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Abstract

Satellite operations in low Earth orbit will be extremely frequent in the near fu-

ture, and consequently the optimization of trajectories between such orbits is becom-

ing of extreme interest. Low-thrust electric propulsion will arguably be the preferred

option for many missions, as it provides bene�ts in terms of propellant consump-

tion. Low-thrust trajectories in low Earth orbit require several revolutions around

the Earth and they are carried out in an environment where the two-body problem

approximation is not suited to describe the motion of a satellite. The objective of

this thesis is to illustrate a general methodology to take into account the e�ects of

the oblateness of the Earth and aerodynamic drag, and obtain useful solutions to the

minimum-time and minimum-propellant problems. An indirect optimization method

based on Edelbaum's approximation is applied to transfers between almost circular

low Earth orbits, considering the e�ects of drag and the asphericity of the Earth.

The exploitation of drag sails is investigated in a case study, considering a small

15-kg spacecraft in an initial orbit similar to that of the International Space Station.

Depending on the maximum frontal area of the sail, minor to signi�cant improve-

ments can be obtained in terms of minimum-time. The propellant consumption is

improved signi�cantly for a negative altitude change and in some cases nearly-zero-

consumption maneuvers are achieved by deploying the sail at the right time.
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Introduction

Active debris removal (ADR), on-orbit servicing (OOS) and small-sat deploy-

ment from the International Space Station (ISS) are just a few examples of missions

the require a spacecraft to maneuver in low Earth orbit (LEO). Therefore, the opti-

mization of trajectories between LEOs is becoming of extreme interest. Low-thrust

electric propulsion will arguably be the preferred option for such missions, as it pro-

vides bene�ts in terms of propellant consumption. However, low-thrust trajectories

require several revolutions around the Earth and they are carried out in an envi-

ronment where the two-body problem approximation is not suited to describe the

motion of satellites. As a result, the presence of perturbations must be accounted

for in order to obtain signi�cant solutions. The objective of this thesis is to illus-

trate a general method to take into account the e�ects of the oblateness of the Earth

and aerodynamic drag for a quick and accurate estimation of minimum-time and

minimum-propellant trajectories.

Given an orbital transfer, the optimization of a space trajectory consists in the

determination of a control law (such as the time history of the thrust magnitude and

direction) that either maximizes or minimizes a certain performance index. This work

will be focused on the search of optimal control laws that either minimize the transfer

time or maximize the �nal mass of a satellite or, equivalently, minimize propellant

consumption. The optimization problem will be addressed with an optimal control

theory (OCT) approach, that is a mathematical optimization method which aims to

determine the control law that satis�es well determined physical constraints while

maximizing (or minimizing) a performance index. OCT, explained in full detail

in [3, 15, 22], applies the principles of the calculus of variations [16, 18] to obtain

a set of optimality conditions, that result in boundary-value problem, the solution

of which yields the optimal control law. This indirect optimization method has the

advantage of having a high numerical precision, although the boundary value problem

is somewhat di�cult to solve [5].

LEOs have an altitude below 2000 km, so the eccentricity values are often less

than 0.1. Therefore, the complexity of the optimization problem can be reduced by

considering such orbits as circular. This approximation was used by Edelbaum for

the most famous solution [8] to the minimum-time problem, published in 1961. His
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Introduction

approach was based on an averaged dynamical model; he �rst determined the optimal

controls for the one-revolution transfer and then used the obtained results to solve

the multiple-revolutions transfer. Although the work of Edelbaum didn't include

the precession of the line of nodes due to the oblatebess of the Earth, he laid the

foundations for several modi�cations which added complexity to the original work.

Other contributions to the analysis of optimal low-thrust orbit transfers between

circular orbits appear in references [9, 11, 13, 27]. In [4] the Edelbaum's approach is

enhanced by accounting for the variation of the mass of the S/C and in [7, 12] the

precession of the line of nodes is accounted for by the Earth's gravitational harmonic

J2 coe�cient. This thesis further extends the method to deal with aerodynamic drag

without being far more demanding in terms of computational e�ort.

The atmospheric density in LEO is quite di�cult to be estimated. As a matter

of fact, the upper atmosphere is subject to �uctuations that depend on a variaty

of factors, such as altitude, local solar time and solar activity. One of the most

precise models for the Earth's atmosphere is the Jacchia-Bowman 2008 model [2].

However, a less accurate exponential model based on the U.S. Standard Atmosphere

1976 [20] is used here for simplicity and much faster computation. Nonetheless, the

proposed methodology is not dependent on the atmospheric model, so any model

can be readily adopted instead. In addition, a constant value for the drag coe�cient

is adopted, although a more rigorous analysis could be carried out by considering its

variation at di�erent altitudes and at di�erent solar times.

Since the orbits are almost-circular, changes of eccentricity and argument of pe-

riapsis are not considered. In addition, the rendezvouz problem is not addressed and

the true anomaly time history is neglected as well. Therefore, the state of the system

is described by semimajor axis, inclination and RAAN. The optimization problem

is formulated by �xing such parameters at the initial time for a chaser spacecraft.

The solution yields the control law to achieve rendezvous with a target spacecraft

in either minimum time or with minimum propellant consumption. Both orbits are

perturbed by J2, whereas aerodynamic drag doesn't a�ect the target orbit. Namely,

it is assumed that the target spacecraft perfoms station-keeping maneuvers to main-

tain the same semimajor axis and inclination. In addition to thrust magnitude and

direction, the frontal area of the chaser spacecraft is treated as a control variable.

This assumption entails that the spacecraft is equipped with a drag sail and can

perform aeroassisted maneuvers.

The thesis is structured as follows. Chapter 1 introduces the context of this

work, Chapters 2 and 3 give a brief overview of astrodynamics and space propulsion.

Chapter 4 describes the adopted mathematical model for the perturbations. Chapter

5 presents the basics of OCT and shows how to apply it to LEO transfers. A case

study is then presented in Chapter 6 and the advantages brought by drag sails are

evaluated.
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Chapter 1

Research context

This work will apply an indirect optimization method to LEO trajectories. Thus,

this chapter is meant to give the reader an insight into the reasons why the opti-

mization of such trajectories is becoming of extreme interest among the scienti�c

community.

1.1 Active debris removal

Sixty-four years ago Sputnik 1 was inserted into orbit. Since then, we've launched

so many satellites for so many di�erent applications that we can't even think of living

without their endless bene�ts. Unfortunately, the bill always comes due. For all these

years we've chosen to ignore the byproduct of space activities: orbital debris. The so

called �space-junk� comes in di�erent shapes and sizes. They can be as tiny as a �eck

of paint or as big as a whole satellite. Collision-avoidance maneuvers are becoming

routine to deal with the problem. However, this is not a permanent solution. The

average impact speed of a piece of debris running into another object is roughly

10 km/s and even a tiny piece can cause a lot of damage. The most signi�cant

collision happened in 2009, when the dead Russian military satellite Kosmos-2251

accidentally collided with the active American commercial satellite Iridium 33. The

collision had some serious consequences and scattered more than 1000 pieces of debris

larger than 10 cm [26], let alone the smaller ones. The following year, the U.S. Space

Surveillance Network (SSN) was able to catalog over 2000 debris fragments from the

collision. The causes for this accident are to be found in the lack of precise and up-

to-date information of current satellite positions and velocities. Although sometimes

this information is available, it is often a�ected by errors. In this speci�c case, the

two satellites were expected to miss by 584 meters. In addition, close approaches

are becoming more frequent and planning an avoidance maneuver is a challenging

task, also considering its e�ects on the satellite's normal functioning. Although the

fallout of this event is under control, we can't ignore the fact it's a warning of the

3



1.1. Active debris removal

Figure 1.1: History of the increase of the debris population cataloged by the SSN: 1
- total objects; 2 - fragmentation debris; 3 - satellites; 4 - debris related to missions;
and 5 - rocket bodies

potential collision cascade e�ect, known as the Kessler Syndrome [14]. This collision

cascading was �rst predicted by Kessler and Cour-Palais in 1978. They formulated

a theoretical scenario in which the density of orbital debris in LEO is so high that a

satellite collision could cause a cascade in which each collision is the cause of further

ones. By using a mathematical model they were able to predict the rate at which a

belt of orbital debris might form. This event could have dangerous implications, as

it could make the use of satellites in speci�c orbits di�cult for many generations.

As shown in �g. 1.1, the historical increase of the debris population is mainly

driven by fragmentation debris. The top curve is the increment of objects and

further detail about the population breakdown is brought by the the four curves

below. The well evident recent jumps coincide with the Chinese anti-satellite test

of 2007 end the collision between Cosmos 2251 and Iridium 33. The majority of the

22000 objects the SSN was able to catalog in 2012 were larger than 10 cm. However,

radar observations show that the number goes up to 500,000 if 1 cm level objects are

counted. Moreover, at the 1 mm level the population is likely in the order of hundreds

of millions. However, at the relative speed of impacts, even this tiny debris can pose

serious concerns. As a matter of fact, an impact by a debris larger than 5 mm is

likely to end the mission of a satellite. Fig. 1.2 shows the predicted growth of space

debris, as calculated by the NASA Orbital Debris Program O�ce in a study that

didn't assume any mitigation measure in the future. The geosynchronous (GEO)

zone is located in a range of 400 km around the geosynchronous altitude, and the

zone between LEO and GEO is the medium Earth orbit (MEO). As it can be readily

seen, the increase in LEO is projected to be the most substantial. Indeed, the recent

increase in LEO has lead to the introduction of the 25-year rule and the measure

known as passivation. The �rst one states that satellites and orbital stages of rockets

shall reenter the Earth's atmosphere within 25 years of mission completion if their

4



1.1. Active debris removal

Figure 1.2: Growth projection of the debris population larger than 10 cm in LEO,
MEO and GEO. The projection assumes no mitigation measures implemented in the
future: 1 - LEO (between 200 km and 2000 km altitude); 2 - MEO (between 2000 km
and 35586 km altitude); and GEO (between 35586 km and 35986 km altitude)

deployment orbit altitude is in the LEO region, whereas the latter consist in the

depletion of all latent energy reservoirs of a satellite or orbital stage to prevent an

accidental explosion after the mission.

Although the number of objects is mostly comprised of fragmentation debris, the

total mass is mainly made up of rocket bodies and spacecraft (S/C). In fact, the latter

account for more than 96% of the total mass of debris in orbit, with fragmentation

debris representing just over 3%. This is a crucial point to keep into account; the

mass of an object is also an important factor, as it can represent fuel for the cascade

e�ect. As of 2012, the total mass of space debris was more than 6000 t, and almost

half of it is in LEO (below 2000 km altitude).

Recent studies [19] have shown that the measures adopted so far won't be enough

to safeguard the environment from possible accidents and LEO requires more drastic

measures, such as active debris removal. As for MEO and GEO, the projection in the

future isn't as harsh as the one in LEO and even without any mitigation measure,

the situation will be very much under control. In addition, for GEO there's the

option of maneuvering the S/C after the end of the mission to a graveyard orbit, a

few hundred kilometers above. Nevertheless, even though there's no urgent need for

ADR in MEO and GEO for the near future, we have to keep into account the the

build-up of debris will continue in these zones. As an author's note, I'd like to point

out that we, as a species, ought to start thinking about how to clean our mess up

there as well, so that we won't face the same situation we have to deal with now.

Given the projection for the near future, it appears obvious that we should start

cleaning the LEO environment. Many objectives will drive future missions and many

di�erent paths can be taken. What is for sure is that all ADR mission concepts will
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1.2. On-orbit servicing

have at least one thing in common: maneuvering a S/C between LEOs. Hence,

this explains the �rst reason why the optimization of LEO trajectories is of primary

importance.

1.2 On-orbit servicing

The execution of operations in orbit such as refueling, maintenance, repair and

assembly is known as on-orbit servicing. From the 1970s up to the 1990s, OOS has

been executed many times, a lot of which concerned the Space Shuttle program.

The main reason why OOS was born was the huge interest in large space structures.

As a matter of fact, the �rst OOS experiences were carried out for the American

Skylab space station. These kind of activities required humans to perform extra-

vehicular activities (EVA) in order to carry out the tasks. At �rst, concepts of

robotic OOS were deemed unsuited, as the technology was still immature. In fact,

it presented many di�culties; the speed of telecommunication was not su�cient to

enable teleoperations and the subsystems didn't go anywhere near the capabilities

of a human being. In addition, the economic side of the challenge was highly unfa-

vorable. However, thanks to the turn of the new millennium, which saw the birth of

the International Space Station, the interest in large structure came back strongly

and brought by a renewed interest in robotic OOS. This resurgence was also aided

by new economic analysis [17] that showed a market exists for the technology and

also by the fact that the technology readiness level (TRL) is greatly improved [23].

These two factors culminated in a great interest for such missions at present.

Exactly as for ADR, all robotic OOS missions will require transfers between

LEOs. Therefore, the results of this thesis will be of extreme interest for this appli-

cation.

1.3 Small-sat deployment from platforms

The miniaturization of electronics and the increased availability of commercial-

of-the-shelf (COTS) components, resulted in a growth of small satellite missions

over the past decade. In addition, these spacecraft are often launched as secondary

payload, that is they share a ride on a launch vehicle that is mostly paid for by the

organization that commissions the launch of a larger satellite. Consequently, small

satellite operators usually obtain reduced prices for orbit insertion, but they have

no control over the launch date or the orbital trajectory of the launcher. Moreover,

secondary payload opportunities entail requirements due to deployment mechanisms,

as satellites must be compatible with such platforms. This access-to-orbit problem

can be addressed with an alternative strategy. Namely, these small-sats can be

transported to an orbiting platform (e.g. the ISS) and then deployed into orbit.
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Figure 1.3: Deployment from the International Space Station

Up to this date, over 50 satellites have been placed in cargo transportation bags

with other equipment and supplies bound for the ISS. Once there, they have been

integrated into suitable deployers and placed into orbit (�gure 1.3). This deployment

strategy brings some major advantages. In the �rst place, since the satellites are

placed into pressurized capsules, they are not exposed to the same kind of shock,

vibration and depressurization loads as a rideshare mission. As a result, this orbit

insertion strategy lowers risk and decreases costs for ground testing. In addition,

resupply missions to the ISS are quite frequent and highly reliable. This means

that the launch schedule is steady and predictable and small satellites operators can

choose between 4-5 launch windows per year.

Since the operative orbit may be quite di�erent from that of the ISS (or other

deployment platforms), an orbit transfer may be needed. For this reason, satellite

operators may be interested in either minimum-time or minimum-propellant trajec-

tories, depending on the mission requirements.
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Chapter 2

Orbital mechanics

This thesis applies the principles of optimal control theory (OCT) to the opti-

mization of space trajectories, and thus its theoretical content is deeply rooted in

the calculus of variations. However, without a basic understanding of astrodynamics,

its substance and results would be meaningless. Therefore, this chapter is meant to

give the reader all the fundamental prerequisites needed to grasp the contents of this

work. For more details, the reader may refer to [1, 25].

2.1 Two-body orbital mechanics

The Kepler's laws, published by Johann Kepler between 1609 and 1619, marked

a fundamental step towards unraveling the mysteries of planetary motion. They are:

Kepler's �rst Law The orbit of each planet is an ellipse, with the sun at a focus.

Kepler's secondLaw The line joining the planet to the sun sweeps out equal areas

in equal times.

Kepler's third Law The square of the period of a planet is proportional to the cube

of its mean distance form the sun.

Although these laws were a result of observations, and thus represented only a de-

scription of planetary motion, they also laid the foundations for Isaac Newton, who

50 years later �gured out the reason behind the laws. In arguably one of the greatest

work ever conceived by a human mind, Philosophiae Naturalis Principia Mathemat-

ica, Newton introduced his three laws of motion:

Newton's �rst Law Every body continues in its state of rest or of uniform motion

in a straight line unless it is compelled to change that state by forces impressed

upon it.

Newton's secondLaw The rate of change of momentum is proportional to the

force impressed and is in the same direction of that force.
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Figure 2.1: The n-body problem

Newton's third Law To every action there is always opposed an equal reaction.

For a �xed mass system, the second law can be expressed as∑
F = mr̈ (2.1)

where
∑

F is the vector sum of the forces acting on the �xed mass m and r̈ is the

vector acceleration of the mass relative to an inertial reference frame. In the same

work, Newton introduced his law of universal gravitation:

Fg = −GMm

r2

r

r
(2.2)

wherem andM are two masses,Fg is the force on massm and r is the vector fromM

to m. The universal gravitational constant G has the value 6, 67× 10−11 Nm2/kg2.

2.1.1 The n-body problem

At any given time, the motion of a body (which could be an arti�cial satellite,

a planet or an interplanetary probe) is being determined by several gravitational

masses and other forces, such as drag, thrust and solar radiation pressure. The

objective of the problem is �nding the law that describes how the position vectors

of n-bodies evolve through time. Let's study the motion of the body mi from �g-

ure 2.1,assuming spherical distribution of mass and spherical geometry of the body.

These assumptions are necessary to apply Newton's law of gravitation and from

Gauss's theorem we know it's equivalent to considering punctiform masses. In real-

ity, planets and moons are not perfectly spherical, and the gravitational e�ects due

to the shape of the bodies is responsible for many e�ects not described by Kepler's
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2.1. Two-body orbital mechanics

and Newton's laws. These e�ects will be discussed in Section 2.4.2. Additionally,

let's assume only gravitational forces are acting upon the bodies and all the masses

are constant through time. These two assumption are false, for example, when the

body is moving through an atmosphere where drag e�ects are present, when it's

expelling mass (propellant) to produce thrust or when solar radiation pressure is

present. With respect to an inertial coordinate system (X,Y,Z) the position vectors

of the n bodies are r1, r2, ..., rn. Applying Newton's law of gravitation, the force Fgj

exerted on mi by a generic mass mj is

Fgj = −G mimj

‖ri − rj‖2
ri − rj
‖ri − rj‖

(2.3)

The vector sum of all the forces acting on mi is

Fg = −Gmi

n∑
j=1

j 6=i

mj

‖ri − rj‖2
ri − rj
‖ri − rj‖

(2.4)

or

Fg = −Gmi

n∑
j=1

j 6=i

mj

‖rji‖2
rji
‖rji‖

(2.5)

where rji = ri − rj and j 6= i is present because mi does not exert a force on itself.

Applying Newton's second law,

r̈i = −G
n∑
j=1

j 6=i

mj

‖rji‖2
rji
‖rji‖

(2.6)

Extending to all bodies, 

r̈1 = −G
∑n

j=2
mj
‖rj1‖2

rj1
‖rj1‖

r̈2 = −G
∑n

j=1
j 6=2

mj
‖rj2‖2

rj2
‖rj2‖

...

r̈n = −G
∑n−1

j=1

mj
‖rjn‖2

rjn
‖rjn‖

(2.7)

gives n coupled vector di�erential equations and the problem has no analytical solu-

tion.

2.1.2 The two-body problem

Let us assume we want to study the motion of a body relative to another one,

keeping the simplifying assumption made so far. By using the results from the
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Figure 2.2: The two-body problem

previous section, let us study the motion of m2, which for example could be an Earth

satellite, relative to m1, which could be the Earth (�gure 2.2). The acceleration of

m1 relative to m2 is

r̈12 = r̈2 − r̈1 (2.8)

Substituting the �rst 2 equations from (2.7) into equation (2.8) gives

r̈12 = −G
n∑
j=1

j 6=2

mj

‖rj2‖2
rj2
‖rj2‖

−G
n∑
j=2

mj

‖rj1‖2
rj1
‖rj1‖

(2.9)

or, expanding,

r̈12 =−G m1

‖r12‖2
r12

‖r12‖
−G

n∑
j=3

mj

‖rj2‖2
rj2
‖rj2‖

−G m2

‖r21‖2
r21

‖r21‖
−G

n∑
j=3

mj

‖rj1‖2
rj1
‖rj1‖

(2.10)

Since r12 = −r21,

r̈12 = −Gm1 +m2

‖r12‖2
r12

‖r12‖
−

n∑
j=3

Gmj

(
rj2

‖rj2‖3
− rj1

‖rj1‖3

)
(2.11)

Therefore, the motion of m2 relative to m1 depends on the gravitational e�ects

between the two masses (�rst term of equation (2.11)) and on all of the other grav-

itational forces acting between the two masses and all of the other bodies, which

could be the sun, the moon and the other planets. Since the gravitational forces be-

tween Earth and an arti�cial satellite are much bigger than those between them and
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2.1. Two-body orbital mechanics

the other bodies, the last term of equation (2.11) represents the perturbing e�ects.

Replacing r12 with r, that is the vector that goes from the primary body to the

secondary one, m1 with M and m2 with m, and neglecting the perturbing e�ects,

gives

r̈ = −GM +m

r3
r (2.12)

If the mass of the primary body is much bigger than that of the secondary one, we

can make another simplifying assumption by saying that G (M +m) ≈ GM . Let us

also introduce a convenient parameter, µ, called the gravitational parameter:

µ ≡ GM (2.13)

For any given body, its gravitational parameter is the product of the gravitational

constant and its mass. Table 2.1 lists the gravitational parameters of the sun and

the planets of our solar system. We can now write equation (2.12) as

r̈ +
µ

r3
r = 0 (2.14)

Equation (2.14) is the restricted two-body equation of motion, where the term �re-

stricted� indicates that the gravitational pull of m on M is neglected.

Table 2.1: Gravitational parameter of the Sun and planets

Planet Mass/Mass Earth Gravitational parameter [km3/s2]

Sun 333432 1.327× 1011

Mercury 0.056 2.232× 104

Venus 0.817 3.257× 105

Earth 1 3.986× 105

Mars 0.108 4.305× 104

Jupiter 318.0 1.268× 108

Saturn 95.2 3.795× 107

Uranus 14.6 5.820× 106

Neptune 17.3 6.896× 106

2.1.3 Potential energy

The mechanical work per unit mass done by the gravitational force of the primary

body to move the secondary one from a certain point 1 to point 2 is

L =

ˆ 2

1
Fg · ds =

ˆ 2

1
− µ
r3

r · ds =

ˆ 2

1
− µ
r3
dr =

µ

r2
− µ

r1
(2.15)

and does not depend on the trajectory of the body. Therefore, the gravitational �eld

is conservative and an object moving through only a gravitational �eld does not lose
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2.1. Two-body orbital mechanics

or gain any mechanical energy, but only exchanges its kinetic and potential energy.

As a matter of fact, the work done by the gravitational force can be expressed as the

opposite of the change of potential energy of the body. Per unit mass one has

L = −∆Eg = − (Eg2 − Eg1) = Eg1 − Eg2 (2.16)

When the work is positive and the secondary body moves towards the primary one,

the potential energy decreases, whereas when the secondary body moves away the

potential energy increases. Therefore, from equations (2.15) and (2.16) one has

Eg1 − Eg2 = − µ
r1

+
µ

r2
(2.17)

with the speci�c potential energy de�ned as

Eg = −µ
r

+ c (2.18)

where �speci�c� indicates it is per unit mass and c is an arbitrary constant. Its

values depends on which reference point is used as zero of potential energy. This

choice is completely arbitrary, but in astrodynamics c is conventionally set to zero.

This makes the zero reference of potential energy at in�nity from the primary body

and also makes the potential energy always negative. Therefore, one has

Eg = −µ
r

(2.19)

2.1.4 Constants of the motion

Of course, the objective of the problem is to solve the equation of motion in order

to describe the trajectory of the satellite. Before doing that, let us collect some useful

insights into the physics of a body moving in a gravitational �eld.

Let us take the scalar product of the equation of motion with the �rst derivative

of the position vector, that is the velocity vector:

r̈ · ṙ +
µ

r3
r · ṙ = 0 (2.20)

Since v = ṙ and, given any vector a, one has a · ȧ = aȧ,

v̇v +
µ

r3
rṙ = 0 (2.21)

that is,
d

dt

(
v2

2
− µ

r

)
= 0 (2.22)
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2.1. Two-body orbital mechanics

The term within the brackets is the speci�c mechanical energy of the body

E =
v2

2
− µ

r
(2.23)

that is the sum of the kinetic and potential energy. As already anticipated, during

the motion it is constant and an object moving under the in�uence of gravity alone

exchanges one form of energy with the other.

Let us now take the vector product of r with the equation of motion,

r× r̈ + r× µ

r3
r = 0 (2.24)

which gives

r× r̈ = 0 (2.25)

that is,
d

dt
(r× v) = 0 (2.26)

Therefore, the speci�c angular momentum

h = r× v (2.27)

is a constant vector. Since h is constant and must be always perpendicular to both

r and v, the motion of the secondary body must occur in the same plane, that is r

and v must remain in the same plane. This plane is known as orbital plane. This

result is common to all central forces, since there's no torque acting on the body.

The magnitude of the speci�c angular momentum vector can be expressed with the

�ight path angle. As shown in �gure 2.3, it's always possible to de�ne a vertical

direction and an horizontal direction, no matter where the secondary body is located

in space. In the orbital plane, the local vertical at the location of the S/C is the same

as the direction of r and the local horizontal is perpendicular to it. Thus, one may

always say �up� by meaning away from the center of the primary body and �down�

by meaning towards its center. Therefore, the direction of the velocity vector can

be speci�ed by the angle ϕ it makes with the local horizontal, known as �ight path

angle. From the de�nition of cross product the magnitude of h is

h = rv sin (π − ϕ) = rv cosϕ (2.28)

The angle π − ϕ is also referred to as γ, the zenith angle. However, it's more

convenient to express the speci�c angular momentum in terms of ϕ.

The cross product of the equation of motion with h gives

r̈× h +
µ

r3
r× h = 0 (2.29)
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which can be rewritten as

d

dt
(ṙ× h) +

µ

r3
r× (r× ṙ) = 0 (2.30)

We can now use equations (A.6) and (A.16) from Appendix A to rewrite equation

(2.30) as

d

dt
(ṙ× h) +

µ

r3
r× (r× ṙ) =

d

dt
(ṙ× h) +

µ

r3
[(r · ṙ) r− (r · r) ṙ] =

d

dt
(ṙ× h) + µ

(
ṙ

r2
r− ṙ

r

)
=

d

dt
(ṙ× h)− µ d

dt

(r

r

)
=0 (2.31)

By integrating, one �nds that the vector

B = v × h− µr

r
(2.32)

is another constant of the motion in the two-body problem.

2.1.5 Trajectory equation

Let us now take the scalar product of r with equation (2.32),

r ·B = r · v × h− r · µr

r
(2.33)
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Figure 2.4: Conic sections

By using equation (A.18) one has

rB cos ν = h2 − µr (2.34)

where ν is the angle between B and r. Let us �nally solve for r and obtain

r =
h2/µ

1 + B/µ cos ν
(2.35)

Equation (2.35) is the trajectory equation in polar coordinates and it describes how

the secondary body moves with respect to the primary body. Before making any

observation with regard to this equation, let us revise some basic concepts of conic

sections.

2.1.6 Conic sections

A conic section can be de�ned as a curve obtained from the intersection of a

plane and a right circular cone (�gure 2.4). If the plane crosses one half of the cone

the section is called ellipse. If the plane is also parallel to the base of the cone, the

section is a circle. On the other hand, if the plane is parallel to a line in the surface

of the cone, the section is a parabola. Finally, if the plane cuts across both halves of

the cone, the section is called hyperbola and it has two branches. There also can be

degenerate conics, like one or two straight lines and a single point, when the plane

cuts across the apex of the cone. The mathematical translation of this geometric

de�nition is the following. A conic section is the locus of points such that the ratio

of the distance r from a given point, called focus, to its distance d from a given line,

16
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called directrix, is a positive constant e, called eccentricity :

e =
r

d
(2.36)

Letting s be the distance between the focus and the directrix, as shown in �gure

2.5, one has

d = s− r cos ν (2.37)

which can be rewritten as

r =
p

1 + e cos ν
(2.38)

where p = es is a geometrical constant of the conic section known as parameter or

semilatus rectum. Equation (2.38) is the general equation of a conic section in polar

coordinates with the origin located at a focus and the polar angle ν de�ned as the

angle between the position vector and the point of the conic section nearest to the

focus. Equation (2.38) is formally identical to the trajectory equation. This veri�es

Kepler's �rst law and extends it to include orbital motion along any conic section,

not just ellipses. The semilatus rectum of the conic, that is the distance between

the focus and the point in the trajectory where ν = π/2, is related to the angular

momentum of the S/C:

p =
h2

µ
(2.39)

In addition, the eccentricity of the conic section is the magnitude of B/µ and

e =
B

µ
(2.40)

is called eccentricity vector.
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Among the conic parameters, for orbital mechanics the directrix has no physical

signi�cance. On the other hand, the focus, the eccentricity and the semilatus rectum

are important parameters. Figure 2.6 shows the geometrical parameters of conic

sections. Physically, the prime focus F represents the location of the primary body

and the second focus F ′ has no physical signi�cance. The parabola constitutes the

limit between closed and open orbits and its second focus lies at an in�nite distance

from the prime. The length of the chord denoted as 2p is the latus rectum and

the length of the chord between the line of the foci and its intersection with the

conic section, denoted as 2a, is the major axis. Following from this de�nition, the

dimension a is known as semimajor axis. The semimajor axis of the circle is its

radius, for the parabola it is in�nite and for the hyperbola is taken as negative. The

width of an ellipse at the center, denoted as 2b, is calledminor axis and the dimension

b is known as semiminor axis. The distance between the two foci is denoted as 2c.

For the circle it is zero, as the two foci coincide, for the parabola it is in�nite and

for the hyperbola it is taken as negative. Following from the de�nition of a conic

section one can easily prove that

e =
c

a
(2.41)

and

p = a
(
1− e2

)
(2.42)
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always hold true except for the parabola. The extreme points of the major axis are

called apses. The point nearest the prime focus is called periapsis and the point

farthest from the prime focus is called apoapsis. This nomenclature may also vary

depending on the primary body. As a matter of fact, if the primary body is the

Earth we may also specify it by saying perigee and apogee, or, in the case of the Sun,

perihelion and apohelion. For the circle this nomenclature is obviously not de�nable

and the apoapsis has no meaning for open trajectories.

From equation (2.35) we see that the radius reaches its minimum value for ν = 0.

Therefore, the eccentricity vector is directed towards the periapsis. The polar angle

ν, between the position vector and the vector the points towards the periapsis, is

known as true anomaly. The distance from the primary body to either periapsis or

apoapsis can be obtained by inserting 0 or π as true anomaly in equation (2.35).

Therefore, for any conic section one has

rP =
p

1 + e
(2.43)

rA =
p

1− e
(2.44)

where the subscripts P and A indicate the periapsis and the apoapsis, respectively.

Combining equations (2.43) and (2.44) with equation (2.42) gives

rP = a (1− e) (2.45)

rA = a (1 + e) (2.46)

2.1.7 Relating energy to the geometry of an orbit

The total speci�c energy can be evaluated at any point in the trajectory. In

particular, at the periapsis one has

E =
v2
P

2
− µ

rP
(2.47)

The velocity at the periapsis can be expressed in terms of speci�c angular momentum.

From equation (2.28) one has

vP =
h

rP cosϕ
(2.48)

From the de�nition of �ight path angle, one has

tanϕ =
vr
vt

(2.49)

where

vr = v sinϕ (2.50)
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is the radial component of the velocity and

vt = v cosϕ (2.51)

its tangential component. Substituting equation (2.40) in (2.35) we can write

r (1 + e cos ν) =
h2

µ
(2.52)

Di�erentiating both side,

ṙ (1 + e cos ν)− rν̇e sin ν = 0 (2.53)

Since vr = ṙ and vt = rν̇, one has

vr
vt

=
e sin ν

1 + e cos ν
(2.54)

Substituting (2.54) into (2.49) gives

tanϕ =
e sin ν

1 + e cos ν
(2.55)

At the periapsis one has

ϕP =
e sin 0

1 + e cos 0
= 0 (2.56)

We can now use this result and rewrite (2.48) as

vP =
h

rP
(2.57)

Let us know substitute (2.57) into (2.47) and obtain

E =
h2

2r2
p

− µ

rP
(2.58)

Combining equations (2.39) and (2.42) gives

h2 = µa
(
1− e2

)
(2.59)

Let us now substitute equations (2.59) and (2.45) into (2.58) to �nally obtain

E = − µ

2a
(2.60)

Equation (2.60) is valid for all the types of orbit. For closed orbits (circle and ellipse)

a is positive and the total mechanical energy of the S/C is negative, while for the

parabola a is in�nite and the energy is zero and for the hyperbola a is negative and
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the energy is positive. Combining equations (2.59) and (2.60) gives

e =

√
1 +

2Eh2

µ2
(2.61)

For any conic orbit, the energy and the angular momentum determine the eccentricity

of the orbit, which speci�es the shape of the orbit. When the orbit is closed E is

negative and e < 1; if E is positive the orbit is an hyperbola e > 1; if E is zero the

orbit is a parabola and e = 1. However, when h is zero e is also equal to 1; as a

matter of fact, in this case the orbit is a degenerate conic (straight downfall to the

primary body). Therefore, all parabolas have e = 1 but an orbit whose eccentricity

is 1 may not be a parabola.

2.1.8 Closed orbits

The orbits of all Earth satellites are ellipses. Furthermore, the orbits object of

this thesis are almost circular and their eccentricity is close to zero. For this reason,

this section will go over some basic concepts of closed orbits, whereas parabolas and

hyperbolas won't be treated in this work.

2.1.8.1 Period of an elliptical orbit

Since an ellipse is a closed curve, a S/C on an elliptical orbit travels the same

path at each revolution. The time it takes the S/C to complete one revolution is

called the period. From equations (2.28) and (2.51) we know that

h = rvt (2.62)

Using vt = rν̇ we can write

h = r2dν

dt
(2.63)

The di�erential element of area dA swept out by r as it moves through an in�nitesimal

angle dν is given by

dA =
r2

2
dν (2.64)

We can now use this expression to rewrite 2.64 as

dA

dt
=
h

2
(2.65)

which proves Kepler's second law that the radius vector sweeps equal areas in equal

time, as h is a constant. Rewriting equation (2.65) as

dt =
2

h
dA (2.66)
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Figure 2.7: Eccentric anomaly, E

and integrating for one period gives

TE =
2

h

ˆ

AE

dA =
2πab

h
(2.67)

where AE = πab is the area of an ellipse and TE is the period of the orbit. From

simple geometry, one can easily prove that

a2 = b2 + c2 (2.68)

so we can now write, by also using equations (2.41), (2.42),

TE =
2πa
√
a2 − c2

h
=

2πa
√
a2 (1− e2)

h
=

2πa
√
ap

h
(2.69)

and, from equation (2.39), we can �nally write

TE = 2π

√
a3

µ
(2.70)

The period of an elliptical orbit depends only on the size of the semimajor axis.

Furthermore, equation (2.70) proves Kepler's third law, since the semimajor axis is

the �mean distance� of a S/C from the focus.

2.1.8.2 Time of �ight on an elliptical orbit

The time of �ight tQ from the periapsis P to any point Q of the elliptical orbit

can be evaluated with the area A1 of �gure 2.7, swept out by r. As a matter if fact,
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2.1. Two-body orbital mechanics

from Kepler's second law one has

tQ = TE
A1

AE
= 2

√
a3

µ

A1

ab
(2.71)

In order to evaluate A1, let us introduce a circle of radius a, centered in the center

of the ellipse O. The point C on the circle with the same abscissa as the point Q

and the angle E is called eccentric anomaly. Let us write the Cartesian equations of

a circle and an ellipse centered in O:
xQ
a2 +

yQ
b2

= 1

xC
a2 + yC

a2 = 1
(2.72)

Since xQ ≡ xC one realizes that
yQ
yC

=
b

a
(2.73)

From �gure 2.7 one has that the area A1 is given by area QV P minus area A2:

A1 = AQV P −A2 (2.74)

Since A2 is a right triangle whose base is c−a cosE and whose altitude is (a sinE) b/a,

we can write

A2 =
b

2a
a sinE (c− a cosE) =

=
b

2
sinE (ea− a cosE) =

=
ab

2
(e sinE − cosE sinE) (2.75)

As for AQV P , one has

AQV P = ACV P
b

a
(2.76)

where ACV P is the area of the sector COP minus the triangle whose base is a cosE

and whose altitude is a sinE. Thus,

AQV P =

(
1

2
a2E − a2

2
cosE sinE

)
b

a
=
ab

2
(E − cosE sinE) (2.77)

Substituting equations (2.77) and (2.75) into (2.74) gives

A1 =
ab

2
(E − e sinE) (2.78)

23



2.1. Two-body orbital mechanics

Finally, substituting into equation (2.71) yields

tQ =

√
a3

µ
(E − e sinE) =

M

n
(2.79)

where, according to Kepler, the mean motion n is

n =

√
µ

a3
(2.80)

and the mean anomaly M is

M = E − e sinE (2.81)

In order to use equation (2.79) to determine the time of �ight, we have to relate the

eccentric anomaly to the true anomaly. From �gure 2.7,

cosE =
c+ r cos ν

a
=
ea+ r cos ν

a
(2.82)

Combining equations (2.38) and (2.42) gives

r =
a
(
1− e2

)
1 + e cos ν

(2.83)

Therefore, we can rewrite equation (2.82) as

cosE =
e+ cos ν

1 + e cos ν
(2.84)

and the correct quadrant for E is obtained by considering that ν and E are always

in the same half-plane.

2.1.8.3 Circular orbit

The circular orbit is a special case of an elliptical orbit and the semimajor axis

of a circle is just its radius, so equation (2.70) becomes

Tc = 2π

√
r3

µ
(2.85)

The speed of a S/C in a circular orbit vc is called circular speed, which can be easily

derived from equations (2.23) and 20:

E =
v2
c

2
− µ

r
= − µ

2a
(2.86)

Since a = r we have

vc =

√
µ

r
(2.87)
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2.2. Coordinate systems

The greater the radius the less is the speed of a S/C in a circular orbit. For a S/C

in LEO the circular speed may vary from 7.7 km/s at 200 km altitude to 6.9 km/s at

2000 km.

The angular velocity of a S/C in a circular orbit is

nc =
vc
r

=

√
µ

r3
(2.88)

The true anomaly swept out by the radius vector in tQ is

ν = nctQ (2.89)

Equation (2.89) unveils the meaning of the mean anomaly M . As a matter of fact,

from equations (2.80) and (2.88), the mean motion n is, for a given orbit, the angular

velocity of a circular orbit with radius equal to the semimajor axis. Therefore,

rewriting equation (2.79),

M = ntQ (2.90)

and comparing it to equation (2.89) one realizes that the mean anomaly of a given

orbit is, after tQ time is passed from the passage at the periapsis, the same as the

true anomaly swept out by a S/C in a circular orbit with the same semimajor axis

during tQ.

2.2 Coordinate systems

Depending on the type of space mission, it is necessary to provide a suitable

coordinate system and a set of coordinates. The choice of a �suitable� coordinate

system is far from being a simple task, as the spatial description of an orbit ideally

requires an inertial reference frame. However, any coordinate system one can de�ne

has a certain degree of uncertainty to its inertial qualities. In practice, a coordinate

system centered in the primary body and with axes pointing a �xed direction with

respect to the �xed stars does the job of being almost inertial. Rectangular coor-

dinate systems are the most used in astrodynamics, although sometimes spherical

polar coordinates are more practical. In order to describe a rectangular coordinate

system, one has to give the position of the origin, the orientation of the fundamental

plane, on which the X and the Y axes lie, the positive direction of the Z axis and the

principal X direction (assuming X, Y and Z form a right handed set of coordinate

axes).

2.2.1 The heliocentric-ecliptic coordinate system

The origin of the heliocentric-ecliptic coordinate system is the center of the Sun.

The fundamental plane is the ecliptic, that is the plane the Earth orbits on. As
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Figure 2.8: Heliocentric-ecliptic coordinate system (seasons are for Northern Hemi-
sphere)

shown in �gure 2.8, the direction of the the X axis, labeled as g1, is given by the

line of intersection between the ecliptic plane and the Earth's equatorial plane. The

positive direction of g1, called the vernal equinox direction (symbol � because it

used to point in the direction of the constellation of Aries), is given by a line that, on

the �rst day of spring points, from the center of the Earth points towards the center

of the Sun. As the Earth's axis precesses over the centuries, the line of intersection

between the ecliptic and Earth's equatorial plane slowly drifts clockwise in what

is known as precession of the equinoxes. Therefore, this coordinate system is not

really inertial and, where precision is required, the set of coordinates of an object

are usually speci�ed by saying they were based on the vernal equinox direction of a

given year, or epoch.

2.2.2 The geocentric-equatorial coordinate system

The origin of the geocentric-equatorial coordinate system (�gure 2.9) is the center

of the Earth. The fundamental plane is the equator and the positive X axis points

in the vernal equinox direction. The Z axis points in the direction of the north

pole. Therefore, this coordinate system is not turning with the Earth, but rather it

is �xed with respect to the stars (neglecting the precession of the equinoxes). This

reference system, de�ned by unit vectors I, J and K, is obviously extremely useful

for describing the motion of Earth's satellites.

2.2.3 The right ascension-declination coordinate system

The right ascension-declination coordinate system (�gure 2.10) is strictly related

to the geocentric-equatorial system. The fundamental plane is the celestial equator,
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Figure 2.9: Geocentric-equatorial coordinate system
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J

K

α

δ

Figure 2.10: Right ascension-declination coordinate system

i.e. the extension of the equatorial plane to a �ctitious sphere of in�nite radius

known as celestial sphere. The projection of an object on the celestial sphere is

described by two angles, called right ascension and declination. The right ascension

α is measured eastward in the plane of celestial equator from the vernal equinox

direction. The declination δ is measured northward from the celestial equator to the

line from the origin of the system to the projection of the object on the celestial

sphere. Since the celestial sphere is in�nite, its center may be any point. Therefore,

we may choose the center of the Earth as origin of the system as well as a point on

its surface.
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xWGS84

yWGS84

zWGS84

La

Lo

r

Figure 2.11: WGS 84

2.2.4 The world geodetic system 84

The origin of World Geodetic System 84 (WGS 84) is the center of mass of the

Earth. The fundamental plane is the equatorial plane and the positive X axis points

towards the intersection between the equatorial plane and the Greenwich meridian.

Therefore, this coordinate system rotates about its Z axis with the same angular

velocity as the Earth. Any point can be identi�ed with a radius r and two angles,

Lo (Longitude) and La (Latitude), as shown in �gure 2.11.

2.2.5 The perifocal coordinate system

The origin of the perifocal coordinate system (�gure 2.12) is the center of the

primary body. The fundamental plane is the plane of the orbit of the secondary body.

The X axis (unit vector p) points towards the periapsis; the Y axis (unit vector q)

lies in the orbital plane and its rotated in the direction of the orbital motion. The

positive direction of the Z axis (unit vector w) is the positive direction of the angular

momentum vector. The vector r is given by

r = r cos νp + r sin νq + 0w (2.91)

Taking the time derivative, one �nds that v is given by

v = (ṙ cos ν − rν̇ sin ν) p + (ṙ sin ν + rν̇ cos ν) q + 0w (2.92)

Since vr = ṙ and vt = rν̇ one has

v = (vr cos ν − vt sin ν) p + (vr sin ν + vt cos ν) q + 0w (2.93)
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p
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q

ν

Figure 2.12: Perifocal coordinate system

Combining equations (2.28), (2.35) and (2.51)gives

vt =
h

r
=
µ

h
(1 + e cos ν) (2.94)

From equation (2.54) one has

vr = vt
e sin ν

1 + e cos ν
(2.95)

Combining (2.94) and (2.95) yields

vr =
µ

h
e sin ν (2.96)

Since ϕ = arctan (vr/vt), from equation 2.96 we deduce that ϕ is negative when sin ν

is negative and vice versa: ϕ > 0 if 0 < ν < π

ϕ < 0 if π < ν < 2π
(2.97)

We can �nally insert (2.94) and (2.96) into equation (2.93) to obtain

v = −µ
h

sin νp +
µ

h
(e+ cos ν) q + 0w (2.98)

If we know calculate

r · v =
µ

h
re sin ν (2.99)
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Figure 2.13: Classical orbital elements

we realize that, from equation (2.97),ϕ > 0 if r · v > 0

ϕ < 0 if r · v < 0
(2.100)

2.3 Classical orbital elements

The shape and the orientation of an orbit, as well as the position of a S/C on

that orbit, are completely described by the position vector and the velocity vector.

Indeed, any consistent set of six parameters can describe a two-body problem orbit.

Five independent quantities unambiguously de�ne an orbit's shape and orientation,

and a sixth quantity is needed to pinpoint the position of a S/C along that orbit.

Using the position vector and the velocity vector (together they give six independent

quantities) is extremely unpractical and other six parameters are preferred: the

classical orbital elements (�gure 2.13). These parameters are obviously dependent

on r and v and can be determined directly from them. The classical orbital elements

are:

1. a, semimajor axis. It de�nes the dimension of the orbit.

2. e, eccentricity. It de�nes the shape of the orbit.

3. ı, inclination. It is de�ned by the angle between the K unit vector and the and
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2.3. Classical orbital elements

the angular momentum vector:

ı = arccos

(
K · h

h

)
(2.101)

The inclination is always greater than or equal to zero radians and less than

or equal to π radians: 0 ≤ ı ≤ π

4. Ω, right ascension of the ascending node (RAAN). It is de�ned as the angle

in the fundamental plane between the I unit vector and the point where the

S/C crosses through the fundamental plane in a northerly direction, hence

�ascending�, measured counterclockwise when viewed from the north side of

the fundamental plane. Mathematically, we can de�ne the line of nodes with

unit vector

n =
K× h

‖K× h‖
(2.102)

pointing towards the ascending node. Following this de�nition, we can writeΩ = arccos (I · n) if n · J ≥ 0

Ω = 2π − arccos (I · n) if n · J < 0
(2.103)

since Ω can assume any value from zero radians to 2π radians.

5. ω, argument of periapsis. It is de�ned as the angle in the plane of the orbit

of the S/C between the ascending node and the periapsis, measured in the

direction of the motion of the S/C. Mathematically,ω = arccos (n · p) if p ·K ≥ 0

ω = 2π − arccos (n · p) if p ·K < 0
(2.104)

6. ν, true anomaly. Given the other orbital elements, it pinpoints the position of

the S/C along the orbit. The mathematical de�nition is, taking into account

equation (2.100), ν = arccos
(
r
r · p

)
if r · v ≥ 0

ν = 2π − arccos
(
r
r · p

)
if r · v < 0

(2.105)

The orbital elements a and e de�ne the geometry of the orbit, that is the dimension

and the shape. The orbital elements i, Ω and ω de�ne the orientation of the orbit

and, �nally, ν reveals where the S/C is along the orbit.

Sometimes, other angle are also used. The angle

Π = Ω + ω (2.106)
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is known as longitude of periapsis. It is the angle from I to periapsis, measured in

the equatorial plane and then in the orbital plane. If the orbit is equatorial, that is

the inclination is zero, the line of nodes is not de�nable and it is convenient to use

this angle.

If the orbit is circular, the argument of periapsis ω is not de�nable and it is

convenient to use the angle

ϑ = ω + ν (2.107)

known as argument of latitude at epoch, that is the angle in the plane of the orbit

between the ascending node and the radius vector at a particular time (epoch).

In the case of circular orbit Π is not de�nable, whereas for equatorial orbit µ is

not de�nable. Therefore, in the case of circular equatorial orbit, it is convenient to

use the angle

l = Ω + ω + ν (2.108)

also known as true longitude at epoch.

2.4 Perturbations

So far we have discussed trajectories that describe the relative motion of two

spherically symmetric bodies under the action of gravity alone. However, real S/C

trajectories are not described accurately by the two-body restricted problem. As a

matter of fact, a S/C is subject to several perturbations, such as the presence of

other attractive bodies, atmospheric drag and lift, the asphericity of the attractive

bodies, solar radiation e�ects, magnetic e�ects and thrust. These perturbations,

de�ned as deviation from the expected motion, may have di�erent consequences on

the trajectory of a S/C depending on the space mission. However, in the short run the

orbits of planets and satellites are well approximated by the two-body problem, which

makes it very convenient to describe the motion of celestial bodies. Nevertheless, in

the long run, the perturbations will make the trajectory of the S/C very di�erent

from the one predicted by the two-body problem. The orbital elements slowly change

and the S/C appears to continuously pass from a Keplerian orbit to another. Given

a speci�c time, the Keplerian orbit that has the same orbital elements of the real

perturbed trajectory is called osculating orbit. Following this de�nition, the orbital

elements of the S/C at a given time are the osculating orbital elements. Generally

speaking, the variation of an orbital element can be secular, i.e. it follows a linear

trend with time, or it can be subject to long period oscillations as a result of the

interaction with the variation of other orbital elements, or also subject to short-

period oscillations, usually caused by phenomena that periodically occur during each

revolution. In all cases, the restricted two-body equation of motion can be formally
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written as

r̈ = − µ
r3

r + fP (2.109)

where fP is the perturbing acceleration. In general, the equation doesn't have an

analytical solution and di�erent techniques can be adopted to integrate it. These

techniques are referred to as special perturbations and general perturbations. Special

perturbations methods consist in the numerical integration of the equation of motion

and yield the trajectory of a S/C given a set of initial condition at a particular

time, therefore obtaining a speci�c solution for a well-de�ned case. On the other

side, general perturbation methods provide an approximated analytical solution by

expanding perturbing accelerations into series, which are suitably truncated and

integrated.

2.4.1 Variation of parameters

As already discussed, a two-body problem orbit can be described by any suitable

set of six parameters. The variation of parameters method describes how any of

these sets of parameters vary with time as a result of perturbations. The method

consists in the analytical description of the rate of change of the parameters due to

the perturbations. Since in this work the method will be applied with the classical

orbital elements, it can also be called variation of elements. In addition, this method

can be considered either as a special perturbation method or a general perturbation

method, depending on how the expression that the method yields are then integrated.

This methodology is associated with two formulations; the �rst one leads to theGauss

planetary equations, which relate the components of the perturbing acceleration to

the rate of change of the orbital elements; the second one, not of interest for this

work, leads to the Lagrange planetary equations.

2.4.1.1 The Gauss planetary equations

As already stated, the Gauss planetary equations relate the components of a

perturbing acceleration to the rate of change of the orbital elements. Depending on

convenience, the perturbing acceleration can be projected in two di�erent ways. One

coordinate system has its principle axis R with unit vector R along the instantaneous

radius vector r. The axis T with unit vector T is rotated 90° in the orbital plane

in the direction of motion. The third axis W with unit vector W is perpendicular

to the other two. The other coordinate system has its principle axis V with unit

vector V along the instantaneous velocity vector v. The axis N, with unit vector N,

is rotated through a 90° angle in the orbital plane about W. The third axis W is

the same as for the other coordinate system. Therefore, following this de�nitions we

have fP = fRR + fTT + fWW = fV V + fNN + fwW. The relations between the

two types of projections are
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fR =
h

pV
[(e sin ν) fV − (1 + e cos ν) fN ] (2.110)

fT =
h

pV
[(1 + e cos ν) fV + (e sin ν) fN ] (2.111)

The derivation of the rate of change of the orbital elements, shown in depth in [25],

leads to the following results:

ȧ =
2a2

√
µp

[
(e sin ν) fR −

(p
r

)
fT

]
=

(
2a2V

µ

)
fV

ė =

√
p

µ

[
(sin ν) fR +

(
r

p

)(
e cos2 ν + 2 cos ν + e

)
fT

]
=

=
1

V

[
2 (e+ cos ν) fV −

(
a sin ν

r

)
fN

]
ı̇ =

r
√
µp

cos (ω + ν) fW

Ω̇ =
r
√
µp

sin (ω + ν)

sin (ı)
fW (2.112)

ω̇ = −Ω̇ cos ı−

√
p
µ

e

[
(cos ν) fR − sin ν

(
1 +

r

p

)
fT

]
=

= −Ω̇ cos ı+
1

eV

[
(2 sin ν) fV +

r

p

(
2e+ cos ν + e2 cos ν

)
fN

]
Ṁ = n− 2r√

ua
fR −

√
1− e2

(
ω̇ + Ω̇ cos ı

)
=

= n− 2
√

1− e2

V

[(
er sin ν

p

)
fV − fN

]
−
√

1− e2
(
ω̇ + Ω̇ cos ı

)
Where the mean anomaly is used instead of the true anomaly (they are related by

equations (2.81) and (2.84)).

By looking at the equation for the rate of change of the semimajor axis, one

notes that the only component of the perturbing acceleration that has a role in

its variation is the one along the velocity vector. The eccentricity can be varied

by either a V component or a N component. However, they have di�erent e�ects

depending on where the S/C is along the orbit. One interesting observation is that the

geometry of the orbit, i.e. its dimension and its shape, is only changed by perturbing

accelerations in the orbital plane. The equations for the rate of the inclination

and RAAN show that the orbital plane is changed by a perturbing acceleration

along W; depending on where the S/C is along the orbit, di�erent e�ects on the

orbital plane change can be obtained. At the ascending node, that is when ν = −ω,
a perturbing acceleration along W varies only the inclination. At the antinodes,

namely at ∆ν = π/2 from the nodes, a perturbing acceleration along W varies only
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the RAAN. Given a certain fW , the cost of changing Ω is lower if the inclination of

the orbit is lower. The argument of periapsis is varied by a change of RAAN and

also by in-plane perturbing accelerations. The rate of change of the mean anomaly

depends on in-plane perturbing accelerations and on ω and Ω variations.

2.4.2 Perturbations in LEO

In LEO the most important perturbing forces acting on a S/C are due to aerody-

namic e�ects, asphericity of the Earth, solar radiation and electromagnetic e�ects.

In this thesis, only the �rst two will be accounted for, as the latter are usually quite

small and negligible. Indeed, electromagnetic e�ects have a far bigger impact on the

attitude dynamics of a S/C than they do on its trajectory.

2.4.2.1 Atmospheric drag

Since in most cases aerodynamic lift is negligible for satellites, only the e�ects

of drag will be analyzed in this work. The analytic formulation of the perturbing

acceleration due to atmospheric drag is not a simple task, as many parameters that

de�ne it are a�icted by uncertainties. As a matter of fact, the aerodynamic forces

acting on a S/C are dependent on atmospheric �uctuation, the frontal area of the

S/C and the drag coe�cient. The residual atmosphere in LEO is characterized by a

density so low that conventional �uid mechanics is not applicable, as the interaction

between the S/C and the atmosphere has to be evaluated at the molecular level.

Without losing generality, the perturbing acceleration due to drag is given by

v̇ = −1

2
ρ
SCD
m
|v − vatm|2

v − vatm

|v − vatm|
(2.113)

where CD is the drag coe�cient associated with A, m is the mass of the S/C, vatm

is the absolute velocity of the atmosphere and ρ is the atmospheric density at the

altitude of the S/C. The drag coe�cient depends on the type of re�ection of the

particles that impact the surface of the S/C and typically it's close to the value 2.2.

The atmospheric density depends on a vast variety of factors, such as altitude, season,

local solar time, solar activity. It's evident that its exact value is never accurately

predicted and, as a consequence, the e�ect of drag can solely be roughly estimated.

S is the projection of the area of the satellite perpendicular to the vector v − vatm,

that is the relative velocity of the S/C with respect to the atmosphere. The frontal

area S depends on the attitude of the satellite. In this work, it will also depend on

the deployment of a sail. By introducing the vector vrel = v − vatm we can rewrite

equation (2.113) as

v̇ = −1

2
ρ
SCD
m
|vrel|vrel (2.114)
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2.4.2.2 Asphericity of the Earth

The Earth doesn't have neither geometrical symmetry nor mass symmetry. As a

matter of fact, it is an oblate body, �attened at the poles and bulged at the equator.

In addition, it is characterized by asymmetrical density variations. Therefore, the

expression for the gravitational potential is not quite the one introduced in the two-

body problem. The equatorial bulge produces a torque on the satellite and the orbit

plane precesses. In addition, the line of the nodes moves westward for direct orbits,

that is whose inclination is less than 90°, and westward for retrograde orbits, that is

whose inclination is more than 90°. The gravitational potential of the Earth in the

WGS84 coordinate system can be expressed by

Eg =
µ

r
− µ

r

∞∑
n=2

Jn

(r⊕
r

)n
Pn sinLa

− µ

r

∞∑
n=2

∞∑
m=2

Jn,m

(r⊕
r

)m
Pmn sinLa cos [m (Lo− Lom,n)] (2.115)

The function Pn (x) is the Legendre's polynomial of degree n:

Pn (x) =
1

2nn!

dn

dxn
[(
x2 − 1

)]
(2.116)

whereas Pmn (x) is the associated Legendre's polynomial of degree n and order m:

Pn (x) = (−1)m
(
1− x2

)m
2
dm

dxm
[Pn (x)] (2.117)

The terms Jn are called zonal harmonics, whereas Jn,m are called tesseral and sec-

torial harmonics for n 6= m and n = m, respectively. The zonal harmonics describe

the asymmetry with respect to the equator and depend on latitude. The tesseral

and sectorial harmonics describe the asymmetry of the Earth about its axis of rota-

tion. The tesseral harmonics depend on latitude and longitude, while the sectorial

harmonics depend on longitude only.

The zonal harmonic J2, which describes Earth's oblateness, is the most important

term and its value (J2 = 1.082629·10−3) is three orders of magnitude greater then any

other. In addition, LEO orbits aren't a�ected by tesseral and sectorial harmonics, as

their e�ect is averaged by the rotation of the Earth inside the orbit of the S/C (this

isn't the case for satellites in geostationary orbit, which maintain a �xed position

relative to the Earth). In practice, for LEO orbit it is su�cient to consider the Earth

as axisymmetric and neglect both tesseral and sectorial harmonics. In addition, if

only J2 is considered, the method of general perturbation yields the following orbital
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2.4. Perturbations

elements variations after one revolution:

∆Ω = −3πJ2

(
r⊕
p

)2

cos ı (2.118)

∆ω =
3

2
πJ2

(
r⊕
p

)2 (
5 cos2 ı− 1

)
(2.119)

The regression of the line of the nodes is an important e�ect on LEO orbits, and its

entity increases as the orbit is less inclined. For direct orbits the line of the nodes

regresses, whereas for retrograde orbits it precesses. On the other hand, the line of

apses precesses for ı < 63.4◦ or ı > 116.6◦ and regresses for 63.4◦ < ı < 116.6◦. For

either ı = 63.4◦ or ı = 116.6◦, that is when 5 cos2 ı − 1 = 0, J2 has no e�ect on the

line of apses.
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Chapter 3

Propulsion

Since ADR and OOS missions will require the S/C to perform many LEO trans-

fers, electric propulsion (EP) will be arguably the preferred option. As a matter

of fact, although the acceleration levels EP can achieve are far lower than those of

chemical propulsion, the propellant consumption of electric thrusters is very lim-

ited. Although transfer times will be generally longer than the ones achievable with

chemical propulsion, the low propellant consumption will allow the S/C to complete

more transfers. This chapter will give the reader an insight into the generalities

of space propulsion and will highlight the di�erences between chemical and electric

propulsion.

3.1 Generalities of space propulsion

In space there is almost nothing to exchange momentum with. Therefore, the

S/C is an isolated system and the only way to generate thrust consists in having on

board something to exchange momentum with, namely the propellant. The source

of the energy used to accelerate the propellant de�nes the main two �elds of space

propulsion: chemical propulsion and electric propulsion. The energy used to acceler-

ate the propellant comes from a chemical reaction for chemical propulsion, whereas

for electric propulsion it comes from a electric power generator.

Let us consider an isolated S/C, far away from any other mass that could generate

a gravitational pull. The S/C has a certain velocity v at the time t. Let us study a

uni-dimensional case. After an in�nitesimal time dt the S/C has ejected a mass of

propellant dmp and changes its velocity to v + dv. The mass dmp has a velocity c

with respect to the S/C, thus having a v − c absolute velocity. Let us apply the law

of conservation of momentum:

mv = (m− dmp) (v + dv)− dmp (c− v) (3.1)
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3.1. Generalities of space propulsion

which rewrites as

mdv = dmpc (3.2)

Let us introduce the propellant mass �ow rate:

ṁp =
dmp

dt
(3.3)

The di�erential dmp can be rewritten as the product of the mass �ow rate and dt,

giving

m
dv

dt
= ṁpc (3.4)

This equation gives an expression for the product of the mass of the S/C and its

acceleration, that is thrust:

T = ṁpc (3.5)

In order to accelerate the propellant from zero velocity to c with respect to the S/C,

a certain amount of energy has to be spent. Let us introduce the thrust power:

PT =
1

2
ṁpc

2 =
1

2
Tc (3.6)

which is the power needed to continuously accelerate the propellant from 0 to c.

In reality, the propellant that is being ejected interacts with the propellant inside

the /C. If the exit velocity of the propellant is ue, taking into account the momentum

exchange with the ejected propellant, the thrust formula rewrites as

T = ṁpue +Ae (pe − p0) (3.7)

where Ae is the exit area and p0 is the atmospheric (null if the S/C is in a void). In

any case, it is far more convenient to use equation (3.5), compressing in c the e�ects

of accelerating the propellant and the pressure of the ejected propellant. By using

(3.5), the detail on the value of the exit velocity and the value of the exit pressure is

lost. However, this is not a problem as the detail on how thrust is generated is not

of particular interest. As a matter of fact, two thrusters can exert the same thrust

on a S/C with di�erent ue and pe, but the e�ects on the S/C are the same. For this

reason, it is far more useful to de�ne the ratio between thrust and mass �ow rate:

c =
T

ṁp
(3.8)

where c is called e�ective exhaust velocity . If pe = p0, c is exactly equal to the exhaust

velocity. In space propulsion, this is almost always the case (approximately).
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3.2. Performance of the propulsion system

3.2 Performance of the propulsion system

The aim of the propulsion system is to change the velocity of the S/C. Thus, the

thrust is not itself as much of interest as its e�ects on the S/C. The integral of thrust

over the complete duration of a mission,

It =

ˆ tf

t0

Tdt (3.9)

is called total impulse. The total mass of propellant used is

mp =

ˆ tf

t0

ṁpdt (3.10)

The ratio between the total impulse and the weight of the mass of the propellant

used on the surface of the Earth,

Isp =
It

mpg0
(3.11)

is called speci�c impulse. Historically, the speci�c impulse is de�ned with the weight

instead of the mass of the propellant. If both thrust and mass �ow rate are constant

throughout the mission, one has

Isp =
It

mpg0
=

T∆t

ṁp∆tg0
=

T

ṁpg0
=

c

g0
(3.12)

The meanings of Isp and c are fundamentally the same. The speci�c impulse is

a measure of how e�ectively the propellant mass is ejected. Let us consider given

mass of propellant mp and let's imagine we want to generate thrust with a certain

e�ective exhaust velocity c. Let us also imagine that the generated thrust is equal to

the weight of the propellant: T = mpg0. Let us �nd how much time the thruster can

give us this level of thrust. From the de�nition of total impulse, we have ∆t = It/T .

This expression rewrites, using the de�nition of speci�c impulse, as ∆t = Ispmpg0/T .

Since T = mpg0, we �nally have ∆t = Isp. Given mp, if c increases the same thrust

can be exerted for more time. The speci�c impulse can be considered as the time

a certain quantity of propellant can give a thrust equal to its weight on Earth. In

practice, if Isp increase, the same thrust can be exerted for more time or more thrust

can be exerted for a given time.

Even though the total impulse It = mpc is a measure of the performance of the

propulsion system, as it shows how it a�ects the S/C based on how much propellant

is on board and on the value of e�ective exhaust velocity the system is capable to

achieve, it is not enough to have a complete picture of the performance. As a matter

of fact, the velocity change of the S/C is the primary aim of propulsion. The same

total impulse has di�erent e�ects on di�erent S/Cs, depending on the mass. The
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3.2. Performance of the propulsion system

integral of the acceleration due to thrust over the course of a mission,

∆V =

ˆ tf

t0

T

m
dt (3.13)

is called delta-V. It represents the change in velocity that a S/C would be subjected

to if the only force acting on it was thrust parallel to the velocity. The actual change

in velocity depends on all of the other forces that interact with the S/C. However,

the meaning on ∆V is measuring of the e�ects of thrust. For example, a body in a

gravitational �eld will have ∆V = 0 in the absence of thrust, even when accelerating

or decelerating. The delta-V can be rewritten by using equation (3.8):

∆V =

ˆ tf

t0

cṁp

m
dt (3.14)

The propellant mass �ow rate is equal and opposite to the time derivative of the

mass of the S/C:

ṁp = −dm
dt

(3.15)

Substituting equation (3.15) into (3.14) yields

∆V =

ˆ mf

m0

−cdm
m

(3.16)

This expression can be simpli�ed by assuming c is a constant. The resulting equation

is the Tsiolkovsky rocket equation:

∆V = c ln

(
m0

mf

)
(3.17)

which can be written as

mf = m0e
−∆V

c (3.18)

The rocket equation relates the initial and the �nal mass of a S/C depending on the

delta-V and c. Thus, it gives an expression for the propellant needed for a maneuver:

mp = m0 −mf = m0

(
1− e−

∆V
c

)
(3.19)

The following table shows the ration between initial and �nal mass as a function of

the ratio between ∆V and c:
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3.2. Performance of the propulsion system

∆V/c mf/m0
m0/mf

5 0.0067 148
2 0.135 7.39
1 0.368 2.72
0.5 0.606 1.65
0.2 0.819 1.22
0.1 0.905 1.11

Table 3.1: Results of the rocket equation

Since m0/mf is a measure of the cost of the mission (the more it increases

the more propellant is needed), given a certain ∆V , c shall be comparable. The

bigger the e�ective exhaust velocity, the lesser propellant is needed for a given mis-

sion/maneuver. The typical delta-V for some missions are shown on the following

table:

Mission ∆V [km/s]

LEO insertion 10
Station keeping (1 year) 0.5
LEO-GEO (impulsive) 3.5
LEO-GEO (low-thrust) 6
Earth escape (impulsive) 3.2
Earth escape (low-thrust) 8
Earth-Mars (impulsive) 5.5
Earth-Mars (low-thrust) 6
Earth-Jupiter (low-thrust) 16.7
Earth-Alpha Centauri 30000

Table 3.2: Typical delta-Vs

As a �rst approximation, given the mass of a S/C, the total impulse solely depends

on the delta-V:

It ≈ mavg∆V (3.20)

From the de�nition of Isp,

mp =
It

g0Isp
(3.21)

one notes that, given the mission, the mass of propellant is inversely proportional

to the speci�c impulse of the thruster. Given a certain mission, doubling Isp means

completing the mission with half of the propellant. For chemical propulsion, Isp is

limited by the maximum energy that the chemical reaction can generate (Isp = 450 s

with liquid oxygen LOX and liquid hydrogen LH2). This fact has repercussions on

the ratio m0/mf . For example, insertion in LEO requires ∆V = 10 km/s. By using

LOX/LH2, which by the way is the best combination in terms of Isp, the ratio ∆V/c
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3.3. Chemical propulsion and electric propulsion

is roughly equal to 2. From table (3.2) we see that the �nal mass is limited to a

10% of the initial mass. For bigger delta-Vs chemical propulsion is almost always

not practical. On the other hand, electric propulsion is not characterized by a direct

dependence between the propellant and the energy available. Therefore, bigger c can

be easily obtained.

3.3 Chemical propulsion and electric propulsion

In chemical propulsion a propellant mass �ow rate ṁp reacts and releases chemical

energy, which is converted to kinetic energy by letting the gas expand and accelerate.

The energy balance can be written as

ṁp

(
he +

u2
e

2
− h0

)
= ηṁpEch (3.22)

Where Ech is the energy per unit mass released by the reaction, he and h0 are

the speci�c enthalpy of the propellant when it enters and when it exits the thrust

chamber. The e�ciency η takes into account how much chemical energy is actually

transformed into enthalpy. By neglecting the enthalpy of the propellant when it

enters the thrust chamber, assuming maximum e�ciency and substituting c ≈ ue,

we can write

cchemical ≈
√

2Ech (3.23)

Equation (3.23) shows that c is limited by the energy of the reaction and gives an

upper limit for c. This is also intuitive, as the energy used to accelerate the propellant

is contained in the propellant itself. Therefore, the extent to which it can accelerate

depends on the energy the propellant itself is capable of releasing. On the other

hand, this fact is what makes chemical rockets extremely scalable, as it's possible to

either increase or decrease the propellant mass �ow rate for a given value of c. In

theory, the thrust achievable can be arbitrarily big, with the drawback of having a

large propellant consumption.

As for electric propulsion, the propellant mass �ow rate ṁp receives a certain

amount of electric power PE . The energy balance is:

ṁp
c2

2
≈ ηPE (3.24)

While chemical rockets can achieve high values for η, this is not the case for electric

thrusters. As a matter of fact, the transformation from electrical to kinetic energy

is characterized by high losses. From equation (3.24) we have

celectric ≈

√
2ηPE
ṁp

(3.25)
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Theoretically, arbitrary high values of c can be obtained by either increasing PE or

decreasing ṁp.

In a chemical rocket, the energy available ṁpEch and requested ṁpc
2/2 are bound

by the mass of propellant. If one increases, the other one increases as well. On the

other side, an electric thruster doesn't have this limitation, as the available power PE

is completely unrelated to the mass of propellant. Therefore, given a certain power,

an electric thruster can accelerate more a smaller mass of propellant, and vice versa.

Substituting T = ṁpc into equation (3.24) yields

c ≈ 2ηPE
T

(3.26)

which shows that c can be increased by either increasing PE or decreasing T . This

is the fundamental di�erence between chemical and electric propulsion. Chemical

rockets can generate arbitrarily high values of thrust (they span from mN to MN

range) with a limited c, whereas electric thruster can achieve high values of c with the

drawbacks of having on board a power source (solar arrays, typically) and limited

thrust (order of N maximum). The available thrust is bounded by technological

limits, as the increase of PE is accompanied by an increase of the mass of the power

source. The choice between chemical or electric depends on the mission. Certainly,

orbit insertion requires high levels of thrust and chemical is the only option. On

the other hand, an interplanetary transfer can be achieved with a lower propellant

consumption by choosing electric propulsion, taking into account that the mission

will require more time.

3.4 Limits of electric propulsion

Electric propulsion requires a power generator. The total mass m of a S/C can

be broken down in various terms:

m = mu +mp +ms (3.27)

where mu is the mass of the payload, mp is the mass of propellant and ms is the

mass of the power generator. The acceleration due to thrust is

a =
T

m
(3.28)

which is less than the acceleration the S/C would experience if ms was the only mass

a <
T

ms
(3.29)
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3.4. Limits of electric propulsion

With good approximation, the mass of the power generator can be assumed as pro-

portional to the electric power the generator produces:

ms = αPE (3.30)

Lower value of α correspond to a better technology. Therefore, we can write:

a <
T

αPE
(3.31)

Substituting (3.26) into (3.31) yields

a <
T

αTc2η

(3.32)

which rewrites as

a <
η

α

2

c
(3.33)

The acceleration is limited by the right hand side of the inequality. In order grasp

the orders of magnitude one can expect, let us assume very optimistic values for η

and α. If η = 0.5, α = 1 kg/kW and c = 10 km/s one has

a < 0.1
m

s2
≈ g0

100
(3.34)

where g0 is the gravitational acceleration on the surface of the Earth. This thesis

will deal with orbital maneuvers in LEO. This means that the acceleration due to

thrust will be orders of magnitude less than the one due to gravity. Therefore, we

can expect very gradual changes in the trajectory of the S/C.
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Chapter 4

Mathematical model

4.1 Atmospheric model

As stated in Section 2.4.2, the atmospheric �uctuations that characterize LEOs

are dependent on a vast variety of factors, such as altitude, season, local solar time

and solar activity. Since the evaluation of drag depends on the knowledge of the

atmospheric density, it is necessary to have an atmospheric model that accurately

predicts the density along the orbit of the S/C. Since this thesis is meant to give a

methodology in order to take into account the e�ects of drag on the optimization

problem, its aim is not to give results for a speci�c case study. For this reason,

the U.S. Standard Atmosphere 1976 was chosen a suitable atmospheric model. The

methodology is not dependent on the atmospheric model, so any model can be readily

adopted instead of the one chosen here.

The U.S. Standard Atmosphere is �an idealized, steady-state representation of

the earth's atmosphere from the surface to 1000 km, as it is assumed to exist in a pe-

riod of moderate solar activity�. This atmospheric model was adopted by the United

States Committee on Extension to the Standard Atmosphere (COESA), a group of

organizations which aimed to provide the missile industry a realistic atmospheric

model beyond the altitudes of aircraft operations.

The full detail on how the model is built is in [20]. Using the tabulated data,

the density pro�le ρ (z) between altitudes from z = 86 km and z = 1000 km can be

calculated with the basic equation form

ρ (z) = eAz
4+Bz3+Cz2+Dz+E (4.1)

where the value of the A through E coe�cients are listed in table 4.1.
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Table 4.1: Density formula coe�cients

Density [kg/m3]

Altitude
[km]

A B C D E

86-91 0.000000 −3.322622× 10−6 9.111460× 10−4 −0.2609971 5.944694
91-100 0.000000 2.873405× 10−5 −0.008492037 0.6541179 −23.62010
100-110 −1.240774× 10−5 0.005162063 −0.8048342 55.55996 −1443.338
110-120 0.000000 −8.854164× 10−5 0.03373254 −4.390837 176.5294
120-150 3.661771× 10−7 −2.154344× 10−4 0.04809214 −4.884744 172.3597
150-200 1.906032× 10−8 −1.527799× 10−5 0.004724294 −0.6992340 20.50921
200-300 1.199282× 10−9 −1.451051× 10−6 6.910474× 10−4 −0.1736220 −5.321644
500-750 8.105631× 10−12 −2.358417× 10−9 −2.635110× 10−6 −0.01562608 −20.02246
750-1000 −3.701195× 10−12 −8.608611× 10−9 5.118829× 10−5 −0.06600998 −6.137674

4.2 Analytical description of the perturbations

As already stated, this work takes into account the e�ects of drag and J2. The

trajectories of interest are characterized by long transfer times between almost circu-

lar LEOs, so the equations for eccentricity, argument of periapsis and mean anomaly

can be neglected. In addition, the eccentricity can be considered always null. There-

fore, the radius, the semimajor axis and the semilatus rectum can be considered to

be equal and the velocity of the S/C is always equal to the circular velocity. The dif-

ferential equations that describe the rate of change of semimajor axis, inclination and

RAAN are obtained by substituting e = 0, r = a = p and V =
√
µ/r in equations

(2.112):

ȧ = 2

√
a3

µ
fV

ı̇ =

√
a

µ
cosϑfW

Ω̇ =

√
a

µ

sinϑ

sin ı
fW (4.2)

In order to apply the variation of elements method and to describe analytically the

e�ects of the perturbations on the orbital elements, let us formulate the expression

of the projections of the perturbing accelerations in the coordinate system VNW

introduced in Section 2.4.1.1.

First, let us derive the projection of the acceleration due to drag, given by equa-

tion (2.114):

v̇ = −1

2
ρ
SCD
m
|vrel|vrel (4.3)

where vrel = v−vatm. The velocity of the atmosphere at a given point at a distance

r from the center of the Earth can be approximated by

vatm = ω⊕ × r (4.4)
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where ω⊕ is the angular velocity of the Earth. As a matter of fact, equation (4.4)

means that the atmosphere is turning with the Earth with the same angular velocity.

Therefore, if the equation holds true, the velocity of the atmosphere is always con-

tained in the local horizontal plane, as it must be perpendicular to r. Since almost

circular orbits are considered, the �ight path angle of the S/C is always zero and the

velocity is also contained in the local horizontal plane as well. As a consequence,

at any given point along the orbit the velocity of the atmosphere has a component

along V and a component along W, but never has a N component. In addition, since

the velocity is perpendicular to the radius vector, the unit vector V from the VNW

system is always coincident to the unit vector T from the RTW system, as can be

easily proved by substituting e = 0 in equation (2.111). Therefore, the components

of the acceleration due to drag in VNW are

(fV )drag = (fT )drag = v̇ ·T (4.5)

(fW )drag = v̇ ·W (4.6)

Substituting equation (2.114) yields

(fV )drag = −1

2
ρ
SCD
m
|vrel| (vrel)T (4.7)

(fW )drag = −1

2
ρ
SCD
m
|vrel| (vrel)W (4.8)

where (vrel)T and (vrel)W are the T and W components of vrel. In order to write their

mathematical expressions, we have to write the components of vrel in the perifocal

frame and then transform the coordinates to RTW.

The angular velocity of the Earth only has a K component in the geocentric-

equatorial coordinate system:

ω⊕ = 0I + 0J + ω⊕K (4.9)

Let us transform the coordinates to the perifocal frame. Since the orbit is circu-

lar, let us use the arguments of latitude from equation (2.107) instead of the true

anomaly. This way, we can arbitrarily set ω to zero in the transformation matrix

(B.5). Transforming the coordinates according to equation (B.6) yields

ω⊕ = 0p + ω⊕ sin ıq + ω⊕ cos ıw (4.10)

Let us now calculate the cross product

(vatm)pqw = (0p + ω⊕ sin ıq + ω⊕ cos ıw)× (rpp + rqq + 0w) (4.11)
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which gives

(vatm)pqw = −rqω⊕ cos ıp + rpω⊕ cos ıq− rpω⊕ sin ıw (4.12)

The p and q components of the radius are given by

rp = r cosϑ (4.13)

rp = r sinϑ (4.14)

where ϑ is the argument of latitude. We can now use the transformation matrix from

equation (B.8) to �nally obtain

(vatm)RTW = 0R + rω⊕ cos ıT− rω⊕ sin ı cosϑW (4.15)

The velocity of the S/C in the RTW frame is

(v)RTW = 0R +

√
µ

r
T− 0W (4.16)

We can now write, substituting r = a, the expressions for (vrel)T , (vrel)W and |vrel|:

(vrel)T =

√
µ

a
− ω⊕a cos ı (4.17)

(vrel)W = ω⊕a sin ı cosϑ (4.18)

|vrel| =

√(√
µ

a
− ω⊕a cos ı

)2

+ (ω⊕a sin ı cosϑ)2 (4.19)

Finally, substituting (4.17), (4.18) and (4.19) in equations (4.7) and (4.8), we have

the expressions for the accelerations components due to drag:

(fV )drag = −1

2
ρ
SCD
m

(√
µ

a
− ω⊕a cos ı

)√(√
µ

a
− ω⊕a cos ı

)2

+ (ω⊕a sin ı cosϑ)2

(4.20)

(fW )drag = −1

2
ρ
SCD
m

(ω⊕a sin ı cosϑ)

√(√
µ

a
− ω⊕a cos ı

)2

+ (ω⊕a sin ı cosϑ)2

(4.21)

The perturbing drag acceleration is responsible for time variations of a, ı and Ω. In

49



4.2. Analytical description of the perturbations

order to study the extent of these variations, let us analyze

ȧdrag
ı̇drag

= 2
a

cosϑ

(fV )drag
(fW )drag

(4.22)

ȧdrag

Ω̇drag

= 2a
sin ı

sinϑ

(fV )drag
(fW )drag

(4.23)

Substituting equations (4.20) and (4.21) in (4.22) and (4.23) yields

ȧdrag
ı̇drag

=
2

cosϑ

√
µ
a − ω⊕a cos ı

ω⊕ sin ı cosϑ
(4.24)

ȧdrag

Ω̇drag

=
2

sinϑ

√
µ
a − ω⊕a cos ı

ω⊕ cosϑ
(4.25)

We see that the the numerator of these equations is always greater than 2
(√

µ/a− ω⊕a
)
,

while the denominator is always less than ω⊕. Therefore, we can write the following

inequalities:

ȧdrag
ı̇drag

≥
2
(√

µ
a − ω⊕a

)
ω⊕

(4.26)

ȧdrag

Ω̇drag

≥
2
(√

µ
a − ω⊕a

)
ω⊕

(4.27)

It is easy to demonstrate that up until 1000 km altitude, above which the e�ects

of drag are negligible, the numerator is a monotonically decreasing function of the

altitude. Substituting ω⊕ = 7.2921 · 10−5 rad/s, for a 1000 km altitude we can write

ȧdrag
ı̇drag

> 105 km/s

rad/s
(4.28)

ȧdrag

Ω̇drag

> 105 km/s

rad/s
(4.29)

The e�ects of drag always have a far greater impact on the rate of change of the

semimajor axis than they do on the rate of change of the inclination and RAAN.

Among the e�ects caused by the zonal harmonic J2, only the secular variation of

the RAAN is accounted for in this work, as the short period variations are neglected.

The time derivative of Ω is found by dividing the RAAN change over one revolution

(equation (2.118)) by the orbital period (equation 2.85):

Ω̇J2 = −3

2
J2

(rE
a

)2
√
µ

a3
cos ı (4.30)

where rE is the radius of the Earth.
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By introducing the angle β between the orbital plane and the thrust vector, the

acceleration components due to thrust are

(fV )thrust =
T

m
cosβ (4.31)

(fW )thrust =
T

m
sinβ (4.32)

We can �nally write the time di�erential equations that mathematically describe

the rate of change of the orbital elements:

da

dt
= 2

√
a3

µ

[
T

m
cosβ − (fV )drag

]
dı

dt
=

√
a

µ
cosϑ

[
T

m
sinβ − (fW )drag

]
dΩ

dt
=

√
a

µ

sinϑ

sin ı

[
T

m
sinβ − (fW )drag

]
− 3

2
J2

(rE
a

)2
√
µ

a3
cos ı (4.33)
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Chapter 5

Indirect optimization of space

trajectories

The aim of optimal control theory (OCT) is to determine a control law that

will cause process to satisfy physical constraints while maximizing (or minimizing) a

performance index. The formulation of an optimal control problem requires a math-

ematical model of the process, a mathematical description of the physical constraints

and a de�nition of the performance index. The mathematical model of the process,

already derived in Section 4.2, describes the response of the physical system to in-

puts. The physical system is associated with a state vector x and a set of di�erential

equations, functions of x, the control vector u and time. In our case the state vector

is given by the semimajor axis, the inclination of the orbit and the RAAN, as they

describe the physical state of the system. On the other hand, the controls are frontal

area of the S/C and thrust magnitude and direction. This chapter shows how to

apply OCT to the problem of optimal spacecraft trajectories, and how to improve

numerical accuracy as described in [6].

5.1 Optimal control theory

Let us use the notation of Appendix A. The physical system is then described by

a set of state di�erential equation

dx

dt
= f (x,u, t) (5.1)

which rule the evolution from the initial to the �nal state. If variables exhibit dis-

continuity, it is convenient to split the trajectory between the initial and �nal point

(external boundaries) into n arcs at the points where the state or control variables

are discontinuous (internal boundaries). Arc j starts at time t(j−1)+
and end at time

tj− . At those instants the state vector is x(j−1)+
and xj− , respectively. The signs -
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5.1. Optimal control theory

and + denote the values of the variables immediately before or after a certain time

instant. For example, possible discontinuities of variables in space trajectories may

be modeled as instantaneous changes in velocity in the case of impulsive maneuvers.

Moreover, time discontinuity may also arise in the case of planetary �ybys, if the time

inside the sphere of in�uence of a planet is not neglected. Without losing generality,

the boundary conditions can be grouped into a vector χ and written as

χ
(
x(j−1)+

,xj− , t(j−1)+
, tj−

)
= 0 (5.2)

for j = 1, . . . , n. The optimal control problem is formulated as the minimization or

maximization of a functional of generic form

J = ϕ
(
x(j−1)+

,xj− , t(j−1)+
, tj−

)
+
∑
j

ˆ tj−

t(j−1)+

Φ (x (t) ,u (t) , t) dt (5.3)

for j = 1, . . . , n. The term ϕ depends on the values that the variables and time

assume at the internal boundaries. On the other hand, the integral of Φ depends on

the values that the variables and time assume at each point during the trajectory.

The function ϕ is known as the Mayer term and identi�es the cost related to the state

of the system at the boundaries, whereas the function Φ is known as the Lagrange

term and keeps track if the state and control costs during the entire time history.

The functional J may be de�ned with just the Mayer term, just the Lagrange term

or both. If Φ = 0 one has the Mayer formulation, whereas if ϕ = 0 one has the

Lagrange formulation. The Mayer formulation is here preferred. However, the two

formulations are equivalent, and one can be obtained from the other. A necessary

condition for optimality requires that the �rst variation of J is null for any variation

δx and δu along the trajectory, and for any variation δx(j−1)+
, δxj− , δt(j−1)+

and

δtj− at the boundaries.

The functional J is rewritten in the Mayer formulation by introducing the La-

grange multipliers µ and λ:

J∗ = ϕ+ µTχ+
∑
j

ˆ tj−

t(j−1)+

(
λT
(

f − dx

dt

))
dt j = 1, . . . , n (5.4)

where the constants µ are associated with the boundary conditions and the adjoint

variables λ are associated with the state equations. The functionals J and J∗ depend

on the state variables x, their time derivatives, the controls u and the values that the

variables and time assume at the boundaries. From equations (5.3) and (5.4) it can

be easily seen that J and J∗ coincide if both the boundary conditions(5.2) and the
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5.1. Optimal control theory

state equations (5.1) are satis�ed. Integrating by parts the expression for J∗ yields

J∗ = ϕ+ µTχ+
∑
j

(
λT(j−1)+

x(j−1)+
− λTj−xj−

)
+
∑
j

ˆ tj−

t(j−1)+

(
λT f − dλT

dt
x

)
dt j = 1, . . . , n (5.5)

The �rst variation δJ∗ can be obtained by di�erentiating equation (5.5):

δJ∗ =

(
−H(j−1)+

+
∂ϕ

∂t(j−1)+

+ µT
dχ

dt(j−1)+

)
δt(j−1)+

+

+

(
Hj− +

∂ϕ

∂tj−
+ µT

dχ

dtj−

)
δtj− +

+

(
λT(j−1)+

+
∂ϕ

∂x(j−1)+

+ µT

[
∂χ

∂x(j−1)+

])
δx(j−1)+

+ (5.6)

+

(
λTj− +

∂ϕ

∂xj−
+ µT

[
∂χ

∂xj−

])
δxj− +

+
∑
j

ˆ tj−

t(j−1)+

((
dH

dx
+
dλT

dt

)
δx +

∂H

∂u
δu

)
dt j = 1, . . . , n

where the Hamiltonian has been introduced:

H = λT f (5.7)

The necessary condition for optimality requires δJ∗ = 0 for any admissible variation

along the trajectory. By appropriately choosing the value of the adjoint constants

and variables one can nullify the coe�cients of any of the variations in equation (5.6).

The Euler-Lagrange equations for the adjoint variables

dλ

dt
= −

(
∂H

∂x

)T
(5.8)

and the algebraic equations for the control variables(
∂H

∂u

)T
= 0 (5.9)

can be obtained by nullifying the coe�cients of the variations δx and δu. As one

can observe from equation (5.9), the control laws are formally independent from the

formulation of the problem, namely from whether the performance index has to be

maximized or minimized. In addition, if a control variable is subject to constraints,

the equation may not provide the optimal controls. This may be the case when the

thrust magnitude can vary between a minimum or a maximum value. Therefore, it
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5.1. Optimal control theory

would make no sense to look for a solution that requires a thrust level outside the

constraints. In our case, the frontal area is also bounded by such maximum and

minimum value constraints. An admissible control is de�ned as a control that does

not violate any constraint and the subset of admissible controls is called admissible

region. The Pontryagin's maximum principle [3] states that the optimal control must

maximize the Hamiltonian (if J∗ is to be maximized). In practice two possibilities

may occur:

� the optimal control is given by equation (5.9) if the control is in the admissible

region;

� the optimal control is at the boundary of the admissible region, that is the

control assumes its maximum or minimum value if equation (5.9) yields a

control outside of the admissible region.

In particular, if the Hamiltonian is linear with respect to a control variable, two other

possibilities mat occur:

� if the coe�cient of the control in equation (5.7) is not null, H is maximized

either for the maximum value of the control if the coe�cient is positive or for

the minimum value of the control if the coe�cient is negative, in agreement

with the Pontryagin's maximum principle;

� if the coe�cient of the control in equation (5.7) is null for a �nite interval of

time, a singular arc arises and it is necessary to set all the successive time

derivatives of the coe�cient equal to zero, until one of the control appears

speci�cally in one of them; the optimal control is determined by setting such

time derivative equal to zero.

Finally, the boundary condition for optimality are determined by nullifying the co-

e�cients of the other variations:

−λTj− +
∂ϕ

∂xj−
+ µT

[
∂χ

∂xj−

]
= 0 j = 1, . . . , n (5.10)

λTj+ +
∂ϕ

∂xj+
+ µT

[
∂χ

∂xj+

]
= 0 j = 0, . . . , n− 1 (5.11)

Hj− +
∂ϕ

∂tj−
+ µT

dχ

dtj−
= 0 j = 1, . . . , n (5.12)

−Hj− +
∂ϕ

∂tj−
+ µT

dχ

dtj−
= 0 j = 0, . . . , n− 1 (5.13)

Equations (5.10) and (5.12) have no meaning at the starting time, while equations

(5.11) and (5.13) have no meaning at the �nal time. If the generic state variable x

is characterized by particular boundary condition, equations (5.10) and (5.11) yield
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5.1. Optimal control theory

particular boundary conditions for optimality for the corresponding adjoint variable

λx:

� if the value of x is given at the starting time ( χ = 0 contains the equation

x0 − a = 0 with a given value for a), the corresponding adjoint variable λx0

is free, that is it does not appear as a boundary condition for optimality and

it can assume any value; the same happens for a given value for x at the �nal

time;

� if the initial value x0 appears in neither the function ϕ nor in the boundary

condition, the corresponding adjoint variable is null at the initial time (λx0 =

0); the same happens for the analogous situation at the �nal time;

� if the state variable is continuous and its value is not explicitly set to a value

at the internal boundary j (χ = 0 contains the equation xj+ − xj− = 0), the

corresponding adjoint variable is continuous (λxj+ = λxj−);

� if the state variable is continuous and its value is explicitly set to a value at the

internal boundary j (χ = 0 contains the equations xj+−a = 0 and xj−−a = 0),

the corresponding adjoint variable has a free discontinuity, that is the value of

λxj+ is independent from that of λxj− and it has to be determined by the

optimization procedure.

Analogously, if H does is not an explicit function of time, in some cases equations

(5.12) and (5.13) yield particular boundary conditions for optimality:

� if the initial time t0 appears explicitly in neither the boundary conditions nor

the function ϕ, the Hamiltonian is null at the initial time (H0 = 0); analogously,

the Hamiltonian is null at the �nal time if tf appears explicitly in neither χ

nor ϕ;

� if the intermediate time tj does not explicitly appear in the function ϕ (it

appears only in the boundary condition for the time continuity tj+ = tj−), the

Hamiltonian is continuous at the internal boundary j (Hj− = Hj+);

� if the intermediate time tj is explicitly assigned (it appears in the boundary

conditions as tj+ − a = 0 and tj− − a = 0), the Hamiltonian has a free discon-

tinuity at the internal boundary j.

By canceling out the adjoint constants µ from equations (5.10)-(5.13), the result-

ing boundary conditions for optimality and the boundary conditions on the state

variables given by equation (5.2) can be collected in a vector:

σ
(
x(j−1)+

,xj− ,λ(j−1)+
,λj− , t(j−1)+

, tj−

)
= 0 (5.14)

56



5.2. Boundary value problem

Therefore, equations (5.1), (5.8), (5.9) and (5.14) de�ne a multi-point boundary value

problem (MPBVP).

5.2 Boundary value problem

The application of the theory of optimal control to the system (5.1) generally

yields a MPBVP (in the case of one interval of integration a two-point boundary value

problem). Equations (5.1) and (5.8) are the di�erential equations of the MPBVP

and the controls are determined by equation (5.9). The solution to this problem is

obtained by searching for the initial values of the unknown variables such that the

integration of the di�erential equations satis�es the boundary conditions of equation

(5.14). In particular, the interval of integration is split in sub-intervals and di�erent

sub-intervals can be characterized by di�erent di�erential equations. Generally, the

duration of each sub-interval is unknown and the boundary conditions may be non-

linear. In addition, variables may be discontinuous at the internal boundaries and

their values may be unknown after a discontinuity.

In order to deal with the indetermination of the duration of the sub-intervals of

integration, a change of independent variable is introduced and, for each sub-interval

j, time is replaced with

ε = j − 1 +
t− tj−1

τj
(5.15)

where τj = tj − tj−1 is the duration of the sub-interval. This way, the extremes of

the integration sub-intervals are �xed and correspond to consecutive integer values

of the new independent variable ε at the boundaries.

The description of the shooting method for the solution of the MPBVP is given

by referring to the generic system

dy

dt
= f∗ (y, t) (5.16)

where the state variables and the adjoint variables are grouped in the vector y =

(x,λ) and assuming the substitution of the controls with the expressions de�ned by

equation (5.9). Since the problem is also de�ned by constant parameters, such as the

duration τj of the sub-intervals and the values of the variables after a discontinuity,

it is convenient to introduce a new vector z = (y, c) that groups together the state

variable, the adjoint variables and the vector c of the constant parameters. The

replacement of time with the new independent variable yields:

dz

dε
= f (z, ε) (5.17)
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5.2. Boundary value problem

which can be explicitly written as

dz

dε
=

(
dy

dε
,
dc

dε

)
(5.18)

where
dy

dε
= τj

dy

dt
(5.19)

and
dc

dε
= 0 (5.20)

The boundary conditions are generically expressed as

Ψ (s) = 0 (5.21)

where s is a vector that contains the values that the variables assume at the internal

and external boundaries, as well as the unknown parameters:

s = (y0,y1, . . . ,yn, c) (5.22)

Some of the initial values of the variables are unknown. As already stated, the

solution to the MPBVP is obtained with an iterative numerical method that searches

for the initial values such that the integration of the di�erential equations satis�es

equation (5.21). The method is here described by assuming none of the initial values

is known. The iteration r is started by integrating equations (5.17) with the initial

values pr yielded by the previous iteration. Namely:

z (0) = pr (5.23)

The integration is carried out for the entire trajectory (if r is the �rst iteration,

tentative values for pr are chosen). The values of the state variables are determined

at each boundary and the errors on the boundary conditions are grouped in the

vector Ψr.

A variation ∆p results in a variation of the errors on the boundary conditions

equal to

∆Ψ =

[
∂Ψ

∂p

]
∆p (5.24)

where higher than �rst order terms are neglected. Since the objective is bringing the

errors to zero, the goal for each next iteration is achieving ∆Ψ = −Ψr. In light of

this observation, the initial values are corrected by a quantity equal to

∆p = −
[
∂Ψ

∂p

]−1

Ψr (5.25)
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5.2. Boundary value problem

and iteration r + 1 is started by integrating the di�erential equations with initial

values

pr+1 = pr + ∆p (5.26)

The iterations are performed until the boundary conditions are satis�ed with the

wanted precision. The matrix from equation (5.25) can be calculated as[
∂Ψ

∂p

]
=

[
∂Ψ

∂s

] [
∂s

∂p

]
(5.27)

The error gradient with respect to s is easily obtained by analytical derivation. On

the other hand, the derivative of vector s with respect to vector p yields a matrix

that contains the values assumed by matrix

[g (ε)] =

[
∂z

∂p

]
(5.28)

at the boundaries (ε = 0, 1, . . . , n). Since taking the derivative of the system (5.17)

with respect to the initial values yields[
∂f

∂p

]
=

[
d

dp

(
∂z

∂ε

)]
=

d

dε

[
∂z

∂p

]
=

[
dg (ε)

dε

]
(5.29)

the matrix [∂s/∂p] can be obtained by integrating[
dg (ε)

dε

]
=

[
∂f

∂p

]
=

[
∂f

∂z

] [
∂z

∂p

]
=

[
∂f

∂z

]
[g (ε)] (5.30)

where the Jacobian matrix [∂f/∂z] is obtained by analytical derivation. The initial

values for the homogeneous system (5.30) are easily obtained by taking the derivative

of (5.23) with respect to p, and thus obtaining the identity matrix:

[g (ε)] =

[
∂z (0)

∂p

]
= [I] (5.31)

This method allows to deal with variable discontinuities. As a matter of fact, if

a discontinuity occurs at boundary j, the same relation h between the values of the

variables before and after the discontinuity,

zj+ = h
(
zj−
)

(5.32)

can be applied to matrix g:

[
gj+
]

=

[
∂h

∂z

] [
gj−
]

(5.33)

If some of the initial values of the variables are known, the same method can be
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5.3. Approximate optimal LEO transfers between almost circular orbits

applied and the vector p contains the unknown initial values of the variables, while

vector Ψ only contains the boundary conditions that are not explicit at the initial

time.

Since the procedure described above for the determination of the error gradient

matrix [∂Ψ/∂p] takes a heavy analytical e�ort and the computational time is rather

long, another method can be easily adopted. As a matter of fact, the error gradient

matrix can be evaluated numerically: row i of the matrix is obtained by perturbing

the ith component of p by a small variation ∆p and by then integrating the equations

(5.17). By doing so for each component of p it is possible to evaluate the variation

of the errors ∆Ψ (∆p) and the corresponding ith row ∆Ψ/∆p. Empirical values for

∆p are in the order of 10−6÷10−7. Although this other method is rather faster than

the one described earlier, it may fail to provide convergence. Its implementation is

therefore dependent on the complexity of the problem.

5.3 Approximate optimal LEO transfers between almost

circular orbits

This work applies the procedure described above on a chaser S/C with a low-

thrust electric propulsion system. The S/C is on a particular almost circular LEO

and the optimization problem is formulated as the search for the optimal controls to

achieve rendezvous with a target S/C in another circular LEO either in minimum

time or, given a certain transfer time, with minimum propellant expenditure. In

addition, the chaser is equipped with a drag sail; thus, the maximum frontal area is

a control variable. As already mentioned in Section 4.2, since the transfer times are

long and the orbits are almost circular, the equations for eccentricity and argument

of periapsis can be neglected. In addition, the rendezvous maneuvers are not treated

in this work and thus the true anomaly equation is neglected. Therefore, the state

of the system is described by the semimajor axis, the inclination and the RAAN of

the S/C that has to perform the transfer. The transfer is completed once the S/C

has the same a, ı and Ω of the target. The di�erential equations that describe the

physical system are given by equations 4.33:

da

dt
= 2

√
a3

µ

[
T

m
cosβ − (fV )drag

]
dı

dt
=

√
a

µ
cosϑ

[
T

m
sinβ − (fW )drag

]
dΩ

dt
=

√
a

µ

sinϑ

sin ı

[
T

m
sinβ − (fW )drag

]
− 3

2
J2

(rE
a

)2
√
µ

a3
cos ı (5.34)

A OCT approach is used to �rst determine the generic control law for a one-
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5.3. Approximate optimal LEO transfers between almost circular orbits

revolution transfer. The ratios of the changes of the orbital elements over one rev-

olution to the time required to complete it are then used to approximate the time

derivative of the orbital elements for the multiple-revolution transfer. The OCT

approach is then repeated with the new di�erential equations.

5.3.1 One-revolution transfer

By using the argument of latitude as the independent variable, one has

d

dϑ
=

d

dt

dt

dϑ
=

√
a3

µ

d

dt
(5.35)

and equations (5.34) become

da

dϑ
= 2

a3

µ

[
T

m
cosβ − ρ

2

SCD
m

(√
µ

a
− ω⊕a cos ı

)
vrel

]
dı

dϑ
=

a2

µ
cosϑ

[
T

m
sinβ − ρ

2

SCD
m

(ω⊕a sin ı cosϑ) vrel

]
(5.36)

dΩ

dϑ
=

a2

µ

sinϑ

sin ı

[
T

m
sinβ − ρ

2

SCD
m

(ω⊕a sin ı cosϑ) vrel

]
− 3

2
J2

(rE
a

)2
cos ı

where (fV )drag and (fW )drag are substituted by equations (4.20) and (4.21), and the

expression for vrel is given by equation (4.19). Since low-thrust electric propulsion is

assumed to be employed, the mass of the S/C can be treated as a constant during a

single revolution. In addition, since thrust, drag and the J2 perturbation are small,

semimajor axis, inclination and atmospheric density can be treated as constants in

the right-hand side of equations (5.36).

In order to simplify the equation and obtain analytically integrable equations,

the expression for vrel

vrel =

√(√
µ

a
− ω⊕a cos ı

)2

+ (ω⊕a sin ı cosϑ)2 (5.37)

has to be simpli�ed. Since over one revolution a and ı are treated as constants, vrel

is only a function of ϑ in the form

vrel =
√
x+ cos2 ϑ (5.38)

which is a periodic function that oscillates between the values

vmin =

∣∣∣∣√µ

a
− ω⊕a cos ı

∣∣∣∣ vmax =

√(√
µ

a
− ω⊕a cos ı

)2

+ (ω⊕a sin ı)2 (5.39)

with period equal to π. Let us approximate vrel with its mean value over one revo-
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5.3. Approximate optimal LEO transfers between almost circular orbits

lution:

vrel =
vmin + vmax

2
(5.40)

Let us now apply OCT . The Hamiltonian, de�ned by equation (5.7), is

H = λa
da

dϑ
+ λı

dı

dϑ
+ λΩ

dΩ

dϑ
(5.41)

where λx is the generic adjoint variable associated with variable x. Since a and ı are

treated as constants, the Hamiltonian does not depend on the state variables and

plugging equation (5.41) into the Euler-Lagrange equations yields

dλa
dϑ

= 0

dλı
dϑ

= 0

dλΩ

dϑ
= 0 (5.42)

Equations (5.42) show that the adjoint variables are actually adjoint constants in

the one-revolution problem. The optimal thrust angle β is obtained by nullifying the

partial derivative of H with respect to β:

tanβ =
λı cosϑ+ λΩ

sin ı sinϑ

2λaa
(5.43)

As already mentioned in Section 5.1, the generic form of the optimal control law

does not formally depend on whether the performance index has to be maximized or

minimized. Let us introduce the angle ϑ0 such that

tanϑ0 =
λΩ/sin ı

λı
(5.44)

and the quantity

Λ =

√
λ2
ı +

(
λΩ

sin ı

)2

(5.45)

Let us now use equations (5.44) and (5.45) to write equation (5.43) as

tanβ =
Λ

2λaa
cos (ϑ− ϑ0) = K cos (ϑ− ϑ0) (5.46)

By introducing the variable ϑ′ = ϑ− ϑ0 one has

cosβ =
1

K ′
sinβ =

K cosϑ′

K ′
(5.47)
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where K ′ =
√

1 + (K cosϑ′)2. Plugging equations (5.47) into (5.36) yields

da

dϑ′
= 2

a3

µ

[
T

m

1

K ′
− ρ

2

SCD
m

(√
µ

a
− ω⊕a cos ı

)
vrel

]
dı

dϑ′
=

a2

µ
cos
(
ϑ′ + ϑ0

) [ T
m

K cosϑ′

K ′
− ρ

2

SCD
m

(
ω⊕a sin ı cos

(
ϑ′ + ϑ0

))
vrel

]
dΩ

dϑ′
=

a2

µ

sin (ϑ′ + ϑ0)

sin ı

[
T

m

K cosϑ′

K ′
− ρ

2

SCD
m

(
ω⊕a sin ı cos

(
ϑ′ + ϑ0

))
vrel

]
−3

2
J2

(rE
a

)2
cos ı (5.48)

The integration of these equation over one revolution doesn't have an analytical

solution. When atmospheric drag and J2 are neglected, for ϑ0 = 0 these equations

are the same as in Edelbaum's problem [8] for changes in a and ı. Edelbaum showed

that if instead of using the optimal control law from equation (5.46), which requires a

continuously varying angle β, a sub-optimal law is adopted, the performance decrease

in minimal and the equations become analytically integrable. Such sub-optimal

control law is: β =
∣∣β∣∣ cosϑ′ > 0

β = −
∣∣β∣∣ cosϑ′ < 0

(5.49)

where β is a constant value. In practice, at ϑ = ϑ0 +π/2+kπ (for any integer k) the

sign of the constant angle is switched. The integration over two half-revolutions with

the sub-optimal law yields the changes of the orbital elements over one revolution:

∆a = 4π
T

m

a3

µ
cosβ − 2π

a3

µ
ρ
SCD
m

(√
µ

a
− ω⊕a cos ı

)
vrel (5.50)

∆ı = 4
T

m

a2

µ
sinβ cosϑ0 −

π

2

a3

µ
ρ
SCD
m

ω⊕ sin ıvrel (5.51)

∆Ω = 4
T

m

a2

µ

sinβ

sin ı
sinϑ0 − 3πJ2

(rE
a

)2
cos ı (5.52)

∆t = 2π

√
a3

µ
(5.53)

If the Edelbaum's changes are denoted as ∆aE and ∆ıE , one has

∆a = ∆aE − 2π
a3

µ
ρ
SCD
m

(√
µ

a
− ω⊕a cos ı

)
vrel (5.54)

∆ı = ∆ıE cosϑ0 −
π

2

a3

µ
ρ
SCD
m

ω⊕ sin ıvrel (5.55)

∆Ω = ∆ıE
sinϑ0

sin ı
− 3πJ2

(rE
a

)2
cos ı (5.56)

In practice, the angle ϑ0 splits the e�ect of the out-of-plane thrusting between in-

63



5.3. Approximate optimal LEO transfers between almost circular orbits

clination and RAAN change. In particular, if the sign switch of the thrust angle

is performed at the nodes the out-of-plane thrusting only changes the inclination.

On the other extreme, if it is performed at the antinodes the out-of-plane thrusting

e�ort only changes the RAAN.

With the approximations introduced, equations (5.50)-5.52 show that drag pro-

duces a negative variation of semimajor axis and inclination (sin ı is always positive

as 0 < ı < π), while it has no e�ect on RAAN. The reason for this lies in the

out-of-plane acceleration component of drag

(fW )drag = −ρ
2

SCD
m

ω⊕a sin ı cosϑvrel (5.57)

which is in the form

(fW )drag = −F cosϑ (5.58)

with F positive constant. For a half revolution, namely from ϑ = −π/2 to ϑ = π/2,

the component is negative, while for the other half (from ϑ = π/2 to ϑ = 3π/2) is

positive. Since the time derivative of ı is

ı̇ =

√
a

µ
cosϑfW (5.59)

during the �rst half revolution fW is negative and produces a negative change of

inclination (cosϑ is positive for ϑ = −π/2 to ϑ = π/2), while during the second

half fW is positive but it still produces a negative change since cosϑ is negative. In

particular,

(∆ı)drag = −F
√
a

µ

ˆ 3π
2

−π
2

cos2 ϑdϑ = −πF
√
a

µ
(5.60)

On the other hand, the time derivative of Ω is given by

Ω̇ =

√
a

µ

sinϑ

sin ı
fw (5.61)

Therefore, during the �rst half revolution fW is negative and produces a positive

change of RAAN during the �rst quarter (sinϑ is negative) and a negative change

during the second quarter (sinϑ is positive). During the second half fW is positive

and produces a positive change of RAAN during the third quarter (sinϑ is positive)

and a negative change during the fourth quarter (sinϑ is negative). The overall e�ect

is null. Rigorously:

(∆Ω)drag = − F

sin ı

√
a

µ

ˆ 3π
2

−π
2

cosϑ sinϑdϑ = 0 (5.62)
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5.3.2 Multiple-revolution transfer

Let us use the ratios of the changes of the orbital elements over one revolution

to the time required to complete it to approximate the time derivative of the or-

bital elements for the multiple-revolution transfer. Therefore, the physical system is

described by

da

dt
= 2

T

m

√
a3

µ
cosβ + ρ

SCD
m

vrela

(√
a3

µ
ω⊕ cos ı− 1

)
(5.63)

dı

dt
=

2

π

T

m

√
a

µ
sinβ cosϑ0 −

1

4

√
a3

µ
ρ
SCD
m

ω⊕ sin ıvrel (5.64)

dΩ

dt
=

2

π

T

m

√
a

µ

sinβ

sin ı
sinϑ0 −

3

2
J2

(rE
a

)2
√
µ

a3
cos ı (5.65)

dm

dt
= −T

c
(5.66)

where c = g0Isp is the e�ective exhaust velocity. Equation (5.66) is added to account

for the propellant consumption over multiple revolutions. The angle β varies from

one revolution to another, while it is constant during each revolution and a sign

switch occurs depending on ϑ0.

Let us apply OCT to this system as well. The Hamiltonian is

H = λaa

[
2
T

m

√
a

µ
cosβ + ρ

SCD
m

vrel

(
ω⊕
nS/C

cos ı− 1

)]
+λı

[
2

π

T

m

√
a

µ
sinβ cosϑ0 −

1

4
ρ
SCD
m

ω⊕
nS/C

sin ıvrel

]
+λΩ

[
2

π

T

m

√
a

µ

sinβ

sin ı
sinϑ0 −

3

2
J2

(rE
a

)2
nS/C cos ı

]
−λm

T

c
(5.67)

where the mean motion of the spacecraft nS/C =
√
µ/a3 has been introduced.
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The Euler-Lagrange equations are

dλa
dt

= −λa3
T

m

√
a

µ
cosβ

+λa
SCD
m

(
ρvrel + a

dρ

da
vrel + aρ

dvrel
da

)
−λa

SCD
m

ω⊕
nS/C

cos ı

(
5

2
ρvrel + a

dρ

da
vrel + aρ

dvrel
da

)
−λı

1

π

T

m

1
√
aµ

sinβ cosϑ0

+
λı
4

SCD
m

ω⊕
nS/C

sin ı

(
3

2

ρ

a
vrel +

dρ

da
vrel + ρ

dvrel
da

)
−λΩ

[
1

π

T

m

1
√
aµ

sinβ

sin ı
sinϑ0 +

21

4
J2

(rE
a

)2 nS/C

a
cos ı

]
(5.68)

dλı
dt

= λaa

[
ρ
SCD
m

dvrel
dı
− ρSCD

m

ω⊕
nS/C

(
cos ı

dvrel
dı
− sin ıvrel

)]
+
λı
4
ρ
SCD
m

ω⊕
nS/C

(
cos ıvrel + sin ı

dvrel
dı

)
+λΩ

[
2

π

T

m

√
a

µ
sinβ

sinϑ0

sin2 ı
cos ı− 3

2
J2

(rE
a

)2
nS/C sin ı

]
(5.69)

dλΩ

dt
= 0 (5.70)

dλm
dt

= λaa

[
2
T

m2

√
a

µ
cosβ + ρ

SCD
m2

vrel

(
ω⊕
nS/C

cos ı− 1

)]
+λı

[
2

π

T

m2

√
a

µ
sinβ cosϑ0 −

1

4
ρ
SCD
m2

ω⊕
nS/C

sin ıvrel

]
+λΩ

2

π

T

m2

√
a

µ

sinβ

sin ı
sinϑ0 (5.71)

The expressions for dvrel/da, dvrel/dı and dρ/da are given by:

dvrel
da

= −1

4
nS/C −

ω⊕
2

cos ı+

−
(
nS/C − ω⊕ cos ı

) (
1
2nS/C + ω⊕ cos ı

)
− (ω⊕ sin ı)2

2
√(

nS/C − ω⊕ cos ı
)2

+ (ω⊕ sin ı)2
(5.72)

dvrel
dı

=
ω⊕a sin ı

2

1 +
nS/C√(

nS/C − ω⊕ cos ı
)2

+ (ω⊕ sin ı)2

 (5.73)

dρ

da
= ρ

[
4A (a− rE)3 + 3B (a− rE)2 + C (a− rE) +D

]
(5.74)

where rE is the radius of the Earth and the coe�cients A, B, C and D depend on

the altitude as described in Section (4.1).
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The control variables are β, ϑ0, T and S. Nullifying the partial derivative of H

with respect to ϑ0 yields

tanϑ0 =
λΩ

λı sin ı
(5.75)

whereas nullifying the partial derivative of H with respect to β yields

tanβ =
λı cosϑ0 + λΩ

sin ı sinϑ0

πaλa
(5.76)

Therefore, one has

sinβ = ± Λ√
Λ2 + (πaλa)

2
(5.77)

cosβ = ± πaλa√
Λ2 + (πaλa)

2
(5.78)

sinϑ0 = ± λΩ

Λ sin ı
(5.79)

cosϑ0 = ±λı
Λ

(5.80)

where Λ is given by equation (5.45). The optimization problem is here formulated as

a maximization problem. Therefore, in agreement with the Pontryagin's maximum

principle the optimal controls must maximize the Hamiltonian. In order to satisfy

the principle, from equation (5.67) one notes that cosβ must have the same sign as

λa and sinβ must have the same sign as λı cosϑ0 + λΩ sinϑ0/ sin ı. By arbitrarily

selecting sinβ > 0, one has that cosϑ0 must have the same sign as λı and sinϑ0 must

have the same sign as λΩ/ sin ı. Therefore, selecting the correct quadrants yields

sinβ =
Λ√

Λ2 + (πaλa)
2

(5.81)

cosβ =
πaλa√

Λ2 + (πaλa)
2

(5.82)

sinϑ0 =
λΩ

Λ sin ı
(5.83)

cosϑ0 =
λı
Λ

(5.84)

The Hamiltonian is linear with respect to the thrust magnitude and can be writ-

ten as

H = SFTT + ρ
SCD
m

vrel

[
λaa

(
ω⊕
nS/C

cos ı− 1

)
− λı

1

4

ω⊕
nS/C

sin ı

]
−λΩ

3

2
J2

(rE
a

)2
nS/C cos ı (5.85)
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where SFT denotes the thrust switching function:

SFT =
2

π

1

m

√
a

µ

√
Λ2 + (πaλa)

2 − λm
c

(5.86)

In agreement with the Pontryagin's maximum principle, the thrust magnitude must

assume its maximum value when SFT > 0 and its minimum value, that is the thruster

must be turned o�, when SFT > 0.

Analogously, the Hamiltonian is linear with respect to the frontal area of the

satellite and can be written as

H = SFTT + SFSS − λΩ
3

2
J2

(rE
a

)2
nS/C cos ı (5.87)

where SFS denotes the area switching function:

SFS = ρ
CD
m
vrel

[
λaa

(
ω⊕
nS/C

cos ı− 1

)
− λı

1

4

ω⊕
nS/C

sin ı

]
(5.88)

The frontal area must assume its maximum value, that is the drag sail is deployed,

when SFS > 0. On the other hand, the frontal area must assume its minimum value,

that is the drag sail is furled, when SFS < 0.

5.3.3 Problem formulation

The optimal control law depends on the cost function and on the boundary con-

ditions on the variables. The optimization problem is here formulated by imposing

the initial orbital elements a0, ı0 and Ω0 and the target orbital elements at the initial

time t0 = 0. The initial RAAN is �xed to zero (Ω0 = 0) by properly selecting the

coordinate system; if the initial orbit is de�ned with a certain RAAN Ω0 = Ωp with

respect to the geocentric-equatorial coordinate system, the simple rotation through

an angle Ωp of such system about K yields a new coordinate system in which Ω0 = 0.

The orbital elements of the target S/C are perturbed by J2, which causes the target

RAAN to change with a rate
(

Ω̇J2

)
T
function of aT and ıT only. The boundary

conditions at the �nal time are:

af = aT (5.89)

ıf = ıT (5.90)

Ωf = ΩT0 +
(

Ω̇J2

)
T
tf (5.91)

It goes without saying that the target orbit should be perturbed with aerodynamic

drag as well. However, the case study object of this work assumes that the target S/C

has the ability to maintain the semimajor axis and inclination of the orbit unchanged

through station keeping maneuvers. The same optimization method proposed here
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is readily applicable in other circumstances, as in the case of a passive target satellite

perturbed by J2 and drag.

The theory of optimal control provides the boundary conditions for optimality,

which depend on the cost function. In the case of minimum-time with free �nal

mass, the cost function to be maximized is

J = −tf (5.92)

and the optimal boundary conditions for optimality are

Hf − λΩ

(
Ω̇J2

)
T

= 1 (5.93)

λmf = 0 (5.94)

In this case the thrust switching function is always positive and the engine is always

on at maximum thrust. The �ve boundary conditions at the �nal time (equations

(5.89), (5.90), (5.91), (5.93) and (5.94)) determine the �ve unknown of the two point

boundary value problem (2PBVP): tf , λa0, λı0, λΩ, λm0 (λΩ is constant and thus it is

not denoted with the subscript 0). The boundary condition (5.93) on the �nal value

of the Hamiltonian can be replaced by specifying one of the initial values of an adjoint

variable, such as λΩ. As a matter of fact, the problem is homogeneous in the adjoint

variables and they appear only as fractions in the algebraic equations for the control

variables; by specifying λΩ, the adjoint variables and the Hamiltonian are scaled by

a scale factor with respect to the solution that yields Hf − λΩ

(
Ω̇J2

)
T

= 1, while

the optimal controls are the same (the scale factor is canceled out in the fractions).

Therefore, when the values for tf , λa0, λı0 and λm0 that satisfy equations equations

(5.89), (5.90), (5.91) and (5.94) are found, one has

Hf − λΩ

(
Ω̇J2

)
T

= scale factor (5.95)

Finally, one may divide λa0, λı0, λΩ and λm0 by the scale factor and obtain Hf −
λΩ

(
Ω̇J2

)
T

= 1. However, this last step would be useless, as the optimal control

law would be exactly the same. Consequently, the problem can be reduced to four

unknowns and four boundary conditions. However, one has to note that the proper

sign for λΩ must be selected in order to avoid negative time-of-�ight solutions.

In the case of minimum-propellant, the cost function to be maximized is

J = mf (5.96)

and the optimality boundary condition are

λmf = 1 (5.97)
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and either

tf = k (5.98)

for speci�ed �nal time or

Hf − λΩ

(
Ω̇J2

)
T

= 0 (5.99)

for free �nal time. The boundary condition (5.97) can be replaced by specifying

λΩ. The thrust switching function can now become negative and the engine must be

turned o� when this occurs.

In some cases, the optimal trajectory requires a decrease of the orbit altitude

in order to increase the e�ect of J2. However, the S/C may be required to reach

such a low altitude that drag would make it impossible to increase its altitude again.

Particularly, there is a limit altitude for which this happens. However, the exact

value depends on the local properties of the atmosphere and it would be impossible

to calculate it in advance. For this reason, a safe altitude hlim = 200 km is considered

as a minimum constraint. When such constraint is introduced, a three-arc structure

becomes optimal; the satellite follows the optimal controls from t0 to t1 and from t2

to tf , whereas it �ies at the minimum altitude during the intermediate arc. In order

to make this happen, the thrust angle must have a value such that da/dt = 0. That

is

cosβ =

√
µ

a

ρSCD
2T

vrel

(
ω⊕
nS/C

cos ı− 1

)
(5.100)

The minimum altitude boundary is introduced with the additional boundary condi-

tion

a2 = rE + hlim (5.101)

at the end of the intermediate arc. From the optimal boundary conditions one has

that H and the adjoint variables must be continuous at the internal boundaries,

except for λa which has a free discontinuity at point 2. As a result, cosβ must be

continuous at t1 and t2 and two boundary conditions for optimality are added:√
µ

a1

ρSCD
2T

vrel1

(
ω⊕
nS/C1

cos ı1 − 1

)
=

πa1λa1√
Λ2

1 + (πa1λa1)2
(5.102)

√
µ

a2

ρSCD
2T

vrel2

(
ω⊕
nS/C2

cos ı2 − 1

)
=

πa2λa2+√
Λ2

2 + (πa2λa2+)2
(5.103)

and the problem has three additional unknowns: t1, t2 and λa2−.
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Chapter 6

Results

This chapter presents the results for a case study concerning a small 15-kg space-

craft in an initial orbit similar to that of the International Space Station. The altitude

of the initial orbit is �xed at 400 km and the initial inclination is 51 degrees. Since

we are dealing with direct orbits (ı < 90◦), the line of nodes regresses as previously

described in Section 2.4.2.2. Particularly, the RAAN regression rate increases as the

altitude is decreased or as the inclination is decreased, as it can be seen from equa-

tion (4.30). The electric propulsion system is supposed to be able to provide 10 mN

of thrust with a speci�c impulse of 2500 s. The frontal area of the S/C is supposed

to be equal to 0.04 m2 and this value is assumed to correspond to the minimum.

Three drag sail scenarios are considered; the �rst scenario assumes that the S/C is

not equipped with a drag sail and Smax is always equal to the minimum value; the

second scenario assumes a maximum drag sail area of 4 m2, whereas the value for the

third scenario is 400 m2. The frontal area value of the third scenario is unrealistically

large. Even though such a sail has been developed and tested [10], the mass-to-area

ratio and the packed size in order to be mounted on a small satellite would have

to be far lower than current technologies can achieve. However, this currently un-

realistic scenario has been chosen to be compared to the second scenario, which is

characterized by a frontal area value which would make the sail very light with cur-

rent technologies [24]. The value of the drag coe�cient is �xed to 2.5, although a

more rigorous analysis could be carried out by considering its variation at di�erent

altitudes and at epochs between solar maximum and minimum.

The numerical results are obtained by following the procedure described in Sec-

tion 5.3 and by integrating the di�erential equations with a variable-step variable-

order method based on the Adams-Moulton method, as described by Shampine and

Gordon [21]. Since much easier convergence can be obtained if the variables have the

similar orders of magnitude, variables normalization has been adopted. The wanted

precision for the boundary conditions is set to 10−7. That is, the maximum error

Emax = max Ψi has to be lower than such value. According to the procedure the ini-
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tial tentative solution is corrected by a quantity ∆p, computed by neglecting higher

than �rst order terms. Such linearization could yield values for ∆p that would make

the error increase. In order to avoid this, a relaxation factor K1 has been introduced,

such that

pr+1 = pr +K1∆p (6.1)

where K1 ranges from 0.1 to 1. Therefore, such relaxation factor reduces the theo-

retical correction of the procedure. In addition, if the maximum error Er+1
max of the

iteration r + 1 is lower than a multiple of the maximum error Ermax of the iteration

r, the code proceeds with a new iteration. Namely, a new iteration is started if

Er+1
max < K2E

r
max with K2 = 2 ÷ 3. Since the boundary conditions error can grow

after the �rst iterations, the introduction of this factor allows this behavior but stops

the procedure if the error is growing too much. On the other hand, if the error is

too big with respect to the previous iteration (Er+1
max > K2E

r
max) a bisection of the

correction is performed:

pr+1 = pr +K1
∆p

2
(6.2)

The iteration is then repeated and the new maximum error is compared to that of

the previous iteration. If necessary, the iteration is repeat for a maximum of �ve

times and then the procedure is stopped.

6.1 Minimum-time solutions

As described in Section 5.3.3, the transfer is characterized by the chaser's initial

orbital elements a0, ı0 and Ω0 and the target's orbital elements aT , ıT and ΩT0 at

the initial time t0 = 0. The initial RAAN of the chaser is �xed to zero by properly

selecting the coordinate system. Thus, the initial RAAN phase angle is ∆Ω0 = ΩT0.

Since aT and ıT are unchanged during the transfer, the boundary conditions at the

�nal time are given by equations (5.89), (5.90) and (5.91). Namely, at the �nal

time ∆a, ∆ı and ∆Ω must be zero. For every combination of a0, ı0, aT and ıT ,

the minimum-time problem is characterized by a value of initial RAAN phase angle

∆Ω∗ such that the time-of-�ight reaches a global minimum. In this case, the chaser

achieves the target's RAAN thanks to the e�ect of J2 only, while thrust is only used

to change the semimajor axis and the inclination of the orbit. When ∆Ω0 6= ∆Ω∗

part of the thrusting e�ort is used to change Ω and the trip time is greater than the

global minimum. Since minimum-time transfers require the engine to be always on

at maximum thrust, shorter transfers correspond to smaller propellant consumption.

6.1.1 Negative change of altitude

The results for transfers with an altitude change of −200 km are shown in �gure

6.1 and displayed in table 6.1. Figures 6.1a, 6.1b and 6.1c show the results for
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di�erent inclination changes for the no drag sail scenario, the 4 m2 scenario and the

400 m2 scenario, respectively.

In all cases, the line of nodes of the target orbit is initially regressing at a higher

rate. Therefore, at the initial time the J2 perturbation moves the orbit plane of

the target closer to the orbit plane of the chaser if ∆Ω0 > 0. Vice versa, the two

orbit planes initially drift away from each other if ∆Ω0 < 0, as the target orbit

plane regresses faster and ∆Ω initially increases. The value of ∆Ω∗ is between 0 and

1 degree in all cases. When ∆Ω0 is less than ∆Ω∗ by a su�ciently large margin,

the optimal transfer with a positive inclination change requires less time. On the

other hand, when ∆Ω0 is greater than ∆Ω∗, the optimal transfer with a negative

inclination change is slightly faster. The reason for this can be explained with �gure

6.2, which shows the semimajor axis and inclination time histories for a ∆Ω0 = −10◦

transfer (�gure 6.2a) and for a ∆Ω0 = 10◦ transfer (�gure 6.2b). Since for all sail

scenarios the behavior of the trajectories is the same, the 4 m2 scenario is used as an

example.

In the ∆Ω0 = −10◦ case, the orbit planes of chaser and target are initially moved

away by the e�ect of J2. The optimal transfer requires the chaser to initially decrease

its altitude and reach the limit of 200 km, which is also the altitude of the target

orbit. From this point on, the RAAN change can only be achieved by means of

out-of-plane thrusting. Since the cost of changing Ω can be reduced by decreasing

the inclination of an orbit (as seen in Section 2.4.1.1), in all ∆ı0 cases the inclination

is initially reduced. However, the greater part of the out-of-plane thrusting e�ort for

the optimal ∆ı0 = −1◦ trajectory is initially used to decrease the inclination of the

orbit rather than to attain the required RAAN change. Although ı reaches a lower

value than the other two trajectories and the cost of changing Ω is also lower, the

initial RAAN rate of change is slower. The overall e�ect is that the trajectory ends

up being longer. On the other hand, in the ∆Ω0 = 10◦ case the two orbit planes are

initially moved closer. In order speed up this process, the optimal transfer requires

the chaser to initially increase its altitude in order to reduce the e�ect of the J2

perturbation. Even though a positive inclination change would further reduce the

perturbation, a negative change is bene�cial in terms of cost of changing Ω. Between

the two e�ects, a negative inclination change results to be more e�cient.

Figures 6.1d, 6.1e and 6.1f show the same results but highlight the e�ect of

maximum frontal area. As a matter of fact, each one of the �gures displays the

same transfer for the three di�erent scenarios. As it can be seen from the �gures,

the bene�t of having a drag sail are more important when ∆Ω0 is greater than ∆Ω∗.

Since the e�ect of Smax on the trajectories is analogous for all ∆ı0 cases, �gure 6.3

shows the semimajor axis and inclination time histories for the ∆ı0 = 1◦ case, used

as an example. The dashed line denotes the time intervals of the trajectories when

the sail is not deployed, while the solid line corresponds to the time intervals when
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6.1. Minimum-time solutions

the sail is deployed.

In the ∆Ω0 = −10◦ case (�gure 6.3a), the sail is used to speed up the initial

altitude decrease, while the rest of the transfer is carried out with minimum frontal

area. Therefore, the advantage of increased drag can only be exploited for a limited

amount of time and the time-of-�ight improvement is slightly less than that of the

∆Ω0 = 10◦ case. As a matter of fact, in this other con�guration the chaser S/C can

exploit the drag sail for a much longer time. In addition, as the maximum frontal

area increases the chaser can reach higher altitudes. Not only this allows for a faster

convergence of the two orbital planes, but the higher value of Smax can then be

exploited for also decreasing the altitude at a much higher rate.

Table 6.1: Minimum transfer time and corresponding propellant consumption for
transfers with an altitude change of −200 km

No drag sail Smax = 4 m2 Smax = 400 m2

∆ı ∆Ω0 tf mp [kg] tf mp [kg] tf mp [kg]

-1°

-30° 54 d 22h 1.936 54 d 8h 1.914 53 d 9h 1.880
-20° 43 d 17h 1.540 43 d 1h 1.516 41 d 21h 1.476
-10° 28 d 21h 1.017 28 d 1h 0.989 26 d 14h 0.936
0° 5 d 16h 0.199 4 d 19h 0.169 3 d 16h 0.129
10° 9 d 14h 0.338 8 d 22h 0.314 7 d 12h 0.264
20° 14 d 15h 0.516 13 d 22h 0.491 12 d 7h 0.433
30° 18 d 17h 0.660 17 d 24h 0.634 16 d 6h 0.573

0°

-30° 51 d 11h 1.813 50 d 21h 1.793 49 d 23h 1.761
-20° 40 d 7h 1.420 39 d 16h 1.398 38 d 15h 1.360
-10° 25 d 16h 0.905 24 d 23h 0.880 23 d 14h 0.832
0° 2 d 21h 0.102 1 d 23h 0.070 0 d 3h 0.004
10° 9 d 16h 0.341 8 d 24h 0.317 7 d 14h 0.267
20° 14 d 23h 0.527 14 d 6h 0.502 12 d 14h 0.444
30° 19 d 3h 0.674 18 d 10h 0.649 16 d 16h 0.587

1°

-30° 48 d 9h 1.705 47 d 21h 1.687 46 d 24h 1.656
-20° 37 d 10h 1.319 36 d 21h 1.300 35 d 21h 1.265
-10° 23 d 8h 0.822 22 d 17h 0.801 21 d 12h 0.758
0° 4 d 16h 0.164 4 d 4h 0.147 - -
10° 10 d 9h 0.365 9 d 16h 0.341 8 d 5h 0.290
20° 15 d 14h 0.550 14 d 21h 0.524 13 d 5h 0.466
30° 19 d 19h 0.697 19 d 2h 0.672 17 d 8h 0.610
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Figure 6.1: Minimum transfer time as a function of the target's initial RAAN for
transfers with an altitude change of −200 km
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Figure 6.2: Minimum-time trajectories for ∆a0 = −200 km and Smax = 4 m2
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Figure 6.3: Minimum-time trajectories for ∆a0 = −200 km and ∆ı0 = 1◦
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6.1.2 Positive change of altitude

As opposed to the negative ∆a0 case, if the target orbit is at a higher altitude,

its line of nodes initially regresses at a slower rate than that of the chaser. Thus, at

the initial time the two orbit planes drift away from each other if ∆Ω0 > 0 and move

closer to each other if ∆Ω0 < 0.

The results for transfers with an altitude change of +200 km exhibit an analogous

qualitative behavior to those of the ∆a0 = −200 km transfer, as shown in �gure 6.4.

This time, the value of ∆Ω∗ is between 0 and -1 degree in all cases. When ∆Ω0 is

less than ∆Ω∗ the optimal transfer with a positive inclination change takes less time

to be completed and, vice versa, when ∆Ω0 is greater than ∆Ω∗ the optimal transfer

with a negative inclination change is faster. Using the 4 m2 scenario as an example,

the semimajor axis and inclination time histories for a ∆Ω0 = −30◦ transfer and for

a ∆Ω0 = 30◦ transfer are displayed in �gures 6.5a and 6.5b, respectively.

In the ∆Ω0 = −30◦ case, the orbit planes of chaser and target are initially

moved closer to each other by the e�ect of J2. Even though the target altitude is

higher than that of the chaser, the optimal transfer requires the S/C to initially

decrease its altitude and reach the altitude limit. This way, the two orbit planes

converge at an even faster rate and the chaser waits for the target orbit plane to

get su�ciently close before increasing its altitude again. For the same reason of the

negative ∆a0 transfer, in all ∆ı0 cases the inclination is initially reduced. As already

discussed for the negative change of altitude case, the greater part of the out-of-plane

thrusting e�ort for the optimal ∆ı0 = −1◦ trajectory is initially used to decrease the

inclination of the orbit rather than to attain the required RAAN change. Since the

initial RAAN rate of change is slower, in the negative ∆ı0 case the chaser spends

more time changing Ω at the altitude limit and the time-of-�ight is longer than that

of the other two cases.

On the other hand, in the ∆Ω0 = 30◦ case the two orbit planes are initially

drifting away from each other, as the chaser orbit plane regresses at a faster rate. In

order to reverse this process, the altitude of the chaser is increased beyond the target

altitude. As a consequence, in this new con�guration the line of nodes of the chaser

regresses at a slower rate and the target orbit can catch up. If the required ∆ı0 is

negative, while the S/C is increasing its altitude Ω is changed more e�ciently and

∆Ω decreases at a faster rate; the S/C can reach a lower maximum altitude than

that of the other ∆ı0 cases and thus can start earlier its descent.

From �gures 6.4d, 6.4e and 6.4f it can be readily seen that the use of a drag

sail doesn't bring much improvement to these transfers. Table 6.2 shows that when

∆Ω0 < ∆Ω∗ the time-of-�ight of the 4 m2 scenario is on average six hours less than

that of the no-sail scenario; the 400 m2 scenario further improves the trip time by

an average of twelve hours. On the other hand, when ∆Ω0 > ∆Ω∗ there is almost
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6.1. Minimum-time solutions

no di�erence of minimum-time between the no-sail scenario and the 4 m2 scenario,

while the 400 m2 scenario is barely better by an average of four hours.

The semimajor axis and inclination time histories for the ∆ı0 = 1◦ case are shown

in �gure 6.6. In the ∆Ω0 = −30◦ case (�gure 6.6a), the small improvement brought

by the sail is due to the brief initial altitude decrease. In the ∆Ω0 = 10◦ case, the

atmospheric density at the altitudes of the transfers is so low that the deployment

of the sail has a negligible impact on the trajectories, even for the 400 m2 scenario.

Table 6.2: Minimum transfer time and corresponding propellant consumption for
transfers with an altitude change of +200 km

No drag sail Smax = 4 m2 Smax = 400 m2

∆ı ∆Ω0 tf mp [kg] tf mp [kg] tf mp [kg]

-1°

-30° 24 d 1h 0.847 23 d 19h 0.838 23 d 7h 0.820
-20° 17 d 10h 0.614 17 d 4h 0.604 16 d 15h 0.587
-10° 10 d 13h 0.371 10 d 6h 0.362 9 d 18h 0.344
0° 4 d 11h 0.157 4 d 11h 0.157 4 d 11h 0.157
10° 13 d 22h 0.491 13 d 22h 0.491 13 d 18h 0.485
20° 19 d 16h 0.693 19 d 16h 0.693 19 d 12h 0.687
30° 24 d 6h 0.854 24 d 6h 0.854 24 d 1h 0.848

0°

-30° 23 d 10h 0.825 23 d 4h 0.816 22 d 16h 0.800
-20° 16 d 21h 0.595 16 d 15h 0.586 16 d 4h 0.570
-10° 10 d 1h 0.353 9 d 19h 0.345 9 d 8h 0.329
0° 2 d 12h 0.088 2 d 12h 0.088 2 d 12h 0.088
10° 14 d 7h 0.504 14 d 7h 0.504 14 d 3h 0.498
20° 20 d 4h 0.711 20 d 4h 0.711 19 d 24h 0.705
30° 24 d 20h 0.874 24 d 19h 0.874 24 d 15h 0.868

1°

-30° 22 d 23h 0.809 22 d 18h 0.802 22 d 7h 0.786
-20° 16 d 15h 0.585 16 d 10h 0.578 15 d 23h 0.562
-10° 10 d 1h 0.354 9 d 20h 0.346 9 d 10h 0.331
0° 5 d 2h 0.180 5 d 2h 0.180 5 d 2h 0.178
10° 15 d 3h 0.533 15 d 3h 0.533 14 d 23h 0.527
20° 20 d 23h 0.739 20 d 23h 0.739 20 d 19h 0.733
30° 25 d 15h 0.903 25 d 15h 0.902 25 d 10h 0.896
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(c) Maximum drag sail area equal to 400 m2
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Figure 6.4: Minimum transfer time as a function of the target's initial RAAN for
transfers with an altitude change of +200 km
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Figure 6.5: Minimum-time trajectories for ∆a0 = +200 km and Smax = 4 m2
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Figure 6.6: Minimum-time trajectories for ∆a0 = +200 km and ∆ı0 = 1◦
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Figure 6.7: Minimum-propellant trajectories for di�erent trip times in the no-sail
scenario (∆a0 = −200 km, ∆ı0 = 0◦ and ∆Ω0 = 10◦)

6.2 Minimum-propellant solutions

When a given transfer is carried out over a longer period of time than the mini-

mum, coasting arcs can appear and propellant consumption is reduced. Depending

on whether the two orbit planes are initially moving closer to each other or drifting

apart, the minimum propellant solutions are driven by two di�erent strategies.

The case of a −200 km change of semimajor axis, same inclination and ∆Ω0 = 10◦

is used as an example to show the �rst strategy, that is when the two orbit planes

are initially moving closer to each other. Figure 6.7 shows the semimajor axis and

inclination time histories in the no-sail scenario. Three di�erent trip times are shown:

the minimum-time solution, the global-optimal solution for propellant consumption

and a third solution between the two. If the trip time is increased from the minimum-

time solution, the trajectory is characterized by a coasting arc that separates two

burns. The S/C can reach lower maximum altitude and maximum inclination than

those of the minimum-time trajectory. After the thruster is switched o� (dashed

line in the �gure), the S/C waits can wait for the J2 perturbation to bring the orbit

planes closer (a 13-day trip is used as an example in �g. 6.7) and then perform a

second burn to reach the target orbit. In the presented case, for a time of �ight close

to 20 days, the initial burn disappears and the waiting orbit becomes the initial one.

In this case, the global-optimum trajectory can be performed when the target orbit is

close enough. For comparison, �gure 6.8 shows the trajectories for the 4 m2 scenario.

The periods of time when the sail is deployed are denoted by a bigger width of the
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Figure 6.8: Minimum-propellant trajectories for di�erent trip times in the 4 m2 sce-
nario (∆a0 = −200 km, ∆ı0 = 0◦ and ∆Ω0 = 10◦)

line, whereas coasting arcs are still denoted by a dashed line. The structure of the

solutions is quite similar and when coasting arcs appear the sail is deployed before the

second burn. As opposed to the previous scenario, the deployment of the sail enables

the S/C to perform an aeroassisted descent without the use of thrust. This was not

possible for no-sail scenario because the orbital decay of the S/C to the target orbit

would have required more time than what it takes for J2 to nullify ∆Ω. Therefore, in

the 4 m2 scenario if the available time is increased beyond a certain value the second

burn disappears and the descent is performed thanks to the e�ect of drag only. It

is interesting to note that the �rst burn doesn't disappear for the global-minimum

trajectory. Since drag decreases the inclination of the orbit (as described in Chapter

4), ı must be initially increased in order to account for the subsequent decrease after

the sail deployment. In addition, the global-minimum trajectory also prescribes a

small initial increase of semimajor axis during the �rst burn.

The same strategy of waiting for the target orbit to come closer, spending less

propellant by giving up some transfer time, can be performed in the case of a positive

change of semimajor axis and negative ∆Ω0. For example, a case of +200 km change

of semimajor axis, same inclination and ∆Ω0 = −10◦ is shown in �gure 6.9. The

minimum propellant trajectory requires the S/C to reach the altitude limit in order

to increase the J2 perturbation as much as possible before performing the �nal ascent.

The inclination is also slightly decreased for the same reason. If su�cient time is

available, the descent to the altitude limit can be performed by deploying the sail
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Figure 6.9: Minimum-propellant trajectories for di�erent trip times in the 4 m2 sce-
nario (∆a0 = +200 km, ∆ı0 = 0◦ and ∆Ω0 = −10◦)

and initially �ring the thruster, and then turning o� the thruster while still having

the sail deployed. Beyond a certain trip time value, the initial burn disappears, the

sail is initially deployed and the altitude limit is not reached. The global minimum

is reached when the sail is never deployed and the S/C slowly decays before the �nal

burn. Since the inclination is also slightly decreased during the coasting arc, some

thrusting e�ort is spent to change ı during the �nal maneuver.

The second strategy is implemented when the two orbit planes are drifting apart.

The case of +200 km change of semimajor axis, same inclination and ∆Ω0 = 10◦

is used as an example to present the structure of the solutions. Figure 6.7 shows

the semimajor axis and inclination time histories in the 4 m2 scenario. As already

discussed for the minimum-time solutions, the semimajor axis must be initially in-

creased beyond the target value in order to reverse the relative motion of the two

orbits. However, if more time is available to complete the transfer, the thruster can

be switched o� before the maximum altitude is reached and the chaser can wait at

a lower altitude for J2 to move the two orbit planes closer. The lower the altitude

at which the coasting arc starts, the smaller the value of the orbit nodes relative

motion. If the e�ects of aerodynamic drag were not accounted for, the theoretic trip

time for the global optimum solution would grow to in�nity, as the waiting orbit

would be in�nitesimally higher than the target. In reality, the global optimum so-

lution requires the S/C to reach an altitude of approximately 606 km and then turn

o� the engine. After more than 3 years the altitude reaches 602 km and the sail is

deployed for 6 days in order to bring semimajor axis and inclination at target values.
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Figure 6.10: Minimum-propellant trajectories for di�erent trip times in the 4 m2

scenario (∆a0 = +200 km, ∆ı0 = 0◦ and ∆Ω0 = 10◦)

This maneuver requires a total of approximately 1215 days to be completed, with a

propellant consumption of 0.069 kg.

An alternative strategy in case of orbits that are drifting apart is favoring the

initial relative node motion. Namely, instead of bringing ∆Ω to zero, one can increase

it to 2π and the structure of the trajectories become similar to that of �gure 6.9.

The minimum propellant solution for this strategy is shown in �gure 6.11: the sail is

never deployed and the chaser coasts for almost 600 days before turning on the engine

to reach the target altitude and inclination. It has to be noted that this strategy

can't reach the global optimum solution. As a matter of fact, the required change

of semimajor axis and inclination after the long coasting arc is much bigger than

the one of the previous strategy. For the case shown the propellant consumption is

roughly 0.103 kg. This value can be compared to the one of the previous strategy

for the same trip time (598 days), which however is about 0.070 kg. Therefore, the

alternative strategy performs worse and it would be meaningless to adopt it.

6.2.1 Propellant consumption analysis

In order to draw useful conclusions on the use of drag sails for minimum propellant

trajectories, let us now refer to the presented cases and study how aeroassisted

maneuvers can improve the solutions. The case of orbits with lines of nodes initially

moving closer is presented �rst. Figure 6.12a shows the propellant consumption for

the three scenarios as a function of transfer time in the case of ∆a0 = −200 km,
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Figure 6.11: Minimum propellant trajectory for ∆Ωf = 2π in the 4 m2 scenario
(∆a0 = +200 km, ∆ı0 = 0◦ and ∆Ω0 = 10◦)

∆ı0 = 0◦ and ∆Ω0 = 10◦, while �gure 6.12b presents the analogous plot in the

case of ∆a0 = +200 km, ∆ı0 = 0◦ and ∆Ω0 = −10◦. In addition, table C.1 from

Appendix C displays some values from the plots.

In the case of negative change of semimajor axis, the 4 m2 scenario requires from

30 to 60 percent less propellant than the no sail scenario for a given transfer time,

whereas for the 400 m2 scenario the savings grow from 80 to 90 percent. In addition,

both sail scenarios have a global minimum around zero, as the propellant is only used

for the initial inclination increase. Particularly, the 4 m2 scenario is characterized by

a global optimum of 0.009 kg of propellant consumed over a transfer time of 18 days

and 3 hours. The 400 m2 scenario takes only 2 grams less of propellant to perform

the global optimum transfer over 17 days and 18 hours. On the other hand, the

global minimum for the no sail scenario is 0.069 kg and the corresponding trip time

is 18 days and 22 hours. The technologically feasible scenario, i.e. 4 m2 of drag sail

area, not only improves the trip time of the propellant global minimum trajectory

by 19 hours with respect to the no sail scenario, but it also improves consumption by

almost 90%. It has to be noted that the real advantage brought by the sail appears

when the transfer can be completed without a second burn. Using the presented

4 m2 scenario as an example, this happens roughly from a 17-day trip up to the

global optimum. Since the time minimum to complete the transfer is approximately

9 days with a propellant consumption of 0.317 kg, depending on the mission it could

make sense to perform the propellant global minimum maneuver. This way, the

transfer time would double from 9 to 18 days, but the propellant consumption would
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Figure 6.12: Minimum-propellant as a function of transfer time

drop almost completely. This could be for example the case of an ADR mission,

which would require to collect as much debris as possible given a certain amount of

propellant.

Opposite conclusions can be drawn for the case of positive change of semimajor

axis. In fact, for both sail scenarios the performance improvement in terms of propel-

lant consumption decreases as the transfer time increases. Furthermore, the curves

converge to the same global optimum of 0.069 kg, as the corresponding solutions re-

quire the sail to be never deployed and the trajectories of all scenarios are identical.

Given a certain trip time, the propellant consumption improvement with respect to

the no sail scenario is around 10% in the 4 m2 scenario and reaches a maximum of

almost 40% in the 400 m2 scenario. Once again, depending on the mission it could

make sense to perform the global optimum trajectory, as for ADR. On the other

hand, for missions that require trade-o�s between transfer time and propellant con-

sumption, it has to be kept into account that the improvements brought by a drag

sail decrease as the trip time approaches the one of the global optimum trajectory.

This could be for example the case of on-orbit servicing.

Figure 6.13 highlights how increasing the maximum sail area value improves the

propellant consumption for a given trip time. Let us discuss the negative altitude

change �rst (�gure 6.13a). To begin with, the descent is aeroassisted and requires

less propellant. In addition, for higher values of Smax it can also be performed at a

faster rate. This means that the coasting arc can be extended over a longer period

of time, and moved at a lower altitude and at a lower inclination,. Consequently, the

�rst and second burn are shorter. In the presented case, i.e. a 10-day trip, a S/C

equipped with a 4 m2 sail would deploy it before the second burn, while a 400 m2

value would be enough to not require a second burn at all.

As for the positive altitude change case, a 13-day trip is presented. In the 4 m2

scenario, the S/C initially �res the thruster and deploys the sail at the same time.
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Figure 6.13: Minimum-propellant trajectories for a given trip time
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The descent is similar to that of the no-sail scenario; however, the S/C turns o�

the thruster at an earlier time and at a higher altitude. Nevertheless, the descent

is continued to a lower altitude and the sail is then furled. Although the second

burn is longer, the propellant saved during the descent results in an overall lower

expenditure. Interestingly, in the 400 m2 scenario the initial descent is performed

without the use of thrust and the S/C coasts at approximately the same altitude of

the no sail scenario. Since there's no initial burn and the �nal one takes roughly the

same amount of time, the propellant consumption is null for the �rst and just about

the same for the latter.

Let us now study the case of orbits with lines of nodes initially drifting apart.

Figure 6.14 presents the propellant consumption for the three scenarios as a function

of transfer time, in the case of ∆a0 = +200 km, ∆ı0 = 0◦ and ∆Ω0 = 10◦. The

faint aerodynamic e�ects at the altitudes of the transfer and the brief time over

which the descent is performed result in modest improvement of the two drag sails

scenarios. For trip times under 100 days (�gure 6.14a) small improvements can be

seen only for the 400 m2 scenario, whereas the 4 m2 is almost identical to the no sail

scenario. The trajectories for a trip time of 30 days and for a trip time of 40 days

are shown in �gure 6.15. While the trajectory for the �rst two scenarios is almost

the same, the 400 m2 value is large enough to be brie�y exploited during the �nal

descent; the inclination of the waiting orbit can be slightly lower and the altitude

slightly higher. For the 30-day transfer the second burn is somewhat shorter, while

the 40-day maneuver is long enough to perform the descent without the use of thrust.

For trip times from 100 to 350 days (�gure 6.14b) the 4 m2 scenario goes from being

similar to the no-sail scenario to being almost equivalent to the 400 m2 scenario. In

fact, as the trip time increases, the orbital decay in the 4 m2 scenario becomes more

and more pronounced than that of the no-sail scenario. The second burn can then

be slightly shorter, analogously to the 30-day trip in the 400 m2 scenario. For even

longer transfers (over 200 days), the second burn disappears in the 4 m2 scenario

as well. However, the semimajor axis decrease happens at a much slower rate than

that of the 400 m2 scenario. As a consequence, the S/C spends more time at lower

altitudes, where the e�ect of J2 is higher. In order to account for this, the waiting

orbit is higher, hence the di�erence of propellant consumption. For trip times over

350 days the descents of the two drag sail scenarios become very brief and similar,

and so does the propellant expenditure. From a certain point on, the curves begin

to converge at the global optimum of 0.069 kg, common to all three cases since the

trajectory doesn't require the deployment of the sail. Table C.2 from Appendix C

shows the results in detail.

It has to be noted that even for long mission such as ADR, a single debris to debris

transfer can't be extended over prohibitively long times; an acceptable transfer could

be in the order of 60 days. In the case presented, having a 4 m2 drag sail would be
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Figure 6.14: Minimum-propellant as a function of transfer time (∆a0 = +200 km,
∆ı0 = 0◦ and ∆Ω0 = 10◦)
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almost completely useless for such trip time. However, the propellant consumption

improvement highly depends on the initial and �nal orbit, as �ying through thicker

density values enhances the aeroassisted maneuvers. As a general trend, in the case

positive altitude change transfers, the use of drag sails is bene�cial when the line of

nodes of the target orbit is initially moving closer to the one of the chaser or, when the

lines of nodes are drifting apart, if the transfer is performed between orbits below

400 km of altitude. On the other hand, it has been shown that negative altitude

change transfers can be carried out with nearly-zero-consumption maneuvers. As for

minimum-time trajectories, negative altitude change transfers are improved by a few

hours when a 4 m2 drag sail is employed and by a a few days when Smax = 400 m2. In

addition, increasing the maximum frontal area doesn't improve the minimum time

of positive altitude change transfers by much. In light of this, the use of a drag

sail wouldn't make much sense for missions that require the S/C to reach the target

orbit as fast as possible (e.g. a satellite that must reach its operative orbit). As a

matter of fact, even a light sail would take a toll on the cost of the mission and, at

the same time, take up some volume and mass that would be otherwise assigned to

other subsystems. On the �ip side, OOS and ADR missions could exploit drag sails

to a much greater extent. Even though the scope of this thesis was not to give a

direct example of such missions, the results obtained show that a drag-enhancement

system should be investigated during mission analysis.
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Conclusions

The optimization of space trajectories in low Earth orbit is becoming of extreme

interest due to several new mission concepts, such as active debris removal, on-orbit

servicing and small-sat deployment from orbiting platforms. This thesis provides a

fast and accurate method for the evalutation of these transfers. In particular, the

e�ects of the Earth's gravitational harmonic J2 coe�cient and aerodynamic drag are

kept into account in order to obtain meaningful results.

After showing how to build a mathematical model to approximate the afore-

mentioned perturbations, an indirect optimization approach has been applied. This

method transforms the optimization problem into a boundary value problem, which

is solved by means of shooting procedures. The use of drag sails is investigated by

treating the frontal area of the spacecraft as a control variable, in addition to thrust

magnitude and direction. The analysis of a case study has displayed the structure of

the solutions to the minimum-time and minimum-propellant problems. Depending

on the parameters that de�ne the transfer, i.e. relative orbital elements and available

trip time, the enhancement of aerodynamic drag may be highly bene�cial in terms

of propellant expenditure. On the �ip side, time of �ight is improved signi�cantly

only for relatively large values of maximum frontal area. Therefore, this thesis o�ers

a framework for fast trade-o� studies on the use of drag sails for future missions.

Although the atmospheric model used in this work is not particularly accurate,

the method proposed is readily extendible to deal with more sophisticated models.

Proper phasing of the chaser spacecraft to rendezvous with the target has not been

accounted for. Moreover, the changes of semimajor axis and inclination of the target

have been neglected, as the case study assumed it performed maneuvers in opposition

to the e�ects of aerodynamic drag. In light of this, future studies may use the

described method to de�ne optimal strategies for a speci�c active debris removal or

on-orbit servicing mission. A more detailed atmospheric model may be easily plugged

in and the rendezvous phase may be accounted for. Finally, further complexity may

be added by removing the almost-circular orbit approximation and considering the

eccentricity equation and the e�ect of J2 on the line of apses.
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Appendix A

Vector and matrix operations

This appendix lists useful vector and matrix operations that will be used in this

thesis.

A.1 Vector operations

Scalar product The scalar product of two vectors a and b, denoted by a · b, is
de�ned as

a · b = ab cosϑ (A.1)

where ϑ is the angle between the two vectors. Following this de�nition, one has

a · b = b · a (A.2)

a · (b + c) = a · b + a · c (A.3)

α (a · b) = αa · b = a · αb (A.4)

a · a = a2 (A.5)

a · ȧ = aȧ (A.6)

If i, j and k are unit orthogonal vectors, a = a1i + a2j + a3k and b = b1i + b2j + b3k,

one has

i · j = j · k = i · k = 0 (A.7)

a · b = (a1i + a2j + a3k) · (b1i + b2j + b3k) (A.8)

Using equations (A.3) and (A.7), equation (A.8) rewrites as

a · b = a1b1 + a2b2 + a3b3 (A.9)
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A.2. Vector notation

Vector product The vector product of two vectors a and b, denoted by a× b, is

a vector c such that

c = ab sinϑ (A.10)

where ϑ is the angle between the two vectors and its direction is perpendicular to

both a and b. Following this de�nition, one has

a× b =

∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ = det

 i j k

a1 a2 a3

b1 b2 b3

 (A.11)

whete i, j and k are unit orthogonal vectors, a = a1i+a2j+a3k and b = b1i+b2j+b3k.

In addition,

a× a = 0 (A.12)

a× b = − (b× a) (A.13)

a× (b + c) = a× b + a× c (A.14)

α (a× b) = αa× b = a× αb (A.15)

a× (b× c) = (a · c) b− (a · b) c (A.16)

(a× b)× c = (a · c) b− (b · c) a (A.17)

a · (b× c) = c · (a× b) = b · (c× a) (A.18)

Equation (A.18) is readily proved by expanding equation (A.18) by using equations

(A.11) and (A.9), which give∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
c1 c2 c3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
b1 b2 b3

c1 c2 c3

a1 a2 a3

∣∣∣∣∣∣∣
which is easy to verify.

A.2 Vector notation

This work assumes a bold character denotes a column vector:

a =


a1

a2

...

an

 (A.19)
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A.2. Vector notation

A row vector is written as aT , where the letter T denotes the transpose matrix. This

way, the scalar product a · b can be written as

a · b = aTb = bTa (A.20)

The time derivative of a column vector yields a column vector whose components

are the time derivatives of each one of the components of the vector:

da

dt
=


da1/dt

da2/dt
...

dan/dt

 (A.21)

The derivative of a scalar quantity with respect to a column vector yields a row

vector whose components are the derivatives of the scalar quantity with respect to

the components of the vector:

dϕ

da
=

(
dϕ

da1
,
dϕ

da2
, . . . ,

dϕ

dan

)
The derivative of a vector a with n components with respect to another vector b with

m components yields a matrix with n rows and m columns. Each column containes

the derivatives of the components of a with respect to a single component of b,

whereas each row containes the derivatives of a single components of a with respect

to the components of b:

[
da

db

]
=


da1/db1 · · · da1/dbm

...
. . .

...

dan/db1 · · · dan/dbm


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Appendix B

Coordinate transformations

A physical vector is a mathematical quantity that has three dimensions and only

possesses two properties: magnitude and direction. The concept of physical vector

and all of the operations associated with physical vectors are completely indipendent

of a coordinate system. However, frames of reference are needed for the formulation of

kinematics and dynamics. The same physical vector can be expressed in any suitable

coordinate system. In the case of rectangular coordinate systems, any physical vector

can be expressed as a linear combination of the three unit vectors that make up the

basis of the system. Given a coordinate system, a coordinate transformation only

changes the basis of a vector. That mathematical properties that de�ne the vector

(magnitude and direction) remain unchanged.

Rotation matrices Suppose we have the coordinates of a vector in a certain

coordinate system XYZ

a = aXX + aY Y + aZZ

and we want to calculate its coordinates in another system UVW

a = aUU + aV V + aWW

The coordinates are simply given by

aU = a ·U

aV = a ·V

aW = a ·W
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Therefore, by using equations (A.3) and (A.4) we can write

aU = aX (X ·U) + aY (Y ·U) + aZ (Z ·U)

aV = aX (X ·V) + aY (Y ·V) + aZ (Z ·V) (B.1)

aW = aX (X ·W) + aY (Y ·W) + aZ (Z ·W)

By using the notation introduced in Appendix A, we can write

aUVW =

 aU

aV

aW



aXY Z =

 aX

aY

aZ


where the subscripts identify the coordinate system. By introducing the rotation

matrix

L =

 X ·U Y ·U Z ·U
X ·V Y ·V Z ·V
X ·W Y ·W Z ·W

 (B.2)

we can write

aUVW = LaXY Z (B.3)

which, by applying the rules of matrix multiplication, yields the set of equations

(B.1).

The columns of matrix (B.2) are the unit vectos of XYZ expressed in UVW:

L =
[

XUVW YUVW ZUVW

]
The multiplication between the transpose of L and itself yields

LT · L =

 XT
UVW

YT
UVW

ZTUVW

[ XUVW YUVW ZUVW

]
=

=

 1 0 0

0 1 0

0 0 1


This shows that L−1 = LT and the rotation matrix is an orthonormal matrix. This
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implies that we can invert the transformation in equation (B.3) and write

aXY Z = LTaUVW

Let us now consider three coordinate systems, denoted as 1, 2 and 3. Let L21

be the rotation matrix from coordinate system 1 to 2 and L32 the transformation

matrix from 2 to 3. Therefore, we can write

a3 = L32a2 = L32L21a1

If L31 is the rotation matrix from coordinate system 1 to 3, we have

L31 = L32L21 (B.4)

Therefore, successive rotations can be combined to transform the coordinates of a

vector.

Principal rotations If two coordinate systems are related by a simple rotation

through a positive angle α about an axis, the rotation matrix assumes a simple

form. Let us assume coordinate system UVW is obtained by rotating XYZ through

an angle α about the Z-axis, such that Z ≡W. The rotation matrix from equation

(B.2) becomes

L =

 cosα sinα 0

− sinα cosα 0

0 0 1


In the same manner, for a rotation about the Y-axis,

L =

 cosα 0 − sinα

0 1 0

sinα 0 cosα


whereas for a rotation about the X-axis,

L =

 1 0 0

0 cosα sinα

0 − sinα cosα


Transformation from the Geocentric-Equatorial to the Perifocal coordi-

nate system The perifocal coordinate system can be obtained from the geocentric-

equatorial system through successive rotations. As a matter of fact, by rotating IJK

through an angle equalt to the RAAN Ω about K, the transformed x-axis lies along

the line of nodes. A further rotation through the inclination angle ı about the new
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x-axis, transforms the z-axis in w (the z-axis of the perifocal frame). Finally, a ro-

tation through an angle equal to the argument of perigee ω about w completes the

transformation. By applying the rule of successive rotations as described by equation

(B.4), we have

LpqwIJK =

 cosω sinω 0

− sinω cosω 0

0 0 1


 1 0 0

0 cos ı sin ı

0 − sin ı cos ı


 cos Ω sin Ω 0

− sin Ω cos Ω 0

0 0 1


Multiplicating the matrixes yields

LpqwIJK = cos Ω cosω − sin Ω sinω cos ı sin Ω cosω + cos Ω sinω cos ı sinω sin ı

− cos Ω sinω − sin Ω cosω cos ı − sin Ω sinω + cos Ω cosω cos ı cosω sin ı

sin Ω sin ı − cos Ω sin ı cos ı


(B.5)

Therefore, we have

apqw = LpqwIJKaIJK (B.6)

and

aIJK = LTpqwIJKapqw (B.7)

Transformation from the Perifocal to the RTW coordinate system As

described in Section 2.4.1.1, the RTW coordinate system is the rotation of the peri-

focal coordinate system through an angle equal to the true anomaly ν about w. The

rotation matrix is

LRTWpqw =

 cos ν sin ν 0

− sin ν cos ν 0

0 0 1

 (B.8)
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Appendix C

Minimum-propellant tables

Table C.1: Minimum propellant consumption for transfer with lines of nodes initially
moving closer

∆a0 = −200 km
∆ı0 = 0°

∆Ω0 = 10°

∆a0 = +200 km
∆ı0 = 0°

∆Ω0 = −10°

No drag
sail

Smax =
4 m2

Smax =
400 m2

No drag
sail

Smax =
4 m2

Smax =
400 m2

tf [days] mp [kg]

12 0.183 0.134 0.039 0.198 0.184 0.126
12.5 0.167 0.121 0.034 0.183 0.164 0.120
13 0.153 0.109 0.029 0.170 0.150 0.114
13.5 0.141 0.098 0.025 0.158 0.139 0.109
14 0.130 0.089 0.021 0.148 0.130 0.104
14.5 0.121 0.080 0.018 0.138 0.122 0.100
15 0.113 0.071 0.015 0.130 0.115 0.096
15.5 0.105 0.063 0.012 0.123 0.108 0.093
16 0.099 0.055 0.009 0.116 0.102 0.089
16.5 0.092 0.046 0.007 0.110 0.096 0.087
17 0.086 0.036 0.005 0.104 0.091 0.084

Global optimum 0.069 0.009 0.002 0.069 0.069 0.069
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Table C.2: Minimum propellant consumption for transfer with lines of nodes initially
drifting apart (∆a0 = +200 km, ∆ı0 = 0◦ and ∆Ω0 = 10◦)

No drag sail Smax = 4 m2 Smax = 400 m2

tf [days] mp [kg]

20 0.269 0.269 0.259

30 0.183 0.183 0.167

40 0.150 0.150 0.114

50 0.132 0.131 0.102

60 0.120 0.120 0.095

70 0.112 0.111 0.090

80 0.106 0.105 0.087

90 0.102 0.101 0.085

100 0.098 0.097 0.083

110 0.095 0.094 0.082

120 0.093 0.091 0.080

130 0.091 0.089 0.079

140 0.089 0.087 0.079

150 0.088 0.085 0.078

160 0.087 0.084 0.077

170 0.085 0.082 0.077

180 0.084 0.081 0.076

190 0.083 0.080 0.076

200 0.083 0.078 0.075

210 0.082 0.077 0.075

220 0.081 0.076 0.075

230 0.081 0.076 0.074

240 0.080 0.075 0.074

250 0.080 0.075 0.074

260 0.079 0.074 0.074

270 0.079 0.074 0.073

280 0.078 0.074 0.073

290 0.078 0.074 0.073

300 0.078 0.073 0.073

310 0.077 0.073 0.073

320 0.077 0.073 0.072

330 0.077 0.073 0.072

340 0.076 0.072 0.072

350 0.076 0.072 0.072
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No drag sail Smax = 4 m2 Smax = 400 m2

tf [days] mp [kg]

360 0.076 0.072 0.072

370 0.076 0.072 0.072

380 0.075 0.072 0.072

390 0.075 0.072 0.072

400 0.075 0.072 0.072

410 0.075 0.072 0.071

420 0.075 0.072 0.071

430 0.075 0.071 0.071

440 0.074 0.071 0.071

450 0.074 0.071 0.071

460 0.074 0.071 0.071

470 0.074 0.071 0.071

480 0.074 0.071 0.071

490 0.074 0.071 0.071

500 0.074 0.071 0.071

510 0.073 0.071 0.071

520 0.073 0.071 0.071

530 0.073 0.071 0.071

540 0.073 0.071 0.071

550 0.073 0.071 0.071

560 0.073 0.071 0.071

570 0.073 0.071 0.070

580 0.073 0.070 0.070

590 0.073 0.070 0.070

600 0.073 0.070 0.070

610 0.072 0.070 0.070

620 0.072 0.070 0.070

630 0.072 0.070 0.070

640 0.072 0.070 0.070

650 0.072 0.070 0.070

660 0.072 0.070 0.070

670 0.072 0.070 0.070

680 0.072 0.070 0.070

690 0.072 0.070 0.070

700 0.072 0.070 0.070

710 0.072 0.070 0.070

Global optimum 0.069 0.069 0.069
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