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Abstract

The configuration space of rigid body spacecraft is the Special Euclidean group SE(3)
defined as a Lie group. The formalism of rigid body motion using SE(3) and its tangent
bundle TSE(3) is developed in the field of Geometric Mechanics, which represents a
modern description of the classic mechanics from the perspective of differential geom-
etry. The use of Lie groups in the space field is of growing interest in the scientific com-
munity. Conventionally, the orbital and attitude dynamics of the spacecraft are analyzed
separately which results in a misleading simplification of the reality since such analyses
do not consider the orbit-attitude coupling. That coupling especially exists when the
spacecraft operates in highly nonlinear environments, such as in the nonlinear gravity
field of irregular bodies such as asteroids. The main advantage of using SE(3) consists
in taking into account the nonlinear coupling between their translational and rotational
dynamics, meanwhile preserving the geometrical properties of the system.

This work has the objective of developing novel navigation and control algorithms using
the Lie groups formalism, with application to spacecraft motion around small irregular
bodies. Although the control problem on TSE(3) for space applications has been exten-
sively studied, the navigation problem on TSE(3) still requires further research. In fact,
in literature, the design of navigation systems on Lie groups is especially addressed to
robotic application.

First, the open-loop dynamics of the spacecraft orbiting as small irregular body are in-
vestigated using a variational integrator. Then, two Navigation and Control systems have
been designed and tested through a simulation environment built in Matlab/Simulink
with a Model-Based approach. Stochastic state filters have been designed on Lie groups
based on the Unscented Kalman Filter (UKF) and a Super-Twisting Sliding Mode Ob-
server. A performance analysis is conducted to test their behavior in the open loop sys-
tem. TheTSE(3) formalism led to the design of two nonlinear control algorithms repre-
sented by a single compact law accounting for the translational and rotational dynam-
ics simultaneously. The first one based on the Morse-Lyapunov and Backstepping ap-
proaches, the second based on the robust Sliding Mode Control. They have been tested
in some test cases, which emphasized the wastefulness of control effort when some
source of noise is introduced in the closed-loop system. This latter situation may repre-
sent the closed-loop system without a state filter or state observer. Finally, using the Mat-
lab/Simulink simulation environment, different combinations of navigation and control
systems have been extensively tested and compared in different study cases. Those com-
binations have been compared in terms of some performance indices such as the esti-
mation accuracy, the tracking error, the control effort, and the propellant mass required
for a simultaneous orbit-attitude tracking. The simulations shows the efficacy of the de-
sign on TSE(3) in terms of required control effort and achieved tracking accuracy.
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Sommario

In letteratura esistono diversi metodi per rappresentare un corpo rigido; in questa tesi,
si è considerato lo Special Euclidean group SE(3) che per definizione è un Lie group.
La dinamica del corpo rigido formalizzata in SE(3) ed il suo spazio tangente TSE(3) è
sviluppata nel campo della geometria meccanica, la quale rappresenta una descrizione
moderna della meccanica classica utilizzando il formalismo della geometria differen-
ziale. L’utilizzo dei Lie group nel settore spaziale sta guadagnando sempre più atten-
zione, dato che la dinamica orbitale e la dinamica di assetto sono solitamente trattate
separatamente. Non considerare l’accoppiamento tra gradi di libertà transazionali e ro-
tazionali porta ad una notevole semplificazione della realtà, specialmente in casi in cui
il satellite opera in campi particolarmente non lineari, come ad esempio, il campo grav-
itazionale generato da un piccolo ed irregolare corpo centrale. La scrittura del problema
in SE(3) consente di tenere in considerazione l’accoppiamento non lineare orbitale e di
assetto, allo stesso tempo preservando le proprietà geometriche del sistema.

Questo lavoro ha l’obiettivo di sviluppare nuovi algoritmi di navigazione e controllo,
utilizzando il formalismo dei Lie group, con applicazione alla dinamica di un veicolo
spaziale intorno ad un corpo centrale irregolare. Nonostante il problema del controllo in
TSE(3) per applicazioni spaziali sia stato ampiamente studiato, si ritrovano pochi studi
sul problema della navigazione in TSE(3), pur essendo ampiamente trattato nel campo
della robotica.

Prima di procedere allo studio degli algoritmi, viene analizzata la dinamica open-loop
dello spacecraft in orbita intorno ad un corpo centrale irregolare, utilizzando un integra-
tore variazionale. Due sistemi di navigazione e due sistemi di controllo sono progettati
e testati attraverso un ambiente di simulazione in Matlab/Simulink. Uno filtro di stato
stocastico è stato sviluppato in TSE(3) partendo dalla teoria del Unscented Kalman Fil-
ter (UKF), inoltre è stato anche sviluppato un osservatore basato sulla teoria del Super-
Twisting Sliding Mode. Le loro performance sono state testate in open-loop. Successi-
vamente, due sistemi di controllo non lineare sono stati sviluppati in TSE(3), consen-
tendo il design di una singola e compatta legge di controllo capace di considerare sia
la dinamica traslazionale che rotazionale. Il primo algoritmo di controllo proposto è
basato sulla teoria di Morse-Lyapunov e sul Backstepping, il secondo invece è basato
sul controllo robusto a struttura variabile, di tipo Sliding Mode Control. Essi sono stati
testati considerando diversi scenari, che hanno messo in evidenza la difficoltà nel con-
trollare accuratamente il veicolo spaziale quando del rumore viene introdotto nel sis-
tema closed-loop. Infine, le diverse combinazioni ottenute dai sistemi di navigazione e
controllo sviluppati sono state testate paragonate per diversi scenari. Tali combinazioni
sono state confrontate sulla base di alcuni parametri di performance, come l’accuratezza
della stima dello stato, l’errore di tracking commesso, l’input richiesto dal sistema di
controllo o la massa di propellente richiesta per il tracking simultaneo di orbita e as-
setto. I risultati ottenuti hanno mostrato l’efficacia del design in TSE(3), in particolare in
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termini dell’accuratezza raggiunta e della richiesta di control effort.
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Chapter 1

Introduction

1.1 OBJECTIVES AND MOTIVATIONS
The objective of this work is the design of novel navigation and control algorithms using
the Lie groups formalism, with application to spacecraft motion around small irregular
bodies. The use of SE(3) and its tangent bundle TSE(3) in the space field is of grow-
ing interest in the scientific community. It allows to take into account the nonlinear
coupling between the orbit-attitude dynamics, meanwhile preserving the geometrical
properties of the system. This frameworks permits the execution of coupled transla-
tional and rotational maneuvers in three-dimensional Euclidean space while tracking a
desired trajectory. The design of compact and efficient control algorithms on SE(3) and
its tangent bundle TSE(3) has been extensively investigated and showed for spacecraft
applications, for autonomous spacecraft rendezvous and docking [1], asteroid opera-
tions [2] or spacecraft formation flying [3]. On the other hand, the navigation problem
on TSE(3) still requires further research. The design of navigation algorithms is a neces-
sary step for any real application due to the intrinsic stochasticity of measurements and
real instrumentation. The development of navigation filter and observers is still prema-
ture on TSE(3) for spacecraft application. In fact, the scientific community addresses
the design of navigation systems on Lie groups especially to robotic applications. The
Extended Kalman Filter (EKF) on SE(3) [4, 5], discrete-EKF (D-EKF) on SE(3) [6, 7], and
Unscented Kalman Filter (UKF) on SE(3) [8, 9, 10] are some examples. According to the
literature, these estimators are more accurate than their counterparts designed in vector
Euclidean space, although formulation development of the filter design on SE(3) is more
complex than that in vector Euclidean space. The aforementioned works exploit the geo-
metrical mechanics frameworks by using the associated maps and operators in the state
update step, where the measurements are defined in the Lie algebra but the filter is de-
signed on the Lie group SE(3). The motivations that led this research can be found in
the promising results that can be achieved with a complete design on on SE(3) and its
tangent bundle TSE(3), highlighted by the scientific community. This type of design is
particular suited for spacecraft application where the problem consists estimating the
spacecraft state meanwhile controlling its orbit and attitude.

The geometric mechanics is a branch of mathematics which represents a modern de-
scription of the classic mechanics from the perspective of differential geometry. It ap-
plies principally to systems whose configuration space is a Lie group, or a group of dif-
feomorphisms [11]. The geometric mechanics, as well as the tools developed in this
framework, has the characteristic of preserving the geometric properties of the physi-
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2 1. INTRODUCTION

cal system. The configuration space of a rigid body spacecraft is the Special Euclidean
group SE(3), defined as a Lie group. In a three-dimensional space, the pose, or the con-
figuration of a rigid body can be described by the location of its center of mass and its
orientation with respect to a reference frame. The first one is adequately represented
in Euclidean space. The attitude, instead, evolves in a nonlinear space provided with
a certain geometry [12]. In particular, the attitude of a rigid body can be represented
mathematically by a 3×3 orthonormal matrix with positive determinant. The set of these
matrices is a manifold as it is locally diffeomorphic to a Euclidean space, and it also has a
group structure with the group action of matrix multiplication. A smooth manifold with
a group structure is referred to as a Lie group [13]. The Lie group of 3×3 orthonormal
matrices with positive determinant is referred to as the Special Orthogonal group SO(3).
The configuration manifold for the combined translational and rotational motion of a
rigid body is the special Euclidean group SE(3), which is the semi-direct product of R3

and SO(3), i.e. SE(3)=SO(3)nR3 [14].

Spacecraft can be adequately approximated as rigid bodies defining the spacecraft mo-
tion as a six degrees of freedom body with translational (orbital) and rotational (attitude)
motions, while this assumption excludes the possibility of taking flexible body dynam-
ics into account. Different representations can be found in the literature for dynamics.
Particularly, the spacecraft translational motion can be formulated and propagated us-
ing several type of formulation such as Cowell, Encke, Clohessy-Wilthsire, equinoctial
elements or unified state model [15, 16, 17]. Since the spacecraft trajectory is mainly
influenced by the gravitational attraction of other celestial bodies, the aforementioned
methods take advantage of the orbital mechanics to improve the stability and accuracy
of the dynamics propagation.

On the other side, the spacecraft rotational dynamics can be modeled using an atti-
tude parameterization set, which is often defined by three or four parameters. Attitude
parameterization sets can be minimal three-parameter sets defined in 3-dimensional
Euclidean space R3 (principal rotation, Euler angles, classical Rodrigues parameters,
and modified Rodrigues parameters) or redundant four-parameter set defined on the
3-sphere S3 (quaternions). Kinematics modeling using minimal attitude parameteriza-
tion sets can result in singularity. Quaternions, instead, are non-singular. However, since
quaternions are not unique, they cannot generally result in a unique solution. This non-
uniqueness can result in an undesired phenomenon of unwinding for large rotations,
such as rigid body initial tumbling, although this can be avoided by using discontinuous
feedback or nonlinear control laws. Alternatively, rigid body attitude can be represented
using the direction cosine matrix (rotation matrix) defined on the special orthogonal
group SO(3). Formalism of attitude using rotation matrices helps avoid the problems of
singularity and non-uniqueness [18, 19, 20, 21]. The geometric mechanics formulation
is based on the rotation matrix R ∈ SO(3). Fig. 1.1 summarizes the disadvantages of the
commonly used attitude parametrization sets.

Gennaro Mangiacapra Navigation and Control Algorithm Design on TSE(3)
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Figure 1.1: Disadvantages of attitude parameterization sets and rotation matrix: principal rotation (Θ), clas-
sical Rodriguez parameters (C RP ), modified Rodriquez parameters with switching (MRP ), Euler angles (E A),
quaternions (q), and rotation matrix (R) [22].

Conventionally, the analysis of the orbital and attitude dynamics of the spacecraft are
conducted separately, resulting in separate control laws for attitude and translational
motion. This decoupling is commonly assumed in the design of control algorithms for
translational and attitude dynamics. However, as clearly discussed in several references
such as [23, 24, 25], the coupling between the translational and rotational dynamics of
the spacecraft should be considered in spacecraft dynamics analysis and control design.
The simultaneous modeling of spacecraft orbital/attitude dynamics using special Eu-
clidean group SE(3) is advantageous since it considers the coupling between transla-
tional and rotational dynamics. Such coupling can be due to gravity gradient forces and
torques in highly nonlinear gravity fields, attitude-dependent forces and torques due
to drag and solar radiation pressure, spacecraft rendezvous, proximity operations and
docking, or spacecraft hovering over small bodies. This coupling has been considered in
dynamic analysis and control design of rigid body or spacecraft, as in [26, 21, 27, 28, 29]
and results in accurate, viable results for the rigid body and rigid-body spacecraft mo-
tion.

The design of navigation and control systems is part of the the more general guidance,
navigation and control (GNC) system. The definition of GNC system used in this work is
represented by the simple schematic in Fig. 1.2. In real-world applications, the consider-
ation of stochastic processes is a crucial part of any GNC system. The navigation system
includes the sensors and the filter and it enables to provide a state estimation based on
the sensor measurements. The estimation process refers to the computation of an ap-
proximation of the (state) variables such that their values are usable for some other pur-
pose. Even if the inputs of the algorithm are incomplete, uncertain or corrupted [30]. The
on-board instruments, such as the inertial measurement unit, gyroscopes, accelerome-
ters, and star trackers, have limited accuracy and are usually characterized by a degree of
uncertainty. These uncertainties can arise not only due to the noise in the instruments,
but also from electrical components, communication systems, or external disturbances,
and result in inaccuracies and loss of precision in the measurements. In addition, some
states might not be observable, as is the case with gyroscope biases. For the reasons
mentioned above, there is a need for using state filters, such as the Kalman filters, that
are capable of handling stochastic sources and can fuse the measurements from differ-
ent sources optimally to estimate unobservable states [31, 32, 33].

Navigation and Control Algorithm Design on TSE(3) Gennaro Mangiacapra
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Figure 1.2: Simplified schematic of a GNC system.

The guidance system provides the desired state at each point in time, which will then be
compared with the estimated state, provided by the navigation system, enabling the con-
troller to generate the required commands [34]. The desired state follows from the phys-
ical motion constraints, the on-board models and the actual vehicles state. Typically the
generation of the nominal trajectory is done on ground by means of optimization tech-
niques. The trajectory is the result of a process that minimizes or maximizes some mea-
sures of performance (maximize payload, minimize fuel consumption, minimize cost,
etc.) within prescribed constraint boundaries (maximum heat load, bending moment,
maximum acceleration, constraints on flight path, etc.) [35]. Then a database is up-
loaded on board, covering a full range of possibilities which take care of inaccuracies of
initial conditions, vehicle parameter uncertainties and environment disturbances. Ad-
vanced guidance systems are equipped with a trajectory generator which re-optimize
the reference variables in case deviations of the actual vehicles states becomes too large
with respect the nominal ones. Typically the output of the guidance system are smooth,
time-varying reference signals.

The control system is composed of the control algorithm and the actuators. It receives
the desired states from the guidance system and the estimated states from the navi-
gation system. It computes the difference between the commanded (by the guidance
logic) and measured (by the sensors) state, which is known as the state error for control,
or control error. Then a control algorithm determines determines the actuators com-
mands based on some control concept, e.g., a combination of P(roportional), I(ntegral)
and D(erivative) manipulation of the control error, H∞, Nonlinear Dynamics Inversion
(NDI), Sliding Mode control (SMC), Model-Based Predictive control (MPC), Backstep-
ping control or another concept. The Actuators are the actual hardware elements that
convert the control commands to forces and moments. There are different types of ac-
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tuators: reaction wheels, control moment gyroscopes, thrusters, magnetic torquer or
control surfaces [36].

1.2 THESIS OUTLINE

In this work two navigation systems are designed. The first one is a stochastic state filter
designed through a direct UKF based on the unscented transform (UT) described in [37].
A retraction function between the manifold and the vector Euclidean space [38, 39] and
the inverse of that function are used to encode the UT sigma points onto the manifold
and decode them from the manifold, respectively. The state filter has been introduced
in the prior work [40], and now its formalism is revised to describe the dynamic system
characterized by stochastic processes in a compact form on TSE(3). The second navi-
gation system is designed on the basis of the conventional Super-Twisting Sliding Mode
Observer (STO) described on vector Euclidean space [41]. The stochasticity is treated
on SE(3) and its tangent bundle TSE(3) as discussed in [42, 4, 8]. It is important to em-
phasize that the two proposed systems employ very different state estimators. The STO
is a deterministic state observer, meaning that the prediction of the state doesn’t involve
any source of randomness. In fact, the observer is structured as a copy of the plant and
its gains remain constant through out the process, once they are selected. On the other
hand, the UKF is a stochastic state filter, meaning that the prediction of the state possess
some inherent randomness. Particularly, the UKF is a an algorithm which uses exter-
nal measurements, containing noise, and computes estimates of the unknown variables
that are more accurate than those based just on the measurements, by estimating a joint
probability distribution over the variables for each instant of time. Thus, unlike the STO,
the UKF gains are continuously changed by the algorithm itself [43].

The TSE(3) formalism leads to the design of two nonlinear control algorithms repre-
sented by a single compact law accounting for the translational and rotational dynamics
simultaneously. The first one extends to regulation controller in [21, 40] and has been
already used in the prior work [40] to design an almost globally asymptotically stable
control algorithm based on the Morse-Lyapunov and Backstepping approaches (MLBS).
The rationale of this nonlinear control consists in finding an asymptotically stable con-
trol law, capable of cancelling the system nonlinearities using the Lyapunov stability the-
ory. The second control algorithm is based on the robust Sliding Mode Control (SMC),
which is extended to TSE(3). Particularly, the sliding surface is designed using special
configuration functions to encode the state on TSE(3) to a scalar quantity. This type of
control algorithms is recognized as an efficient technique to withstand external distur-
bances and model uncertainties, and has been widely adopted for spacecraft applica-
tions [44, 45, 46, 47].

In this work the spacecraft dynamics is integrated using a fixed time step variational in-
tegrator (VI), which allows to preserve the geometric properties of the system [48]. The
accuracy of the used VI is investigated for the orbit propagation application introducing
a benchmark study case, before the spacecraft open loop dynamics is simulated. The re-
sults are analyzed, discussed and compared to those obtained with a point-mass space-
craft. Finally, the navigation and control systems algorithms and their combinations are
extensively tested and compared in different case studies. The use of some performance
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indices such as the estimation accuracy, the tracking error, the control effort, and the
propellant mass required for a simultaneous orbit-attitude tracking, help to understand
the efficacy of the design on TSE(3).

In order to achieve the aforementioned objectives, this work has been structured in the
following chapters:

• Chapter 1. In this chapter, the objectives and motivations for this work are intro-
duced. The novelty of the design on TSE(3) is highlighted. Background informa-
tion are illustrated, with emphasis to the geometric mechanics framework and the
GNC systems.

• Chapter 2. This chapter introduces the Lie Group SE(3) and its tangent bundle
TSE(3) and the mathematical operators used on this manifold. The rigid body
kinematic and kinetic equations are formulated on SE(3) and the gravitational
model for the small irregular central body is introduced.

• Chapter 3. This chapter focuses on the design of state estimators on Lie groups
based on the Unscented Kalman Filter and a Super-Twisting Sliding Mode Ob-
server. Before the discussion of their formulation, a novel stochastic system for-
mulation on TSE(3) is introduced, and the sensor selection is briefly discussed.

• Chapter 4. This chapter focuses on the design of two nonlinear control algorithms
represented by a single compact law accounting for the translational and rota-
tional dynamics simultaneously. The first one based on the Morse-Lyapunov and
Backstepping approaches, the second based on the robust Sliding Mode control.
Before the discussion of their formulation, the actuator selection is briefly dis-
cussed.

• Chapter 5. This final chapter is committed to the simulation results and discus-
sion. First, the variational integrator accuracy is investigated from the perspec-
tive of the orbit propagation. The spacecraft open loop dynamics is analyzed and
compared to the one of a point mass spacecraft. Then, the navigation systems
singularly are tested in open-loop in different of case studies. The control system
performances are analyzed in the same manner. Finally different combinations of
navigation and control systems are extensively tested and compared in different
case studies.
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Chapter 2

Preliminaries and Problem Statement

In this chapter the mathematical background to be used in the Special Eu-
clidean Group SE(3) and its tangent bundle TSE(3) is introduced; the rigid
body dynamics model is deduced and the gravitational field of small irreg-
ular bodies is presented.

2.1 FORMALISM IN GEOMETRIC MECHANICS FRAMEWORK
The spacecraft configuration is defined by six degrees of freedom, three of which are re-
lated to the location of its center of mass and the other three are related to its attitude.
According to [49, 50], the configuration space of a rigid-body spacecraft is a member of
the Lie group SE(3) which is a smooth manifold obeying the group properties (closure
under multiplication, identity, associativity, and invertability) and that the group opera-
tions are differentiable. The configuration of a rigid body can be expressed as

g =
[

R r
01×3 1

]
∈ SE(3) (2.1)

where R ∈ SO(3) is the rotation matrix from the body frame to the inertial frame, r ∈R3 is
the position vector from the origin of the inertial frame to the center of mass of the rigid
body expressed in the inertial frame, and I3 is the 3×3 identity matrix. The smoothness
of the matrix Lie group implies the existence of a single tangent space at each point. The
tangent space at the identity element of the group is referred to as Lie algebra [13] and is
denoted as

se(3) =
{
V∨ =

[
ω× v

01×3 0

]
, ω× ∈ so(3), v ∈R3

}
(2.2)

where (·)∨ indicates the wedge map, i.e. (·)∨ : R6 −→ se(3) applied to the vector V =
[ωT , vT ]T which is the augmented velocity vector, defined through the translational ve-
locity v ∈ R3 and the angular velocity ω ∈ R3; so(3) is the set of 3 by 3 skew symmet-
ric matrices such that ω× can be defined in terms of the components of the angular
velocity vector. According to [14], given the vector ω = [ω1,ω2,ω3]T , the cross map
(·)× :R3 −→ so(3) is defined as

ω× =
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.3)
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8 2. PRELIMINARIES AND PROBLEM STATEMENT

From the definition of Lie group SE(3) and its Lie algebra se(3), the geometric link be-
tween the two formulations can be understood. The Lie algebra can be considered as
a linearization of the Lie group, near the identity element [51]. Due to the complex-
ity of the nonlinear structure of the Lie group, it is difficult to study with conventional
mathematical tools. The important feature of the Lie algebra is that it is a linear vector
space and thus it can be studied using the tools developed in linear algebra. However,
the extraction of the SE(3) properties from its Lie algebra opens the possibility to several
scientific applications [52]. The exponential map exp : se(3) −→ SE(3) allows to transfer
elements of the Lie algebra to the Lie group which, intuitively, can be interpreted as a
wrapping operation, from the tangent plane onto the manifold. Formally, it is a local dif-
feomorphism from a neighborhood of zero in se(3) onto a neighborhood of the identity
element in SE(3) [14]. The following figures help to gather more intuitive information
about the previous statements.

Figure 2.1: Lie group and Lie algebra relation figurative representation.

Figure 2.2: Manifold and vector space relation figurative representation.

Figure 2.1 depicts a figurative representation of Lie group and Lie algebra. The Lie alge-
bra (red plane) is the tangent space to the Lie group’s manifold ( represented as a blue
sphere) at the identity ε. Through the exponential map, each straight path v t through the
origin on the Lie algebra produces a path exp(v t ) over the manifold which runs along the
respective geodesic. Conversely, each element of the group has an equivalent in the Lie
algebra. This relation is so profound that (nearly) all operations in the group, which is
curved and nonlinear, have an exact equivalent in the Lie algebra, which is a linear vector
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2.2. RIGID BODY MOTION FORMULATION ON TSE(3) 9

space. It must be emphasized that this figure is just a figurative representation, since the
sphere in R3 is not a Lie group. Actually it describes the group of unit quaternions [13].
Figure 2.3 represents a manifold M and the vector space T MX (in this case ≈ R2) tan-
gent at the point X , and a convenient side-cut. The velocity element, Ẋ = ∂X /∂t , does
not belong to the manifold M but to the tangent space T MX [13].

The exponential coordinates are defined as

ξ=
[
Θ

p

]
∈R6, (2.4)

where Θ ∈ R3 represents rotational vector, it is the product of eigenaxis (principal axis)
and eigenangle (principal angle) of rotation, i.e. Θ = θe, θ = ‖Θ‖; p ∈ R3 represents the
translational vector. Hence, the configuration g is obtained via exponential map exp :
se(3) → SE(3) as

g = exp(ξ∨) =
∞∑

n=0

1

n!
(ξ∨)n , (2.5)

which, according to [53], can be written as

g =
[

R(Θ) S(Θ)p
0 1

]
∈ SE(3), (2.6)

where R(Θ) ∈ SO(3) is the rotation matrix from body frame to the inertial frame. The
rotation matrix is obtained via Rodrigues formula as

R(Θ) = exp(Θ×) = I + sinθ

θ
Θ×+ 1−cosθ

θ2 (Θ×)2, (2.7)

and

S(Θ) = I + 1−cosθ

θ2 Θ×+ θ− sinθ

θ3 (Θ×)2. (2.8)

Note that the inverse of the exponential map is the logarithmic map log : SE(3) −→ se(3)
which can be interpreted as an unwrapping operation. The exponential coordinates can
be obtained via logarithmic map as

ξ∨ = logSE(3)(g ) (2.9)

2.2 RIGID BODY MOTION FORMULATION ON TSE(3)
The rigid body configuration is defined by 6 degrees of freedom, 3 of which related to the
location of its center of mass and the other 3 related to its attitude. According to [49],[50],
the configuration space of a rigid-body spacecraft is the Lie group SE(3). This is a smooth
manifold obeying the group properties (closure under multiplication, identity, associa-
tivity, and invertability) with the additional condition that the group operations are dif-
ferentiable. The configuration of a rigid body can be expressed as in Eq.(2.1). The smooth-
ness of the matrix Lie group implies the existence of a single tangent space at each point.

Navigation and Control Algorithm Design on TSE(3) Gennaro Mangiacapra
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Particularly, the tangent space at the identity element of the group is referred to as Lie al-
gebra [13]. The rigid body kinematic and kinetic equations of motion are given as written
with respect to an inertial reference frame and expressed in the body-fixed frame as

ġ = gV∨, (2.10)

V̇= I−1ad∗
VIV+ I−1 (

ug +uc +ud
)

,

where g ∈ SE(3) represents the rigid body configuration as defined in Eq. (2.1), V =
[ωT , vT ]T denotes the rigid body augmented velocity vector expressed in the body frame,
ug ∈ R6 denotes the external input due to gravitational effect, and uc ∈ R6 is the con-
trol input produced by the control system. Finally ud ∈ R6 represents the effect of ad-
ditional disturbances which may enter as input in the system. The complete state is
thus represented by (g ,V) ∈ SE(3)×R6 = TSE(3), the tangent bundle of SE(3). In this
framework, both the attitude and the translational displacement are considered simul-
taneously. This allows to design an estimation algorithm and a control system in TSE(3),
which is more versatile and more accurate than the standard decoupled procedures. In
Eq. (2.10), the inertia tensor in SE(3) is given as

I=
[

J 03×3

03×3 mI3

]
∈R6 (2.11)

where J ∈ R3×3 is the moment of inertia about the center of mass, and m is the mass of
the system. Moreover, the co-adjoint operator is defined as

ad∗
V = adT

V =
[−ω× −v×

03×3 −ω×
]

(2.12)

where the adjoint operator adV is

adV =
[
ω× 03×3

−v× −ω×
]

(2.13)

From an intuitive point of view, this operator allows to transform a tangent vector from
the tangent space around one element to the tangent space around another one.

2.3 DYNAMICS OF SPACECRAFT HOVERING NEAR SMALL BODIES
For many small bodies, the asymmetric distribution of mass becomes a more significant
element in the dynamics than in their larger counterparts such as Earth, Jupiter, or their
major moons. For rigid body dynamics, the torque on the spacecraft body caused by
the asymmetry must be considered. The gravity force exerted by the asteroid on the
spacecraft is described using a second degree and order spherical harmonic gravity field.
Assuming the origin of the asteroid body-centered inertial frame (BCI) coinciding with
the center of mass of the body, the first degree and order gravity terms are C11 = C10 =
S11 = 0. The asteroid is modeled as a constant density triaxial ellipsoid with major axes
l1, l2, and l3. This assumption makes the second degree and order terms C21,S21,S22
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identically zero. The gravity potential of second degree and order of the celestial body
given in [54] can be revisited as

U = µ

‖ρ‖
(
1+ 1

‖ρ‖2

(
C20

(
−1

2
+ 3

2
(ρ̂ · K̂ )2

)
+3C22

(
1− (ρ̂ · K̂ )2 −2(ρ̂ · Ĵ )2))) , (2.14)

where ρ = ‖ρ‖ρ̂ ∈ R3 is the position vector of an arbitrary point on the spacecraft ex-
pressed in the BCI frame such that r = 1

m

∫
B ρ dm, (Î , Ĵ , K̂ ) is the unit basis of the BCI

frame, and the second degree and order coefficients are [55, 56, 57]

C20 =−J2 = 1

5
(γ2 − α2 +β2

2
), C22 = 1

20
(α2 −β2) (2.15)

where α= 1, β= l2
l1

, and γ= l3
l1

are normalized semi major axes of the ellipsoid. Accord-
ing to [58], the presented gravitational potential is effective to study the orbit-attitude
coupled spacecraft dynamics in proximity of small irregular bodies. Taking the partial
derivative of the gravity potential U in Eq. (2.14) with respect to ρ, integrating over the
body of the spacecraft, and keeping only the terms up to order 1/ρ4, the gravity gradient
force applied to the spacecraft expressed in spacecraft body fixed (SBF) coordinates is
approximated as

Fg = RT
∫
B

∂U

∂ρ
dm = RT (

Fg1 +Fg2

)
, (2.16)

where R is the rotation matrix from the SBF frame to the BCI frame,

Fg1 =−m
µ

‖r‖2

(
1+ 3

m‖r‖2

[
J + 1

2

(
tr(J )−5 r̂ T R J RT r̂

)
I3

])
r̂ , (2.17)

r̂ = r /‖r‖, and

Fg2 =
mµ

‖r‖4


( 3

2C20 −9C22
)(

r̂ · Î
)( 3

2C20 −21C22
)(

r̂ · Ĵ
)( 9

2C20 −15C22
)(

r̂ · K̂
)
+ 15

‖r‖
((
−C20

2
+C22

)
r̂ · K̂ +2C22r̂ · Ĵ

)
r̂

 (2.18)

which is an alternative representation to that given in [59]. The gravity gradient torque
on the rigid-body spacecraft due to the gravitational field of the central body is expressed
in the SBF frame as

Mg = 3µ

‖r‖3 (RT r̂ )× JRT r̂ (2.19)

Therefore, the total augmented external effect given in Eq. (2.10) is ug = [F T
g , M T

g ]T ,
where the gravitational force and moment are given in Eq. (2.16)-(2.19), respectively.

2.3.1 CENTRAL BODIES PARAMETERS

In this work, three different asteroids will be used as central bodies to perform the sim-
ulations. They are assumed to be triaxial ellipsoids with uniform density. The first body
is the asteroid Bennu whose properties are shown in Tab.2.1. The second body is the
Saturnian moon Pan whose properties are given in Tab.2.2.
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Table 2.1: Assumed parameters for asteroid Bennu [59, 60, 61].

Parameter Values
Mass [kg ] m = 7.80 ·1010

Gravitational Parameter [km3/s2] µ= 5.2060 ·10−9

Triaxial Ellipsoid Axes [km] (l1, l2, l3) = (0.535,0.508,0.365)
Coefficients [−] C20 =−0.0971,C22 = 0.0049
Rotation Period [h] T = 4.297

Table 2.2: Assumed parameters for Saturnian moon Pan [62].

Parameter Values
Mass [kg ] m = 4.95 ·1015

Gravitational Parameter [km3/s2] µ= 3.3038 ·10−4

Triaxial Ellipsoid Axes [km] (l1, l2, l3) = (34.4,31.4,20.8)
Coefficients [−] C20 =−0.1102,C22 = 0.0083
Rotation Period [h] T = 14

Figure 2.3: Representation of the Saturnian moon Pan (left) and the asteroid Bennu (right).
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Chapter 3

Navigation System Design

This chapter focuses on the design of state estimators on Lie groups based on
the Unscented Kalman Filter and a Super-Twisting Sliding Mode Observer.
Before the discussion of their formulation, a novel stochastic system formu-
lation on TSE(3) is introduced, and the sensor selection is briefly discussed.

3.1 SENSORS SELECTION

The type of sensors the spacecraft is equipped with play a major role in the design of any
navigation algorithm. The reason lies in the fact that each type of sensor is able to pro-
vide a measurement within a certain accuracy and with a certain degree of noise. Clearly,
when cheap sensors are used, it can be expected that the measurements are more com-
promised by noise and inaccuracies. Therefore the navigation designer has to dedicate
a great effort to the navigation algorithm, which has to take over inaccurate measure-
ments. On the other hand, accurate sensors allow the designer to dedicate less effort in
the algorithm design.

In this work, any particular sensor model is implemented. Instead, it is assumed that the
spacecraft state (attitude, position and velocities) is completely observable and available
to feedback. Even if any sensor model has been used, a white Gaussian zero mean noise
is added to the feebacked state. Moreover, the covariance of the noise for each state is
selected on the basis of the accuracy of the sensors typically employed for spacecraft ap-
plications. Spacecraft position and velocity states are principally determined using force
models based on the modelization of the spacecraft dynamics, with with occasional po-
sition fixes from ground stations. This is more accurate than the use of inertial naviga-
tion except during periods of significant maneuvering. Position fixes in low Earth orbit
can be obtained from GNSS (Global Navigation Satellite System), from ground stations
through radio transmission, or with visual matching of planetary features. The space-
craft attitude solution is maintained using a gyroscopes, kept aligned with attitude fixes
from a star tracker. For satellites in low Earth orbit, other aiding may be used, such as
magnetometers, horizon sensors or GNSS information. In Tab.3.1, the typical accuracy
of sensors employed for attitude estimation is reported.

13



14 3. NAVIGATION SYSTEM DESIGN

Table 3.1: Attitude sensors performance comparison [63].

Sensor Accuracy [deg]
Sun Sensors 0.01−0.1
Horizon Sensors 0.02−0.03
Magnetometer 1
Star tracker 0.001
Gyroscope 0.01/h

3.2 STOCHASTIC PROCESSES ON LIE GROUPS AND SYSTEM FORMULATION
The mathematical model employed for the control and state estimation is usually devel-
oped in the Euclidean space, which is an affine space and, by definition, is a geometric
structure based on the vectorial space [13]. When the mathematical modeling is per-
formed in Euclidean space, it is common to deal with uncertainties simply using an ad-
ditive approach. Basically, an Additive White Gaussian Noise (AWGN) can be considered
as representative of the many random processes that occur in nature. However, when the
model is developed in SE(3) and its tangent bundle TSE(3), uncertainties and stochastic
processes cannot be formulated using the conventional mathematical models that are
commonly used in the Euclidean space. This is due to the fact that SE(3) is a nonlinear
manifold and not a vectorial space [42]. In this research, the formulation covered in [64,
4, 8] is used to accommodate a stochastic process in the model. Since the source of noise
is assumed to be in vector space, the exponential map exp(·) is used to map it into SE(3)
as

χn = χ̄n exp(n∨) n ∼N (0, N ) (3.1)

where χn is the noise in SE(3) and N (0, N ) denotes the Gaussian distribution in Eu-
clidean space with zero mean and covariance matrix N ∈ R6×6. In Eq. (3.1), post multi-
plication by χ̄η ∈ SE(3) causes the original Gaussian η ∈ R6 of the Lie algebra to center
at χ̄η ∈ SE(3). The symbols χη and χ̄η represent a small perturbation with covariance N
and a large source of noise, respectively. Fig.3.1 depicts the Gaussian distribution on the
Lie group and its algebra for the random variable n at the identity I .

The Kalman filter technique expects the definition of two sources of noise: process noise
and measurement noise. The first one accounts for all the model uncertainties, distur-
bances, and unmodelled dynamics which are easily modelled as lumped process noise [65].
The measurement noise, instead represents the uncertainty and imperfection of the sen-
sors employed in the navigation system. The stochastic system formulation which best
accommodates the application of Kalman filter theory expects an additive approach for
both the process and the measurement noise. Particularly, the process noise is added to
the state derivative equation, and the measurement noise is added to the system output
equation. In this work, the aforementioned approach can not be adopted, because the
state of the system x = (g ,V) is on TSE(3). Although the velocity, expressed in R6, allows
to simply add the noise, the pose requires the notation given in Eq. (3.1) since it is de-
fined on SE(3). Although different estimation techniques can be found in the literature,
none of them account for a state vector that is defined on TSE(3). Therefore, a novel,
augmented formulation is introduced.

Gennaro Mangiacapra Navigation and Control Algorithm Design on TSE(3)



3.2. STOCHASTIC PROCESSES ON LIE GROUPS AND SYSTEM FORMULATION 15

Figure 3.1: Concentrated distribution on Lie group with mean at the identity, where χn = exp(n∨) and the
random variable n has a Gaussian distribution in R6. The concentrated distribution with non-identity mean is
defined using the left translation, as shown in Eq.(3.1) [66].

It is assumed that the spacecraft pose and velocity are measurable and the output of the
system, z ∈ R12, consists of the principal angles of rotation Θ, the translational vector
components r , the angular velocity ω, and the translational velocity v . It must be em-
phasized that the use of the principal angles of rotation doesn’t represent the attitude
parametrization, which is based on the rotation matrix. Instead, Θ is just used to repre-
sent the rotation matrix as output of the system. In addition, using the principal angle
of rotation allows to take advantage of the SE(3) maps and operator previously defined,
thus having a compact stochastic system formulation. Particularly the stochastic system
can be written on TSE(3) as

ẋ(t ) :

{
ġ =χηg gV∨

V̇= I−1ad∗
V+ηV I(V+ηV)+ I−1u

(3.2)

z(t ) = [(logSE(3)(χζg g )|)T ,VT +ζT
V]T (3.3)

where (·)| is the inverse of the vedge map. The dependence on time is omitted in the
right sides for the readability of the equations. The process noise ζ = [ζT

g ,ζT
V

]T ∈ R12

and the measurement noise η= [ηT
g ,ηT

V
]T ∈R12 are assumed to be Gaussian white-noise

processes. In addition, they are assumed to be uncorrelated and thus the second order
joint central moment, i.e. the covariance, is zero. The aforementioned assumption leads
to:

E
{
η (t )

}= Bη E
{
η (t )η (t +τ)T }=Q η∼N (Bη,Q) (3.4)

E {ζ (t )} = Bζ E
{
ζ (t )ζT (t +τ)

}= T ζ∼N (Bζ,T ) (3.5)

Navigation and Control Algorithm Design on TSE(3) Gennaro Mangiacapra



16 3. NAVIGATION SYSTEM DESIGN

E
{
ζ(t )ηT (t +τ)

}= 0 (3.6)

where τ represents the time lag, Q ∈ R12×12 is the process noise covariance matrix, T ∈
R12×12 is the measurement noise covariance matrix and Bη ∈ R12×12 contain the mea-
surement noise biases. The process noise is zero mean since the bias is encoded thought
the post multiplication in SE(3). In fact, the pose state equation can be revised as

ġ = χ̄ηg exp(η∨g )gV∨ (3.7)

where the noise biases are represented by χ̂ζg ∈ SE(3). The stochastic system formula-
tion in Eqs.(3.2)-(3.3) is written in the following compact form, which will be employed
in the description of the UKF steps described in the subsequent section

ẋ(t ) = f
(
x (t ) ,u (t ) ,η (t )

)
z(t ) = h (x (t ) ,ζ (t ))

(3.8)

f (·) ∈TSE(3) represents the nonlinear state function, which depends on the state, input,
process noise and time. h (·) ∈R12 represents the measurement function, which depends
on the state, measurement noise and time. Again, the time dependence is omitted. The
stochastic model adopted in this work is schematically represented in the following fig-
ure.
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System Input 
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System Output 
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Figure 3.2: Schematic representation of the stochastic system modeling adopted for this work.

3.3 UNSCENTED KALMAN FILTER DESIGN ON TSE(3)
The first navigation system is based on the Unscented Kalman Filter (UKF) state estima-
tor, which belongs to the family of filters known as Sigma-Point Kalman Filters or Linear
Regression Kalman Filters, which use the statistical linearization technique [67, 68]. This
technique linearizes a nonlinear function of random variable through a linear regression
obtained from the the prior distribution of the random variable. Since the problem at
hand deals with the spread of the random variables, this techniques tend to be more ac-
curate than Taylor series linearization, which is the basis of the Extended Kalman Filter
(EKF) or the Iterated Extended Kalman Filter (IEKF) [10]. In these techniques the state
distribution is propagated analytically through the first-order linearization of the non-
linear system. Hence, the a posteriori covariance and mean could be corrupted [69]. The
UKF, instead handles the problem with a deterministic sampling approach. A minimal
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3.3. UNSCENTED KALMAN FILTER DESIGN ON TSE(3) 17

set of sample points, called sigma points, are carefully chosen to represent the state dis-
tribution. Hence the UKF avoids the computation of the system’s Jacobians thus leading
to a versatile and easy algorithm to be translated for fast hardware implementation [9].

The intuition that it is easier to approximate a probability distribution than to approxi-
mate an arbitrary nonlinear function is the leading idea which the UKF is based upon [70].
The sigma points are selected such that their mean is the state x and their covariance is
the state covariance matrix P . Then, the sigma points are propagated through the non-
linear dynamics with the purpose of capturing the a posteriori mean and covariance with
high accuracy. This process is known as Unscented Transformation (UT) and it is used
to compute the statistics of a random variable which undergoes a nonlinear transforma-
tion [37].

Starting from the system of Eqs. (3.2)-(3.3), the state estimation is performed using the
UKF which is formulated on TSE(3). The filter implementation is based on that given
in [39], where an innovative UKF technique on manifolds was introduced. The novel
UKF on TSE(3) design has been discussed and introduced in the previous work [40].

Generally the Kalman Filter techniques consists of two main step:

• Prediction Step: in this phase the state and its error covariance are predicated on
the basis of the system mathematical model. Usually this phase takes the name of
a priori estimate of the system.

• Measurement Update Step: in this phase the a priori state is corrected with an
external measure. This procedure allows to obtain a better state estimate, defined
as a posteriori estimate of the system.

The UKF has an additional preliminary step, which consists in the UT and hence the
computation of the sigma points. In the subsequent sections, the actual state and state
error covariance matrix are indicated x̂[k|k],P [k|k] respectively. The a priori state error
covariance matrix are indicated x̂[k +1|k],P [k +1|k] respectively. The a posteriori state
error covariance matrix are indicated x̂[k +1|k +1],P [k +1|k +1] respectively. Note that
the adopted nomenclature [a|b] indicates that the estimates at a are obtained with the
information of the estimates at b.

3.3.1 SIGMA POINTS SELECTION STEP

The number of the sigma points clearly depends on the dimension of the system. From
now on the letter p indicates the state dimension and the quantities related to it and
the letter q refers to the process noise. Given the current state covariance matrix P [k|k]
and process noise matrix Q two different sets of sigma points are computed. The UT
requires 2p+1 points for the first set and 2q +1 for the second one, where the additional
point refers to the mean of the distribution. Therefore 2p +1 sigma points χp related to
the state error covariance matrix and 2q +1 sigma points χq related to the process noise
matrix are defined. The matrix χp [k] ∈ Rp×2p+1 of 2p sigma column vectors χp,i [k] is
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formed according to

χp,0[k] = 0

χp,i [k] =χp,0[k]+ (
√

(p +λp )P [k|k] )i i = 1, . . . , p

χp,i [k] =χp,0[k]− (
√

(p +λp )P [k|k] )i−p i = p +1, . . . ,2p

(3.9)

where χp,0[k] represents the mean of the distribution, and the other 2p points the dis-
persion around it. [k] indicates the current kth step and λp = (α2 −1)p is a scaling pa-
rameter. The constants α determines the spread of the sigma points around their mean

and is usually set to a small positive value, e.g. 10−4 ≤α≤ 1. (
√

(p +λp )P [k|k] )i is the i th

column of the matrix square root (e.g. lower triangular Cholesky factorization). More-
over the sigma points are defined along with their weights

W (m)
p,0 = λp

λp +p

W (c)
p,0 =

λp

λp +p
+ (1−α2 +β)

W (m)
p,i =W (c)

p,i =
1

2(d +λd )
i = 1, ...,2p

(3.10)

where (c) refers to the covariance and (m) to the mean. The first ones will be used to
compute the sigma points mean after they are passed through the nonlinear system,
while the latter ones are used for the computation of the sigma points covariances. In
addition the subscript 0 refers to the mean of the distribution. The constant β is used to
incorporate prior knowledge of the distribution of the state. The value β = 2 is optimal
for Gaussian distribution and is commonly selected as value. In other words, the matrix
χp [k] and its weights are constructed as

χp [k] =
[
χp,0[k] χp,0[k]+

√
(p +λp )P [k|k] χp,0[k]−

√
(p +λp )P [k|k]

]
(3.11)

W (m)
p =

[
W (m)

p,0 W (m)
p,1 ... W (m)

2p,1

]
W (c)

p =
[

W (c)
p,0 W (c)

p,1 ... W (c)
2p,1

] (3.12)

The same procedure applies to the set χq [k] related to the process noise matrix. In par-
ticular the matrix χq [k] ∈ Rq×2q+1 of 2q sigma column vectors χq,i [k] is formed accord-
ing to

χq,0[k] = 0

χq,i [k] =χq,0[k]+ (
√

(q +λq )Q )i i = 1, . . . , q

χq,i [k] =χq,0[k]− (
√

(q +λq )Q )i−q i = q +1, . . . ,2q

(3.13)
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3.3. UNSCENTED KALMAN FILTER DESIGN ON TSE(3) 19

and their weights

W (m)
q,0 = λq

λq +q

W (c)
q,0 =

λq

λp +q
+ (1−α2 +β)

W (m)
q,i =W (c)

q,i =
1

2(q +λq )
i = 1, ...,2q

(3.14)

Or in other words, the matrix χq [k] and its weights are constructed as

χq [k] =
[
χq,0[k] χq,0[k]+

√
(q +λq )Q χq,0[k]−

√
(q +λq )Q

]
(3.15)

W (m)
q =

[
W (m)

q,0 W (m)
q,1 ... W (m)

2q,1

]
W (c)

q =
[

W (c)
q,0 W (c)

q,1 ... W (c)
2q,1

] (3.16)

In the update step, a third set of sigma points χu[k] will be generated with the one-step-
ahead state prediction x̂[k + 1|k]. In principle a third set of weights may be defined,
however the same of the χp [k] set will be used.

3.3.2 PREDICTION STEP

The prediction takes as the input the current estimated state x̂[k|k], the current esti-
mated covariance state matrix P [k|k], and the sigma points vectors χi ,q ,χi ,p obtained
with the current estimates. The objective of this step is the computation of the one-step-
ahead state prediction x[k+1|k] and the one-step-ahead state covariance matrix predic-
tion P [k +1|k]. It is clear that the UKF needs to be initialized with the initial state esti-
mate x̂0 = E {x0} and the initial covariance state matrix P0 = E {(x0 − x̂0)(x0 − x̂0)T }. Since
the system states are on TSE(3), a retraction function ϕ(·) : R12 → TSE(3) is introduced,
which is a smooth, arbitrarily-chosen function that encodes the mean and covariance
noise on the Lie group and its tangent bundle. The retraction function is divided into
two parts to manage the augmented state:

ϕ(x,χi ) :

{
ϕg = g exp((χg

i )∨) )

ϕV =V+χVi
(3.17)

where χg
i indicates the first p/2 elements of the sigma points vector χi , and χVi the latest

p/2. It can be noted that when χ j = 0 then ϕ(x,0) = x. The inverse retraction function
ϕ−1 : TSE(3) →R12 can be obtained as

ϕ−1(x̂, x) :

{
ϕ−1

g = logSE(3)(ĝ−1g )

ϕ−1
V

= V̂−V (3.18)

where x̂ = (ĝ ,V̂) and x = (g ,V). Given the current optimal estimated state x̂[k|k], the
first set of sigma points are retracted into the manifold and then used to propagate the
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system dynamics starting from x̂[k|k]

xχp,i [k] = f
(
ϕ

(
x̂[k|k],χp,i [k]

)
, û[k],0

)
i = 0, . . . ,2p (3.19)

where the current input vector û[k] is assumed not measurable, and hence it is esti-
mated using the current state x̂[k|k]. The sigma points which represents the mean of
the distribution, χp,0[k] returns the mean state which is used as one-step-ahead state
prediction

x̂[k +1|k] = f (ϕ
(
x̂[k|k],χp,0[k]

)
, û[k],0) (3.20)

and since χp,0[k] = 0, the retraction function returns x̂[k|k], i.e.

x̂[k +1|k] = f (x̂[k|k], û[k],0) (3.21)

In order to compute the covariance matrix with respect the state uncertainty, the ob-
tained states are retracted back into R12 with the inverse retraction function. The re-
tracted sigma points matrix χr

p [k] ∈Rp×2p+1 is then obtained as

χr
p,i [k] =ϕ−1(x̂[k +1|k], xχp,i [k]) i = 0, . . . ,2p (3.22)

and since xχp,0 [k] = x̂[k +1|k], the first column of the matrix is χr
p,0[k] = 0. The retracted

sigma points mean is computed as

χr
p [k] =

2d∑
i=0

W (m)
p,i χ

r
p,i [k] ∈R2p (3.23)

and finally the covariance matrix with respect to the state uncertainty can be computed
as

P [k +1|k] =W (c)
p (χr

p [k]−χr
p [k])(χr

p [k]−χr
p [k])T (3.24)

This matrix needs to be corrected with the contribute which comes from the process
noise. Hence, the second set of sigma points, χq,i [k] are used similarly to the first one.
The main important difference is that these points are not used as initial condition for
the propagation, since they are not related to the state. Instead, they are introduced in
the propagation as process noise

xχq,i [k] = f
(
x̂[k|k], û[k],χq,i [k]

)
i = 0, . . . ,2q (3.25)

it is clear that the first the sigma points which represents the mean of the distribution,
χq,0[k] returns x̂[k +1|k], according to Eq.(3.21). The obtained states are retracted back
into R12 with the inverse retraction function. The retracted sigma points matrix χr

q [k] ∈
Rq×2q+1 is then obtained as

χr
q,i [k] =ϕ−1(x̂[k +1|k], xχq,i [k]) i = 0, . . . ,2q (3.26)

and since xχq,0 [k] = x̂[k +1|k], the first column of the matrix is χr
q,0[k] = 0. The retracted

sigma points mean is computed as

χr
q [k] =

2d∑
i=0

W (m)
q,i χ

r
q,i [k] ∈R2q (3.27)
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and the covariance matrix with respect to the noise can be computed as

Q[k +1|k] =W (c)
q (χr

q [k]−χr
q [k])(χr

q [k]−χr
q [k])T (3.28)

Finally, the one-step-ahead state error covariance matrix is computed correcting Eq.(3.24)
as

P [k +1|k] = P [k +1|k]+Q[k +1|k]

=W (c)
p (χr

p [k]−χr
p [k])(χr

p [k]−χr
p [k])T +W (c)

q (χr
q [k]−χr

q [k])(χr
q [k]−χr

q [k])T

(3.29)

It is interesting to note that the second contribute is weighted on the basis of the pro-
cess noise covariance matrix Q. If the knowledge of the true model is poor, then Q has
large elements and then the a priori covariance state error matrix estimate has a large
dispersion.

3.3.3 MEASUREMENT UPDATE STEP

Once x̂[k +1|k] and P [k +1|k] are computed and the measurement z[k] is known, the
correction can be performed. As already mentioned the third set of sigma points with
the predicted state error covariance matrix are computed. The matrix χu[k] ∈ Rp×2p+1

of 2p sigma column vectors χu,i [k] is formed according to

χu,0[k +1] = 0

χu,i [k +1] =χu,0[k +1]+ (
√

(d +λd )P [k +1|k] )i i = 1, . . . , p

χu,i [k +1] =χu,0[k +1]− (
√

(d +λd )P [k +1|k] )i−p i = p +1, . . . ,2p

(3.30)

or equivalently

χu[k+1] =
[
χu,0[k +1] χu,0[k +1]+

√
(p +λp )P [k +1|k] χu,0[k +1]−

√
(p +λp )P [k +1|k]

]
(3.31)

Each point is retracted into the manifold and then passed through the measurement
function. The matrix zu ∈Rp×2p+1is constructed such as each column is

zu,i [k +1] = h(ϕ(x̂[k +1|k],χu,i [k +1])), i = 0, . . . ,2d (3.32)

where the zeroth column is zu,i [k] = 0 thanks to the retraction function properties. Since
the i th measurement vector is part of R12 and not of TSE(3), there is not need to use the
inverse of the retraction function. Therefore, the measurement mean is computed as

z[k +1] =
2d∑

i=0
W (m)

p,i zi [k +1] (3.33)

The measurement covariance matrix Pzz [k +1] and the cross-covariance Pxz [k +1] can
then be obtained

Pzz [k +1] =W (c)
p (zu[k +1]− z[k +1])(zu[k +1]− z[k +1])T +R (3.34)
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Pxz [k +1] =W (c)
p χu[k +1](zu[k +1]− z[k +1])T (3.35)

According to [71], the Kalman gain is the factor which allows to minimize the state co-
variance matrix P and is computed by

K [k +1] = Pxz [k +1]Pzz [k +1]−1 (3.36)

The measurement covariance matrix Pzz [k + 1], in the conventional Kalman Filters is
commonly known as sensitivity matrix S, that inversely weighs measurement errors. It
means that if a noisy sensor is used the measurement covariance matrix R will have high
elements and its inverse will produce a low Kalman gain. In other words the contribute of
the external measurement update is weighted less. Finally, the a posteriori state estimate
can be obtained as

x̂[k +1|k +1] =ϕ(x̂[k +1|k],K [k +1]r [k +1]) (3.37)

where r [k +1] = z[k +1]− z[k +1] is the residual, i.e. the discrepancy, between the es-
timated measurement z + 1 from the a priori predictions and the actual measurement
z[k+1]. It is clear that the Kalman gain K [k+1] acts as a weighing factor for the residual.
Particularly, when the measurement are corrupted and R assumes large values, then the
Kalman gain is low and the residual is weighted less. Therefore this gain allows to have
an optimal estimate weighting the received measurement on the basis of its reliability.
And this degree of reliability is achieved by comparing the covariance of the estimated
measurement and the covariance of the real measurement. Finally the a posteriori state
error covariance matrix is

P [k +1|k +1] = P [k +1|k]−K [k +1]Pzz [k +1]K [k +1]T (3.38)

Figure3.3 represents the model-based scheme of the proposed UKF filter. Finally, the
three steps that characterize the proposed UKF are summarized in Fig.3.4.
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Figure 3.3: Schematic representative of the Simulink model for the Navigation System with the UKF state filter
on TSE(3).
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Figure 3.4: Unscented Kalman Filter steps scheme.

3.4 SUPER-TWISTING OBSERVER ON TSE(3)
The previous Navigation system was based on the Kalman Filter theory, which adopts a
filtration approach to reconstruct the system states on the basis of the corrupted mea-
surements. Particularly, the a priori knowledge of the noise statistics is optimally used
to estimate the system true states. On the other hand, the second navigation system, is
designed with a deterministic observer approach. In general, an observer is a replica of
the system and has to role of estimating its unmeasurable states based only on the mea-
sured outputs and inputs. One of the earliest linear observer is the Luenberger observer.
It feedbacks into the observer the difference between the output of the plant and the ob-
server to estimates the states. However in presence of uncertainty, it is unable to force
the output estimation error to zero and it may not converge to the system states [41].
Sliding mode observers provide an attractive and robust solution to this issues [72]. Par-
ticularly they are widely used since they are characterized by the unique features of be-
ing robustness with respect to unknown inputs and having a finite-time asymptotically
convergence to exact values of the system states. In addition, disturbances within the
system may also be reconstructed [73]. One of the main problem of the sliding mode
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applications, is the unavoidable presence of chattering which is introduced by the dis-
continuous nature of the method.

The observer selected for the second navigation system, belongs to the family of high-
order sliding mode (HOSM) observers. Particularly it is a second order Super-Twisting
Observer (STO). It is one of the most popular second-order sliding mode algorithms
which is able to reduce the chattering [74] and offers a finite reaching time [75]. In litera-
ture it is possible to find several works which use this algorithm for control purpose [76,
77, 78]. However it is interesting to point out that there is no application of such algo-
rithm for estimation purpose on SE(3) or TSE(3).

The proposed Super-Twisting observer on TSE(3) estimates the spacecraft position, at-
titude and velocities.The presented Super-Twisting observer is based on the theory dis-
cussed in [41]. Recalling the rigid body dynamics on TSE(3) in Eq.(2.10) and their stochas-
tic form in Eq.(3.2)-(3.3), the proposed observer structure is

˙̂g = z−1
1 ĝ V̂∨

˙̂V= I−1ad∗
V̂
IV̂+ I−1û + z2

(3.39)

where ĝ and V̂ are the state estimates on TSE(3) while the correction variables z1 ∈ SE(3)
and z2 ∈ R6 are output error injections. In addition, the input û is estimated using the
current estimated state x̂ = (ĝ ,V̂). The sliding surface σ ∈R6 is designed as

σ=G1δV+G2(l ogSE(3)(δg ))| (3.40)

where δV = Vm − V̂ is the velocity estimation error with respect the measurement, and
δg = g−1

m ĝ is the pose estimation error with respect the measurement. G1,G2

The output error injections have the form

z1 =
[

expSO(3)(B1(sgn(σ1,2,3)‖σ1,2,3‖1/2) B2 sgn(σ4,5,6)‖σ4,5,6‖1/2

0 1

]
z2 = B3 sign(σ)

(3.41)

where B1 and B2 are positive gains, and B3 = blockdiag(B31,B32) is a positive definite
diagonal matrix. In order to reduce the chattering, instead of using the sign(·) function,
the hyperbolic tangent function is used tanh(η ·), with η = 100. Fig.3.5 represents the
model-based scheme of the discussed observer.
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Figure 3.5: Schematic representation of the Simulink model for the Navigation System with the Super-Twisting
state observer on TSE(3).
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Chapter 4

Control System Design

This chapter focuses on the design of two nonlinear control algorithms rep-
resented by a single compact law accounting for the translational and rota-
tional dynamics simultaneously. The first is based on the Morse-Lyapunov
and Backstepping approaches and the second one is based on the robust
Sliding Mode control. Before the discussion of their formulation, the selec-
tion of the actuator selection is briefly discussed.

4.1 ACTUATORS SELECTION
The type of actuators play a main role in the design of any control system. The reason lies
in the fact that each type of actuator is able to provide a certain amount of control force
or moment. For instance, for the attitude control, a torque provided by a Reaction Con-
trol System (RCS) can be significantly larger than the torque provided by a magnetic tor-
quer. This means different actuators are designed to work in different missions. Having
the saturation limits (max provided control force and moment) as free variables, would
increase the complexity of the simple analysis provided in the following sections. For this
reason, it is imagined that the spacecraft is equipped with active actuators which require
continuous feedback and adjustment. Particularly thrusters are used to provide control
force and Control Moment Gyros (CMG) are used to provide the control moment. The
saturation limits for the control force and moment are not set a priori. These values are
left for the preliminary analysis of the control systems in Section 5.4.

For the CMG is not adopted any particular model, while for the thrusters the Tsiolkovsky
rocket equation is used to compute the propellant mass consumption, which is used as
a figure of merit for the control systems tuning. According to [79], using the momentum
conservation, the engine thrust equation is

ṁ =−‖Fc‖
ve

(4.1)

where ṁ is the engine mass flow and ve is the exhaust flow velocity, which is the velocity
of the expelled particles relative to the rocket. The exhaust flow velocity is a figure of
merit of rockets and gives a measure of how efficiently a rocket uses propellant. Eq.(4.1)
is also useful to compute the required ∆V for the orbital maneuver

∆V =−ve log

(
M0

M f

)
=−ve log

[
M0

M0 −ṁ∆t

]
(4.2)
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where M0 is the spacecraft total mass (dry mass + propellant mass), M f is the mass once
the maneuver is finished, and ∆t is the burn time.

In the following section the spacecraft will be modeled with the properties described
in Tab.4.1. It is assumed to have a propellant mass of Mp = 1000kg , which is about
the 54% of the total mass. This ratio is consistent with real mission. For instance, the
Cassini–Huygens spacecraft had a dry mass of 2523kg and a propellant mass of 3051kg [80].
The last parameter to set is the exhaust flow velocity, which depends on the specific fuel
used. In this study a hydrazine mono propellant is selected and a conservative value of
ve ≈ 2000m/s2 is used [81, 82].

Table 4.1: Spacecraft thrusters parameters.

Parameter Values
Propellant Mass [kg ] Mp = 1000
Exhaust Flow Velocity [m/s] ve = 2000

4.2 MORSE-LYAPUNOV BASED CONTROL VIA BACKSTEPPING ON TSE(3)

4.2.1 BACKSTEPPING CONTROL BACKGROUND

Generally, when a linear system is taken into account, its stability can be analyzed with
linear techniques that involve the investigation of its poles. When a nonlinear system
is analyzed, instead, there are not poles that can help and can characterize the overall
stability of the system [83]. With nonlinear systems, the standard linear tools can only
be used to assess a local stability analysis, which is based on linearization techniques
around the neighborhood of the point of interest. A relevant example can be found in
flight dynamics, where the vehicles are modeled as highly nonlinear systems [84]. From
a practical perspective, an aircraft is a complex nonlinear system that operates in a wide
range of flight conditions. Nevertheless, it must satisfy certain tracking and dynam-
ics performances dictated by the regulations. Since the aircraft dynamic behavior can
change meaningfully throughout the flight envelope, traditionally the gain-scheduling
approach is preferred [85]. The rationale of this method lies in the linearization of the
system in different regions of the flight envelope, thus allowing many linear control
laws to be designed. Apart from its simplicity, this approach is conventionally preferred
also because the linear control theory has been extensively studied. However the gain-
scheduling procedure has many drawbacks due to the basis linearization procedure. In
case of failures the aircraft dynamics changes deeply and the aforementioned approach
is not able to provide accurate performance. The same can happen with combat air-
crafts, that are characterized by a wide flight envelope and in some region the nonlinear-
ities can be more significant [86, 87].

During the years, with the increase of the available computational power, more sophisti-
cated methods have been developed. They can avoid the lack of robustness that charac-
terizes the linear control laws. According to [88], the most used nonlinear model-based
approaches, that also have been successfully applied in off-line and on-line aerospace
applications are: the Feedback Linearization (FBL), also known as Nonlinear Dynamic
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Inversion (NDI), and the Backstepping (BS). The first approach consists in finding a con-
trol law that cancels out the nonlinearities of the system, such that the overall system can
be treated as a linear one, thus allowing a linear controller to be used. This procedure
cancels completely the natural dynamics of the system and for this reason can lead to
wasteful control effort [89]. The second control approach can give the designer more
flexibility in the choice of the control input and therefore is considered as a kind of se-
lective FBL [90]. This means that if the system has certain stabilizing nonlinearities, it
is possible to keep them and cancel only some part of the nonlinear dynamics. Never-
theless, the BS approach is based on Lyapunov stability theory, which allows to design
a control law that guarantees global asymptotic stabilization and tracking. Between the
discussed control approaches, this work focuses on the flexible Lyapunov-based BS con-
trol design.

4.2.2 STABILITY AND LYAPUNOV THEORY

Before introducing the BS control design approach, the Lyapunov stability theory is con-
cisely introduced. It is a necessary step, since the BS design is strongly based on this
concept.

For a general nonlinear dynamics, the stability in the sense of Lyapunov of its equilib-
rium points can be assessed describing the behavior of the system in the neighborhood
of it [91]. To be of practical interest, the nature of the equilibria should be determined
without directly solve any differential equation. This is an important point since, in gen-
eral, nonlinear dynamics can not be solved analytically. According to [92], for this pur-
pose, the russian A.M. Lyapunov developed two methods:

• Indirect Method, which is based is based on local stability around an equilibrium
point from the stability properties of its linear approximation. This method repre-
sents the theoretical justification of using linear control for nonlinear systems. It
is clear that the main drawback is that this analysis is just local.

• Direct Method, which is not restricted to the local motion. It determines the stabil-
ity properties of a nonlinear system on the basis of the observation that if the total
energy of a system is dissipated, then the system must settle down to an equilib-
rium point. Basically an “energy-like” function is constructed and its time varia-
tion is analyzed.

The latter one is the most commonly used method for nonlinear system analysis and
design, moreover it is the approach used in the BS algorithm. As already introduced, an
appropriate continuous differentiable and positive defined scalar function called Lya-
punov Candidate Function (LCF) V is chosen. Then its time derivative V̇ is evaluated,
and whether it is negative (semi) definite the equilibrium point is globally asymptotically
stable. The selected V is also called Control Lyapunov Function (CLF). It is emphasized
that this method does not prescribe how to determine an appropriate Lyapunov func-
tion, which is a fundamental step in the BS approach.

A more intuitive visualization of Lyapunov stability theory may be given in Fig.4.1, where
a system of two state variables is considered. This leads to a 2-D phase plane (x1, x2). The
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CLF is a parabolic surface which lives in the third dimension and it is a function of the
state variables, i.e. V (x1, x2). The origin of the phase plane is the equilibrium point. The
derivative of V is given by

dV

d t
= (grad(V ))T d X

d t
(4.3)

where X = [x1, x2]T is the state vector and

grad(V ) =
[

dV

d x1
,

dV

d x2

]T d X

d t
= (

d x1

d t
,

d x2

d t
) (4.4)

In the neighborhood of the origin, the CLF is negative definite because

dV

d t
= (grad(V ))T d X

d t
< 0 (4.5)

which means that the angle ϕ is greater than 90 deg. Clearly if this condition is satisfied
everywhere in the neighborhood of the origin, then the trajectory tends to the origin, i.e.
the system is stable. Otherwise, when dV

d t is positive, the trajectory moves away from the
origin, i.e. the system is unstable. This intuition can be easily extended to the stability

analysis of a general equilibrium point X ∗ = [
x∗

1 , x∗
2

]T .

Figure 4.1: Representation of Lyapunov stability of the phase plane origin, for a two dimensional system [93].

4.2.3 MLBS CONTROL SYSTEM DESIGN ON TSE(3)

The rigid body model defined on TSE(3) is described as a second order nonlinear sys-
tem with a lower triangular form. The BS technique on TSE(3) specializes with a single
control law without the definition of intermediate virtual control laws. Moreover, it dif-
fers to the conventional BS approach by the presence of an additional term in the CLF:
a Morse function to address the stability proof on SO(3). For this reason this controller
takes the name of Morse-Lyapunov Backstepping (MLBS) Control. This approach, used
for the first control system, reaches an almost globally asymptotically stable controller
and is inspired to the previous work [21, 40]. However the control law is extended with
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an additional integral term, which allows to reduce significantly the steady state error.

The BS control law that allows both stabilization and tracking of the equation of motion
defined in (2.10), is

uc =−IK1 l̇ −ad∗
ψ−K1l I

(
ψ−K1l

)− IK2ψ− Iκ[01×3,r T RT ]T − IK3λ (4.6)

where K 1 = blockdiag(k11,k12), K 2 = blockdiag(k21,k22),K 3 = blockdiag(k31,k33) are pos-
itive definite control gain matrices in R6×6; κ, is a scalar positive gain; l (g ) is the pose
configuration function; ψ(g ,V) is the pose and velocity configuration function; finally
λ = ∫t

0 ψ(g ,V)dτ is the integral of the pose and velocity configuration function up to
time t .

The CLF to prove the stability properties of the control law in Eq.(4.6) can be introduced,
at this point. It is based on the summation of two parts, the first one that is a quadratic
function of the configuration function ψ. However it is only positive semi definite in
l (g ) and V. Therefore a second positive semi definite Morse function is added to drive
ψ(g ,V) and its derivatives to zero. Hence the complete CLF is defined as

V = V1 +V2 > 0, ∀(g ,V) 6= (I ,0) (4.7)

where

V1 = 1

2
ψT Pψ+ 1

2
κ(1−k12)r T P22r V2 =ϕ(tr(A− AR)) (4.8)

where P = blockdiag(P11,P22), W are diagonal positive matrices and ϕ is a C 2 function
such thatϕ(0) = 0 and 0 ≤ϕ′

(x) ≤α(x) for all x ∈R+ where α(·) is a class−K function [94,
95]. The second attitude-dependent Morse function has one minimum at R = I ∈ SO(3),
as well as one maximum and two saddle points [96]. For a positive definite matrix A =
diag([a1, a2, a3]) with distinct diagonal entries a1 > a2 > a3 ≥ 1, the V2(R) function is
positive definite on SO(3) and vanishes only when R = I .

CONFIGURATION FUNCTIONS

In order to use the Lyapunov theory to design the MLBS control law, it is necessary to
introduce two configuration functions which allow to work on TSE(3). The state x =
(g ,V) ∈TSE(3) is treated with two smooth configuration functions l (g ) andψ(g ,V) such
that l (I ) = 0 and ψ(I ,0) = 0. Particularly the functions ψ and l and their derivatives are

l (g ) = [sT (R), r T ]T l̇ (g ) = [ṡT (R,ω), (Rv)T ]T

ψ(g ,V) =V+K1l (g ) ψ̇(g ,V) = V̇+K1 l̇
(4.9)

and the function s(·) : SO(3) →R3 and its derivative are defined as

s(R) =
3∑

i=1
ai

(
RT ei

)×
ei =

3∑
i=1

(
RT AT ei

)×
ei

ṡ(R) = (
tr(AR)I3 −RT A

)
ω

(4.10)

where ei , i = 1,2,3, are the elements of the natural basis in R3. The time derivative of ψ
can be further elaborated using the equation of motion and Eq.(4.6). It is a necessary

Navigation and Control Algorithm Design on TSE(3) Gennaro Mangiacapra



32 4. CONTROL SYSTEM DESIGN

step to prove the almost globally asymptotically stable property of the BS control law.
Taking the derivative of ψ and substituting first Eq.(2.10) and the control input

ψ̇= V̇+K1 l̇

= I−1ad∗
VIV+ I−1u +K1 l̇

= I−1ad∗
VIV+ I−1{−IK1 l̇ −ad∗

ψ−K1l I
(
ψ−K1l

)− IK2ψ− Iκ[
01×3,r T RT ]T − IK3λ}+K1 l̇

= I−1ad∗
VIV− I−1 ad∗

ψ−K1l I
(
ψ−K1l

)−K1 l̇ −K2ψ−κ[
01×3,r T RT ]T −K3λ+K1 l̇

(4.11)

The above expression can be further simplified using the relation V =ψ−K1l and sim-
plifying

ψ̇= I−1ad∗
ψ−K1l I(ψ−K1l )− I−1 −ad∗

ψ−K1l I
(
ψ−K1l

)−K1 l̇ −K2ψ−κ[
01×3,r T RT ]T +K1 l̇

=−K2ψ−κ[
01×3,r T RT ]T

=−K2ψ−κ[
01×3, (Rr )T ]T

(4.12)

FIRST TERM IN THE CLF
The first function of the CLF in (4.7), V1, is taken in consideration. Its differentiation
yields to

V̇1 =ψT Pψ̇−κ(1−k12)r T P22ṙ (4.13)

then, substituting Eq.(4.12) into Eq.(4.13) yields

V̇1 =ψT P (−K2ψ−κ[
01×3, (Rr )T ]T

)+κ(1−k12)r T P22ṙ

=ψT (−PK2)ψ−κψT P
[
01×3, (Rr )T ]T +κ(1−k12)r T P22ṙ

(4.14)

The second term can be even rewritten, recalling that ψ=V+K1l

V̇1 =ψT (−PK2)ψ−κ(V+K1l )T P [01×3, (Rr )T ]T +κ(1−k12)r T P22ṙ

=ψT (−PK2)ψ−κ[ωT +k11sT (R), vT +k12r T ]T P [01×3, (Rr )T ]T +κ(1−k12)r T P22ṙ

=ψT (−PK2)ψ−κ(vT +k12r T )P22(Rr )+κ(1−k12)r T P22ṙ
(4.15)

Using the Backstepping technique it is supposed that the kinematic differential equation
in Eq.(2.10) can be stabilized by a state feedback control law of the form V=−l (g ) [95].
Therefore the components return

ω=−s(R), v =−r (4.16)

and the substitution in Eq.(4.15) leads to

V̇1 =ψT (−PK2)ψ−κ(−r T +k12r T )P22(Rr )+κ(1−k12)r T P22ṙ

=ψT (−PK2)ψ−κ(−1+k12)r T P22(Rr )+κ(1−k12)r T P22ṙ
(4.17)
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Finally the last term can be rewritten reminding the kinematic equation ṙ = Rv and sub-
sequently using Eq.(4.16)

V̇1 =ψT (−PK2)ψ−κ(−1+k12)r T P22(Rr )+κ(1−k12)r T P22Rv

=ψT (−PK2)ψ−κ(−1+k12)r T P22(Rr )−κ(1−k12)r T P22Rr

=ψT (−PK2)ψ+ [−κ(−1+k12)−κ(1−k12)]r T P22Rr

=ψT (−2PK2)ψ

(4.18)

which is quadratic in ψ, hence with K2, P positive definite control gain matrices, V̇1 ≤ 0.
As a result the first term in the CLF is positive semi definite.

SECOND TERM IN THE CLF

The second Morse function of the CLF in (4.7), V2, is further investigated. Since d
d t tr (·) =

tr ( d(·)
d t ), and using the chain rule, it can be differentiated as

V̇2 =−φ′
(tr(A− AR))tr (ARω×) (4.19)

where the property d(tr (A − AR)) = d(tr (−AR)) = −tr (AṘd t ) and the rotational kine-
matics Ṙ = Rω× are used. Without loosing generality, let φ(·) be defined as φ(x) = k3x
(k3 > 0). Then its derivative becomes φ̇= k3

V̇2 =−k3tr (ARω×) (4.20)

However, since V=−l (g ) then ω=−s(R) and

V̇2 = k3tr (ARs×(R)) (4.21)

The following properties hold for all A ∈R3×3 and b ∈R3

tr (Ab×) = bT (AT − A)|, (·)|× = (·)

tr (A) =
3∑

i=1
= eT

i Aei

(AT − A)| =
3∑

i=1
= e×i Aei

(4.22)

Using the properties and the definition of s(R) in Eq.(4.10):

tr (ARs×(R)) = sT (R)((AR)T − AR)|

= sT (R)
3∑

i=1
= e×i (AR)ei =−sT (R)

3∑
i=1

(RT AT ei )×ei

=−sT (R)s(R)

(4.23)

Therefore the Morse function derivative on the trajectory can be rewritten

V̇2 =−k3sT s (4.24)
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and it is negative semi definite on SO(3). The Morse function V2 has a global mini-
mum when the attitude rotation matrix is the identity matrix, i.e R(0,0,0). On the other
hand, there are two saddle points and a global maximum related to π rad rotations
of the body frame with respect to the inertial frame about any of the body axes, i.e
R(π,0,0),R(0,π,0),R(0,0,π).

Finally the time derivative of the CLF function can be obtained with the sum of the two
contributions in Eq.(4.18)-(4.24)

V̇ =−k3sT s −ψT (2PK2)ψ (4.25)

This equation is negative semi definite. Particularly there is the asymptotically stable
equilibrium x = (I ,0) and x = (R(π,0,0),0), x = (R(0,π,0),0), x = (R(0,0,π, ),0)which are
three saddle equilibria with stable manifolds of zero Lebesgue measure. Since the sta-
ble manifolds of the last three equilibrium points have zero measure on TSE(3), the first
equilibrium point is almost globally asymptotically stable [21]. The design procedure
just described defines the solution for a stabilization problem, which means that for
t → ∞, the state x = (g ,V) → (I ,0). It is also interesting to study the case of a tracking
problem, in which a desired or reference state is defined xr e f = (gr e f ,Vr e f ) and it is re-
quired that for t → ∞, the state x = (g ,V) → (gr e f ,Vr e f ). Such problem can be solved
using the same procedure as that described above, with in addition needs a change of
coordinates. Instead of treating the state x = (g ,V), the error of the state with respect to
the reference state is considered δx = (δg ,δV). Hence, the MLBS techniques guarantees
that for t →∞, the state δx = (δg ,δV) → (I ,0).

Figure 4.2 represents the model-based scheme of the discussed control algorithm. It is
emphasized that the reference states come from the guidance system, while the esti-
mated states from the navigation system. Once the required control input is computed
on the basis of the estimated state error, the actuators moderate the output of the control
system.
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Figure 4.2: Representation of the Simulink model for the control system with the MLBS control algorithm on
TSE(3).
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4.3 SLIDING MODE CONTROL ON TSE(3)

4.3.1 SLIDING MODE CONTROL BACKGROUND

In the design procedure of any practical control system, there is always some discrep-
ancy between the actual system to be controlled and its mathematical model used for
the controller design. These mismatches may arise from unknown parameters, unmod-
eled/simplified plant dynamics or unknown external disturbances [41]. Conventional
linear control systems, such as PID controller, are not able to overcome these issues
and in the presence of these disturbances/uncertainties the closed-loop system may
also diverge. This problem led the control engineers to the development of robust con-
trol methods which are supposed to be robust to disturbances/uncertainties. According
to [92], there are basically two complementary approaches to dealing with the afore-
mentioned mismatches: 1) Robust Control techniques which is discussed in this section;
2) Adaptive Control techniques, which deal with uncertainties with a variable structure
which is updated during operation.

The Sliding Mode Control (SMC) is considered as an efficient technique to withstand
external disturbances and model uncertainties, and has been widely adopted for space-
craft applications [44]. It is a systematic approach to the problem of maintaining stabil-
ity and consistent performance when modeling uncertainties occur. The main advan-
tages of SMC, including robustness, finite-time convergence, and reduced-order com-
pensated dynamics, have been proved in numerous works [97, 46, 47]. The SMC is an
efficient method for nonlinear systems, characterized by a solid theoretical foundations
based on Lyapunov theory described in Section 4.2.2.

The robustness of the SMC to the plant uncertainties is obtained at the price of extremely
high control activity. Generally the switching nature of the SMC is not desirable for me-
chanical systems, where it is required to have continuous force or moment control in-
puts. In addition this switching nature may excite some neglected plant dynamics [92].
However, the problem at hand consists in a spacecraft actuated with thrusters, which
may also be characterized by a discontinuous nature. For this reason the SMC is a suit-
able control method to be implemented due to its consistency with these actuation sys-
tems [47, 98].

4.3.2 SMC CONTROL SYSTEM DESIGN ON TSE(3)

The SMC approach consists in defining a so-called sliding surface σ, which is a subset
of the state space on which the trajectory of the plant is desired to lie. A feedback law
is realized such that this surface will be attractive and invariant, i.e. the plant trajectory
evolves towards this surface and, once there, it stays close to it. The sliding surface, σ ∈
R6×1, is defined as a function of pose and velocity

σ= c1V+ c2l (g )+ c3λ (4.26)

where c1 = blockdiag(c11,c12),c2 = blockdiag(c21,c22),c3 = blockdiag(c31,c32) are posi-
tive definite diagonal matrix, ψ(g ,V), l (g ),λ = ∫t

0 ψ(g ,V)dτ is the integral of the pose
and velocity configuration function up to time t . are the functions already used for the
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MLBS control design (Section 4.2.3). The third integral term is added since it reduces
meaningfully the steady state error. The addition of an integral action to define the slid-
ing surface has proved to lead to good results in literature [99, 100, 101]. The SMC control
force and moment input is defined as

u = ueq +ud (4.27)

with
ueq =−ad∗

VIV− c2

c1I
−1 l̇ (g )− c3

c1I
−1ψ(g ,V) ud =−Kσsign(σ) (4.28)

where the Kσ =− c4
c1I

−1 = blockdiag(Kσ,M ,Kσ,F ) is a positive definite diagonal matrix whose
has to be selected properly in order to having the sliding mode without the unmodeled
dynamics [102]. The first contribute is known as equivalent control, and it represents the
control function which needs to be applied to the system after reaching the sliding sur-
face to ensure that the system trajectory stays on this surface thereafter. This feature is
known as invariant property and the control input guarantees the solution of the prob-
lem σ̇= 0. The second contribute is known as discontinuous control and it ensures that
the system trajectory evolves towards the sliding surface. This feature is known as attrac-
tive property and the switching control action allows the system trajectory to reach this
surface [103]. In order to achieve the asymptotic convergence of l (g ) andψ(g ,V) to zero,
i.e. limt→∞ l (g ),ψ(g ,V) = 0 with a given convergence rate, in the presence bounded dis-
turbance, the control input in Eq.(4.27) has to drive the variable σ in Eq.(4.26) to zero in
finite time. This feature can be guaranteed by applying the Lyapunov stability theory to
the σ dynamics, which is basically the derivative of Eq.(4.26)

σ̇= ψ̇(g ,V) = c1V̇+ c2 l̇ (g )+ c3ψ(g ,V) (4.29)

The asymptotic stability of the above equation to the equilibrium point σ = 0 can be
proved introducing the following CLF

V = 1

2
σσT (4.30)

whose derivative is
V̇ =σσ̇T (4.31)

Substituting Eq.(4.29) and then Eq.(2.10)

V̇ =σ(c1V̇+ c2 l̇ + c3ψ(g ,V))T

=σ[c1(I−1ad∗
VIV+ I−1u)+ c2 l̇ + c3ψ(g ,V)]T

(4.32)

using the control law defined in Eq.(4.27) the control linear and angular accelerations
can be substituted

V̇ =σ[c1(I−1ad∗
VIV+ I−1u)+ c2 l̇ + c3ψ(g ,V)]T

=σ[c1I
−1ad∗

VIV+ c1I
−1(−ad∗

VIV− c2

c1I
−1 l̇ (g )− c3

c1I
−1ψ(g ,V)− c4

c1I
−1 sign(σ))+ c2 l̇ + c3ψ(g ,V)]T

=−σ[
c4

c1I
−1 sign(σ)]T

=− c4

c1I
−1 ||σ|| = −Kσ||σ||

(4.33)
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since V̇ < 0 for σ 6= 0 the stability of the equilibria point is proved. In the CLF derivative
|| · || is the 1−norm of the sliding surface, i.e. ||σ|| =∑6

1 |σi |. To be precise, this proof only
guarantees the local stability of the equilibria σ = 0 since it can also happen that σ is
zero becauseV=−K1l . The CLF should be extended with the term 1

2κ(1−k12)r T P22r as
done for the MLBS control design, in order to guarantee the global stability. This step is
avoided since in this work the equivalent control is omitted in favor of an easier control
law, which is totally independent on the knowledge of the mathematical model of the
plant. In fact, neglecting ueq the SMC uses only the state measurements to determine
the sliding surface and returns a comparable performance. In addition, the equivalent
control ueq is not usually implemented since, in case of input disturbances, it would
need of their model. The equivalent control represents the effect of the high-frequency
switching control ud . For this reason, according to [41], ueq is achieved using a low-pass
filter (LPF) on ud

ueq ≈−LPF (ud ) (4.34)

Therefore, a first order SMC law is used for the second control system, i.e.

u =−Kσsgn(σ) (4.35)

Fig.4.3 depicts the behavior of the system trajectory in the state space, for a two states
system under the SMC. The sliding surface is a line in the phase plane containing the
equilibria point σ = 0. Starting from any initial condition (x0, ẋ0), the state trajectory
reaches the sliding surface in a finite time (reaching phase), and then slides along the
surface towards the origin exponentially (sliding mode). In summary the idea behind
the SMC consists in constructing a well-behaved function of the tracking error, σ, and
then select the feedback control law such that it remains a Lyapunov-like function of the
closed-loop system, despite the presence of model inaccuracy and of disturbances. The
discontinuous nature of the control law in Eq.(4.35) leads to a phenomenon called chat-
tering, which is highlighted in Fig.4.3. It basically consists in high frequency oscillations
around the sliding surface. This phenomenon is highly undesirable in practical situa-
tion, since it involves high control activity and in addition it may excite high frequency
dynamics neglected in the model. The most obvious solution to attenuate the chattering
is to make the control law Eq.(4.35) continuous/smooth to approximate the discontin-
uous sgn(·) function. The most common solution in literature consist in the use of: 1)
hyperbolic tangent function, tanh(ησ), with η ≥ 100; 2) sigmoid function, σ

|σ|+η , with
η≤ 10 [101].

As for the first control system, the stabilization procedure just described guarantees that
for t →∞, the state x = (g ,V) → (I ,0). However the procedure can be extended to the
tracking case with the precaution of defining the sliding surface as a function of the error
of the state with respect to the reference state is considered, i.e. δx = (δg ,δV).

Figure 4.4 represents the model-based scheme of the discussed control algorithm. It is
emphasized that the reference states come from the guidance system, while the esti-
mated states from the navigation system. Once the required control input is computed
on the basis of the estimated state error, the actuators moderate the output of the control
system.
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Figure 4.3: Graphical interpretation of the sliding mode control in the state space.
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Chapter 5

Simulation Results and Discussion

This final chapter is committed to the simulation results and discussion.
First, the variational integrator’s accuracy is investigated from the perspec-
tive of the orbit propagation. The spacecraft open loop dynamics are ana-
lyzed and compared to the one of a point mass spacecraft. Then, the nav-
igation systems singularly are tested in open-loop in different of case stud-
ies. The control system performances are analyzed in the same manner. Fi-
nally different combinations of navigation and control systems are exten-
sively tested and compared to each other in different case studies.

5.1 ORBIT PROPAGATION
The orbit propagation requires the numerical solution of a system of differential equa-
tions, which can describe a large class of problems: planetary orbiters, transfer orbits,
planetary systems, re-entry or solar system simulations. According to [104], the problem
can be formulated in more general terms as follow

d x

d t
= f (x, t ; p) (5.1)

and requires the definition of the following blocks:

• Environment: the properties of the physical surroundings, defined through p. Dif-
ferent environment models may be defined, such as: atmosphere model (atmo-
spheric density, temperature, etc.), ephemeris (body state as a function of time),
shape model, vehicle’s properties (mass, inertia, aerodynamics coefficients, etc.).
Each body concurring in the simulation can contain a list of environment mod-
els. Basically this framework includes/computes all the physical properties used
in simulation.

• Acceleration: the terms to be included in equations of motion, represented by
what is contained in f . If the environment list assigns the properties of the bodies,
the acceleration block defines how these properties are used to compute the dy-
namics. Different source of acceleration may be taken into account: central grav-
ity, which is the point mass acceleration due to a single central body and would
results in a Keplerian orbit; spherical harmonics gravity, which models the gravi-
tational interaction through spherical harmonics; the third body gravitational at-
traction; the aerodynamics or the radiation pressure acceleration.
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40 5. SIMULATION RESULTS AND DISCUSSION

• Propagator: the formulation of the equation of motion, defined through x. It does
not need to be in Cartesian coordinates. The propagator has the role of defining
the type of dynamics (translational, rotational, coupled, mass, etc.) and the equa-
tions that need to be solved (Encke, Cowell, etc.)

• Integrator: solver for the equation of motion, which allows to obtain x(t ). The
integrator block defined the integration scheme to be used to solve the equations
numerically (Euler, Runge Kutta, etc.) and the settings for it (time step, relative
tolerance, etc.)

In this work, an irregular asteroid is taken as central body and the translation and ro-
tational spacecraft dynamics are both propagated considering the nonlinear coupling
between them. The spacecraft equation of motion Eq.(2.10) are not propagated with
standard propagators, since the state is expressed on TSE(3). There are two bodies con-
curring in the simulation, and just the gravitational acceleration of the asteroid on the
spacecraft is considered and modeled with spherical harmonics C20 and C22. The grav-
itational influence of the spacecraft on the asteroid is thus neglected. Since no other
bodies concur in the simulation, the reference frame is assumed to be fixed with the
asteroid and its dynamics is not propagated. Hence, the environment includes all the
physical properties of the two bodies needed to write Eq.(2.10) and Eq.(2.16)-(2.19). For
the most of astrodynamics problems, analytical solutions are not (readily) available, and
one has to numerically integrate a propagation model that best represents the dynamics
of the system at hand. In the context of numerical astrodynamics, the choice of a nu-
merical integrator is a design problem since the results can be heavily influenced by the
integration method of the accuracy.

5.1.1 NUMERICAL INTEGRATOR

The differential equations representing the spacecraft dynamics are numerically inte-
grated using a fixed time step Lie group variational integrator (LGVI). Its main feature
is the preservation of geometric properties of the system. This integration scheme is
applied directly on the nonlinear manifold SE(3), where the discretized Hamiltonian is
used. The specific variational integrator formulation used in this thesis is described in
detail in [105, 106] and used in [48]. The variational principle yields to the discrete equa-
tions of motion and their manipulation allows to derive a symplectic Euler variational
integrator of the form:[

Rk+1 rk+1

0 1

]
=

[
Rk rk

0 1

][
exp(hωk ) hBexp(hωk )vk

0 1

]
(5.2)

C T
exp(h(ωk , vk ))IVk −C T

exp(−h(ωk−1, vk−1))IVk−1 = hu((Rk ,rk ),Vk−1) (5.3)

where h is the time step, the map Bexp :R3 →R3,3 is equal to

Bexp(ω) =
{

I3 if ω= 0

I3 +
(

1−cos‖ω‖
‖ω‖

)
ω̂

‖ω‖ +
(
1− sin‖ω‖

‖ω‖
)

ω̂2

‖ω‖2 if ω 6= 0
(5.4)
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and the map Cexp :R6 →R6,6 is

Cexp(ω, v) = I6 − 1

2
ad[ω,−v] + 1

12
(ad[ω,−v])

2 (5.5)

For an implicit step, the discussed holonomic integrator takes (Rk ,rk ,ωk−1, vk−1), the
matrices Bexp and Cexp are computed with Eq.(5.4)-(5.5) respectively, Eq.(5.3) is solved
with a Newton-type solver for (ωk , vk ), finally Eq.(5.2) allows the update for (Rk+1,rk+1).

5.1.2 INTEGRATOR ACCURACY

As already introduced, it is important to analyze the error behavior of the presented in-
tegrator, in order to select the proper time step. Typically, in the preliminary phases of a
mission design, a requirement on the accuracy is formulated [107]. With this accuracy
requirement, the best propagator-integration combination is selected performing quan-
titative analysis. Since the propagator and the integrator have been already chosen, the
only degree of freedom is the integrator time step. It can be selected on the basis of the
integrator error behavior analysis. In order to do so, a benchmark solution is required.
Clearly it can’t be an exact solution to the problem at hand, but it will be accurate enough
such that further analyses can be developed.

The integrator algorithms solve the equation of motion thus obtaining a numerical so-
lution. The latter one, is an approximation of the real solution which is not obtainable
analytically. It is emphasized that the performance of such numerical procedures are
influenced by the simulated physical situations. For instance, if the propagated dynam-
ics evolves with high rate, an high time step can lead to large errors since the integra-
tor wouldn’t be able to follow the dynamics change. Clearly the error behavior analysis
can not be developed for all the possible physical situations, instead a representative
case study has to be selected. In this work, the chosen representative situation is the
one which may show better the coupling between the translational and rotational mo-
tions, i.e. the open-loop (uncontrolled) spacecraft dynamics. The accuracy requirement
is given on the position error, since it is influenced by the evolution of all the other space-
craft state variable. Particularly its derivative depends on R and v , but both of them
depends on ω. For the physical situation at hand, it is chosen to have an integration ac-
curacy in the order of 1m. Since the integration error are cumulative in time, it is needed
to define a propagation time. When the navigation and control systems will be applied
to the vehicle, integration times in the order of few Earth days will be considered. How-
ever, in order to present a more robust and conservative error analysis, a propagation of
10 Earth days is considered here.

Ideally, the LGVI should be benchmarked with the analytical solution representing afore-
mentioned physical situation. However it is not possible to obtain a closed form solution
of the orbit propagation when spherical harmonics are considered. Therefore a bench-
mark numerical solution is needed to assess the LGVI accuracy. This ’ground truth’ is
chosen to be the point mass propagation with Runge-Kutta 7th order integrator (RK7)

Navigation and Control Algorithm Design on TSE(3) Gennaro Mangiacapra



42 5. SIMULATION RESULTS AND DISCUSSION

already implemented in Simulink. Moreover, the acceleration model is a simple point
mass gravity acceleration. With this procedure it is possible to quantify the LGVI accu-
racy with the classical Kepler orbit analytical solution. The spacecraft initial conditions
are selected such that the outcome would results in a circular closed orbit. Fig. 5.1 shows
the position error history between the RK7 numerical solution and the analytical solu-
tion for different time steps (left) and the maximum position error for different time steps
(right). The position error curves increase over time, and it is expected since the trunca-
tion errors are cumulative over time. Particularly under the assumption of dominating
truncation errors, the position error behaves approximately as a polynomial in ∆t . It
is confirmed by the right figure, where the maximum position error increases linearly
in logarithmic scale. When the time step becomes small, a more irregular and erratic
behavior of the curves can be observed. Since the numerical and the analytical solu-
tions are very close, the rounding errors start to become relevant. Fig. 5.1 shows that a
time step of 100 s leads to a precision in the order of mm and the minimum position
error o(10−13) km can be approximately obtained with ∆t = 0.5 s. Since the point mass
propagation does not require a large computational effort, ∆t = 0.5 s is chosen for the
benchmark solution.

Now that a benchmark solution is available, the same procedure described above is ap-
plied to the LGVI and the spherical harmonics gravity of the irregular central body can
be included in the acceleration models. As result Fig.5.2 is obtained. Conversely to the
previous case, now the position error curves are not characterized by the rounding errors
and the their order of magnitude is undoubtedly higher. It is somehow expected since
the rigid body propagation is characterized by the coupling between the translational
and rotational dynamics. A larger difference with respect the point mass propagator is
unavoidable. However the information on the LGVI accuracy can be still obtained. The
requirement accuracy of the error less than 1m can be obtained with all the time steps
≤ 10 s. Particularly, since the LGVI does not take an high computational time, it is chosen
a time step of 1 s which corresponds to an accuracy of approximately 0.1m.
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Figure 5.1: Position error ‖εr (t ,∆t )‖ as a function of time t (left) and maximum position error as function of
∆t (right). Position error between point mass propagator with RK7 integrator and analytical solution, obtained
with Bennu central gravity.
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Figure 5.2: Position error ‖εr (t ,∆t )‖ as a function of time t (left) and maximum position error as function
of ∆t (right). Position error between rigid body on TSE(3) propagator with LGVI integrator and point mass
propagator RK7 integrator, obtained with Bennu spherical harmonics gravity.
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5.2 OPEN-LOOP DYNAMICS MODEL AND SIMULATION RESULTS

The implementation of the simple model consisting in the spacecraft dynamics on TSE(3)
ad the gravitational effect is shown in Fig.5.3. Since the objective is to simulate the open
loop response of the system, the control force and moment uc = [Mc , Fc ] are set to zero,
as well as the disturbance force and moment ud = [Md , Fd ]. There is only one environ-
mental effect which is represented by the gravitational field of the irregular central body.
The "Spacecraft Dynamics on TSE(3)" block contains Eq.(2.10) and the integration us-
ing the algorithm previously discussed. The "Gravitational Effect" block makes use of
Eqs.(2.16)-(2.19). 
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Figure 5.3: Schematic representation of the Simulink model for the open-loop dynamics on TSE(3)

The highly perturbed environment in which the spacecraft operates is primarily induced
by the irregular shape of the central body. Spherical harmonics model is used to approx-
imate the gravitational field of the central body, as described in Section 2.3. The space-
craft orbits around the asteroid Bennu, whose properties are given in Tab.2.1. Moreover,
the spacecraft parameters and initial conditions are given in Tab.5.1. The inertia matrix
is selected according to properties of the Delfi I satellite. The numerical simulation is
carried out for 100 Earth days with a time step of 10 s, which according to the previous
analysis leads to a precision of ≈ 1m.

The traditional approach assumes a point mass spacecraft model to propagate the trans-
lational motion of the spacecraft, while the attitude motion is considered to be com-
pletely decoupled from it. The model used in this work, instead, describes the rigid body
motion including the coupling between the rotational and translational motion. For this
reason, it is interesting to compare the results for the rigid body spacecraft model on
TSE(3) and the point mass spacecraft on Euclidean space. The orbit-attitude coupling
on the spacecraft dynamics in proximity of small irregular bodies can have a strong im-
pact and also may lead the spacecraft to rapidly diverge [58].

Fig.5.4 shows the differences in trajectory between the rigid body spacecraft model on
TSE(3) obtained with the LGVI, and the point mass spacecraft on Euclidean space ob-
tained with the RK7 integrator. The orbits are shown in the BCI frame. It can be seen how
the satellite orbit for the point mass remains confined in the orbit plane, while the rigid
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body’s orbit does not. To get a better idea of the orbital parameter variation, in Fig.5.5
some Kepler orbit and the orbital energy are shown with respect the time, for both the
spacecrafts. The asteroid’s oblatness (C20 zonal harmonics) is the largest perturbation
of the gravitational field [108]. It causes the regression of the ascending node for both
the spacecraft models, and in addition C20 is responsible of the oscillation of the point
mass Kepler elements [109]. Clearly, without C20,C22 perturbations, they would have
been constant and the trajectory would have delineated a Keplerian orbit. The rigid body
quantities are subjected to a high frequency component which may be induced by the
satellite’s tumbling.

In Fig.5.6 the rigid body spacecraft state variables are shown, where the rotation matrix
is represented through the Euler angles 123 sequence. The influence of the attitude on
the translational motion is clear by looking at the velocity in the BCI frame. It can be
seen that the velocity components are characterized by a faint oscillation. Finally Fig.5.7
depicts the rigid body spacecraft force and moment due to the gravitational field of the
irregular central body in SBF. The moment’s third component is not zero, but it is of an
order of magnitude smaller than the first two since the spacecraft has a low inertia com-
ponents in correspondence of the z body axis.

Table 5.1: Spacecraft parameters and initial conditions for its relative states of with respect to asteroid Bennu.

Parameter Values

Relative Position [km] r0 =
[
2 0 0

]T

Relative Attitude [deg ] θ0 =
[
30 60 70

]T

Relative Velocity [km/s] v0 = RT
0

√
µ
r0

[
0 1 0

]T

Relative Angular Velocity [deg /s] ω0 =
[
0.0172 0.0286 0.0573

]T

Mass [kg ] m = 850

Inertia [kg m2] J = [
124.531 124.586 0.704

]T

Navigation and Control Algorithm Design on TSE(3) Gennaro Mangiacapra



46 5. SIMULATION RESULTS AND DISCUSSION

Figure 5.4: Spacecraft motion around asteroid Bennu. Blue and yellow trajectories represent rigid body and
point mass motion respectively.
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sent rigid body and point mass motion respectively.
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frame. The time axis is limited to 2 Earth days propagation.
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Figure 5.7: Gravitational force and moment exerted by the central body on the rigid body spacecraft, in the
SBF. The time axis is limited to 1 Earth day propagation.
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5.3 NAVIGATION SYSTEMS COMPARISON
Generally the performance analysis of any navigation system aims to develop a compre-
hensive evaluation of the algorithms from several aspects, such as parameter and noise
sensitivity, complexity, sample time, etc. [110]. In this work, the navigation algorithms
performance evaluation is conducted in agreement with [65], where a comparative study
of EKF and a sliding mode observer is conducted applied to orbital determination for
formation flying about the L(2) Lagrange point. Particularly the emphasis is given to the
following specifications:

• Sensitivity to measurement noise

• Sensitivity to parameter uncertainty

• Sampling frequency

• Input Disturbance

where the first one is generally the most important, since the measurement noise is the
results of the sensors used in the navigation system. In this section, a case study scenario
is introduced and the tuning of the navigation algorithm is discussed. Subsequently,
their performance are tested in different test cases, according to the above points. It is
emphasized that the performance evaluation is conducted independently from the con-
trol algorithms already discussed. Therefore the navigation systems are not run in the-
loop with the control systems, hence their estimate are not fed into the control system.
In these evaluations, the MLBS control system has been used.

5.3.1 NOMINAL CASE STUDY

In order to investigate the navigation systems performance, a nominal case study is se-
lected. The scenario consists in the spacecraft with the characteristics given in Tab. 5.1,
which has to reach and keep a closed orbit around the Saturnian moon Pan (Tab. 2.2).
The reference position is represented by a closed circular orbit, not necessarily in the
equatorial plane, parameterized as

rr e f (t ) = Ro [ro sin(no t ), ro cos(no t ), 0]T (5.6)

where Ro represents the transformation matrix from the perifocal frame to the BCI frame,
ro is the orbit radius and n0 is the orbital mean motion. The period of the orbit To is
clearly related to the mean motion through the Kepler third law. Once Ro and ro are
defined, To is computed as

To = 2π

no
= 2π

√
µ

a3 (5.7)

where the semi-major axis is a = ro for a circular orbit. The reference translational veloc-
ity in the BCI frame, vr e f (t ), is obtained by taking the time derivative of the position vec-
tor in Eq.(5.6). The numerical values selected for this case are: Ro = Ry (60), ro = 55km.
The reference attitude consists in the following time-dependent large command

θr e f (t ) = θa

[
sin

(
2π

Ta
t

)
, 0, 0

]T

(5.8)
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where θa = 85 deg and Ta = 1 hr, and its time derivative returns ωr e f (t ). The reason
for this choice lies in the need of evaluating the navigation algorithms performance
when the attitude approaches to large angles. In fact, in any estimation problem the
attitude plays a major role in the choice of the attitude parametrization. Each type of
parametrization is characterized by some disadvantage. For instance, the kinematic sin-
gularity of the Euler Angles, the redundancy and non.uniqueness of the quaternion, the
redundancy of rotation matrix or the discontinuity of the modified Rodriguez parame-
ters [111].

As important as the case study, is the selection of the measurement and process
noise statistics. The measurement noise represents the uncertainty and imperfection
of the sensors and the process noise is considered as a modeling error that is intro-
duced to compensate the model incertitude. The process noise can be assumed to have a
standard deviation few orders of magnitude smaller than the measurement noise, when
there is a full knowledge of the system model. In this comparison the process noise
affects only the UKF whose mathematical model of the plant has been introduced in
Section 3.2. The STO does not need it since it is a state observer, and its mathematical
model is basically a reproduction of the plant. In order to investigate how the navigation
systems perform with noisy measurements, their standard deviations are selected rea-
sonably high. The standard deviations of measurement and process noise are given in
Tab. 5.2.

Table 5.2: case study measurement noise standard deviations.

Parameter Measurement Noise
Attitude [deg] σζθ = 1
Position [m] σζr = 50
Angular Velocity [deg/s] σζω = 0.1
Velocity [m/s] σζv = 10

The nominal case study is run with a sample frequency of fs = 1 Hz (∆t = 1 s). Moreover,
the navigation algorithm initial condition are chosen with an error of 10% with respect
the true states, for the pose. While an an error of 20% with respect the true states, for the
velocities.

5.3.2 PERFORMANCE ANALYSIS

In order to fairly compare the proposed navigation systems in the next sections, it is
necessary to tune their gains such that both UKF and STO performs similarly. It is em-
phasized that these values are not retrieved with any optimized algorithm, whereas they
are found with a trial and error procedure. In order to facilitate this process, the UKF and
STO are tuned such that their responses have a good compromise between convergence
time and state error statistics. Clearly, since the two navigation system will be placed in
the loop with the control systems, it would be advantageous that their convergence time
would be as small as possible.
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The UKF needs the following matrices to be defined: process noise covariance matrix
Q, measurement noise covariance matrix R and the initial estimated state error covari-
ance matrix P0. These matrices are chosen to represent a reasonable level of expected
noise and the accuracy of the initial state error. Since the measurement noise statistics
is known, due to the simple sensor model adopted, R is immediately determined. It can
be defined according to the variance of the level of measurement noise, hence R is a di-
agonal matrix whose elements are the square of the values in Tab. 5.2. The process noise
covariance matrix Q is significantly more difficult to quantify mathematically. All the
uncertainties, disturbances, and unmodelled dynamics are modelled as lumped process
noise [65]. In this work no particular method has been used for the tuning, instead a trial
and error method is employed, where the Q elements standard deviation are increased
from 10−5 to 102. This procedure showed that having a large Q leads to higher state error
statistics; also the navigation algorithm convergence time increases meaningfully. This
is due to the fact that, according to Eq.(3.29), if Q is high, then also the a priori covari-
ance state error matrix estimate has a large dispersion. In principle, the elements of P0

matrix may be computed with the knowledge of the initial state uncertainty. However,
in order to investigate whether the UKF performs better with an higher initial state co-
variance, the same procedure of the process noise matrix is applied. Particularly the P0

elements standard deviation are increased from 10−5 to 102. This process showed that
having really small values of P0 is not beneficial because the convergence time increases
and consequently also the mean and standard deviation of state errors. The combina-
tion of values, for Q and P0 which gave the best performance are shown in Tab. 5.3.

On the other hand, the STO needs a tuning procedure more similar to the one employed
with the control systems. As result the values provided in Tab. 5.3 can be found.

The norm of the state errors can help to obtained insights about the navigation algorithm
performances, more than the history of each state. Particularly, such errors are depicted
in Fig. 5.8. Even if the nature of the two proposed navigation systems is consistently dif-
ferent, the steady state of their estimated states have a similar order of magnitude. It
may seem that both the navigation systems are not able to estimate with high accuracy
the position. However, it must be emphasized that the level of measurement considered
is meaningful. For instance, the position is estimated with an accuracy of O(100) m, but
the received measurement has a standard deviation of 50 m. On the other hand, it can
be seen that the convergence rate is particularly high for the attitude and angular veloc-
ity. The position and velocity have a slightly low convergence rate, however they reach a
reasonably precision of ≤ 100 m and ≤ 1m/s respectively, in less than 100 s. Fig. 5.8 also
shows that the UKF estimates are slightly noisier than the STO estimates. However it can
be expected, since the UKF has a stochastic nature, while the STO has a deterministic
nature.

The navigation system performances may be described through the statistics of the state
errors previously analyzed. They are given in Tab. 5.4. According to [112], the state er-
rors characteristics may be summarized through their mean, standard deviation (std)
and normalized root mean square (RMSE%). The mean represents the expected value
of the error and has the advantage of being particularly efficient in describing the order
of magnitude of the signal; however it has the main disadvantage of being influenced
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by outliers. The standard deviation is the square root of variance and it represents the
measure of the amount of variation or dispersion of the estimation errors. The RMSE is
the variance of the residuals squared and it indicates the degree to which the predicted
states are close to the observed data. In this case, the percentage normalized RMSE%

has been used, which is the RMSE normalized with the highest value of the "true" signal.
Clearly the estimation improves as these three numerical values decrease [113]. It can
be seen that the UKF achieves smaller state means, a part from the angular velocity, in
agreement with the previous comments on the order of magnitudes. The high STO posi-
tion mean and std are achieved because of the initial high values with respect UKF. The
fact that the normalized RMSE have a similar order of magnitude, confirm that the two
navigation systems are able to achieve a comparable precision, even if the characteris-
tics of the UKF transient are more favorable.

The performance of the UKF does not reflect only in the accuracy of the estimation error,
but also in the accuracy of the estimated state error covariance matrix P . The diagonal el-
ements of this matrix should resemble the variance of the Gaussian distribution resulting
from the estimated state errors. Therefore, the square of the diagonal elements of P rep-
resents the confidence bound in which the 84.13% of samples should be placed. Fig. 5.9
shows the UKF estimation error and the relative estimated standard deviation. The good
performance of the UKF is confirmed by the fact that the estimation errors are unbiased,
i.e. have zero mean and are contained in the estimated bounds [114]. Moreover, the re-
sults show that the state errors are well bounded inside the covariance bounds, meaning
a good modelling of the stochastic system. It must be emphasized that in practical situ-
ations the true states may be not known. In these cases the same procedure is applied to
the residual r and the measurement covariance matrix Pzz . Or another technique con-
sists in showing that the power spectral density (PSD) of the estimated measurements
assumes smaller values than the PSD of the true measurements.

Table 5.3: UKF case study measurement and process noise standard deviations (left); parameters of the navi-
gation system based on STO algorithm (right)

Parameter Process Noise Initial Error
θ[deg] σζθ = 10−5 · 180

π σθ0 = 1 π
180

r [m] σζr = 10−5 ·103 σr0 = 1 ·103

ω[deg/s] σζω = 10−5 · 180
π σω0 = 1 π

180
v[m/s] σζv = 10−5 ·103 σv0 = 1 ·103

Parameter Value
G1 [s,s/m] 10−5

G2 [-,m−1] 10−1

B1 [-] 1
B2 [-] 6 ·10−2

B31 [1/s] 10−3

B32 [m/s] 10−4

Table 5.4: Performance of UKF and STO algorithms: state errors mean, standard deviation and normalized
root mean square.

Algorithm Parameter mean std RMSE%

U K F θ [deg] 1.2453 9.2446 4.4956
r [m] 5.3286 11.6662 0.0213
ω [deg /s] 0.0714 0.5288 7.4190
v [m/s] 0.1780 0.3700 3.5154

ST O θ [deg] 0.7872 5.8489 2.8327
r [m] 84.1557 508.4562 0.8547
ω [deg /s] 0.0526 0.4966 7.0157
v [m/s] 0.4834 0.9686 8.2455
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Figure 5.8: Norm of the difference between the reference states and the estimated states, obtained in open
loop with the proposed navigation systems.

Figure 5.9: State estimation errors and estimated covariance state errors obtained with UKF, with respect to the
time.
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5.3.3 CASE 1: SENSITIVITY TO MEASUREMENT NOISE

In this section, the performance of the two proposed navigation systems is analyzed with
respect the accuracy of the provided measurements. The two sets of noise standard devi-
ations shown in Tab. 5.5 are used. The first sets represents a navigation system employed
with very accurate and precise sensors thus explaining the low measurement noise stan-
dard deviation of each state. The second set, instead, represents a navigation system
employed with very noisy sensors. The case study considered in the first place had stan-
dard deviations in between these new two sets.

Table 5.5: Case study measurement noise standard deviations.

Parameter Measurement Noise (low) Measurement Noise (high)
Attitude [deg ] σζθ = 0.1 σζθ = 10
Position [m] σζr = 1 σζr = 500
Angular Velocity [deg /s] σζω = 0.001 σζω = 1
Velocity [m/s] σζv = 1 σζv = 1000

The norm of the state errors are shown in Fig. 5.10 for the two proposed sets for both
UKF and STO. When the measurements are not corrupted, the UKF is able to provide
estimates with an incredibly high accuracy and convergence rate. On the other hand
when the measurement are noisy, the transient response behaves worse, having an ini-
tial overshoot and an unacceptable high convergence time. For noisy measurements,
the STO is more robust in the transient response even if the velocity and position errors
have higher order of magnitude with respect UKF. When the measurements are not cor-
rupted, the STO is not able to provide estimates with the same accuracy of UKF, instead.

The measurement covariance matrix R changes according to the standard deviation of
the noise for each state. In the UKF algorithm, this matrix influences the a posteriori esti-
mation of the state error covariance matrix P . For this reason, it is interesting to analyze
how the estimation of P changes with respect the one given in Fig. 5.9. The results are
shown in Fig. 5.11- 5.12. When the first set of Tab. 5.5 is used theσ bounds assumes small
values in agreement with the order of magnitude of the relative state error. The same ra-
tional applied when very noisy measurements are used. It is interesting to note that for
accurate measurements the σ bounds have less oscillation in the transient phase, due
to the fact that the estimated states converge with high rate. In addition, the same sinu-
soidal shape found in the state error norms, can be seen. For noisy measurements, the
σ bounds are more irregular in the transient phase and then they evolve constantly.
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Figure 5.10: Norm of the difference between the reference states and the estimated states, obtained in open
loop with the proposed navigation systems. Results shown for "low" and "high" measurement noise statistics.

Figure 5.11: State estimation errors and estimated covariance state errors obtained with UKF, with respect to
the time. Results obtained with "low" measurement noise statistics.
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Figure 5.12: State estimation errors and estimated covariance state errors obtained with UKF, with respect to
the time. Results obtained with "high" measurement noise statistics.
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5.3.4 CASE 2: SAMPLING FREQUENCY

The proposed navigation systems are now tested with different sampling frequencies,
which are selected to be in the same range of the ones used in the control system com-
parison. Particularly, starting from 10 H z (∆t = 0.1) it is decreased up to 0.09 H z (∆t =
11 s). In Fig. 5.13 the results are shown in terms of the statistics of the norm of the es-
timation errors. For high fs (small ∆t ), the UKF outperforms the STO, and the slope of
the curves show there is still margins of improvement for smaller time steps. The STO,
instead, does not seem to perform significantly better, hence an additional decreasing of
∆t would be meaningless. In the middle zone of fs , the two proposed navigation systems
perform similarly and for small fs (high ∆t ), the STO generally performs better. Even if
the UKF achieves better results for small ∆t , the the STO seems to be definitely more
robust to the change in sampling frequency.
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Figure 5.13: State error statistics (mean, std and normalized RMSE) with respect the time step ∆t , which is the
inverse of the sampling frequency fs .

5.3.5 CASE 3: INACCURATE INITIAL CONDITIONS

The proposed navigation algorithms need to be initialized with an initial condition or
guess for the estimated states. The value used to initiate the estimation algorithm plays
an important role from the perspective of the navigation system performance. For in-
stance, algorithms such as the EKF, which uses a linearization technique, may also di-
verge if the state initial is not chosen correctly.

In this section, the behaviour of UKF and STO is analyzed with respect to the uncertainty
on the initial estimate, given on all the states at the same time. The STO algorithm just
need the initial guess x̂0 = (g0,V0). Unlike the observer, the Kalman Filter also need the
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initialization of the state error covariance matrix P0 = E(x̂0 −x0)(x̂0 −x0)T . Clearly, when
the difference between the real state and the estimated one increases, so does the error
covariance. For this reason, it is interesting to evaluate the performance of the UKF even
in the case the initial estimate of P is tuned accordingly to the degree of uncertainty on
the initial estimated state X0. Therefore, the additional label "UKF(1)" is used for the
UKF which has a varying P0. Instead UKF has the constant P0, which has been defined
previously.

Let the nominal initial states be R(θ0),1,r0,1,ω0 and v0, the navigation algorithms initial
estimates are parametrized as

ĝ0 =
[

R
((
θ0(1+γ/100)

))
r0

(
1+γ/100

)
0 1

]
V̂o = [

ω0
(
1+γ/100

)
, v0

(
1+γ/100

)] (5.9)

where γ represents the percentage uncertainty, which varies from −200% to 200% for
each state at the same time. The UKF(1) adapts the initial state error covariance matrix
elements using the order of magnitude of the difference between the guess and the true
state. The results are shown in terms of the statistics of the norm of the estimation er-
rors, in Fig. 5.14. It can be seen that STO is robust in keeping a good performance for
the velocity estimation, and it performs similarly to the UKF for the attitude estimation.
On the other hand, the position and angular velocity assume too high statistics for large
values of γ. The UKF performs better than STO, even if when γ ≥ 50% the velocity esti-
mation gets worse. It can be seen that generally the UKF(1) performs similarly to UKF
for moderate values of γ, but when the uncertainty increases, UKF(1) performs better.
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Figure 5.14: State error statistics (mean, std and normalized RMSE), with respect the initial state estimate
uncertainty γ.
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5.4 CONTROL SYSTEMS COMPARISON
In the analysis and design of any control system, many issues have to be considered [115].
The emphasis is typically given to the following specifications:

• Stability of the Closed-Loop System

• The response to command signals (tracking)

• The robustness to model uncertainties

• The input disturbance rejection

• The noise measurement injection

In this section, a case study scenario is introduced and the proposed control systems
are tuned such that the closed-loop response satisfies some performance indexes. Sub-
sequently, their performance are tested in different test cases, according to the above
points. However the noise measurement injection is not considered, since the noisy
measurement will be handled by the navigation system, in the final complete GNC de-
sign. In addition, the robustness to change in sample frequency is accounted.

5.4.1 NOMINAL CASE STUDY

In order to do so, a nominal case study is selected. The scenario consists in the same
one used in Section 5.3.1. With respect to that one, two differences are introduced. The
first one is the simulation time which is extended for a time of To . The second change
reflects in a different choice for the commanded attitude, which consists in the series of
2 doublets with large commanded attitude

Θr e f (t ) =


[0, 0, 0]T deg ift ≤∆tm

[80, 80, 80]T deg ift ≥∆tm , t ≤ 2∆tm

− [80, 80, 80]T deg ift ≥ 2∆tm , t ≤ 3∆tm

[30, 30, 30]T deg ift ≥ 3∆tm , t ≤ 4∆tm

(5.10)

with ∆tm = To/4 s. The reference angular velocity is kept ωr e f = [0, 0, 0]T deg/s for all
the simulation time. Finally the spacecraft is assumed to have the initial position and
velocity with a 10% of error with respect to the reference, it has an initial attitude of
Θ0 = [30, 60, 70]T deg and it is tumbling with ω0 = [5, 2, 3]T deg/s.

The integration is performed with the LGVI introduced in Chapter 2 for a time of To ,
using a sample frequency of fs = 1 Hz, i.e. a time step of ∆t = 1 s.

5.4.2 PERFORMANCE ANALYSIS

In order to fairly compare the proposed control systems in the next sections, it is nec-
essary to tune their gains such that both MLBS and SMC behave similarly. It is empha-
sized that these values are not retrieved with any optimized algorithm, whereas they are
found with a trial and error procedure. For this reason, in this preliminary section, the
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proposed control systems are tested through numerical simulations. This procedure is
also particularly useful to gather information of the closed-loop system behavior with
respect the gain values and the saturation limits. The control systems are tuned on the
basis of the following criteria:

• The position steady state error has to be ‖rss (t )‖ ≤ 10 m

• The settling time to reach the condition ‖r (t )− rr e f (t )‖ ≤ 1000 m has to be less
than 1000 s, after a command

• The attitude steady state error has to be ‖Θss (t )‖ ≤ 0.5 deg

• The settling time to reach the conditions: ‖Θ(t )−Θr e f (t )‖ ≤ 1 deg has to be less
than 200 s after a command

• The control force saturation limit has to be ≤ 50 N per axis

• The control moment saturation limit has to be ≤ 1 Nm per axis

As result of this tuning procedure, the parameters in Tab. 5.6- 5.7 are obtained for the
MLBS -and SMC-based control system respectively. It can be seen that the MLBS is able
to satisfy the aforementioned constraints with smaller saturation limits. Particularly the
SMC controller needs around three times the saturation limits of MLBS. In addition, dur-
ing this preliminary phase, the MLBS has proved to guarantee the closed-loop conver-
gence even with extremely small saturation limits (Fc,i = 5 N, Mc,i = 0.01 Nm) at the cost
of having a slower convergence. In fact when the maximum available control torque and
force are low, the controller gains are also low, and this leads to an undesirable slow con-
vergence rate [116]. On the other hand, the SMC is more sensible to the saturation limits
changing, and with very small allowable control input can experience more issues in or-
der to guarantee the convergence. The discontinuous control action may also make the
closed-loop system never converge.

The responses of the closed-loop systems are not shown since they don’t allow to gather
useful information on the behavior of the systems. Instead, in Fig. 5.15 the norm of the
difference between the reference states and the spacecraft states for the two proposed
control algorithm are shown. Both the algorithms are able to handle the two condition
given on the settling times. The steady state error conditions are more critical, since large
attitude commands are required. In fact, when the spacecraft performs an attitude ma-
neuver, this affect also the position and the velocity since there is the coupling between
the two dynamics. For this reason in correspondence of each quarter of period there is a
peak. It can be seen that the MLBS algorithm is able to lead the spacecraft to exception-
ally small steady state errors, even smaller than the required ones. The SMC algorithm
has more difficulties to keep the above performance indexes for the attitude, especially
in the third quarter of period. It is the most critical, since it is required an attitude com-
mand of 160 deg for each axis. In this period of time also the position is strongly affected,
even if the condition of being under 10 m is satisfied.

In Fig. 5.16 the norm of the control force and moment are reported for the two control
algorithms. It can be seen that the control moments are comparable in the first two
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quarters. However when large attitude maneuvers are required, the SMC needs a larger
torque. The control forces are comparable during the attitude maneuver, even if the SMC
controller requires a slightly longer convergence to the steady state. At the beginning the
SMC algorithm requires a significantly larger amount of thrust to bring the spacecraft to
the orbit. It must be noted that the control force at regime are small but nonzero, since a
control force is needed to keep the spacecraft moving along the closed orbit, because it
is not a natural trajectory of the system [117].

The control system performances may be described by the performance indexes re-
ported in Tab. 5.8. Where ∆V is the integrated control acceleration, ∆V = ∫t

0 ‖ac (τ)‖dτ
and∆τ is the integrated control torque∆τ=∫t

0 ‖Mcτ‖dτ. Then ‖acm‖ and ‖τcm‖ are the
peak control acceleration and control moment respectively, ∆Mp is the burnt propel-
lant mass. The numerical values reported here confirm the previous analysis conducted
through Fig. 5.15 - 5.16, the MLBS behaves better. The results obtained with the SMC
are consistent with the ones obtained in [117], where a super twisting control (STW) has
been implemented for a "decoupled" orbit control case.

Table 5.6: Parameters of the control system based on MLBS algorithm.

Parameter Values
Control Force Saturation per axis [N ] Fc,i = 20
Control Moment Saturation per axis [N m] Mc,i = 0.3
κ [km s−2] 10−6

k11 [s−1] 0.05
k12 [s−1] 0.01
k21 [s−1] 0.05
k22 [s−1] 0.01
k31 [s−2] 0
k32 [s−2] 10−9

a [−]
[
1.2 1.1 1

]T

Table 5.7: Parameters of the control system based on SMC algorithm.

Parameter Values
Control Force Saturation per axis [N ] Fc,i = 50
Control Moment Saturation per axis [N m] Mc,i = 1
Kσ,M [kN m] 1
Kσ,F [kN ] 50
k11 [s−1] 0.05
k12 [s−1] 0.01
c11 [s] 5 ·10−9

c12 [s km−1] 0.05
c21 [−] 5 ·10−9

c22 [km−1] 0.0005
c31 [−] 10−12

c32 [km−1] 0
k11 [s−1] 0.05
k12 [s−1] 0.01

a [−]
[
1.2 1.1 1

]T
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Table 5.8: Performance of MLBS and SMC laws: ∆V , ∆τ, control input peaks and propellant mass burnt.

Control Low ∆V [km/s] ‖acm‖[km/s] ∆τ [N ms] ‖τcm‖[N m] ∆Mp [kg ]

MLBS 0.0691 4.0754 ·10−5 89.0771 0.4243 25.2909
SMC 0.0915 1.0189 ·10−4 151.4317 1.6225 36.5747
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Figure 5.15: Norm of the difference between the reference states and the spacecraft states, obtained closing
the loop with the proposed control systems.
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Figure 5.16: Norm of the control force and moment for the two proposed control systems.

5.4.3 CASE 1: SENSITIVITY TO PARAMETER UNCERTAINTY

The results obtained in the previous section highlight that the MLBS behaves better than
the SMC algorithm. However it must be emphasized that the SMC law (Eq.(4.35)) is def-
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initely easier than the MLBS one (Eq.(4.6)), and has the important advantage of being
completely independent by the mathematical model of the plant. In addition, also the
plant parameters, such as the spacecraft mass or inertia tensor, don’t even appear. It is
not the case of the MLBS law, which is influenced by the knowledge of the parameter J
and m. In this section the behavior of the MLBS control system is analyzed along with
the uncertainty on these two plant parameters. Particularly, let the nominal values be
m0 and J0, the MLBS known values are parametrized as

m = m0(1+γm/100) J = J0(1+γJ /100) (5.11)

where γm ,γJ are the percentage error, which varies from −90% to 150%.

In Fig. 5.17 the results of this first case are shown in terms of ∆V and ∆τ for the MLBS-
based control system. The mass uncertainty influences meaningfully only the required
control force which is used to control the translational dynamics variables: position and
velocity. The MLBS control law is linearly dependent from the value of the mass known
by the control system. For this reason, with equal state error, the acceleration produced
with a large mass will be greater than the acceleration produced with a lower mass. De-
creasing the known mass, the total ∆V decreases, but on the other hand the position
and velocity responses are badly influenced. The convergence rate becomes undesir-
able long, and the steady state error increases. However, they still remain bounded as
the values obtained in Fig. 5.15. Looking at Eq.(4.2), it can be seen that ∆V varies as Mp ,
i.e. in order to have a large ∆V , more propellant mass is required. In this case, the mass
consumption also remains bounded between 20 kg for the minimum mass uncertainty
and 30 kg for the maximum one.

The inertia uncertainty, instead has a large impact on both the rotational and transla-
tional dynamics. The reason lies in the coupling of the velocity derivative with the an-
gular velocity, Eq.(2.10). The response of the rotational dynamics is comparable to the
response of a second order system where the inertia acts as damper. The response varies
from being overdamped to critically damped and finally to underdamped along with the
inertia variation from −90% to 150%. The control system has to provide a large∆τ in the
critically damped situation, since the response converges in a short amount of time. The
other two regions are characterized by lower values of ∆τ. The velocity response is also
influenced by the inertia tensor uncertainty. Particularly the highest ∆V happens when
the attitude response is most sluggish. When the inertia increases the ∆V decreases, but
near the highest values of J , the ∆V tends to increase again. This behavior depends on
the velocity response which becomes to have an higher peak. Although the state errors
tend to increase with a decreasing inertia, they still remain bounded thus assuming small
values as the ones in Fig. 5.15. In this case the mass consumption remains under 30 kg,
except for γJ =−90% where it increases to 40 kg.

5.4.4 CASE 2: SAMPLING FREQUENCY

The selection of sampling frequency is an important issue in control system design. In
principle, having low sampling rates is beneficial from the economical perspective. In
fact, low fs mean high ∆t , and then there is more time available for control algorithm
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Figure 5.17: Norm of the control force and moment for the MLBS proposed control system with respect to
parameters uncertainty γm and γJ . SMC control system does not appear since it is insensitive to change in γm
and γJ .

execution, which can thereby be implemented on a slower (and cheap) computer. How-
ever the digitization of a well behaved analog control systems can heavily affect system
response. If the sampling frequencies becomes too small the closed-loop system may
even become unstable, since the control system is not able to follow the error dynamics.
In fact, fs should at least be twice as high as the bandwidth of the error signal in agree-
ment with the Nyquist criterion [118].

The proposed control systems are now tested with different sampling frequencies. Start-
ing from 20 Hz (∆t = 0.05 s), it is decreased up to closed-loop divergence. This procedure
is particularly useful for two reasons: 1) It allows to test the robustness of the control law
with the sampling rate changing; 2) It allows to understand how the control law performs
with the nominal rate of 1 Hz (∆t = 1 s).

In Fig. 5.18 the results are shown in terms of ∆V and ∆τ for both the control systems.
It can be seen a similar behavior for all the four curves: with low fs (high ∆t ) the curves
tend to increase exponentially, while with high fs (low∆t ) the curves tend to a plateau. It
is important to underline that the MLBS law is able to guarantee the system convergence
up to fs = 0.0870 Hz (∆t = 11.5 s), while the SMC law up to fs = 0.8696 Hz (∆t = 1.15 s).
Moreover, the MLBS has not significant changes in terms of control effort reducing the
time step more than 1 s. On the other hand, for the SMC, the frequency reduction is ben-
eficial for the force control effort, which seems to converge to values comparable to the
ones of MLBS. However, in this work a sampling rate of fs = 1 Hz (∆t = 1 s) is used, due
to the fact that the integration periods are large. Selecting a too small time step would
increase tremendously the computational cost.

Gennaro Mangiacapra Navigation and Control Algorithm Design on TSE(3)



5.4. CONTROL SYSTEMS COMPARISON 65

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

80

90

100

110

120

130

140

150

160

Figure 5.18: ∆V and ∆τ for the two proposed control systems with respect the sampling frequency fs .

For the MLBS algorithm, the attitude and angular velocity state errors are not meaning-
fully influenced by the change of sampling frequency. The position and velocity state
errors behave approximately polynomial in fs . With ∆t = 11.5 s a position accuracy of
14 m and a velocity accuracy of 10−4 m/s are guaranteed. With ∆t = 0.05 s, instead, the
position accuracy of ≤ 0.1m and the velocity accuracy of ≤ 10−8 m/s are obtained, at the
expense of a propellant mass consumption of 23 kg. For the SMC algorithm, only the
position state error is heavily influenced by the sampling frequency. With the highest fs

an accuracy of ≤ 1 m is obtained, at the expense of a propellant mass consumption of 50
kg.

5.4.5 CASE 3: INPUT NOISE DISTURBANCE

In this last section, the robustness of the two proposed control system is tested when
additional input noisy force and torque are fed into the system. It is not an unrealistic
assumption when a spacecraft application is considered. As matter of fact, in the space
there are several sources of disturbance. For instance, for a low-Earth orbit (LEO) there
are:

• Gravity gradient o(10−5) Nm

• Solar radiation pressure o(10−6) Nm

• Earth magnetic field (10−5) Nm

• Air drag o(10−7) Nm
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• Internal disturbances, as: uncertainty in centre of gravity, thrusters misalignment,
rotating machinery, liquid sloshing, dynamics of flexible bodies, thermal shocks [63]

Other effects which are relatively small with respect to the above ones, are originated by
Earth Albedo effect, the solar wind or the gravitational field of other near bodies [119].

In this context none of the above disturbance is modeled in detail, since the objective
is to test the robustness of the control systems to the input noise disturbance ud =
[Md ,Fd ]. For this reason the disturbance force and moment components are modeled
as a zero mean Gaussian white noise with increasing order of magnitude variance

Fd ,i ∼N (0,σ2
F,d ) (5.12)

Md ,i ∼N (0,σ2
M ,d ) (5.13)

where the moment standard deviations σM ,d varies from 0 Nm to 0.0500 Nm, and the
force standard deviations σF,d varies from 0 N to 200 N. The upper limits are chosen as
the highest values of noise variance for which both MLBS and SMC can guarantee the
closed-loop stability. Moreover the force and moment input disturbances are studied
separately, such the the weight of the single effect can be analyzed. Clearly the combi-
nation of the two, can only results in a worse performance.

In Fig. 5.19 the results are shown in terms of ∆V and ∆τ for both the control systems.
The third dimension in the color bar is represented by the dimensionless time in which
the total amount of propellant is burnt and the spacecraft diverges from the tracking or-
bit. The first plot represents the control effort variation with respect the force standard
deviations σF,d . The force disturbance does not affect meaningfully the control torque,
hence it is not reported. In agreement to the previous cases, the SMC tends to require
a greater amount of ∆V than the MLBS control system. It can be seen that the SMC
consumes all the propellant mass already with σF,d = 40 N after about 0.7To . The MLBS
starts to use up all the propellant around σF,d = 100 N after about 0.9To . In the worst
scenario of σF,d = 200 N the SMC uses all the propellant in less than 0.3To , while MLBS
is able to use it up to 0.55To . In Fig. 5.20 the state error norms are shown for the first part
of the mission for different noise variances. It can be seen that the attitude and angular
velocity errors are completely insensitive for SMC, while for MLBS they become to be
slightly noisy. The position and velocity errors, instead, remain bounded and acceptable
also for the largest disturbance force for SMC. While MLBS is not able to handle large
source of noise, and even with the small σF,d = 1 N, performs worse than SMC.

The two bottom plots represents the control effort variation with respect the moment
standard deviations σM ,d . In this case, the impact on both the control force and mo-
ment is heavy. It is interesting to note that the MLBS struggles a lot to control the posi-
tion and velocity when a disturbance noise is considered. The total amount of propellant
is already used around σM ,d = 0.015 Nm after about 0.7To . The SMC, instead starts to
burn all the propellant around σM ,d = 0.04 Nm after about 0.9To . It is also interesting to
see that the MLBS ∆V consumption increases a lot faster than the SMC, while the noise
variance increases. As matter of fact, around σM ,d = 0.01 Nm, the SMC needs the half of
thrust than the MLBS. On the other hand, the slope of∆τ is significantly greater for SMC
than MLBS. However it must be noted that the MLBS curve is far under the SMC one
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Figure 5.19: Norm of the control force and moment for the two proposed control systems with respect the
standard deviation of input noise force and moment, σF,d σM ,d respectively. t f represents the time in which
the simulation stops, because the control system has used all the amount of propellant.

because when the propellant mass is over, the simulation ends. Therefore, for MLBS, the
values for σM ,d > 0.01 Nm are not representative of the real amount of control torque
used up to To . In Fig. 5.21 the state error norms are shown for the first part of the mis-
sion for different noise variances. Even in this case, the results highlight how the SMC is
significantly more robust to input noise. This robustness translates in a better use of the
control force and moment, and clearly of the propellant mass for the thrusters.
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Figure 5.20: State error norms for the closed-loop responses obtained with the two proposed control systems,
for different standard deviation of the input noise disturbance force σF,d .
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Figure 5.21: State error norms for the closed-loop responses obtained with the two proposed control systems,
for different standard deviation of the input noise disturbance moment σM ,d .
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5.5 NAVIGATION AND CONTROL SYSTEM COMBINATIONS COMPARISON
In Section 5.4, two different control an systems have been proposed. Then, they have
been stressed in a variety of cases, where the orbit-attitude coupling were involved. The
first one, based on the Morse-Lyapunov control via Backstepping on TSE(3), is depen-
dent on the spacecraft parameters and has proved to control the spacecraft with a rela-
tively low control effort. The second one, based on the sliding mode control on TSE(3),
has the advantage of being completely independent on the spacecraft plant and the ef-
fect of the unmodeled dynamics led to a control effort generally higher than the MLBS.
However, it showed a more robust behaviour under uncertainties/disturbances.

The control systems comparison highlighted the introduction of noise in the closed-loop
system as the most critical test case. Although the SMC showed to be robust to noise, its
introduction led to a considerable waste of moment and force control. However, control
systems generally have to perform under uncertainties/disturbances and with measure-
ment signals corrupted by noise. As result, when sensors provide noisy measurements,
a filtration/estimation approach is needed [41].

In this respect, Chapter 3 proposed two different navigation systems, with the objective
of providing state estimates. The estimation process refers to the computation of an
approximation of the (state) variables such that their values are usable for some other
purpose. Even if the inputs of the algorithm are incomplete, uncertain or corrupted [30].
Clearly, in the GNC context, the purpose is to fed the control system with the estimated
variables. It is important to emphasize that the two proposed systems employ very dif-
ferent state estimators. The STO is a deterministic state observer, meaning that the pre-
diction of the state does not involve any source of randomness. In fact, the observer is
structured as a copy of the plant and its gains remain constant through out the process,
once they are selected. On the other hand, the UKF is a stochastic state filter, mean-
ing that the prediction of the state possess some inherent randomness. Particularly, the
UKF is a an algorithm which uses external measurements, containing noise, and com-
putes estimates of the unknown variables that are more accurate than those based just
on the measurements, by estimating a joint probability distribution over the variables
for each instant of time. Thus, unlike the STO, the UKF gains are continuously changed
by the algorithm itself [43].

In this final chapter, the proposed navigation and control systems are combined which
each other as showed in Fig. 1.2, resulting in a total of four combinations:

• Unscented Kalman filter and Morse-Lyapunov control via Backstepping (UKF-MLBS)

• Unscented Kalman filter and sliding mode control (UKF-SMC)

• Super-twisting observer and Morse-Lyapunov control via Backstepping (STO-MLBS)

• Super-twisting observer and sliding mode control (STO-SMC)

The same rationale applied in the previous chapter is pursued. Once a case study sce-
nario is introduced, the proposed navigation and control system combinations are tuned
such that the closed-loop response satisfies some performance indexes. Subsequently,
their performance are tested in different test cases, with the objective of highlight the
combination which leads to the best results.
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5.5.1 OSIRIS-REX MISSION SCENARIO

In order to investigate the performance of the proposed navigation and control system
combinations, a scenario with high orbit-attitude coupling is proposed. Particularly, the
NASA’s asteroid-study and sample-return mission, OSIRIS-REx, mission is considered.
The available data of this mission are used to define the properties of the spacecraft and
the small irregular asteroid Bennu, whose properties were given in Table 2.1.

The spacecraft is a cubical platform with 2.3× 2.3× 2 m in size and with a dry mass of
850 kg. The control system performs the orbital control through 4 thrusters with a nom-
inal thrust of 275 N each. The attitude control is performed thought 16 thrusters with a
nominal thrust of 4.5 N each for large maneuver, and it uses 4 reaction wheels for stan-
dard vehicle pointing. Typically the torque produced by reaction wheels lies between
10−1 − 1 Nm. The spacecraft is able to store about 1200 kg of hydrazine mono propel-
lant. The navigation system is equipped with precise sensors, particularly there are 2
star trackers and 2 IMU (Inertial Measurement Units) for attitude and angular velocity
measurements. A camera system which uses LIDAR (Light Detection and Ranging) and
TAGCAMS (Touch And Go Camera System) deliver assistance when navigating in close
proximity to the asteroid.

The details of spacecraft properties and the control and navigation systems are reported
in Table 5.9. It has been assumed that the attitude control is performed thought three re-
action wheels, one for axis, with a saturation limits of 1 N each. In addition, even for the
nominal case study, the sensors employed in the navigation system are assumed to be
characterized by a worse statistics than the real-world scenario; i.e., the standard devia-
tions are assumed to be relatively large in order to verify the robustness of the proposed
navigation and control systems.

Table 5.9: Values used for the spacecraft properties and navigation and control systems [120, 121].

Parameter Values
Spacecraft mass [kg] m = 850
Spacecraft dimension [m] d1 = 2.0, d2,d3 = 2.3
Spacecraft inertia [kg m 2] J = m

12 diag
[(

d2
1 +d2

2

)
,
(
d2

2 +d2
3

)
,
(
d2

1 +d2
2

)]
Propellant mass [kg] Mp = 1100
Exhaust flow velocity [m/s] ve = 2000
Control moment saturation per axis [N m] Mc,i = 1
Control force saturation per axis [N] Fc,i = 366
Measurement std [deg,m,deg,m/s] σζΘ = 0.1× 180

π , σζr
= 100, σζω = 0.002× 180

π , σζv
= 2

The tracking orbit is chosen based on the mission timeline. Just before the TAG (Touch-
and-Go) operation, the spacecraft flies a closed orbit with a radius of 0.6 miles (1 km)
around Bennu. This phase is also important for the scientific return of the mission,
since the spacecraft collects asteroid’s data to map its surface. For this reason, it is
assumed a desired (reference) circular orbit with a nonzero inclination, and a nadir-
pointing attitude such that a face of the satellite always points to the surface of the as-
teroid. The orbit is parameterized through trigonometric functions as done in the pre-
vious case studies, with the following values: ro = 1 km, Ro = R([0, π/3, 0]). In order
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to guarantee the nadir pointing attitude, the local vertical local horizontal (LVLH) ref-
erence frame is introduced, whose representation is given in Fig. 5.22. The first axis is
oriented in the vr e f (t ) direction, ê1,LV LH (t ) = vr e f (t )/‖vr e f (t )‖; the third axis is is ori-
ented in the −rr e f (t ) direction, ê3,LV LH (t ) = −rr e f (t )/‖rr e f (t )‖; the second axis is nor-
mal to the orbit plane and in the direction of angular momentum h with opposite sign,
ê2,LV LH (t ) = ê2,LV LH (t )× ê1,LV LH (t ). The reference angular velocity is simply defined as
ωr e f (t ) = −no ê2,LV LH [122, 123]. The guidance system computes the reference attitude
at each instant of time as

θr e f (t ) = logSO(3)

(
RT

LV LH (t )
)

(5.14)

where RLV LH is the rotation matrix from BCI to LVLH reference frame

RLV LH (t ) =
ê1,LV LH (t ) · Î ê1,LV LH (t ) · Ĵ ê1,LV LH (t ) · K̂

ê2,LV LH (t ) · Î ê2,LV LH (t ) · Ĵ ê2,LV LH (t ) · K̂
ê3,LV LH (t ) · Î ê3,LV LH (t ) · Ĵ ê3,LV LH (t ) · K̂

 (5.15)

The spacecraft initial conditions are chosen reasonably different from the desired ones,
i.e. reference orbit and nadir-pointing attitude. All the states are selected randomly from
Gaussian distributions with a standard deviations of 90 deg, 1000 m, 5 deg/s and 1 m/s
for attitude, position, and velocities respectively. On the other hand, the UKF initial con-
ditions are selected with an error of 10% for attitude and position and 20% for velocities,
with respect to the spacecraft initial conditions.
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Figure 5.22: Local vertical local horizontal (LVLH) and body-centered inertial (BCI) frames representation.

5.5.2 PERFORMANCE ANALYSIS

This section has the purpose of tuning the proposed control and navigation system com-
binations, such that a preliminary analysis of their performance can be conducted. There
are several gains that need to be chosen for the control and navigation systems, and
those values are not retrieved with any optimized algorithm. As done in Sections 5.10-
5.12, they are found with a trial and error procedure. However in this case the tuning
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process is more complicated. The navigation system measures through the sensors, es-
timates the spacecraft states filtering the noise and provide them to the control system.
This latter one can actuate the control law on the basis of the tracking error which is
computed between the estimated states and the reference states provided by the guid-
ance system. It is clear that when the closed-loop system is considered, the navigation
and control systems influence each other. Particularly the role of the navigation system
is critical to assure the convergence of the system. In fact, if the state filter/observer does
not converge then, a wrong tracking error and control corrective action are computed.
On the other hand, having a control system that is not able to nullify the tracking error
(as result of a wrong tuning, for instance), does not imply that the navigation filter has
not converged.

The tuning procedure has been carried out with the objective of having a similar settling
time and steady state errors between the four proposed navigation and control system.
Particularly, the gains are chosen such that position and attitude accuracy may reach
≈ 1 m and ≈ 1 deg respectively, in about 1000 s. As result of this procedure, all the gain
values reported in Tab. 5.10 (UKF-MLBS), Tab. 5.11 (UKF-SMC), Tab. 5.12 (STO-MLBS,
STO-SMC).

As result of the preliminary tuning procedure, it has verified that the STO and SMC are
more difficult to tune with respect to the UKF and the MLBS. Particularly, the selection
of inappropriate gains can lead to the chattering phenomenon near the sliding surface,
and then the tracking errors never achieve the previous performance indexes. This is
particularly problematic for the STO attitude estimation. In order to guarantee the STO
performance, the attitude gain B1 in Tab. 5.12 is lowered once the observer has con-
verged. This method leads to a larger estimation error, especially for the attitude. An-
other disadvantage of the STO navigation system is that it needs to be provided with the
spacecraft control input uc . On the other hand, the UKF is able to assure convergence
and accuracy just using an estimation of the gravity input û = ûg . The filter is basically
able to blend the information that come from the propagation and the measurements,
to produce estimates which are consistent with the plant states.

Table 5.10: Values used for the UKF-MLBS navigation and control systems.

Parameter Values

Measurement cov matrix [deg,m,deg,m/s] T = blckdiag
[
σ2
ζΘ

I3, σ2
ζr

I3, σ2
ζω

I3, σ2
ζv

I3/10
]

Process cov matrix [deg,m,deg,m/s] Q = 10−7I12

State cov matrix [deg,m,deg,m/s] P0 = 10−10I12

κ [km s−2] 10−6

k11 [s−1] 6 ·10−3

k12 [s−1] 0.01
k21 [s−1] 2 ·10−2

k22 [s−1] 0.01
k31 [s−2] 0
k32 [s−2] 10−9

a [−]
[
1.2 1.1 1

]T

Gennaro Mangiacapra Navigation and Control Algorithm Design on TSE(3)



5.5. NAVIGATION AND CONTROL SYSTEM COMBINATIONS COMPARISON 73

Table 5.11: Values used for the UKF-SMC navigation and control systems.

Parameter Values

Measurement cov matrix [deg,m,deg,m/s] T = blckdiag
[
σ2
ζΘ

I3, σ2
ζr

I3, σ2
ζω

I3, σ2
ζv

I3/10
]

Process cov matrix [deg,m,deg,m/s] Q = 10−7I12

State cov matrix [deg,m,deg,m/s] P0 = 10−5I12

Kσ,M [kNm] 100
Kσ,F [kN] 100
k11 [s−1] 10−5

k12 [s−1] 1
c11 [s] 10−9

c12 [s km−1] 0.05
c21 [-] 10−11

c22 [km−1] 3 ·10−5

c31 [-] 0
c32 [km−1] 1 ·10−10

k11 [s−1] 1 ·10−5

k12 [s−1] 1

a [−]
[
1.2 1.1 1

]T

Table 5.12: Values used for the STO-MLBS navigation and control systems (left). Values used for the STO-SMC
navigation and control systems (right).

Parameter Values
G1 [s,s/m] 10−5

G2 [-,m−1] 10−1

B1 [-] 50 for t ≤ 400, then 10−8

B2 [-] 6 ·10−2

B31 [1/s] 10−6

B32 [m/s] 10−6

κ [km s−2] 10−6

k11 [s−1] 0.005
k12 [s−1] 0.005
k21 [s−1] 0.02
k22 [s−1] 0.1
k31 [s−2] 0
k32 [s−2] 10−9

a [-]
[
1.2 1.1 1

]T

Parameter Values
G1 [s,s/m] 10−5

G2 [-,m−1] 10−1

B1 [-] 50 for t ≤ 180, then 10−8

B2 [-] 1
B31 [1/s] 10−6

B32 [m/s] 10−6

Kσ,M [kNm] 100
Kσ,F [kN] 100
k11 [s−1] 0.001
k12 [s−1] 1
c11 [s] 10−9

c12 [s km−1] 0.01
c21 [-] 10−11

c22 [km−1] 10−4

c31 [-] 0
c32 [km−1] 0
k11 [s−1] 0
k12 [s−1] 0

a [−]
[
1.2 1.1 1

]T

In Fig. 5.23 the norm of the difference between the reference states and the spacecraft
states for the four proposed navigation and control systems are shown. The four sys-
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Figure 5.23: Norm of the difference between the reference states and the spacecraft states, obtained closing
the loop with the proposed navigation and control systems.

tems are able to reach the spacecraft to the orbit with high accuracy, particularly with
an error in the order of 1 m on position. On the other hand, the UKF-MLBS and UKF-
SMC are able to handle better the rotational dynamics thus leading to highest accuracy
of ≈ 0.1 deg on the attitude. However it was expected, according to the previous com-
ments on the selection of the appropriate STO gains. Generally, STO-MLBS combination
is the one with the poorest accuracy, while the UKF-based system are able to reach the
highest accuracy. In Fig. 5.24, the four trajectories are shown in the initial maneuver. It
is interesting to see that the UKF-MLBS and UKF-SMC overshoot before converging to
the orbit, while the STO-MLBS and STO-SMC don’t. Probably the reason lies in the fact
that STO has a faster convergence than the UKF, as shown in Section 5.3. However, it can
be seen that the four trajectories reach the reference orbit with high accuracy, as also
confirmed by Fig. 5.23.
In Fig. 5.25 the norm of the control force and moment are reported for the four proposed
navigation and control systems. Clearly the control actions never become zero because
the control systems continuously control the spacecraft, in order to keep it with its prin-
cipal axis along the nadir direction and in a non natural orbit. Even if the filter/observer
have good performance in filtering the noise, some residual noise is expected. In addi-
tion, the figure in logarithmic scale highlight the presence of the noise in the signals. It
can be seen that generally the control moments reach the same order of magnitude once
the spacecraft reached the steady state. The same cannot be said for the control force,
where the STO-MLBS, followed by the STO-SMC, have highest values. The magnified
portions in Fig. 5.25 show the initial control action exerted by the four proposed navi-
gation and control systems. It can be noted that the STO-SMC and STO-MLBS are more
noisy than UKF-SMC and UKF-MLBS, and it due to the observer nature. In addition, the
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Figure 5.24: Initial maneuver zoom for the four navigation and control system combinations.

UKF-MLBS uses the lowest control force and moments to lead the spacecraft to the or-
bit, thus explaining the largest overshoot in Fig. 5.24. During the tuning procedure, it has
been verified that increasing the gains led to a faster convergence with a larger amount
of control force than with the actual tuning. However the accuracy does not improve
or reduce meaningfully. Hence, it is preferred to keep the gains low and still satisfy the
performance indexes described at the beginning.
In Tab. 5.15 additional performance indexes are reported for the four systems. In agree-
ment with the analysis conducted in Section 5.4, the two MLBS systems are the ones
which perform better in terms of burnt propellant mass, ∆V and integrated control mo-
ment ∆τ. It can be seen that the STO-SMC uses a large amount of propellant, according
to the high steady state value of control force in Fig. 5.25.
Before proceeding with the case studies it is important to underline all the quantities
related to the spacecraft state, involved in the closed-loop systems. Fig. 5.26 shows the
schematic representation of the closed-loop system with with spacecraft, navigation and
control systems. The spacecraft states x are measured through the sensors which pass
the measured state xm to the state filter. The estimated state x̂ is used along with the
reference xr e f produced by the guidance system, to compute the state tracking error δx.
Then the control system can actuate the corrective action uc to nullify the error δx.
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Figure 5.25: Norm of the control force and moment for the four proposed systems.

Table 5.13: Performance of the proposed navigation and control systems: ∆V , ∆τ, control input peaks and
propellant mass burnt.

System ∆V [km/s] ‖acm‖[km/s] ∆τ [N ms] ‖τcm‖[N m] ∆Mp [kg ]

UKF-MLBS 0.0229 0.1636 ·10−3 15.0798 0.1430 9.8579
UKF-SMC 0.0603 0.5593 ·10−3 28.6157 0.1889 26.0942
STO-MLBS 0.0538 0.6205 ·10−3 15.0941 0.2204 21.8810
STO-SMC 0.9186 0.6995 ·10−3 28.6567 0.2351 368.6349

The total error between the spacecraft state and the reference state is computed as

∆x = x −xr e f

= x − x̂ −xr e f + x̂

= (x − x̂)− (xr e f − x̂)

= δx̂ −δx

(5.16)

where δx̂ is the navigation system error with respect to the spacecraft state, and δx is
the tracking error which is defined through the estimated state. As discussed at the be-
ginning of this section, the spacecraft state can converge to the desired states only if the
navigation system has converged. In fact, if δx̂ is large, then the control system mini-
mizes the difference δx = xr e f − x̂, which does not guarantee that x −→ xr e f . Therefore,
in order to assure that ∆x −→ 0, it is necessary that δx̂ −→ 0.
In Fig. 5.27, the aforementioned states are shown for the UKF-MLBS system and for the
attitude and position states. There are four different quantities depicted in this figure:
the measured states (blue dot), filtered states (yellow), spacecraft states (red) and refer-
ence states (black dash). It can be seen that the spacecraft states start with a certain error
with respect to the reference, and also the filtered states have initial conditions different
from the spacecraft states. The measured states resemble the spacecraft ones with the
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Figure 5.26: Schematic representation of the closed-loop system with spacecraft, navigation and control sys-
tems.

addition of noise, as result of the sensors model employed in the simulation. It can be
noted that the filtered states converge to the spacecraft states and both of them to the
reference states.
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Figure 5.27: UKF-MLBS system, measured, filtered, spacecraft and reference states.

5.5.3 CASE 1: SAMPLING FREQUENCY

The four proposed navigation and control systems are tested with different sampling
frequencies (time steps). The starting ∆t is selected to be ∆t = 0.5 s, since the UKF has
an high computational cost, and the simulation time would result too high. The time
step is increased until the closed-loop system diverges. This procedure showed that the
STO-MLBS and STO-SMC are able to converge even with the low sampling frequency of
fs = 0.05 Hz (∆t = 20 s). On the other hand, the UKF-MLBS and UKF-SMC are not able
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to handle with large time steps. In Fig. 5.28 the specific integrated control force and the
integrated control moment are shown along with the time step. In agreement with the
preliminary analysis, for the smallest ∆t the UKF-MLBS and UKF-SMC perform better
than the STO-MLBS and STO-SMC. However, while ∆t increases, their performance de-
creases tremendously. On the other hand, the STO-MLBS and STO-SMC are able to keep
almost a constant trend with respect the time step, thus increasing not meaningfully. In
Fig. 5.29, the results are shown in terms of the statistics of the norm of the state errors
(between spacecraft and reference states). In agreement with the previous results, it can
be seen that STO-MLBS and STO-SMC are able to keep almost a constant accuracy with
the time step. On the other hand the UKF-MLBS and UKF-SMC are more influenced by
∆t . Particularly, when ∆t ≥ 6 s, their performance becomes unacceptable.
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Figure 5.28: ∆V and ∆τ for the four proposed systems with respect the sampling time ∆t , which is the inverse
of the sampling frequency fs .
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Figure 5.29: State error statistics (mean, std and normalized RMSE) with respect the sampling time ∆t , which
is the inverse of the sampling frequency fs .
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5.5.4 CASE 2: INACCURATE INITIAL CONDITIONS

The four proposed navigation and control systems are tested with respect the uncer-
tainty on the initial navigation systems initialization, i.e. the initial estimates. The same
procedure applied in Section 5.3 is reproduced, where the uncertainty percentage γ is
introduced.

Fig. 5.31 shows how the the specific integrated control force and the integrated control
moment vary with respect γ. It can be seen that UKF-MLBS and UKF-SMC have the min-
imum∆V when the uncertainty is close to 0%, while∆V increases while γ increases. The
STO-SMC follows almost the same behavior of the previous two navigation and control
systems. STO-MLBS, instead, has the highest∆V , which does not vary meaningfully with
respect γ. On the other hand, the UKF-SMC and UKF-MLBS are more robust in terms
of ∆τ when the uncertainty γ assumes large values. While STO-MLBS and STO-SMC
don’t follow a regular behavior, pointing out that those systems can experience issue
when the rotational state initial estimates differ particularly from the true initial states.
In Fig. 5.30, the results are shown in terms of the statistics of the norm of the state errors
(between spacecraft and reference states). It can be seen that the position and velocity of
the four systems follow the same behavior of∆V , while the attitude and angular velocity
evolve as ∆τ. It can be seen that between the four state error norms, the attitude error
is the one which evolves more erratically, especially for STO-MLBS and STO-SMC. This
result confirm the previous comment, i.e. the observer performance can be compromise
meaningfully on the attitude estimation for large initial estimate uncertainty.
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Figure 5.30: State error statistics (mean, std and normalized RMSE) with respect the initial state estimate un-
certainty γ.
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Figure 5.31: ∆V and ∆τ for the four proposed systems with respect the initial state estimate uncertainty γ.

5.5.5 CASE 3: SENSITIVITY TO NOISE MEASUREMENT

In this section, the performance of the proposed systems is analyzed with respect the ac-
curacy of the provided measurements. Particularly the two sets of noise standard devia-
tions shown in Tab. 5.14 are used. The first sets represents a navigation system employed
with very accurate and precise sensors thus explaining the low measurement noise stan-
dard deviation of each state. The second set, instead, represents a navigation system
employed with very noisy sensors. The case study considered in the first place had stan-
dard deviations in between these new two sets.

Table 5.14: case study measurement noise standard deviations.

Parameter Measurement Noise (low) Measurement Noise (high)
Attitude [deg ] σζθ = 0.001 σζθ = 0.5 · 180

π
Position [m] σζr = 1 σζr = 500
Angular Velocity [deg /s] σζω = 0.001 σζω = 0.01 · 180

π
Velocity [m/s] σζv = 1 σζv = 10

In Fig. 5.32 the norm of the state errors are reported for the proposed systems with the
low measurement set (dash lines) and for the high measurement set (solid lines). With
the low set of noise, the results resemble the results obtained in Sections 5.4 - 5.3. The
UKF is generally able to estimate with higher accuracy the position and the attitude with
respect the STO, and the MLBS can generally achieve lower steady state errors than SMC.
As matter of fact, the UKF-MLBS and UKF-SMC achieve the best performance between
the four systems, and they are even able to avoid the error jump due the the discontinuity
of θ1. The STO-MLBS and STO-SMC achieve a position accuracy comparable to the UKF-
SMC, while the attitude estimation accuracy is not even comparable to them. When
the high set of noise is used, the STO-MLBS and STO-SMC are not able to converge, as
possible to see from the interrupted lines at ≈ 0.1 t/To . The UKF-MLBS and UKF-SMC,
don’t present particular problems even if, as expected, the order of magnitude of the
steady state errors increase. Even with this large measurement noise, the steady state
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errors assume order of magnitude comparable with the ones of the nominal case study.
However, the attitude error experiences a decrease of accuracy in correspondence of the
discontinuity.

In Tab. 5.15 the performance of the proposed systems is represented with the control
moment an force characteristics. The STO-MLBS (high) and STO-SMC (high) are not
reported since they are not able to converge.

Figure 5.32: Norm of the difference between the reference states and the estimated states, obtained for "low"
and "high" measurement noise statistics.

Table 5.15: Performance of the proposed navigation and control systems: ∆V , ∆τ, control input peaks and
propellant mass burnt.

System ∆V [km/s] ‖acm‖[km/s] ∆τ [N ms] ‖τcm‖[N m] ∆Mp [kg ]

UKF-MLBS (low) 0.012094 0.116 ·10−3 11.493 0.14871 5.1228
UKF-MLBS (high) 0.68411 0.63108 ·10−3 91.875 0.14789 290.56
UKF-SMC (low) 0.029785 0.40058 ·10−3 23.965 0.19695 12.949
UKF-SMC (high) 0.49902 0.5593 ·10−3 72.995 0.19266 213.36
STO-MLBS (low) 0.014822 0.6205 ·10−3 12.509 0.17617 5.8735
STO-SMC (low) 0.027191 0.6995 ·10−3 26.032 0.20961 10.478
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5.6 CONCLUSION AND DISCUSSION
In Section 5.3 the two proposed navigation systems have been tested in open-loop. The
results of this comparison are summarized in Tab.5.16. The UKF has the main advan-
tage of being accurate even with large source of measurement noise and large initial
condition uncertainties. The initial state error covariance matrix can help to take care of
initial large uncertainties. However, the UKF is less robust than STO to change in sample
frequency, and requires an higher computational cost. This latter feature was expected
since the complex formulation of UKF as compared to the STO. For the preliminary per-
formance assessment, the STO system takes about 20 s to run, while the UKF system
took about 60 s (for 2 hours simulation)1.

Table 5.16: Navigation systems comparison summary.

Unscented	Kalman	Filter Super-Twisting	Sliding	Mode	Observer 
• Good convergence time 
• High computational cost 
• Very sensitive to measurement noise. For 

low measurement noise, very high 
accuracy. For high measurement noise, 
high accuracy 

• For high sample frequency high accuracy, 
but performance decreases for small 
sample frequency 

• Convergence guaranteed even with large 
initial condition uncertainties. Possibility of 
additional tuning through initial state error 
covariance 

§ Low convergence time 
§ Low computational cost  
§ Not very sensitive to measurement noise. 

For low and high measurement noise, little 
difference in terms of accuracy 

§ Almost insensitive for sample frequency 
changing 

§ Convergence guaranteed even with large 
initial condition uncertainties. However, 
worse statistics than UKF 

§ Both the navigation algorithms are characterized by a difficult tuning due to the high 
number of parameters 

§ For a reasonable level of measurement noise, UFK and STO perform almost the same 
 
 
 

Morse-Lyapunov	Backstepping	Control Sliding	Mode	Control 
• Complex control law 
• Few parameters to tune 
• Convergence guaranteed also with very 

small saturation limits, at cost of increasing 
convergence time 

• Insensitive to large attitude maneuvers  
• Small integrated control input moment 
• Sensitive to spacecraft parameter 

uncertainties 
• Robust to change in sampling frequency  
• Sensitive to input noise disturbance  

§ Easy control law 
§ Lot of parameters to tune 
§ Convergence is not guaranteed with small 

saturation limits. Very sensitive due to 
discontinuous control input. 

§ Experiences trouble in convergence after a 
large attitude maneuver 

§ Large integrated control input moment 
§ Insensitive to spacecraft parameter 

uncertainties 
§ Sensitive to change in sampling frequency 
§ Robust to input noise disturbance 

§ MLBS is able to guarantee smaller steady state error than SMC, with the same control input 
saturation limits. 

§ The integrated control input force is the same order of magnitude. However, SMC requires 
more propellant mass 

 
 
 
 
 
 
 
 
 
 

In Section 5.4 the two proposed control systems have been tested in closed-loop with-
out measurement noise. The results of this comparison are summarized in Tab.5.17. The
MLBS control law is capable of assuring convergence and good steady state error even
with very small saturation limits (i.e. available control force/moment). The linearization
of the system via backstepping allows the closed-loop system to behave in a good man-
ner even with large commands. On the other hands, the SMC is characterized by a very
simple and parameter-free control algorithm. It is very robust to change in sampling
frequency and input noise disturbance. The computational cost of the two algorithm is
almost the same. In fact, the model used for the control systems comparison took almost
120 s (for 1.6319 days simulation) to run for both the systems.

1The time information given in this sentence are given for the following machine: MacBook Pro, 2.8 GHz Intel
Core i7, 16GB RAM. In addition, it is emphasized that the aforementioned data represented the time to run
not just the UKF and STO blocks, but the model used for the navigation system comparison reported in the
Appendix
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Table 5.17: Control systems comparison summary.

Unscented	Kalman	Filter Super-Twisting	Sliding	Mode	Observer 
• High convergence time 
• High computational cost 
• Very sensitive to measurement noise. For 

low measurement noise, very high 
accuracy. For high measurement noise, 
high accuracy 

• For high sample frequency high accuracy, 
but performance decreases for small 
sample frequency 

• Convergence guaranteed even with large 
initial condition uncertainties. Possibility of 
additional tuning through initial state error 
covariance 

§ Good convergence time 
§ Low computational cost  
§ Not very sensitive to measurement noise. 

For low and high measurement noise, little 
difference in terms of accuracy 

§ Almost insensitive for sample frequency 
changing 

§ Convergence guaranteed even with large 
initial condition uncertainties. However, 
worse statistics than UKF 

§ Both the navigation algorithms are characterized by a difficult tuning due to the high 
number of parameters 

§ For a reasonable level of measurement noise, UFK and STO perform almost the same 
 
 
 

Morse-Lyapunov	Backstepping	Control Sliding	Mode	Control 
• Few parameters to tune 
• Convergence guaranteed also with very 

small saturation limits, at cost of increasing 
convergence time 

• Insensitive to large attitude maneuvers  
• Small integrated control input moment 
• Sensitive to spacecraft parameter 

uncertainties 
• Robust to change in sampling frequency  
• Sensitive to input noise disturbance  

§ Lot of parameters to tune 
§ Convergence is not guaranteed with small 

saturation limits. Very sensitive due to 
discontinuous control input. 

§ Experiences trouble in convergence after a 
large attitude maneuver 

§ Large integrated control input moment 
§ Insensitive to spacecraft parameter 

uncertainties 
§ Sensitive to change in sampling frequency 
§ Robust to input noise disturbance 

§ MLBS is able to guarantee smaller steady state error than SMC, with the same control input 
saturation limits. 

§ The integrated control input force is the same order of magnitude. However, SMC requires 
more propellant mass 

 

Finally, in Section 5.5 the combinations obtained from the proposed navigation and con-
trol systems have been tested in closed-loop. The results of this comparison are summa-
rized in the following points:

• The system equipped with STO-based navigation system have chattering prob-
lem, even if the sign(·) function is substituted with the tanh(·). Particularly, even
if the closed-loop dynamics converges, after some time it can diverge due to the
chattering motion. For this reason, one gain of the STO system has been made
time-varying.

• The system equipped with STO-based navigation system are not able to conver-
gence if the control input u = uc +ug is not feedback inside the navigation system.
It was somehow expected, since the observers require both the plant output and
input. On the other hand, the UKF is able to convergence just using an estimate of
the gravity input, obtained with the current state estimate.

• The UKF-based systems are able to handle better the noise measurement. The
STO-based systems diverge for large measurement noise.

• The STO-based systems are able to handle better the sample frequency changes,
as compared to the UKF-based systems.

• All the systems are robust to initial condition inaccuracies. However the UKF is
more robust in terms of attitude. In addition, the UKF has the initial state error
covariance that can take over initial condition large inaccuracies.

• Even with small noise measurement, the STO-based systems have poor accuracy
compared to the UKF-based systems. Their accuracy is comparable to the accu-
racy of the UKF-based systems with large noise measurement.
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• The STO-based systems are able to converge first than the UKF-based systems.

• Independently on the navigation algorithm, the SMC-based systems require the
largest control effort. Between the two MLBS-based systems, the UKF-MLBS is the
one which requires the uses control input and clearly the lowest propellant mass.

• The computational cost of the UKF-based systems is definitely higher than the
STO-based systems. For 1 day of simulation time, each system requires to run:

UKF-MLBS: ≈ 10 min

UKF-SMC: ≈ 9.5 min

STO-MLBS: ≈ 2 min

STO-SMC: ≈ 1.5 min

The results obtained and summarized above, highlighted that each combination has
some advantage and disadvantage. Even if the UKF-based systems requires the highest
computational cost, they are preferred over the STO-based ones. The reason lies in the
fact that the STO-based systems experienced issue in closed-loop convergence due to
chattering, measurement noise and control input feedback. If the first problem may be
resolved selecting time-varying gains, the other two are more serious. In order to feed-
back the control input, there is the need of using some type of sensor. However, if the
STO experienced convergence issues for high source of measurement noise, it is clear
that adding some source of noise to the input force/moment, can only deteriorate the
STO performance. In addition, for real applications, cheap sensors may be character-
ized by relatively high noise measurement and inaccuracies. Therefore the UKF-based
navigation systems are preferred over the STO ones. Between the UKF-MLBS and UKF-
SMC, the first one is preferred. Even if the MLBS is sensitive to parameter uncertainties,
its performance does not deteriorate as much to prefer to SMC ones. In addition, for
sampling frequency typical of real-time application (not higher than 1 Hz), the MLBS
performs definitely better in terms of accuracy, required control input and sensitivity to
large commands.

In the following pages, the results of the UKF-MLBS combination are presented for the
OSIRIS-REx mission case study introduced in 5.5.1. The data used are reported in Tab.5.9
and Tab.5.10, with the only difference of modifying k11 to 5·10−4 and Q to 10−10I12. Those
changes lead to an even smaller control effort as compared to the previous case, at ex-
pense of a slightly larger larger settling time. Clearly, due to the high number of figures,
those results are not reported for each navigation and control systems combination, in
the preliminary performance assessment.

In Figs. 5.33-5.34 the time histories of attitude, position and velocities in the BCI frame
are provided. Particularly, three different quantities are analyzed: (i) The measured states
which represent the state variables measured by sensors and hence are affected by noise,
(ii) the estimated (filtered) states, which are the outputs of the navigation system, and
(iii) the ideal states, which are the noise-free states obtained with ideal and perfect sen-
sors. Moreover, for each state variable, a magnified portion of the figure is also shown

Gennaro Mangiacapra Navigation and Control Algorithm Design on TSE(3)



5.6. CONCLUSION AND DISCUSSION 85

to provide an approximation of the convergence times. It can be seen in the figures that
the estimated states start from a different point with respect to the measured and ideal
states, due to the different UKF initial conditions. However, the state filter is able to con-
verge to the ideal states in less than a hundredth of the orbit period. Also, note that the
attitude varies from −180 deg to 180 deg and the navigation scheme is able to handle this
large variation with no issues. Figure 5.35 shows the trajectory of the spacecraft center
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Figure 5.33: Measured (grey), estimated (black), and ideal (red) states.
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Figure 5.34: Measured (grey), estimated (black), and ideal (red) states.

of mass, the desired orbit, and the spacecraft’s position and attitude at different points
in the orbit. The spacecraft starts with a completely different attitude with respect to the
desired ones, and in addition has an initial tumbling. The spacecraft transient response
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is highlighted in the magnified window in the right panel of Fig. 5.35. The convergence of
the filter and controller proposed here results in the convergence of the estimated states
(including trajectory and attitude) to the actual states and desired states, as can be seen
in the figure. It can be seen that as the spacecraft orbits around the asteroid, its attitude
changes such that its bottom always faces towards Bennu. In each panel of Fig. 5.36, the

Figure 5.35: SBF orientation, and spacecraft attitude and trajectory around Bennu in BCI frame obtained via
the implementation of the navigation and control systems.

norms of the differences between the spacecraft estimated states and their correspond-
ing desired states are shown, where a noisy behavior of the aforementioned errors after
the initial convergence can be seen. The attitude error has a peak in correspondence
of the Θ1 discontinuity (Fig. 5.33) and a rapid convergence. The order of magnitude of
the stead state errors are satisfactorily small compared to the order of magnitude of the
reference variables and the large sources of noise. For instance, the proposed navigation
and control system allows to reach a position error in the order of 1 m in the orbit with
1000 m of radius and with a position noise standard deviation of 100 m. The same ratio-
nale applies to the attitude, where an accuracy of 0.0001 deg is reached. The mean and
the RMSE are reported for each state error. The results improve as the numerical values
of mean and RMSE decrease, as also indicated in [113]. Note that both the mean and
the RMSE would reduce with time, since the number of samples with small steady state
error would increase. In fact, these two indexes are influenced by the large state errors
in before convergence.
In Fig. 5.37, the estimated state error between the estimated and the ideal states are
shown along with the estimated confidence bounds of 3σ. The optimal performance
of the estimator is generally indicated by the bounded estimation errors within the esti-
mated standard deviation bounds [114, 124]. In other words, the UKF acts as an unbi-
ased estimator, meaning that the expectation of the estimated state errors is zero [125].
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Figure 5.36: Norm of the difference between the estimated states and reference states

From a statistical point of view, it is expected that about 99% of the samples remain
bounded inside the two envelopes. Additionally, the performance of the UKF confirms
the fact that the state errors are approximately zero mean white noise. Note that the at-
titude components are characterized by a peak, which corresponds to the discontinuity
of the Θ1 when it goes from −180 deg to 180 deg, as shown in Fig. 5.33. The spacecraft
can reach and maintain the desired orbit-attitude through the control system which pro-
duces the necessary control force and moment, that are shown in Fig. 5.38. In addition,
the force control effort in quantified with the total integrated control force per unit mass
and the moment control effort is quantified with the integrated moment. It can be seen
that the proposed navigation and control system is able to guarantee the orbit and at-
titude tracking with a low amount of control moment and force, considering the initial
conditions, the large saturation limits and noise statistics in Tab. 5.9. In fact, both Fc

and Mc are well below the boundaries of 366 N and 1 Nm respectively. The total ∆V is
less than those obtained in [117], where an adaptive controller was used for the orbital
control. As a result of the UKF filtering action, they both appear without any residual
noise, which would have introduced an extra control effort. Note that the control mo-
ment converges before the control force, in agreement with the magnified portions of
Fig. 5.33-5.34. Moreover, since the orbit-attitude coupling is considered, the tracking
position error can converge only if the tracking attitude error has converged. Therefore,
the observed behavior is expected. It is emphasized that the gain selection is the results
of a compromise between convergence time, steady state accuracy and control effort.
The difference in the convergence rates may be reduced with a more aggressive control
system, at the expense of a larger control effort, especially in the initial part of the trajec-
tory.
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Conclusions and Future Work

In this thesis, novel navigation and control algorithms are designed using the Lie groups
formalism. The algorithms are applied to the problem of spacecraft motion around ir-
regular bodies such as asteroids. In this mathematical framework, the geometrical char-
acteristics of the system are well preserved and the translational and attitude motions
are treated simultaneously.

Two different navigation systems have been designed to provide the state estimates: The
Unscented Kalman Filter on TSE(3)and the Super-Twisting Observer on TSE(3). The
Unscented Kalman Filter computes estimates of the unknown variables by estimating
a joint probability distribution over the variables for each instant of time. The Super-
Twisting Observer is a deterministic state observer, meaning that the prediction of the
state does not involve any source of randomness. In fact, the observer is structured as
a copy of the plant and its gains remain constant throughout the process, once they are
selected. Furthermore, two different control systems have been introduced: an asymp-
totically stable control law based on Morse-Lyapunov via Backstepping approach and a
robust control law based on the Sliding Mode Control.

The navigation systems have been tested in a variety of test cases in open-loop, while the
control systems have been tested in closed-loop assuming ideal measurements. The dy-
namics are propagated using a variational integrator. The results obtained for a rigid
body spacecraft are compared to those of a point mass spacecraft in the problem of
spacecraft motion around a small irregular body such as an asteroid. From those analy-
ses, the characteristics of each of the navigation and control systems have been gathered.
Finally, using the Matlab/Simulink simulation environment, different combinations of
navigation and control systems have been extensively tested as well. The performance
have been analyzed in terms of some performance indices such as the estimation accu-
racy, the tracking error, the control effort, and the propellant mass required for a simul-
taneous orbit-attitude tracking.

This framework proved the efficacy of the design of navigation and control algorithms on
TSE(3)allowing to preserve the geometrical characteristics of the system, while treating
the translational and attitude motions simultaneously. In literature, most of the works
on TSE(3) refers to the design of navigation and control algorithms addressed to robotic
applications. However, even for a space application, the presented algorithms proved
to achieve high tracking accuracy with a small required control effort. Hence, this for-
malism allows for the coupling between orbital and attitude motions of the spacecraft
to be considered simultaneously in the design. The orbit-attitude coupling cannot be
neglected in scenarios such as spacecraft motion around irregular celestial bodies due
to their highly perturbed environments.

Future work may consider a more detailed modeling for the navigation system. A more
accurate model of the measurement sensors may be obtained via extending their noise
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characteristics to introduce biases, scale-factor errors, or mounting alignment errors. As
well as, sensor fusion techniques may be used to augment the estimated states with sen-
sors states, such as biases. Also, realistic dynamics of the actuators can be considered in
the design of the control system. The robustness of the proposed navigation and con-
trol system can also be verified in problems such as orbit transfers, and spacecraft ren-
dezvous, proximity operations, and docking. In addition, the stochastic estimation and
control scheme presented here can be extended to the problem of multibody dynamics
and multi-agent systems.
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Chapter A

Appendix

A.1 SIMULINK MODELS
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Figure A.1: Simulink Model used for the open-loop simulation.
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Figure A.2: Simulink Model for the UKF navigation algorithm.
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Figure A.3: Simulink Model for the STO navigation algorithm
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Figure A.6: Simulink Model used for the comparison of UKF and STO algorithms
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Figure A.7: Simulink Model for the complete guidance, navigation and control simulation.
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A.2 UKF ALGORITHM VERIFICATION
The performance of the proposed UKF is compared to those of other state filters de-
signed on SE(3) that can be found in literature. In particular, the algorithms selected
for the comparison are i) the EKF on Lie group introduced in [4] (EKF); ii) the UKF on
Lie group introduced in [8] (UKF); iii) the discrete EKF on Lie group (DEKF) described
in [6]. The performance analysis is conducted on the basis of position and attitude esti-
mation results. The study case consists in the propagation of the open loop spacecraft
dynamics around the asteroid Bennu, where the data previously introduced are used.
As done in [8, 7], the results are shown in Fig. A.8 in terms of the root mean square of
the pose estimation error (RMSE). Particularly the first row reflects the position RMSEs,
and the second row the attitude RMSEs. The Fig. A.8 depicts attitude and position RMSE
as a function of: sample period ∆t (left) with ζr = 10−1 km, ζΘ = 10−1 deg and χr = 0
km ,χΘ = 0 km (left); initial condition inaccuracies χr ,χΘ with ζr = 10−1 km, ζΘ = 10−1

deg and ∆t = 1 s (center); measurement noise standard deviations ζr km, ζΘ deg with
ζr = 10−1 km, ζΘ = 10−1 deg and ∆t = 1 s (right).
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Figure A.8: Attitude and position RMSE as a function of sample period, initial condition inaccuracies and
measurement noise standard deviations.

In the left column of Fig. A.8, the RMSE(s) for the position and attitude error are shown
along with the sample period ∆t from 0.1 to 20 seconds. It can be seen that the pro-
posed filter (solid) and the UKF (dash) are robust to changes in the sampling frequency,
whereas the other two filters based on the EKF are more unstable. Particularly, the EKF
(dot) and DEKF (dash-dot). For smaller time steps, the difference among different filters
reduces. Then the UKF on TSE(3) and the UKF proposed in [8] behave almost the same,
achieving an higher accuracy with respect to EKF and DEKF even for large∆t . The center
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column of Fig. A.8 shows the RMSE(s) for the position and attitude error along with the
percentage of uncertainty on the filter initial pose estimate with respect to the true pose.
Particularly, let the true values be r0 and Θ0, the filters initial guesses are parametrized
as r0(1+χr /100),R(Θ0(1+χΘ/100)). As expected, the best performance are achieved for
small values of uncertainties. The UKF filters outperform the EKF filters for all the range
of χr ,χΘ since the EKF are particularly influenced by the initial condition accuracy. Fi-
nally, in the right column of Fig. A.8, the RMSE(s) are given as functions of the standard
deviation of the measurement noise, for the position and attitude measurements. Note
that the proposed UKF filter on TSE(3) achieves the lowest accuracy in terms of atti-
tude O(10−1) deg even with the smallest noise standard deviation. It can be explained
by the fact that the UKF on TSE(3) also estimates the velocities which are assumed to
be provided by noisy sensors, while the filter on SE(3) uses un-noisy velocities and only
updates on position and attitude measurements. Generally, as shown in the figure, the
proposed UKF on TSE(3) and standard UKF perform better than others. Even if the
DEKF seems to be robust to noisy measurements, it is dependent on the initial condi-
tion accuracy and sample frequency. According Fig. A.8, the EKF on SE(3) [4] is able to
achieve an higher accuracy of DEKF on SE(3) [6] and lower accuracy than the UKF on
SE(3) [8] and the proposed UKF on TSE(3). The latter one has proved to be particularly
robust even with noisy measurements, inaccurate initial conditions, and low sampling
frequency.
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