
POLITECNICO DI TORINO
Department of Mechanical and Aerospace Engineering

Master Thesis
Control System Design with Reinforcement
Learning Algorithm for a Space Manipulator

Advisor
Prof.ssa Elisa Capello

Candidate
Luca Di Ianni, s258082

April 2021

Dedicated to my grandmother Angela and my uncle Donato.

Abstract

On-Orbit Servicing (OOS) represents the advent of a new approach to space access and promises
to be a key element in developing the future space infrastructures. Upcoming robotic spacecraft,
mounting a robotic arm, may be able to perform a wider range of operations on a larger number of
client spacecraft such as docking, berthing, refueling, repairing, upgrading, transporting, rescuing
and orbital debris removal. Space manipulator systems, however, introduce relevant challenges
due to the dynamic coupling between the manipulator and the spacecraft, that represents its base,
and due to the growing need for autonomy and flexibility to perform new tasks and adapt to
environment changes and disturbances. This implies the need for control system design that can
reduce the reaction forces exchanged at the mounting point and that is robust to uncertainties
on initial conditions.

The present Master thesis focuses on the modeling and control of a space manipulator system
operating in a typical OOS mission environment. In order to obtain end-effector pose expressed
as a function of the joint variables of the mechanical structure, the kinematic model of the robotic
arm is first derived with a systematic and general approach using Denavit-Hartenberg (DH)
convention. In addition, dynamic equations of the manipulator are obtained using Lagrange
formulation to simulate the motion, compute the forces exchanged with the base and torques
required for the execution of the task and thus design control algorithms.

Thus, a Reinforcement Learning (RL) controller for the manipulator is implemented exploiting
the ability to learn how to complete a task within an unknown environment through repeated
trial-and-error interactions with the environment without human involvement. Soft-Actor-Critic
(SAC) algorithm, based on the maximum entropy framework, is selected to train the agent. The
performance is then compared with a classical Proportional-Integral-Derivative (PID) controller.

Then a control system design for the spacecraft is proposed. Linear-Quadratic-Regulator
(LQR) design, based on a fully controllable quaternion spacecraft model, is implemented for
attitude purpose. LQR approach is also adopted for position control, showing pose-keeping
ability and robustness of LQR design.

Last, a typical mission scenario of an OOS mission is presented, describing several phases
that characterize this mission and showing the performance of the designed model.

The simulation scenario, the space manipulator system plant and the proposed controllers
are developed using MATLAB R2020b and Simulink exploiting the numerous available toolboxes
including Symbolic Toolbox, Deep Learning Toolbox, Reinforcement Learning Toolbox, Robotic
System Toolbox and Simulink 3D Animation.

Acknowledgement

I would like to thank Prof.ssa Elisa Capello. Despite the difficulties and the need to work
remotely, given the exceptional period, she was always kind and helpful in supporting me during
the thesis work.

Thanks to Prof. Enrico Cestino and the Team S55 for making me grow and allowing me to
be part of a fantastic working group that I will continue to follow.

Thanks to my father Pasqualino, my mother Patrizia, my sister Roberta, my brother Paolo,
my grandfather Roberto and all my relatives who supported my choices every day and shared
my dreams.

Thanks to Chiara who accompanied and supported me every day, during this beautiful
journey and which I hope to hug again soon.

Thanks to all my colleagues and friends, in particular Pietro and Elena for the beautiful
shared experiences, to Michele who has been several times an inspiration to me and to Davide,
companion of a thousand adventures.

Finally, thanks to all the people I met along my way, even for just a minute, because they
helped make me who I am.

Contents

List of Figures vi

List of Tables viii

Abbreviations ix

Introduction 1

I Manipulator Mathematical Model 7

1 Kinematic Model 8
1.1 Reference Frames . 8
1.2 Forward Kinematics . 10
1.3 Inverse Kinematics . 10
1.4 Differential Kinematics . 10
1.5 Case Study 1 - Two-link planar arm . 12
1.6 Case Study 2 - Three-link planar arm . 13

2 Dynamic Equations 16
2.1 Lagrange Formulation . 16
2.2 Case Study 1 - Two-link planar arm . 17
2.3 Case Study 2 - Three-link planar arm . 18

II Multi-Body Mathematical Model 20

3 Multi-Body Model Overview 21
3.1 Geometrical and inertial features . 21
3.2 Reaction forces and moments computation . 22
3.3 Reference Frames . 23

3.3.1 LVLH Frame FLV LH . 23
3.3.2 Spacecraft body Frame FB . 24

3.4 Euler’s Angles . 25
3.5 Quaternions . 26
3.6 Relative Motion Dynamics . 27

iv

CONTENTS

3.7 Attitude Dynamics . 29

III Control System Design 31

4 Introduction to implemented control methods 32
4.1 PID Control . 32
4.2 LQR Control . 33

4.2.1 Linearized attitude dynamics . 34
4.2.2 Relative position dynamics in state space form 35

4.3 RL Control . 36
4.3.1 Artificial Neural Networks and agent definition 36

IV Simulation Results 41

5 Simulation Environment 42
5.1 Space manipulator system configuration . 42
5.2 Unified Robot Description Format . 45

6 Manipulator Controller Design 47
6.1 PID Controller . 47
6.2 RL Controller . 50

7 Base Satellite Controller Design 55
7.1 LQR Attitude Controller . 56
7.2 LQR Position Controller . 57

V Mission Scenario 58

8 Rendezvous-Berthing Mission 59
8.1 Chaser configuration . 59

Conclusion and future works 63

Bibliography 65

v

List of Figures

1 Astronauts servicing HST during Service Mission 3A (STS-103) 2
2 Orbital Express major subsystem contractors . 4
3 Robot assistant CIMON on ISS . 5

1.1 Denavit-Hartenberg kinematic parameters - Image from Robotics. Modelling,
Planning and Control. Springer, 2010. 8

1.2 Two-link planar manipulator reference frames . 12
1.3 Three-link planar arm reference frames . 14

2.1 Two-link planar arm . 18
2.2 Three-link planar arm . 18

3.1 Multi-body reference frames . 21
3.2 Reaction forces scheme . 22
3.3 Reaction forces translation . 23
3.4 Spacecraft LVLH frame representation . 24
3.5 Spacecraft body frame representation . 24
3.6 Bryant’s rotation sequence . 25
3.7 Standard orthogonal 3-wheel configuration . 30

4.1 RL scheme . 36
4.2 Single-input neuron scheme . 36
4.3 Single layer Neural Network scheme . 37
4.4 Neural Network scheme . 38
4.5 SAC agent scheme . 39

5.1 CAD of the space manipulator system . 42
5.2 Robotic arm general scheme . 43
5.3 Robotic arm plant in Simulink . 43
5.4 Satellite general scheme . 44
5.5 Satellite plant in Simulink . 44
5.6 PWPF general scheme . 45
5.7 URDF file: definition of ith link . 45
5.8 URDF file: definition of ith joint . 46
5.9 Space manipulator home configuration . 46

6.1 Space manipulator configurations . 47

vi

LIST OF FIGURES

6.2 Joint space control architecture . 48
6.3 PID: joint command torques . 48
6.4 PID: joint variables evolution . 49
6.5 PID: End-effector motion . 49
6.6 PID: reaction forces and moments acting on the base satellite 49
6.7 Task space control architecture . 50
6.8 RL training scheme . 50
6.9 Plot of the first critic and the actor . 51
6.10 Episode manager . 52
6.11 RL: joint command torques . 53
6.12 RL: effects on the end-effector . 54
6.13 RL: effects on joint variables . 54
6.14 RL: reaction forces and moments acting on the base satellite 54

7.1 Attitude deviation . 55
7.2 Position deviation . 55
7.3 Input torque signal . 56
7.4 Servicer controlled attitude . 56
7.5 Thruster control signal . 57
7.6 Servicer controlled relative position . 57

8.1 Concept of Operations scheme . 60
8.2 Space manipulator configurations . 61
8.3 Joint command torques . 62
8.4 RL: effects on joint variables . 62
8.5 Reaction forces and moments acting on the base satellite 62

vii

List of Tables

1.1 Denavit-Hartenberg parameters for two-link planar arm 12
1.2 Denavit-Hartenberg parameters for three-link planar arm 14

4.1 Effects of KP , KI and KD on a closed-loop system 33
4.2 Ziegler–Nichols PID Controller tuning method 33

6.1 Training options . 52

viii

Abbreviations

ADCS Attitude Determination and Control System
AI Artificial Intelligence
ARE Algebraic Riccati Equation
CIMON Crew Interactive MObile companioN
CoM Center of Mass
ConOps Concept of Operations
DARPA Defense Advanced Research Project Agency
DoF Degree of Freedom
EoM Equation of Motion
ERA European Robotic Arm
EVA Extra-Vehicular Activity
GNC Guidance and Navigation Control
HST Hubble Space Telescope
IOC Initial Operation Capabilities
ISS International Space Station
JEMRMS Japanese Experiment Module Remote Manipulator System
ML Machine Learning
LEO Low Earth Orbit
LQR Linear Quadratic Regulator
LVLH Local Vertical/Local Horizontal
OE Orbital Express
OEDMS Orbital Express Demonstration Manipulator System
OOS On-Orbit Servicing
ORU On-Orbit Replaceable Unit
PID Proportional-Integral-Derivative
PWPF Pulse-Width/Pulse-Frequency
RL Reinforcement Learning
RPO Rendezvous and Proximity Operations
RSO Resident Space Object
RW Reaction Wheels
SAC Soft-Actor-Critic
SRMS Shuttle Remote Manipulator System
SSRMS Space Station Remote Manipulator System

ix

Introduction

The goal of the present work is to analyze the dynamical behavior of a free-flying system operating
in a typical OOS mission environment and exploit modern machine learning control method for
control system design. In particular, more attention is paid to the possibility of developing a
manipulator controller that can reduce the reaction forces and moments acting on the floating
base, during the motion of the robotic arm. It also deals with the problem of maintaining attitude
and position of the servicer during OOS operations.

On Orbit Servicing

On-Orbit-Servicing (OOS) is part of a future major disruption in the space landscape that will
soon revolutionize space transportation and the way we use space with more focus on advanced
robotics, vision-based navigation and rendezvous and proximity techniques.

Nowadays, with some exceptions, satellites are launched with everything they need for their
entire mission, from IOC to end of life. OOS lets satellites to evolve over their lifetime and
provides some benefits ([1]):

• risk mitigation of mission failure;

• mission cost reduction;

• mission performance increase in terms of mission life and payload utility;

• mission flexibility improvement offering option to modify space system requirements;

• new missions options.

The two main characters of the OOS are a servicer and a client. The former is a space vehicle
designed to execute the task, while the latter is a Resident Space Object (RSO) receiving the
OOS that can be cooperative or non-cooperative. A cooperative client is designed to provide
important information, such as position, velocity, status, etc., to aid in acquisition, tracking,
rendezvous or servicing operations. A non-cooperative client is not capable of communicate
aiding information to the servicer making OOS operations more difficult to execute.

In the near future, servicer may be able to perform autonomously a wider range of operations
([2]):

• Non-contact support consists in observation, inspection for characterization of the
spacecraft payload and assessment of the client for damage or remote enhancing the client
with new capabilities (wireless connection).

1

Figure 1: Astronauts servicing HST during Service Mission 3A (STS-103)

• Orbit modification and maintenance occurs when a servicer performs propulsion and
attitude control functions for the client to support, for example, constellation reconfiguration,
rescue of satellites.

• Refueling and commodities replenishment is a service that supplies commodities
essential for the client’s mission. Commodities include fluids such as propellants, pressurants
or coolants but also needed hardware.

• Upgrade is the replacement or addition of components, such as processors or payload, to
a client to improves spacecraft performance.

• Repair is the replacement of components or correction of mechanical failures on a client
to restore capability.

• Assembly is an activity in which two or more objects intentionally combine to create
space system that could not be transported by existing launch vehicles or enhance existing
space vehicles.

• Debris mitigation refers to a set of activities that allow controlled reentry of low Earth
orbit (LEO) spacecraft, vehicles incapable of moving themselves, rocket bodies or orbital
debris.

However, limited OOS activities [3] have been performed since Gemini and Apollo missions
demonstrating Rendezvous and Proximity Operations (RPO). The activities on the first space
stations (Skylab, Salyut and Mir) demonstrated the capability of installing and deploying solar
arrays and sunshades, repairing critical components (science instruments, propellant system
leak), removing unnecessary components (part of antenna) and maintaining science experiments.

2

The International Space Station (ISS) was assembled on orbit and designed to be resupplied with
propellant and supplies by various vehicles (Space Shuttle, Soyuz, Cygnus, Dragon) and upgraded
with new modules. During the Solar Maximum Repair Mission the astronauts, operating from
the Space Shuttle, repaired the attitude control system of the Solar Maximum spacecraft, then
it reached back the operative orbit. Hubble Space Telescope (HST), designed and built for
servicing, is an eminent example of OOS. In fact, it has a modular design that allows astronauts
to replace units, upgrade them with new technology or install additional hardware. HST was
serviced five times over its 30 years of operation.

These activities were all performed by humans or with significant human-in-the loop presence.
The first successful end-to-end robotic satellite servicing was performed by Defense Advanced
Research Project Agency (DARPA). The Orbital Express (OE) project successfully demonstrated
autonomous docking, refueling and unit replacing removing humans from the equation. The Or-
bital Express Demonstration Manipulator System (OEDMS), mounted on the servicer (ASTRO),
was used to service the client satellite (NextSat) and in [4] it is shown how OEDMS played a
critical part in achieving two key goals of the flight test: autonomous capture of the free-flying
client and autonomous On-Orbit Replaceable Unit (ORU) transfer.

Space Manipulator Systems

A robotic manipulator consists of a sequence of rigid bodies interconnected by means of links
that ensure its motion; it is characterized by an arm that ensures mobility, a wrist that confers
dexterity and an end-effector that performs the task required of the robot. In the most general
case of a task consisting of arbitrarily positioning and orienting an object in three-dimensional
space, six DoFs are required, three for positioning a point on the object and three for orienting
the object with respect to a reference coordinate frame. If more DoFs than task variables
are available, the manipulator is said to be redundant from a kinematic viewpoint. Robotic
systems have been used in many space missions, since the first deployment of the Shuttle Remote
Manipulator System (SRMS). Over the life of the Space Shuttle program the SRMS evolved
into an indispensable tool ([5]) not only for satellite deployment and retrieval, but was used
extensively for satellite rescue and repair, as an EVA platform, International Space Station (ISS)
construction, shuttle and payload bay surveys, as well as a host of contingency operations. Its
success was a major driver in developing the robotic systems (SSRMS, ERA, JEMRMS) on
board the ISS today ([6]) and it will serve as the foundation for all future space robotic systems.
Actually, robotic manipulators are well suited to execute highly repetitive tasks that would be too
time consuming, risky and expensive if performed by astronauts, but they represent a relevant
challenge because of the dynamic coupling between the manipulator and the floating base. In
fact, the motion of the manipulator generates reaction forces and moments on the spacecraft
(and vice-versa) at the mounting point and this affects position and attitude of the spacecraft
itself; this is true above all for small satellites.

This leads to two types of dynamic situation ([7]):

• free-floating systems, in which the spacecraft is not controlled during the motion of the
manipulator; during OE demonstration for example, while the robotic arm was in motion,
the servicer operated in free drift with a free-floating base than it corrected its attitude
once arm motion was complete.

3

Figure 2: Orbital Express major subsystem contractors

• free-flying systems in which spacecraft pose is controlled during the arm motion; in this
way the end-effector is able to reach the desired position and execute the desired task in a
safe mode.

Design of a controller for a manipulator is a complex task and the user’s requirements represent
the starting point of the conceptual design ([14]). It is followed by the robot modeling which
consists in the derivation of kinematics that can be formulated exploiting Denavit-Hartenberg
(DH) parameters and dynamics that can be derived using the Lagrange formulation ([13]). Classic
Proportional-Integral-Derivative controllers at each joint of manipulator are widely employed in
industrial robots ([16]). Others control method, such as Computed Torque methods, Transpose
Jacobian control are implemented and the experimental results are compared with the PID
performance. In [8], the dynamic coupling between a robotic manipulator and the floating base
platform is analyzed and a control strategy based on LQR and PID control laws is developed in
the effort of keeping the platform attitude stable while the robotic arm is in service. [9] proposed
a quaternion model that uses only the vector component of the quaternion. The author proved
that the linearised reduced quaternion model using the vector component is fully controllable.
[10] showed that the LQR controller design is a robust pole assignment design and demonstrated
robustness and global stability of the design.

Modern robots should autonomously and flexibly adapt to new tasks, environment changes
and disturbances. These requirements generated novel challenges in the area of robot control
because it is no longer sufficient to implement control algorithms that are robust to noise.
They should adapt to different working conditions overcoming the need of complex parameters
identification and/or system re-modeling.

Artificial Intelligence for Space Application

Artificial Intelligence (AI) could drastically improve the future of space missions from greater
planetary navigation and optimised mission operations, to analysing astronaut biometric data

4

Figure 3: Robot assistant CIMON on ISS

and enhancing knowledge discovery. Intelligence can be thought of as the ability of machines
(agents) to perceive and recognise their environment, to be able to learn from past experiences,
and logically make decisions based on new scenarios. Greater autonomy is a new enabler for
increased mission complexity and chance of success when human intervention is difficult or limited
given the lack of visibility, the required amount of information and communication time lag.

The history of AI has far later beginnings dating back to 1998 with the use of an AI
algorithm called Remote Agent, used onboard Deep Space 1–a comet probe. Remote Agent,
whilst elementary in comparison to the AI capabilities of today, proved its worth with capabilities
including the planning and scheduling of activities and diagnosing onboard failures. Since
then there have been many other applications of AI for space exploration missions ranging
from algorithms that give greater autonomy to planetary surface rovers, AI for discovering new
Exoplanets, and AI powered assistants aboard the International Space Station. CIMON (Crew
Interactive MObile companioN) is an example how RoboAssistants can help astronauts during
on board activities. It is an IBM technology which aims to augment the information and learning
available to astronauts and to reduce their exposure to stress. Other applications include mobile
photography and videography and the ability to document experiments, search for objects and
maintain an inventory. CIMON can also see, hear and understand what it observes and is
equipped with an autonomous navigation system, allowing astronauts to issue voice commands.

The fastest growing branch of AI is Machine Learning (ML) whereby AI models learn by
themselves, in essence by training a relatively simple algorithm to become increasingly complex.
ML models process information in a similar way to humans by developing artificial neural
networks. The system progressively improves its performance on a specific task by “learning”
from its environment, without being explicitly programmed.

RL is prominently used as a control approach in robotics; both RL and optimal control
address the problem of finding an optimal policy that optimizes an objective function and both
rely on the notion of a system being described by an underlying set of states, controls and a
plant or model that describes transitions between states ([23]). Deep learning-based approach
can be promising in path planning for single arm manipulator ([20]) and also for multi-arm
manipulators ([21]). [22] developed and implemented two RL-based compensation schemes to
improve the suboptimal tracking performance of a feedback controller in a multi DoFs robot arm.

5

Overview of the thesis

The thesis contents are organized in 5 parts, 12 chapters and 3 appendices.
In Part I, mathematical model of the manipulator is presented. In Chap. 1, the kinematic

model is derived with a systematic and general approach using Denavit-Hartenberg convention,
direct and inverse kinematic are formulated considering open chain structures and two examples
are presented. In Chap. 2, the dynamic equations are obtained considering the systematic
approach based on Lagrange formulation and two example are presented.

In Part II, the mathematical model of the multy-body system is described. In Chap. 3,
features of a typical servicer are listed, the reaction forces and moments acting on the floating
base and the variations of the inertia matrix and the position of CoM of the whole system are
computed. Then, reference frames are defined and the orientation of a rigid body in space,
using Euler angles and quaternions representations, is presented. Thus, the general equations
of the attitude dynamics and the equations of relative motion in the target reference frame are
addressed.

In Part III, various control methods adopted for control system design are illustrated. Firstly
Proportional Integral Derivative control is described, then Linear Quadratic Regulator control
is treated and linearised attitude dynamics and relative position dynamics in state form are
derived. Lastly, an introduction to Reinforcement Learning, its main features and its application
are addressed.

In Part IV, simulation results are discussed. Chap. 5 is devoted to the presentation of the
Matlab/Simulink environment and to the definition of the URDF file, necessary for the robotic
model to be imported in the environment. In Chap. 6, design of the manipulator controllers are
illustrated and their performance compared. Chap. 7 deals with the design and the performance
of the position and attitude controllers, exploiting the LQR method, of the servicer.

In Part V, a typical mission scenario of an On Orbit Servicing mission is proposed. Chap. 8,
starting from the Concept of Operations, describes the several phases that characterize this kind
of missions and presents the performance of the designed model.

6

Part I

Manipulator Mathematical Model

7

Chapter 1

Kinematic Model

A manipulator can be schematically represented from a mechanical viewpoint as a kinematic
chain of rigid bodies (links) connected by means of revolute or prismatic joints. The whole
structure forms a kinematic chain: one end of the chain is constrained to a base, while an
end-effector, useful to accomplish the mission objective, is mounted to the other end. Thus
it is necessary to describe the end-effector position and orientation. This chapter deals with
the derivation of the kinematic model, exploiting Denavit-Hartenberg convention; this allows
to obtain the end-effector pose expressed as a function of the joint variables of the mechanical
structure with respect to a reference frame. The chapter than introduces the inverse kinematics
problem, which consists of the determination of the joint variables corresponding to a given
end-effector pose and the differential kinematics is presented which gives the relationship between
the joint velocities and the corresponding end-effector linear and angular velocity. At the end of
the chapter two examples are presented exploiting MATLAB Symbolic Toolbox.

1.1 Reference Frames

Figure 1.1: Denavit-Hartenberg kinematic parameters - Image from Robotics. Modelling, Planning
and Control. Springer, 2010.

8

CHAPTER 1. KINEMATIC MODEL

Consider an open-chain manipulator constituted by n+ 1 links connected by n joints, where
Link 0 is conventionally fixed to the ground. It is assumed that each joint provides the mechanical
structure with a single DoF, corresponding to the joint variable. In order to derive the direct
kinematics equation for an open-chain manipulator, it is necessary to determine two frames
attached to the two links and compute the coordinate transformations between them. It is
possible to define the relative position and orientation of two consecutive links of the manipulator
using an arbitrary frame attached to each link, but it’s helpful to use a convention for selecting
frame in robot applications. The Denavit-Hartenberg (DH) convention ([13]) let cut down the
needed parameters to characterize a transformation matrix from six to four.

With reference to Fig. 1.1 let’s define the Frame i:

• Choose axis zi along the axis of Joint i+ 1;

• Locate the origin Oi at the intersection of axis zi with the common normal to axes zi−1
and zi. Also, locateOiÍ at the intersection of the common normal with axis zi−1;

• Choose axis xi along the common normal to axes zi−1 and zi with direction from Joint i to
Joint i+ 1;

• Choose axis yi so as to complete a right-handed frame.

Now it’s possible to specify position and orientation of Frame i with respect to the Frame i− 1
by the use of the four quantities ai, di, αi, θi. The four parameters are generally given the name
link length, link offset, link twist and joint angle and defined as follow:

• ai distance between Oi and OiÍ ;

• di coordinate of OiÍ along zi−1;

• αi angle between axes zi−1 and zi about axis xi to be taken positive when rotation is made
counter-clockwise;

• θi angle between axes xi−1 and xi about axis zi−1 to be taken positive when rotation is
made counter-clockwise.

Three of the above four parameters are constant for a given link, while the fourth parameter, θi
for a revolute joint and di for a prismatic joint, is the joint variable.

At this point is possible to express the coordinate transformation between the Frame i and
the Frame i− 1 as

Ai−1
i = Rz,θi

Transz,di
Transx,aiRx,αi

=

cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 cαi −sαi 0 0
0 sαi cαi 0 0
0 0 0 1

=

cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

(1.1)

9

CHAPTER 1. KINEMATIC MODEL

1.2 Forward Kinematics

The mechanical structure of a manipulator is characterized by a number of DoFs, typically
associated with joint articulations, which determine its posture, that denotes the pose of all
rigid bodies composing the chain. The aim of forward kinematics is to compute the pose of the
end-effector as a function of the joint variables. For simplicity, in this work the end-effector is
considered as a part of the last link of the manipulator and it coincides with the origin of the
last joint-fixed reference frame.

Since each joint connects two consecutive links, it reasonable to obtain the overall description
of manipulator kinematics in a recursive way. Considering F0 the base frame and Fn the last
joint-fixed frame, the coordinate transformation describing the position and orientation of Fn

with respect to F0 is given by

T0
n = A0

1(q1)A1
2(q2) . . .An−1

n (qn) (1.2)

where Ai−1
i (qi) is the homogeneous transformation matrix from Fi to Fi−1, as derived in (1.1),

function of the joint variable qi.

1.3 Inverse Kinematics

The inverse kinematics problem consists of the determination of the manipulator posture corre-
sponding to a given end-effector position and orientation. It is more complex than the forward
kinematics for the following reasons:

• The equation to solve are, in general, non linear.

• Multiple solutions may exist.

• Infinite solutions may exist (redundant manipulator ([13])).

• There might be no admissible solutions, due to the manipulator structure.

Computation of closed-form solution requires algebraic or geometric intuition to find out
significant equation and points respectively. On the other hand it might be useful to exploit
numerical solution techniques that can be applicable to any kinematic structure, even if in general
they do not allow the computation of all admissible solutions.

1.4 Differential Kinematics

The goal of the differential kinematics is to find the relationship between the joint velocities
and the end-effector linear and angular velocities. In other words, it is desired to express the
end-effector linear and angular velocity as a function of the joint velocities. The relations are
both linear in the joint velocities

ṗe = Jv(q)q̇ (1.3)
ωe = Jω(q)q̇ (1.4)

10

CHAPTER 1. KINEMATIC MODEL

where Jv is the 3×n matrix relating the contribution of the joint velocities q̇ to the end-effector
linear velocity ṗe, while Jω is the 3×n matrix relating the contribution of the joint velocities q̇
to the end-effector angular velocity ωe. In compact form, (1.3), (1.4) can be written as

ve =
C
ṗe
ωe

D
= J(q)q̇ (1.5)

which represents the manipulator differential kinematics equation. The 6×n matrix J is the
manipulator geometric Jacobian

J =
C
Jv
Jω

D
(1.6)

which in general is a function of the joint variables. In order to compute the Jacobian, it is
convenient to proceed separately for the linear velocity and the angular velocity.

For the contribution to the linear velocity, the time derivative of pe(q) can be written as

ṗe =
nØ
i=1

∂pe
∂qi

q̇i =
nØ
i=1

Jviq̇i (1.7)

By distinguishing the case of a prismatic joint (qi = di)from the case of a revolute joint (qi = θi),
it is:

• for a prismatic joint
Jvi = zi−1

• for a revolute joint
Jvi = zi−1 × (pe − pi−1)

For the contribution to the angular velocity, it is

ωe =
nØ
i=1

ωi−1,i =
nØ
i=1

Jωiq̇i (1.8)

in detail:

• for a prismatic joint
Jωi = 0

• for a revolute joint
Jωi = zi−1

In summary, the Jacobian can be partitioned as

J =

Jv1 Jvn
. . .

Jω1 Jωn

 (1.9)

11

CHAPTER 1. KINEMATIC MODEL

Figure 1.2: Two-link planar manipulator reference frames

1.5 Case Study 1 - Two-link planar arm

A two-link planar arm (Fig.1.2) is selected. Let l1,l2 be the lengths of the links and θ1 and θ2 be
the joint variables. The joint axes z0 e z1 are normal to the page. The origin is chosen at the
point of intersection of the z0 axis with the page and the direction of the x0 axis is completely
arbitrary. Once the base frame is established, the frame O1x1y1z1 is fixed as shown by the DH
convention, where the origin O1 has been located at the intersection of z1 and the page. Final
frame O2x2y2z2 is fixed by choosing the origin O2 at the end of link 2 as shown.

Link parameters are shown in Table 1.1.

Link ai αi di θi

1 l1 0 0 θ∗1
2 l2 0 0 θ∗2

Table 1.1: Denavit-Hartenberg parameters for two-link planar arm

The A-matrices are derived from (1.1), with c1 = cos θ1, c2 = cos θ2, s1 = sin θ1, s2 = sin θ2,
c12 = cos(θ1 + θ2) and s12 = sin(θ1 + θ2), as

A0
1 =

c1 −s1 0 l1c1
s1 c1 0 l1s1
0 0 1 0
0 0 0 1

 (1.10)

A1
2 =

c2 −s2 0 l2c2
s2 c2 0 l2s2
0 0 1 0
0 0 0 1

 (1.11)

12

CHAPTER 1. KINEMATIC MODEL

and the transformation matrix as

T0
2 = A0

1A1
2 =

c12 −s12 0 l1c1 + l2c12
s12 c12 0 l1s1 + l2s12
0 0 1 0
0 0 0 1

 (1.12)

The first two elements of the last column of T0
2 are the x and y components of the origin O2 in

the base frame. In fact,

x0
2 = l1c1 + l2c12

y0
2 = l1s1 + l2s12

(1.13)

are the coordinates of the end-effector in the base frame. Rotational part of T0
2 gives the

orientation (R0
2) of the frame O2x2y2z2 relative to the base frame.

With the chosen coordinate frames, computation of the Jacobians (as previously described),
referred to CoMs of each link (c1, c2) and to the end-effector (ee), yields

Jc1 =

−1
2 l1s1 0

1
2 l1c1 0

0 0
0 0
0 0
1 0

(1.14)

Jc2 =

−(l1s1 + 1
2 l2s12) −1

2 l2s12
l1c1 + 1

2 l2c12
1
2 l2c12

0 0
0 0
0 0
1 1

(1.15)

Jee =

−(l1s1 + l2s12) −l2s12
l1c1 + l2c12 l2c12

0 0
0 0
0 0
1 1

(1.16)

1.6 Case Study 2 - Three-link planar arm

Consider the three-link planar arm in Fig. 1.3 where the reference frames are illustrated. Let
l1,l2, l3 be the lengths of the links. Since the revolute axes are all parallel it is convenient to
choice the xi directions along the direction of relative link; in this way all the parameters di are
null and the angles between the axes xi directly provide the joint variables. Link parameters are
shown in Table 1.2.

13

CHAPTER 1. KINEMATIC MODEL

Figure 1.3: Three-link planar arm reference frames

Link ai αi di θi

1 l1 0 0 θ∗1
2 l2 0 0 θ∗2
2 l3 0 0 θ∗3

Table 1.2: Denavit-Hartenberg parameters for three-link planar arm

The coordinate transformations A1
2 and A0

1 are the same of the first case study (1.10), (1.11).
The remaing coordinate transformation is derived from (1.1) and Tab. 1.2, with c3 = cos θ3 and
s3 = sin θ3, as

A2
3 =

c3 −s3 0 l3c3
s3 c3 0 l3s3
0 0 1 0
0 0 0 1

and the transformation matrix, c123 = cos(θ1 + θ2 + θ3) and s123 = sin(θ1 + θ2 + θ3), as

T0
3 = A0

1A1
2A2

3 =

c123 −s123 0 l1c1 + l2c12 + l3c123
s123 c123 0 l1s1 + l2s12 + l3s123

0 0 1 0
0 0 0 1

 (1.17)

The first two elements of the last column of T0
3 are the x and y components of the origin O3 in

the base frame. In fact,

x0
3 = l1c1 + l2c12 + l3c123

y0
3 = l1s1 + l2s12 + l3s123

(1.18)

are the coordinates of the end-effector in the base frame. Rotational part of T0
3 gives the

orientation (R0
3) of the frame O3x3y3z3 relative to the base frame.

14

CHAPTER 1. KINEMATIC MODEL

With the chosen coordinate frames, computation of the Jacobians, referred to CoMs of each
link (c1, c2, c3) and to the end-effector (ee), yields

Jc1 =

−1
2 l1s1 0 0

1
2 l1c1 0 0

0 0 0
0 0 0
0 0 0
1 0 0

(1.19)

Jc2 =

−(l1s1 + 1
2 l2s12) −1

2 l2s12 0
l1c1 + 1

2 l2c12
1
2 l2c12 0

0 0 0
0 0 0
0 0 0
1 1 0

(1.20)

Jc3 =

−(l1s1 + l2s12 + 1
2 l3s123) −(l2s12 + 1

2 l3s123) 1
2 l3s123

l1c1 + l2c12 + 1
2 l3c123 l2c12 + 1

2 l3c123
1
2 l3c123

0 0 0
0 0 0
0 0 0
1 1 1

(1.21)

Jee =

−(l1s1 + l2s12 + l3s123) −(l2s12 + l3s123) l3s123
l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

0 0 0
0 0 0
0 0 0
1 1 1

(1.22)

15

Chapter 2

Dynamic Equations

In order to simulate the motion, compute the forces and torques required for the execution and
thus design joints, transmissions, actuators and control algorithms, it is necessary to derive the
dynamic model of the manipulator. This chapter explains the method for derivation of the EoMs
of a manipulator based on Lagrange formulation. Then resulting EoMs, obtained with Matlab
Symbolic Toolbox, for the two manipulators already introduced are presented.

2.1 Lagrange Formulation

The dynamic model of a manipulator provides a description of the relationship between the joint
actuator torques and the motion of the structure.

Once the generalized coordinates (qi, i = 1 . . . n), that describe the link positions of an n-DOF
manipulator, are chosen, the Lagrangian of the mechanical system can be defined as a function
of the generalized coordinates:

L = T − U (2.1)
where T and U are the kinetic energy and the potential energy of the system.

Lagrange equations are expressed by

d

dt

∂L
∂q̇i

− ∂L
∂qi

= εi i = 1, . . . , n (2.2)

where Ôi is the generalized force associated with the generalized coordinate qi.
Equations (2.2) can be written in compact form as

d

dt

1∂L
∂q̇

2T
−

1∂L
∂q

2T
= ε (2.3)

where, for a manipulator with an open kinematic chain, the generalized coordinates are gathered
in the vector of joint variables q. The contributions to the generalized forces are given by the non
conservative forces, i.e., the joint actuator torques, the joint friction torques, as well as the joint
torques induced by end-effector forces at the contact with the environment. For our purpose
only the joint actuator torques (τi) are considered, thus

ε =
nØ
i=1

τi (2.4)

16

CHAPTER 2. DYNAMIC EQUATIONS

The kinetic energy of the system is given by

T =
nØ
i=1

11
2mivTi vi + 1

2ω
T
i Iiωi

2
(2.5)

where linear velocity vi and angular velocity ωi can be expressed as a function of the generalized
coordinates, as described in (1.5). Notice that the position of Linki depends on the manipulator
configuration and thus the inertia tensor, when expressed in the base frame (Ii), is configuration-
dependent. It is easy to verify the following relation:

Ii = R0
i Ii,l

!
R0
i

"T (2.6)

where R0
i is the rotation matrix from Linki frame to the base frame. Taking into account last

considerations, the 2.5 becomes

T =
nØ
i=1

11
2miq̇TJTv Jvq̇ + 1

2 q̇TJTωR0
i Ii,l

!
R0
i

"TJωq̇
2

(2.7)

As done for kinetic energy, the potential energy stored in the manipulator is given by the
sum of the contributions relative to each link. However, since the manipulator is designed to
operate in an environment characterized by microgravity, it is worth to assume

U = 0 (2.8)

Having computed the total kinetic and assumed null the potential energy of the system as in
(2.7), (2.8) and taking the derivatives required by Lagrange equations in (2.3), the EoMs for the
manipulator can be written as

M(q, q̇)q̈ + C(q, q̇) = ε (2.9)

2.2 Case Study 1 - Two-link planar arm

Consider the two-link planar arm in Fig. 2.1, for which the vector of generalized coordinates is
q = [θ1, θ2]T . Let l1, l2 be the lengths of the two links. Also let m1, m2 be the masses of the
two links and I1, I2 the diagonal inertia matrices in the CoM-centered frame of the two links,
respectively:

Ii =

Iixx 0 0
0 Iiyy 0
0 0 Iizz

 (2.10)

EoMs are obtained in the form

EoM1 = M11(q)q̈1 +M12(q)q̈2 + C1(q, q̇) − τ1 (2.11)
EoM2 = M21(q)q̈1 +M22(q)q̈2 + C2(q, q̇) − τ2 (2.12)

17

CHAPTER 2. DYNAMIC EQUATIONS

Figure 2.1: Two-link planar arm

where

M11 =I1zz + I2zz + (l21m1)/4 + l21m2 + (l22m2)/4 + l1l2m2 cos(q2)
M12 =I2zz + (l22m2)/2 + l1l2m2 cos(q2)
M21 =I2zz + (l22m2)/2 + l1l2m2 cos(q2)
M22 =I2zz + l22m2

C1 = − l1l2m2 sin(q2)q̇2(q̇1 + q̇2)
C2 =(−l1l2m2 sin(q2)q̇2

1)/2

2.3 Case Study 2 - Three-link planar arm

Figure 2.2: Three-link planar arm

Consider the three-link planar arm in Fig. 2.2, for which the vector of generalized coordinates
is q = [θ1, θ2, θ3]T . As for the Case Study 1, let l1, l2, l3 be the lengths of the three links. Also let

18

CHAPTER 2. DYNAMIC EQUATIONS

m1, m2, m3 be the masses of the three links and I1, I2, I3 the diagonal inertia matrices relative
to the CoMs of the three links, respectively (as defined in 2.10), EoMs are obtained in the form

EOM1 = M11(q)q̈1 +M12(q)q̈2 +M13(q)q̈3 + C1(q, q̇) − τ1 (2.13)
EOM2 = M21(q)q̈1 +M22(q)q̈2 +M23(q)q̈3 + C2(q, q̇) − τ2 (2.14)
EOM3 = M31(q)q̈1 +M32(q)q̈2 +M33(q)q̈3 + C3(q, q̇) − τ3 (2.15)

where

M11 =I1zz + I2zz + I3zz + (l21m1)/4 + l21m2 + l21m3 + (l22m2)/4 + l22m3 + (l23m3)/4
+ l1l3m3 cos(q2 + q3) + l1l2m2 cos(q2) + 2l1l2m3 cos(q2) + l2l3m3 cos(q3)

M12 =I2zz + I3zz + (l22m2)/4 + l22m3 + (l23m3)/4 + (l1l3m3 cos(q2 + q3))/2
+ (l1l2m2 cos(q2))/2 + l1l2m3 cos(q2) + l2l3m3 cos(q3)

M13 =I3zz + (l23m3)/4 + (l1l3m3 cos(q2 + q3))/2 + (l2l3m3 cos(q3))/2
M21 =I2zz + I3zz + (l22m2)/4 + l22m3 + (l23m3)/4 + (l1l3m3 cos(q2 + q3))/2

+ (l1l2m2 cos(q2))/2 + l1l2m3 cos(q2) + l2l3m3 cos(q3)
M22 =I2zz + I3zz + (l22m2)/4 + l22m3 + (l23m3)/4 + l2l3m3 cos(q3)
M23 =I3zz + (m3l

2
3)/4 + (l2m3 cos(q3)l3)/2

M31 =I3zz + (l23m3)/4 + (l1l3m3 cos(q2 + q3))/2 + (l2l3m3 cos(q3))/2
M32 =I3zz + (m3l

2
3)/4 + (l2m3 cos(q3)l3)/2

M33 =I3zz + (m3l
2
3)/4

C1 = − (l1l3m3q̇
2
2 sin(q2 + q3))/2 − (l1l3m3q̇

2
3 sin(q2 + q3))/2 − (l1l2m2q̇

2
2 sin(q2))/2

− l1l2m3q̇
2
2 sin(q2) − (l2l3m3q̇

2
3 sin(q3))/2 − l1l3m3q̇1q̇2 sin(q2 + q3)

− l1l3m3q̇1q̇3 sin(q2 + q3) − l1l3m3q̇2q̇3 sin(q2 + q3) − l1l2m2q̇1q̇2 sin(q2)
− 2l1l2m3q̇1q̇2 sin(q2) − l2l3m3q̇1q̇3 sin(q3) − l2l3m3q̇2q̇3 sin(q3)

C2 =(l1l3m3q̇
2
1 sin(q2 + q3))/2 + (l1l2m2q̇

2
1 sin(q2))/2 + l1l2m3 ∗ q̇2

1 sin(q2)
− (l2l3m3q̇

2
3 sin(q3))/2 − l2l3m3q̇1q̇3 sin(q3) − l2l3m3q̇2q̇3 sin(q3)

C3 =(l3m3(l1q̇2
1 sin(q2 + q3) + l2q̇

2
1 sin(q3) + l2q̇

2
2 sin(q3) + 2l2q̇1q̇2 sin(q3)))/2

19

Part II

Multi-Body Mathematical Model

20

Chapter 3

Multi-Body Model Overview

The robotic arm, modeled in previous chapter, is mounted on the satellite, constituting the
servicer. As already introduced, the motion of the manipulator generates reaction forces and
moments on the spacecraft (and vice-versa) at the mounting point and this affects position and
attitude of the spacecraft itself. It is worth to assume that the base-satellite is controlled (as it
will be shown in Part IV) and thus the reaction forces and moments affecting the manipulator
dynamics, due the motion of the satellite, are neglected. In this chapter geometrical features of
the servicer are described, reaction forces and moments acting on the floating base and variations
of the inertia matrix of the whole system are computed. It also deals with the definition of the
reference frames adopted and the ways to represent the orientation of a rigid body in space using
Euler angles and quaternions representations. Lastly, some details required for the derivation of
the general equations of the relative motion for circular orbit and of the attitude dynamics are
provided.

3.1 Geometrical and inertial features

Figure 3.1: Multi-body reference frames

The configuration of the servicer consists of a base and a robotic arm characterized by the
number of links and the type of joints. For the sake of simplicity the base is represented by a
parallelogram with the CoMB fixed in the geometrical center of the prismatic shape where it is

21

CHAPTER 3. MULTI-BODY MODEL OVERVIEW

located the body reference frame(FB) and the joints of the manipulator are all revolute ones.
The first step is to define the reference frames to obtain the effects of the motion of the robotic
arm with respect to the CoMB . The joint-fixed reference frames related to the manipulator have
been already introduced in Chap. 1, using the DH convention. The frame F0, called base frame,
is located at the mounting point where the forces exchange between the two bodies take place
and its position in FB can be expressed as

r0 =

xByB
zB

 (3.1)

The links are considered as homogeneous ones, thus the CoMi of each link is located in the
middle of it and the link-fixed reference frames centered in the CoMi are oriented the same way
the previous joint-fixed is. Thus, it is possible to define the inertia matrix of the whole system,
in FB as

I = I0 +
nØ
i=1

Ii (3.2)

where I0 and Ii are the inertia matrices of the base satellite and of the i-th link in FB , respectively.
The latter can be derived as

Ii = (RB
i)TJiRB

i −mir×cir
×
ci (3.3)

where mi is the mass of the i-th link, RB
i is the rotation matrix from the i-th joint-fixed frame

to FB, Ji is the inertia matrix of i-th link in the local link-fixed frame and rci is the position of
the CoMi in FB.

3.2 Reaction forces and moments computation

Figure 3.2: Reaction forces scheme

Actually, the mounting point behaves as an hinge support that allows rotation about any
axis (z as suggested by DH convention) but prevents movement in the horizontal and vertical
directions. Considering a planar arm, as seen in the previous chapters, mounted along the vertical
symmetry axis of the base, this yields to the generation of reaction forces F0 = [F 0

x , F
0
y , 0]T in

base frame F0, as shown in Fig. 3.2:

F 0
x =

nØ
i=1

F 0
i,x F 0

z =
nØ
i=1

F 0
i,z (3.4)

22

CHAPTER 3. MULTI-BODY MODEL OVERVIEW

where F 0
i,x and F 0

i,z are the components of the forces in F0 each CoM is subjected to. Since
F = ma, it is necessary to multiply the mass of each joint by its acceleration, which can be
obtained by deriving the speed; the latter can be obtained as already shown in (1.5). Then,
reaction forces with respect to F0 are obtained by adding the contributions of each link.

Figure 3.3: Reaction forces translation

These forces correspond to the disturbances affecting the base satellite. Since the mounting
point is distant r0 from the CoMB, it is necessary to translate and rotate the reaction forces
with reference to FB:

FB = RB
0 F0 (3.5)

where RB
0 is the rotation matrix from F0 to FB. Thus, a reaction moment is expected as depicted

in Fig. 3.3
MB = r0 × FB (3.6)

3.3 Reference Frames

The purpose of this section is to describe the coordinate frame used in this thesis for the
description of the attitude and the relative motion. Each frame Fi is defined by its origin Oi and
a set of three orthogonal vectors a1, a2, a3.

3.3.1 LVLH Frame FLV LH

Local Vertical Local Horizontal coordinate frame is used to describe motions w.r.t. the moving
position and direction towards the center of the Earth of an orbiting body.

Referring to the Fig. 3.4, we have:

• the origin coincides with the CoM of the spacecraft;

• axis a1 is in the direction of the orbital velocity vector and it is called Vbar;

• axis a2 is in the opposite direction of the angular momentum vector of the orbit and it is
called Hbar;

• axis a3 is radial from the spacecraft CoM to the center of the Earth and it is called Rbar

23

CHAPTER 3. MULTI-BODY MODEL OVERVIEW

Figure 3.4: Spacecraft LVLH frame representation

3.3.2 Spacecraft body Frame FB

The spacecraft attitude frame is used to describe all rotations of a body in space and it is fixed to
the nominal CoM of the satellite. The axis a1 points in the direction of the orbital velocity vector,
while axis a2 is often aligned with the positive or negative direction of the angular momentum
vector of the orbit. Referring to the Fig. 3.5, the features of the body frame are:

Figure 3.5: Spacecraft body frame representation

• Oi coincides with the CoM of the spacecraft;

• a1, a2, a3 directions depend on the mission purposes and a3 = a1 × a2 forming a right
handed system.

The coordinate transformation LBLV LH from the LVLH frame (FLV LH) to the spacecraft
body frame (FB) is obtained by a rotation of the frame by the attitude angles αz (azimuth), αy

24

CHAPTER 3. MULTI-BODY MODEL OVERVIEW

(elevation) and αx (roll):xByB
zB

 =

1 0 0
0 cαx sαx
0 −sαx cαx

−sαy 0 cαy

0 1 0
cαy 0 sαy

 cαz sαz 0

−sαz cαz 0
0 0 1

xLV LHyLV LH
zLV LH

 (3.7)

3.4 Euler’s Angles

It is possible to use rotation matrix to describe the attitude of the spacecraft through the unit
vectors êi of the body frame attached to it. This approach gives a redundant description of frame
orientation; in fact, it is characterized by nine elements which are not independent but related
by six constraints due to the orthogonality conditions. This implies that three parameters are
sufficient to describe orientation of a rigid body in space.

One of the set of three parameters most widely used to describe the attitude of a rigid body
w.r.t. a fixed frame are the Euler’s angles, a sequence of three rotation (φ, θ, ψ). The original
sequence of rotations proposed by Euler is the sequences 3-1-3:

• Rotate the reference frame by the angle ψ (precession angle) about axis z;

• Rotate the current frame by the angle θ (nutation angle) about axis x’;

• Rotate the current frame by the angle φ (spin angle) about axis z”.

Figure 3.6: Bryant’s rotation sequence

Many other sequences are available and equally useful. In atmospheric flight mechanics the
most widely used sequence of rotations is the3–2–1, also known as the Bryant’s angles:

• Rotate the reference frame by the angle ψ (yaw angle) about axis z;

• Rotate the current frame by the angle θ (pitch angle) about axis y’;

• Rotate the current frame by the angle φ (roll angle) about axis x”.
This set of angles is used also in space flight dynamics, to describe the attitude of a spacecraft
with respect to the LVLH Frame.

There is a problem with the representation of rotations in a three dimensional space, that is
the singularity of all the descriptions in terms of three parameters. This means that there will
always be positions of the two frames that can be described in different ways, once a particular
sequence of rotations is chosen.

25

CHAPTER 3. MULTI-BODY MODEL OVERVIEW

3.5 Quaternions

Unit quaternions (Euler parameters) are mostly used as attitude parameterizations to overcome
the singularity problems. Euler’s theorem states that the most general motion of a rigid body
with one point fixed is a rotation about an axis through that point ([15]). The elements of unit
quaternions can be expressed in terms of the principal eigenvector ê = {e1, e2, e3}T and the
rotation angle α as follows:

q0 = cos(α/2)
q1 = e1 sin(α/2)
q2 = e2 sin(α/2)
q3 = e3 sin(α/2)

(3.8)

where q0 is called the scalar part of the quaternion while q = {q1, q2, q3}T is called the vector
part of the quaternion. They are constrained by the condition

q2
0 + q2

1 + q2
2 + q3

3 = 1 (3.9)

hence, the name unit quaternion. The advantage of using quaternions is that the expression for
the rotation matrix from a fixed frame FI onto any arbitrary frame FB is purely algebraic (it
contains no trigonometric functions):

LBI = (q2
0 − q · q)I + 2qqT − 2q0q× (3.10)

where the × indicates the cross product matrix equivalent

q× =

 0 −q3 q2
q3 0 −q1

−q2 q1 0

 (3.11)

The quaternion error (qerr), that is the magnitude of the angular displacement between the
current attitude (qtrue) and the desired one (qdes), must be computed by using the quaternion
product:

qerr = q−1
des ⊗ qtrue (3.12)

where the quaternion product can be expressed as

p = q ⊗ r =

p0
p1
p2
p3

 =

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 ·

r0
r1
r2
r3

 (3.13)

The evolution of the quaternions is described by the set of linear differential equations,
represented in matrix form as

q̇0
q̇1
q̇2
q̇3

 = 1
2

0 −ω1 −ω2 −ω3
ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0

 (3.14)

26

CHAPTER 3. MULTI-BODY MODEL OVERVIEW

and the equivalent form is given by

q̇0 = 1
2ω · q

q̇ = 1
2(q0ω − ω × q)

(3.15)

3.6 Relative Motion Dynamics

The objective is to represent the chaser motion with respect to the target local orbital frame
(FLV LH), which has its origin in the CoM of the target spacecraft.

The general assumption for the derivation of the equations of motion is that the motion
of a body subject to the effects of a central spherical gravity field and to forces from thruster
actuation or disturbances ([15]). The relative position between chaser and target is denoted by

s = rc − rt (3.16)

where rc and rt are position vectors in inertial space of chaser and target, considered as point
masses, respectively.

The general equation for motion under the influence of a central force is Newton’s law of
gravitation:

Fg(r) = −GMm

r2
r

r
= −µm

r3 r (3.17)

where Fg is the gravitational force, G is the universal gravitational constant, M is the mass of
the central body (Earth), m is the second mass (spacecraft), r is the radius vector and µ is the
product GM . From (3.17) it’s possible to define the target motion

Fg(rt) = mtr̈t = −µmt

r3
t

rt

fg(rt) = r̈t = −µ rt
r3
t

(3.18)

and the chaser motion

mcr̈c = Fg(rc) + F = −µmc

r3
c

rc + F

r̈t = fg(rc) + F

mc
= −µrc

r3
c

+ F

mc
(3.19)

The relative motion is defined from (3.16) as

s̈ = r̈c − r̈t (3.20)

thus, by substituting (3.18) and (3.19) in (3.20), one obtains

s̈ = fg(rc) − fg(rt) + F

mc
(3.21)

After the linearization of fg(rc) around the vector rt by means of a Taylor expansion to first
order

fg(rc) = fg(rt) + dfg(r)
dr

r=rt

(rc − rt) (3.22)

27

CHAPTER 3. MULTI-BODY MODEL OVERVIEW

the (3.21) becomes
s̈ = − µ

r3
t

Ms+ F

mc
(3.23)

where

M =

1 − 3 r

2
x

r2
t

3 rxry

r2
t

3 rxrz

r2
t

3 ryrz

r2
t

1 − 3 r
2
y

r2
t

3 ryrz

r2
t

3 rzrx

r2
t

3 rzry

r2
t

1 − 3 r
2
z

r2
t

 (3.24)

Now, starting from a general kinematic equation for translation and rotating systems and taking
into account (3.23), it is possible to obtain the chaser acceleration in the rotating frame as

d∗2s∗

dt2
+ ω × (ω × s∗) + 2ω × d∗s∗

dt
+ dω

dt
× s∗ + µ

r3
t

Ms∗ = F
mc

(3.25)

where the starred frame (*) is rotating with the orbital rate ω. By expressing rt and ω in the
target frame

rt =

 0
0

−r

 and ω =

 0
−ω
0

the terms of (3.25) become

ω × s∗ =

−ωz
0
ωx

ω × (ω × s∗) =

−ω2x
0

−ω2z

ω × d∗s∗

dt
=

−ωż
0
ωẋ

dω

dt
× s∗ =

−ω̇z
0
ω̇x

Ms∗ =

1 0 0
0 1 0
0 0 −2

 s∗ =

 x
y

−2z

For the special case of circular orbits the angular rate ω is constant and it can be expressed as

ω2 = µ

r3
t

(3.26)

28

CHAPTER 3. MULTI-BODY MODEL OVERVIEW

By substituting (3.26) and the terms just obtained in (3.25), the general linear equations for the
relative motion, known as Hill’s equations, are derived as

ẍ− 2ωż = 1
mc

Fx

ÿ + ω2y = 1
mc

Fy

z̈ + 2ωẋ− 3ω2z = 1
mc

Fz

(3.27)

It is worth to resume the assumptions that bring to the validity of (3.27):

• Only circular orbits are analyzed.

• The distance between the chaser and the target is lower than the orbital radius.

• The position of the chaser is expressed in the local orbital frame (FLV LH) centered in the
CoM of the target.

• The target moves under the influence of a central gravity field only.

3.7 Attitude Dynamics

The total angular momentum of a spacecraft with Reaction Wheels (RW) is:

HB = IωB + hRW (3.28)

where I is the inertia matrix of the satellite, ωB is the angular velocity of satellite in body frame
and hRW is the angular momentum of the RW, which can be expressed in body frame as

hRW = LIRWωRW (3.29)

where IRW is the n× n RW diagonal inertia matrix, L is the 3 × n RW distribution matrix and
ωRW is the angular speed of the wheels with n the total number of RW.

The second fundamental law of rigid body dynamics states that the time derivative of the
angular momentum is equal to the total external torque applied to the body:

dh
dt

= MB (3.30)

where the total moment acting on the spacecraft includes the external disturbances (Td) and the
moment due to thrusters (Mthr):

MB = Mthr + Td (3.31)
Expressing the vector quantities in body axis component one gets

ḣB + ωB × hB = MB (3.32)

Assuming that moments due to thrusters are negligible and the general case where the inertia
matrix I is not constant over time, it is possible to derive the Euler equations from (3.32) as

ω̇B = I−1(−ωB × (IωB + LIRWωRW) − ωB İ − ḣRW + Td) (3.33)

29

CHAPTER 3. MULTI-BODY MODEL OVERVIEW

Figure 3.7: Standard orthogonal 3-wheel configuration

Since the RW work on the principle of momentum exchange, the angular momentum produced
by RW is transferred to the satellite with opposite sign

ḣRW = −Tc (3.34)

where Tc is the command torque, which is determined by the controllers. Moreover, L uniquely
depends on RW configuration and consists of n columns corresponding to n RW. Each column
vector represents the distribution of the RW torques on to the axes of rotation of the satellite.
For the purposes of this work the standard orthogonal 3-wheel configuration (Fig. 3.7) is adopted,
thus L is a 3×3 identity matrix:

L =

1 0 0
0 1 0
0 0 1

 (3.35)

By substituting (3.34) and (3.35) into (3.33), the following attitude dynamics equation can be
found

ω̇B = I−1(−ωB × (IωB + IRWωRW) − ωB İ + Tc + Td) (3.36)

30

Part III

Control System Design

31

Chapter 4

Introduction to implemented control
methods

This chapter presents various control methods adpoted for control system design. Classical
Proportional Integral Derivative control is described, then mathematical properties of Linear
Quadratic Regulator control are proposed. Lastly, a brief overview of Reinforcement Learning
theory and its implementation are addressed.

4.1 PID Control

The Proportional Integrative Derivative (PID) controller is a control loop mechanism based on a
feedback architecture that continuously calculate the signal error e(t) as the difference between
the desired (sd) and the current (s) state and applies a correction based on appropriate gains.
This correction modifies the control action u(t) that attempts to minimize e(t) in order to restore
the desired state.

Starting from a proportional controller, in the form

u(t) = KP e(t) (4.1)

it is useful to decrease the steady state error of the system but can never manage to eliminate it.
In fact, applying a higher KP decreases the rise time and after a certain value of reduction on
the steady state error, this only leads to overshoot of the system response and causes oscillations.

To overcome partially the problems derived from the proportional controller, the integrative
gain is added:

u(t) = KI

Ú t

0
e(τ)dτ (4.2)

It is mainly used to eliminate the steady state error resulting from the proportional controller,
but it has a negative impact on the speed of response and overall stability of the system.

Finally, a derivative gain can be added:

u(t) = KD
de(t)
dt

(4.3)

Its contribution is to increase the stability of the system since it has the ability to predict the
future error of the system response preventing sudden changes in the error signal.

32

CHAPTER 4. INTRODUCTION TO IMPLEMENTED CONTROL METHODS

Rise Time Overshoot Settling Time SS Error Stability
KP ↑ decrease increase small increase decrease degrade
KI ↑ small decrease increase increase large decrease degrade
KD ↑ small decrease decrease decrease minor change improve

Table 4.1: Effects of KP , KI and KD on a closed-loop system

The sum of the three terms is a linear combination of the signal error, its integral and its
derivative over time, leading to the PID controller formulation in the time domain:

u(t) = KP e(t) +KI

Ú t

0
e(τ)dτ +KD

de(t)
dt

(4.4)

where KP , KI and KD, all non-negative, denote the coefficients for proportional, integrative and
derivative terms respectively.

In order to obtain the desired control response it is necessary to tune the parameters to their
optimum values. Manual tuning is achieved by arranging the parameters according to the system
response taking into account the effects of each controller on a closed-loop system (Table 4.1).
Although this method seems simple it requires a lot of time and experience.

Ziegler–Nichols method is one of the most effective methods that increase the usage of PID
controllers. Firstly it is checked if desired proportional control gain is positive or negative. Then,
KI and KD are set to zero and only KP value is increased until it crates a periodic oscillation
at the output response. This critical KP value is attained to be the ”ultimate gain” KC and
the period where the oscillation occurs is named ”ultimate period” PC . As a result, the whole
process depends on two variables and the other control parameters are computed according to
the Table 4.2.

Control type KP KI KD

P 0.50KC 0 0
PI 0.45KC 1.2KP

dT
PC

0
PID 0.60KC 2KP

dT
PC

KP
PC
8dT

Table 4.2: Ziegler–Nichols PID Controller tuning method

4.2 LQR Control

To apply the LQR technique the system equations are linearized about the equilibrium con-
figuration. To implement this technique the linear equations are written in the state form
as:

ẋ = Ax + Bu (4.5)
For a continuous time system, the state-feedback law u = –Kx minimizes the quadratic cost
function

J(u) =
Ú ∞

0
xT (τ)Qx(τ) + uT (τ)Ru(τ)dτ (4.6)

33

CHAPTER 4. INTRODUCTION TO IMPLEMENTED CONTROL METHODS

It can be shown that the optimal feedback law is given by

K = −R−1BTP (4.7)

where P, positive definite matrix, is the solution of the Algebraic Riccati Equation (ARE)

ATP + PA − PBR−1BTP = −Q (4.8)

where Q and R are symmetric, positive definite and semi-positive matrices respectively defined
as state and control weighting matrices. A typical choice for Q and R, introduced in [17], leads
to

Q =

q1

q2
. . .

qn

 R = ρ

r1

r2
. . .

rn

 (4.9)

with
qi = 1

tsi(ximax)2 , qi = 1
(uimax)2 and ρ > 0

where tsi is the desired settling time of xi, ximax is a constraint on |xi|, uimax is a constraint on
actuation magnitude |ui| and ρ is chosen to trade off regulation versus control effort.

4.2.1 Linearized attitude dynamics

Nonlinear spacecraft kinematics equations of motion (3.36) can be replaced by a set of independent
nonlinear spacecraft kinematics equations of motion that leads to a controllable linearized
quaternion model.

Lemma 1 [9]: For any given q, if α Ó= π, there exists a one-to-one mapping between ω and q̇.
Moreover, let

f(q) =
ñ

1 − q2
1 − q2

2 − q2
3 (4.10)

and

Ω =

f(q) −q3 q2
q3 f(q) −q1

−q2 q1 f(q)

 (4.11)

then, the one-to-one mapping is given by

ω = 2Ω−1q̇ (4.12)

Therefore, (l’equazione della cinematica) can be replaced byq̇1
q̇2
q̇3

 = 1
2

f(q) −q3 q2
q3 f(q) −q1

−q2 q1 f(q)

ω1
ω2
ω3

 (4.13)

Therefore C
ω̇
q̇

D
=

C
03 03
1
213 03

D C
ω
q

D
+

C
J−1

03

D
u = Ax + Bu (4.14)

34

CHAPTER 4. INTRODUCTION TO IMPLEMENTED CONTROL METHODS

with
A =

C
03 03
1
213 03

D
, x =

C
ω
q

D
and B =

C
I−1

03

D
(4.15)

where 13 is the 3×3 identity matrix and I−1 the 3×3 inverse inertia matrix. By considering the
non constant inertia matrix and external disturbances affecting the spacecraft attitude, (4.14)
becomes

u = Ax + Bu + BdTd (4.16)
with

A =
C
I−1İ 03
1
213 03

D
, Bd =

C
I−1

03

D
and Td =

TxTy
Tz

 (4.17)

where Td is the vector of external disturbances in FB.

4.2.2 Relative position dynamics in state space form

For control purpose it is convenient to represent Hill’s equations, introduced in (3.27), in state
space form:

ẋ
ẏ
ż
ẍ
ÿ
z̈

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2ω
0 −ω2 0 0 0 0
0 0 3ω2 −2ω 0 0

x
y
z
ẋ
ẏ
ż

+

0 0 0
0 0 0
0 0 0
1
mc

0 0
0 1

mc
0

0 0 1
mc

u = Ax + Bu (4.18)

with

A =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2ω
0 −ω2 0 0 0 0
0 0 3ω2 −2ω 0 0

, x =

x
y
z
ẋ
ẏ
ż

and B =

0 0 0
0 0 0
0 0 0
1
mc

0 0
0 1

mc
0

0 0 1
mc

(4.19)

where ω is the angular rate for the case of circular orbits and mc is the mass of the chaser vehicle
(servicer). By considering external disturbances affecting the spacecraft position, (4.18) becomes

u = Ax + Bu + BdFd (4.20)

with

Bd =

0 0 0
0 0 0
0 0 0
1
mc

0 0
0 1

mc
0

0 0 1
mc

Fd =

FxFy
Fz

 (4.21)

where Fd is the vector of external disturbances in FLV LH .

35

CHAPTER 4. INTRODUCTION TO IMPLEMENTED CONTROL METHODS

4.3 RL Control

Figure 4.1: RL scheme

The goal of reinforcement learning is to train an agent to complete a task within an unknown
environment. The agent receives observations and rewards from the environment and sends
actions to the environment. The reward is a measure of how successful an action is with respect
to completing the task goal. In other words, reinforcement learning involves an agent learning
the optimal behavior through repeated trial-and-error interactions with the environment without
human involvement.

The behavior of a reinforcement learning policy, that is how the policy observes the en-
vironment and generates actions to complete a task in an optimal manner, is similar to the
operation of a controller in a control system. RL operates directly on measured data and rewards
from interaction with the environment. It has placed great focus on addressing cases which are
analytically intractable using approximations and data-driven techniques.

4.3.1 Artificial Neural Networks and agent definition

Neural networks, on which RL is based, consist of many simple processing nodes that are
interconnected and based on how a human brain works. Though not as efficient, they perform
in roughly similar ways. The brain learns from what it experiences, and so do these systems.
An artificial neural network uses a collection of connected nodes called artificial neurons. A

Figure 4.2: Single-input neuron scheme

36

CHAPTER 4. INTRODUCTION TO IMPLEMENTED CONTROL METHODS

single-input neuron is the fundamental building block for neural networks. There are three
processes that take place in a neuron as in Fig. 4.2.

• Weight function, the scalar input p is multiplied by the scalar weight w to form the product
wp, again a scalar.

• Net input function, the weighted input wp is added to the scalar bias b to form the net
input n.

• Transfer function, which produces scalar output a from the net input.

The terms w and b are both adjustable scalar parameters of the neuron. The central idea of
neural networks is that such parameters can be adjusted so that the network exhibits some
desired or interesting behavior.

Figure 4.3: Single layer Neural Network scheme

Two or more neurons can be combined in a layer, and a particular network could contain one
or more such layers. By considering one-layer network with R input elements and S neurons as
in Fig. (4.2), each element of the input vector p is connected to each neuron input through the
weight matrix W:

W =

w1,1 w1,2 . . . w1,R
w2,1 w2,2 . . . w2,R

...
...

...
...

wS,1 wS,2 . . . wS,R

 (4.22)

where the row indices indicate the destination neuron of the weight and the column indices
indicate which source is the input for that weight. The i-th neuron has a summer that gathers
its weighted inputs and bias to form its own scalar output n(i). The various n(i) taken together
form an S-element net input vector n. Finally, the neuron layer outputs form a column vector a.
It is common for the number of inputs to a layer to be different from the number of neurons: a
layer is not constrained to have the number of its inputs equal to the number of its neurons.

37

CHAPTER 4. INTRODUCTION TO IMPLEMENTED CONTROL METHODS

Figure 4.4: Neural Network scheme

As already said, a network can have several layers. Each layer has a weight matrix W , a bias
vector b, and an output vector a. The network shown above has R1 inputs, S1 neurons in the
first layer, S2 neurons in the second layer, and so on and it is common for different layers to have
different numbers of neurons. Layers of a multi-layer network play different roles:

• The output layer is a layer that produces the network output.

• The hidden layer is a layer between the input and the output layer.

An artificial neural network processes information in two ways; when it is being trained it is
in ”learning mode” and when it puts what it has learned into practice it is in ”operating mode”.
For neural networks to learn, they must be told when they do something right or wrong. This
feedback process is often called backpropagation and allows the network to modify its behavior so
that the output is exactly as intended. In other words, it is trained with many learning examples
and eventually learns how to reach the correct output every time, even when it is presented with
a new range or set of inputs.

An agent, key element for RL, contains two components:

• a policy that selects actions based on the observations from the environment. Typically, the
policy is a function approximator with tunable parameters, such as a deep neural network.

• a learning algorithm that continuously updates the policy parameters based on the actions,
observations, and reward. The goal of the learning algorithm is to find an optimal policy
that maximizes the cumulative reward received during the task.

Depending on the learning algorithm, an agent maintains one or more parameterized function
approximators for training the policy. Approximators can be used in two ways:

• Critic, for a given observation and action, returns as output the expected value of the
cumulative long-term reward for the task.

• Actor, for a given observation, returns as output the action that maximizes the expected
cumulative long-term reward.

Agents that use both an actor and a critic are referred to as actor-critic agents. In these agents,
during training, the actor learns the best action to take using feedback from the critic (instead

38

CHAPTER 4. INTRODUCTION TO IMPLEMENTED CONTROL METHODS

Figure 4.5: SAC agent scheme

of using the reward directly). At the same time, the critic learns the value function from the
rewards so that it can properly criticize the actor. In general, these agents can handle both
discrete and continuous action spaces.

For this reason Soft Actor Critic (SAC) agent is selected for the training. It is an actor-critic
RL method with the following key features:

• model free, because the agent uses experience to learn the policy or value function directly
without using a model of the environment.

• online, because the agent has the ability to interact with the environment and collect
additional transitions using the behavior policy.

• off-policy, because the updated policy is different from the behavior policy and the algorithm
can reuse data collected for another task (good at predicting movement in robotics).

The SAC algorithm computes an optimal policy that maximizes both the long-term expected
reward and the entropy of the policy, that is a measure of policy uncertainty given the state.
A higher entropy value promotes more exploration. A high level scheme of SAC algorithm
is presented in Fig. 4.5. The experience buffer is used to store experiences from the agent
environment interactions and the agent learns by using sample data from this buffer. As already
said, the learning algorithm for this agent follows the actor-critic approach with one actor and
two critics, each of which are represented by neural networks. The actor, starting from the
observations deriving from the environment, selects the actions based on a mean and variance
outputs form the network, that define the stochastic policy of the actor used to compute the
agent’s action. During training the weights of the actor network are updated by a trade-off
between the expected reward and the entropy of the policy. The algorithm uses multiple critics
to reduce overestimation of the Q-function ([11]). Critics criticize the actions whether they’re
good or bad and their weights are also updated periodically.

Training an agent using reinforcement learning is an iterative process and the general workflow
for the training includes the following steps:

39

CHAPTER 4. INTRODUCTION TO IMPLEMENTED CONTROL METHODS

1. Formulate the problem, defining the tasks for the agent to learn, including how the agent
interacts with the environment and any primary and secondary goals the agent must
achieve.

2. Create the environment within which the agent operates, including the interface between
agent and environment and the environment dynamic model.

3. Define reward signal that the agent uses to measure its performance against the task goals
and how this signal is calculated from the environment.

4. Create the agent, which includes defining a policy representation and configuring the agent
learning algorithm.

5. Train the agent policy representation using the defined environment, reward and agent
learning algorithm.

6. Evaluate the performance of the trained agent by simulating the agent and environment
together.

7. Deploy the trained policy representation.

40

Part IV

Simulation Results

41

Chapter 5

Simulation Environment

In order to validate the behavior of the controllers designed for the manipulator only and the whole
system, a MATLAB/Simulink model is implemented. It considers two different dynamic systems,
referred to the manipulator and the base satellite, which interact by the forces exchange between
the two systems. In this chapter geometrical and physical features of the space manipulator
system are presented, its MATLAB/Simulink model is described and the URDF file, necessary
for the robotic model to be imported and animated in the simulation environment, is illustrated.

5.1 Space manipulator system configuration

Space manipulator system configuration, considered for the simulations, consists of a base satellite
with a two-link planar arm mounted on the lateral face in the direction of the satellite motion,
as shown in Fig. 5.1.

Figure 5.1: CAD of the space manipulator system

Here, geometrical and physical features of the system are listed:

42

CHAPTER 5. SIMULATION ENVIRONMENT

• The base satellite is a 12U Cubesat (0.2×0.2×0.3m).

• The mass of the base satellite is 10Kg.

• The base satellite is assumed to be homogeneous, thus the inertia matrix is diagonal. Non-
zero components of the inertia matrix are: I0xx = 1.083e-1Kgm2, I0yy = 1.083e-1Kgm2,
I0zz = 6.67e-2Kgm2.

• The mounting point is located along the vertical symmetry axis of the base satellite
(r0 = [0.1, 0, 0.15]Tm) and the manipulator motion is confined in the x-z plane.

• The links are assumed to be cylindrical and the dimensions are: 1st link length, radius and
mass are 15cm, 2.5cm and 1.5Kg respectively; 2nd link length, radius and mass are 10cm,
1.5cm and 1.0Kg respectively.

• The links are assumed to be homogeneous, thus inertia matrices are diagonal. Non-zero
components of inertia matrices are: I1xx = 9e-4Kgm2, I1yy = 3.66e-2Kgm2, I1zz =
3.66e-2Kgm2, I2xx = 2e-4Kgm2, I2yy = 1.07e-2Kgm2, I2zz = 1.07e-2Kgm2.

Starting from the derivation of the mathematical model (kinematics and dynamics) of the
manipulator (Part. I), MATLAB/Simulink model is obtained and its general structure is shown
in Fig. 5.2. Control strategies to allow the end-effector to reach the desired position and perform

Figure 5.2: Robotic arm general scheme

the delicate task for which it was designed, are implemented in the ”Controller” block. Different
strategies adopted and the effects they have on the general scheme will be described in Chap. 10.
In the ”Actuator” block, physical limitations of the actuators (max torques with RL method) are
taken into account, while in the ”Robotic arm” block the manipulator dynamics is implemented
and in Fig. 5.3 it is explained in more detail.

Figure 5.3: Robotic arm plant in Simulink

43

CHAPTER 5. SIMULATION ENVIRONMENT

The ”Coupling effects” block, instead, allows the computation of the reaction forces acting
at the mounting point and the effects in terms of variation of the moment of inertia due to the
motion of the robotic arm, as derived in Chap. 3.

Figure 5.4: Satellite general scheme

The general scheme of the satellite model implemented in MATLAB/Simulink is quite similar
to the one just described for the robotic arm with the significant difference, that the computed
coupling effects represent an input to the ”Satellite” block in which the attitude and position
dynamics of the satellite are implemented (Fig. 5.5), referring to Part II. In the ”Controller”

Figure 5.5: Satellite plant in Simulink

block, LQR controllers are designed in order to maintain desired attitude and position during
manipulator motion. Last, in the ”Actuator” block, dynamics of actuators (Reaction Wheels and
thrusters) is introduced. In particular, a Pulse Width - Pulse Frequency (PWPF) modulator is
designed (Fig. 5.6) for translating the continuous desired force signal to an on-off signal for the
spacecraft impulse thrusters. PWPF modulators are widely used in ADCS systems for space use
and their main elements are a Schmidt trigger, which consists of a double relay with hysteresis
separated by a dead band and a first order filter, the output of which is the activation signal for
the Schmidt trigger. Several parameters have to be defined for a correct implementation:

• Km is the filter gain.

• Tm is the time constant of the filter.

44

CHAPTER 5. SIMULATION ENVIRONMENT

Figure 5.6: PWPF general scheme

• Uon is the activation threshold.

• Uoff is the deactivation threshold.

• h = Uon − Uoff is the hysteresis width.

• ∆ton is the on-time of the thruster.

5.2 Unified Robot Description Format

The URDF is an XML file with dedicated tags for physical features of the robotic model. With

Figure 5.7: URDF file: definition of ith link

reference to Fig. 5.7, it is necessary to define the name of the link and, between < inertial ><
/inertial > tags, the origin (xyz) and orientation (rpy) of the local frame with respect to
the previous joint. The origin and orientation of the ”Base” frame are fixed (xyz=”0 0 0”,
rpy=”0 0 0”). Visual properties, within < visual >< /visual > tags, are useful to observe
the arm in a 3D space and study volumes and permeations during the motion. In fact URDFs
support visual representation using primitive shapes or 3D meshes like COLLADA and STL
files for a more accurate environment. It is also possible to add a collision model, similar to
the visual one, useful during MATLAB simulations. For dynamical purposes in the simulation
environment (with the Robotic System toolbox), it is necessary to define inertial properties,
within < inertial >< /inertial > tags:

• mass;

45

CHAPTER 5. SIMULATION ENVIRONMENT

• components of the inertia matrix expressed in the local frame.

Figure 5.8: URDF file: definition of ith joint

The joints properties are defined, as shown in Fig. 5.8 within the < joint >< /joint > tags.
It is necessary to define the name and type of the joint:

• prismatic

• revolute

• fixed

As for the link, the origin and orientation are defined with respect of the previous joint.
Other information required are about the axis of rotation (for a revolute joint), parent and child
links and limits for positions, velocities, accelerations, and forces. They often have friction and
damping coefficient values as well.

By inserting all the geometrical and physical features listed in Chap. 9.1, ”Home configuration”
of the imported model in the MATLAB/Simulink environment is obtained, with null joint variable
values q = [0, 0]T , as shown in Fig. 5.9. With reference to the same figure, the base satellite is
gray, the first link is orange and the second link (with the end-effector at its end) is red.

Figure 5.9: Space manipulator home configuration

46

Chapter 6

Manipulator Controller Design

The theoretical domain in which controllers are designed can be divided into joint space-based
and task space-based controllers. With the former, tasks are first mapped into joint space through
inverse kinematic techniques and then the controller is designed in torque space based on the
information about the joint space. The latter is first designed in task space and then transformed
into torque space, resulting in increased accuracy for high dimensional system. In this chapter
both the strategies are addressed depending on the implemented control method and the results
are presented and compared. For the simulations, the base satellite is supposed to be fixed in
the desired position (p = [−0.3, 0, 0]T) and attitude (ideal quaternion), and the manipulator is
moving from the initial configuration q = [−π

2 , π]. Both controllers are validated in reaching the
desired end-effector position pee = [0.3, 0, 0.2]T in FB.

(a) Start configuration (b) End configuration

Figure 6.1: Space manipulator configurations

6.1 PID Controller

PID controller design is based on the independent joint space control architecture, shown in
Fig.6.2. The ”Inverse Kinematic” block transform the desired end-effector pose into desired joint

47

CHAPTER 6. MANIPULATOR CONTROLLER DESIGN

Figure 6.2: Joint space control architecture

values, using the ”inverseKinematic()” function of the Robotic System Toolbox. The input of
the controller are the joint position errors, while its output represents the required torques to
drive the robotic arm in the desired posture.

The control gains of the PID controller are kP = 0.8, kD = 0.5 and kI = 0. The choice of a
null integral term is dictated by the absence of the steady state error during the simulations.

Next figures show the result of the simulation with PID controller. In particular, Fig. 6.3
shows the command torque provided to the two joints. The maximum values assumed by the
two signals are just over 1Nm for the first joint and 1.5Nm for the second. Fig. 6.4 (a) shows

Figure 6.3: PID: joint command torques

the evolution over time of the joint variables due to the input torques. The robotic arm reaches,
successfully, the desired configuration corresponding to joint variable values q = [1.1,−0.2]T .
Fig. 6.4 (b) highlights the joint variable velocities that it is convenient to keep low to reduce
disturbances on the base satellite. Maximum values assumed by the joints are 1.6m/s for the
first one and −2.7m/s for the second one.

Position of the end-effector and its velocity in FB are presented in Fig. 6.5 (a) and Fig. 6.5
(b) respectively. Notice that the end-effector reaches the desired position to perform the task
and maximum values of velocities registered are about 0.08m/s in x and 0.05m/s in z.

Reaction forces and resulting moments, acting on the mounting point and translated to the
CoMB, are depicted in Fig. 6.6 (a) and (b) respectively. As introduced in Chap. 3, since the
planar arm motion is constrained in x − z plane, reaction forces are generated along x and z
directions, while the resulting disturbing moment is about y direction. Fx oscillates reaching a
peak value of 1N , while Fz assumes the maximum value of −0.3N . These will affect the position
of the servicer that needs to be fixed as much as possible for the assumptions previously done.
Also the moments affecting the base oscillate before becoming null, once the final configuration
is reached. In this case the maximum value registered is of 0.16Nm.

48

CHAPTER 6. MANIPULATOR CONTROLLER DESIGN

(a) Joint variable values (b) Joint variable velocities

Figure 6.4: PID: joint variables evolution

(a) End-effector position (b) End-effector velocity

Figure 6.5: PID: End-effector motion

(a) Reaction forces (b) Reaction moments

Figure 6.6: PID: reaction forces and moments acting on the base satellite

49

CHAPTER 6. MANIPULATOR CONTROLLER DESIGN

6.2 RL Controller

Figure 6.7: Task space control architecture

RL controller falls into the category of operational space control and its general architecture
is depicted in Fig. 6.7. It is similar to the one already presented for PID controller, but in this
case the ”Inverse kinematic” block is not needed anymore since the logic of the controller is task
space based. For the same reason the ”Forward kinematic” block is added in order to obtain the
end-effector position given a robotic arm posture.

Figure 6.8: RL training scheme

The scheme of the RL controller, based on the concepts introduced in Chap. 8, is presented
in Fig. 6.8. Observations represent the state of the system at any given time t and are enclosed
in a 14 element vector containing information about positions (sine and cosine of joint angles to
avoid discontinuities) and velocities (joint angle derivatives) of the actuated joints, positions (x,y
and z distances from FB origin) and velocities (x,y and z derivatives) of the end-effector and
joint torques from the last time step. Because these signals have different units, some of them
are multiplied with scale factors to assure them to be in the same range as others. This is a key
aspect because these signals will be fed into a neural network and high magnitude signals may
cause one section of the network to dominate and undermine the effects of other signals.

Actions are normalized torque values [−1, 1] for the actuated joints.
Rewards at each time step t are given by the relationships shown here

ree = e−0.001(∆x2+∆z2)

rangvel = −0.15(q̇2
1 + q̇2

2)
raction = −0.05(τ1 + τ2)

(6.1)

where ree is a positive reward (Gaussian function) provided to the agent as the distances of the

50

CHAPTER 6. MANIPULATOR CONTROLLER DESIGN

(a) First critic (b) Actor

Figure 6.9: Plot of the first critic and the actor

end-effector from the desired position go to zero, rangvel is a negative reward for high angular
velocities and raction is a penalty to the agent when it uses too much control effort. Note that
each reward function is multiplied with a scaling factor to specify the relative importance on the
overall reward. The latter is obtained by summing the positive and negative rewards as

rt = ree + rangvel + raction (6.2)

The final set of elements from the environment is a logical ”is done” signal that determines
when the simulation should be terminated because the system has reached a ”bad” state and
it does not make sense to simulate further. In this case the simulation is terminated when the
end-effector intersects the base satellite.

In order to create an RL environment from the Simulink model, it is necessary to create
specifications for the inputs and outputs and then an environment object, using the function
”rlNumericSpec()” and ”rlSimulinkEnv()” respectively, provided by the Reinforcement Learning
Toolbox. One important aspect on training an RL agent is domain randomization. It is convenient
to randomize the Simulink environment at the beginning of each training episode by providing a
function handle to reset the environment. This helps the agent to learn a policy that is robust to
the variations within the environment. In this case the reset function introduces randomness in
the initial joint angles in a range of 5 degrees, keeping the other parameters constant.

As introduced in Chap. 8, the agent in this work is a SAC agent. In order to create the
two critics, used to learn the optimal Q-value function ([11]), it is necessary to create a deep
neural network with two inputs (observation and action) and one output (Q-value function).
As shown in Fig. 6.9 (a), critic networks consist of a few fully connected layers with reLu
layers in between ([12]). From this network it is possible to obtain the two critics with the
”rlQvalueRepresentation()” function.

The actor is modeled in a similar way. It takes observations as inputs and outputs the mean
and variance of the policy distribution (Fig. 6.9 (b)).

After creating the actor and critics, SAC agent is derived using the ”rlSACAgent()” function
and the hyper-parameters are kept to default values. More information on SAC agents are
available on the MATLAB documentation([11]).

51

CHAPTER 6. MANIPULATOR CONTROLLER DESIGN

Training option Value
MaxEpisodes 3000

MaxStepPerEpisode 100
ScoreAveragingWindowLength 100

StopTrainingValue 60

Table 6.1: Training options

Now the final step is to train the algorithm using the ”train()” command. It is possible to
specify with the ”rlTrainingOptions()” function a few training options such as

• ”MaxEpisodes”, that is how long the agent is going to train.

• ”MaxStepPerEpisode”, that is the maximum number of steps to run in the episode if
termination conditions are not met.

• ”ScoreAveragingWindowLength”, that is the window length for averaging the scores,
rewards, and number of steps for each agent.

• ”StopTrainingCriteria”, that is the training termination condition, specified in this case as
”AverageReward”; the training stops when the running average reward equals or exceeds
the critical value.

• ”StopTrainingValue”, that is the critical value of the training termination condition.
Some of the values, as the ”StopTrainingValue”, are obtained after analyzing the agent’s
performance for a few training iterations. Training options used for the simulation are listed in
the Table 6.1.

Figure 6.10: Episode manager

After the software setting up the training, it is possible to keep track of the training progress
with the Episode Manager. It is evident that at the beginning of the training the agent fails to

52

CHAPTER 6. MANIPULATOR CONTROLLER DESIGN

perform the task for which it is trained, thus it does not receive too many reward per episode.
In Fig. 6.10, blue line represents the episode reward and red line represents the average reward
over a window of 100 episodes, while the yellow line is the expected long-term reward. Since the
agent learns from experience, the episode reward increases over time and episodes, and converges
to the maximum value.

Now it is possible to simulate the model with a pre-trained agent and verify that the robotic
arm is able to reach the desired position successfully. Since there is randomness in the process,
results may be different from one simulation to another.

Next figures show the performance of the RL controller. In particular, Fig. 6.11 shows the
command torques provided to the two joints, by multiplying the actions with the maximum
torque value (0.1Nm). This is a key aspect in the design of the actuators because it allows to
take into account more stringent requirements about dimensions or weight of the same. The
signal seems pretty noisy for practical purposes and it may be necessary to handle it, but this
goes beyond the purpose of the thesis.

Figure 6.11: RL: joint command torques

As shown in Fig. 6.12 (a), the trained agent allows the robotic arm to reach the desired
position and it is able to keep this position with an accuracy of the order of millimeters. Maximum
velocities values of the end-effector are lower than ones obtained with the PID controller. In fact,
in Fig. 6.12 (b) there are very short peaks with values equal to 0.04m/s and 0.06m/s along x
and z directions, respectively. This is an advantage because it allows the end-effector to approach
the mating point, positioned on the target, with a slower speed and therefore reducing the risks
of a possible collision with the target itself.

Fig. 6.13 (a) shows the evolution over time of the joint variables, that is comparable with the
evolution depicted in 6.4 (a). Another benefit in the use of RL method is showed in 6.13 (b): due
to the torque limitation, resulting joint variable velocities are smaller than the ones detected with
PID controller. This results in a reduction in the magnitude of the forces exchanged between
the two bodies that make up the system and consequently in reduced disturbances affecting
attitude and position of the base satellite. In fact, as shown in Fig. 6.14,maximum values of
reaction forces and consequently of the reaction moment, even if prolonged in time to mantain
the position of the end-effector, are lower than the ones obtained with the PID controller. In
particular, Fx, Fz, My peaks are 60% lower, 5% lower and 65% lower respectively. Having lower
disturbances acting on the satellite is very advantageous especially if dealing with small satellites,
often equipped with limited resources intended for position and attitude control.

53

CHAPTER 6. MANIPULATOR CONTROLLER DESIGN

(a) End-effector position (b) End-effector velocity

Figure 6.12: RL: effects on the end-effector

(a) Joint variable values (b) Joint variable velocities

Figure 6.13: RL: effects on joint variables

(a) Reaction forces (b) Reaction moments

Figure 6.14: RL: reaction forces and moments acting on the base satellite

54

Chapter 7

Base Satellite Controller Design

This chapter deals with the design of a controller system that allows the spacecraft to keep desired
position and attitude during the manipulator motion. In fact, reaction forces and moments
derived by the actuation of the joints by means of RL manipulator controller (Chap. 6), affect
the position and attitude of the non-controlled floating base, making them deviate from desired
values, as shown in Fig. 7.1 and Fig. 7.2.

(a) Quaternions (b) Euler angles

Figure 7.1: Attitude deviation

Figure 7.2: Position deviation

55

CHAPTER 7. BASE SATELLITE CONTROLLER DESIGN

7.1 LQR Attitude Controller

For the implementation of the LQR attitude controller the following weighting matrices are used

Q =

1
0.05 0 0 0 0 0
0 1

0.05 0 0 0 0
0 0 1

0.05 0 0 0
0 0 0 1

0.01 0 0
0 0 0 0 1

0.01 0
0 0 0 0 0 1

0.01

and R = 0.05

 1
0.22 0 0
0 1

0.22 0
0 0 1

0.22

Resulting command torque from the LQR controller is showed in Fig. 7.3. It allows the
service to maintain the desired attitude with a maximum deviation of about 0.13 degree in the
linear system (7.4 (a)), during the manipulator motion. The performance are quite similar for
the more complex non-linear system (7.4 (b)) with a maximum deviation of 0.17 degree, but
with the presence of a gyroscopic effect that, over time, generates a variation in attitude around
the other axes, due to the variation in satellite inertia.

Figure 7.3: Input torque signal

(a) Linear system (b) Non-linear system

Figure 7.4: Servicer controlled attitude

56

CHAPTER 7. BASE SATELLITE CONTROLLER DESIGN

7.2 LQR Position Controller

For the implementation of the LQR position controller the following weighting matrices are used

Q =

1
0.02 0 0 0 0 0
0 1

0.02 0 0 0 0
0 0 1

0.02 0 0 0
0 0 0 1

0.015 0 0
0 0 0 0 1

0.015 0
0 0 0 0 0 1

0.015

and R = 0.01

 1
0.32 0 0
0 1

0.32 0
0 0 1

0.32

Control signal generated by the controller is depicted in Fig. 7.5 (a). As might be expected,
the non-zero components are x and z to counteract the disturbances that affect the satellite base.
Fig. 7.5 (b) shows the trend of the modulated signal, as introduced in the Chap. 5. Parameters
chosen to configure the PWPF modulator are Km = 4.5, Tm = 0.12, Uon = 0.17, Uoff = 0.05.
The controlled servicer is able to maintain almost constant its relative position: maximum
deviation, both in x and z, is less than 3 millimeters during the motion of the manipulator.

(a) Controller output u (b) Modulated thruster input signal, during manip-
ulator motion

Figure 7.5: Thruster control signal

Figure 7.6: Servicer controlled relative position

57

Part V

Mission Scenario

58

Chapter 8

Rendezvous-Berthing Mission

Rendezvous and berthing is a key operational technology required for many missions involving
more then one spacecraft. The process consists of a series of orbital manoeuvres (maneuvers)
and controlled trajectories, which successfully bring the active vehicle (chaser) into the vicinity,
and eventually in contact with, the passive vehicle (target).

A rendezvous mission ca be divided into a number of major phases ([18]):

• Launch, during which the launcher brings the chaser vehicle into a stable lower orbit in the
orbital plane of the target.

• Phasing, whose objective is to reduce the phase angle between the chaser and the target
spacecraft, by making use of the fact that a lower orbit has a shorter orbital period; this
phase ends with the acquisition of an ”initial aim point” from which the final part of the
approach starts.

• Far range rendezvous, sometimes called ”Homing”, starts when the relative navigation
between the two vehicles is available; it allows the chaser to reduce trajectory dispersion,
acquire the target orbit, reduce the approach velocity and synchronize the mission timeline.

• Close range rendezvous is usually divided in two phases: closing and final approach. During
the former the chaser reduces the range to the target and achieves conditions allowing the
acquisition of the final approach corridor; the objective of the latter is to achieve berthing
capture conditions in terms of positions and velocities and of relative attitude and angular
rates.

• Mating consists of tasks that the robotic arm must perform to ensure a structural link
between the two spacecrafts.

In this chapter a typical OOS mission scenario is proposed, the chaser configuration is
described and the performance of designed model are shown.

8.1 Chaser configuration

In [24] a Navigation and Guidance system for OOS mission is designed, focusing on close range
rendezvous phase. With reference to the Concept of Operations (ConOps) depicted in Fig. 8.1

59

CHAPTER 8. RENDEZVOUS-BERTHING MISSION

Figure 8.1: Concept of Operations scheme

the GNC system of the chaser delivers the vehicle, through a number of radial boost up to 100
meters from the target and then following a final linear approach, to a meeting point with zero
relative velocities and angular rates. Here starts the mating phase in which the manipulator, a
three-link planar arm mounted on the lateral face in the direction of the motion of the chaser,
grapples the target to accomplish the tasks for which the mission is designed.

Here, geometrical and physical features of the spacecraft, useful for the simulation, are listed:

• The base satellite dimensions are 1.35×1.35×2.6m.

• The mass of the base satellite is 1500Kg.

• The mounting point is located along the vertical symmetry axis of the base satellite
(r0 = [10, 0, 15]T cm) and the manipulator motion is confined in the x-z plane.

• The links are assumed to be cylindrical and the dimensions are: 1st link length, radius and
mass are 2m, 0.075m and 35Kg respectively; 2nd link length, radius and mass are 1.75m,
0.075m and 30Kg respectively; 3rd link length, radius and mass are 0.75m, 0.05m and 5Kg
respectively.

• The links are assumed to be homogeneous, thus inertia matrices are diagonal. Non-zero
components of inertia matrices are: I1xx = 1.97e-1Kgm2, I1yy = 1.41e1Kgm2, I1zz =
1.41e2Kgm2, I2xx = 1.69e-1Kgm2, I2yy = 9.24e1Kgm2, I2zz = 9.24e1Kgm2, I3xx =
1.25e-2Kgm2, I3yy = 2.85Kgm2, I3zz = 2.85Kgm2.

More information about the satellite (physical features, GNC system, actuators, etc. . .) can be
found on [24].

As done for the space manipulator system used for simulations in Chap. 9, by considering all
the geometrical and physical features just listed, the URDF file of the chaser to be imported in
MATLAB/Simulink environment is obtained. The ”Home configuration” is represented by null
joint variable values q = [0, 0, 0]T .

RL controller is tested with the space manipulator system presented in the previous chapter.
The same simulation environment and the same assumptions for RL algorithm are considered,
even if some parameters are different due to the complexity of the system, such as the number of
links and their larger dimensions. For this reason a little accuracy has been sacrificed in reaching

60

CHAPTER 8. RENDEZVOUS-BERTHING MISSION

(a) Start configuration (b) End configuration

Figure 8.2: Space manipulator configurations

the desired end-effector position to obtain a valid solution in an acceptable time, considering the
limited computational capacity of the available PC.

Observations are represented by 20 element vector containing the same kind of information
already considered. More important in this case is the uniformity of values and the necessity
of scaling factors to avoid undermining of the effects of some signals; in fact there is a great
difference of orders of magnitude for example between the distances involved (meters) and the
accuracy in reaching the desired position (millimeters first, then centimeters). Consequently,
rewards at each time step t are changed and are given by the relationships shown here

ree = 0.2e−0.01∆x2 + 0.1e−0.01∆z2

rforrw = 0.04x (x <= 4)
rangvel = −0.5(q̇2

1 + q̇2
2 + q̇2

3)
raction = −0.05(τ1 + τ2 + τ3)

(8.1)

where rforrw reward is added to incentive the robotic arm to reach the position in x and prevent
the simulation from converging to the solution that corresponds to reaching only the position in
z (easier to reach). Notice that scaling factors are changed. The overall reward for each time
step t is given by

rt = ree + rforw + rangvel + raction (8.2)

For the simulation, the base satellite is supposed to be fixed in the desired relative position
p = [−4, 0, 0]T and attitude (ideal quaternion) and the manipulator is moving from the initial
configuration q = [−π

2 , π, π]T . The desired end-effector position to reach is pee = [4, 0, 1]T
with respect to the body frame centered in the CoM of the satellite, which corresponds to its
geometrical center. Simulation results, after the training of the agent, are presented in next
figures.

61

CHAPTER 8. RENDEZVOUS-BERTHING MISSION

Figure 8.3: Joint command torques

(a) Joint variable values (b) End-effector position

Figure 8.4: RL: effects on joint variables

(a) Reaction forces (b) Reaction moments

Figure 8.5: Reaction forces and moments acting on the base satellite

62

Conclusions

The proposed work illustrates the control problem of a space manipulator, operating in a typical
On Orbiting Servicing mission environment. Its kinematic model is first derived with a systematic
and general approach using Denavit-Hartenberg convention, then dynamic equations are obtained
using Lagrange formulation. Thus, a control system is designed with Reinforcement Learning
algorithm, since machine learning could allow more complex missions design to be carried out
with greater autonomy and chance of success when human intervention is difficult or limited
given the lack of visibility, the required amount of information and communication time lag.

Simulations carried out are conditioned by the computational capacity of the available PC:
obtained data are the result of a compromise between performance and computation time.
Obtained results, compared with a classical PID controller, show anyway the ability of a trained
agent to perform successfully a task, adapting to different working conditions. In this case,
the agent allows the end-effector (considered as a point located at the end of the mechanical
structure) to reach the desired position with different initial conditions, actuating the joints of
the mechanical system. In addition, it is possible to train the agent by entering some design
constraints such as the maximum torque available for joints actuation, the angular velocity of
the links, or end-effector speed to safely perform the task that characterizes the mission. This
indirectly improves the control of the base satellite as it is affected by minor intensity disturbance
forces and moments, consequences of the manipulator motion. In fact, the proposed control
system based on LQR method is able to maintain position and attitude in an acceptable range,
showing pose-keeping ability and robustness of LQR design.

As shown in the last part of the thesis, designed model is valid also for more complex
mechanical structure such as robotic arms with more links or more complex geometries. It is also
possible to add an end-effector, which in turn consists of links and joints (revolute or prismatic
ones), that can perform the task for which the mission was designed. In fact, parameters of
the controller can be changed according to the number of variables (number of joints to be
implemented and therefore number of observations, rewards and actions to be performed) and
the constraints of the problem (limits on position, speed, etc.). Obviously a more complex model
will have a higher computational cost and consequently longer simulation times, with the same
machine.

Another future development of the proposed research could be the implementation of more
complex movements consisting, for example, of a succession of maneuvers to avoid an obstacle, to
reach a point that is not easy to access or even to transport an object from one point to another.
To achieve these goals different ways are available: one is to train multiple agents, each one
to reach an intermediate position (hold point), and switch the controller once the end-effector
reaches the hold point; another could be to upgrade a pre-trained agent with new training making

63

CHAPTER 8. RENDEZVOUS-BERTHING MISSION

the system able to complete the mission autonomously. All this could require, for example,
the implementation of advanced guide and navigation system based on image recognition with
machine learning and, in particular, transporting an object from one point to another introduces
the problem of multi-body dynamics related to the acquisition and release of an object in space
environment.

Artificial intelligence is a very promising field that breaks into our everyday lives in an
increasingly obvious way. Once it reaches the necessary maturity, it can be a very important
resource in the space environment that can relieve the workload of astronauts and allow them to
stay in space safer. It could be, along with all the new technologies emerging in recent years,
essential for future exploration, for the construction of new orbiting stations and, who knows, to
establish a human outpost on another planet.

64

Bibliography

[1] Andrew M. Long, Matthew G. Richards and Daniel E. Hastings. On-Orbit Servicing: A New
Value Proposition for Satellite Design and Operation. Journal of Spacecraft and Rockets,
July–August 2007.

[2] Joshua P. Davis, John P. Mayberry and Jay P. Penn. On-Orbit Servicing: inspection, repair,
refuel, upgrade, and assembly of satellite in space. Center for Space Policy and Strategy,
April 2019.

[3] Stephen J. Leete. Design for On Orbit spacecraft Servicing. NASA Goddard Space Flight
Center.

[4] Andrew Ogilvie, Justin Allport, Michael Hannah, John Lymer. Autonomous Satellite
Servicing Using the Orbital Express Demonstration Manipulator System. DARPA.

[5] Glenn Jorgensen and Elizabeth Bains. SRMS History, Evolution and Lessons Learned.
NASA.

[6] Nancy J. Currie, Brian Peacock. International Space Station Robotic System Operations -
A human factors perspective. NASA – Johnson Space Center, National Space Biomedical
Research Institute.

[7] Alex Ellery. Tutorial Review on Space Manipulators for Space Debris Mitigation. Robotics,
2019.

[8] Ijar M. Da Fonsecaa, Luiz C.S. Goesa, Narumi Seitoa, Mayara K. da Silva Duartea, Élcio
Jeronimo de Oliveira. Attitude dynamics and control of a spacecraft like a robotic manipulator
when implementing on-orbit servicing. Acta Astronautica 137, 2017.

[9] Yaguang Yang. Quaternion based model for momentum biased nadir pointing spacecraft.
Aerospace Science and Technology, 2010.

[10] Yaguang Yang. Quaternion-Based LQR Spacecraft Control Design is a robust pole assignment
design. Journal of Aerospace Engineering, January/February 2014.

[11] MATLAB(R2020b). Reinforcement Learning Toolbox, User’s Guide. http://www.mathworks.
com/.

[12] MATLAB(R2020b). Deep Learning Toolbox, User’s Guide. http://www.mathworks.com/.

65

BIBLIOGRAPHY

[13] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo. Robotics. Modelling,
Planning and Control. Springer, 2010.

[14] Álvarez Chavarŕıa J S, Jiménez Builes J A, Ramı́rez Patiño J F. Design cycle of a robot for
learning and the development of creativity in engineering. DYNA, 2011.

[15] E. Capello. Dynamics and control of aerospace vehicles lectures, ”Dinamica di posizione e
di assetto”. Politecnico di Torino, 2020.

[16] S. Ali A. Moosavian and Evangelos Papadopoulos. Free-flying robots in space: an overview
of dynamics modeling, planning and control. Robotica (2007).

[17] F. Dabbene, E. Capello. Dynamics and control of aerospace vehicles lectures, ”State-space
based modern control”. Politecnico di Torino, 2020.

[18] Wigbert Fehse. Automated Rendezvous and Docking of Spacecraf. Cambridge University
Press, 2003.

[19] Thomas Duriez, Steven L. Brunton, Bernd R. Noack. Machine Learning Control – Taming
Nonlinear Dynamics and Turbulence. Springer, 2017.

[20] Gu S., Holly E., Lillicrap T., Levine, S. Deep Reinforcement Learning for Robotic Manipula-
tion with Asynchronous Off-Policy Updates. IEEE International Conference on Robotics and
Automation (ICRA), 2017.

[21] Liu C., Gao J., Bi Y., Shi X., Tian D. A Multitasking-Oriented Robot Arm Motion Planning
Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control. Sensors, 2020.

[22] Yudha P. Pane, Subramanya P. Nageshrao, Jens Kober, Robert Babuska. Reinforcement
Learning Based Compensation Methods for Robot Manipulators. Engineering Applications of
Artificial Intelligence, 2018.

[23] Kober, J., Bagnell, J.A., Peters, J. Reinforcement learning in robotics: A survey. International
Journal of Robotics Research, 2013.

[24] D. Celestini. Navigation and Guidance Algorithm for In-Orbit servicing Rendezvous Mission.
Master Thesis, April 2021

66

