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Abstract

Nowadays the design and operation of GNC of small satellites is widely being
studied, due to the current and past space missions designed by several industries,
research institutes, and space agencies. Some in-orbit demonstrations require heavy
and bulky payload that must be embedded with complex set of sensors, actuators,
and maintenance systems. Thus, the redundancy of elements is always inferior,
so that a mathematical model estimating variables is needed to achieve the same
goal with less sensors. At the same time, a good control of the state variables can
be helpful in order to reduce fuel consumption, with the consequence of less space
occupied by the actuation system or in an increase of the operational life span of
the satellite. The aim of this thesis is to design an orbital simulator of a rendezvous
manoeuvre of a 6U CubeSat. In particular, the main purpose is to design different
observer-based navigation algorithms, to estimate all the system variables involved
in the mission. At the same time, the system should be controlled to reach the
desired values of attitude, position, and velocity.

In this thesis, different state estimation methods are investigated, considering dif-
ferent Sliding Mode Observers (SMOs), and including a comparison with classical
Kalman filters. The performance indices considered for the comparison are the
estimation error, convergence time, and maintenance of performance in presence
of disturbances. This thesis presents the results that can be obtained by apply-
ing the estimation techniques and the main disadvantages encountered during the
development of the simulation model. Despite of the presence of external distur-
bances, process noise and measurements noise the performance of the studied filters
always maintain good levels. A comparison of the proposed different techniques is
performed for translational and rotational motions of the CubeSat. For example,
the 1st order Sliding Mode Observer shows the best results in the estimation of the
position along the y axis. On the other hand, as regard as the estimation of the
position along the x and z axis, that have a coupled dynamic, the best result is
given by the Kalman Filter and the 2nd order Sliding Mode Observer, in particular
by the Super Twisting Observer. The Kalman filter and the Extended Kalman
filter also shows the best results for the estimation of the Angular Velocities and
the quaternion vector.

Different control systems have been analyzed with the aim of identifying an op-
timal algorithm for the control of the attitude and the position. The first objective
is to design a controller for the position control. Some controllers are studied, but
only two of these are applied in the simulation model: the Sliding Mode Control
and the PID controller. The second objective is to find a suitable controller for the



attitude. The first model implemented is a Quaternion Feedback Controller (QFC),
which is used as comparison with the second implemented technique, based on Lin-
ear Quadratic Gaussian (LQG) method. This consists of a Kalman Filter combined
with a Linear Quadratic Regulator (LQR). Moreover, the Linear Quadratic Con-
troller combined with different state observers is studied and applied in simulations
and compared with the result given by the classical LQG controller.
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Chapter 1

Introduction

Nowadays the space environment is chosen by industries, research institutes and
space agency as new place in which can be executed advanced experiments. More
and more a new space race is being experienced to develop new technologies used
for different applications. One of the new challenges is to reduce the size of the
satellites in order to reduce costs, in fact, a smaller satellite is light, and this
means less launch and maintenance costs. Another challenge is to increase the
internal space of the satellite to obtain more space for payload accommodation.
One way to achieve this goal is to reduce the number of components needed by the
Guidance Navigation and Control system, like the sensors, maintaining the same
performances.

In the first part of this chapter, four state observers are studied in order to
estimate the state variable in translational and rotational motion. The main goal
is to reduce as much as possible the estimation error and evaluate the observer
performance for each dynamic system involved in the simulations despite of the
presence of disturbances. These disturbances come from the external environment
or can be the signal and process noise. Both the disturbances are included in the
mathematical model and considered into the simulations. The State Observers
chosen and compared are classical Kalman Filter, the Extended Kalman Filter,
the 1st order Sliding Mode observer, and the Super-Twisting Observer. For the
attitude variable estimation, the initial condition of the system are varied to test
the effectiveness of the estimate under highly unstable conditions. The result of
this work is shown in Chapter 5.

Another way to increase the internal space of a satellite is to reduce the space
occupied by the actuation system. To do this, more and more attention is given
to the control algorithms that can ensure the control of the state variables that
allow to save more fuel, with the consequence of reduce tanks volumes and increase
space for payload. In this chapter, the state of art of control algorithms has been
analysed with the objective to evaluate the performance of control algorithms for
each variable to maintain the desired attitude, position, and velocity. Two control
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Introduction

algorithms have been studied and designed for the simulations. For the attitude
control, the controller chosen is the Linear Quadratic Gaussian (LQG), compared
with the classical Quaternion Feedback Controller while for the position control,
the PID controller was selected. The mission taken into account in this thesis work
is a rendezvous and docking manoeuvre performed by 6U CubeSats.

1.1 State Observer
In control theory, a state observer, or state estimator, is a system that provides
an estimate of the internal state of a given real system, from measurements of the
input and output of the real system. This property is necessary to solve many
control theory problems. For example, in most practical cases, the physical state
of the system cannot be determined by direct observation and the system can be
stabilized by using a state feedback loop. Instead, indirect effects of the internal
state are observed by the system outputs. If a system is observable, it is possible
to fully reconstruct the system state from its output measurements using the state
observer.

In this section, four state observers are introduced and detailed in Chapter 3 to
individuate the performance of the state estimators for the state variables involved
in the simulations.

Kalman Filter

The Kalman Filter (KF) allows the estimation of certain variables. It can be used
to estimate a state of system by combining measurements from different sources
that can be subjects by noise. This filter can be used to find the best combination
between the properties of various sensors, estimating the exact value of a certain
parameter [10].

The KF is used when:

• The variables of interest can be only measured indirectly;

• Measurements are available from various sensors but might be subject of noise;

The Kalman Filter combines the measurement and the prediction to find the opti-
mal estimate of a certain value. In fact, if there are multiple state variables that
are measured and estimated by the mathematical model, those states are compared
step by step with the measurements by the Kalman Filter by multiplying the pre-
diction and the measurement together, scaling the result and computing the mean
of the resulting probability density function.
The Kalman Filter is a two steps process: the first part predicts the current state
by using state estimate from the previous time step and current input. It repre-
sents an a priori estimate since is calculated before the current measurement. The
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second part takes measurement and incorporate it into the prediction to update the
a priori estimate with the result of a posteriori estimate [11]. The Kalman Filter is
also referred to a sensor fusion algorithm. If we have multiple sensor measurements,
the dimensions of the state vector would change; however but the main logic of the
filer will remain the same [12].

Extended Kalman Filter

If a nonlinear function is taken into account, which doesn’t follow a Gaussian dis-
tribution, the Kalman filter is not applicable anymore. To solve this problem, a
local linearization can be done. The local linearization happens thanks to the first
derivative of the prediction and correction function, the Jacobian matrices.

The EKF linearizes the nonlinear function around the mean of the current state
estimate. At each time step, the linearization is performed locally and the resulting
Jacobian matrices are then used in the prediction and update states of the Kalman
Filter algorithm [14].

The main drawbacks are:

• It is difficult to calculate the Jacobians if they need to be found analytically;

• There is a high computational cost if the Jacobians are found numerically;

• It cannot be applied an EKF to systems with a discontinuous model, since the
system is not differentiable and the Jacobian wouldn’t exist;

• Linearization doesn’t provide a good approximation for highly nonlinear sys-
tems. Linearization becomes invalid since the nonlinear function cannot be
approximated well enough by a linear function and doesn’t describe system
dynamic.

However, to address the issues with EKFs, other estimation techniques can be used:
the Unscented Kalman Filter (UKF) and the Particle Filter. In the first one, the
filter approximates the probability distribution. This one selects a minimal set of
sample points such that their mean and covariance is the same as distribution.
These are called σ point. Each σ point is then propagated through the nonlinear
system model. The points are calculated and then an empirical Gaussian distribu-
tion is computed, which is used to calculate the new state estimate [9].

As concerning the Particle Filter (PF), it is good to say that it differenciate from
the Unscented Kalman Filter since the PF approximates any arbitrary distribution.
To make this approximation the number of particles that a particle filter needs is
much larger than needed by an UKF [8]. For nonlinear systems, EKF, UKF or
PF can be applied. As regard the computational cost, the Particle Filter is com-
putationally the most expensive filter since it requires a large number of particles
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to approximate the distribution. The EKF will be used to estimate the positions
and the velocities USING the measurements given by the Inertial Navigation Unit
(IMU).

1st order Sliding Mode Observer

Sliding mode observers based on first-order sliding modes are effective in the pres-
ence of uncertainties or disturbances. When the relative degree of the outputs is
one, with respect to the uncertainties or disturbances, and when there is not needed
differentiation of noisy output, this observer can be applicable.

For any observation of a mechanical system, in which we have measured po-
sition, the estimation of velocity is necessary. The uncertainties/disturbances in
mechanical systems are in the equations for accelerations and have relative degree
two with respect to the measured positions. This means that differentiators, which
can provide the best possible accuracy in the presence of sampling steps and noise,
are needed for the general case of observation of control systems working under
uncertainties/disturbances [1].

The ability to generate a sliding motion on the error between the measured plant
output and the output of the observer ensures that a sliding mode observer produces
a set of state estimates that are precisely commensurate with the actual output of
the plant. Analysis of the value of the applied observer injection signal, the so-called
equivalent injection signal, contains useful information about the mismatch between
the model used to define the observer and the actual plant. The discontinuous
injection signals, which are perceived as problematic for many control application,
have no disadvantages for software based observer framework [13].

The results given in Section 5.2 will show these particular properties of a 1st

order Sliding Mode Observer. Nevertheless, it will be shown that despite of a great
estimation of single state variable, the simulation of the estimation of multiple state
system will not give a good result.

Super-Twisting Sliding Mode Observer

One of the popular second-order sliding mode algorithms offering a finite reaching
time and useful for sliding mode based observation is the Super-Twisting Algorithm
considered in Chapter 3. The sliding mode approach has been exceptionally suc-
cessful in the design of state feedback controllers. By the way, in the great majority
of the physical systems, an output is available for measurement. In that case, other
states of the system can be obtained using an observer. The Sliding Mode Ob-
servers are widely used due to the finite time convergence and for the estimation
of the uncertainty [20].
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The dynamical system of the Super-Twisting Observer (STO) includes distur-
bances and correction terms. Once defined the error variable as e1 = x1 − x̂1
and e2 = x2 − x̂2, the correction terms are selected and it can be defined the error
dynamic as described inChalanga et al. [20].

If the parameters that define ė1 and ė2 are correctly chosen, it may be noticed
how the error e1 and e2 will go to zero simultaneously in a finite time, thus repre-
senting the best advantages of the STO.

This observer will be applied into the observation on the position along the x
and z axis. The coupled dynamics is completely observed with good results. The
error between the real value and the estimated one reaches zero in a finite time and
maintains this value until the end of the maneuver. In Section 5.2 will be exhibited
the entire mathematical model and the application into the orbital simulator.

1.2 Control systems
In the formulation of any practical control problem, there will be always a discrep-
ancy between the actual plant and its mathematical model used for the controller
design. These discrepancies (or mismatches) arise from unknown external distur-
bances, plant parameters, and parasitic/unmodeled dynamics. Designing control
laws that provide the desired performance to the closed-loop system in the presence
of these disturbances/uncertainties is a challenging task for a control engineer.

In this section, several control algorithms are showed to identify the one cho-
sen for each variable in order to control the attitude and the position. The Sliding
Mode Control, the PID control, the Quaternion Feedback Controller and the Linear
Quadratic Gaussian are here introduced and studied in Chapter 4. Moreover, the
state of art of different adaptive controllers is shown in the final part of this section.

Sliding Mode Control

One particular approach to robust controller design is the so-called Sliding Mode
Control technique [1], which is in the class of a nonlinear control technique. The
basic idea is to design a sliding surface described by s=0 on which the sliding mode
along this surface begins after the finite time when the trajectories of the system
have reached the surface. The idea is to make the system slide on a plane and the
goal is that the system goes on that plane, slides on this and goes to the origin that
always represents the point of stability. To do this there are two steps:

• Define the sliding surface that represents a kind of degree of freedom. By
defining the sliding surface in a proper way, is being defined what should be
the behavior of our system.

• Once this is done, a feedback law of the states must be defined to bring the
trajectories of the plant to be controlled precisely on this surface.
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In Section 4.1.2, the mathematical model of this controller will be deepened
with some examples regarding this type of controller, the positive aspects, and the
negative aspects.

PID Control

The main objective is to control both attitude and position variables. The first
control method studied and applied on this project is the PID controller, used to
control the position along the y-axis, and to control x and z position during the
final phase of the entire maneuver, the cone of approach.

The PID is a continuous controller used, for example, in the early 20th century to
control ship steering for US Navy. This was then given a mathematical treatment by
the Russian American engineer Nicolas Minorsky. The main goal was the stability,
not general control, which simplified the problem significantly.

In general it can be said that the use of the PID algorithm does not guarantee
optimal control of the system or its control stability. The fundamental difficulty
with PID control is that it is a feedback control system, with constant parameters,
and no direct knowledge of the process, and thus overall performance is reactive
and a compromise. In addition, situations may occur where there are excessive
delays: the measurement of the process value is delayed, or the control action does
not apply quickly enough. The response of the controller can be described in terms
of its responsiveness to an error, the degree to which the system overshoots a set-
point, and the degree of any system oscillation. But the PID controller is broadly
applicable since it relies only on the response of the measured process variable, not
on knowledge or a model of the underlying process. In Section 4.1.1, is discussed
the mathematical model and a simple example of PID control loop with the results
given by the simulation.

Quaternion Feedback Controller

Quaternions can be easily computed by modern Attitude Determination and Con-
trol System (ADCS) and for this reason their use is very common. As a consequence
a simple feedback control law based on the information obtained from the attitude
sensors is easily implementable to obtain an autonomous maneuver.

Thanks to the use of the quaternion error a feedback law is globally asymp-
totically stabilizing onto any arbitrary desired attitude, (qdes0, qdes0)T , for a wide
choice of the gain Kp and Kd [38]. This controller will be used in order to compare
the results with the Linear Quadratic Gaussian controller.

10
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Linear Quadratic Gaussian

Figure 1.1. Linear Quadratic Gaussian [34].

As shown in Figure 1.1, there is a schematic illustrating the LQG controller for
optimal closed-loop feedback based on measurements y that are subjected to noise.
The optimal LQR and Kalman Filter gain matrices Kr and Kf may be designed
independently, based on two different algebraic Riccati equations. When combined,
the resulting sensor-based feedback remains optimal. This controller is a dynamical
system with an input u, an output y and an internal state x̂. The main particu-
larity of this controller is that the eigenvalues of the LQG system are given by the
eigenvalues of the LQR and Kalman Filter gain matrices.
The entire framework of the LQG will be deepened, based on [19], in section 4.2.2
where it will be applied to control the attitude during the entire simulated maneu-
ver, in particular the angular velocity vector and the quaternion vector with very
good results.

1.3 Thesis Overview
In Chapter 2 the spacecraft mathematical model is introduced starting from the
research work of Pirat [3]. In this chapter the dynamic equations for both atti-
tude and position are stated to define the matrix representation of the state space
equations needed for the state observation.

Chapter 3 focus on State Observer, starting from the introduction written in
Chapter 1. The main applications of each observer and the mathematical model
will be explained in detail, to individuate the parameters that should be set for the
simulation.

In the second half of this thesis, the Control System Design (Chapter 4) used in
the simulation will be addressed. In this chapter, lessons and frameworks learned
from the control theory are presented by discussing their use and application in the
case study. Once defined the algorithm, the setting parameters are individuate and
tuned in Chapter 5

11



Introduction

Finally, Chapter 5 will expose the entire simulation model. In the first section,
the input data are defined, starting from the spacecraft characteristics from the
simulation scenario. In the second half, the Attitude Control model, the Guidance
and the Control parts are described in order to show the Control algorithm appli-
cation results. In the last part, the Navigation algorithm is presented starting from
the input data, needed by the Simulink model built for this research work, until
the results given by the simulation. Numerical results are included, highlighting
the advantages and drawbacks encountered in each observation application.

12



Chapter 2

Spacecraft Mathematical
Model

2.1 Mission Description
The orbital simulator designed for this thesis work simulates a rendezvous and
docking maneuver between two satellites: a Chaser and a Target. The satellite
taken into account carries out two maneuvers before the final corridor: a Hohmann
transfer and a Radial Boost. In the final phase, to align the docking ports, it starts
the Cone of Approach Maneuver. In the following section these three phases are
explained.

The local coordinate frame is used to describe motions with respect to the moving
position and direction towards the center of the Earth of an orbiting body.

Figure 2.1. Local-vertical/local-horizontal frame [22].

13
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In Figure 2.1 we have:

• The origin centered in the Centre of Mass of the spacecraft;

• Rbar axis is along the vertical line towards the planetary center (Earth CoM);

• Vbar is in the direction of the orbital motion parallel to the local horizontal;

• Hbar is perpendicular to the orbital;

2.1.1 Hohmann Transfer
The Hohmann maneuver is carried out between two co-planar circular orbits and
is defined as the most energy efficient two-pulse maneuver.

Figure 2.2. Orbit relations in a Hohmann transfer [22].

This consists of an elliptical transfer orbit tangent to the initial and final orbits. The
starting point is at the perigee of the transfer orbit, the arrival point corresponds
TO the apogee of the transfer orbit. The velocity has the same magnitude in the
initial and final point of the maneuver and both are parallel to each other [22]. The
∆V is given parallel to the Vbar axis and it can be calculated with the following
equation:

∆Vx1 = ∆Vx2 = ω

4 ∆z (2.1)

The input in this equation is represented by the Target angular velocity ω and by
the difference between the Target and the Chaser altitude ∆z. The first impulse

14
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∆Vx1 is necessary both to leave the circular orbit and to join the elliptical Transfer
Orbit (TO). The second one ∆Vx2 is needed to keep the spacecraft on the Target
orbit.

2.1.2 Radial Boost

Figure 2.3. Transfer along V-bar by radial impulses [22].

Once the Chaser reaches the Target orbit, the new goal is to reduce the relative
distance between the spacecrafts so that the final phase can start. In general, radial
maneuvers are used for transfer along the Target orbit and for fly-around to an Rbar

approach.
In this maneuver the first boost is parallel to Rbar and allows the Chaser to

leave momentarily the orbit, going on lower (and so faster) one and returning on
the Target orbit. Once here, a second and equal boost is given in the same directions
of the first one to make the spacecraft remains on the initial orbit.

To calculate the ∆Vz it is necessary to know the Target angular velocity and the
difference between the Target and the Chaser x-position ∆x:

∆Vz1 = ∆Vz2 = ω

4 ∆x (2.2)

The position of the final point before the final corridor depends on safety require-
ments, but it is usually located hundreds of meters far from the Target position. It
is usually considered as transfer on Vbar by radial impulses [22].

15



Spacecraft Mathematical Model

2.1.3 Final Approach

Figure 2.4. Final approach trajectory.

The final phase begin at the end of the radial maneuvers. The goal is to reach the
position, velocity, attitude and angular rates condition to start the docking phase.

At this stage, the Chaser follows a quasi-straight line trajectory, but the main
important thing is that the Chaser remains within a cone of approach, defined for
safety reasons. The origin of this cone is the docking port of the Target vehicle,
called mating point and the half cone angle is about 10 to 15 degrees. The Chaser
must follow the docking axis, and this is only possible if the rendezvous sensors
are able to measure the relative attitude between the docking port of Chaser and
Target [22].

These proximity operations require extremely delicate maneuvering both in
translational and rotational motion. In this phase the attitutde, angular rates,
position, and velocity must be precisely controlled to obtain the required docking
interface conditions.
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2.1.4 Reference Mission
The trajectory profile for a CubeSat RVD mission provided in Figure 2.5 represents
the approach strategies inspired by Pirat [3].

Figure 2.5. Trajectory profile for a CubeSat RVD mission [3].

During the first phase, the Homing is needed to allow the Chaser reaching the
Target orbit. Thanks to an Hohmann transfer the Chaser can reach the point S2
and can start the radial maneuvers. In this strategy four different radial boosts
along Vbar are needed to reach the starting point of the final corridor.

Finally, from point S24 to the Target (S3) there are the final approach maneu-
vers. S3 location in the target orbital frame is defined by the target docking port
location and orientation and thus it varies depending on the systems design. This
point is always positioned 10 m away from the target docking port. In this phase
it is really important to control the rotational and translational motion to avoid
collision between satellites. The simulation of the entire maneuver will be further
analyzed in Chapter 5.

2.2 Spacecraft Dynamics
The non-linear dynamic is developed and linearized for the simulation. This section
represents a central part of the GNC to control the relative attitude and position
between the Target and the Chaser. The coupling between the rotations and the
translation will be taken into account.

Moreover, the position and the attitude dynamic will be fundamental for the
Navigation, to have a comparison between the real value given by the dynamic and
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the estimated value provided by the state observation.

2.2.1 Rotational Motion
When determinating the attitude dynamic equations, it is important to know the
geometry of the satellite. The first step is to calculate the body Inertial tensor J
as:

J =

Jx0 0 0
0 Jy0 0
0 0 Jz0

 (2.3)

The angular momentum of a rigid body, in inertial frame is defined as

Hb = Ibω
bI
b (2.4)

where ωbI
b is the rotation of body reference frame in inertial reference frame ex-

pressed in body frame with the origin in the center of mass of the satellite. In
torque equation the moments produced by the thrusters, the reaction wheels and
the external disturbances must be taken into account. As concerning the evaluation
of the angular rates, the classical Euler equations can be used.

ω̇B = J−1(MB − ωB × (JωB + JRW ωRW )) (2.5)

where
MB = Mthr + ∆Mex + MRW (2.6)

Between the existent ways to represent or parameterize rotation, the quaternion
representation is chosen. This representation has several advantages over Euler’s
angle. First of all the less computational effort given not by the derivative of the
Euler’s angle, but by the dependence from the angular velocities. The second reason
is that there is no geometric singularity. These motivations make quaternion more
effective and stable numerically [39].

The evolution of the quaternions is described by the set of linear differential
equation is represented in the matrix form as:

q̇0
q̇1
q̇2
q̇3

 = 1
2


0 −ω1 −ω2 −ω3
ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0




q0
q1
q2
q3

 (2.7)

The equivalent matrix form is given by

q̇0 = −1
2qT

v ωB

q̇v = 1
2(q0✶ + Qx)ωB (2.8)
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where qv = [q1, q2, q3], and Qx is the skew-symmetric matrix defined as:

Qx =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (2.9)

When writing the state space system for the attitude dynamic, the state vector x
and the control torque u need to be defined.

x =



q1
q2
q3
ω1
ω2
ω3


u =

Mx

My

Mz

 (2.10)

Then the state matrix A and the input matrix B

A =



0 0 ω0 1 0 0
0 0 0 0 1 0
−ω0 0 0 0 0 1

0 −3ω0
Jx0

0 0 0 − (Jz0−Jz0)ω0
Jx03ω0

Jy0
0 0 0 0 0

0 0 0 (Jy0−Jx0)ω0
Jz0

0 0


(2.11)

B =



0 0 0
0 0 0
0 0 0

1/Jx0 0 0
0 1/Jy0 0
0 0 1/Jz0


(2.12)

From [21] the linearized nadir pointing spacecraft model with gravity gradient dis-
turbance torque and magnetic torque are taken into account and used for the sim-
ulation: 

q̇1
q̇2
q̇3
ω̇1
ω̇2
ω̇3


=



0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5
f1 0 0 0 0 f2
0 f3 0 0 0 0
0 0 f4 f5 0 0





q1
q2
q3
ω1
ω2
ω3


+



0
0
0

Mx/Jx0
My/Jy0
Mz/Jz0


(2.13)

where:
f1 = 8(Jz0 − Jy0)ω2

0/Jx0 (2.14)
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f2 = (−Jx0 + Jy0 − Jz0)ω0/Jx0 (2.15)
f3 = 6(Jz0 − Jx0)ω2

0/Jy0 (2.16)
f4 = 2(Jx0 − Jy0)ω2

0/Jz0 (2.17)
f5 = (Jx0 − Jy0 + Jz0)ω0/Jz0 (2.18)

2.2.2 Translational Motion
The aim is to represent the Chaser motion in the rotating target local orbital
frame, which find its origin in the center of mass of the Target in LVLH frame. The
Hill’s equations describe a simplified model of the orbital relative motion. These
equations consider both the Target and the Chaser placed in a circular orbit.

This model gives a first-order approximation of the Chaser motion in a Target-
centered coordinate system. These equations can be considered when the distance
between the Chaser and the Target is lower than the orbital radius. The equations
are: 

ẍ = 1
mc

Fx + 2ωż

ÿ = 1
mc

Fy − ω2y

z̈ = 1
mc

Fz − 2ωẋ + 3ω2z

(2.19)

The forces are given by the thrusters, which control is given by the control system.
The variable mass is calculated through the Tsiolkovsky equation:

ṁ = F

gIsp

(2.20)

and ω is the constant orbital angular velocity.

ω =
ó

µ

r3
t

(2.21)

As highlighted in (2.19), there is a coupled dynamicS between x and z axis, while
the y axis is decoupled from the other variables. For this reason, once linearized,
the dynamic can be easily studied separately.

As regard the x and z dynamic, defining the state vector x = [x, z, ẋ, ż]T and
the control force u = [Fx, Fz], from [22], the state space equation is:

ẋ = Ax + Bu (2.22)

The A and B matrices are:

A =


0 0 1 0
0 0 0 1
0 0 0 2ω
0 3ω −2ω2 0
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B =


0 0
0 0

1/mc 0
0 1/mc

 (2.23)

Whereas the position along the y axis, the state vector is x = [y, ẏ], the control
force u = Fy, and the matrices A and B are:

A =
C

0 1
−ω2 0

D

B =
C

0
1/mc

D
(2.24)

These are the Hill’s equations written in the state space form used as input for the
state observers.

2.3 External Disturbances
During the simulation, some external disturbances are taken into account, consid-
ering the altitude, the velocity and the dimensions of the Chaser. The Chaser orbit
has an altitude of 397.9 km, while the Target one of 400 km. Thus, these orbits can
be defined as Low Earth Orbit (LEO) and from [40], the disturbances that must
be considered in these orbits are:

• Aerodynamic Drag:

This drag derives from some residual atmosphere existent in LEOs. The con-
ventional fluid mechanics can’t be applied because of the poor density of the
atmosphere. In fact, the drag phenomenon must be treated at the molecular
level.
Actually, there are two different atmospheric models used to compute the at-
mospheric density, and these depend on the altitude. The drag coefficient is
also dependent from the impact of the molecules on the surface of the space-
craft and their reflection.
To calculate the aerodynamic drag we use:

T̄ = r̄ × F̄A (2.25)

where
FA = 1

2ρV 2SCD (2.26)

and r̄ is the vector from body center mass to aerodynamic Center of Pressure,
so it varies with the attitude, ρ is the air density, V is the velocity of the
satellite, S is the front Area and CD is the drag coefficient.
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If CD = 2.2 is considered, the obtained value of the air drag has a small error,
whose value is taken into account. For low orbit satellites, the air density is
high enough to produce a perturbing force, modeled as a constant force into
simulation of the entire maneuver.

• Gravity Gradient:

In space, the gravitational field is not considered uniform, and the variation in
the magnitude and direction of the gravitational force over a spacecraft, leads
to a gravitational torque about the body mass center.
Satellites move around the gravity field of a central body. If we consider the
central body as a perfectly spherical the satellites will adhere to Newtonian
laws.
The generated torque is perpendicular to local vertical and can be calculated
as:

T̄ = 3n2 · r̂ × [Ir̂] (2.27)

where n is the orbital rate and I is the inertia tensor of the spacecraft. An
important aspect of the gravity gradient torque is that it can be used as a
method of attitude control using this effects.

• Magnetic Torque:

Another important disturbance affecting the attitude control is the Earth
magnetic field influence. Last interacts with the electrical currents inside the
satellite. Thus, the magnetic torque can be calculated as:

T̄ = M̄ × B̄ (2.28)

where M is the spacecraft residual dipole measured in A/m2. This is due to
current loops and residual magnetization. It’s value is at least 100 A/m2 or
more for a CubeSat. B is the Earth magnetic field vector measured in Tesla
or Gauss. This value decrease as 1/r3 with its direction along magnetic field
line.
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Chapter 3

State Observer

Starting from the introduction provided in the first chapter, the following section
introduces the mathematical model of each observer so as to define the equation
necessary for the simulation.

3.1 Kalman Filter
The Kalman Filter (KF) is a type of state observer, but it is designed for stochastic
systems. Analyzing the Kalman Filter equation:

x̂ = Ax̂k−1 + Buk + Kk(yk − C(Ax̂k−1 + Buk)) (3.1)

it is possible to notice how the Kalman filter equation relates to the probability den-
sity function. The first part predicts the current state by using state estimate from
the previous time step and the current input and can be called a priori estimate.
The second part uses measurement and it is called a posteriori estimate.

The Kalman Filter computations are based on five equations that will be further
explained in the following section. There are two prediction equations, the Kalman
Gain Equation and finally, two update equations [23].

The first two prediction equations are:

• State Extrapolation Equations

The Kalman Filter bases its predictions or estimations on the known present
estimation of the actual state. Thanks to this equation, the next system state
can be predicted by knowing the current state. It extrapolates the state vector
from the current step (step n) to the future one (step n + 1).
In a matrix notation the state exploration equation can be expressed/is ex-
pressed as:

x̂n+1,n = Fx̂n,n + Gûn,n + wn (3.2)
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where:
x̂n+1,n is the predicted vector at time step n + 1
F is the State transition matrix
x̂n,n is the estimated vector at time step n
G is the Input transition matrix
ûn,n is the control variable that is the measurable input for the system
wn is the process noise. This is an unmeasurable value that affects the
process.

• Covariance Extrapolation Equation

This equation represents the uncertainty in the prediction and the general
form of the Covariance Extrapolation Equation is given by:

Pn+1,n = FPn,nF T + Q (3.3)

where:
Pn+1,n is the predicted covariance matrix for the next state
Pn,n is the estimated covariance matrix of the current state
Q is the process noise matrix

The third equation is:

• Kalman Gain Equation

This gain is needed for the computation of both the update equations. It
defines the weight of the past estimation and the weight of the measurement
in estimating the current state. This number, which has a value between 0
and 1, is defined by :

Kn = Pn,n−1H
T (HPn,n−1H

T + Rn)−1 (3.4)

where:
Kn is the Kalman Gain;
Pn,n−1 is a prior estimate uncertainty matrix of the current state predicted
at the previous state
H is the Observation matrix
Rn is the measurement noise covariance matrix
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The final equations are:

• State Update Equation

Thanks to the known past estimation and the current measurement, the es-
timation of the current state is calculate. The matrix form of this equation
is:

x̂n,n = (1−HKn)x̂n,n−1 + Knzn (3.5)

Defining

x̂n,n is the estimated state at time step n
H is the Observation matrix
x̂n,n−1 is the predicted state vector at time step n− 1
zn is the measurement

It can be said that the Kalman Gain Kn is the weight given to the mea-
surement and (1−Kn) is the value given to the estimation. So, when we have
both small measurement uncertainty and large estimate uncertainty, we must
chose a Kalman gain close to one. Vice versa, we chose a Kalman gain close
to 0. If the estimate uncertainty is equal to the measurement uncertainty Kn

is close to 0.5.

• Covariance Update Equation

This represenst the uncertainty in the prediction.

Pn,n = (I −KnH)Pn,n−1(I −KnH)T + KnRnKT
n (3.6)

Where:
Pn,n is the current state covariance uncertainty
Pn,n−1 is a prior estimate uncertainty matrix of the current state predicted
at the previous state
Rn is the measurement noise covariance matrix
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3.2 Extended Kalman Filter
Generally, most realistic problems involve nonlinear function. The main question
is how to take into account this non-linearity. An effective solution can be found
getting rid of these two expressions:

ẋt = Axt + But yt = Cxt + Dut (3.7)

and turn them into new functions:

ẋt = g(ut, xt−1) yt = h(xt) (3.8)

By using non-linear functions to perform the observation, it is necessary to leave
the Gaussian assumption because if we put in a Gaussian through a non-linear
function, the output function will not be a Gaussian anymore. Therefore, noticed
that the Gaussian assumption is not respected, the Kalman Filter is not applicable
anymore.

With the aim of finding a solution to this matter, a non-linear function is as-
sumed as a linear one and is locally linearized. This method is called local lin-
earization and basically takes a point in which the first derivative of this function
is computed, fitting a line through this non-linear function by computing Taylor
expansion. Hence looking at the Prediction and Correction models:

• Prediction:

g(ut, xt−1) ≈ g(ut, µt−1) + Gt(xt−1 − µt−1) (3.9)

• Correction

h(xt) ≈ h(µ̄t) + Ht(xt − µ̄t) (3.10)

The Jiacobian matrices can be defined as:

Gt = ∂g(ut, µt−1)
∂xt−1

Ht = ∂h(µ̄t)
∂xt

(3.11)

In the first equation there is the non-linear function g, which is influenced by the
parameters u and xt−1. Specifically, xt−1 is defined by the evaluation of the function
at the linearization point, plus the Jacobian of the first derivative of this function
with respect to the state x and the therm µt−1, determining in return how far the
variable xt−1 is far from the linearization point.

Now, as to the correction step there are both: the dependence from xt and from
the linearization point µ̄t. The latter is found to be in line with the predicted
scenario, seen that the best estimate possible concerns the state before executing
the correction. Subsequently, there is the Jacobian matrix Ht, which is the first
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derivative of the function h, with respect to xt multiplied by the therm indicating
how far it is from the linearization point.

The Jacobian is a non-square matrix m× n filled with partial derivative repre-
senting the orientation of the tangent plane to the vector-valued function at a given
point.

As a result of the Taylor expansion, Gt and Ht turn into linear functions. The
next questions that need to be answered regard the breadth of the error done
computing the linearization, and the reasons determining it. A possible solution
to the latter can be found in relation to the two quantities from whom it actually
depends.The first quantity refers to the approximation error and shows not only
how far is the linearized function from the initial function, but also the success of
the local linearization. The second one is the uncertainty: the smaller is the value
of the uncertainty, the smaller the error of the linearization.

As regard as the algorithm, it is basically the same of the classical Kalman
Filter, excluding the replacing of the linear model with the non-linear function for
the prediction of the mean, seen that it predicts just one single point. The same
holds for the observation, through the use of a function capable of comparing what
is actually observed and what is predicted. Another difference with respect to the
KF is given by the substitution of the matrix A with the matrix G, as well as the
matrix C with the matrix H, which are respectively the Jacobian of the motion
and the observation.

Finally, it can be said that the Kalman Filter works well until extremely large
uncertainties are not involved, because that could subsequently cause large errors
into the linearization. The second issue that could eventually emerge would be the
failure of the Kalman filter, caused by the linearized function’s wrong approximation
of the non-linear models.

3.3 1st order Sliding Mode Observer
An observer is essentially a mathematical replica of the system, driven by the
system input and the estimation error. A sliding mode observer (SMO) feedback
the output estimation error by adopting a non-linear switching term. Once the
magnitude of the disturbance is known, this observer forces both the output errors
to converge to zero in a certain amount of time, and the observed states converge
to the system state.

Starting from the state space representation of a linear system:

ẋ(t) = Ax(t) + Bu(t) + Gnν (3.12)

y(t) = Cx(t) + Du(t) (3.13)

the goal is to estimate x(t) basing only on the quantities y(t) and u(t) [1]. When
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writing the Sliding Mode Observer model, it is important to define the state esti-
mation and the output estimation error, respectively defined as

Ôx = x̂− x (3.14)

Ôy = ŷ − y (3.15)
In many cases the objective is to estimate the velocity x2. In order to estimate x2
the SMO algorithm is the following:

˙̂x1 = ν (3.16)

where ν is the observer injection term that is necessary to be designed, so that the
estimates x̂1 and x̂2 will converge to x1 and x2.

Therefore, ν is defined as
ν = −ρsign(z1) (3.17)

where the estimation error, that is also the auxiliary sliding variable, is

z1 = x̂1 − x1 (3.18)

and
ż1 = −x2 + νeq = 0 (3.19)

The sliding mode observer is computed using the concept of the equivalent control.
This concept refers to the control function that needs to be applied to the system,
to ensure the system trajectory stays on the surface. The equivalent control action
describes the “average” effect of the high-frequency switching control on system [1].
From 3.3 the estimated second state is defined as:

x2 ≈ x̂2 = ν̂eq (3.20)

To estimate x2, it is important to define the equivalent injection term. The latter
can be calculated thanks to a Low Pass Filter:

τ ˙̂νeq = −ν̂eq − ρsign(z1) (3.21)

thus, as it can be read in 3.3, the estimated second state is totally dependent
from νeq . One of the most critical disadvantages concerns the accuracy of the
observation, that decreases once the step time of the simulation rises. More the
step time is bigger, more the estimation of the state variable is worst.

This derives both from an imperfection in the sign function producing a finite
amplitude and finite frequency “zigzag” motion, and from the discrete-time nature
of the computer simulation. This phenomenon is called chattering and there are
several methods capable of solving it.
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The one selected for this research is the quasi-sliding mode, in which the sign
function is substituted by the sigmoid function, defined as follow:

sign(σ) = σ

|σ|+ ε
(3.22)

The introduction of this function removes the zigzag pattern with a continuous one.

Hence, the parameters that affect the good performance of the observer that must
be tuned are ρ and τ . ρ is bounded as

ρ = |x2|+ β β > 1 (3.23)

If we consider the quasi sliding mode, the third parameter that must be tuned is ε.
From [1] it can be said that the SMO also could be treated as differentiator, since
the variable it estimates is the derivative of the measured variable.
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3.4 Super-Twisting Sliding Mode Observer
Frequently, linear observers do not achieve adequate performances for such systems
[24]. The sliding mode observers have main advantages like their robustness, with
respect to uncertainties, and the finite-time convergence. The observers based on
the second order sliding mode, require the proof of the separation principle theorem.
This is due to the asymptotic convergence of the estimated values to the real values.

The separation principle is a control theory assumption and states that, under
some presumption, the problem given by the design of a optimal feedback controller
for a stochastic system, can be solved thanks to the design of an optimal observer
of the state variable of the system. This combination feeds into an optimal deter-
ministic controller for the system [25]. Thus, the design can be facilitated by the
division of the problem into two separate parts.

Thanks to [1], [24] and [26] this research felt on the Super Twisting algorithm
because its implementation doesn’t need the separation principle to be proved
[24]. The observer proposed in this thesis is the second order Sliding Mode Super-
Twisting algorithm. This observer is used for the estimation of position, velocity
and attitude variables. The Super Twisting Sliding Mode Observer (STO) has the
following form:

˙̂x1 = x̂2 + z1

˙̂x2 = f(t, x1, x̂2, u) + z2 (3.24)

In 3.24, x̂1 and x̂2 can be defined as the state estimation terms which can be cal-
culated thanks to the correction variables z1 and z2, which are the output injection
terms defined by

z1 = λ|x1 − x̂1|1/2sign(x1 − x̂1)

z2 = αsign(x1 − x̂1) (3.25)

In chapter 1 it has been defined:
ε1 = x1 − x̂1

ε2 = x2 − x̂2 (3.26)

By substituting 3.26 in 3.25, and 3.25 in 3.24, it can be obtained the error equations:

˙̂x1 = x̂2 + λ|ε1|1/2sign(ε1)

˙̂x2 = F (t, x1, x̂2, u) + αsign(ε1) (3.27)

where F (t, x1, x̂2, u) is defined as:

F (t, x1, x̂2, u) = f(t, x1, x̂2, U(t, x1, x2)) + ξ(t, x1, x2, U(t, x1, x2)) (3.28)
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Therefore, it must be supposed a bounded system, which existence is ensured by
the constant C through the inequality |F (t, x1, x̂2, u)| < C.

The estimation constant f+ can be found as the double maximal possible ac-
celeration of the system [24]. Moreover, also α and λ must satisfy the following
inequalities:

α > C

λ >

ó
2

α− C

(α + C)(1 + p)
1− p

(3.29)

where p is a chosen constant, 0 < p < 1.
α and λ are defined as:

α = a1C λ = a2
√

C (3.30)

For [24] a valid choice is a1 = 1.1 and a2 = 1,5 soα = 1.1C

λ = 1.5
√

C
(3.31)

In conclusion, the only parameter that has to be tuned to adjust the observation
is C. Moreover, the mathematical model of the dynamic of the system must be
written in order to define ˙̂x2 and then calculate ˙̂x1.
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Chapter 4

Control System Design

Control theory deals with the control of dynamic systems in processes and engi-
neered machines. The objective is to develop a model or algorithm that regulates
the application of system inputs to bring the system to the desired state, mini-
mizing any delays, delay, overshoot, or steady-state error and ensuring a level of
control stability; often with the aim of achieving a degree of optimization. To do
this, is needed a controller with the necessary corrective behavior. This controller
monitors the controlled process variable and compares it to the desired value. The
difference between the actual value and the desired value of the process variable,
called error signal, is applied as feedback to generate a control action to bring the
controlled variable to the same value as the desired variable.

Other aspects, which are also studied, are the controllability and the observ-
ability. This is the basis for the advanced type of automation that revolutionized
manufacturing, aircraft, communications and other industries. This is feedback
control, which involves taking measurements using a sensor and making calculated
adjustments to keep the measured variable within a set range by means of a final
control element.

4.1 Translational motion control
For the translational motion the following controller are adopted to control the
position along Vbar, Rbar and Hbar.

4.1.1 PID controller
A PID controller is an instrument used in several applications to regulate process
variables. The Proportional Integral Derivative controllers use a control loop feed-
back mechanism to control process variables, which are the most accurate and stable
controller. PID control is a well-established way of driving a system towards a tar-
get position or level. It is the most common, as a means of controlling variables and
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finds application, in myriad scientific processes as well as automation. PID control
uses closed-loop control feedback to keep the actual output from a process as close
to the target or setpoint output as possible [31]. The overall control function is:

Figure 4.1. PID in a feedback loop [33].

u(t) = Kpe(t) + Ki

Ú t

0
e(tÍ) dtÍ + Kd

de(t)
dt

(4.1)

The proportional term depends only from the difference between the set point
and the process variable. This difference is defined as error term e(t). The pro-
portional gain Kp determines the ratio of the output response to the error signal.
In general, increasing the proportional gain, there will be an increase of the speed
of the control system response. However, if the proportional gain is too large, the
process variable will begin to oscillate [32]. If the gain is further increased, there
will be larger oscillations and the system will become unstable and out of control.

The integral term sums the error term over time. Consequently, also a small
error will increase the integral term slowly during the evolution of the control. The
integral response will increase over time unless the error is zezo, hence the objective
is to reach the target value and drive the Steady-State error to zero. The Steady-
State error is the difference between the final value of the controlled variable and
the target [31].

The derivative term causes the decrease of the output if the process variable is
increasing rapidly. The derivative response is proportional to the rate of change of
the process variable [32]. By increasing the derivative gain Kd, the system will react
more strongly to changes in the error term and will increase the response speed of
the system. This term is highly sensitive to noise, in the process variable signal
[31], indeed, if the feedback signal is noisy, the derivative response could make the
control unstable.
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4.1.2 Sliding Mode Control
The Sliding Mode Control (SMC) is a control methodology used for non-linear
systems, it has very solid theoretical foundations (developed by Russians engineer)
and has an important characteristic: if the system is not well known or is known
within certain uncertainties, the control works the same. This is a "robust" control
system to uncertainties, indeed it is one of the few robust non-linear controls.

If x is the usual vector of states and to describe the system, the representation
in state variables is used, where the derivative of the vector of states turns out to
be, in general, a function of the input force u(t) and the same state x(t), so thatx̂1 = x2

x̂2 = u + f(x1, x2, t)
(4.2)

First, a new variable in the state space form of the system must be introduced:

σ = σ(x1, x2) = x2 + cx1, c > 0 (4.3)

where σ is the Sliding Manifold. This last is a vector function σ(x) = [σ1(x), σ2(x)]nR →
Rm. In the simplest case n = 2 and m = 1, so there are two states x(t) =
[x1(t), x2(t)] and the motion will be in a Cartesian plane. Thus, the function
σ(x(t)) = x1 + cx2 = 0 represents the equation of a line passing through the
origin in the plane (x1 − x2). In the simplest case, it can be defined as a plane, in
the multidimensional systems this is better defined as a surface [34].

Figure 4.2 represents the manifold in the 2D plane as a line. In the tridimensional
plane, if σ1 = 0 and σ2 = 0, an intersection of two planes is obtained and then σ is
a straight line. The aim is to start from the initial position, get to the manifold and
then slide on the manifold itself. The control law creates a way to bring the system
on the sliding surface and allows it to slide on the same. In this way, the control
law keeps the system on the surface, correcting the latter every time it moves away
from the sliding surface, which in turn represents the ideal model

In order to achieve asymptotic convergence of the state variables it is necessary
to drive the variable σ in Eq. 4.3 to zero in finite time by means of the control
u. This task can be achieved by applying Lyapunov function techniques to the
σ-dynamic which are derived using Eqs. 4.2 and 4.3 [27]:

σ̇ = cx2 + f(x1, x2, t) + u (4.4)

The σ-dynamic is defined, afterwards the Lyapunov function is introduced in the
form [28]

V = 1
2σ2 (4.5)

The control law u driving σ to zero in finite time is:

u = −cx2 − ρsign(σ) (4.6)
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Figure 4.2. 2D Sliding surfaces [27].

where ρ is a control gain. The mathematical model is well explained in [27] and
[28] but it does not fall within the scope of this thesis.

The main disadvantage is the chattering phenomenon explained in 3.3. The
proposed and used method to occur this phenomenon is the Quasi-Sliding Mode,
which substitute the sign function with the Sigmoid function 3.22.

4.2 Rotational motion control
As regard the rotational motion the Quaternion Feedback Control is developed for
a comparison with the LQG controller. The mathematical model for each observer
is shown in the following two section.

4.2.1 Quaternion Feedback Control
Satellites are often reoriented performing successive rotations around the control
axis, with the aim of achieving the desired attitude. However, this strategy is not
optimal in terms of fuel or energy consumption. The Quaternion Feedback Control
(QFC) gives a nearly-optimal orientation with a very simple control loop, easy to
implement.
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The QFC results are used as a comparison with the results provided by the
Linear Quadratic Gaussian controller, and with the classical LQR combined with
the Super Twisting Observer.

With the aim of achieving a good control, it is necessary to use a quaternion
vector qe. This latter can be defined as following:

qe = qtrue − qdes (4.7)

therefore, this is not a simple difference, but is computed through [30]

qe = q−1
des ⊗ qtrue (4.8)

where
qd = q−1

des = q∗
des

||qdes||2
= [q0 − q1 − q2 − q3]T

(q2
0 + q2

1 + q2
2 + q2

3) (4.9)

the quaternion product result is:

qe =


qd0 −qd1 −qd2 −qd3
qd1 qd0 −qd3 qd2
qd2 qd3 qd0 −qd1
qd3 0− qd2 qd1 qd0

 ·

qtrue0
qtrue1
qtrue2
qtrue3

 (4.10)

Once the the desired attitude is bounded, it must be assumed that the inertial
reference frame coincides with the desired attitude, so that qd = [1,0,0,0]T and
qe = qv, with only the vectorial part qv = [q1, q2, q3]T . The unitary quaternion
represents an attitude perfectly alligned with the desired reference frame.

The control torque is defined as

MB = −sign(q0,d)Kpqv −Kdωb (4.11)

Kp and Kd are gain matrices used as stiffness and damping coefficients.
For this simulation the gain Kd is defined as:

Kd =

d1 0 0
0 d2 0
0 0 d3

 (4.12)

As regard as Kp, two definition are proposed and tested:

Kp = ksign(qtrue0)✶ (4.13)

Kp = [αI + β✶]−1 (4.14)
Where k and di are positive scalar constants, ✶ is the 3× 3 identity matrix, I is the
3× 3 inertia matrix, sign(qtrue0) is the sign function, and α and β are non negative
scalars.
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4.2.2 Linear Quadratic Gaussian Controller

Figure 4.3. Linear Quadratic Gaussian [19].

The Linear Quadratic Gaussian (LQG) is the result of the combination between the
Linear Quadratic Regulator (LQR) full-state feedback and Kalman Filter full-state
estimator. The LQG controller is a dynamical system with the input y, the output
u and the state x̂ that follow the equation:

˙̂x = (A−KfC −BKr)x̂ + Kfy (4.15)

u = −Krx̂ (4.16)
The LQG follow the optimal cost function of the LQR:

J(t) =
Ú t

0
[x(t) ·Qx(t) + u(t) ·Ru(t)]dt (4.17)

The controller u in 4.16 depends of the state estimation, so the cost function must
take into account the disturbance and noise in the process. Therefore, the state
space representation equation must include wd and wnwhich correspond respectively
to the disturbance and to the noise in the process:

x̂ = Ax + Bu + wd (4.18)

y = Cx + wn (4.19)
Substituting 4.16 in 4.18, including the identity x̂ = x− (x− x̂), the result is

ẋ = Ax−BKrx + BKr(x− x̂) + wd (4.20)

Now the the dynamic of the estimation error ε = x − x̂ must be introduced to
combine those equations:

ε̇ = (A−KfC)ε + wd −Kfwn (4.21)
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The gain matrices Kr and Kf may be designed independently, based on two
different algebraic Riccati equations. When combined, the resulting sensor-based
feedback remains optimal [19].

Finally, combining 4.20 and 4.21, the closed-loop system can be defined as:C
ẋ
ε̇

D
=

C
A−BKr BKr

0 A−KfC

D C
x
ε

D
+

C
I0

I −Kf

D C
wd

wn

D
(4.22)

Thereby, the dynamic of x and ε can be derived. As a consequence, the eigenval-
ues of this coupled system are given by the eigenvalues of A− BKr and A−KfC
because the matrix is diagonal. Thus, the main advantage happens when those
systems are combined, the eigenvalues of the full-state x are stabilized by the LQR
and the eigenvalues of the estimation dynamic are stabilized by the Kalman Filter
[34]. In control theory, this is called Separation Principle which essentially means
that the controller and estimator can be designed separately, and once combined,
the coupled system retains the properties of each system.

This controller will be applied to control the attitude variables such quaternions
and angular velocities in chapter 5. Moreover, the combination between the LQR
and the other state observer studied in Chapter 3 will be tested to understand
which estimator can provide best results.
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Chapter 5

Mission Scenario -
Simulation and Results

Figure 5.1. Orbital simulator block diagram.

In figure 5.1 it is possible to have a look at the representation of the orbital simulator
block diagram developed during the thesis work. The simulator is developed on
Simulink, while the input data are taken from a Matlab code. Basically, it is
a classical Guidance, Navigation and Control scheme in which the attitude and
position control are separated, although they work simultaneously. In the following
chapter, the block diagram will be deepened and the results of the simulations are
shown.

Starting from the plant, it contains the position dynamic equation shown in
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section 2.2.2. For simplicity, into the simulation, the attitude dynamic equations
are calculated in the attitude block, in which the control is also executed. In the
guidance block, all the maneuver are accomplished to reach each way-point shown
in figure 2.5. In the Navigation Block, all the state observer studied in chapter 3 are
implemented in order to estimate each state variables involved in the simulation.

5.1 Input Data
In this section, all the input data given to the Simulink code are shown, in order
to simulate the entire maneuver.

5.1.1 Orbital Characteristics
The maneuver is accomplished in Low Earth Orbit. The Chaser orbit is lower than
the Target one, in particular:

zchaser = 397.900 m

ztarget = 400.000 m (5.1)

Taking into account the Earth radius rE = 6378.145 km the orbital radius are:

rc = 6776045 m

rt = 6778145 m (5.2)

These information are necessary to calculate the angular velocities

ωc =
ó

µ

r3
c

≈ 0.001132

ωt =
ó

µ

r3
t

≈ 0.001131 (5.3)

5.1.2 Spacecraft Description
In this thesis work, only the chaser characteristics are studied to carry out the
rendezvous and docking maneuver.
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Figure 5.2. Chaser dimensions [3].

The spacecraft taken into account is a 6U CubeSat. The dimension of this
spacecraft are 10× 20× 30 cm, as shown in figure 5.2. The wet mass of the entire
CubeSat is mc0 = 12 kg

Into the simulation, the variable mass is considered. Once the control forces are
calculated through the Eq. 2.20, the variable mass is calculated. In fact step by
step, the amount of fuel mass consumpted by the actuation system is subtracted in
order to simulate as well as possible the mass variation along the entire maneuver.

5.1.3 Actuation System
As concern the Reaction Control System (RCS), it is composed of four thrusters
along each body axis. In [36] the electric propulsion system is analyzed. However,
for this thesis work the cold gas propulsion system is taken into account because
nowadays it is the most available and most advanced for CubeSats propulsion sys-
tems [3]. The misalignment of the thrusters could generate a torque error, but the
coupling effect is not considered. The RCS estimated performance are shown in
table 5.1.

Table 5.1. RCS performances

Thrust 4× 10 mN per axis
Minumum time ON 25 ms

Isp 60 s
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Figure 5.3. RW pyramidal configuration [38].

Table 5.2. RW performances

Maximum torque 1 Nm

Is 0.3 kgm2

α 0 deg

β 30 deg

The reaction wheels configuration proposed by [3] is chosen as it provides four
wheels in a pyramidal configuration (Figure 5.3), providing redundancy. The
datasheet [36] of these COTS wheels describes the performance shown in table
5.2. To transform the controlled torque from body axis to 4 RWs directions, is use-
ful to evaluate the rotation matrix. In fact, starting from the control moment, the
three axis moment can be evaluated thanks to the multiplication with the rotation
matrix:

M4RW = Z−1Mc →Ma = ZM4RW (5.4)
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where

Z =

cos(β) · cos(α) −cos(β) · sin(α) −cos(β) · cos(α) cos(β) · sin(α)
cos(β) · sin(α) cos(β) · cos(α) −cos(β) · sin(α) −cos(β) · cos(α)

sin(β) sin(β) sin(β) sin(β)


while Z−1 is the Pseudoinverse Matrix. As regard Mc, this represents the out-
put Control Moment given by the Control system. Instead, Ma is the three axis
actuation moment calculated with the rotation matrix.

5.2 Navigation
In this section, the state observers studied in chapter 3 are applied in the simu-
lation. For each observer, several simulations are performed from different initial
conditions of the variables of interest. Starting from zero angular velocity, this
value is increased more and more, to assess the quality of the estimation even when
in unstable conditions.

In the first part the attitude state variable are estimated, while in the second
part the position variable are estimated in order to test the effectiveness of the
estimation.

For each observation, the estimation error is calculated as shown in the equation
3.26. At each step ε is calculated, and then the root mean square error rms is
computed thanks to rms Matlab function. For quaternions, a vector is constructed
containing estimation errors for each element, the same thing was done for all
angular velocities vector elements. The rms error for each vector is calculated as

rms =
ó

1
N

(x− x̂)2 (5.5)

where N is the number of elements of the vector taken into account, necessary to
compute the mean value, x is the real value and x̂ is the estimated one.

5.2.1 Attitude Observation
The initial values of the quaternions and the angular velocities are q = [0.5,0.5,0.5,0.5]T
and ω = [0,0,0]T .
Kalman Filter

The first filter studied for the attitude is the classical Kalman Filter. To sim-
ulate this observer, a Simulink toolbox is used. The input data needed by this
toolbox are: the state space formulation in terms of matrices A, B, C, D; the state
estimation error covariance P ; the measurement noise covariance R; the process
noise covariance Q. Moreover the inputs y and u must be defined.
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Starting from the inputs x and u, they are defined in Eq. 2.10. To better
simulate the real scenario, a noise must be added to the process. The noise is
simulated with the Band-limited White Noise toolbox.

As regard the attitude state variables matrices, they are shown in section 2.2.1.
It is important to highlight that these matrices must be discretized, in order to run
the simulation. Another important aspect is to define the step time Ts, which is
equal for all the state observers: Ts = 0.01 The discretization is computed thanks
to a Matlab function written for this purpose.

As regard as the other variables above mentioned, the values chosen for this
observer are

Table 5.3. KF parameters for attitude observation

Noise Power 1e-7
P 1e-6
Q diag(1e-3 1e-3 1e-3 1e-3 1e-3 1e-3)
R diag(2e-3 2e-3 2e-3 2e-3 2e-3 2e-3)

The root mean square errors in the estimation with the Kalman filter are:

Table 5.4. RMS error in the estimation of attitude variables with EKF

εq [m] 1.3e-4
εω [m] 9.5e-5

Extended Kalman Filter

As for the Kalman Filter, a Simulink toolbox has been used for the observation
with the Extended Kalman Filter. As a comparison, the values of P , Q, R and
the noise power are the same of the Kalman Filter. With respect to the KF, the
difference is that the inputs of the state variables are not the matrices A,B,C,D,
but two Matlab functions in which the equation 3.8 are specified. The results in
the attitude variables observation are:
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Table 5.5. RMS error in the estimation of attitude variables with EKF

εq [m] 1e-5
εω [m] 3.1e-5

1st order Sliding Mode Observer

As specified in chapter 3, the parameters that must be tuned to obtain a good
performance from the 1st order Sliding Mode Observer (SMO) are ρ and τ . The
parameters chosen for this observer are

Table 5.6. 1st order SMO parameters for attitude observation

ρ 1e-2
τ 1e-1

The results in the attitude variables observation are:

Table 5.7. RMS error in the estimation of attitude variables with 1st order SMO

εq [m] 1e-2
εω [m] 1e-3

Super Twisting Sliding Mode Observer

As regard the Super Twisting algorithm, the variables that must be tuned are
α and β calculated as in Eq. 3.31. These two parameters depend from the vari-
ables a1 and a2, chosen as a1 = 1.1 and a2 = 1.5 [24]. In the end, the only one
parameter that must be tuned is C. The constant C of Eq. 3.31 is 50. Finally, the
root mean square estimation error with this observer is:

Table 5.8. RMS error in the estimation of attitude variables with Super
Twisting Observer

εq [m] 2.32e-5
εω [m] 2.25e-5
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As highlighted by the results, starting from the same initial conditions, the worst
observer is the 1st Sliding Mode Observer. This is a consequence of the system’s
non-linearity, which does not allow the first order observer to work properly in
terms of estimation. As regard as the best observation results, they are given by
the Super Twisting Observer that has the lowest RMS error.

To better understand the performance of each observation, several simulations
have been tested, starting from different initial conditions.

The following table illustrates the estimation errors for each initial condition.

Table 5.9. RMS error in the estimation of attitude variables starting from
different initial conditions

q = [0.5,0.5,0.5,0.5]T

ω = [0,0,0]T

KF EKF SMO STO
εq [m] 1.3e-4 1e-4 1e-2 2.32e-5
εω [m] 9.5e-5 3.1e-5 1e-3 2.25e-5

q = [0.5,0.5,
√

10/5,
√

10/10]T

ω = [0,0,0]T

KF EKF SMO STO
εq [m] 4e-4 1e-4 1.2e-2 2.36e-5
εω [m] 3.9e-5 3.2e-5 2.2e-3 2.18e-5

q = [0.5,0.5,
√

10/5,
√

10/10]T

ω = [0.07,0.07,0.07]T

KF EKF SMO STO
εq [m] 4e-4 1e-4 1.2e-2 2.36e-5
εω [m] 3.9e-5 3.2e-5 2.2e-3 2.51e-5

q = [
√

5/5,
√

5/5,
√

5/5,
√

10/5]T

ω = [0,0,0]T

KF EKF SMO STO
εq [m] 3.3e-4 1e-4 1.2e-2 2.38e-5
εω [m] 1e-5 3.1e-5 1e-3 1.93e-5
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Table 5.10. RMS error in the estimation of attitude variables starting from
different initial conditions

q = [
√

5/5,
√

5/5,
√

5/5,
√

10/5]T

ω = [0.07,0.07,0.07]T

KF EKF SMO STO
εq [m] 3.4e-4 1e-4 1.5e-2 2.38e-5
εω [m] 1e-5 3.1e-5 1e-3 2.42e-5

q = [
√

2/2,
√

10/10,
√

10/10,
√

30/10]T

ω = [0.1,0.1,0.1]T

KF EKF SMO STO
εq [m] 9.5e-4 1e-4 1.1e-2 2.39e-5
εω [m] 4.7e-5 3.2e-5 2.7e-3 3.5e-5

q = [
√

2/2,
√

10/10,
√

10/10,
√

30/10]T

ω = [0.5,0.5,0.5]T

KF EKF SMO STO
εq [m] 1.9e-3 1e-4 1.2e-2 2.46e-5
εω [m] 2.8e-3 3.1e-5 2e-3 2.7e-5

As expected, by changing the initial conditions a degradation in the observation
can be observed. The worst observer is the Sliding mode Observer of the first order.
If the step time of the simulation is reduced, there would definitely be a better
approximation. However, under the same starting conditions, the first order Sliding
Mode Observer reacts worse than the other observers. As for the classical and
Extended Kalman filters, their performances remain stable, especially that of the
Extended Kalman Filter, which linearizes the equations locally while maintaining
good performances. Regarding the Super Twisting Observer, as described in [42],
it represents the best choice compared both to the Kalman filter and EKF, since
the estimation results are better than the EKF.

5.2.2 Position Observation
As for the Attitude, the position and the velocities are estimated along the three
axis, starting from initial conditions determined in 5.3. In this case, the y axis
dynamics is observed separately from the x and z coupled dynamics, hence two
different observations for each state observer are simultaneously computed.
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Kalman Filter

The state variables, just like the attitude, are written in matrix form (2.23 and
2.24) and discretized. The classical Kalman Filter parameters used to estimate x
and z position, are shown in the following table:

Table 5.11. KF parameters for x and z position observation

Noise Power 1e-7
P 1e-6
Q diag(1e-3 1e-3 2e-3 2e-3)
R diag(1e-2 1e-2 1e-2 1e-2)

As regard the y axis:

Table 5.12. KF parameters for y axis position observation

Noise Power 1e-7
P 1e-6
Q diag(1e-3 2e-3)
R diag(1e-2 1e-2)

Once the setting parameters are defined and the simulation is completed, the
RMS estimation error for each axis is calculated.

Table 5.13. RMS error in the estimation of the position variables with the KF

εx [m] 3.1e-4
εy [m] 1.2e-4
εz [m] 3.3e-4

Extended Kalman Filter

As for the attitude, the Extended Kalman Filter is studied starting from the same
values of P , Q, R and noise power of the Kalman Filter. The results in the simu-
lation are showed in table 5.14.
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Table 5.14. RMS error in the estimation of position variables with the
Extended Kalman Filter

εx [m] 2.1e-4
εy [m] 3.16e-4
εz [m] 3.1e-4

As it might be expected the results obtained from the Extended Kalman Filter
are similar to the classical one. In particular, the performances in the estimation
for x and z axis parameters are slightly better, while for the y-axis the result is
slightly worse. As from [43], tuning the covariance matrices and the process noise
produces better results. The figure 5.4 illustrates the evolution of the estimated
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Figure 5.4. Comparison between KF and EKF observation.

variable compared with the position dynamic equations for the Exended and clas-
sical Kalman Filter. As it became clear the pattern of the Kalman Filter estimated
variable overlaps the real value calculated with 2.19. In this figure a zoom is made
so as to understand the real pattern of the estimated value, which furthermore
approximates with a small estimation error the real value. By reducing the process
noise the result of the estimation is better, ε decrease and the zigzag motion is
reduced, so it is reasonable to think that the pattern obtained is due also to the
noise added to the process.
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1st order Sliding Mode Observer

The parameters chosen for this observer have been selected for each axis. The

Table 5.15. 1st order SMO parameters for position observation

ρx 6
ρy 1e-2
ρz 3
τ 1e-2

results in the position variables observation are:

Table 5.16. RMS error in the estimation of position variables with 1st order SMO

εx [m] 5.8e-2
εy [m] 4.2e-7
εz [m] 1.7e-2

The results obtained in the position observation for the x and z axis are sightly
the same seen in the previous section. It is interesting to notice the good results
obtained in y axis estimation.

Super Twisting Sliding Mode Observer

As regard the Super Twisting algorithm, the variable that must be tuned is C,
appropriately chosen for each axis.

Table 5.17. Super Twisting Observer parameters for position observation

Cx 6
Cy 11
Cz 6

In the end, the root mean square estimation errors calculated for this observer are:
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Table 5.18. RMS error in the estimation of position variables with
Super Twisting Observer

εx [m] 3.1e-4
εy [m] 9.6e-4
εz [m] 3.1e-4
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Figure 5.5. Comparison between SMO and STO observation.

As regard as the pattern shown in the left part of the figure 5.5, it illustrates
the sign function influence in the calculation of the estimated values. This latter
produces the "zigzag" motion around the real value. In the right side of this figure,
the pattern of the STO estimated variables points out the influence of the sign func-
tion also in this estimation method, which in this way suffers from the chattering
behavior.

Analyzing the obtained results, it could be said that Extended Kalman Filter,
concerning the position along x and z axis, provides the best results. As for the
y axis variable estimation, the first order SMO turns to be the best. The last
step is to test, as previously done for the attitude observation, the quality of each
observer estimation under different initial conditions. Since the initial position
values are bounded to allow the satellite achieving the correct trajectory, only the
initial velocities are changed.
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Table 5.19. RMS error in the estimation of position variables starting from
different initial conditions

ẋ0 = 4.15 m/s, ẏ0 = 0 m/s, ż0 = 0 m/s

KF EKF SMO STO
εx [m] 3.1e-4 2.1e-4 5.8e-2 3.1e-4
εy [m] 1.2e-4 3.16e-4 4.2e-7 9.6e-4
εz [m] 3.3e-4 3.1e-4 1.7e-2 3.1e-4

ẋ0 = 4.15 m/s, ẏ0 = 0.5 m/s, ż0 = 0.5 m/s

KF EKF SMO STO
εx [m] 2.1e-4 3.1e-4 5.2e-2 3.11e-4
εy [m] 1.2e-4 1.1e-3 5e-2 9.6e-4
εz [m] 8.5e-4 3.1e-4 1e-2 3.11e-3

Table 5.20. RMS error in the estimation of attitude variables starting from
different initial conditions

ẋ0 = 4.15 m/s, ẏ0 = 2 m/s, ż0 = 1 m/s

KF EKF SMO STO
εx [m] 2.1e-4 3.1e-4 5.8e-2 3.11e-4
εy [m] 1.2e-4 1.1e-3 1.2e-2 9.6e-4
εz [m] 9.8e-4 3.1e-4 1.8e-2 3.12e-3

ẋ0 = 4.65 m/s, ẏ0 = 2 m/s, ż0 = 2 m/s

KF EKF SMO STO
εx [m] 2.2e-4 3.2e-4 3e-2 3.11e-4
εy [m] 1.2e-4 1.1e-3 1e-2 9.6e-4
εz [m] 1.1e-4 3.1e-4 2e-2 3.11e-4

Some interesting consideration can be done about tables 5.19 and 5.20. Starting
from y axis position, the results obtained changing initial conditions, show how
the first order sliding mode observer deteriorates its performance while increasing
the initial velocity. On the contrary, the other filters maintain their performance
stable. As regard the x and z axis, the performance of the filters sightly deteriorate
although maintaining good results. In particular, the Super Twisting Observer has
almost the same performance, and often better, of the other two filters, despite
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of the different initial conditions. The same results are obtained in [41], where
the Extended Kalman Filter is compared to the Sliding mode observer. The main
advantage of STO is in its good applicability in most practical cases. In the same
way the STO is compared to EKF in [44], with the same results. The robustness
of the Super Twisting Observer to noise can be guaranteed because no knowledge
of the noise is required. Therefore, it represents the best choice compared to the
Kalman Filter and EKF, since the estimation results are comparable to the EKF
[42].

5.3 Guidance and control

Figure 5.6. Guidance and Control blocks for x and z axis.

The Guidance algorithm is necessary to define the desired trajectory and velocity
of the analyzed system. For this simulation, quasi-impulsive maneuvers are applied
[22]. The reference mission is shown in figure 2.5 in which the output forces applied
in each maneuver are summed to calculate the variable mass, that is used as a
input for the maneuvers blocks. In this scheme, all the maneuvers accomplished by
the Chaser to reach the Target, shown in Chapter 2, are involved in the guidance
block, because each maneuver is subsequent to the previous one.

Hohmann Transfer

The input data necessary to determinate the ∆Vx of the Hohmann transfer, ∆z =
zt − zc and the Target initial angular velocity ω0. Another important aspect is to
define the initial condition of the maneuver in terms of position and velocity. Into
the simulation ẋ0 is calculated as:

ẋ0 = 3
2ω0z0 + ω0

4 ∆z (5.6)
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Since the final point of the Hohmann transfer is defined by the reference mission
(xfinalHT = −500m with respect to the Target), the initial position x0 must be
calculated as x0 = ∆x + xfinalHT . Finally from 2.1 the ∆Vx can be calculated. The
results are shown in the following table:

Table 5.21. Hohmann Transfer parameters

∆z 2100 m ∆x 4950 m

∆Vx 0.5942 m/s

x0 -5.450 m y0, z0 0 m

ẋ0 4.15 m/s ẏ0, ż0 0m/s

Radial Boost

To reach the final position S24 four different radial boost maneuvers are needed.
The input data to calculate the ∆Vz are the ∆x and ω0, as shown in equation 2.2.
The values for each radial maneuver are listed in the following table:

Table 5.22. Radial boost parameters

∆x1 200 m ∆x3 100 m

∆V z1 0.0733 m/s ∆V z3 0.0461 m/s

∆x2 150 m ∆x4 35 m

∆V z2 0.0478 m/s ∆V z4 0.0147 m/s

Cone of Approach maneuver

In the final corridor, the satellite must be enclosed in a cone for security reasons.
The value of the half cone angle is calculated as follow:

θ = arctg(r1 − r2

d1
) (5.7)

where r1 = 7m is the initial point maximum height and r2 = 0.1m is the final
point maximum height, next to the docking port. d1 = 15m is the relative distance
between the Chaser and the Target. With these values θ = 0.4311rad.

The impulse is a straight line Vbar approach with constant velocity. It requires
a continuous application of thrust to counteract the Coriolis forces. The values of
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the ∆Vx chosen is: ∆Vx = 0.15 m/s.

In this phase, z axis must be controlled to ensure the Chaser inside the security
cone. To control this variable, a PID controller is necessary. The PID gains chosen
are:

Table 5.23. PID parameters for z axis control

KP 20
KI 1
KD 300

Figure 5.7. Guidance and Control blocks for y axis.

As concern the position dynamics along the y axis, it is not influenced from the
other maneuver, because as represented in 2.19, the y dynamics is decoupled from
x and z. The aim is to keep this variable around zero. To achieve this goal both a
Sliding Mode Control (SMC) and a PID controller are designed and tuned in order
to define the best choice for this variable control. The PID parameters chosen are

Table 5.24. PID parameters for y axis control

KP 5
KI 1
KD 8

while the SMC parameters are:
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Table 5.25. SMC parameters for y axis control

c 1.5
ρ 2

As concern the external disturbances considered for the position evolution, the
air drag model and a constant value, that considers other external disturbances,
are taken into account for the simulation. From 2.26

FD ≈ 4× 10−5N (5.8)

while the constant force is assumed as:

Fext = 1× 10−5N (5.9)

As regard the disturbances affecting the y axis, a constant disturbance of 0.001N
is considered.

Finally in the following figures,the trajectory is analyzed alogn the three axis
and considering the x-z plane. As evident the control of each variable is computed,
and the pattern of the figures follows the reference mission 2.5.
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Figure 5.8. Evolution of x position.
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Figure 5.10. Complete manoeuvre in the x-z plan.
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Figure 5.12. Evolution of y position with SMC control.
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As concerning the y position control, the PID control is chosen. As it can be
seen in figure 5.12, the sign function influence the motion of this variable. To solve
this problem, the sigmoid function could be used, as explained in (3.22).

5.4 Attitude Control

Figure 5.13. Attitude determination and control block diagram.

To determinate the attitude variables, the mathematics model used for the deter-
mination of each variables are shown in section 2.2.1. Considering the external
disturbance model, the gravity gradient model is implemented. From Eq. 2.27 the
Gravity Gradient torque depends from the Euler angles, thus the gravity gradient
torque is defined as:

T ≈ 3n2 ·

(Iz − Iy)φ
(Iz − Ix)θ

0

 (5.10)

n =
ñ

µ/a3 is the orbital rate, where a is the semi-mayor axis of the orbit. φ and
θ are respectively the roll and pitch Euler angle. In addiction to the gravity gradi-
ent torque, a constant disturbance torque is added to simulate the other external
disturbances shown in section 2.3. The constant value is

Mext = 0.001Nm (5.11)

The reaction wheels model is explained in 5.1.3 and the values that must be
tuned for the simulations are the transfers functions coefficients. As concern the
numerator coefficient Kr and the denominator coefficient τ the following values are
chosen: Kr = 1 and τ = 1.

Finally, as regard as the control block, different controllers have been used for
the attitude. The first one is the Quaternion feedback controller (QFC), explained
in chapter 4. This controller is used as a comparison with the Linear Quadratic

59



Mission Scenario - Simulation and Results

Gaussian. In the end, the combination between the LQR controller and different
state observers is tested.

Starting from the QFC, as shown in 4.13 and 4.14, two different approaches in
the definition of the tuning parameter Kp can be applied. For this thesis work, the
second approach is applied so the parameters α and β are defined as

α = 0.01

β = 0.02

As regard as Kd = diag(d1, d2, d3), it is defined as follow

Kd =

8 0 0
0 6 0
0 0 8

 (5.12)
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Figure 5.14. Variation of quaternion with QFC Control.
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Figure 5.15. Variation of angular velocities with QFC Control.

The result in the control with the QFC are shown in figures 5.14 and 5.15.
Both the quaternions and the angular velocities reach the desired value in about
60 seconds for the quaternions and 20 seconds for the angular velocities, with an
initial oscillation.

As regard as the application of the Linear Quadratic Gaussian, the LQR control
gain must be calculated. First the weights Q and R must be defined:

Q =



15e− 4 0 0 0 0 0
0 15e− 4 0 0 0 0
0 0 15e− 4 0 0 0
0 0 0 15e− 4 0 0
0 0 0 0 15e− 4 0
0 0 0 0 0 15e− 4


(5.13)

R =

5 0 0
0 5 0
0 0 5

 (5.14)

The LQR gain Kr is then calculated starting from the Riccati equation, with the
following results: 0.0387 −2.6e− 6 9.1e− 5 0.0552 6.1e− 6 1.6e− 5

0 0.0387 −8.3e− 10 6.8e− 7 0.1243 −2.7e− 9
−1.2e− 4 7e− 10 0.0387 3.9e− 6 −6.2e− 9 0.0877

 (5.15)

The results of this control design are shown in the following figures.
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Figure 5.16. Variation of quaternion with LQG Control.
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Figure 5.17. Variation of angular velocities with LQG Control.

As from Figures 5.16 and 5.17, the LQG control works better with respect to the
QFC in term of stability of the attitude variables. Indeed, if with the QFC control
an initial oscillation of the angular velocities along the three axis happens, in this
kind of control the rotation immediately dumps. The settling time is approximately
the same for the quaternions, while it is higher for the angular velocities.
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Figure 5.18. Variation of quaternion with LQR + EKF Control.
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Figure 5.19. Variation of angular velocities with LQR + EKF Control.

In the end, the LQR optimal control is tested in combination with the Extended
Kalman Filter and the Super Twisting Observer. The controller works thanks to
the separation principle explained in section 4.2.2. Approximately the same result
of the LQG control is obtained, considering the same LQR gains for each controller.
Obviously, more the estimation is accurate, more the control will be accurate.
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Figure 5.20. Variation of quaternion with LQR + STO Control.
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Figure 5.21. Variation of angular velocities with LQR + STO Control.
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Chapter 6

Conclusions and Future
Works

In this thesis, a comparison of four different navigation algorithms is proposed:
Kalman Filter, Extended Kalman Filter, Sliding mode Observer and Super Twisting
Observer. These filters are involved in a rendezvous and docking simulation with
the aim of testing the effectiveness of the estimation.

A further objective is the control of all the variables, allowing the Chaser reaching
the Target. Four different controllers are implemented: the classical PID, the Slid-
ing mode Controller, the Quaternion Feedback Controller and the Linear Quadratic
Gaussian. The latter is a combination of both the optimal LQR control and the
Kalman Filter. The LQG is tested only for attitude control and he results obtained
through the LQG are better in terms of control stability than the QFC. In the same
way, the LQR combined with the STO and EKF provides good results. This means
that a good estimate can provide also a good control, if the separation principle can
be applied. Therefore, this thesis offers new insights analysis for further research,
through the control properties for unstable and highly non-linear systems.

As concerning the navigation algorithm, the main idea is to estimate all the state
variables involved in the simulation. The goal is to keep the estimated values close
to the real one, calculated through the dynamic equations. Once the observation
parameters have been defined and set, the simulation is done starting from the same
initial conditions. Subsequently, these latter are changed to test their observation
response.

By changing the initial conditions, each observer maintains its performance other
than the 1st Sliding Mode Observer. Therefore, as the results given by the latter
prove, the SMO performance are not comparable to the other three observers,
which maintain higher performances. A further step could definitively be to tune
the parameters, while reduce the step time of the simulation, so to obtain a better
estimation.
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Thereafter, a comparison between the Kalman Filter and the Extended Kalman
Filter takes place, setting the same parameters. In line with the results obtained
in [42], the EKF produces the best estimation results, although depending on ap-
propriate selection of the measurement and process noise matrices. Moreover, the
EKF maintains its performance despite the initial condition change. If Q and R
matrices are well tuned, EKF stability and convergence reveal to be good.

Finally, the Super Twisting Observer is studied by comparing the results with
the well known Kalman filters. As proved in [43], it is much simpler to implement
this observer, given that the dynamic performance can be modified although main-
taining good results. No knowledge of noise statistic is required, hence the Super
Twisting Observer turns out to be the best choice compared to the Kalman filter
in terms of robustness to external noise. Despite the suffering caused by the chat-
tering behavior, the STO steers satisfactorily the system, often obtaining better
estimation results than the EKF.

The following steps could be to simulate the maneuver in presence of bigger ex-
ternal disturbances and unexpected changes in the dynamics, trying to understand
the response of the filter in terms of estimation errors and observation stability. This
could represents a significant breakthrough for the design of sensor-less systems.
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