5C%C3%5C%A8-il-QI-medio-dei-premi-Nobel%7D
%7Bhttps://it.quora.com/Qual-%5C%C3%5C%A8-il-QI-medio-dei-premi-Nobel%7D
%7Bhttps://lorenzogovoni.com/overfitting-e-underfitting-machine-learning/%7D
%7Bhttps://lorenzogovoni.com/overfitting-e-underfitting-machine-learning/%7D
%7Bhttps://machinelearningmastery.com/different-results-each-time-in-machine-learning/%7D
%7Bhttps://machinelearningmastery.com/different-results-each-time-in-machine-learning/%7D
%7Bhttps://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/%7D
%7Bhttps://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/%7D
%7Bhttps://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/%7D

88 references

[Jos] Jose Marcial Portilla. Python for Data Science and Machine Learning
Bootcamp. [Online; accessed 07-March-2021]. url: %7Bhttps ://

www.pieriandata.com/p/python-for-data-science-and-machine-

learning-bootcamp%7D.

[Jup] Jupyter.org. Jupyter home page. [Online; in data 17-Febbraio-2021].
url: %7Bhttps://jupyter.org/%7D.

[Met] Meteorologia.it. Tabelle meteo ICAO. [Online; in data 13-Febbraio-
2021]. url: %7Bhttps : / / www . meteorologia . it / Tabelle / index .

htm%7D.

[Num] Numpy.org. Numpy home page. [Online; in data 18-Febbraio-2021].
url: %7Bhttps://numpy.org/about/%7D.

[Som19] Alice Sommacal. Lo stato dell’arte dell’IA. Cosa fa, ad oggi, l’intelligenza
artificiale? Le principali applicazioni. 2019. url: %7Bhttps://www.

unilab.eu/it/articoli/coffee-break-it/ia/%7D.

[Tre] Luca Tremolada. Quello che il Deep learning non sa (ancora). Limiti e
potenziale dell’Ia. [Online; in data 18-Marzo-2021]. url: %7Bhttps:

//st.ilsole24ore.com/art/tecnologie/2016-10-17/quello-che-deep-

learning-non-sa-ancora-limiti-e-potenziale-dell-ia--130342.shtml?

uuid=ADsLoEYB&refresh ce=1%7D.

[Uns09] ”Unspecified”. ”Xflr5 analysis of foils and wings operating at low
reynolds numbers”. [Online; in data 13-Febbraio-2021]. 2009. url:
%7Bhttps://engineering.purdue.edu/∼aerodyn/AAE333/FALL10/

HOMEWORKS/HW13/XFLR5 v6.01 Beta Win32%5C%282%

5C%29/Release/Guidelines.pdf%7D.

[Web] XFLR5 Website. About XFLR5 calculations and experimental mea-
surements. [Online; in data 11-Marzo-2021]. url: %7Bhttp : / /

www.xflr5.tech/docs/Results vs Prediction.pdf%7D.

[Web21] XFLR5 Website. Theoretical Background (of Xflr5). [Online; in data
13-Febbraio-2021]. 2021. url: %7Bhttp://www.xflr5.tech/xflr5.

htm%7D.

[Wik19] Wikipedia. Palomar Sky Survey — Wikipedia, L’enciclopedia libera.
[Online; in data 13-dicembre-2020]. 2019. url: %7Bhttp : / / it .

wikipedia.org/w/index.php?title=Palomar Sky Survey&oldid=

104599434%7D.

[Wik20a] Wikipedia. Apprendimento automatico — Wikipedia, L’enciclopedia
libera. [Online; in data 13-dicembre-2020]. 2020. url: %7Bhttp://

it.wikipedia.org/w/index.php?title=Apprendimento automatico&

oldid=116605164%7D.

[Wik20b] Wikipedia. Intelligenza artificiale — Wikipedia, L’enciclopedia libera.
[Online; in data 13-dicembre-2020]. 2020. url: %7Bhttp : / / it .

wikipedia.org/w/index.php?title=Intelligenza artificiale&oldid=

117092823%7D.

[Wik20c] Wikipedia. Rivoluzione digitale — Wikipedia, L’enciclopedia libera.
[Online; in data 13-dicembre-2020]. 2020. url: %7Bhttp : / / it .

wikipedia.org/w/index.php?title=Rivoluzione digitale&oldid=

116452888%7D.

[Wik21a] Wikipedia contributors. Categorical variable — Wikipedia, The Free
Encyclopedia. [Online; accessed 16-February-2021]. 2021. url: %7Bhttps:

//en.wikipedia .org/w/index.php?title=Categorical variable&

oldid=1001628444%7D.

%7Bhttps://www.pieriandata.com/p/python-for-data-science-and-machine-learning-bootcamp%7D
%7Bhttps://www.pieriandata.com/p/python-for-data-science-and-machine-learning-bootcamp%7D
%7Bhttps://www.pieriandata.com/p/python-for-data-science-and-machine-learning-bootcamp%7D
%7Bhttps://jupyter.org/%7D
%7Bhttps://www.meteorologia.it/Tabelle/index.htm%7D
%7Bhttps://www.meteorologia.it/Tabelle/index.htm%7D
%7Bhttps://numpy.org/about/%7D
%7Bhttps://www.unilab.eu/it/articoli/coffee-break-it/ia/%7D
%7Bhttps://www.unilab.eu/it/articoli/coffee-break-it/ia/%7D
%7Bhttps://st.ilsole24ore.com/art/tecnologie/2016-10-17/quello-che-deep-learning-non-sa-ancora-limiti-e-potenziale-dell-ia--130342.shtml?uuid=ADsLoEYB&refresh_ce=1%7D
%7Bhttps://st.ilsole24ore.com/art/tecnologie/2016-10-17/quello-che-deep-learning-non-sa-ancora-limiti-e-potenziale-dell-ia--130342.shtml?uuid=ADsLoEYB&refresh_ce=1%7D
%7Bhttps://st.ilsole24ore.com/art/tecnologie/2016-10-17/quello-che-deep-learning-non-sa-ancora-limiti-e-potenziale-dell-ia--130342.shtml?uuid=ADsLoEYB&refresh_ce=1%7D
%7Bhttps://st.ilsole24ore.com/art/tecnologie/2016-10-17/quello-che-deep-learning-non-sa-ancora-limiti-e-potenziale-dell-ia--130342.shtml?uuid=ADsLoEYB&refresh_ce=1%7D
%7Bhttps://engineering.purdue.edu/~aerodyn/AAE333/FALL10/HOMEWORKS/HW13/XFLR5_v6.01_Beta_Win32%5C%282%5C%29/Release/Guidelines.pdf%7D
%7Bhttps://engineering.purdue.edu/~aerodyn/AAE333/FALL10/HOMEWORKS/HW13/XFLR5_v6.01_Beta_Win32%5C%282%5C%29/Release/Guidelines.pdf%7D
%7Bhttps://engineering.purdue.edu/~aerodyn/AAE333/FALL10/HOMEWORKS/HW13/XFLR5_v6.01_Beta_Win32%5C%282%5C%29/Release/Guidelines.pdf%7D
%7Bhttp://www.xflr5.tech/docs/Results_vs_Prediction.pdf%7D
%7Bhttp://www.xflr5.tech/docs/Results_vs_Prediction.pdf%7D
%7Bhttp://www.xflr5.tech/xflr5.htm%7D
%7Bhttp://www.xflr5.tech/xflr5.htm%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Palomar_Sky_Survey&oldid=104599434%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Palomar_Sky_Survey&oldid=104599434%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Palomar_Sky_Survey&oldid=104599434%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Apprendimento_automatico&oldid=116605164%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Apprendimento_automatico&oldid=116605164%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Apprendimento_automatico&oldid=116605164%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Intelligenza_artificiale&oldid=117092823%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Intelligenza_artificiale&oldid=117092823%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Intelligenza_artificiale&oldid=117092823%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Rivoluzione_digitale&oldid=116452888%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Rivoluzione_digitale&oldid=116452888%7D
%7Bhttp://it.wikipedia.org/w/index.php?title=Rivoluzione_digitale&oldid=116452888%7D
%7Bhttps://en.wikipedia.org/w/index.php?title=Categorical_variable&oldid=1001628444%7D
%7Bhttps://en.wikipedia.org/w/index.php?title=Categorical_variable&oldid=1001628444%7D
%7Bhttps://en.wikipedia.org/w/index.php?title=Categorical_variable&oldid=1001628444%7D

Consulted web sites 89

[Wik21b] Wikipedia contributors. Machine learning — Wikipedia, The Free
Encyclopedia. [Online; accessed 18-March-2021]. 2021. url: %7Bhttps:

//en.wikipedia.org/w/index.php?title=Machine learning&oldid=

1012767353%7D.

[Wik21c] Wikipedia contributors. Rectifier (neural networks) — Wikipedia,
The Free Encyclopedia. [Online; accessed 17-February-2021]. 2021.
url: %7Bhttps://en.wikipedia.org/w/index.php?title=Rectifier

(neural networks)&oldid=1006601306%7D.

[Wik21d] Wikipedia contributors. Step function — Wikipedia, The Free En-
cyclopedia. [Online; accessed 23-March-2021]. 2021. url: https :

//en.wikipedia.org/w/index.php?title=Step function&oldid=

1008876359.

[Wik21e] Wikipedia contributors. Vanishing gradient problem — Wikipedia,
The Free Encyclopedia. [Online; accessed 19-February-2021]. 2021.
url: %7Bhttps://en.wikipedia.org/w/index.php?title=Vanishing

gradient problem&oldid=1006243644%7D.

%7Bhttps://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=1012767353%7D
%7Bhttps://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=1012767353%7D
%7Bhttps://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=1012767353%7D
%7Bhttps://en.wikipedia.org/w/index.php?title=Rectifier_(neural_networks)&oldid=1006601306%7D
%7Bhttps://en.wikipedia.org/w/index.php?title=Rectifier_(neural_networks)&oldid=1006601306%7D
https://en.wikipedia.org/w/index.php?title=Step_function&oldid=1008876359
https://en.wikipedia.org/w/index.php?title=Step_function&oldid=1008876359
https://en.wikipedia.org/w/index.php?title=Step_function&oldid=1008876359
%7Bhttps://en.wikipedia.org/w/index.php?title=Vanishing_gradient_problem&oldid=1006243644%7D
%7Bhttps://en.wikipedia.org/w/index.php?title=Vanishing_gradient_problem&oldid=1006243644%7D

	1 Introduction
	1.1 Purpose
	1.2 Objective
	1.3 Case study

	2 Project Overview
	2.1 The hinge moment
	2.2 Procedure
	2.3 Data
	2.3.1 Geometry
	2.3.2 DLN inputs

	2.4 Tools
	2.4.1 Xflr5 XFOIL:Xflr5
	2.4.2 Jupyter and Python related tools
	2.4.3 Limitations
	2.4.4 Assumptions

	3 Aerodynamic Model
	3.1 Introduction
	3.2 2D Analysis
	3.3 3D Model
	3.4 Output file

	4 Data handling and automation
	4.1 Automation Strategy
	4.1.1 String updating and file location
	4.1.2 Data extraction

	4.2 GUI

	5 DLN Background
	5.1 Supervised Learning
	5.2 Statistical performances evaluation
	5.3 Error metrics for regression models
	5.4 Deep Learning Neural Networks
	5.4.1 Perceptron Model

	5.5 Overfitting
	5.5.1 Bias and Variance

	6 ANUBI Hinge Moment forecasting model
	6.1 Introduction
	6.2 Data Preparation and Exploration
	6.3 Model building
	6.3.1 Datasets split/scale
	6.3.2 Model training

	6.4 Model evaluation
	6.5 Model optimization
	6.6 Final Model

	7 Results and future developments
	7.1 Results
	7.2 Adding a structural input
	7.3 Hinge approximation
	7.4 Experimental studies
	7.5 GUI improvement

	8 Conclusion
	A Appendix
	A.1 Configurations Summary
	A.1.1 Configuration [3,3] - Mk1
	A.1.2 Configuration M[3,3] - Mk2
	A.1.3 Configuration [6,4] - Mk3
	A.1.4 Configuration [5,10] - Mk4
	A.1.5 Configuration M[5,10] - Mk5

	B References

