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Abstract

This master thesis refers to the ’Mars Sample Return’ space program currently
underway by the collaboration of NASA and ESA. It is divided into three different
missions: the launch of the rover ’Perseverance’ for the collection of the samples,
which landed this year on Martian soil, and the two missions currently under study,
the first with the purpose of recovering the samples collected previously and insert-
ing them into orbit (Sample Retrieval Lander - SRL), and the other one which will
bring the samples back to our planet for analysis (Earth Return Orbiter - ERO).
The purpose of this master thesis is to select and analyse an orbit for a preliminary
study of the SRL and ERO missions. Optimization of the orbit is performed by
varying four parameters, namely the right ascension of the ascending node (RAAN),
the longitude of the periapsis (LAN), and the position vectors of the capture and
escape conditions. A genetic algorithm is then used, exploiting the ’Global Opti-
mization Toolbox’ of MATLAB, to minimize the initial mass, and, considering the
initial conditions, to define the orientation of the orbit and the capture and escape
positions related to the optimized case.
In the first part of the thesis, the background of the ’Mars Sample Return’ campaign
is presented, highlighting the reasons for the great interest in Mars, and defining
the basis for the subsequent sections. The second part introduces the fundamen-
tal notions about genetic algorithms, including their application on MATLAB and
terminology. In the next section is summarized the theory of the space flight me-
chanics necessary to understand the subsequent calculation procedures. Then, the
problem is faced from a theoretical point of view, and the calculation methodology
and the hypotheses considered during the work are detailed. In the last part of
the thesis, the results of the work are presented, considering initially the hypothe-
sis of performing both missions with a single launch, and then evaluating the two
missions launched separately to estimate the advantages compared to the previous
case.
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Sommario

La presente tesi fa riferimento al programma spaziale ‘Mars Sample Return’ attual-
mente in corso da parte della collaborazione di NASA ed ESA. Esso è suddiviso
in tre missioni differenti: il lancio del rover ’Perseverance’ per la raccolta del ma-
teriale, atterrato quest’anno sul suolo marziano, e le due missioni attualmente in
fase di studio, ovvero quella che avrà lo scopo di recuperare i campioni raccolti
in precedenza e inserirli in orbita (Sample Retrieval Lander - SRL), e la missione
che riporterà i campioni fino al nostro pianeta per poterli analizzare (Earth Re-
turn Orbiter - ERO). Lo scopo di questa tesi è di selezionare e analizzare un’orbita
marziana per uno studio preliminare delle missioni SRL ed ERO. L’ottimizzazione
dell’orbita viene eseguita variando quattro parametri, ovvero l’ascensione retta del
nodo ascendente (RAAN), l’argomento del periastro (LAN), e i vettori posizione
delle condizioni di cattura e fuga. Viene quindi utilizzato un algoritmo genetico,
sfruttando il ‘Global Optimization Toolbox’ di MATLAB, per minimizzare la mas-
sa iniziale, e, considerando le condizioni iniziali, si andrà a definire l’orientamento
dell’orbita e le posizioni di cattura e fuga relative al caso ottimizzato.
Nella prima parte della tesi viene presentato il background della campagna ‘Mars
Sample Return’, cercando di evidenziare i motivi del grande interesse verso Marte,
e definendo le basi per le sezioni successive. Nella seconda parte vengono introdotte
le nozioni fondamentali riguardo gli algoritmi genetici, compresa la loro applicazio-
ne su MATLAB e la terminologia. Nella sezione successiva viene riassunta la teoria
della meccanica del volo spaziale necessaria per capire i procedimenti di calcolo suc-
cessivi. In seguito, viene affrontato il problema dal punto di vista teorico e vengono
dettagliate la metodologia di calcolo e le ipotesi considerate durante il lavoro svol-
to. Nell’ultima parte della tesi vengono esposti i risultati del lavoro, considerando
inizialmente l’ipotesi di eseguire entrambe le missioni con un unico lancio, per poi
valutare le due missioni lanciate separatamente per stimare i vantaggi rispetto al
caso precedente.
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Chapter 1

Mars Sample Return
Campaign

This Chapter describes the usefulness of the exploration of Mars and the objectives
to be achieved in the next missions on the planet. The three missions of the ’Mars
Sample Return’ Program are briefly introduced as they are the example on which
this thesis is based. The choice of the landing site chosen for these missions is also
described.
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Mars Sample Return Campaign

1.1 Introduction
NASA’s Mars Exploration Program (MEP) was announced by U.S. Space Agency
(NASA) in 2000 with the purpose of exploring Mars through spacecrafts, landers
and rovers [1]. The mission statement of the MEP is: ’The goal of the Mars Ex-
ploration Program is to explore Mars and to provide a continuous flow of scientific
information and discovery through a carefully selected series of robotic orbiters, lan-
ders and mobile laboratories interconnected by a high-bandwidth Mars/Earth com-
munications network’ [2].To support an integrated program structure, MEP carries
out a number of activities that provide long-term investments for the future. One
of the most ambitious goals of the MEP is the construction of a human outpost on
Mars, however at the moment neither the technology nor the necessary knowledge
are available. The attention of this thesis is in fact directed to a space campaign in
full operation in this years, namely the ’Mars Sample Return’ campaign. It has been
decades since the exploration of Mars began and there have been truly remarkable
technological advances since then regarding space probe instruments. However, it is
not possible to obtain data as precise as those that would be obtained by studying
the composition and characteristics of the Martian soil in the Earth laboratories.
So, NASA and ESA signed a Joint Statement of Intent to carry out ’Mars Sample
Return’ Mission by means of an international partnership of returning Martian soil
samples to Earth through a robotic mission.

1.2 Objectives
The Mars Exploration Program Analysis Group (MEPAG) has listed a document
[3] in which are described the four main objectives to achieve with Mars exploration
are:

• 1. Determine if Mars ever supported, or still support Life: the search for the
presence of life on other celestial bodies is one of the most ambitious objectives
of space exploration. Mars is certainly one of the best candidates because it
has a relatively similar history to that of the Earth. The research carried out
so far on the Red planet has discovered the presence of signs that identify the
presence of water on the planet in the past. Future missions will therefore
have to look for traces of the presence of water or residues of some chemical
molecules that are traces of the presence of life, past or present, in Martian
rocks.

• 2. Understand the processes and history of Climate on Mars: it is interesting
to study the changes that the climate of Mars has undergone over time to reach
the one present on the planet today. It is therefore important to understand
what have been the processes that have characterized the Martian climate

2



1.2 – Objectives

throughout its history. In fact, the climatic history of Mars has not always
been like the current one, but in the ’recent’ history of the planet (<20Mys)
this planet had temperatures and pressures similar to those of Earth. In
addition to this, the study of how the chemical composition of the atmosphere
has evolved over time is a priority.

• 3. Understand the origin and evolution of Mars as a Geological System: as
already mentioned, the history of Mars has traits similar to those of the Earth,
for this reason it is essential to document the geological history of the Martian
crust. In fact, it contains information regarding the phenomena that occurred
during the history of the planet, such as volcanic activity. This goal is related
to the previous objectives, because by studying the history of the crust, it is
possible to find sediments that indicate the presence of water, or that there
are records of activities related to climate changes. This could lead to an
improvement in the information we also have in relation to our planet, of
which many traces have been lost due to the high erosion activity.

• 4. Prepare for Human Exploration: one of the fundamental studies regarding
Mars is preparing for future human missions. The risks are still many and are
mainly due to the lack of knowledge. The risks were then classified according to
the impact they have on costs and human safety and sub-objectives were drawn
up. One of these is for example the study of how the Martian atmosphere
impacts on the man landing. Another fundamental factor to be analyzed will
be understanding how to organize and manage human extravehicular activities
(EVA) and the exploitation of in-situ resources.

3



Mars Sample Return Campaign

1.3 MSR Mission Architecture

Figure 1.1: Mars Sample Return overview infographic. [5]

MSR architecture [4] [5] is composed by three different missions from 2021 to
about 2031: the Mars 2020 catching samples rover, Perseverance has just landed on
Mars; the second vehicle to arrive on the planet will be a Sample Retrieval Lander
(SRL), whose rover will collect the samples left by Perseverance. SRL will have
also a launch platform that will be use to launch the samples in Mars orbit. The
last part of the mission is left to the Earth Return Orbiter (ERO), that will bring
the samples back to the Earth [6]. An overview of the mission architecture of the
entire mission can be seen in Figure 1.1. In the following paragraphs has been given
a brief description of each of these missions.

4



1.3 – MSR Mission Architecture

Figure 1.2: Illustration of NASA’s Perseverance rover on Mars. Image Credit:
NASA

1.3.1 Mars2020
The Mars 2020 mission is the first of the MSR program. Its purpose is to collect
samples from the Martian soil, thanks to the Perseverance rover, landed on Mars on
18 February 2021[7] [8]. Perseverance weights about 1050 kg and its configuration is
based on that of its predecessor Curiosity, but its instrumentation is technologically
more advanced. The purpose of the rover is to collect a minimum of 20 samples from
the Martian soil thanks to its drill, and then seal them inside samples containers
that will be deposited on the planet’s soil. The samples will then be collected by
the missions that will arrive later on Mars. A particularity of Perseverance is its
robotic arm, over 2 meters long, which has five degrees of freedom and ends with
a ’turret’ containing cameras and instruments for analyzing samples. The rover
also has instruments for technology demonstration. One of these is Ingenuity, a
drone-helicopter that will perform the first flight on another planet to demonstrate
flight stability even with a Mars rarefied atmosphere.

1.3.2 Sample Retrieval Lander
The Sample Retrieval Lander (SRL) is scheduled for 2026 launch [9]. It is composed
by three different systems:

• the Sample Fetch Rover (SFR)

• the Mars Ascent Vehicle (MAV)

• the Orbiting Sample (OS)

The SFR will aim to collect the sample tubes left by Perseverance. the Rover has
to be lightweight, from the preliminary studies it is estimated to be about 120 kg
and, with a speed of about 200m/sol under nominal conditions, it will drive for
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Mars Sample Return Campaign

Figure 1.3: Illustration of the SRL components: in the foreground the SFR [2]

about 150 sol (Martian days). SFR would be completely autonomous in terms of
navigation, and also be able to resists to the external environment, an example are
sandstorms and cold conditions. After that phase, it will return to the SRL, where
a Transfer Arm will deposit the collected samples into the OS, which will be next
transfered to the MAV.
Mars Ascent Vehicle has to bring the OS to a circular Low Mars Orbit (LMO)
with an altitude of about 400 Km [10], and will be the first vehicle to perform a
launch on another planet. MAV is one of the key elements of the entire mission
and there are two types of concepts regarding the type of propulsion to be used:
hybrid propulsion or two-stage solid. The weight of the payload that will have to
carry into orbit is about 16 kg and the challenge will be to minimize the weight at
launch [4].
The Orbiting Sample has to contain the sample tubes and keep them safe from
contamination. It will also have a thermal control system to keep the samples at
the right storage conditions. As a further requirement, it must have a sufficiently
high albedo value to be found by the ERO orbiter. This part of the mission will
be the most challenging as the orbiter and the OS, must be in sight and have to be
coordinate to complete the rendezvous maneuver.

1.3.3 Earth Return Orbiter
As for the Earth Return Orbiter (ERO), it will have the purpose of communicating
with the other components of the mission present on Mars; moreover, it will have
to be able to independently manage the recovery of the OS in orbit before returning

6



1.4 – Landing Site

Figure 1.4: Illustration of the ERO Main Systems [4]

to Earth [4] [6].
ERO will be developed by ESA and will use chemical propulsion for the outward
phase to Mars and electric propulsion for the return. One of its most important
part is the Containment/Contamination and Return System (CCRS). It in turn
includes three distinct parts:

• the Capture Orient Module (COM), which would capture the OS e transfer it
to the Containment Module;

• the Containment Module (CM), that would secure the sample tubes from any
type of contamination;

• the Earth Entry System (EES), that receives the tubes thanks to a robotic
arm installed on the main module, and places them safe for the return maneu-
ver. EES is being designed with the capability to land on the Earth without
parachute, but only with passive aerodynamics [4].

The chemical thruster used for the transfer to Mars, the Orbit Inserction Module,
is separated when the final destination is reached. At the beginning of escape from
the planet, for reason of mass saving, the CM and COM are jettisoned, so the only
vehicle to return to Earth is the EEV.

1.4 Landing Site
Between 2014 and 2018, scientists discussed about which Martian site was best
suited for collecting samples, comparing more than 30 different Mars locations,
and finally the decision felt on Jezero Crater (in Figure 1.5). Jezero area is an
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Mars Sample Return Campaign

Figure 1.5: Image of Jezero Crater taken by MRO (Mars Reconnaisance Orbiter).
Image Credit: NASA

impact crater of 45 Km in diameter, located at approximately 18° Nord, 77° East,
in a region of Mars known as Nili Fossae and has been selected because it contains
elements thought to have been shaped by liquid water in the ancient past of Mars
[11]. The area near the crater, in fact, has some very interesting features, such as
well-preserved river delta deposits, inlet valleys and also an outer channel. In a
period called Noachian Age probably this was a lake.
Mars Reconnaissance Orbiter MRO was a spacecraft launched in 2005, and it made
observations that helped scientists to understand the history of liquid water on
Mars. The instrument on board of MRO is the CRISM, and was designed to identify
minerals on Mars that formed in the presence of water thanks to the observation
of light reflected from the Martian surface. Many Mars missions have provided
evidence that liquid water once flowed on the surface of the red planet, but MRO
data can contribute to help the understanding of how long this water persisted.
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Chapter 2

Genetic Algorithm

Evolutionary Algorithms (EA) are a type of artificial intelligence; they consists of
a population of potential solutions which evolves to a better solution generation
after generation. These algorithms were developed for Evolutionary Computing,
inspired by Darwin’s Evolution Theory, that through the use of natural selection,
adaptation and survival laws find the best solution.[12][13]
Genetic Algorithms (GA) are the most popular type of EA and are widely used
to solve optimization problems. They were developed for the first time by Nils
Barricelli in 1953 [14], with the purpose to create artificial life inside a computer by
using processes found in nature. Individuals more suitable than a given population
are those who are likely to have a chance to survive and reproduce, thus transmit-
ting its characteristics to the offspring. Consequently, subsequent generations will
exhibit a degree of greater fit and will be better. This process can be applied to a
problem starting from a random population and progressively combining the best
individuals to each generation, generating progressively better new populations.
This mechanism allows to find useful solutions without the evaluation of all the
different combinations offered by the research space. This proves to be particularly
useful when the number of possible solutions is very large, as in the case of this
master thesis. An algorithm with a strong evolutionary component tends to be
faster and to reach convergence first but may have trouble finding the global mini-
mum and rather converge to a local minimum. Instead, giving a strongly random
imprint to the code search process, you manage to have a better exploration of the
space of solutions but sacrificing speed of the code itself.
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Figure 2.1: Classification of Evolutionary Algorithms

2.1 Terminology
In order to better describe the process by which these algorithm works, the basic
terminology , which derive directly from biologics and genetics, is reported below:

• Population: it is the set of individuals involved in the search process.

• Individual: is a single solution to the problem that the genetic algorithm is
trying to solve. It is composed by the genotype which contains the genetic
information, and the phenotype that is the expression of the individual in
terms of the model.

• Gene: it is one of the elements of an individual.

• Feature or allele: it is the value a gene takes for a particular chromosome

• Genetic operators: they alter genetic composition of the offspring.

• Fitness function: for standard optimization algorithms, this is known as the
objective function. It gives a fitness score to each individual. The probability
that an individual will be selected for reproduction is based on its fitness score.

• Son: it is the results of the reproduction process that belongs to the next
population as a member.

• Decoding - Encoding: Decoding is a process of transforming a solution from the
genotype to the phenotype space, while encoding is a process of transforming
from the phenotype to genotype space.

10
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Figure 2.2: Genetic algorithm terminology scheme

2.2 Operating Method
The general structure of a genetic algorithm process is rapresented in Fig.2.3 and
could be summarized as follow:

• Encoding

• Evaluation

• Crossover

• Mutation

• Decoding

The crossover phase involves the construction of the iteration population starting
from the elements with the highest degree of fitness. Here the methodologies are
many and will be discussed in detail in the following sections. Finally there is the
phase of mutation; in fact it is always necessary to guarantee a certain variability
within a population to avoid phenomena of premature convergence or cases in which
the algorithm remains trapped in its surroundings of a local minimum.
Once the entire process is completed, the previous population is replaced with the
next one and start all over again. In addition it is necessary determine when to
stop the genetic algorithm.
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Figure 2.3: Genetic algorithm process [15]

2.3 Initial Population
The first step in the functioning of a genetic algorithm is, then,the generation of
an initial population. Population sizing is one of the most important topics to
consider in evolutionary computation. In fact, a small population size could guide
the algorithm to poor solutions and a large population size could increase algorithm
computation time.

2.4 Fitness Function
In most cases the fitness function and the objective function are the same as the
objective is to either maximize or minimize the given objective function. However,
for more complex problems, the designer might choose to have a different fitness
function. A fitness function should be sufficiently fast to compute and it must
quantitatively measure how fit a given solution is or how fit individuals can be
produced from the given solution. In some cases, is not possible to calculate the
fitness function directly due to the complexities of the problem, so fitness approx-
imation is made to suit the needs. Calculation of fitness value is done repeatedly,
and therefore it should be sufficiently fast. A slow computation of the fitness value
can adversely affect the algorithm and make it exceptionally slow.
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2.5 Parent Selection
Parent Selection is the process of selecting parents which mate and recombine to
create off-springs for the next generation. Parent selection is very crucial to the
convergence rate of the GA as good parents drive individuals to a better and fitter
solutions.

Figure 2.4: Tournament Selection [15]

Figure 2.5: Roulette Wheel Selection [15]

Tournament Process
This type of selection is one of the most popular because it is very simple to im-
plement but also quite efficient. In the tournament selection there are ’n’ elements
chosen randomly from the population and then they are subsequently made com-
pete against each other; the winning chromosome is chosen for the crossover. The
number of challengers can vary but usually it is used a binary type tournament
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with only two participants. In this way, the selection process allows to maintain
the diversity between the elements selected and each chromosome is chosen without
benefiting the best. Other advantages are the speed from the computational point
of view, a low probability that dominant elements could monopolize the group of
selected and finally no need for sorting the fitness or to have to normalize it in some
way.

Proportional roulette wheel selection
In the proportional roulette selection, individuals are chosen with a probability that
is directly proportional to one’s fitness value and therefore it is possible to think of
a roulette where the number of times that each chromosome appears is linked to
how high its fitness value is. This obviously implies that items with a higher fitness
level occupy larger portions of roulette. When the wheel is spun, it will tend to
stop with good probability with the pointer directed towards one of the individuals
with higher fitness value. The process must be repeated as many times as desired
use for crossover. The main advantage of proportional selection is related to the
fact of not discarding any element of the population and therefore giving everyone
the possibility of being selected. There are also some important disadvantages: for
example, the presence of a very high fitness elements compared to the others can
cause a premature convergence of the code.

Best Only Selection
Unlike previous methods which rely on probabilistic mechanisms, this type of selec-
tion is the most drastic. The final population contains only the best chromosome
repeated as many times as the user’s preference. In this case, individuals are not
subjected to crossover, but they are directly promoted to mutation stage. This
choice leads genetic algorithm to exasperate its functioning by turning it into a
local randomized research.

2.6 Reproduction Process

2.6.1 Crossover
The crossover is the mechanism by which individuals are created for the next itera-
tion starting from the winners of the selection process. The term ’parent’ is used for
the input chromosomes and ’children’ for the output chromosomes. The crossover,
to be effective, must allow the transfer of promising genetic material and perform a
scrambling to obtain even better solutions in the future. There are many methods
for this process and, since the code used is combinatorial, the main techniques are
proposed in the next subsection.
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(a) Single Point

(b) Multi Point

Figure 2.6: Examples of Crossover Techniques [15]

Single Point Crossover

This is the simplest possible technique; it begins by randomly selecting an element
(or gene) of a parent and positioning it in a random new position, in the child. Then,
the remaining elements of the parent are inserted in the same order in which they
appeared before. An example is reported in Figure 2.6a. Multi-Point Crossover is
also possible, and it is a generalization of the Single-Point.

City Centered Crossover

This type of crossover is based not so much on the choice of a random index, as on
the choice of a debris. Thanks to this choice, the children inherit the same sequence
of debris preceding the one selected. First, a gene is chosen, and it is searched for
within the parents; at this point the genes are copied up to the selected one. Finally,
the process is completed by completing the permutation through cross-filling (genes
of the father in the daughter and genes of the mother in the son) always trying to
keep the order unchanged.

Ordered Crossover

Sometimes it can be useful to try to pass on a certain potentially valid block of
information to subsequent generations; you can therefore use this strategy; two
indices are randomly chosen, and the elements included between the two indices in
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the child chromosomes are copied. At this point the chromosomes are completed
again with a cross-filling trying to keep the order unchanged.

Order Based Crossover

The operation of this technique is based on the transfer of sub-sequences of genes
that may contain good information. First, a certain number of indices are chosen in
the mother and the corresponding vertices of the father are marked. The elements
of the father that have not been deleted are then copied into the child and finally
the marked elements of the mother are also reported, possibly in the same order.

2.6.2 Mutation
As already mentioned in the introduction, the mutation operator allows to main-
tain a certain degree of diversity within the population. Although the crossover
functions correctly and guarantees a high degree of mixing, it cannot prevent a
progressive homogenization of the vectors. In the advanced stages it is in fact
probable that a small group of individuals possess very high fitness values and
dominate in the selection stage. The mutation is therefore responsible for insert-
ing completely new elements at each iteration whose genes can, once recombined,
lead to the construction of even better individuals. Again, multiple strategies are
available.

(a) Single Swap

(b) Scramble

(c) Swap Blocks

Figure 2.7: Examples of Mutation Techniques [15]

Single Swap

This type of mutation simply selects two indices of the incoming chromosome
(stochastically) and swaps the genes indicated by them. An example is shown
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in Figure 2.7
In another case, the mutation chooses two indices of the input vector. The first
number indicates the position of the information to be moved while the second
indicates the position to which it must be moved. Finally, all that remains is to
scale the elements between the two indices.

Scramble

Two indices are chosen at random and the elements between the two indicated
extremes are randomly permuted. An example is reported in Figure 2.7b, in which
the chosen values are 2 and 6.

Swap Blocks

Two indices have been chosen to determine a division of the chromosome into three
different sections. The first and third are therefore reversed while keeping the
second unchanged. A mutation of this kind tends to keep any groupings of genes
with good fitness characteristics intact, which could then help the code to build
better elements in the next iteration.

2.7 Stopping Criteria
The termination condition of a Genetic Algorithm is important in determining
when a GA iterations will stop. The algorithm progresses very fast with better
solutions in every few iterations, but this tends to saturate in the later stages, where
the improvements are very small. For this reason, it is implemented a stopping
condition such that the solution is close to the optimal, at the end of the run.
Below are listed the existing stopping criteria; GA stops:

• when there has been no improvement in the population for X iterations.

• when reaches an absolute number of generations.

• when the objective function value has reached a certain pre-defined value.

Like other parameters of a GA, the termination condition is highly problem specific,
and the user should try out various options to see what suits his particular problem
the best.
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2.8 Genetic Algorithm in MATLAB
MATLAB is a programming platform that can be used for various purposes, in-
cluding matrix computing, algorithm creation, simulation, and analysis. In the
case of this master thesis, the interest is towards one of the MATLAB toolboxes:
the Global Optimization Toolbox. ”Global Optimization Toolbox provides func-
tions that search for global solutions to problems that contain multiple maxima or
minima”[16]. In particular, has been used the ga solver, which exploits the genetic
algorithm principles. ga finds the minimum of a given function and it can be called
in MATLAB with the following syntax:

[x, fval, exitflag, output, population, scores] =
ga(fun, nvars, A, b, Aeq, beq, lb, ub, nonlcon, options)

This parameters can be described as follows [16]:

• x : is the best point that ga localizes in its iterations, so is the local uncon-
strained minimum;

• fval: is the fitness function value calculated in x;

• exitflag: is an integer number that identifies why ga stopped;

• output: contains information about the optimization process;

• population: return a matrix containing the final population, where the rows
are the individuals;

• scores: is a vector containing the final scores of the rows of population;

• fun: is the objective function;

• nvars: the number of variables;

• A: is the linear inequality matrix A ∗ x <= b, where x is the column vector of
the variables;

• b:is the linear inequality vector;

• Aeq: is the linear equality matrix Aeq∗x <= beq, where x is the column vector
of the variables;

• beq:is the linear equality vector;

• lb: is a vector that contains the lower bounds that the variables can assume;

• ub: is a vector that contains the upper bounds that the variables can assume;
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• nonlcon: is a function containing nonlinear constraints;

• options: contains the optimization options defined by the user. If not specified,
ga uses the default options.

With optimoptions MATLAB function the user can specify population dimensions,
running time and many other options of genetic algorithm. Those used for the
study carried out in this thesis are reported below:

• SelectionFcn: it is possible to specify a built-in function or a function handle
that selects parents of crossover and mutation children;

• EliteCount:identifies the number of best individuals who will pass on to the
next generation;

• CrossoverFraction: specifies the portion of the population created with crossover
in the next generation, excluding Elite individuals;

• PlotFcn: it is possible to specify which built-in function will be used for plot
algorithm data;

• InitialPopulationRange: specifies the range of initial values for initial data.
It can be a vector or a matrix;

• MigrationDirection: can control how the migration between subpopulations
occurs; it is possible to set a ForwardDirection if the subpopulation goes
from the current to the next. The other possibility is the Both directions, in
which subpopulation can move in the next or the previous one.
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Chapter 3

Space Flight Mechanics

This chapter focuses on illustrating the fundamental concepts of space flight me-
chanics to help understand the work of this thesis.
In particular, have been invoked the concepts relating to reference systems, the
equation of the trajectory, the conic sections and the orbital parameters. In the
final part, the main phases of interplanetary maneuvers are presented.
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3.1 Trajectory Equation
In order to introduce the law that regulates the motion of a body in orbit it is
necessary to make a brief digression to mention the so-called ”two-body problem”.
The assumptions made for this model are as follows:

1. Mass of the orbiting body m is negligible in respect of the attratting mass M ;

2. The bodies are spherically symmetric, so that their masses can be considered
as concentrated at their centers;

3. Only the gravitational forces between the two bodies are considered.

Using an inertial reference system, the relationship that describes the relative mo-
tion between the two bodies can be written as:

r̈ + µ

r3 r⃗ = 0 (3.1)

where r is the distance between the two bodies, and µ is defined as (3.2) and it is
the gravitational parameter, different for each planet. For Mars the value of µ is
42828 Km3/s2.

µ = GM (3.2)
The gravitational field is conservative and this means that there is a conservation
of mechanical energy. The energy that a certain mass possesses in a gravitational
field, without the influence of external forces, is given by a balance of kinetic energy
and potential energy. The expression of the specific mechanical energy is:

ϵ = V 2

2 − µ

r
(3.3)

The first term of the (3.3) refers to the kinetic energy per unit of mass and the
second to the gravitational potential energy per unit of mass. For this reason ϵ is
a so-called ”constant of motion”. Another quantity that remains constant during
the motion is the specific angular momentum h⃗.

h⃗ = r⃗ × v⃗ (3.4)

Since h⃗ is the vector product of two quantities, it will always be perpendicular to
the plane containing r⃗ and v⃗. Since h⃗ is constant, these r⃗ and v⃗ will always lay in
the plane of motion, that is defined orbital plane. The specific angular momentum
vector is also expressed through the relation in (3.5), in which the angle between
the direction of the velocity and the plane of the horizon appears. This angle is
called the flight-path angle. The complementary angle of γ is called the zenith angle
ϕ, defined as the angle that the velocity forms with the local vertical

h⃗ = rv sin γ (3.5)
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h⃗ = rv cos ϕ (3.6)
Thanks to these considerations it is now possible to integrate the equation in (3.1)

Figure 3.1: Flight-path Angle and Zenith Angle [17]

to obtain the trajectory equation, which expression is:

r =
h2

µ

1 + B
µ

cos ν
(3.7)

• h is the magnitude of specific angolar momentum;

• µ is the gravitational parameter;

• B is the constant of integration vector. It points towards the direction of
minimum distance between the trajectory and the main focus. This distance
is called periapsis;

• ν is the true anomaly, the angle between the direction of the periapsis and
position vector r⃗.

3.2 Conic Sections
The expression in (3.7) contains information about the dynamics and kinematics
of the satellite motion. It is possible to write a similar equation which contains
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Figure 3.2: Types of Conics Sections and Related Orbital Trajectories

information relating to the geometry of the trajectory. This equation can be seen
in (3.8).

r = p

1 + e cos ν
(3.8)

in which:

• p is the semilatus rectum, a geometrical constant of conic sections;

• e is the eccentricity.

There is a relationship between the expressions (3.7) and (3.8) and it is therefore
possible to relate the kinematic and geometric quantities.

p = h2

µ
e = B

µ
(3.9)

The concept of conic section is now introduced as the locus of points such that the
ratio of the distance from a fixed point called focus and a fixed line, said directrix,
is constant and equal to e. Thus, from the value of the eccentricity it is possible
to establish the type of conic. If the eccentricity is e > 1 then is considered an
hyperbolic trajectory, while if it is exactly e = 1 the conic is a parabola, and if it
is e < 1 an ellipse; eccentricity value equal to 0 refers to the circular orbit, which
is a particular type of ellipse.
Another way to describe conic sections is as curves obtained from the intersection

24



3.2 – Conic Sections

of a cone and a plane. As can be seen from Figure 3.21, the different categories of
conics are generated cutting the cone at different angles.
There are some geometric properties that are in common between the various fam-
ilies of conics. For example, all these curves have two foci, even if in the parabola
the second focus is placed at an infinite distance from the first. In orbital mechan-
ics, the most massive body, around which the trajectory takes place, is in one of
the two foci, while the other has no physical meaning.
One of the main parameters of these curves is the semi-major axis a, which is the
half length of the chord passing through the two foci. Another reference length is
the distance between the two foci c, from which derives the expression that defines
the eccentricity

e = c

a
(3.10)

We can therefore locate the two extremes of the semi-major axis, which are defined
as apses. The distance of the closest point from the first focus is called periapsis
and indicated by rp, the expression of which is

rp = a(1 − e) (3.11)

Instead, the apoapsis ra is the furthest point from the focus.

ra = a(1 + e) (3.12)

In the previous section has been said that the total specific mechanical energy is
constant during the motion, and for all conic orbits is always valid that

ϵ = v2

2 − µ

r
= − µ

2a
(3.13)

The equation shows that the semi-major axis a depends only on the specific me-
chanical energy. This implies that ϵ has to be negative for closed orbits (circular or
elliptic), while is equal or greater than zero if the orbit is parabolic or hyperbolic.
Therefore,it is possible to summarize these concepts in a table:
The elliptic and hyperbolic orbits are presented, while the parabolic ones are ex-
cluded, because they are beyond the scope of this thesis.

3.2.1 Elliptical Orbit
Ellipse represents the typical trajectory that planets have in their revolution motion
around the Sun. It is a closed orbit, so a body moving on an ellipse will always

1Image from http://www.braeunig.us/space/orbmech.htm
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Conic Section e a ϵ
Ellipse 0 < e < 1 >0 <0
Circle 0 >0 <0

Parabola 1 ∞ =0
Hyperbola >1 <0 >0

Table 3.1: Characteristic Parameters of Conic Sections

Figure 3.3: Elliptical Trajectory [18]

follow the same path. The time it takes for a body to complete the entire turn of an
ellipse is called orbital period τ . Semi-major axis and eccentricity can be expressed
through the periapsis and apoapsis distances with the following expressions:

a = rp + ra

2 (3.14)

e = ra − rp

ra + rp

(3.15)

The orbital period, instead, is a function of the geometry of the ellipse, in particular
of the length of the semi-major axis. It can be written that:

τ = 2π

⌜⃓⃓⎷a3

µ
(3.16)

3.2.2 Hyperbolic Orbit
This conic represents the trajectories commonly used for the capture, escape or
fly-by maneuvers of a spacecraft.
The hyperbola has two branches, but only one of the two represents the one that
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Figure 3.4: Hyperbolic Trajectory [18]

can actually be traveled. Referring to Figure 3.4, it is possible to indicate δ as
the angle between the two asymptotes. This angle is related to the geometry
of the hyperbola and therefore to the eccentricity, with which it has an inverse
proportionality relationship.

sin(δ

2) = a

c
= 1

e
(3.17)

Another important parameter is the hyperbolic excess speed V∞. The minimum
velocity needed to perform an escape from a planet is called escape velocity Vesc. If
the spacecraft has this velocity, then it will exit the gravitational field of the planet
with zero velocity and will perform a parabolic trajectory. Consequently, to go to a
hyperbolic orbit will be necessary to have a speed greater than the escape velocity.

V 2
∞ = V 2

burnout − V 2
esc (3.18)

where Vburnout is the speed of the spacecraft at the beginning of the maneuver.

3.3 Coordinates Systems
A coordinate system is always defined by an origin, a fundamental plane (X-Y) and
the direction of two main axes, usually X and Z.
There are various types of reference systems for locating an object in orbit. The
most suitable system will be chosen based on the problem. The following are those
used in the context of this thesis and are described in the next subsections.

3.3.1 Perifocal Coordinate System
It is the most used coordinate frame for describing the motion of a satellite [17].
This is unique for every orbit and his foundamental plane is the orbital plane itself.
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Figure 3.5: Perifocal Reference System [17]

The origin is located in tha main focus of the conic section, usually the center of a
planet.
The X-axis is directed towards the pariapsis, the-Z axis lies in the direction of the
vector h⃗ and Y-axis lies on the plane of the orbit and is inclined 90° in the direction
of the motion. Unit vectors in the X, Y and Z direction are called respectively P,
Q and W.

3.3.2 Equatorial Coordinate System

Figure 3.6: Equatorial Reference System [17]
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It is also known as ’Geocentric-Equatorial’ as applied on Earth. It has its origin
in the center of planet, in this case Mars, and its foundamental plane is the equator,
in which lays X and Y. Unit vectors in direction X,Y and Z are named I,J,K. The
X-axis points in the vernal equinox direction, thus towards the Aries constellation.
Z-axis is directed to the North Pole direction and Y-axis completes the triad.

3.3.3 Right Ascension-Declination Coordinate System

Figure 3.7: Right Ascension - Declination Reference System [17]

This reference frame is related to the Equatorial Coordinate System. Its founda-
mental plane is the ”Celestial Equator”, that is the extension of Earth’s equatorial
plane to a sphere with infinite radius called ”celestial sphere”. It is a polar coor-
dinate system, so that every object in the celestial sphere can be located by two
angles and a distance:

• α is the right ascension and it is measured starting from the Vernal equinox
direction and proceeding eastward in the foundamental plane:

• δ is the declination, measured from the celestial equator proceeding nordward;

• r: is the position vector that measures the distance from the origin of the
reference frame.

3.4 Classic Orbital Elements
The classical orbital elements are six independent parameters that describe the
size, shape, orientation of the orbit and the position of a satellite on that orbit at
a precise time [17]. This set is composed by:
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Figure 3.8: Classic Orbital Elements [19]

• a: semi-major axis of the trajectory (define the size of the orbit);

• e: eccentrity of the conic section (define the shape of the orbit);

• i: inclination, defined as the angle between unit vector K and the direction of
angular momentum h⃗;

• Ω: longitude of the ascending node. In the foundamental plane is the angle
between the unit vector I and the point that cross the foundamental plane
in north direction measured counterclockwise. This point is called ascending
node;

• ω: argument of periapsis, or latitude of the ascending node. It is the angle
between the ascending node and the periapsis, measured in the plane of the
orbit in the direction of satellite’s motion;

• ν: true anomaly at the time t. It is the angle between periapsis and the position
of the satellite at considered time. It is measured in the plane of the orbit and
in direction of the motion.

3.5 Patched-Conic Approximation
During an interplanetary transfer the spacecraft is mainly subjected to the gravi-
tational force of the Sun. However, when relatively close to other celestial bodies,
their gravitational force becomes stronger than the Sun one. During the preliminary
mission analysis it is possible to estimate the total ∆V through the ’patched conix
approximation’ which allows to ignore the influence of the Sun when the spacecraft
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is a great distance from another body, such as the arrival planet.
Each planet has its own sphere of influence (SOI), which can be defined as the re-
gion of space in which the effect of the planet is predominant over that of the other
celestial bodies and whose radius varies according to the distance of the planet from
the Sun.

rSOI = R

(︄
m

M

)︄2/5

(3.19)

where:

• R: is the distance between the two bodies;

• m: is the mass of the smaller object;

• M : is the mass of the bigger object (usually Sun or a planet).

Within this sphere, the motion of a body attracted to the planet can be considered
unaffected by other celestial bodies. Therefore, during an interplanetary trip, it is
possible to divide the space into regions, assigning each its own sphere of influence.
When the satellite transits into the sphere of influence of a planet, only the gravita-
tional force between that body and the satellite is considered. Therefore, the study
of the motion of the satellite is carried out by exploiting the two-body problem.
The difference is that Delta-Vs are the ones that allow capture and evasion from
gravitational fields. It is therefore necessary to consider the trajectory as a series
of connected conics. For the aim of this thesis the following subdivision is taken
into consideration:

• Heliocentric Phase

• Planetocentric Phase

Planet RSOI [105 Km]
Mercury 1.12
Venus 6.16
Earth 9.29
Mars 5.78

Jupiter 482
Saturn 545
Uranus 519

Neptune 868
Pluto 341

Table 3.2: Planetary Spheres of Influence. Data from [20]
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Figure 3.9: Phase angle at departure γ1 [17]

3.5.1 Heliocentric Phase
The heliocentric phase takes place since the satellite leaves the Earth’s sphere of
influence and is subject only to the gravitational force of the Sun. Taking an Earth-
Mars mission as an example, we must consider not only the arrival on the Martian
orbit, but also that the planet has to be right at the point of arrival. We have to
study the phase angle at departure γ1 that is the angle between tha radius vectors
to the departure and arrival planets [17].

γ1 = (ν2 − ν1) − ωt(t2 − t1) (3.20)

This requirement places limits on launch windows choice. If launch opportunity
is missed, the correct phase angle will repeat after a long period, called Synotic
Period τS which depends on the target planets.
To calculate synodic period we made the following considerations:

• the Earth moves through an angle ω⊕τS;

• the target planet advances by ωtτS ;

• the original phase angle will be repeated when angular advance of one will
exceed that of the other by 2π radians.

We can therefore write the expression in (3.21)

ω⊕τS − ωtτS = ±2π ⇒ τS = 2π

ω⊕ − ωt

(3.21)

32



3.5 – Patched-Conic Approximation

Planet Synodic Period [yr]
Mercury 0.32
Venus 1.60
Mars 2.13

Jupiter 1.09
Saturn 1.04
Uranus 1.01

Neptune 1.01
Pluto 1.00

Table 3.3: Synodic Period of Planets Related to Earth

Table 3.3 collects the data taken from ”Fundamentals of Astrodynamics” [17] about
synodic period of Solar System planets related to Earth. We may concluded that
planets very close to the Earth, and therefore with a similar velocity, have long
sinodic periods: for Mars is about 2 years. For this reason, if successive launches are
considered, this is the waiting time between the possible launches. The eccentricity
of Mars changes the arrival V∞ and this causes there to be more favorable launch
windows than others.

Hohmann Transfer

Figure 3.10: A Hohmann transfer from Earth to Mars [17]
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For transfers to most of the planets, we may consider that planetary orbits are
both circular and coplanar [17].The Hohmann Transfer is the most energy efficient
maneuver for circular orbits, but it generally takes long time to be travelled. This
transfer orbit is semi-elliptical and tangent to the departure and arrival orbits in
the respective apsides: periapsis on the internal circular orbit and apoapsis on the
external one. ⎧⎨⎩rp = r1

ra = r2

The semi-major axis and the eccentricity of the Hohmann trajectory are indicated
with aH and eH respectively

aH = r1 + r2

2 eH = r2 − r1

r1 + r2
(3.22)

Delta-V must be parallel to the velocity, so there are no misalignment losses. More-
over, between circular orbits it is always guaranteed that the flight path angle φ is
equal to zero and therefore there are no gravity losses.
As already mentioned, the initial circular orbit velocity is

Vc1 =
√︄

µ

r1
(3.23)

while the circular velocity on the arrival orbit is

Vc2 =
√︄

µ

r2
(3.24)

As can be seen from the image, the Delta-Vs are linked to the circular velocity of
the two orbits and to the velocities VH1 and VH2. These relationships can then be
written:

Vc1 + ∆V1 = VH1 (3.25)

Vc2 = VH2 + ∆V2 (3.26)

The expressions of the Hohmann maneuver velocities can be obtained with an
energy balance, exploiting the equation of the specific mechanical energy:

ε = µ

2a
= V 2

2 − µ

r
(3.27)

from which derived

εH = − µ

2a
= − µ

r1 + r2
= V 2

2 − µ

r
(3.28)
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The expression of velocities then becomes:

VH1 =

⌜⃓⃓⎷2
(︄

− µ

r1 + r2
+ µ

r1

)︄
(3.29)

VH2 =

⌜⃓⃓⎷2
(︄

− µ

r1 + r2
+ µ

r2

)︄
(3.30)

Therefore, the cost of the first maneuver is calculated as:

∆V1 = VH1 − Vc1 = Vc1

⌜⃓⃓⎷(︄ 2r2

r1 + r2
− 1

)︄
(3.31)

and the cost of the second maneuver:

∆V2 = Vc2 − VH2 = Vc2

⌜⃓⃓⎷(︄1 − 2r1

r1 + r2

)︄
(3.32)

The total cost is given by the sum of the two contributions

∆V = |∆V1| + |∆V2| (3.33)

In the case presented in this master thesis the transfer occurs from an smaller radius
orbit to a larger radius orbit, so both Delta-V positive will be positive (acceleration).
the cost-effectiveness of this type of manuever is paid for with its duration, which
will be half of the transfer orbital period.

∆TH = π

⌜⃓⃓⎷a3
H

µ
(3.34)

3.5.2 Planetocentric Phase
According to MSR Mission architecture, the spacecraft will perform two maneuvers
in Mars’ sphere of influence:

• Parking Orbit Capture

• Parking Orbit Escape

The Capture manuever is referred to the passage from the hyperbolic trajectory
to the parking orbit, while during the Escape the spacecraft will leave the parking
orbit to enter the return hyperbolic trajectory. Both these maneuvers are explained
in the following paragraphs.
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Figure 3.11: Capture Maneuver [21]

Parking Orbit Capture

During the capture maneuver in the Martian SOI, the spacecraft switches from the
hyperbolic entry trajectory to the parking orbit. To perform this change, a speed
variation is required. To be able to calculate the DeltaV of the maneuver, we need
a couple of data:

• Hyperbolic excess velocity V∞ or the energy level C3 for capture conditions.
These parameters are linked by the following equation:

ε∞ = V 2
∞
2 = C3

2 (3.35)

• Capture Parking Orbit velocity V⃗ orbit.

From the hyperbolic energy equation at a given radius it is possible to derive the
hyperbolic velocity:

V⃗ hyp =
√︄

C3 + 2µ

r
(3.36)

while the expression of the parking orbit velocity, known the geometry parameters,
is calculated from the energy equation. The expression is given by (3.37)

V⃗ orbit =
√︄

2µ

r
− µ

a
(3.37)

Thus, the velocity increment for the capture maneuver is calculated as follows:

∆Vcapture = V⃗ orbit − V⃗ hyp (3.38)
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Figure 3.12: Escape Maneuver [21]

Parking Orbit Escape

For the Escape maneuver the reasoning is the same, except that this time the
spacecraft passes from the parking orbit to an hyperbolic trajectory. In this case
the parameters to know are:

• Hyperbolic excess velocity V∞ or the energy level C3 for escape conditions;

• Escape Parking orbit velocity Vorbit.

The data can be calculated as the capture condition, considering r the escape radius
vector. Thus, the velocity increment is calculated as:

∆V⃗ escape = V⃗ hyp − V⃗ orbit (3.39)

37



38



Chapter 4

Parking Orbit Optimization
Problem

For an interplanetary mission, such as the one considered in this thesis, the choice
of a correct parking orbit is very important. Based on this, in fact, the costs of
the mission and the masses will vary, in particular the propellant mass. This thesis
analyzes a round trip to Mars for a Sample Return mission. This chapter introduces
the computation process used in the MATLAB code, which will exploit the genetic
algorithm for the optimization of the problem. The analytical method presented is
based on the paper Optimum Parking Orbit Orientation for a Three-Dimensional
Capture-Escape Mission [22].
The mission has been studied in different configurations, whose detailed descriptions
are contained in Chapter 5, but the process described in this Chapter is valid for
all of them.

39



Parking Orbit Optimization Problem

4.1 Assumptions
The assumptions used to study the optimization problem are here described:

• The hypotheses of the two-body problem are considered valid, therefore it is
applied to the study of the problem and spacraft can be treated as a point
mass;

• Parking orbit can be circular or elliptical and may have any orientation;

• The orientation and energy related to the hyperbolic asymptotes of capture
and escape are dependent on the dates of arrival and departure and on the
duration of the heliocentric phase

• Each maneuver is characterized by a single-impulsive burn;

• All maneuvers are carried out with chemical propulsion.

4.2 Input and Output
The problem is divided into three different parts, namely capture, determination
of the parking orbit and escape. The only gravitational force in the problem is the
Mars one, because all phases take place within the Martian sphere of influence.

Parameters Description
a [Km] Parking Orbit Semi-major Axis
e Parking Orbit Eccentricity
i [deg] Parking Orbit Inclination

C3c [Km2/s2] Capture - Energy Level
αc [deg] Capture - Right Ascension
δc [deg] Capture - Declination

C3e [Km2/s2] Escape - Energy Level
αe [deg] Escape - Right Ascension
δe [deg] Escape - Declination

Table 4.1: Optimization Problem Input Parameters and Output

Starting from the input data, shown in the previous Table, the algorithm will
generate results that refer to:

• the orientation of the parking orbit;

• the capture and escape positions;

• the cost of each maneuver performed;
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• the masses related to each maneuver.

The parameters optimized by the algorithm and the outputs of the problem are
summarized in the following Table. The inputs and outputs described in this section

Optimized Parameters Description
ρc [deg] Capture Injection Angle
ρe [deg] Escape Injection Angle
Ωc [deg] Capture - Right Ascension of the Ascending Node
Ωe [deg] Escape - Right Ascension of the Ascending Node
ωc [deg] Capture - Argument of Periapsis
ωe [deg] Escape - Argument of Periapsis
Output Parameters Description

∆Vc [Km/s] Capture - Velocity Increment
∆Ve [Km/s] Escape - Velocity Increment
∆V [Km/s] Total Velocity Increment

Mtotal [deg] Total Initial Mass

Table 4.2: Optimization Problem Output Parameters

are related to the single launch mission. In this thesis, multiple launch missions have
been also optimized. However, the input and output parameters will be essentially
the same, in fact will vary only the quantity of these parameters. Any variation
of these parameters will however be specified in the missions related Section of
Chapter 5

4.3 Resolution Process
The effects of orbit perturbations are neglected in the description of this Section.
the parking orbit will have the same orientation for the entire duration of the
mission. The calculation process for perturbations is explained in the next Section.

4.3.1 Parking Orbit Definition
The reference frame used for this part is the equatorial system of Mars, therefore it
is the same as described in Subection 3.3.2 but with the origin coincident with the
center of Mars. The quantities will then be obtained in relation to the IJK axes. It
is therefore necessary to take into account the rotations to be performed to carry
out the transformation of the variables from the perifocal to the equatorial system.
The first step is the introduction of the rotation matrices [−Ω]K , [−i]I and [−ρc]K ,
where the minus indicates the inverse matrix and the subscript indicates the axis
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around which the rotation occurs.

[−Ω]K =

⎡⎢⎣cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

⎤⎥⎦ (4.1)

[−i]I =

⎡⎢⎣1 0 0
0 cos i − sin i
0 sin i cos i

⎤⎥⎦ (4.2)

[−ρc]K =

⎡⎢⎣cos ρc − sin ρc 0
sin ρc cos ρc 0

0 0 1

⎤⎥⎦ (4.3)

It can be now calculated the vector unit along the line of the ascending node,
remembering that it is defined only when the plane of the orbit is not zero, otherwise
it coincides with the equatorial plane and becomes undefined.

ˆ︁A = [−Ω]K [−i]I

⎡⎢⎣1
0
0

⎤⎥⎦ (4.4)

To define the position of the satellite along the orbit trajectory, is considered the
true anomaly ν, which is one of the six orbital elements defined in Section 3.4.

ν = 2π + ρc − ωc (4.5)

It is now possible to calculate the magnitude of the position vector r.

r = a(1 − e2)
1 + e cos ν

(4.6)

The direction of the position vector must be defined through its unit vector ˆ︁r,
obtained with the rotations described in Equation (4.7),

ˆ︁r = [−Ω]K [−i]I [−ρc]K

⎡⎢⎣1
0
0

⎤⎥⎦ (4.7)

The vector position it is now simple to calculate.

r⃗ = rˆ︁r (4.8)

The next goal is the velocity calculation, which magnitude can be expressed through
specific mechanical energy.

V =
√︄

2µ

r
− µ

a
(4.9)
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The direction of the speed, on the other hand, must be calculated knowing the
flight path angle γ, which requires the specific angular momentum h⃗⎧⎨⎩h⃗ = r⃗ × V⃗ ⇒ h = rV sin γ

h =
√︂

µa(1 − e2)

γ = sin−1
(︄

h

rV

)︄
(4.10)

In the code used for the optimization, has been inserted a control on this angle
value, as the sine is defined in the interval [−π/2, π/2]; it is also linked to the true
anomaly. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 ≤ γ ≤ π

2 if 0 ≤
(︂
ρc − ωc

)︂
≤ π

π

2 < γ < π if π <
(︂
ρc − ωc

)︂
≤ 2π

The direction of the velocity can now be derived, and subsequently also the velocity
vector.

ˆ︁V = [−Ω]K [−i]I [−ρc]K [−γ]K

⎡⎢⎣1
0
0

⎤⎥⎦ (4.11)

V⃗ = ˆ︁V V (4.12)

where:

[−γ]K =

⎡⎢⎣cos γ − sin γ 0
sin γ cos γ 0

0 0 1

⎤⎥⎦ (4.13)

4.3.2 Capture and Escape Conditions
After the determination of the position and velocity related to the parking orbit,
it is possible to obtain the conditions of capture and escape. The input data useful
in this phase are those relating to the hyperbolic energy level C3, and the right
ascension α and declination δ values. From the first, it can be easily obtained
the magnitude of the hyperbolic excess velocity V∞, while from the other two the
direction of the hyperbolic asymptote ˆ︁S

V 2
∞ = C3 (4.14)

ˆ︁S = [−α]K [δ]J

⎡⎢⎣1
0
0

⎤⎥⎦ (4.15)
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with the rotation matrix expressed as:

[−α]K =

⎡⎢⎣cos α − sin α 0
sin α cos α 0

0 0 1

⎤⎥⎦ (4.16)

[δ]J =

⎡⎢⎣ cos δ 0 sin δ
0 1 0

− sin δ 0 cos δ

⎤⎥⎦ (4.17)

The discussion is now divided for the two capture and escape conditions.

Capture Condition

To define the transition between the hyperbolic orbit and the stopover orbit, two
angles are defined, which measure the rotation between the position vector (fixed)
and the hyperbolic asymptote, and are considered positive if the measurement is
performed in the direction of motion from ˆ︁S to ˆ︁r.

β1 = cos−1
(︄ ˆ︁S ˆ︁r

| ˆ︁S||ˆ︁r|

)︄
(4.18)

β2 = 2π − cos−1
(︄ ˆ︁S ˆ︁r

| ˆ︁S||ˆ︁r|

)︄
(4.19)

From this can be deduced that there are two possible hyperbolas, with different
eccentricity, that can be considered for insertion into orbit. One of the hyperbolas
will follow a direct motion, while the other a reverse motion. To understand the
direction of motion, the unit vector of the angular momentum has to be obtained.

ˆ︂Wh =
ˆ︁S × ˆ︁r
sin β

(4.20)

If the product of the angular momentum unit vector and K-axis is positive then
the motion is direct, otherwise it will be retrograde.
The orientation of the hyperbola remains to be studied. To do this, the true
anomaly, the position of the periapsis and the hyperbolic eccentricity have to be
determined. First, the tangent of the angle between the periapsis and the hyperbolic
asymptote ΦA is calculated as follows:

σ = C3cr

2µ
(4.21)

tan ΦA = σ sin β +
√︂

(1 + σ)2 − (1 + σ cos β)2 (4.22)
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Now it is possible to write the relation that defines the hyperbolic eccentricity, and,
subsequently, the value of ΦA.

eh =
√︂

tan2 ΦA + 1 (4.23)

ΦA = cos−1
(︄

− 1
eh

)︄
(4.24)

The inverse tangent function is defined in the interval [−π/2, π/2], but β goes from
0 to 2π, so to verify it is possible to reverse Equation (4.22).
The last quantity to be obtained is the true anomaly that indicates the position
of the spacecraft with respect to the periapsis of the hyperbola, whose direction is
defined by ΦA.

νhyp = ΦA − β (4.25)

It is now possible to derive the hyperbolic velocity vector, whose magnitude is
derived from specific energy equation. The equation is applied in two different
points, the first is the maneuver position while the other is set to infinite distance.

Vh =
√︄

2µ

r
+ C3 (4.26)

The velocity unit vector can be obtained from the following expression:

ˆ︂Vh = ˆ︁r cos γh + (ˆ︂W × ˆ︁r) sin γh (4.27)

The γh angle is determined, as described in the previous section, through the eval-
uation of the angular momentum.⎧⎪⎪⎨⎪⎪⎩

h⃗h = r⃗ × V⃗ h ⇒ h = rVh sin γh

hh = µ

√︄
e2

h − 1
C3

γh = sin−1
(︄

hh

rVh

)︄
(4.28)

Also in this case some considerations on the γh angle will have to be made. In fact,
the injection can be performed on the incoming or outcoming leg, and this depends
on the value of the Φ angle.⎧⎨⎩0 ≤ γh ≤ π/2 if 0 ≤ Φ ≤ −pi

π/2 < γh < π if π < Φ 2π
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Before calculating the velocity vector, it is necessary to verify that the result of
the Equation (4.6) coincides with that of the position calculated with the following
expression:

rh = ah(e2
h − 1)

1 + eh cos νhyp

(4.29)

with ah the semi-major axis of the hyperbola.

ah = µ

C3 (4.30)

Finally, the velocity vector is obtained.

Vh = Vh
ˆ︂Vh (4.31)

Escape Condition

To derive position and velocity related to the escape condition, the process remains
the same as described for the capture, however some conventions will vary. There-
fore, starting from the inputs relating to the exit conditions (C3, right ascension
and declination), the β angles are obtained, but this time positive if measured in
the direction of motion from r to ˆ︁S along the escape hyperbola.

β1 = cos−1
(︄ ˆ︁r ˆ︁S

|ˆ︁r|| ˆ︁S|

)︄
(4.32)

β2 = 2π − cos−1
(︄ ˆ︁r ˆ︁S

|ˆ︁r|| ˆ︁S|

)︄
(4.33)

To distinguish which of the two hyperbolas follows a direct motion and which
one follows a retrograde one, the unit vector of the angular momentum have to
be written. Then if the product between ˆ︂Wh and the unit vector ˆ︂K is positive,
hyperbola’s motion is direct, otherwise it is retrograde.

ˆ︂Wh = (ˆ︁r × ˆ︁S)
sin β

(4.34)

For the calculation of the true anomaly, the process remains identical to that of
capture. What varies is the expression of tan ΦA.

σ = C3cr

2µ
(4.35)

tan ΦA = −σ sin β −
√︂

(1 + σ)2 − (1 + σ cos β)2 (4.36)

eh =
√︂

tan2 ΦA + 1 (4.37)
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ΦA = cos−1
(︄

− 1
eh

)︄
(4.38)

νhyp = ΦA − β (4.39)

As for the definition and calculation of the γh angle, please refer to the paragraph
related to the capture conditions because the process is identical and is therefore
not reported. The Equations (4.26) and (4.27) for the magnitude and the direction
of velocity remain also valid. Finally, applying the Equation (4.31), escape velocity
vector is determined.

4.3.3 Total Velocity Increments
The variation of total velocity, as already explained, will be the sum of the cost due
to the capture and that related to the escape. These two contributions will be cal-
culated knowing the velocities related to the parking orbit and the two hyperbolas,
and will have expression:

∆Vc =
√︃

V 2
hc + V 2

c − 2VhcVc

(︂ ˆ︁Vhc
ˆ︁Vc

)︂
(4.40)

∆Ve =
√︃

V 2
he + V 2

e − 2VheVe

(︂ ˆ︁Vhe
ˆ︁Ve

)︂
(4.41)

As a result, the total Delta-V will be

∆V = ∆Vc + ∆Ve (4.42)

4.4 Perturbations
The influence of a planet’s non-sphericity changes the orientation of the orbit. The
ellipsoid that approximates the surface of the planet will have an equation that
contains many coefficients, called harmonics. The most interesting harmonic from
this point of view is J2, which considers the effect of the flattening of the poles.
The two main effects that the perturbations cause are:

• the nodal regression, which causes a displacement of the nodes line around the
equator in the opposite direction to the satellite’s motion; this effect acts on
the argument of periapsis ω

• the apsidal precession, which causes the gradual rotation of the line that con-
nect the apsides around the main focus in the direction of satellite’s motion.
The effect is a variation of Ω
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The variations of these two quantities will be assessable through their derivatives,
which expression is:

ω̇ = 3
2J2τ

(︄
RMars

porbit

)︄2(︄
2 − 5

2 sin2 iorbit

)︄
(4.43)

Ω̇ = −3
2J2τ

(︄
RMars

porbit

)︄2

cos iorbit (4.44)

where:

• J2 = 1,9595 · 10−3

• τ =
√︃

µ

a3

• RMars = 3389,5Km

• porbit = a(1 − e2)

• µ = 42828Km2

s2

Then, to find the values of ω and Ω in escape conditions it is possible to write:

ωe = ωc + ω̇t (4.45)

Ωe = Ωc + Ω̇t (4.46)

in which t is the mission duration in seconds.
For short mission periods ∆t ∼ 0 the Ω and ω variations due to perturbations are
negligible.In this case the values of these quantities will be the same for the capture
and escape conditions.
However, mission times considered for this thesis are very extended and therefore
the calculation of the perturbations is necessary to have a better estimation of the
total costs.

4.5 Masses Calculation
This section presents the calculation methods used to determine the masses for
each stage of the mission. The mass denomination used for this thesis is as follows:

• mi is the mass at the beginning of a maneuver;

• mu is the payload mass, which is the mass at the end of the considered ma-
neuver;
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• mp is the propellant mass needed to perform the entire maneuver;

• ms represents the structure mass. It is consider as the 10% of the propellant
mass.

The following expression is always valid and has been used as a check of the results
obtained in Chapter 5:

mi = mu + mp + ms (4.47)

The input data for these maneuvers are written below, but will be specified in
Section 5.1:

• mu: payload mass for each maneuver;

• a: semi-major axis of the orbit;

• e: eccentricity of the orbit;

• RMars: Mars radius;

• µ: Mars gravitational parameter;

• Isp: Specific Impulse, needed to estimate exhaust gas velocity c = Isp

g0
;

• ∆Vc and ∆Ve: velocity increments for capture and escape, which have been
already calculated.

The calculation procedure is now shown for each maneuver: ascent, descent, return
and arrival.

Ascent
The first maneuver to be considered is the ascent. This maneuver is performed
by the Mars Ascent Vehicle (MAV) to bring the samples collected by the Sample
Fetch Rover (SFR) into orbit. A Hohmann transfer is considered to pass from the
surface of Mars to the parking orbit.
The first step is to calculate the energy associated to the parking orbit and the
related velocity, here called V2:

rp = a(1 − e) (4.48)

ϵ = − µ

2a
(4.49)

V2 =
√︄

2ϵ + µ

rp

(4.50)
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The energy of the Hohmann trajectory and the velocities in the two apsis, defined
here as V0 and V1, are then calculated.

aH = rp + RMars

2 (4.51)

ϵH = − µ

2aH

(4.52)

V1 =
√︄

2ϵH + µ

RMars

(4.53)

V0 =
√︄

2ϵH + µ

rp

(4.54)

The total cost of the ascent will be the sum of the impulses given at the beginning
of the maneuver on the Martian soil and that given to the periapsis to enter the
parking orbit. Losses due to misalignment are taken into account by multiplying
V0 by a corrective factor.

∆V = V2 − V1 (4.55)

∆Vascent = 1,1V0 + ∆V (4.56)

The initial mass can now be calculated as:

mi(ascent) = mu(ascent)(︄
e− ∆Vascent

c − 0,1 + 0,1e− ∆Vascent
c

)︄ (4.57)

Considering Equation 4.47 for the specific maneuver, it becomes:

mi(ascent) = mu(ascent) + mp(ascent) + ms(ascent) (4.58)

Having estimated the structural mass at 10% of the mass of the propellant, can be
written:

ms(ascent) = 0,1mp(ascent) (4.59)

mp(ascent) = mi(ascent) − mu(ascent)
1,1 (4.60)
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Descent
As for the descent, we consider a Hohmann transfer that begins at the periapsis of
the stopover orbit and ends with the landing on the planet. The process is similar
to that of the ascent and, therefore, is omitted. The only difference is that the
total cost will be given only by the contribution (breaking) given at the start of the
maneuver.

∆Vdescent = V2 − V1 (4.61)

mi(descent) = mu(descent)(︄
e− ∆Vdescent

c − 0,1 + 0,1e− ∆Vdescent
c

)︄ (4.62)

mi(descent) = mu(descent) + mp(descent) + ms(descent) (4.63)

ms(descent) = 0,1mp(descent) (4.64)

mp(descent) = mi(descent) − mu(descent)
1,1 (4.65)

Return
This maneuver is related to the transition from the parking orbit around Mars to
the hyperbolic trajectory that will bring the spacecraft back to Earth. The cost of
the escape maneuver is already known from the calculations made previously, so it
can be written:

mi(return) = mu(return)(︄
e− ∆Ve

c − 0,1 + 0,1e− ∆Ve
c

)︄ (4.66)

mi(return) = mu(return) + mp(return) + ms(return) (4.67)

ms(return) = 0,1mp(return) (4.68)

mp(return) = mi(return) − mu(return)
1,1 (4.69)
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Parking Orbit Optimization Problem

Arrival
This is the first maneuver to be carried out by the spacecraft. There is the passage
from the hyperbolic trajectory of capture to the stopover orbit. Considering the
maneuver cost already calculated ∆Vc, can be written that:

mi(arrival) = mu(arrival)(︄
e− ∆Vc

c − 0,1 + 0,1e− ∆Vc
c

)︄ (4.70)

mi(arrival) = mu(arrival) + mp(arrival) + ms(arrival) (4.71)

ms(arrival) = 0,1mp(arrival) (4.72)

mp(arrival) = mi(arrival) − mu(arrival)
1,1 (4.73)
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4.6 – Algorithm Implementation

4.6 Algorithm Implementation
For the optimization process, reference is made to the MATLAB toolbox called
Global Optimization Toolbox, which contains the solver ga for the use of the genetic
algorithm. It was decided to minimize the total mass as it guarantees a more
effective solution than the Delta-V minimization. By optimizing the initial mass of
arrival, in fact, the algorithm allows to save more on capture costs, in which the
masses are highest.
The variables on which the algorithm acts to minimize the total mass are:

• Argument of Periapsis of the parking orbit ω;

• Right Ascension of the Ascending Node Ω;

• Injection Capture ρc;

• Injection Escape ρe.

The options of optimoptions1 function used for this thesis are:

• SelectionFcn: Selection Tournament;

• EliteCount: 5;

• CrossoverFraction: 0.2;

• InitialPopulationRange: [0; 2π].

• MigrationDirection: both.

1for the meaning of the various options described, see the section 2.8
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Chapter 5

Results

In this Chapter have been exposed the results of the analyzes carried out with the
developed MATLAB code considering different case studies. The Chapter begins
with a section on the presentation of input data; after this brief introduction, the
results of the analyzes have been presented together with the comparison between
different mission configuration, in order to estimate the best concept in terms of
initial mass. In the final sections have been highlighted the effects of a variation of
semi-major axis and return payload mass on the mission performances.
Before the analyzes, the MATLAB code has been validated comparing obtained
results with that of the paper ’Optimum Parking Orbit Orientation for a Three-
Dimensional Capture-Escape Mission’ [22].1

1V.Appendix A
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Results

5.1 Input Data
Many variables have been taken in consideration for the optimization problem,
considering also space vehicle mass. An eccentric 1-sol parking orbit2 has been used
for all the analyzes, with a semi-major axis equal to 20,448 km, an eccentricity of
0.8 and an inclination of 40 degrees.
Some parameters still remain to be defined:

• Payload mass of return maneuver, mu return, has been set to 200Kg;

• Payload mass of ascent maneuver, mu ascent, considering a mass structure
margin, is 50Kg;

• Landed Mass, mu descent, is composed by the initial mass of the ascent phase,
mi ascent plus the mass that will remain on the planet (rover, structures, MAV
launcher ecc . . . ) that has been estimated to be about 900Kg;

• Payload mass upon arrival at Mars mu arrival calculated as sum of the initial
mass of landing maneuver and initial mass of return maneuver;

• Specific Impulse Isp for capture and escape maneuvers has been set to 450
seconds, assuming to use LOX/LH2 propellant;

• Specific Impulse Isp for MAV ascent maneuver is 300 seconds.

Parking Orbit parameters Masses input
semi-major axis a [Km] 20448 mu return [Kg] 200

eccentricity e 0.8 mu ascent [Kg] 50
inclination i [deg] 40 mu descent [Kg] 900+mi ascent

mu arrival [Kg] mi descent+mi return

Table 5.1: Input Data

Regarding the capture and escape dates, has been decided to study a possible
2041 Mars Sample Return mission with the data taken from the paper "Optimizing
Parking Orbits for Roundtrip Mars Missions" [23] and listed in Table5.2.In partic-
ular, referring to the MSR mission architecture in Section 1.3, ’Sample Retrieval
Lander’ and ’Earth Return Orbiter’ missions have been chosen for the analyzes of
this master thesis.

2Sol is used to denote the length of the Martian solar day, that lasts about 24 h, 39 min, 45
sec, for a total of 88775 seconds.
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5.1 – Input Data

These two missions have been studied through the MATLAB code in different
configurations:

• Single Launch: SRL and ERO are treated as a single spacecraft;

• Multiple Launch: SRL and ERO are two distinct entities and they perform two
different missions with different parking orbit orientation and launch dates. To
understand how to deal with this study, it is necessary to analyze the problem
starting from the simplest case. All these steps are detailed in the following
sections.

Mars Arrival Mars Departure
27/07/2042 31/07/2043

stay time: 368,7 days
V∞c [Km/sec] 2,92 V∞e [Km/sec] 2,471

αc [deg] 113,8 αe [deg] -53,3
δc [deg] -1,7 δe [deg] 5,3

Table 5.2: Input Dates for 2041 Mission
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Results

5.2 Single-Launch Configuration
To perform this analysis genetic algorithm optimize four different parameters to
minimize the initial mass:

• ω : Argument of Periapsis of the parking orbit;

• Ω : Right Ascension on the Ascending Node of the parking orbit;

• ρc : capture injection angle;

• ρe : escape injection angle.

Table 5.3 contains the results of the optimization. It contains the subdivision of
masses for each maneuver (initial mass, payload mass, propellant consumption and
structures). In this way it is simple to verify that the accounts have been made
correctly.
For example, it is known that mu descent has to be 900 + mi ascent: from the
output data is easily verifiable that 900+636 is actually equal to 1536.
From the results it is clear that between the capture and escape, the latter is much
higher in value. This happens because the algorithm, optimizing the initial mass,
tends to decrease the capture cost, as it is the one that involves the largest masses.
Looking at the Figure 5.1, it is also possible to evaluate that the algorithm converges
quite quickly, in fact the maximum number of iterations has been set at 400 and
the convergence occurs before 100 iterations.

Maneuver mi mu mp ms ∆V
[Kg] [Kg] [Kg] [Kg] [Km/s]

Earth-Mars 3777,5 2870,5 824,587 82,4587 1,0872
Descent 2490,6 1536 867,838 86,783 1,2608
Ascent 635,968 50 532,697 53,269 5,3498

Mars-Earth 379,8966 200 163,542 16,3542 2,4852
Total Propellant Mass =2388,66 Kg ∆Vcapt+esc=3,5724 Km/s
Optimized Total Mass =3777,5 Kg ∆Vtot=10,183 Km/s

Table 5.3: Output data: Single Launch Optimization
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5.2 – Single-Launch Configuration

Figure 5.1: Fitness Value - Generation Plot for Single Launch

Figure 5.2: 3D Plot for Single Launch
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Results

Figure 5.3: Zoom - 3D Plot for Single Launch, I-J view
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5.2 – Single-Launch Configuration

Figure 5.4: Zoom - 3D Plot for Single Launch, Capture and Escape Maneuvers
Detail
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5.3 Multi-Launch Configuration
In this Section are detailed the analysis that have been studied for this thesis work.
They are presented from the simpliest to the most complex, and they are:

• Same Parking Orbit Mission: two spacecraft launched in the same time and
in the same parking orbit;

• Different Parking Orbit Mission: two spacecraft launched in the same time
but with different optimized parameters;

• Different Dates Mission: two spacecraft launched in different launch windows
and with different optimized parameters.

5.3.1 Same Parking Orbits
As the first case for the double launch mission, the configuration chosen provides for
a subdivision of the masses: on the one hand, the Lander will have to touchdown
on Martian soil and, through the Mars Ascent Vehicle, will bring the samples back
to the parking orbit at the end of his mission, and on the other hand there is the
Orbiter which will remain on the parking orbit, providing communications with the
Earth, and returning the samples received from the MAV in Earth orbit.
The parameters to be optimized remain the same as in the single launch case. By
releasing the two masses in this way, an extra relationship is needed to solve the
problem, which is the passage of mass that occurs when the samples are moved
from the lander to the orbiter for return. So it can be written that the arrival mass
of the orbiter at the beginning of return manuver is the same as the arrival on Mars
orbit plus the mass of the Orbital Sample (OS) delivered by the MAV. Thus, can
be written:

mi returnorbiter = mu arrivalorbiter + muascentlander (5.1)

Looking at the data obtained in the Table 5.4, it can be seen that the capture ∆V s
of the two spacecraft are identical as both are optimized through the same param-
eters and therefore they have the same capture hyperbola and the same injection
point. For this reason, in the plot of Figure 5.6 there is only one capture trajectory.
So, only with a subdivision of the masses there is a small saving in terms of mass
compared to the previous case of about 70 Kg. The total Delta-V cost is increased
compared to the single launch case, but the cause is the presence of an extra maneu-
ver, due to the mass splitting. Also in this case in the Figure 5.5 the convergence
speed of the genetic algorithm can be positively assessed.
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5.3 – Multi-Launch Configuration

Maneuver mi mu mp ms ∆V
[Kg] [Kg] [Kg] [Kg] [Km/s]

Lander
Earth-Mars 3277,6 2490,6 715,545 71,545 1,0871

Descent 2490,6 1536 867,8382 86,7838 1,2608
Ascent 635,9674 50 532,6976 53,2698 5,3498

Orbiter
Earth-Mars 430,6546 327,2478 94,006 9,4006 1,0871
Mars-Earth 377,2478 200 161,134 16,1134 2,4591
Total Propellant Mass =2371,13 Kg ∆Vcapt+esc=4,633 Km/s
Optimized Total Mass =3708,255 Kg ∆Vtot=11,244 Km/s

Table 5.4: Output data: Multiple Launch, Same Parking Orbits Optimization

Figure 5.5: Fitness Value - Generation Plot for Multi Launch - Same Orbits
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Figure 5.6: 3D Plot for Multi Launch - Same Orbits

Figure 5.7: Zoom - 3D Plot for Multi Launch - Same Orbits, I-J View
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5.3 – Multi-Launch Configuration

5.3.2 Different Parking Orbits
At this point it is necessary to make the algorithm to optimize different parameters
for the two missions. In total there will be seven parameters:

• ωorbiter : Argument of Periapsis of the Orbiter parking orbit;

• Ωorbiter : Right Ascension on the Ascending Node of the Orbiter parking orbit;

• ρc orbiter : capture injection angle of the Orbiter;

• ρe orbiter : escape injection angle of the Orbiter.

• ωlander : Argument of Periapsis of the Lander parking orbit;

• Ωlander : Right Ascension on the Ascending Node of the Lander parking orbit;

• ρc lander : capture injection angle of the Lander;

The results in Table 5.5 show that with two orbits the genetic algorithm can min-
imize both capture and escape ∆V s. Being lander more massive than the orbiter,
the priority is to minimize its ∆Vc value, which in fact is equal to that obtained in
the case with same orbits. In that case ga had to decrease both the capture ∆Vc,
accepting a higher ∆Ve.By analyzing the masses obtained with the algorithm it can
be concluded that, compared to the case with the same orbit, there is a saving on
the total mass of about 80 Kg. This saving is completely due to the orbiter, in
fact the initial mass of the lander is identical to the case with same parking orbits.
This happens because, as just explained, the algorithm, being able to choose two
different orbits, is able to minimize the costs, and therefore the mass of the orbiter.
Comparing, instead, this configuration with the single launch mission, there is an
effective saving in mass, with a saving of about 150 Kg.
∆V has been decreased by about 0.5 Km/s compared to the case in which the two
parking orbits had the same orientation.
Also in this case the optimization is fast in convergence, which occurs just after
100 iterations (Figure 5.8). As for the 3D visualization of the capture and escape
phases (from Figure 5.9 to 5.12), it is necessary to have two plots, one relating to
the orbiter and one relating to the lander, in which only the capture maneuver is
rapresented. Since the Lander has only the capture phase, the algorithm can choose
the best insertion point for the maneuver, which is certainly in the periapsis, where
the stopover orbit velocity is higher and therefore the speed variation between the
capture trajectory and the parking orbit is minimal and the velocities will have
minimal misalignment.
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Maneuver mi mu mp ms ∆V
[Kg] [Kg] [Kg] [Kg] [Km/s]

Lander
Earth-Mars 3277,5 2490,6 715,3747 71,5375 1,0871

Descent 2490,6 1536 867,8382 86,7838 1,2608
Ascent 635,967 50 532,6976 53,2698 5,3498

Orbiter
Earth-Mars 350,2986 198,4429 138,05 13,8 2,2134
Mars-Earth 248,443 200 44,04 4,404 0,8628

Total Propellant Mass =2298 Kg ∆Vcapt+esc=4,163 Km/s
Optimized Total Mass =3627,79 Kg ∆Vtot=10,774 Km/s

Table 5.5: Output data: Multiple Launch, Different Parking Orbit Optimization

Figure 5.8: Fitness Value - Generation Plot for Multi launch - Different Orbits

66



5.3 – Multi-Launch Configuration

Figure 5.9: 3D Plot for Multi Launch - Different Orbits , Orbiter

Figure 5.10: Zoom - 3D Plot for Multi Launch - Different Orbits , Orbiter, I-J View
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Figure 5.11: 3D Plot for Multi Launch - Different Orbits , Lander

Figure 5.12: Zoom - 3D Plot for Multi Launch - Different Orbits , Lander, I-J View
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5.3 – Multi-Launch Configuration

5.3.3 Different Launch Dates
To simulate a possible changing in the mission, have been evaluated different launch
dates. The first launch window taken into consideration is that of 2039 [24] ,
which sees the departure of the Lander. Subsequently, in 2041, the Orbiter will be
launched from Earth. The lander will have time until 2043 to carry out its mission
to collect and deliver the samples to the ERO [23].

Orbiter Lander
Mars Arrival Mars Departure Mars Arrival
27/07/2042 31/07/2043 09/07/2040

stay time: 368,7 days stay time: 1117 days
V∞c [Km/sec] 2,92 V∞e [Km/sec] 2,47 V∞c [Km/sec] 2,7

αc [deg] 113,8 αe [deg] -53,5 αc [deg] 94,4
δc [deg] -1,7 δe [deg] 5,3 δc [deg] 18,7

Table 5.6: Input Dates for the Different Launch Dates Mission

The convergence of the algorithm is very fast also in this case, in fact already after
about 100 iteration the process is completed.
Interpreting the results in Table 5.7 it is clear that the costs of capture and escape of
the orbiter are very low in terms of propellant consumption. For the lander there
is a decrease in the cost of the capture maneuver, compared with the previous
configuration, mainly due to the morevfavorable conditions of the capture in 2039,
in particular for V∞c. Then, the Total Delta-V decrease because there are more
advantageous conditions for the return (smaller V∞e). The total mass is decreased
by about 90 Kg compared to the case in which the spacecraft are launched in the
same launch window.
Finally, comparing this mission and the single launch one, it can be seen that
actually the mass savings goes up to about 242 Kg.
This is mainly due to conditions due to the data of the two launch windows, that,
in this case, made the advantages of the two-launch configuration even greater, as
C3 for the lander arrival in 2040 is smaller compared to the 2042 value.
To better compare the missions it is more correct to refer to the case with distinct
orbits because in that way we have the same conditions of departure and arrival
and therefore it makes sense to make a comparison. The case presented here, with
different launch windows, can be more or less advantageous depending on the dates
chosen for the two launches; thus, it is a valid method to compare the effects of
different launch windows for multiple launch missions.
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Maneuver mi mu mp ms ∆V
[Kg] [Kg] [Kg] [Kg] [Km/s]

Lander
Earth-Mars 3182,8 2490,6 629,273 62,927 0,9726

Descent 2490,6 1536 867,8382 86,7838 1,2608
Ascent 635,9674 50 532,6976 53,2698 5,3498

Orbiter
Earth-Mars 350,45 198,48 138,15 13,815 2,241
Mars-Earth 248,5 200 44 4,4 0,8607

Total Propellant Mass =2212 Kg ∆Vcapt+esc=4,074 Km/s
Optimized Total Mass =3533,24 Kg ∆Vtot=10,684 Km/s

Table 5.7: Output data: Multiple Launch, Different Launch Dates Mission Opti-
mization

Figure 5.13: Fitness Value - Generation Plot for Multi Launch - Different Launch
Mission
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5.3 – Multi-Launch Configuration

Figure 5.14: 3D Plot for Multi Launch - Different Launch Dates Mission, Orbiter

Figure 5.15: Zoom - 3D Plot for Multi Launch - Different Launch Dates Mission,
Orbiter, I-J View
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Figure 5.16: Zoom - 3D Plot for Multi Launch - Different Launch Dates Mission,
Orbiter, Capture and Escape Detail

Figure 5.17: 3D Plot for Multi Launch - Different Launch Dates Mission, Lander
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5.3 – Multi-Launch Configuration

Figure 5.18: Zoom - 3D Plot for Multi Launch - Different Launch Dates Mission,
Lander, I-J View

Figure 5.19: Zoom - 3D Plot for Multi Launch - Different Dates Mission, Lander,
Capture Maneuver Detail
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5.4 Optimization of Eccentricity
Another variable that can be optimized by the ga is the eccentricity or the distance
of the periapsis. This two quantities are linked by the following relationship:

e = 1 − rp

a
(5.2)

Thus, leaving the semi-major axis unaltered, a minimum limit of rp is fixed, so that
the minimum altitude is 100 Km from the Martian surface. At this point, all that
remains is to add two more parameters to be optimized by the genetic algorithm
for the mission with two spacecraft:

• eorbiter: orbiter parking orbit Eccentricity;

• elander: lander parking orbit Eccentricity.

For the single launch configuration, instead, only one parameter have been added.
In the case of a single launch, therefore, there will be a total of 5 parameters, while
in that of the with different mission dates there will be 9 parameters. It is very
important to remember to change the maximum limit (LB) of the algorithm so that
it makes eccentricity to vary between 0 and emax.
In both analyzes the results are obtained for the maximum eccentricity value, that
is e = 0.8293, which corresponds to the minimum pariapsis distance. The algorithm
tries to maximize eccentricity because, with fixed semi-major axis value, rp lowers
and insertion into the parking orbit tends to cost less at low radii. If instead of
optimizing the initial mass, ga had to minimize ∆Vtotal, thus, it would have tried
to reduce the escape cost, increasing the capture one.
Up to now the costs of ascent and descent maneuvers had remained the same be-
cause they were strictly dependent on the geometry of the orbit; in this case can
be seen that the descent maneuver will have a small decrease as well as the ascent
will cost even less, as generally happens for low rp.
The algorithm converges relatively quickly also in this case, even if it can be seen
that the number of iterations necessary for the optimization has a small increasing,
reaching up to about 200 in the case of the two launches.
The considerations made previously regarding a comparison between the two mis-
sions are also valid in this case, with the difference that, by optimizing the ec-
centricity, the mass saving obtained with the multiple launch with different dates
becomes 265 Kg. One consideration can be made about the Delta-V: until now
costs of the multi launch has been always greater than the single launch because
in the first case there are two capture costs. However, with the optimizing of the
eccentricity seen in this Section, there is a decrease of the Total ∆V , that becomes
similar to that of the single launch configuration.
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5.4 – Optimization of Eccentricity

Maneuver mi mu mp ms ∆V
[Kg] [Kg] [Kg] [Kg] [Km/s]

Earth-Mars 3561,09 2758,1 730 73 1,0127
Descent 2380,4 1468,1 829,362 82,936 1,2606
Ascent 568,1236 50 471,0214 47,102 5,19

Mars-Earth 377,66 200 161,51 16,151 2,4634
Total Propellant Mass =2191,89 Kg ∆Vcapt+esc=3,476 Km/s
Optimized Total Mass =3561,09 Kg ∆Vtot=9,936 Km/s

Table 5.8: Output data: Single Launch Configuration with Optimized Eccentricity

Maneuver mi mu mp ms ∆V
[Kg] [Kg] [Kg] [Kg] [Km/s]

Lander
Earth-Mars 2989,8 2380,4 554 55,398 0,9046

Descent 2380,4 1468,1 829,3625 82,936 1,2606
Ascent 568,1236 50 471,0214 47,102 5,19

Orbiter
Earth-Mars 305,855 203,9558 95,765 9,576 1,658
Mars-Earth 250,513 200 45,92 4,592 0,894
Total Propellant Mass =1996,055 Kg ∆Vcapt+esc=3,457 Km/s
Optimized Total Mass =3295,56 Kg ∆Vtot=9,916 Km/s

Table 5.9: Output data: Multiple Launch, Different Dates Mission with Optimized
Eccentricity

Figure 5.20: Fitness Value - Generation Plot for Single Launch - Optimized Eccen-
tricity
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Figure 5.21: Fitness Value - Generation Plot for Multiple Launch, Different Dates
- Optimized Eccentricity

Figure 5.22: 3D Plot for Single Launch - Optimized Eccentricity
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5.4 – Optimization of Eccentricity

Figure 5.23: Zoom - 3D Plot for Single Launch - Optimized Eccentricity, I-J View

Figure 5.24: 3D Plot for Multi Launch, Different Dates Mission, Orbiter - Opti-
mized Eccentricity
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Figure 5.25: Zoom - 3D Plot for Multi Launch, Different Dates Mission, Orbiter -
Optimized Eccentricity, I-J View

Figure 5.26: 3D Plot for Multi Launch, Different Dates Mission, Lander - Optimized
Eccentricity
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5.4 – Optimization of Eccentricity

Figure 5.27: Zoom - 3D Plot for Multi Launch, Different Dates Mission, Lander -
Optimized Eccentricity, I-J View
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5.5 Semi-Major Axis Variation
It might be interesting to study the effects of semi-major axis variation on total
mass and ∆V .
Semi-major axis is connected to the eccentricity and radius of the periapsis via the
equation:

a = rp

1 − e
(5.3)

For the study has been decided to fix the periapsis distance equal to the input data
rp = 4089,6Km. Calculation have been made with 3 different values of a:

• 1 sol parking orbit (τ = 88775sec) ⇒ a = 20448Km;

• 0.75 sol parking orbit (τ = 66581,25sec) ⇒ a = 16880Km;

• 0.5 sol parking orbit (τ = 44387,5sec) ⇒ a = 12881Km.

∆Vtotal is the sum of all maneuvers (capture, descent, ascent and capture) and the
results in Table 5.10 show that this value increases with the rising of semi-major
axis. Looking at the individual contributions, it can be seen that the algorithm,
by optimizing the initial mass mtotal, tends to decrease the cost of capture and
increase the escape one, since the the capture maneuver is the one that limits more
the initial mass.
Regarding the ascent phase, the spacecraft is launched from the surface of Mars.
The target is the stopover orbit, whose energy is

ϵ = − µ

2a
(5.4)

As the semi-major axis increases, the energy of the parking orbit tends to become
bigger, and the spacecraft needs a higher ∆V to reach the orbit. Same considera-
tions can be made for the descent maneuver, where however, the starting point is
on the parking orbit and there will be a braking to descend on the Martian surface.

τ a ∆Vc ∆Ve ∆Vascent ∆Vdescent ∆Vtotal mprop mtotal

[sol] [deg] [Km/s] [Km/s] [Km/s] [Km/s] [Km/s] [Kg] [Kg]
0,5 12881 1,2347 1,6217 5,2058 1,1167 9,1789 2134,8 3493,4
0,75 16880 1,1503 2,398 5,2986 1,2095 10,0564 2362,2 3708,8

1 20448 1,0872 2,4852 5,3498 1,2608 10,183 2388,664 3777,5

Table 5.10: Output data: semi-major axis variation
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5.5 – Semi-Major Axis Variation

Figure 5.28: Output data graphic: ∆V - Semi-major axis

Figure 5.29: Output data graphic: mtotal - Semi-major axis
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5.6 Return Payload Mass Variation
A final case study is worth of interest: the possibility of varying the mass of the
payload upon return to Earth. This study has been performed for both the single
launch (Section.5.2) and separate launch with different dates (Section.5.3.3) mis-
sions and the mreturn is established to change between [100 : 1000] Kg. Results are
shown respectively in Tables 5.11 and 5.12.
In the single launch configuration, as expected, the genetic algorithm tends to in-
crease the cost of capture and decrease the cost of escape. In particular, ∆Ve is
reduced faster for lower mass values. The result is a decrease in the total ∆V as the
payload raises. As regards the separate launch mission, the total cost of capture
and escape remains unchanged. This happens because the algorithm optimizes two
different parking orbits. As proof of this, in Figure 5.33 can be observed a fairly
linear growth as regards the mass of the orbiter, while that of the lander is left
unchanged.

mreturn ∆Vc ∆Ve ∆Vtotal mtotal

[Kg] [Km/s] [Km/s] [Km/s] [Kg]
100 1,0871 2,4897 3,568 3525,8
200 1,0872 2,4852 3,5724 3777,5
300 1,0873 2,4846 3,5719 4027,5
400 1,0874 2,4841 3,5715 4277,4
500 1,0875 2,4835 3,571 4527,3
600 1,0877 2,4831 3,5708 4777,1
700 1,0878 2,4826 3,5704 5027
800 1,088 2,4823 3,5703 5276,8
900 1,0881 2,4819 3,57 5526,6
1000 1,0882 2,4816 3,5698 5776,4

Table 5.11: Output data - Return payload mass variation for single launch
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5.6 – Return Payload Mass Variation

mreturn ∆Vtotal mtotal morbiter mlander

[Kg] [Km/s] [Kg] [Kg] [Kg]
100 4,074 3314,81 132 3182,8
200 4,074 3533,2 350,45 3182,8
300 4,074 3752,62 569,82 3182,8
400 4,074 3972 789,19 3182,8
500 4,074 4192 1009,2 3182,8
600 4,074 4410,7 1227,9 3182,8
700 4,074 4640,7 1457,9 3182,8
800 4,074 4861,7 1678,9 3182,8
900 4,074 5068,9 1886,1 3182,8
1000 4,074 5288,1 2105,3 3182,8

Table 5.12: Output data - Return payload mass variation for separate launch

Figure 5.30: Output data graphic for single launch: ∆Vc - return payload mass
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Figure 5.31: Output data graphic for single launch: ∆Ve - return payload mass

Figure 5.32: Output data graphic for single launch: mtotal - return payload mass
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5.6 – Return Payload Mass Variation

Figure 5.33: Output data graphic for separate launch: mtotal - return payload mass
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Chapter 6

Conclusions

The purpose of this Master Thesis was the development of a computational code
able to calculate, using the genetic algorithm, the best orientation of a parking
orbit for a round trip mission to Mars and to evaluate the possible advantages of
a multi-launch mission. The optimization of the parking orbit and of the capture
and escape maneuvers were evaluated through a minimization of the initial mass.
The algorithm generated for this thesis may also be effective for studies on other
planets or to study the influence of perturbations on a certain mission. Thus, it is
a valid tool for carrying out preliminary mission analyzes.
At the beginning of the document, was presented the Sample Return mission led
by NASA and ESA, with the aim of highlighting the various phases of the mission,
the objectives and its importance for the scientific community. The second part
was focused on the genetic algorithm. Its operation and characteristics have been
described, explaining why it is widely used for optimization problems such as the
one treated in this thesis. The laws of orbital mechanics were explained, and, sub-
sequently, was described in detail the analytical method that has been implemented
in the MATLAB code. This algorithm was then applied to four different scenarios,
in which the mission has been performed with a single or double launch.
The single-launch mission is the first to be analyzed and achieved the worst results
in terms of initial mass. For the double launch configuration with same stopover
orbit, mission has been performed by two spacraft, one that has to land on Mars
for the collection of samples (lander) and the other that has perform the escape
from Mars to bring the samples back to Earth (orbiter). Compared to the previous
case, was seen a mass saving of about 70 kg. Complicating the problem, was then
studied the double launch case with two parking orbits with different orientation,
which reported a decrease in the initial mass of about 150 kg compared to the
single launch case. Finally, different launch times were entered for the orbiter and
lander to analyze how the total costs would change. The lander leaves first, with
an arrival on Mars scheduled for 2040, and then, in 2042, the orbiter will arrive and
take the samples bringing them back to our planet. The result obtained by this
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configuration are the best of all the case studies with a saving in mass of 240 Kg
compared with the single launch mission.
Thus the advantages of the multi launch configurations have been verified.
By optimizing the eccentricity value to the genetic algorithm, it has been seen that
the performances in terms of mass and mission cost improve and the advantage of
the two-launch mission becomes greater.
The study focused on the semi-major axis have shown that lower a value has a posi-
tive impact on the total cost of the mission, at fixed periapsis value, as it lowers the
cost of the descent and ascent maneuvers, even if there are some disadvantages due
to the increase in the cost of capture. Finally, the influence of the return payload
variation was evaluated. It was concluded that the multi-launch mission becomes
more advantageous for high return payloads and the total cost of the mission re-
mains costant.
Future implementations could allow more precise analyzes, for example studying
how to target a particular landing site, or how to best provide for communications
coverage. Furthermore, the ascent phase could be studied more carefully, exploring
the possibility of using the hybrid propulsion or a multi-stage configuration of the
MAV.

88



Appendix A

MATLAB code Validation

Referring to Chapter 5 , here are shown the results related to the validation of the
MATLAB code used for the analyzes. The data used for the validation have been
taken from the paper ’Optimum Parking Orbit Orientation for a Three-Dimensional
Capture-Escape Mission’ [22] and are listed in the table A.1. To establish if the

Input Parameters
Stopover Orbit

Semi-major axis a 19.550 Km
eccentricity 0.8
inclination 170 deg

Capture Hyperbola
C3c 20.6 Km2/sec2

right ascension αc 138 deg
declination δc 5.9 deg

Escape Hyperbola
C3e 57.6 Km2/sec2

right ascension αe 31.6 deg
declination δc 8.9 deg

Table A.1: Paper Input Data Parameters

code generated for the thesis is valid, the requirement is that the optimization by
genetic algorithm minimizes the Delta-V, and this value has to be very close to the
paper one. MATLAB ga settings is:
[optimal parameters, DELTA_V_MIN, val,output,population,scores]=
ga(@mission1_optim_dv,4,[],[],[],[],LB,UB,[],options)
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MATLAB code Validation

Figure A.1: Fitness Value - Generation plot for paper data

The results of this analysis are relative to the ’Unperturbed Mars Mission’ data
from the paper (Table1-b of the paper).
In Table A.2 is shown the comparison between the results of the paper and the
MATLAB code. As can be seen from the data, the ∆V is almost the same, thus
the code validity is demonstrated. A comment regarding the values of the other
four parameters: their values are precisely those that are varied by the algorithm
to obtain the optimization. Then ga starts from random values and at the end of
the convergence, it is clear that these parameters tend towards the target ones.

Paper Optimum Conditions
Delta-V ∆V 7.309 Km/sec

Argument of periapsis ω 349.75 deg
Right Ascension of the ascending node Ω 156.12 deg

Capture position angle ρc 277.29 deg
Escape position angle ρe 45.4 deg

MATLAB Optimum Conditions
Delta-V ∆V 7.30336 Km/sec

Argument of periapsis ω 357.89 deg
Right Ascension of the ascending node Ω 166.412 deg

Capture position angle ρc 286.53 deg
Escape position angle ρe 52.99 deg

Table A.2: Output Data - Paper Comparison
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