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Abstract

The purpose of the thesis is to evaluate and validate Navigation and Guidance algorithms
to perform autonomous In-Orbit Servicing (IOS) Space missions, a wide range of chal-
lenging new solutions for satellite operators. These missions address a large variety of
useful applications based on Rendezvous and Proximity Operations (RPOs) technique,
such as refuelling, life-extension, inspection, in-orbit assembly and active space debris re-
moval. Particularly, the focus of this work is on position control and path planning during
rendezvous and berthing operations, in which a Chaser satellite actively follows another
satellite, the Target, and then joints with it using a robotic arm.

In order to perform such manoeuvres, these algorithms must be robust and “flyable”,
which means that they should be able to effectively operate even with a system slightly
different from the one expected and should have a low computational cost. The Naviga-
tion algorithms considered are based on the Sliding-Mode Observer (SMO) technique: the
ability of observer-based algorithms to reconstruct the system dynamics despite receiving
just the measurable states as input and the robustness of the Sliding-Mode technique have
been the driving motors for this choice. The thesis also proposes an approach to per-
form data fusion using multiple position sensors, an optical camera and an accelerometer.
Sensor simulation models have been developed in order to recreate realistic inputs for the
Navigation algorithm, with different noise and sample rate.
As for Guidance and Control, different approaches have been chosen depending on the
distance of the Chaser from the Target. In the closing phase, two different strategies
have been adopted and compared. In the first manoeuvre is designed a priori using Hill’s
equations and then executed in orbit exploiting a Sliding-Mode Controller (SMC). In the
second strategy, the desired path is followed through the combined action of the Artificial
Potential Fields (APF) method with moving goal and the Sliding-Mode Control (SMC).
The latter strategy has been also adopted for the final approach, even though in this case
the APF goal point is fixed and the path is entirely calculated online. The classic APF
algorithm is able to attract the Chaser towards the Target performing obstacle avoidance
considering both the Chaser satellite and the fixed obstacles as points. In this thesis the
algorithm has been revised to contemplate the possibility of moving obstacles with their
own geometrical shapes and take into account physical dimensions of the Chaser satellite.
The major problem of APF, the presence of local minima, has been faced with the selec-
tion of harmonic 3D potential fields, characterised by the presence of global minima and
maxima only, both located in the singular points at the end of these functions domain.

Finally, the effectiveness of the selected Navigation and Guidance algorithms has been
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shown through several simulations conducted in MATLAB&Simulink environment, high-
lighting how the obstacle avoidance strategy impacts on the rendezvous trajectory and
the propellant consumption and showing the performance of the combination of SMO and
SMC in maintaining the desired final position during the motion of the robotic arm.
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Sommario

Lo scopo del lavoro di tesi è di valutare e validare algoritmi di Guida e Navigazione per mis-
sioni spaziali autonome di In-Orbit Servicing (IOS), un’ampia gamma di nuove soluzioni
per gli operatori e gestori di satelliti. Tali missioni sono pensate per numerose applicazioni
che si basano sulla tencica di Rendezvous e Proximity Operations (RPOs), come operazioni
di refuel, estensione del ciclo di vita, ispezione, assemblaggio in orbita e rimoziona attiva
di detriti spaziali. In particolar modo, l’attenzione di questo lavoro di tesi è posta sul con-
trollo della posizione e la pianificazione di traiettorie durante un’operazione di rendezvous
and berthing in cui un satellite Chaser insegue attivamente un secondo satellite, chiamato
Target, con lo scopo di agganciarlo tramite l’utilizzo di un braccio robotico.

Affinché si possano eseguire le manovre necessarie ad una missione di questo tipo, gli
algoritmi di GNC devono essere robusti e “flyable”, dunque devono essere in grado di
operare in maniera efficace anche con un sistema che presenta lievi differenze rispetto al
caso nominale e devono avere un costo computazionale contenuto. Per quanto riguarda la
Navigazione, gli algoritmi valutati sono osservatori che implementano la tecnica Sliding-
Mode (SMO): le ragioni che hanno guidato verso tale scelta sono state la capacità degli
algoritmi di osservazione di ricostruire la dinamica di un sistema nonostante una conoscenza
limitata ai soli stati misurabili e la robustezza che contraddistingue la tecnica dello Sliding-
Mode. La tesi propone anche una metodologia di data fusion per sfruttare le informazioni
fornite da camera ottica ed accelerometro, due sensori di posizione installati a bordo del
Chaser. Per ognuno di essi è stato realizzato un modello di simulazione che ha permesso
di ricreare input realistici per l’algoritmo di Navigazione, ciascuno con il proprio rumore e
sample rate.
Gli approcci adottati per la Guida e Controllo, invece, sono differenti a seconda della
distanze del Chaser dal Target. Nella “closing phase”, due strategie sono state scelte e
poste a confront. Nella prima, la manovra di avvicinamento è stata progettata a priori
utilizzando le equazioni di Hill ed eseguita in orbita sfruttando un controllore Sliding-Mode
(SMC). Nella seconda strategia, la traiettoria desiderata è ricreata con la combinazione
del metodo dei Campi Potenziali Artificiali (APF) aventi punto di goal mobile e della
tecnica dello Sliding-Mode Control. Questa strategia è stata adottata anche per la fase di
“final approach”, con la differenza che in essa il punto di goal dell’algoritmo APF è fisso
e la pianificazione della traiettoria avviene completamente online. L’algoritmo classico
APF, che permette di attrarre il Chaser verso il Target evitando eventuali ostacoli ma
considera sia il satellite che gli ostacoli fissi come dei punti senza un volume proprio, è stato
rivisitato per prevedere la possibilità di ostacoli mobili e con forma propria e considerare
anche le dimensioni fisiche del Chaser. Una delle criticità più importanti dell’APF, la
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presenza di minimi locali, è stata risolta tramite la scelta di campi potenziali armonici 3D,
i quali presentano unicamente punti di minimo e masssimo globali localizzati nei punti di
singolarità agli estremi del dominio.

Infine, l’efficacia degli algoritmi di Guida e Navigazione selezionati è stata mostrata
con l’aiuto di simulazioni effettuate in ambiente MATLAB&Simulink, evidenziando come
la strategia di “obstacle avoidance” impatti sulla geometria della traiettoria di approccio
e sul consumo di propellente e mostrando come l’azione combinata di SMO e SMC sia in
grado di mantenere la posizione desiderata anche durante la movimentazione del braccio
robotico.
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Chapter 1

Introduction

This work aims to the identification and demonstration of the effectiveness of robust Guid-
ance, Navigation and Control (GNC) algorithms with low computational cost for In-Orbit
Servicing (IOS) missions, a wide range of new solutions for satellite operators based on
Rendezvous and Proximity Operations (RPOs) techniques. Initially intended for military
purposes, today IOS aims to address a large variety of useful applications, such as refuelling,
life-extension, inspection, active debris removal, and represents one of the main challenges
for the future of space missions. IOS developments made a big step forward recently with
the launch of the Mission Extension Vehicle (MEV-1) which marked a concrete progress
in both technological and business areas of servicing operations, offering new interesting
prospects for the space sector.
However IOS also raises a variety of issues of different nature: legal and regulatory issues
related to the ownership of objects in orbit, security and defence problems concerning the
use of IOS solution such as system of destruction and espionage, and last but not least
safety issues related to RPOs safe conduct and the use of IOS solutions to achieve space
sustainability goals.

The thesis is therefore strongly driven by these new and promising applications and
faces their safety challenge proposing robust Sliding-Mode Observers (SMO) as Navigation
algorithm, due to their ability to evaluate all the states of a dynamic system even in case
of partial knowledge of the system itself. A modified version of the Artificial Potential
Field (APF) method combined with a Sliding-Mode Controller (SMC) is chosen as the
Guidance algorithm, due to the capability to elaborate online a collision-free path to guide
the Chaser satellite towards the Target.

1.1 History of In-Orbit Servicing missions
Although servicing of satellites has been theoretically considered since the dawn of space-
flight, little of it was done in the earliest decades. The first servicing provided in the
1990s and the 2000s were actually executed by human astronauts, such as the five Hub-
ble Space Telescope (HST) servicing missions to extend the lifespan of the HST through
subsystem-replacement, [1], and the repeated and regular servicing of the International
Space Station (ISS) from 1998 to the present day. Nowadays, instead, IOS commercial
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missions are intended to be autonomous and performed by robotic spacecraft (s/c).

Figure 1.1: HST attached to the Space Shuttle during STS-61, the first Hubble Space Telescope
servicing mission, [1].

The first collaboration was initiated in 2012 by the Defense Advances Research Projects
Agency (DARPA), with the aim to recycle retired satellite parts into new in-orbit space
assets, principally focusing on geosynchronous satellites, [2]. Although system launches
were programmed for 2016 and a number of system elements were designed and tested, the
US government-funded development program was terminated in 2015.
In 2016, however, the commercial company Intelsat signed a contract with Orbital ATK
for the first commercial IOS mission: the MEV-1 (Mission Extender Vehicle) contract,
intended to provide for a 5-year life-extension service of Intelsat 901 (I-901), in operation in
GEO since 2001, [3]. Developed by SpaceLogistics LLC, a subsidiary of Northrop Grumman
since the acquisition of Orbital ATK in 2018, the spacecraft was launched in October 2019
from Baikonur and started the RPO phase in I-901 in February 2020 in a graveyard 300
km above GEO, in order to prevent any possibility of accidents with other GEO satellites.
On February 25, MEV-1 completed the RPO phase autonomously approaching, capturing
and docking to I-901 and in April 2020 Intelsat announced that, according to the mission
plans and in compliance with orbital regulations, MEV-1 successfully relocated I-901 to its
new orbit slot. Since the vehicle has been designed to provide life-extension services for
up to 15 years, at the end of the current mission MEV-1 could either extend the service
or proceed with the disposal of I-901 to a graveyard orbit and become available for new
clients. In the meantime, Intelsat already signed a contract for MEV-2 to provide similar
servicing to its I-10-02 satcom, in operation since 2004 and SpaceLogistics LLc is reported
to be developing the MEV-2 spacecraft with additional capacity to carry payloads and
deploy small satellites.
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1.1 – History of In-Orbit Servicing missions

Figure 1.2: Intelsat I-901 seen from MEV-1 on the left, the docking mechanism in action on
the right, [3].

In the United States, institutional actors, in particular NASA, DARPA and the Depart-
ment of Defense, played a decisive role in promoting the development of IOS capabilities.
DARPA itself initiated another collaboration in 2017 between researchers and U.S. govern-
ment, with the aim to develop rules for future commercial use of in-orbit satellite repair,
since satellite servicing protocols have not been developed yet.
As for Europe, European companies have been actively preparing for the emergence of IOS
and ESA decided to identify the Active Debris Removal (ADR) as a strategic goal. The
first space debris removal service will be the ClearSpace-1 mission, [4], which will capture
and deorbit the 100 kg VEga Secondary Payload Adapter (VESPA) upper stage, in LEO
since 2013 (ConOps in Fig. 1.3). The launch is programmed to be in 2025.

Figure 1.3: ClearSpace-1 mission Concept of Operations, [4].
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1.2 Space debris and space sustainability
The term “space debris” refers to human-made objects in space which no longer serve a
useful function. These include non-functional spacecraft and abandoned launch vehicle
stages, mission-related debris, fragmentation debris originated from spacecraft explosions
or collisions and fragments derived by the satellites erosion and disintegration, like paint
flecks and solidified liquids expelled from spacecraft.

These objects began to accumulate in Earth orbit since the dawn of space exploration,
in the late 1950s, and gradually increased in the decades. The increase of space activities
characterising the last decade, however, caused a sudden rise of this phenomenon and in
October 2019 more than 20 000 artificial objects were reported in orbit around the Earth
by the US Space Surveillance Network , just 2218 of them being operational satellites.
Furthermore, these numbers refer only to objects large enough to be tracked. At the
beginning of 2021, the estimated number of space debris by dimension is much greater [5]:

• 128 million objects from greater than 1 mm to 1 cm;

• 90 0000 objects from greater than 1 cm to 10 cm;

• 34 000 objects greater than 10 cm.

Figure 1.4: Space debris count evolution by object orbit, [5].

As it can be seen from Fig. 1.4, these debris are mostly concentrated in Low-Earth
Orbits (LEO), which are the most common ones, and the amount of space debris steadily
increased during the past decades, with the exception of two sudden rises in the late 2000s.
These rises were the results of the Chinese Anti-Satellite (ASAT) test in 2007, in which a 865
km-height satellite was intentionally destroyed, and the unintentional collision occurred in
2009 between the 950 kg derelict satellite Kosmos 2251 and the 560 kg operational Iridium
33, once again in the higher portion of the LEO band. These 800-1000 km height orbits
still remain the ones characterised by the greatest debris density, also due to the fact that
the extremely low density of the atmosphere characterising these heights makes the objects
decay caused by aerodynamic drag an extremely slow process. Another particular orbit
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which is characterised by a high concentration of space debris is the Geostationary Orbit
(GEO) shared by many communication satellites. The natural decay process for this orbit
could require millennia, therefore satellites are usually moved away from thier orbital slots
and relocated into graveyard orbits at the end of their lifespan. Despite these efforts,
collisions have occurred even in these bands of orbits, such as the Russian Express-AM11
communications satellite which was struck by an unknown object in 2007.

Space debris represent a major hazard especially for the upcoming projects of “mega-
constellations” of internet satellites, which of course could be involved in collisions and
generate even more debris. In a ‘business-as-usual’ scenario the number of debris ob-
jects in space and the probability of catastrophic collisions will grow simultaneously: each
collision will generate more debris objects and increase the collision probability itself in
a cascade effect which will cause collision to prevail over the now-dominating explosions
within few decades. Eventually collisions fragments will start colliding with other collision
fragments, causing an autonomous rise of space debris. This self-sustained process, known
as “Kessler syndrome”, is particularly critical for LEO band and must be avoided in order
not to lose the capability to safely send satellites in orbit.

Figure 1.5: Representation of the Kessler syndrome evolution, [6].

As explained at the end of Sec. 1.1, ADR is one of the main tools to decrease the density
of space debris, particularly in the critical high-LEO band. However, removal missions are
not the only tools that can be used: mitigation techniques represent a fundamental mean
to reduce the formation of debris object itself. Each space mission nowadays implements
these mitigation techniques to elaborate safe disposal plans according to international
regulations, but prevention methods must be adopted in each phase of the mission itself.
An autonomous In-Orbit Servicing mission, therefore, must perform safely rendezvous
and proximity operations (RPOs), not only considering safety corridors, passively safe
manoeuvres and Collision Avoidance Manoeuvres (CAM) during the design of the Chaser
path toward the Target, but also adopting “obstacle avoidance” techniques to take into
account the possibility of encountering other obstacles, such as other satellites or space
debris objects, during the approach. Algorithms able to perform obstacle avoidance are
therefore mandatory to achieve the full automation of IOS mission in compliance with
current regulations and sustainability goals.
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1.3 Rendezvous & berthing operations
A space rendezvous is a set of orbital manoeuvres in which two vehicles arrive at the same
orbit and approach to a short distance. Usually, the Chaser satellite is the one actively
manoeuvring and moving towards a passive Target, which instead is the one “waiting” to
be reached. The Target could be both collaborative, such as another functioning space-
craft, or not collaborative, for example a non-functioning spacecraft or a object like space
debris.
This process may be followed by a physical joint of the two spacecraft, operation called
docking when the spacecraft joining together are free-flying, or berthing in case a passive
module is dragged into the mating interface with the aid of a robotic arm. While dock-
ing tends to be preferred for manned missions due to its capability of performing rapid
operations, critical requirement for an emergency evacuation from International Space Sta-
tion (ISS) for example, berthing is more suitable for IOS missions, in particular when the
spacecraft receiving the service is not collaborative (even though in case of not collaborative
Target the term capture should be used instead of berthing).

The first successful rendezvous was accomplished by US during the Gemini campaign:
after a series of failed attempts, in 1965 Gemini 6 was manually manoeuvred within 30 cm
of Gemini 7 and the position was hold for 20 minutes. The year after, US performed also the
first manual docking when Gemini 8, under the command of Neil Armstrong, rendezvoused
and docked with the uncrewed Agena Target Vehicle, [7]. The Soviets, instead, performed
the first automatic uncrewed rendezvous and docking between Cosmos 186 and Cosmos
188 in 1967, while in 1969 achieved their first manned docking with Soyuz 4 and 5 docking
and exchanging two crew members.

Figure 1.6: Agena Target Vehicle in orbit view from Gemini 8, [7].

Due to the vicinity of the objects involved, these operations must be performed in
compliance with strict regulations and requirements establishing boundaries on relative
position and velocity, on the accuracy of sensors and algorithms and even on the geometrical
shape of the approaching trajectory itself. For the sake of simplicity, the whole process
is commonly divided into different phases, each of them having its own design method,
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reference frame and requirements [8, 9]:

• Launch and orbit injection: the aim of the launch is to put the Chaser on a
lower orbit in the same orbital plane of the Target. Consequently, the launch site and
window should be chosen accordingly.

• Phasing: the objective is to correct eventual inclination or RAAN errors, reduce the
phase angle between the Chaser and the Target (Fig. 1.7) and bring the Chaser to
an orbit and a position near the Target so that the relative navigation can begin.
During this phase the Chaser is still controlled by ground stations.

Figure 1.7: Definition of phase angle, [9].

• Far range rendezvous manoeuvres: the purpose of this phase, also called homing,
is to reduce the relative velocity of the Chaser bringing it in the proximity of the
Target orbit. From this point forward the navigation is based on relative measures
and the control could be automated.

• Close range rendezvous manoeuvres: this phase could be furtherly divided into
closing, having the aim of acquiring the position, velocity and attitude requirements
to begin the final approach to the Target, and final approach itself, in which the
Chaser follows a predefined path towards the Target to acquire the state required for
mating operations.

• Mating: obviously, the last phase has the purpose of joining the Chaser with the
Target. Strict requirements concerning residual linear and angular velocity and posi-
tion and angular alignment must be observed, even during the movimentation of the
robotic arm in case of berthing.

Several strategies could be elaborated and adopted but a typical mission in reported in
Fig. 1.8.
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Figure 1.8: Schematic representation of a Rendezvous and Docking/Berthing mission, [10].

1.4 Navigation and Guidance algorithms in literature

The choice of the algorithm composing the GNC system of the Chaser s/c is fundamental for
the success of Rendezvous and Proximity Operations, and several examples of Navigation
and Guidance algorithms can be found in literature, both in aerospace and non-aerospace
applications.

As for Navigation, uncertainties, disturbances or measurement signals corrupted by
noise have often been faced exploiting Kalman filters. These filters are very effective and
computationally efficient, but their robustness is determined by the knowledge of statistics
parameters characterising the sensors noise, which is assumed to have a Gaussian distribu-
tion. For this reason, in the latest years, new Navigation techniques have been investigated
and proposed. Observers represent a promising alternative to the problem of perturbed
system observation, due to their capability to withstand noisy measurement signals with-
out requiring any statistics knowledge. Particularly, the use of the Sliding-Mode technique
in observation approach seems to greatly increase the algorithm robustness. Several appli-
cations and comparisons can be found in literature, [11, 12, 13] and the results obtained
are characterised by robustness, stability and convergence in finite time. In [13], in par-
ticular, the SMO is further combined with Proportional Navigation (PN) in the homing
missile guidance system. The performance achieved show robustness against noise and are
comparable to the Kalman filter, demonstrating the effectiveness of SMO algorithms even
in closed loop GNC systems.
In order to take into account safety factors and obstacle avoidance, however, Artificial Po-
tential Field methods are usually preferred for Guidance purposes. Many other works in
robotics and aerospace fields, [14, 15, 16], showed the effectiveness of the algorithm, which
is able to execute online computation of collision-free paths in both 2D and 3D environ-
ments. The APF method is also characterised by an high level of design flexibility, allowing
the user to overcome typical problems, such as the presence of local minima, modifying the
classical form of the algorithm and choose the Control algorithm which best suits the ap-
plication. In [14, 15], for example, APF law is paired with different Sliding-Mode Control
techniques, achieving high level of robustness and accuracy.
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1.5 Overview of the thesis work
The present work focuses on the choice and the design of Navigation and Guidance al-
gorithms for the management of relative position during the final phases of a rendezvous
and berthing operation during an IOS mission, beginning with the closing phase and end-
ing with the movimentation of the robotic arm attached to the Chaser service module.
Due to the vicinity of the two satellites the whole analysis is implemented using Clohessy-
Wiltshire or Hill’s equations and relative measurements provided by onboard sensors, which
are modelled in order to create realistic inputs for the Navigation algorithm. GNC algo-
rithms suitable for the execution of an automated In-Orbit Servicing mission are designed
and evaluated considering different factors such as their accuracy, their computational cost
and their robustness to unknown inputs and parametric uncertainties. Furthermore, the
work proposes some modification to standard GNC algorithms to perform data fusion and
avoid local minima problems performing obstacle avoidance.

The remaining part of the present document is organised in six chapters.

• Chapter 2 discusses the reference frame used for the analysis and the orbital dynamics
characterising the problem, emphasizing the guidelines for the choice of both the
general approach and the particular manoeuvres of a rendezvous closing phase.

• Chapter 3 illustrates different Navigation algorithms and compare them through liter-
ature and simulation results, explaining why Sliding-Mode observer-based algorithms
(SMO) have been chosen for this project. Different SMOs are presented, each with
an overview of its inputs, outputs, strengths and weaknesses.

• In chapter 4 a deep discussion relative to the Artificial Potential Field (APF) Guid-
ance algorithm is presented, proposing methods to avoid common problems corre-
lated to the conventional form of the algorithms and explaining the reasons behind
the choice of the Sliding-Mode Control algorithm (SMC) to be paired with APF. The
chapter proposes adaptations of the algorithm to take into account moving obstacles
and targets, too.

• Chapter 5 provides a presentation of the Chaser spacecraft configuration, first of all
describing its geometrical shape. Afterwards, the onboard thrusters configuration and
position sensors set are discussed, as well as the simulation models used to implement
these sensors and actuators.

• Lastly, in chapter 6, all the solutions presented in the previous chapters are ap-
plied to this particular mission starting with the choice of the approach strategy for
rendezvous, explaining how data fusion has been paired with the SMO selected as
Navigation algorithm and ending with the choice of Guidance and Control algorithms
for both the closing phase and the final approach. Different scenarios simulated in
MATLAB&Simulink environment with different configurations of obstacles are con-
sidered in order to show the effects of the obstacle avoidance strategy both on the
trajectory geometry and on the propellant consumption. Chaser capability to per-
form station-keeping during the robotic arm movimentation at the end of the final
approach is used as a validation tool to demonstrate SMO&SMC pairing effectiveness
in berthing operations.
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Chapter 2

Reference frames and orbital
dynamics

As previously discussed in Section 1.3, different phases of rendezvous and docking/berthing
(RVD/B) operations are usually dealt with using different reference frames and types
of navigation. The present chapter, therefore, aims to provide a deep explanation about
orbital relative motion dynamics, starting with an overview of the general coordinate frames
used for each RVD/B phase and then focusing just on closing and final approach, the ones
studied in this thesis work. The chapter ends with an illustration of safety considerations
that must be taken into account in the RVD/B manoeuvre design.

2.1 Reference frames overview

The coordinate frames used for the description of orbital motion could be both absolute
reference frames, used for absolute motion, or relative reference frames, more suitable for
the analysis of relative trajectories. Each frame Fi is defined by its origin Oi and a set
of three orthogonal vectors a1, a2, a3 representing the frame axes. Three main types of
coordinate frames are required in the design of a RVD/B operation:

• Orbit reference frames to describe the orientation of the satellite orbit relative to
inertial space, e.g. relative to the centre of the Earth.

• Spacecraft local orbital reference frames to describe the motion relative to a
particular point in orbit, which could be both a “virtual” point or another satellite.

• Spacecraft attitude and geometric frames to describe dynamic and kinematic
processes of the spacecraft relative to its own centre of mass, such as attitude ma-
noeuvres, identify meaningful points of the spacecraft, for example the location of
a particular sensor, or analyse the relative motion w.r.t. a particular point of the
satellite, such as the docking or berthing port.
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2.1.1 Earth-centred equatorial frame Feq

The Feq coordinates are normally used to describe a satellite absolute motion around the
centre of mass (CoM) of the Earth w.r.t. inertially fixed directions and is characterised by:

Figure 2.1: The Feq reference frame, [9].

• origin Oeq located in the CoM of the Earth, which is assumed to be truly spherical.

• axis xeq laying in the equatorial plane and pointing towards the vernal equinox direc-
tion.

• axis zeq normal to the equatorial plane and pointing north.

• axis yeq such to complete the right-handed tern.

2.1.2 Orbital plane frame Fop

Another frame used for absolute navigation purposes is Fop which is more likely to be
exploited in case only the motion of the satellite within its orbit should be of interest, for
example in the analysis of orbital manoeuvres. It is identified by:

Figure 2.2: The Fop reference frame, [9].

• origin Oop located in the centre of the Earth, which is assumed to be truly spherical.
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• axis xop laying in the orbital plane and pointing toward the ascending node.

• axis zop normal to the orbital plane and inclined to the north by an angle i.

• axis yop such to complete the right-handed tern.

The rotation matrix allowing the transformation from the Earth-centred equatorial
frame to the orbital plane frame is obtained by a first rotation about zeq by the value of
the RAAN angle Ω followed by a second one about the new x axis, corresponding to the
node line xop, by the inclination angle i.

xopyop
zop

 =

[L1(i)]−1ú ýü û1 0 0
0 cos i sin i
0 − sin i cos i


[L3(Ω)]−1ú ýü û cos Ω sin Ω 0

− sin Ω cos Ω 0
0 0 1

xeqyeq
zeq

 (2.1)

2.1.3 Spacecraft local orbital frame Flo

The Flo frame, often referred as the local-vertical/local-horizontal frame (LVLH), is the
main one used for the description of relative motions w.r.t. the moving position and
direction towards the centre of the Earth. This frame can be defined both for the Chaser
and the Target satellite, but in rendezvous manoeuvres the Target satellite LVLH frame
is usually used to describe the relative motion of the Chaser w.r.t. the Target itself. In
general, Flo is defined as follows:

Figure 2.3: The Flo reference frame, [9].

• origin Olo located in the satellite centre of mass.

• axis zlo, called also Rbar, pointing towards the centre of Earth.

• axis ylo, called alsoHbar, normal to the orbital plane and directed towards the opposite
direction of the orbit angular momentum vector.

• axis xlo, called also Vbar, such to complete the right-handed tern (in case of circular
orbits the Vbar axis is aligned with the orbit trajectory and the velocity vector itself).
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The coordinate transformation from the orbital plane frame to the spacecraft local
orbital frame is a function of time, since is obtained by a rotation around the zop by the
orbital phase angle Φ = ω¤t (with ω¤ being the orbital angular rate) and two 90deg-
rotations, the first one around the positive direction of zop and the second one around the
negative direction of the new x axis corresponding to xlo.

xloylo
zlo

 =

[L1(− pi
2 )]−1ú ýü û1 0 0

0 0 −1
0 1 0


[L3( pi

2 )]−1ú ýü û 0 1 0
−1 0 0
0 0 1


[L3(Φ)]−1ú ýü û cos Φ sin Φ 0

− sin Φ cos Φ 0
0 0 1

xopyop
zop

 (2.2)

2.1.4 Spacecraft attitude and geometric frames
The spacecraft attitude frame Fa, often referred to as body frame, is generally used to
describe rotations of the spacecraft body w.r.t. the LVLH frame. As the LVLH system it is
centred on the spacecraft CoM, while the direction of its axes is either linked to geometrical
features of the satellite itself or aligned with directions of interest characterising the phase
of the manoeuvre. The coordinate transformation allowing to transform a vector from the
LVLH frame to the attitude frame is obtained rotating the former one by the attitude
angles ψ (yaw), θ (pitch) and φ (roll).

xaya
za

 =

[L1(φ)]−1ú ýü û1 0 0
0 cosφ sinφ
0 − sinφ cosφ


[L2(θ)]−1ú ýü û− sin θ 0 cos θ

0 1 0
cos θ 0 sin θ


[L3(ψ)]−1ú ýü û cosψ sinψ 0

− sinψ cosψ 0
0 0 1

xloylo
zlo

 (2.3)

Spacecraft geometric frames Fge, instead, are usually exploited to describe relative
motions w.r.t. particular points or directions characterising the satellite itself, e.g. sensors
or docking/berthing mechanisms. Fig. 2.4 compares the two systems:

Figure 2.4: Fa reference frames on the left, Fge on the right, [9].

As it can be seen, the origin Oge is located in the satellite point of interest, while the
axes could be either aligned with or under a fixed angle to the ones of the attitude frame.
Lastly, it must be pointed out that the coordinate transformation between Fa and Fge
has to take into account not only a triple rotation, but also the translation between the
spacecraft CoM and the point of interest.
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2.1.5 Reference frames used in RVD/B phases
During rendezvous and docking/berthing missions, the common procedure, [8], is to use
absolute frames and navigation until the end of the phasing phase: prior to this point,
Chaser and Target are far from each other and their motion is studied as the orbital
motion of a satellite around a central body, i.e. the Earth. As an example, Feq is generally
preferred to study and decide launch sites and windows, while the use of Fop is more
effective when the Chaser satellite has already reached the orbit, which means it is likely
to be used for the orbital manoeuvres executed during the phasing.

With the beginning of the homing phase, instead, Chaser and Target get closer and
the main interested is shifted to relative motions and navigation. In particular, the frame
used for homing, closing and final approach phases is the Target LVLH frame: in this way,
the Target position is always known and fixed in OLV LH , while the position of the Chaser
is expressed exactly as the relative position w.r.t. the Target CoM. Lastly, during the
mating, Target geometric frames could be used as an alternative to the LVLH one in case
it is desired to describe relative motions directly w.r.t. the docking/berthing mechanisms.
Tab. 2.1 summarises the discuss of the present section.

Table 2.1: List of reference frames usually adopted during RVD/B manoeuvres.

Phase Navigation type Reference frame
Launch and orbit injection Absolute Feq/Fop

Phasing Absolute Fop

Far range manoeuvres Relative Target FLV LH
Close range manoeuvres Relative Target FLV LH
Final approach Relative Target FLV LH
Mating Relative Target FLV LH/Fge

2.2 Relative motion dynamics - Hill’s equations
As previously discussed, from the homing phase on, rendezvous operations are analysed
using the Target LVLH frame and the motion of the Chaser s/c is described w.r.t. the
Target CoM. Under the assumption of circular orbit with constant orbital angular rate,
the relative motion dynamics can be described by Hill’s equations, often referred to also
as Clohessy-Wiltshire equations:

ẍ− 2ω¤ż = 1
mc

Fx

ÿ + 2ω2
¤y = 1

mc
Fy

z̈ − 3ω2
¤z + 2ω¤ẋ = 1

mc
Fz

(2.4)

Where:
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• x, y, z represent the Chaser relative position w.r.t. the Target respectively along
Vbar, Hbar, Rbar.

• ω¤ = 2π
Tt

is the constant angular rate characterising the circular orbit of the Target.

• mc is the Chaser s/c mass which could also be time-varying, e.g. following the rocket
equation ṁc = Fthr

g Isp
with Fthr being the thrust modulus, g the gravitational acceler-

ation of Earth and Isp the specific impulse of the selected thrusters.

• Fx, Fy, Fz represent the forces acting on the Chaser respectively along Vbar, Hbar, Rbar,
so expressed in the Target LVLH frame - no forces are considered to be acting on the
Target.

It must be highlighted that Fx, Fy, Fz are the components of the forces vector F which
is the sum of both thruster forces Fthr and environmental forces Fex, e.g. residual atmo-
spheric drag, solar pressure, gravitational forces due to the Earth non-perfect sphericity
and magnetic forces. If these forces are not directly obtainable in the LVLH frame, they
must be multiplied by the appropriate rotation matrix to be transformed into the right ref-
erence system before their use inside Hill’s equations. For example, Fthr is usually known
in the Chaser body or attitude frame and it must be transformed as it follows:

F(LV LH)
thr = LLV LH_a F(a)

thr (2.5)

where LLV LH_a is obtainable as the inverse of the matrix presented in Eq. 2.3 and trans-
forms a vector from the attitude to the LVLH frame.

The Eq. 2.4 represent a system of linear differential equations the solution of which can
be easily calculated computationally, while obtaining analytical solutions results not to be
trivial. In 1960, Clohessy and Wiltshire obtained an analytical linear solution considering
constant forces acting on the Chaser and distances between Chaser and Target much smaller
than the distance of Target from the Earth. The formulation is reported in the Eq. 2.6
and usually used for the study of impulsive/continuous thrust rendezvous manoeuvres.

x(t) =
34ẋ0

ω¤
− 6z0

4
sin (ω¤t) − 2ż0

ω¤
cos (ω¤t) + (6ω¤z0 − 3ẋ0) t+

3
x0 + 2ż0

ω¤

4
+

+ 2Fz
ω2

¤mc
(ω¤t− sin (ω¤t)) + Fx

mc

A
4
ω2

¤
(1 − cos (ω¤t)) − 3

2 t
2
B

y(t) = y0 cos (ω¤t) + ẏ0

ω¤
sin (ω¤t) + Fy

mc
(1 − cos (ω¤t))

z(t) =
32ẋ0

ω¤
− 3z0

4
cos (ω¤t) + ż0

ω¤
sin (ω¤t) +

3
4z0 − 2ẋ0

ω¤

4
+

+ 2Fx
ω2

¤mc
(sin (ω¤t) − ω¤t) + Fz

mc
(1 − cos (ω¤t))

(2.6)

The linearisation allowing to obtain these readable equations, however, causes the accuracy
of Clohessy Wiltshire equations to decrease with the distance from the origin, the Target
CoM: due to the curvature of the orbit the error in the z-direction rapidly increases when
the distance between Chaser and Target is larger than tens of kilometres, changing for few
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metres at 10 km to several tens of metres at 30 km. A curved definition of the x-coordinate
could eventually increase the application range of these equations, but this discussion would
be outside the scope of this thesis work, which focuses on the closing and final approach
phases.

2.3 RVB global approach strategy
The global strategy for a rendezvous and berthing operation strongly depends on the strat-
egy that has to be adopted for the final approach which, in turn, depends mainly on the
location of the Target berthing mechanism, the capabilities of the robotic arm and safety
factors.
As it can be seen from both the formulations reported in Eq. 2.4 and 2.6, Hill’s equa-
tions are characterised by a coupled motion in Vbar and Rbar and an independent motion
along Hbar. This feature results in a eventual sinusoidal de-coupled motion along the Hbar

direction in presence of any y0, ẏ or Fy /= 0. For this reason, approach in the Hbar direc-
tion must be immediately excluded since the Chaser motion will always tend dangerously
towards the Target.

Figure 2.5: Example of sinusoidal motion along Hbar during two orbital periods caused by an
initial impulse in the +y-direction, [9].

Possible paths to reach the Target are consequently approaches in the ±Vbar and ±Rbar
direction and the choice will greatly influence the execution of the previous closing phase
since the aiming point of this phase will lay on ±Vbar or ±Rbar accordingly. In case
of docking, this choice would be strictly dictated by the location of the docking port and
docking axis. In case of berthing operations, instead, the strategy selection is less dependent
on the location or the axis of the berthing port. Depending on the reach and articulation
capabilities of the robotic arm, in fact, a convenient “berthing box” can be selected, taking
into further account only the geometry shape of the satellites and the location of the
grapple fixture, the part of the captured satellite which will be grabbed by the robotic arm.
Flexibility in the choice of approaching paths is indeed the major advantage of berthing,
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allowing to adopt Vbar approaches which are usually preferable to Rbar ones since a hold
point on Vbar is often required for safety or operational reasons. It must be highlighted
also that performing hold points on Vbar is much less propellant-consuming than performing
station-keeping on Rbar because relative orbital dynamics naturally allow to remain on a
fixed position along Vbar with zero relative velocity without the application of any force.

In the following sections, however, closing phase manoeuvres suitable for both types of
approach as well as straight line final approaches along both Vbar and Rbar will be presented
for the sake of generality. No homing phase manoeuvres will be discussed since the present
work only focuses on the rendezvous last few hundreds of metres.

2.4 Closing phase
Since the aim of the homing phase is to bring the Chaser near the Target and acquire its
orbit, we will consider the starting point of the closing phase as laying on the Vbar axis.
Objective of the closing phase, instead, is the reduction of the range between Chaser and
Target and the acquisition of proper position and velocity to begin the final approach. If
the approach axis for mating is not in the ±Vbar direction, the closing phase may include
a fly-around manoeuvre to acquire the approach axis, otherwise the phase end point will
lay again on the Vbar axis. This kind of task can be executed with two different types of
manoeuvres, the features of which are discussed below.

• Impulsive manoeuvres: trajectories evolving from a set of initial conditions plus
an instant change of velocity that represents a boost manoeuvre.

• Continuous thrust manoeuvres: trajectories evolving from a set of initial con-
ditions plus the continuous application of a constant force (calculated in open-loop)
along the trajectory.

Impulsive manoeuvres are usually less propellant-consuming and requires less time to
reach the endpoint, so they should be preferred when possible. However, instant velocity
changes are not obtainable in reality due to the limited level of thrust so impulsive manoeu-
vres will inevitably be quasi-impulsive in real applications, the accuracy of which will lowers
with the firing time increase. If the firing time required to acquire the desired velocity is
much smaller than the orbital period the manoeuvre can be considered as quasi-impulsive
with good approximation, otherwise the selection of continuous thrust manoeuvres will be
mandatory. The firing time necessary to execute the velocity change required ∆V can be
calculated as showed in Eq. 2.7.

∆ton = ∆V mc

Fthr
(2.7)

where Fthr is the available thrust level. This formula represents a good approximation if
the mass of the Chaser is quasi-constant during the boost itself, the variation of which is
calculated in Eq. 2.8:

∆mc = ṁc ∆ton = Fthr
g Isp

∆V mc

Fthr
= ∆V mc

g Isp
(2.8)

Consequently, for a selected manoeuvre with a certain ∆V requirement, the values of
∆ton, ∆mc and the choice between quasi-impulsive and continuous thrust manoeuvres are
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dictated by the thrust level Fthr and the specific impulse Isp characterising the onboard
thrusters. These features are linked to the nature of the thruster itself:

• thermochemical thrusters, usually characterised by high levels of thrust, allow to have
low ∆ton and are suitable for quasi-impulsive manoeuvre, even though the propel-
lant consumption could rapidly increase with the ∆V effort due to their low specific
impulses.

• electric/electromagnetic thrusters, despite having low propellant consumption thanks
to their high specific impulses, are characterised by extremely low thrust levels and
therefore demand continuous thrust manoeuvres.

In the following sections, only manoeuvres characterised by forces in the Vbar −Rbar plane
(in plane manoeuvres) will be discussed since, as previously discussed, the effect of out of
plane impulses will always be a sinusoidal motion around the orbital plane with a period
corresponding to the orbital one.

2.4.1 Tangential thrust manoeuvres
During the closing phase, thrust manoeuvres with a ∆V in a ±x-direction are used for
transfers along the Target orbit and fly-arounds, e.g. from V-bar to a point where an R-bar
approach can commence. The effect of a ∆V impulse in the positive x direction over a

Figure 2.6: Example of relative motion over a period after a ∆Vx = 0.01 m/s, [9].

single orbital period can be seen in Fig. 2.6, where the initial conditions are:
x0, y0, z0 = 0
ẋ0 = ∆Vx = 0.01 m/s
ẏ0, ż0 = 0

The resulting trajectory is the sum of a looping motion and a drift motion towards to
direction opposite to the initial impulse which causes a remarkable change in the Chaser
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relative position w.r.t. the Target. Analytically, it is described by Eq. 2.9.

x(t) = 1
ω¤

∆Vx (4 sin (ω¤t) − 3ω¤t)

y(t) = 0

z(t) = 2
ω¤

∆Vx (cos (ω¤t) − 1)

(2.9)

Tangential boost transfer along Vbar
The manoeuvre consists of two Vbar impulses given in opposite directions. The first

∆Vx1 is applied in point x1 pointing in the opposite direction of the desired transfer, while
the second impulse ∆Vx2 to stop the relative motion is provided after an orbital period
T when x2(T ) = x1 − 6π

ω¤
∆Vx1 and z2(T ) = z1 = 0. Both the impulses have the same

magnitude:

|∆Vx1| = |∆Vx2| = ω¤

6π∆xdesired

|∆Vtotal| = ω¤

3π∆xdesired
(2.10)

The manoeuvre, a schematic representation of which is reported in Fig. 2.7, is usually
adopted in case a Vbar final approach has been selected since it allows to acquire another
position laying on the x−axis itself after an orbital period. In the ideal case, the end point
of such a transfer could be exploited as a hold point since orbital dynamics naturally allow
to remain on the Vbar axis without requiring any control force and, even taking into account
small position/velocity errors which could be present in reality, the hold point along Vbar
will always remain characterised by low propellant consumption.

Figure 2.7: Example of tangential boost transfer towards −Vbar direction, [9].

Eventually, the manoeuvre could be stopped at t = kT with k > 1 to exploit the drift
motion that characterise the manoeuvre and continue with the transfer without further
propellant consumption.

Tangential boost fly-around
The manoeuvre consists of two Vbar impulses, but in this case the objective of the

manoeuvre is to acquire an Rbar position to begin an Rbar final approach. To achieve this
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goal, the second impulse is provided at t = T
2 , when the x and z position of the Chaser are

x2(T2 ) = x1 − 3π
ω¤

∆Vx1 and z2(T2 ) = z1 − 4
ω¤

∆Vx1. Since the final point of the manoeuvre
must lay on Rbar it is desired that x2 = 0, which means that x1 must be ± 3π

ω¤
∆Vx1,

depending on the sign of ∆Vx1. The impulses required to execute the manoeuvre are:

|∆Vx1| = ω¤

4 ∆zdesired

|∆Vx2| = ω¤

4 ∆zdesired + 3ω¤

2 ∆zdesired = 7ω¤

4 ∆zdesired
|∆Vtotal| = 2ω¤∆zdesired

(2.11)

It must be pointed out that the second impulse is different from the first one because it
must not only stop the tangential boost transfer in its midpoint (ω¤

4 ∆zdesired as ∆Vx1)
but also cancel the relative velocity along Vbar which naturally characterise a position with
Rbar /= 0 (3ω¤

2 ∆zdesired). This causes the total propellant consumption to increase consid-
erably. A schematic representation of the manoeuvre is reported in Fig. 2.8.

Figure 2.8: Example of tangential boost fly around to acquire both ±Rbar positions, [9].

Manoeuvres for an eventual station keeping or the Rbar approach itself must begin imme-
diately after the end of the fly around, otherwise orbital dynamics will cause the Chaser
to move away from the Target (further explanations on free drift trajectories can be found
in [9]).

2.4.2 Radial thrust manoeuvres
Thrust manoeuvres which features a ∆V in ±z-direction can be used, similarly to tangen-
tial manoeuvres, for transfer along the Target orbit and for fly-around to an Rbar approach.
The main difference between tangential and radial manoeuvres consists of the latter one
not changing the orbital period of the Chaser orbit, but just its eccentricity. This means
that no global drift motion along Vbar occurs in radial manoeuvres. The effect of a ∆V
impulse in the positive z direction over a single orbital period can be seen in Fig. 2.9,
where the initial conditions are:

x0, y0, z0 = 0
ż0 = ∆Vz = 0.01 m/s
ẋ0, ẏ0 = 0
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Figure 2.9: Example of relative motion over a period after a ∆Vz = 0.01 m/s, [9].

The resulting trajectory consists of a looping motion around the Target orbit which
causes smaller displacements of the Chaser along both Vbar and Rbar when compared with
the tangential manoeuvre reported in Fig. 2.6. Analytically, this trajectory is described
by Eq. 2.12.

x(t) = 2
ω¤

∆Vz (1 − cos (ω¤t))

y(t) = 0

z(t) = 1
ω¤

∆Vz sin (ω¤t)

(2.12)

Radial boost transfer along Vbar
The manoeuvre consists of two Rbar impulses given in same direction. The first ∆Vz1 is

applied in point x1 pointing towards +Rbar if the desired transfer motion is towards +Vbar
and vice versa, while the second impulse ∆Vz2 to stop the relative motion is provided after
half an orbital period, when x2(T2 ) = x1 + 4

ω¤
∆Vz1 and z2(T2 ) = z1 = 0. Both the impulses

have the same magnitude:

|∆Vz1| = |∆Vz2| = ω¤

4 ∆xdesired

|∆Vtotal| = ω¤

2 ∆xdesired
(2.13)

A schematic representation of the manoeuvre is reported in Fig. 2.10. Similarly to tan-
gential boosts, radial boosts are usually adopted in case of Vbar final approaches but are
often even preferred to them, although requiring higher ∆Vtotal thus an higher quantity of
propellant. The absence of drifting motion, in fact, may usually be a safety or an opera-
tional requirement of the manoeuvre.
In case of no ∆Vz2 execution, the Chaser would return to the starting point of the manoeu-
vre at t = T , hence no advantages could be obtained by postponing the second impulse;
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Figure 2.10: Example of radial boost transfer towards +Vbar direction, [9].

at the same time, this feature would permit to reattempt the manoeuvre without further
fuel consumption in case of GNC system or thrusters failures in x2.

Radial boost fly-around
The manoeuvre consists of two impulses, the first one, ∆Vz1, directed towards +Rbar if

the starting point is located behind the Target and vice versa, while the second one, ∆Vx2,
respectively along ∓Vbar in order to stop the motion in the Vbar direction and acquire an
Rbar position to begin an Rbar final approach. The second impulse is provided at t = T

4 ,
when the x and z position of the Chaser are x2(T4 ) = x1+ 2

ω¤
∆Vz1 and z2(T4 ) = z1+ 1

ω¤
∆Vz1.

Since the end point of the manoeuvre must lay on Rbar it is desired that x2 = 0, which
means that x1 must be ∓ 2

ω¤
∆Vz1, depending on the sign of ∆Vz1. The impulses required

to execute the manoeuvre are:

|∆Vz1| = ω¤∆zdesired
|∆Vx2| = 2 |∆Vz1| = 2ω¤∆zdesired
|∆Vtotal| = 3ω¤∆zdesired

(2.14)

Similarly to tangential boost fly-around, manoeuvres for an eventual station keeping or
the Rbar approach itself must begin immediately after the acquisition of the end point,
otherwise the Chaser will move away from the desired position due to orbital dynamics. A
schematic representation of the manoeuvre in case of +Rbar endpoint is reported in Fig.
2.11.
Once again, the ∆V cost of the radial manoeuvre results to be higher than the tangential
alternative, even though radial boost fly-arounds are often used in inspection missions since
the absence of drifting motions allows to continuously loop around the Target following an
elliptical trajectory when the second impulse is not executed.

2.4.3 Continous thrust manoeuvres
Previously presented manoeuvres were all impulsive ones, suitable for high thrust level
thrusters, such as thermochemicals. In case of low thrust level thrusters, instead, the
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Figure 2.11: Example of radial boost fly around to acquire a +Rbar positions, [9].

adoption of continuous thrust manoeuvres is mandatory. Two different types of such ma-
noeuvres can be identified:

• Continuous thrust manoeuvres having their impulsive counterpart: these manoeuvres
are similar to the ones previously discussed but are suitable for low thrust level
thrusters. They demand the application of a constant acceleration in a particular
direction throughout the whole trajectory and usually requires double the time than
their impulsive counterparts. Since the trajectory executed are similar to those of the
corresponding impulsive manoeuvres, thus exploit orbital dynamics, the ∆V required
is contained and usually similar to the one of their counterparts.

• Forced motion continuous thrust manoeuvres: these manoeuvres forces the Chaser to
follow particular trajectories which would not naturally occur, such as straight lines
or circular fly-around, or to remain in particular points from which orbital dynam-
ics would cause the s/c to move away (station keeping). Since these manoeuvres
are constantly “hampered” by the dynamics characterising free relative motion, ∆V
requirements tend to increase considerably.

In Fig. 2.12 an example of a continuous radial thrust transfer along Vbar is displayed:
the manoeuvre requires the constant radial acceleration γz = ω2

¤
4∗π∆xdesired, is characterised

by a doubled manoeuvring time, ∆t = T and a smaller z-displacement, zmax = 1
2π∆xdesired.

The total ∆V required is

∆Vtotal = γz∆t = ω2
¤

4 ∗ π
∆xdesired

2π
ω¤

= ω¤

2 ∆xdesired (2.15)

which is the same ∆V of an impulsive radial boost. If the same ∆xdesired had to be covered
adopting, for example, a forced straight line along Vbar, the amount of ∆V required would
have greatly increased.

Further information relative to the first type of continuous thrust manoeuvres and to
forced hold points can be found in [9]. Forced straight line manoeuvres, instead, will be
discussed in Sec. 2.5, since they are more frequently adopted during the final approach.
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Figure 2.12: Continuous thrust counterpart of a radial boost, [9].

2.5 Final approach
The objective of the final approach phase is to achieve docking or berthing capture condi-
tions in terms of positions and velocities and of relative attitude and angular rates. The
accuracy with which these conditions are required to be achieved depends on the typology
of mating that will be performed. Focusing just on position accuracy, in case of docking the
requirements are about a few centimetres in lateral position and of the order of 1 − 2 cm/s
for axial and lateral linear velocity. In case of berthing, instead, position accuracy about 5
times larger than the one required for docking is still acceptable. In contrast, linear rates
requirements are 5 time stricter than the aforementioned values of docking: larger values
of relative velocity could make the s/c move too far away from the nominal position dur-
ing the robotic arm movimentation and eventually leave the berthing box, or could cause
drastic multi-body dynamics effects once the robotic arm has grabbed the grapple fixture.

For observability and safety reasons, moreover, a cone-shaped approach corridor, within
which the approach trajectory must remain, is often defined and originates from the Target
vehicle mating point. Such a corridor is designed so that the Target remains inside the Field
of View (FoV) of the on-board sensors throughout the whole final approach. Consequently,
the trajectory types used for this phase are usually closed-loop controlled straight line or
quasi-straight line approaches which could take place both along Vbar or Rbar depending
on the location of the docking mechanism / berthing box. Even though the final approach
manoeuvres are always closed-loop ones, in the following sections open-loop straight line
approaches starting from hold points will be shown in order to calculate the nominal ∆V
requirements.

2.5.1 Straight line Vbar approach
In the simplest case of straight line Vbar approach the Chaser is forced to achieve a constant
velocity Vx w.r.t. the Target and move from x1 to x2, with the velocities in the other
directions kept equal to zero. The motion is started with an impulse of ∆Vx1, which
produces the velocity in the x-direction Vx, and stopped with an impulse of the same
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magnitude but in the opposite direction ∆Vx2, as shown in Fig. 2.13.

Figure 2.13: Forced straight line motion along Vbar starting from the origin, [9].

In order to keep the lateral velocities equal to zero a constant acceleration towards the
Rbar direction must be applied, the value of which can be derived by Hill’s equations and
is

γz = 2ω¤Vx (2.16)

In such way, the equation of motion results to be a simple one dimensional motion with
constant velocity x(t) = x1 + Vxt, and the time required to complete the manoeuvre is
∆t = x2−x1

Vx
= ∆xdesired

Vx
. The total ∆V required by the forced straight line motion is

|∆Vtotal| = |∆Vx1| +
|γz∆t|ú ýü û

|2ω¤∆xdesired| + |∆Vx2| (2.17)

It is clearly possible to observe that this kind of manoeuvre is way more expensive than
all the impulsive Vbar transfers previously discussed, since the second term of ∆Vtotal alone
is four times greater than the total ∆V required for a radial boost transfer of the same
∆xdesired.
Eventually the manoeuvre could be executed following a x-velocity profile: in this case,
the lateral acceleration would be time-varying, following the law γz(t) = 2ω¤Vx(t), and the
∆Vtotal would be calculated through a time integration of γz(t).

2.5.2 Straight line Rbar approach
Similarly to the previous case, this manoeuvre is characterised, in its simplest case, by a
straight line motion with constant velocity Vz which moves the Chaser from z1 to z2, with
the velocities in the other directions kept equal to zero. The motion is started with an
impulse of ∆Vz1, which takes the velocity in the z-direction from zero to Vz, and stopped
with an impulse of the same magnitude but in the opposite direction ∆Vz2, as shown in
Fig. 2.14.

In order to keep the lateral velocities equal to zero, this time, both a continuous x-
acceleration and a linearly varying z-acceleration must be applied. These accelerations,
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Figure 2.14: Forced straight line motion along Rbar starting from the origin, [9].

obtained from Hill’s equations, are calculated as

γx = − 2ω¤Vz

γz = − 3ω2
¤z = −3ω2

¤ (z1 + Vzt)
(2.18)

where z(t) = z1 + Vzt is the equation describing the Chaser motion. The time required to
complete the manoeuvre is ∆t = z2−z1

Vz
= ∆zdesired

Vz
and the total ∆V required is

|∆Vtotal| = |∆Vz1| +
|γx∆t|ú ýü û

|−2ω¤∆zdesired| +

---s t2
t1
γz dt

---ú ýü û-----−3ω2
¤
z2

2 − z2
1

2

-----+ |∆Vz2| (2.19)

The propellant consumption characterising this manoeuvre, therefore, is even higher than
the one required by a straight line Vbar approach since the acceleration required must
include also the γz term which would be required to perform an hold point with z /= 0.
Once again, the manoeuvre could be executed following a z-velocity profile: in this case,
both the lateral acceleration would be time-varying, following the law γx(t) = −2ω¤Vz(t)
and γz = −3ω2

¤(z1+Vz(t)t), and the ∆Vtotal would be calculated through a time integration
of both γx(t) and γz(t).

2.6 Operational and safety considerations
The choice between the previously described manoeuvres is usually strongly driven by the
global strategy selected for the rendezvous. For example, straight line Rbar approaches are
usually avoided unless the mating interface of the Target is located in a point which is
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difficult to reach from Vbar. Fly-around manoeuvres are usually adopted only in case of
inspections operations or when the final approach is designed to be along an axis different
from Vbar.

Other important factors which must be taken into account are operational and safety
ones. As for operations, some missions could have the operational requirement to begin
and end each rendezvous manoeuvre in an orbital period so that the satellites result to be
inside the visibility cone of a particular ground station or in the same illumination condi-
tions during the execution of both the impulses: in these cases, tangential boost transfers
along Vbar should be preferred. Otherwise, when such operational requirements do not
exist, radial boost transfers along Vbar could be adopted, since they required half the time
to cover the same ∆xdesired with a slightly increased fuel consumption.
Safety considerations, anyway, often have a much heavier impact on the manoeuvre selec-
tion. The main safety aspects characterising a manoeuvre are its sensitivity to velocity
changes and its passive safety properties. The former factor is linked to the quantity of dis-
placement of the actual endpoint w.r.t. the nominal one caused by a difference in the first
∆V provided. As it could be derived from Sec. 2.4.1 and 2.4.2, tangential boost transfers
tend to be much more sensitive to ∆V errors, showing x and z-displacements respectively
3π
2 and 4 times greater than those of radial boosts. As for the latter aspect, a manoeuvre
can be defined passively safe if its natural development is collision free at least in relation
to the short-term. From Fig. 2.15 it is possible to deduce that in case of partial boosts

Figure 2.15: Natural evolution of tangential boost transfers, [9].

at the beginning or at the end of the trajectory, i.e. (b) and (c), or in case of incapability
to execute the second boost, i.e. (a), tangential boost transfers would naturally continue
to loop towards the Target, with a large chance that at one of the following apogees the
Target is hit, or that the perigee is of the same order of magnitude as the extension of the
Target geometry in the z-direction and therefore the Target will be hit in any case. Thus,
tangential boost transfers are characterised by bad passive safety properties and usually
requires the design of Collision-Avoidance Manoeuvres (CAM), the discussion of which is
further the objectives of this work. On the contrary, Fig. 2.16 shows that radial boost
counterparts are characterised by an higher level of passive safety since in case of partial
boost at the trajectory extremes, i.e. (b) and (c), the trajectory continues to loop near
the starting or the end point of the manoeuvre respectively, while in case the second boost
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Figure 2.16: Natural evolution of radial boost transfers, [9].

should not be performed at all, the Chaser would naturally return to the starting point.
Considering all the factors above mentioned, therefore, radial boost manoeuvres are

usually adopted during the closing phase and preferred to tangential ones unless in explicit
contrast with some operational requirements, while Vbar closed-loop forced straight line
motion is selected as the final approach manoeuvre every time the mating interface is
conveniently reachable from the Vbar axis itself.
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Chapter 3

The Navigation algorithm
design

This chapter firstly provides a description of the State-Space representation of a physical
system. Afterwards, a general explanation regarding observer-based Navigation algorithms
and the Sliding-Mode technique is used to introduce the discussion and the comparison of
the particular Sliding-Mode Observers evaluated and designed in the thesis work.

3.1 The State-Space representation
The state-space representation is the mathematical model describing a physical system as a
set of input, output and state variables related by a set of first-order differential equations.
State variables are variables describing the dynamic evolution of the system itself and
whose evolution over time depends only on the values they assume at any given time and
on the externally imposed inputs. They form the so-called the state vector which describes
not only the actual state of the system, but also how the state is varying over time. As
an example, for navigation purposes the state vector is a set of data describing where an
object is in space and how it is moving, while the forces externally acting on the object are
represented as input variables. Output variables, instead, usually consist of those variables
which are “provided” by the system to something else, for examples the state variables
actually measurable with the aid of sensors.

Figure 3.1: State-space representation of a physical system.

31



The Navigation algorithm design

Continuous time systems described by the set of first-order differential equations can either
be linear or non-linear, as well as time-invariant or time-variant. The simplest case is the
one of Linear Time-Invariant (LTI) systems, which is the actual system represented in Fig.
3.1. In such systems x(t), ẋ(t) ∈ Rn, respectively the state vector and its first derivative,
u(t) ∈ Rm, the input vector, and y(t) ∈ Rp, the output vector, are the only time-dependent
elements. The matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, respectively the
state, the input, the output and the feed-forward matrices, are constant elements. When
these matrices vary over time, instead, the system is called Linear Time-Variant.
In non-linear systems, the matrix expression above explained is substituted by

ẋ(t) = f (t,x(t),u(t))
y(t) = h (t,x(t),u(t))

(3.1)

where the first is the state equation and the latter the output equation. In this case, it
is the eventual time dependency of functions f and h to determine whether the system is
Non-Linear Time-Invariant or Time-Variant.

The knowledge of state variables, therefore, is fundamental to determine at any given
time the present state and the future evolution of the system and be able to control its
behaviour. Thus, algorithms able to calculate and provide the best estimate of the state x
of a dynamic system starting from noisy measurements of the output y are required. This
task is carried out by Navigation algorithms.

3.2 Kalman Filters and State Observers
In the design of systems to control the movement of vehicles, Navigation algorithms aim to
provide the best estimate of the vehicle location and velocity. Two main approaches could
be followed to perform such a task:

• Filtering approach: starting from noisy measurements of the states, the approach
extracts the required information from the signal ignoring everything else. The per-
formance of the task is measured using a loss function and the filter acts to minimise
this function, i.e. achieving the optimal estimate of x.

• Observation approach: starting from noisy measurements of some of the states, the
approach asymptotically estimates the whole state vector x through a recursive cor-
rection of the state estimate with the error between the system measured and the
estimated output.

Kalman Filters (KF) are the main example of the former type of navigation algorithms.
This recursive algorithm is suitable for linear systems and provides the best possible esti-
mates in the minimum-mean-square-error sense, since the loss function minimised is indeed
based on the mean square error between the predicted and the measured state, [17]. Its
optimal behaviour, however, is based on the assumption that both measurement noise and
system uncertainties are characterised by a Gaussian distribution with known standard
deviation σ, used to build respectively the covariance matrices R and Q which are funda-
mental to calculate the Kalman gain Kk and calculate the state estimate for the next time
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step. The algorithm, therefore, requires statistic knowledge of noises and uncertainties and
does not provide any robustness in case this knowledge is missing. A schematic representa-
tion how a Kalman filter operate is reported in Fig. 3.2, where Pk is the covariance matrix
associated to the state mean square error. An extension to non-linear systems could be
provided by the Extended Kalman Filter (EKF) which, anyway, requires a linearisation of
model dynamics around the present state.

Figure 3.2: Schematic process characterising Kalman Filter, [18].

The second approach presented, the observation [19], could be applied both to linear
and non-linear systems - depending on the algorithm adopted - and is capable of provid-
ing an estimate of the state variables even without any statistic knowledge of noise or
uncertainties. For sake of simplicity, let us explain how a simple linear observer works
considering a LTI system.

ẋ(t) = Ax(t) +Bu(t) + w(t)
y(t) = Cx(t) +Du(t) + ζ(t)

(3.2)

In Eq. 3.2, the terms w(t) ∈ Rn and ζ(t) ∈ Rp added to the classical LTI state-space
representation consist respectively of the plant disturbances and the measurement noise.
Since these terms are not known but assumed to be bounded, the idea is to build an
observer capable of correcting the state estimates exploiting the discrepancy between the
estimated and the measured output. The observer is written in the form

˙̂x(t) = Ax̂(t) +Bu(t) +G (ŷ(t) − y(t))
ŷ(t) = Cx̂(t) +Du(t)

(3.3)

where ˙̂x(t), x̂(t), ŷ(t) are respectively the estimates of the state vector x(t), its time
derivative ẋ(t) and the output y(t). The matrix G ∈ Rn×p is the gain matrix which,
designed by the user, is multiplied by the output error ey(t) = ŷ(t) − y(t), forming the
feedback correction term. The observer error e(t) = x̂(t)−x(t) evolves following the system

ė(t) = Ax̂(t) +Bu(t) +G (Cx̂(t) +Du(t) − Cx(t) −Du(t) − ζ(t)) +
− Ax(t) −Bu(t) − w(t) = (A−GC) e(t) − w(t) −Gζ(t)

(3.4)

The evolution over time of e(t), therefore, depends on the eigenvalues of the matrix
(A−GC). It is now time to check the observability of the system, i.e. the measure for
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how well internal states of a system can be inferred by knowledge of its external outputs.
It is possible to state that a LTI system is observable if

rank


C
CA
...

CAn−1

 = n (3.5)

Under the assumption that the system is observable, it will always be possible to find a
G matrix such that the observer error evolution described by the system in Eq. 3.4 is
asymptotically stable, i.e. all the eigenvalues of (A−GC) are characterised by strictly
negative real parts. The gain matrix G should be chosen through a trade-off study, since
high gain values would lead to strongly negative real part eigenvalues, which means fast
error decay, but would accentuate the effect of measurement noise ζ(t) at the same time.
Lastly, if the error system is asymptotically stable, then bounded plant disturbances w(t)
and measurement noise ζ(t) will result in the observer error being bounded. This linear
form of observer is usually referred to as Luenberger Observer in literature.

Considering the advantages deriving from the observers capability to reconstruct the
state vector without requiring any knowledge on plant or measurement noises, the present
work focuses on the design of observer-based navigation algorithms. However, since Luen-
berger -like observers could often be unable to force the output estimation error to zero
and make the estimated states converge to the system state in presence of unknown sig-
nals or uncertainties, the design choice is to exploit the robust Sliding-Mode technique for
observation tasks. The effectiveness of these type of observers in comparison to KFs and
EKFs has already been proved in other works, [11, 12].

3.3 Sliding-Mode technique

Figure 3.3: Schematic representation of the action of the Sliding-Mode technique, [20].

The founding idea at the basis of the Sliding-Mode technique is to force a certain system
states to evolve following a certain sliding surface

S = {x : σ(x) = 0} (3.6)
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where σ(x) is called sliding variable. S represents a reduced-order motion w.r.t. the original
system dynamics. In order to slide on this surface, the approach requires the adoption of
a discontinuous and switching law which, with an ideally infinite switching frequency, uses
different laws to redirect the states towards the sliding surface, as in Fig. 3.3.
As an example, consider the x vector in Eq. 3.2 to be formed by two terms x1, x2 with
x2 = ẋ1 and suppose we want to exploit a first-order Sliding-Mode control algorithm to
achieve the desired state vector is xdes =

#
0, 0

$
. Suppose that the desired reduced-order

motion to achieve the desired state is described by a homogeneous linear time-invariant
differential equation

ẋ1 + cx1 = 0, c > 0 (3.7)

in which no effect of the disturbances introduced in the system by w is observed. In order
to achieve asymptotic convergence of the states to zero even in presence of the disturbance
w it is necessary to define the sliding variable σ(x1, x2) = ẋ1+cx1 = x2+cx1 and drive it to
zero in finite time. The control law u = −cx2 −ρ sign(σ), with ρ being a positive constant,
is suitable to achieve this task and can be obtained applying the Lyapunov functions
technique to the σ-dynamics, [20]. The value of ρ is obtainable through the reachability
condition σσ̇ < 0, again [20]. From the evolution in the state-space reported in Fig. 3.4,
it is clearly possible to identify two phases, the reaching and the sliding phase.

Figure 3.4: Phase portrait of the states evolution, [20].

In the first, the Sliding-Mode technique acts continuously in order to take system states
towards the sliding surface σ(x1, x2) = 0 in finite time. Afterwards, in the sliding phase the
states evolution follows the designed reduced-order dynamics until system asymptotically
reaches the desired state vector, in this case xdes =

#
0, 0

$
. The sliding motion achieved

in the second phase, however, is characterised by a “zig zag” behaviour caused by the
impossibility to achieve the ideal infinite switching frequency, Fig. 3.5, and this undesired
phenomenon is called chattering. Furthermore, the chattering behaviour strongly charac-
terises also the time evolution of the control law u which is switching at high frequency
and, therefore, usually difficult to reproduce through realistic actuators.
High-order Sliding-Mode algorithms could eventually be able to achieve better perfor-
mances reducing the chattering behaviour and forcing both the sliding variables and the
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Figure 3.5: Chattering behaviour during the sliding phase, [20].

system states to zero in finite time [20].

3.4 Sliding-Mode Observers
Unlike Luenberger-type observers which use linear feedback correction terms, Sliding-Mode
Observers (SMOs) exploit the sign function to provide the observer model with an highly
non-linear feedback injection term. Differently from what explained in the general case of
Sliding-Mode control in Sec. 3.3, in SMO:

• the sliding variable is usually chosen to be the error between the estimated and
measured output ey so that, when the sliding surface S is reached, ey = 0;

• the feedback injection term ν becomes the switching law which must be designed to
reach the sliding surface and correctly observe system states, similarly to how the
control law u was designed to control system states.

This approach augments the algorithm robustness, forces the output estimation to converge
to zero in finite time and is even able to reconstruct unknown disturbances acting on the
system. The estimated states convergence to the system states, instead, depends on the
order of the algorithm: it is asymptotic in case of first-order SMOs, while achieved in finite
time adopting high-order SMOs. As for chattering behaviour, first-order SMOs estimates
are more affected than high-order SMOs ones and low operating frequencies accentuate the
criticality. However, the chattering phenomenon results to be critical only in the system
state estimates and not in the discontinuous behaviour of ν, since the feedback injection
term is just a computational term and does not need to be reproduced by any physical
instrument. Nevertheless, the effect can be contained through an accurate parameter
tuning.

In the following sections two different first-order SMOs suitable for the observation of
linear systems, like Hill’s equations, are described and compared.
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3.4.1 First-Order classic linear SMO
Consider a nominal linear system as in Fig. 3.1 characterised by null feed-forward matrix
D. Assume that the output matrix C has full row rank, i.e. each of the measured out-
puts is independent, and that the matrix pair (A,C) is observable, i.e. follows Eq. 3.5.
Considering the coordinate transformation x → Tcx associated with the invertible matrix

Tc =
5
NT
c

C

6

where Nc ∈ Rn×(n−p) spans the null space of C, it is possible to apply the transformation
to the triple (A,B,C) and rewrite them as

TcAT
−1
c =

5
A11 A12
A21 A22

6
, TcB =

5
B1
B2

6
, CT−1

c =
#
0 Ip

$
. (3.8)

where A11 ∈ R(n−p)×(n−p) and B1 ∈ R(n−p)×m. A simple first-order linear SMO to observe
the linear system presented is

˙̂x(t) = Ax̂(t) +Bu(t) +Gnν

ŷ(t) = Cx̂(t)
(3.9)

where (x̂, ŷ) are the estimates of (x,y) and ν is the discontinuous injection term defined
component-wise as νi = ρ sign (ey,i) , i = 1, ..., p. Furthermore, ey(t) = ŷ(t) − y(t) and
e(t) = x̂(t) − x(t) are respectively the output and the state estimation errors and ρ is a
positive constant. The feedback injection term, therefore, is designed to be discontinuous
w.r.t. the sliding surface S = {e ∈ Rn : Ce = ey = 0} to force the trajectory of e(t) onto
S in finite time and achieve ey = 0 during the sliding phase. Assuming that the linear
system is already written as in Eq. 3.8, the structure of the gain matrix Gn is

Gn =
5
L

−Ip

6
(3.10)

where L ∈ R(n−p)×p represents the design freedom left to the user. Consequently, the
observer error dynamics can be written as

ė(t) = Ae(t) +Gnν.

Considering the structure presented in Eq. 3.8 and partitioning the state estimation error
as e(t) = col(e1, ey) with e1 ∈ Rn−p, the error dynamics can be rewritten in the form

ė1(t) = A11e1(t) + A12ey(t) + Lν, (3.11)
ėy(t) = A21e1(t) + A22ey(t) − ν. (3.12)

Rewriting Eq. 3.12 component-wise as

ėy,i(t) = A21,ie1(t) + A22,iey(t) − ρ sign(ey,i),
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where A21,i and A22,i represent the ith-rows of A21 and A22, it is possible to formulate the
reachability condition for this SMO:

ey,iėy,i = ey,i(A21,ie1 + A22,iey) − ρ|ey,i|
< −|ey,i| (ρ− |A21,ie1 + A22,iey|) .

(3.13)

Now choosing the scalar ρ large enough is it possible to obtain

ρ > |A21,ie1 + A22,iey| + η → ey,iėy,i < −η|ey,i|, (3.14)

which is the eta-reachability condition and implies that ey,i converge to zero in finite time.
Once every ith-component of ey has converged to zero, a sliding motion on the surface S
takes place.

Remark 1 It must be pointed out that this is not a global result since for any given ρ,
there will exist observer initial conditions causing an estimate error large enough that Eq.
3.14 is not satisfied. The region in which e1(0) and ey(0) must lie for the sliding motion to
occur is called the sliding patch associated with that particular ρ. To enlarge this area it is
possible either to increase ρ either to add a linear feedback injection term to the observer,
the second method being preferable to avoid excessive chattering.

Since during the sliding motion ey(t) = ėy(t) = 0, the error dynamics will collapse in
the form

ė1(t) = A11e1(t) + Lνeq (3.15)
0 = A21e1(t) − νeq (3.16)

where νeq is the so-called equivalent output error injection term required to maintain the
sliding motion on S. Substituting Eq. 3.16 in 3.15 it is possible to obtain

ė1(t) = (A11 + LA21) e1(t) (3.17)

which represents the reduced-order motion of order n−p characterising the sliding motion.
It is clear how the choice of the matrix L is fundamental to ensure that the motion is stable
and determine to eigenvalues of the matrix (A11 + LA21), i.e. the speed of the asymptotic
convergence of the state estimate error e(t) to zero.

3.4.2 First-Order robust linear SMO
This time, consider a linear system which is characterised by bounded matched uncertain-
ties. This means that system uncertainties bounds and the matrix through which these
uncertainties operate on the system are known.

ẋ(t) = Ax(t) +Bu(t) +Bf(t,y,u)
y(t) = Cx(t)

(3.18)

where f : R+ ×Rp×Rm → Rm represents the lumped uncertainties or non-linearities of the
system operating on the system through the matrix B. This formulation is particularly
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suitable for the case of unknown forces or torques acting on the system, since they are
associated to the same input matrix B as the control forces/torques u. Consider an observer
of the form

˙̂x(t) = Ax̂(t) +Bu(t) −GlCe(t) − P−1CTF Tν (3.19)

where x̂(t) is the estimate of the state vector x(t) and e(t) = x̂(t) − x(t) is the state
estimate error. The symmetric positive definite matrix P ∈ Rn×n and the gain matrix
Gl ∈ Rn×p must satisfy the linear matrix inequality (LMI)

PA0 + AT0 P < 0 (3.20)

where A0 = A−GlC, and the structural constraint

PB = (FC)T (3.21)

for some F ∈ Rm×p. Lastly, the discontinuous feedback injection term ν is calculated as

ν = ρ(t,y,u) FCe(t)
ëFCe(t)ë = ρ(t,y,u) sign (FCe(t)) (3.22)

with ρ(t,y,u) ≥ ëf(t,y,u)ë in order to have a correction term which is greater than the
uncertainties bounds.
Under all of these assumption, the Lyapunov-based method could be used to demonstrate
that the quadratic form V (e) = e TPe guarantees quadratic stability. Hence, given the
formulation of the feedback injection term in Eq. 3.22, the sliding motion takes place on
the surface SF = {e ∈ Rn : FCe = 0} in finite time. It must be pointed out that, when
p > m sliding on SF is different from sliding on Ce(t) = 0.

3.4.3 Robustness against plant disturbances
The main differences between the two algorithms presented concern their robustness against
unknown plant disturbances and uncertainties.

The first-order classic SMO is built considering a linear system without any type of
uncertainties and, as detailed in Eq. 3.14 and Remark 1, its robustness is limited to the
sliding patch associated to the selected ρ. This means that unknown plant disturbances or
uncertainties will create a certain error in the state estimate that, if contained inside the
sliding patch, will be followed by another phase of asymptotic convergence. In case of rapid
successions of short disturbances or under long lasting uncertainties the algorithm could be
unable to return to the correct estimate for long times, strongly decreasing the navigation
algorithm accuracy and potentially compromising the whole GNC system effectiveness.
On the contrary, the first-order robust SMO discussed, although requiring little knowledge
on the uncertainties bound and distribution on the system, is already built contemplating
the presence of these unknown disturbances and is, therefore, able to estimate the whole
state vector without losing accuracy.

This different response to plant disturbances is now shown with two examples where
the two algorithms are used to observe the states of a Chaser satellite performing two
consecutive radial boosts. In the first one it is supposed that the manoeuvres are executed
exploiting a thrust of Fmax, but the navigation algorithms are provided with just half
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Figure 3.6: Comparison of the x-velocity estimate of the two SMOs presented: whole manoeuvre
above, focus on the first 40 s below.

of the knowledge regarding the actuators. This means that, during thrusters firing, the
navigation algorithms expect each component ui of the control force to be just Fmax

2 , thus
simulating a situation in which a Fmax

2 unknown input is acting on the plant. As it can be
clearly seen from Fig. 3.6, after each boost, the velocity estimates of the first-order classic
SMO are affected by a certain error which returns to zero in about 1000 s. On the other
hand, the first-order robust SMO velocity estimates are characterised by a continuous level
of accuracy.
In the second example, instead, a 2N -sinusoidal disturbance along the y-direction is applied
to the Chaser. In this case, the classic first-order SMO algorithm is never able to correctly
estimate the y-velocity since the unknown disturbance is constantly applied. On the other
hand, the robust SMO estimate is not affected by this problem, as shown in Fig. 3.7.

The first-order robust SMO algorithm, therefore, is preferable and more robust against
unknown plant disturbances and uncertainties, although requiring the knowledge relative
to their bounds and distribution matrices.

3.4.4 Measurement noise sensitivity
As reported in Eq. 3.2, plant disturbances w(t) are not the only unknown terms acting
on the system, but measurements noise ζ(t) should be taken in consideration, too. These
noises usually consist of high-frequency signals with zero mean value corrupting the output
measurements, but their nature largely depend on the nature of the adopted sensor itself.
The SMOs presented, although built without any consideration of the term ζ(t), have a

40



3.4 – Sliding-Mode Observers

0 1000 2000 3000 4000 5000

time [s]

-0.2

0

0.2

0.4

V
y
 [
m

/s
]

Real speed

Robust 1st order SMO

Classic 1st order SMO

0 5 10 15 20 25 30 35 40

time [s]

-0.1

-0.05

0

0.05

0.1

V
y
 [
m

/s
]

Real speed

Robust 1st order SMO

Classic 1st order SMO

Figure 3.7: Comparison of the y-velocity estimate of the two SMOs presented: whole manoeuvre
above, focus on the first 40 s below.

low level of sensitivity w.r.t. noisy output measurements due to the fact that they require
a certain time to achieve convergence. This convergence time, in fact, makes it impossible
for the algorithms to exactly follow the noisy output measurements since they vary with
a frequency which is too high. As a result, the observer estimates recreate just the mean
trend of the noisy measurement, i.e. reconstruct the output achieving higher levels of
accuracy.

Remark 2 In case the corruption of the output measurement caused by the sensors should
be characterised by a mean value different from 0 or low-frequency terms, observer-based
algorithms would reconstruct the actual output plus the noise mean value and these low-
frequency trends, losing estimates accuracy. In this case, data fusion methods should be
designed to “clean” the measurement noise and make its mean value as close to zero as
possible.

3.4.5 Unknown disturbances reconstruction
As mentioned previously, one of the benefits of SMOs over linear Luenberger-like observers
is represented by the possibility to reconstruct unknown terms acting on the systems. Once
the algorithm has reached the sliding phase, in fact, the equivalent output error injection
term νeq operates at high frequency to counter any term which would lead the system away
from the sliding surface S. Consequently, once the SMO has reached convergence and the
state error is close enough to zero, matched disturbances acting on the system could be
estimated filtering νeq with a low-pass filter. This approach, although introducing a certain
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delay in the disturbances reconstruction due to the filter itself, is a powerful result because
the term ν was not designed with any a priori knowledge relative to w(t), except its bounds
and distribution matrix.

To provide some examples, the first-order robust SMO is used to reconstruct the un-
known plant disturbances in both the cases presented in Sec. 3.4.3 in absence of any mea-
surement noise. Fig. 3.8 shows the reconstruction of the thrusters input unknown part,
a Fmax

2 boost, obtained filtering νeq,z with a low-pass filter with time constant τ = 0.5.
Fig. 3.9, instead, presents the estimate of the 2 N -sinusoidal unknown disturbance along
the y-direction, obtained filtering νeq,y with the same low-pass filter. The reconstruction
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Figure 3.8: Reconstruction of the Fmax

2 unknown part of the control input offered by the first-
order robust SMO.

0 1000 2000 3000 4000 5000

time [s]

-15

-10

-5

0

5

U
n
k
n
o
w

n
 d

is
tu

rb
a
n
c
e
 f
o
rc

e
 [
N

]

eq,y
 filtered

Sinusoidal disturbance

Figure 3.9: Reconstruction of the 2 N -sinusoidal y-direction disturbance offered by the first-
order robust SMO.

error at the beginning and the end of the boost is caused by the convergence time of νeq,z
to the unknown input signal which makes it impossible for the SMO the reconstruct the
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sudden variation characterising the step. This effect, anyway, is much less evident in case
of the sinusoidal disturbance, due to its smoother trend.

Unfortunately, the ability to reconstruct unknown plant disturbances results to be heav-
ily degraded when measurements noise ζ(t) are taken into account. In this case, the filtered
trend of νeq is strongly corrupted by noise, making it difficult to recognize unknown inputs.
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Chapter 4

The Guidance algorithm design

The present chapter aims to the presentation of the Guidance algorithm designed during
this thesis work. At the beginning, the reasons that led to the selection of Artificial Poten-
tial Fields (APF) method are discussed. Afterwards, both the classical and the modified
version of APF are described in detailed, highlighting the advantages and the potentiali-
ties introduced through the selection of harmonic functions. Algorithm adaptations to take
into account both moving obstacles and targets are reported, too. Lastly, a description of
the Sliding-Mode control algorithm designed to follow the trajectory calculated by APF is
provided.

4.1 Guidance algorithm choice

The main goal of Guidance algorithms is to calculate a planned trajectory for transla-
tional dynamics. Depending on its nature, Guidance algorithms could directly provide the
control acceleration which must be applied to follow the desired path or could simply out-
put the calculated trajectory which should then be reproduced using a Control algorithm.
Proportional Navigation Guidance (PNG) and the optimal Zero-Effort-Miss/Zero-Effort-
Velocity (ZEM/ZEV) are two major examples of the first type of algorithms. These are
often adopted in missile and asteroid interception and their performances have been proved
in several works, [21, 22]. Although being effective and flyable, i.e. with a low computa-
tional cost, these laws usually provides control accelerations profiles assuming that thrust
is continuously variable. When the spacecraft is equipped with thrusters characterised
by an ON/OFF functioning, however, there is no throttling ability. This means that the
control acceleration profile calculated by the guidance law must be provided to another al-
gorithm which must transform the signal into a series of ON/OFF commands for the actual
thrusters. Furthermore, neither PNG nor ZEM/ZEV take in consideration the presence of
obstacles around the spacecraft.

The Artificial Potential Field, on the other hand, is an analytical method and a compu-
tationally efficient algorithm to perform online collision-free path computation and belongs
to the second family of guidance algorithms. The necessity to pair APF with control algo-
rithms could be exploited and transformed into an advantage in case of ON/OFF thrusters,
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since the task to adapt the control input to the actual thrusters functioning could be ex-
ecuted by the control algorithm itself. The method has already shown its effectiveness in
both in robotics and aerospace applications, [14, 15, 16], and is one of the main adopted
to perform obstacle avoidance thanks to its low computational cost.
The intuitive founding idea of the algorithm is to find a function that represents the en-
ergy of the system, which is minimal in the position of goal. An artificial potential field
is, therefore, built as sum of different fields with global maximum and minimum points to
represent respectively obstacles and goal points. In such way, a robot moving inside the
field would be naturally attracted towards the goal point by the attractive field, and away
from obstacles by the repulsive one. Particularly, the whole artificial potential field U(r),
with r being the position of the robot or, in this case, the Chaser, is the sum of:

• an attractive field Ua(r) generally built to represent a single goal point;

• a repuslive field Ur(r) =
q
Ur,i(r) generally built to model the presence of multiple

obstacles (i = 1 . . . Nobs with Nobs being the number of obstacles modelled).

One the APF is built, the desired direction of motion is calculated as

−∇U(r) = −∇ (Ua(r) + Ur(r)) ,

in order to reach the goal point avoiding all the obstacles, as reported in the schematic
Fig. 4.1.

Figure 4.1: APF functioning representation, [23].

In this work, the APF has been selected as guidance algorithm due to its low computa-
tional cost and its ability to perform obstacle avoidance, a requirement which is becoming
more and more important in the execution of Proximity Operations. Furthermore, the
opportunity to choose the form of the different attractive and repulsive fields gives the
algorithm design an extreme flexibility, even permitting online field modifications in case
new obstacles should be detected by the spacecraft sensors.
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4.2 Classical Artificial Potential Field algorithm
The classical APF algorithm, adopted for example in [22], is characterised by a paraboloid
and a squared hyperbolic function as the attractive and repulsive fields, respectively.

Ua(r) = Ka

2 ηa(r)2,

Ur,i(r) = Kr,i

2

A
1

ηr,i(r) − 1
η0

B2 (4.1)

where ηa(r) = ërgoal − rë is the distance of the Chaser from the goal point, with rgoal ∈ R3

the position vector of the goal expressed in the Target LVLH frame and r ∈ R3 the
position vector of the Chaser, obtained through Hill’s equations. Moreover, ηr,i(r) =
min∀robs,i ∈ COiërobs,i − rë is the minimum distance between the Chaser and the obstacles,
with COi being the convex set of the ith-obstacle points and robs ∈ R3 being the obstacle
position vector, again expressed in the Target LVLH frame. This formulation for ηri allows
the user to eventually consider obstacles with a certain convex geometrical shape, instead
of considering them as concentrated in their CoM. Lastly, η0 is the maximum influence
distance of the obstacles, while Ka and Kr,i are the attractive and repulsive constants. Fig.
4.2 and 4.3 show respectively the total potential field and its gradient lines in presence of
two obstacles in front of the goal point (2D case).
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Figure 4.2: Total potential field in case of classic APF, goal point in red.

This formulation is strongly affected by local minima phenomena, which means that the
Chaser could encounter other minima points before arriving at the goal point and arrest
its motion prematurely. This is clearly visible in Fig. 4.3 where the gradient lines converge
towards a single point, i.e. the minimum point, before the obstacles. Several modifications
have been proposed to overcome this criticality. In [24] 2D local minima points are overcome
through an iterative evaluation of the total field U in every possible direction of motion
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Figure 4.3: Gradient lines of classic APF, showing a minimum point in front of the obstacles.

and using adaptive repulsive gains. This approach, although being effective in robotic
2D applications, is extremely computationally heavy in case of 3D applications, preventing
real-time path calculations. In [23], instead, the repulsive field of the objective is augmented
through a multiplication by the attractive field. This modification makes the repulsive
effect stronger at the obstacle portion which is far from the goal, enforcing the motion in
the goal point direction.

4.3 Harmonic functions and local minima
In this work, instead, the selected approach is to build both the attractive and repulsive
fields using harmonic functions. These are functions that satisfy the Laplace equation

∇2U(r) = 0 ∀r ∈ D, (4.2)

where D is the domain of U(r). Examples of such functions can be found in electrostatics
and dynamics of incompressible fluids. As for guidance algorithms applications, the most
interesting features of harmonic functions are:

• minimum and maximum principle: the minimum and the maximum of a non-constant
harmonic function occur on the domain boundary.

• invariance under linear transformations: linear combinations of harmonic functions
are still harmonic functions.

Consequently, regardless how many obstacles or goal points should be modelled, the re-
sulting potential field U(r) will always remain free of local minima. This approach has
been exploited in [25, 26] for 2D robotic applications. In the former paper the attractive
function is a uniform flow guiding the robot towards the desired direction, while obstacles
have been modelled with the multi-panels method. The latter work exploits logarithmic
functions both as attractive and repulsive fields, discussing how to tune their gain in or-
der not to cross into the obstacles safety circles. For sake of comparison, it is possible to
exploit the logarithmic function to model the presence of two obstacles in a 2D case, as
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done in Fig. 4.2 and 4.3. The Harmonic APF (HAPF) and its gradient lines, reported in
Fig. 4.4 and 4.5, show there is no minimum point in front of the obstacles. In this case,
the obstacles form a saddle point, the escape from which is always possible exploiting the
second dimension (gradient lines are moving away from the point along the y-direction).
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Figure 4.4: Total potential field in case of Harmonic APF.
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Figure 4.5: Gradient lines of Harmonic APF, showing a saddle point in front of the obstacles.

4.4 Harmonic APF 3D algorithm
As for rendezvous and proximity operations applications, the selection of 3D harmonic
function would be advisable in order to maintain the motion freedom along each possible
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direction. Therefore, it is firstly necessary to analyse the general n-dimensional expression
of the Laplace equation in polar coordinate, reported in Eq. 4.3 accordingly to [25].

∇2U(r) = Urr + n− 1
r

Ur + angular terms (4.3)

where Urr and Ur are the second and first derivative of the field U w.r.t. the radial distance
r, respectively. Assuming spherical symmetry, angular terms are neglected and integrating
twice it is possible to obtain:

U(r) = c1

rn−2 + c2 (4.4)

where c1 and c2 are constants. Observing Eq. 4.4 it is possible to deduce that the hyperbolic
field is a 3D harmonic function, thus suitable for 3D applications. Therefore, the local
minima-free HAPF algorithm designed is characterised by the following attractive and
repulsive fields:

Ua(r) = − 1
ηa(r)

Ur,i(r) =

qi
1

1
ηr,i(r) − 1

η0

2
if ηr,i ≤ η0

0 otherwise

(4.5)

where qi is the gain of the repulsive field and determine how far from the obstacle the
Chaser is allowed to fly, while all the other terms has the same meaning presented with
Eq. 4.1. The gradient of the attractive and repulsive fields is calculated as in [16]:

∇r (Ua(r)) = ∇r (ηa(r))
ηa(r)2 = − nCG

ηa(r)2 ,

∇r (Ur,i(r)) = −qi
∇r (ηr,i(r))
ηr,i(r)2 = qi

nCO,i
ηr,i(r)2

(4.6)

where nCG = rgoal−r
ërgoal−rë and nCO,i = robs,i−r

ërobs,i−rë are the unit vectors pointing from the Chaser
towards the goal and the ith-obstacle respectively.

The value of qi is selected to place the unstable equilibrium point of the field on the ith-
obstacle safety sphere boundary side opposite to the goal point. In this way, the gradient
lines will only cross the sphere boundary from inside to outside. This sphere is characterised
by a radius Ri = Rs,i+Rc which is the sum of the actual safety radius Rs,i of the ith-obstacle
and the radius of the volumetric sphere containing the Chaser Rc. This formulation allows
to take into account also the Chaser physical dimensions. The analysis is simplified as a
1D case, i.e. only variations in the magnitude of the radial distance r from the goal point
are taken into account (assumption feasible for function with spherical symmetry), and the
origin is placed in rgoal. Identifying with Di the 1D distance between the ith obstacle and
the goal:

rgoal = 0, robs = Di, req,i = Ri +Di.

where req,i is the point in which the unstable equilibrium point of the ith obstacle is desired.
Thus, qi can be obtained setting the sum of attractive and repulsive gradients as equal to
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4.4 – Harmonic APF 3D algorithm

zero in req,i.

− nCG
ηa(req,i)2 + qi

nCO,i
ηr,i(req,i)2 = 0

0 − (Ri +Di)
(Ri +Di)3 = qi

Di − (Ri +Di)
R3
i

→ qi = R2
i

(Ri +Di)2

(4.7)

This method is known as the equilibrium point placement method, [26]. For sake of visibility,
only the gradient lines of the field belonging to the X-Y plane are shown in Fig. 4.6.
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Figure 4.6: Gradient lines of Harmonic APF, showing how the obstacle safety sphere is never
crossed from outside to inside.

Lastly, the desired velocity is computed as

vdes = − ∇r (U(r))
ë∇r (U(r))ëvmod (4.8)

where vmod is the desired velocity modulus which should increase with the distance from
the goal and becomes zero when the goal is reached.

4.4.1 Adaptation for moving obstacles
The formulation just presented takes into account both the physical dimensions of the
Chaser and of multiple fixed obstacles. In case of moving obstacles, instead, the relative
velocity between the Chaser and the obstacle should be considered and included in the
algorithm. Starting from [15, 16], instead of a static radius, a dynamic radius is considered
in the definition of the repulsive gain qi.

Rdyn,i(r,v) =
Riú ýü û

Rs,i +Rc +vR,i(r,v)2

2εamax
(4.9)

where v,vobs,i are the velocity of the Chaser and the ith-obstacle respectively, vR,i(r,v) =
(v − vobs,i)T nCO,i is the component of the relative velocity of the Chaser w.r.t. the ith-
obstacle along the unit vector nCO,i, ε is a safety factor which should be chosen as close as
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Figure 4.7: Relations among the velocity vectors.

possible to 1, and amax = Fmax√
2mc

is the maximum control acceleration with Fmax being the
maximum force provided by the actuation system. It must be noted that the last term of
Rdyn,i is exactly the space required to stop the motion characterised by the velocity vR,i
applying the constant deceleration amax.

In this case, the repulsive field gradient must be calculated with respect to both position
and velocity. Considering ε = 1, the repulsive gradient w.r.t. position is calculated as
follows:

∇r (Ur,i(r,v)) = −qi(r,v)∇r (ηr,i(r))
ηr,i(r)2 + ∇r (qi(r,v))

A
1

ηr,i(r) − 1
η0

B
(4.10)

The first half of the right term has already been obtained in Eq. 4.6. The term ∇r (qi(r,v)),
instead, is calculated as:

∇r (qi(r,v)) = 2 Rdyn,i(r,v)
Rdyn,i(r,v) +Di

∇r

A
Rdyn,i(r,v)

Rdyn,i(r,v) +Di

B
=

= 2 Di Rdyn,i(r,v)
(Rdyn,i(r,v) +Di)3 ∇r (Rdyn,i(r,v)) =

= 2 Di Rdyn,i(r,v)
(Rdyn,i(r,v) +Di)3

vR,i(r,v)
amax

∇r (vR,i(r,v))

(4.11)

Now, referring to Fig. 4.7 and considering that vR,i = (v − vobs,i)T nCO,i, its gradient
with respect to the position is [16]

∇r (vR,i(r,v)) = −vR⊥,i(r,v) nCO⊥,i

ηr,i(r) (4.12)
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where vR⊥,i nCO⊥,i is the component of the Chaser relative velocity w.r.t. the ith-obstacle
perpendicular to the unit vector nCOi .
Therefore, the total repulsive gradient w.r.t. position of the field is obtained substituting
Eq. 4.11 and 4.12 in Eq. 4.10.

∇r (Ur,i(r,v)) =

∇r(Ur,i)fixedú ýü û
qi(r,v) nCO,i

ηr,i(r)2 +

−2 Di Rdyn,i(r,v)
(Rdyn,i(r,v) +Di)3

vR,i(r,v)
amax

A
1

ηr,i(r) − 1
η0

B
vR⊥,i(r,v) nCO⊥,i

ηr,i(r)ü ûú ý
∇r(Ur,i)mobile

(4.13)

The repulsive gradient w.r.t. velocity, instead, is given as follows:

∇v (Ur,i(r,v)) = ∇v (qi(r,v))
A

1
ηr,i(r) − 1

η0

B
(4.14)

Following the same step as in Eq. 4.11 it is possible to obtain

∇v (qi(r,v)) = 2 Di Rdyn,i(r,v)
(Rdyn,i(r,v) +Di)3

vR,i(r,v)
amax

∇v (vR,i(r,v)) (4.15)

Once again, referring to Fig. 4.7 and considering that vR,i = (v − vobs,i)T nCO,i, its gradient
with respect to the velocity is [16]

∇v (vR,i(r,v)) = nCO,i (4.16)

Therefore, the total repulsive gradient w.r.t. velocity of the field is obtained substituting
Eq. 4.15 and 4.16 in Eq. 4.14.

∇v (Ur,i(r,v)) = 2 Di Rdyn,i(r,v)
(Rdyn,i(r,v) +Di)3

vR,i(r,v)
amax

A
1

ηr,i(r) − 1
η0

B
nCO,i (4.17)

Observing the new formulation of the repulsive gradient it is possible to understand the
effect that this modification causes on the repulsive force:

• ∇v(Ur,i) reinforces ∇r(Ur,i)fixed, augmenting the repulsive effect in the −nCO,i direc-
tion;

• ∇r(Ur,i)mobile add a steering effect along nCO⊥,i in order to circumnavigate the moving
obstacle.

The effect of the gradient terms formulated in Eq. 4.13 and 4.17 is schematised in Fig.
4.8.
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Figure 4.8: Repulsive action in case of moving obstacles.

4.4.2 Adaptation for moving targets
Similarly to the case of moving obstacles, when the target point is moving its velocity
should be considered in the algorithm. In [16], for example, an attractive field Ua(r,v)
is built taking into account also the relative velocity of the Chaser w.r.t. the goal. This
approach modifies the attractive gradient so that the attractive force has two effects on
the Chaser:

• attracts the Chaser towards the present position of the goal point, as it would happen
with fixed a goal point;

• forces the Chaser to simultaneously slide in the same direction of the goal point
motion, making it chase the target point while getting closer to it.

Although this approach is effective, it makes the attractive field have a dependence
on the velocity. It should be desired, instead, to maintain the attractive field as similar
as possible to the harmonic formulation of Sec. 4.4, i.e. a function of just the Chaser
position. The approach formulated in this work, therefore, exploits the goal point velocity
information vgoal only to recalculate vmod, the magnitude of the desired velocity vdes.

vmod(r, t) = ëvgoal(t)ë + ∆vplusηa(r) (4.18)

where ∆vplus is the magnitude of the relative velocity of the Chaser w.r.t. the desired goal
when ηa(r) = ërgoal − rë = 1 m. In such way, the attractive field attracts the Chaser
towards the moving goal present position, but the higher the relative distance is, the faster
the spacecraft is w.r.t. the target point. Hence, the Chaser is actually able to reach the
goal and, when this happens, relative velocity becomes null.
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The algorithm, anyway, must be modified in case both obstacles and moving goal points
are considered. Particularly, the attractive gradient modulus must be resized before sum-
ming it with the repulsive one when the distance Di between the goal point and the
ith-obstacle is less than Rdyn,i. Otherwise, since the attractive field tends towards −∞
in the goal point, the Chaser would be guided by the goal point inside the safety sphere
of the obstacle. This can be deducted by the gradient lines of Fig. 4.9, where the goal
point has been placed inside the object safety sphere. The resizing is executed taking into
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Figure 4.9: Gradient lines of HAPF when Di < Rdyn,i.

account only the repulsive gradient with respect to position ∇r (Ur,i(r,v)). Hence, the
resized attractive gradient is

∇r(Ua(r)) = ∇r(Ua(r))
ë∇r(Ua(r))ëë∇r(Ur,i(r,v))ë. (4.19)

In this way, the resize operation can be executed either when the obstacles should be fixed
or moving.

4.5 Pairing with Sliding-Mode Control
As previously mentioned, the APF guidance algorithm output consists of just the desired
velocity vector vdes, which should be then reproduced selecting a control algorithm. The
control choice is fundamental to determine whether or not we will be able to exactly follow
the APF gradient lines, i.e. whether or not it will be granted that the obstacles safety
spheres are never crossed into.

In this work, the algorithm selected is a first-order Sliding-Mode Controller (SMC),
which has already shown its effectiveness in [15, 26]. The main benefits introduced by SMC
are its invariance property and the ability to decouple high dimensional problems into sub-
tasks of lower dimensionality. These properties allow true decoupling of the tasks “design
of the potential field” and “tracking the gradient”, since the SMC is theoretically able to
exactly track any smooth artificial vectors field. The sliding surface of the implemented
first-order SMC is

S = {v ∈ R3 : σ(v) = 0}, where
σ(v) = v − vdes.

(4.20)
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The sliding motion onto the surface S is enforced through the control force

Fcontr = −Fmax sign(σ(v)) (4.21)

which is, in fact, discontinuous with respect to the sliding surface. Note also that the SMC
algorithm is extremely useful because it creates a discontinuous behaviour of Fcontr, which
is suitable for thermochemical thrusters characterised by ON/OFF functioning.

Unfortunately, as can be seen from Fig. 4.6, the curvature of APF gradient lines becomes
higher and higher the closer the Chaser is to the unstable equilibrium point placed in front
of the obstacle. In the saddle point the curvature tends to infinity, inducing a non-smooth
velocity direction change which can not be exactly tracked by the SMC. This criticality
would easily lead to penetrate the obstacle safety sphere, breaking safety requirements.
In order to cancel this risk, an approach similar to the one described in Sec. 4.4.1 is
adopted even in case of fixed obstacles, [26], since vR,i can be defined even when vobsi is
null. Particularly:

• the dynamic radius Rdyn,i reported in Eq. 4.9, is used to calculate the repulsive
gain qi even in case of fixed obstacles, making it higher than it would normally be
considering just the static radius Ri;

• unlike the case of moving obstacles, the repulsive gain qi is still considered as a
constant in the gradient computation, i.e. the repulsive gradient is calculated as in
Eq. 4.6.

This method grants safety requirements satisfaction without driving the Chaser too far
away from the nominal trajectory, i.e. containing the fuel consumption.
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Chapter 5

Chaser configuration

In this chapter, the Chaser satellite considered for the rendezvous and berthing manoeu-
vre is presented. At the beginning, a description of its geometrical features, considering
both the service module and the robotic arm, is provided. Afterwards, position actuators
configuration and sensors set are presented, as well as the mathematical models used to
simulate their behaviour in the analyses.

5.1 Geometrical and physical features
The baseline of the Chaser s/c consists of a square-base shaped prism, the service module,
and a 3-links robotic arm. Fig. 5.1 reports the geometrical configuration of the s/c with
the robotic arm both open and closed.

(a) Arm closed (b) Arm open

Figure 5.1: Chaser geometrical configuration.

Taking inspiration from similar missions, the prism dimension is supposed to be approx-
imately 1.3 m x 1.3 m x 2.6 m, while the robotic arm, designed in [27], is attached to the
lateral face identified by the +Xa unit vector and positioned along its vertical symmetry
axis (few centimetres below the top face). The arm is composed by three links jointed
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together with 2D hinges so that the arm motion is confined to the Xa − Za plane. Start-
ing from the one closer to the base, the links are 2 m, 1.75 m, 0.75 m long and weight
35 kg, 30 kg, 5 kg, respectively. Therefore, the total reach distance is more than 4 m,
while the total mass of the arm is 70 kg. Further information related to the arm can be
found in [27].

The total wet mass of the whole Chaser satellite, thus including robotic arm and fuel, is
1500 kg and, as an assumption, its CoM is considered to be fixed in the geometrical centre
of the prismatic service module.

5.2 Thrusters configuration

xa

ya

za

2X

4X

2Y4Y

Z

4

Figure 5.2: Thrusters cluster assumed for the Chaser s/c.

As for position actuators, the Chaser satellite is considered to be equipped with a typ-
ical cluster of twelve thermochemical thrusters, characterised by ON/OFF functioning.
As shown in Fig. 5.2, the cluster is aligned with the body reference system Fa and the
thrusters must be turned on in pair in order to achieve position control without any un-
desired coupling effect with rotational dynamics. Each of the thermochemical thrusters is
characterised by a specific impulse of Isp = 250 s and provides Fmax,single = 20 N , which

Table 5.1: Thrusters cluster management.

Force Thrusters
+X 2X 3X
−X 1X 4X
+Y 1Y 2Y
−Y 3Y 4Y
+Z 2Z 4Z
−Z 1Z 3Z
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means that the maximum force available in any body direction is Fmax = 40 N . Tab. 5.1
shows how to manage the cluster in order to shoot in any body direction.

The characteristic ON/OFF functioning of thermochemical thrusters is reproduced in
simulation through the selection of a discontinuous control law, the first-order SMC pre-
sented in Sec. 4.5. The control force is calculated as in Eq. 4.21 with Fmax = 40 N
accordingly to the equipped thrusters. Neither shooting magnitude and direction errors
nor other real effects are considered, since the thesis focuses more on the implementation
of sensors simulation models.

5.3 Position sensors set
The Chaser s/c is assumed to be equipped with two different position sensors, an optical
camera and an accelerometer.

The optical camera is mounted on the lateral face of the service module where the
robotic arm is attached so that, when the body frame Fa is aligned with the LVLH frame
FLV LH , the camera is pointing towards the Target. Its output is considered to be the
relative position of the Target w.r.t. the camera expressed in the camera geometrical
reference system Fcam.

The accelerometer, instead, is part of the Inertial Measurement Unit (IMU) and is able
to provide acceleration, velocity and position measurements w.r.t. an inertial reference
frame. Due to the vicinity of the Chaser to the Target, however, the LVLH frame can be
considered quasi-inertial. Hence, the accelerometer is supposed to provide directly relative
measurements of the aforementioned quantities in the IMU geometrical reference frame
FIMU .

5.3.1 Camera simulation model
As previously stated, the optical camera is able to directly measure the relative position of
the Target w.r.t. the camera mounted on the Chaser. Fig. 5.3 shows the camera reference
system, supposed to be aligned with the Chaser attitude system Fa but translated in the
camera lens. In this figure, rt<cam>, rcam<c>, rt<c> are respectively the position of the
Target w.r.t. the camera and the positions of the camera and the Target w.r.t. the Chaser.

xcam

ycam

zcam

rt<c>

rt<cam>

Figure 5.3: Camera reference system.
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In order to recreate the camera output, the following simulation model has been adopted.

• Calculation of r(cam)
t<cam>. Initially, the position of the Target w.r.t. the Chaser

expressed in LVLH frame r(LV LH)
t<c> is computed as −r(LV LH)

c<t> , i.e. as the opposite
vector to the Chaser position w.r.t. the Target obtained through Hill’s equation.
Then, this vector is transformed into the Chaser attitude frame using La_LV LH , the
rotation matrix already presented in Eq. 2.3. Finally, the vector is translated into
the camera reference system Fcam without the need of any further rotation.

r(LV LH)
t<c> = −r(LV LH)

c<t>

r(a)
t<c> = La_LV LHr(LV LH)

t<c>

r(cam)
t<cam> = r(cam)

t<c> − r(cam)
cam<c> = r(a)

t<c> − r(a)
cam<c>

(5.1)

• Noise addition. The actual quantity measured by the camera, r(cam)
t<cam>, is corrupted

adding 100 Hz band-limited white noise to the signal. The amplitude of the noise
has been selected as 1% of the range from the Target, resulting in a conservatory
approximation accordingly to Fig. 5.4.

Figure 5.4: Typical accuracy of rendezvous position sensors, [9].

• Low pass filtering. In order to slightly reduce measurement noise before providing
the Navigation algorithm with the camera output, the measured position is filtered
using a low pass filter with time constant τ = 0.05 s.

• Transformation into LVLH frame. Since the position measurements will be used
as input for the Navigation algorithm, built using Hill’s equation, the signal must be
transformed back into r(LV LH)

c<t> , inversely following the steps of Eq. 5.1.

The camera simulation block runs at 10 Hz, except for the noise generation block which,
as previously stated, is characterised by a frequency of 100 Hz.
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5.3.2 Accelerometer simulation model
The accelerometer is able to measure the acceleration acting on the Chaser w.r.t. an
inertial reference frame. Approximating FLV LH as a quasi-inertial reference system, this
measurement can be directly considered as the relative acceleration of the Chaser w.r.t.
the Target. The components of the acceleration are measured in FIMU which, although
not aligned to Fa, is supposed to be centred in the Chaser CoM.

In order to recreate the accelerometer output, the following simulation steps have been
followed.

• Calculation of a(IMU)
c<t> . The acceleration derived from Hill’s equations a(LV LH)

c<t>

is firstly transformed into the Chaser attitude reference frame Fa using the rota-
tion matrix La_LV LH already used for the camera. Afterwards, the vector is further
transported into the FIMU geometrical reference system with the matrix LIMU_a built
using the IMU rotation angles w.r.t. the attitude reference frame φIMU , θIMU , ψIMU .

a(IMU)
c<t> = LIMU_aa(a)

c<t> = LIMU_a La_LV LHa(LV LH)
c<t> (5.2)

• Noise addition. The acceleration measured by the sensor is corrupted adding a
100 Hz band-limited white noise with amplitude of 3 mg Ä 0.03 m/s2 (with g =
9.81 m/s2). The amplitude of the noise has been selected following the example of
commercial components datasheets (bias minor than 4 mg).

• Low pass filtering. In order to slightly reduce measurement noise before providing
the Navigation algorithm with the accelerometer outputs, the measured acceleration
is filtered using a low pass filter with time constant τ = 0.02 s.

• Double integration. The corrupted acceleration signal is integrated twice to obtain
the estimate of both the relative velocity and position, respectively v(IMU)

c<t> , r(IMU)
c<t> .

The position initial condition is taken from the camera output, while the velocity
initial condition is set to zero. None of the integrator is reset over time, hence the
velocity and position estimates obtained are characterised by a drift motion.

• Transformation into LVLH frame. Once again, since the accelerometer measure-
ments will be used as input for the Navigation algorithm, the output signals must be
transformed back into a(LV LH)

c<t> ,v(LV LH)
c<t> , r(LV LH)

c<t> , inversely following the steps of Eq.
5.2.

The accelerometer simulation block runs at 100 Hz.
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Chapter 6

Simulation results

In this final chapter the simulation results will be presented. At first, the simulated sce-
narios are presented and discussed. Afterwards, the simulator is analysed, focusing on
each component of the simulator itself and applying the algorithms presented in Chap. 3
and 4 to the actual system. Finally, the results obtained through different simulations are
reported, focusing particularly on the effect that the obstacle avoidance strategy has on
the geometrical path followed by the Chaser and the propellant consumption.

6.1 Simulated scenarios
As already stated, the simulated scenario consists of the closing and final approach phases
of a rendezvous and berthing manoeuvre executed by the Chaser s/c presented in Chap.
5. The mass of the Chaser has been considered as constant, under the assumption that
the propellant mass consumed mp will be negligible in comparison to the total mass of the
Chasermc. The Target of the manoeuvre is orbiting on a circular 400 km-height orbit. The
manoeuvre is executed exploiting the GNC system designed in the previous chapters, i.e.
by the combination of Sliding-Mode Observer, Artificial Potential Field and Sliding-Mode
Control.

The whole manoeuvre is studied in the Target LV LH frame using Hill’s equations pre-
sented in Chap. 2 and the Chaser attitude reference frame Fa is considered to be constantly
aligned with FLV LH . The closing phase, starting from about -500 m and ending at -100 m
on Vbar, consists of two consecutive radial boosts, preferred over other kind of manoeuvres
for the safety aspects discussed in Sec. 2.6. The final approach consists of a straight line
towards the Target starting from about −100 m on Vbar and ending 4 m behind the Target.
The velocity during this approach should be decreased gradually in order to achieve the
final position without any residual velocity. Finally, the capacity of the Chaser to maintain
the desired final position while moving the robotic arm is analysed, too. Only disturbance
forces produced by the robotic arm are taken into account, since the focus of the thesis
is on position control, and the Chaser attitude frame Fa remains aligned with the LVLH
frame FLV LH .
Starting from this nominal manoeuvre, three different scenarios have been simulated, vary-
ing the number and the characteristics of the obstacles encountered:
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1. No obstacles are considered during the closing phase, while, in the final approach,
four fixed obstacles are located at x = −50 m and y = ±7.5 m, two of them placed at
z = 10 m, the others at z = −5 m. These obstacles are characterised by an ellipsoidal
shape (physical semi-axes ax = 5 m, by = 2.5 m, cz = 2.5 m) and by a safety radius
Rs = 5 m. Note that this group of obstacles is selected since it would cause a local
minimum point in case of classic APF algorithm.

2. The Chaser encounters two obstacles during the closing phase, the first one moving
with constant speed near the end of the first radial boost and the second fixed in
the middle of the second manoeuvre. These obstacles have the same physical shape
of the ones described in the previous scenario but are characterised by Rs = 10 m.
The final approach, instead, remains equal to the previous scenario. The aim of this
scenario is to demonstrate the ability of the GNC system to handle moving obstacles.

3. The obstacles encountered by the Chaser are exactly the same as the ones charac-
terising the second scenario. The only difference consists of the safety radius char-
acterising the obstacles met during the closing phase, set to Rs = 20 m. This third
scenario allows to deduce the impact that the obstacle avoidance strategy cause on
the propellant consumption.

Fig. 6.1 reports the schematic concept of the rendezvous manoeuvre described. The
nominal trajectory is drawn using a continuous line, while the dashed line identifies the
trajectory modified by the presence of obstacles.

-500 -400 -300 -200 -100

V
bar -25

25

50

75

R
bar

[m]

[m]

Closing phase Final
approach

Figure 6.1: Schematic representation of simulated scenarios with obstacles in red.

Finally, Tab. 6.1 and 6.2 summarise the information provided in this section. Note that
the initial and final conditions of the manoeuvres reported in the second table characterise
the nominal rendezvous manoeuvre, i.e. the manoeuvre that the GNC system will try to
recreate.
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Table 6.1: Chaser, Target and obstacles features.

Parameter Symbol Value
Mass of the Chaser (constant) mc 1500 kg
Orbit height of the Target hT 400 km
Starting position of obstacle 1 robs1,0 [−300; 100; 100] m
Velocity of obstacle 1 vobs1,0 [−0.02; −0.05; −0.03] m/s
Position of obstacle 2 (fixed) robs2 [−200; 0; 53] m
Position of obstacle 3 (fixed) robs3 [−50; 7.5; −5] m
Position of obstacle 4 (fixed) robs4 [−50; 7.5; 10] m
Position of obstacle 5 (fixed) robs5 [−50; −7.5; −5] m
Position of obstacle 6 (fixed) robs6 [−50; −7.5; 10] m
Safety radius of obstacles 1,2 (scenario 2) Rs,1/2 10 m
Safety radius of obstacles 1,2 (scenario 3) Rs,1/2 20 m
Safety radius of obstacles 3,4,5,6 Rs,3/4/5/6 5 m
Physical dimension of obstacles (semi-axes) ax, by, cz [5; 2.5; 2.5] m

Table 6.2: Rendezvous manoeuvres nominal features.

Manoeuvre Initial nominal conditions Final nominal conditions

Radial boost 1 rRB1,0 = [−500; 0; 0] m rRB1,f = [−300; 0; 0] m
vRB1,0 = [0; 0; 0] m/s vRB1,f = [0; 0; 0] m/s

Radial boost 2 rRB2,0 = [−300; 0; 0] m rRB2,f = [−100; 0; 0] m
vRB2,0 = [0; 0; 0] m/s vRB2,f = [0; 0; 0] m/s

Final approach rFA,0 = [−100; 0; 0] m rFA,f = [−4; 0; 0] m
straight line vFA,0 = [0.5; 0; 0] m/s vFA,f = [0; 0; 0] m/s

6.2 Simulator
The simulator designed in this thesis work is a 3-Degree of Freedom (DoF) simulator
which recreates only the translational dynamics of the Chaser since, as mentioned before,
the Chaser attitude frame Fa is considered to be constantly aligned with the LVLH frame
FLV LH . The simulator is built in the MATLAB&Simulink environment and composed
following the scheme reported in Fig. 6.2. Each block of the figure will be deeply discussed
in the following sections except for the “Robotic arm disturbances” block which, when the
Chaser reaches the final position desired, will simply act as the source of the perturbation
forces introduced by the movimentation of the robotic arms (sampled with a frequency of
100 Hz). These forces are directly provided by [27] and are not calculated in this thesis
work.

65



Simulation results

Chaser 
dynamics

Sensor
models

Navigation
algorithm

Guidance
algorithm

Control
algorithm

Robotic arm
disturbances

r = [x;y;z]

v = [vx;vy;vz]

a = [ax;ay;az]

rcam

racc, vacc

r, v^

rdes, vdes

^
Fcontr Farm

Figure 6.2: Schematic representation of the block composing the orbital.

The solver adopted for the simulation is ode4 (Runge-Kutta), a fixed-time step integrator
solver, and the time step is set at 0.01 s.

6.2.1 Chaser dynamics block
The “Chaser dynamics” block models the translational dynamics of the Chaser using Hill’s
equation (Eq. 2.4) and assuming a constant mass. In order to simulate eventual errors
caused by previous manoeuvres, the initial conditions of the Chaser are set as different from
the nominal starting condition of the first radial boost expressed in Tab. 6.2. Particularly:

r(0) = [−520; 20; 10] m, v(0) =
53

2 ω¤z; 0; 0
6
m/s (6.1)

The plant dynamics input is represented by the both the control and perturbation forces
acting on the Chaser, while the output of the block consists of the Chaser position, velocity
and acceleration w.r.t. the Target expressed in FLV LH .

The update frequency of the block is 100 Hz.

6.2.2 Sensors models block
The “Sensors models” block contains the models of both the camera and the accelerometer
described in Sec. 5.3. Starting from the exact value of the Chaser position, velocity
and acceleration w.r.t. the Target, it provides the measurements of relative position and
velocity corrupted by the instrument noise and, in case of the accelerometer, the drift. All
these measurements are already expressed in FLV LH .

As mentioned in Sec. 5.3, the camera model runs at 10 Hz, while the accelerometer at
100 Hz.
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6.2.3 Navigation algorithm block
The “Navigation algorithm” block contains both the SMOs presented in Sec. 3.4.1 and 3.4.2
for comparison sake, even though only the robust version will be actually used to provide
Guidance and Control algorithms with the state vector estimate. Both the algorithms are
characterised by an update frequency of 100 Hz.

The classic SMO block inputs consist of the relative position measurement coming from
the optical camera rcam and half the information relative to the control force vector 1

2Fcontr.
Similarly to the case of example provided in Sec. 3.4.3, this will allow to understand the
ability of the algorithm to provide state estimates even in case of partial knowledge of
system dynamics, simulating the action of a 20 N -unknown input. Note that the robotic
arm perturbation force Farm is considered as an unknown input, too. The parameters ρ
and L of the algorithm are selected as:

ρ = 2, L =

−0.0050 0 0.0025
0 −0.0050 0

−0.0025 0 −0.0050

 (6.2)

The output of the block consists of the Chaser position and velocity estimates r̂classic, v̂classic,
used only for comparison sake.

As for the robust SMO, its inputs consist not only of the signals used as input for
the classic SMO, but also of the measurement of relative position and velocity provided
by the accelerometer racc, vacc. As in the previous case, half of the control forces vector
and the entire robotic arm perturbation forces vector are considered as unknown inputs
acting on the Chaser. The parameters characterising the algorithm will be discussed in the
following paragraph related to the data fusion method adopted to use both camera and
accelerometer measurements. The output of the block consists of the Chaser position and
velocity estimates r̂, v̂ and represents also the output of the entire “Navigation algorithm”
block.

Both the SMOs are initialised with the nominal initial conditions of the first radial
boost:

r̂(0) = [−500; 0; 0] m, v̂(0) = [0; 0; 0] m/s (6.3)

Data fusion

As previously stated, in the case of robust SMO, both the measurements provided by the
optical camera and by the accelerometer are necessary. This is caused by the particular
form that characterises the matrix B in the case of Hill’s Equation. For sake of simplicity,
let us consider just the y-motion, which is decoupled from the other directions dynamics. In
this case, the state vector is composed by y and ẏ, while the input matrix is BY =

è
0; 1

mc

é
(n = 2, m = 1). Suppose to possess just the relative position measurement, i.e. CY = [1 0]
and p = 1. It is possible to apply the structural constraint of the algorithm expressed in
Eq. 3.21 and try to find the symmetric positive definite matrix P and the m × p matrix
F .

PBY = (FCY )T →
5
P11 P12
P12 P22

6 C 0
1
mc

D
=
51
0

6
F (6.4)
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In order to satisfy the structural constraint, the matrix P should have the following struc-
ture

P =
5
P11 Fmc

Fmc 0

6
where, P11 and F can be freely chosen. A matrix with this structure, however, will never be
positive definite. Hence it is impossible to satisfy the structural constraint unless possessing
also the velocity information as input, i.e. CY = eye(2) and p = 2.

Analogously, considering all three dimensions, it is necessary to have C = eye(6). The
position noisy measurement is provided by the optical camera, but the velocity measured
by the accelerometer is both noisy and drifted. To eliminate the drift, the robust SMO
position estimate is exploited to perform the data fusion process showed in Fig. 6.3. The

- +

Δf

Δt

vacc

rdrift

racc

rcam v

r

vdrift

+
-

vcorr

Linear

Robust

SMO

^

^

Figure 6.3: Data fusion method adopted to eliminate the drift in accelerometer measurements.

estimate of the position drift is obtained subracting r̂ from racc, then it’s derivative is
calculated over a time span of 20 s to achieve higher accuracy in the estimate of vdrift.
Lastly, the estimate of the velocity drift is subtracted from the drifted vacc to provide the
algorithm with the corrected velocity measurement. The system observed by the robust
first-order SMO is, therefore, characterised by p = n = 6, m = 3 and the algorithm
parameters are selected as:

ρ = 22, Gl = diag([0.5, 0.5, 0.5, 0.005, 0.005, 0.005]),
F = [03×3 0.5 eye(3)] , P = diag([5, 5, 5, 0.5mc, 0.5mc, 0.5mc])

(6.5)

which satisfy all the conditions expressed in 3.4.2.

6.2.4 Guidance and Control block
The “Guidance algorithm” and the "Control algorithm" blocks are executed at 10 Hz
and, since the algorithms used slightly vary from the closing to the final approach phase,
contain an if block which select the correct algorithm to use depending on the rendezvous
manoeuvre phase. The shift from one phase to the other happens when the Chaser reaches
x = −101 m, one metre before the end of the nominal closing phase, in order to contemplate
a small eventual error in the manoeuvre execution.
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Guidance strategies for closing phase

During the closing phase, the algorithm adopted is the harmonic APF with adaptations for
both moving obstacles and moving goal points described in Sec. 4.4.1 and 4.4.2, paired with
the SMC as in Sec. 4.5 (Fmax = 40 N accordingly to the onboard thrusters cluster). In this
phase, in fact, the goal point must move in order to recreate the closing manoeuvres and
its position and velocity evolution over time coincide with the a priori computed dynamic
evolution of the nominal radial boosts. The manoeuvre reproduction with an APF method,
anyway, permits to maintain an high level of safety and perform obstacle avoidance. The
parameters of the HAPF algorithm are calculated as:

• amax: computed using the Chaser mass mc = 1500 kg and the modulus of the thrust
provided by thrusters Fmax = 40 N ;

• qi: computed, instant by instant, calculating the current distance between the goal
point and the ith-obstacle physical point closer to the Chaser, Di, and the current
value of the dynamic radius, Rdyn,i (Rs,i = 10 − 20 m depending on the scenario,
Rc = 2 m to include the physical dimensions of the Chaser and ε = 1);

• η0: supposed equal to 100 m;

• vmod: calculated as in Eq. 4.18 with ∆vplus = 0.005 m/s.

In order to reduce the propellant consumption, furthermore, the SMC is active only when
the delta between the modulus of the desired velocity vmod and the estimate of the actual
velocity modulus v̂ is greater than 0.03 m/s.

For sake of comparison, anyway, the radial boosts have been firstly reproduced without
the use of APF methods. In this case, there is no Guidance algorithm actually working and
the desired position and velocity provided to the Control block are directly taken from the
a priori computed trajectory characterising the closing radial boosts. The Sliding-Mode
Control algorithm adopted in this case is slightly different from the one used previously,
since the sliding variable σ is defined component-wise as

σi(r̂i, v̂i) = (v̂i − vdes,i) + 0.03(r̂i − rdes,i), i = 1,2,3 (6.6)

accordingly to the general case of SMC presented in Sec. 3.3. The control force is calculated
as usual as Fcontr = −Fmax sign (σ(r̂, v̂)), with Fmax = 40 N . As in the previous case, the
action of the controller is set to be discontinuous in order to save propellant. In this case,
however, the SMC is activated component-wise:

• First RB: the control forces acting in the Vbar − Rbar plane, Fcontr,X−Z , and the
one acting in the Hbar direction, Fcontr,Y , are shut down respectively when ë[x̂; ẑ] −
[xdes; zdes]ë ≤ ∆sX−Z and |ŷ − ydes| ≤ ∆sY . ∆sX−Z is the safety corridor width in
the Vbar − Rbar plane and starts as 30 m at t = 0 s, then decreases with a parabolic
trend to 0 m in 600 s, while afterwards is set to 2 m. Analogously, ∆sY is the safety
corridor width in the Hbar direction and starts as 20 m at t = 0 s, then is decreased
with a parabolic trend to 0 m in 600 s, while afterwards is set as 10 m;

• Second RB: the control forces acting in the Vbar − Rbar plane, Fcontr,X−Z , are forced
to zero when ë[x̂; ẑ] − [xdes; zdes]ë ≤ 1 m. Analogously, the control force acting in the
Hbar direction, Fcontr,Y , is shut down when |ŷ − ydes| ≤ 10 m.
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Obviously this kind of approach is suitable just for the first scenario described in Sec. 6.1,
which does not consider any obstacle during the closing phase.

Guidance strategies for final approach

In the final approach, the algorithm used is the harmonic APF algorithm presented in
the previous paragraph, but this time the goal point of the field is considered to be fixed.
Particularly, the goal point is located at the nominal end of the final approach, i.e. rgoal =
[−4; 0; 0] m. In such way, in absence of obstacles, the Chaser would reach the final desired
position performing a forced straight line. The parameters of the algorithm are selected
and computed as in the previous paragraph, even though the safety radius of the obstacles
is considered to be Rs,i = 5 m, while the desired velocity modulus is calculated as

vmod(x̂) = 0.5
xgoal − 100 |xgoal − x̂|. (6.7)

This cause the relative velocity of the Chaser to be 0.5 m/s at x = −100 m and then
decrease linearly until the goal is reached with zero relative velocity.

The Guidance algorithm is once again paired with the SMC described in Sec. 4.5
(Fmax = 40 N), forced to act discontinuously in order to save propellant. Since the
algorithm will be used both for the final approach and the final position station-keeping,
the criteria for the control shut down depend on the Chaser position along the Vbar axis.

• if x ≤ −4.2 m the SMC is deactivated when ëv̂ − vdesë ≤ 0.005 m/s;

• if x > −4.2 m the SMC is activated component wise so that the control forces acting
in the Vbar−Rbar plane, Fcontr,X−Z , are forced to zero when ë[v̂x; v̂z]−[vdes,x; vdes,z]ë ≤
0.003 m/s. Analogously, the control force acting in the Hbar direction, Fcontr,Y , is
shut down when |v̂y − vdes,y| ≤ 0.003 m/s.

These criteria permit to achieve higher level of accuracy in the final position station-keeping
while maintaining the fuel consumption restrained.

6.3 Simulation results
In the present section, simulation results regarding the first two scenarios presented in Sec.
6.1 are reported. The results relative to the third scenario are reported in Appendix A,
due to their similarity to the results of the second scenario. The results are divided in the
phases characterising the manoeuvres:

• Closing phase: from t = 0 s to around t = 2T = 5536 s, with T being the Target
orbital period and from around x = −500 m to around x = −100 m;

• Final approach: from around t = 2T = 5536 s to t = 7000 s and from around
x = −100 m to x = −4 m;

• Final position station-keeping: from t = 7000 s to t = 7100 s.
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6.3.1 Closing phase
Scenario 1

In the first scenario, the Chaser performs the radial boosts characterising the closing phase
in absence of obstacles. The manoeuvre is firstly executed using only the discontinuous
action of SMC, as described in Sec. 6.2.4. Fig. 6.4 reports the Chaser position evolution in
the Vbar−Rbar and Vbar−Hbar planes, as well as the position estimates provided by both the
SMOs. It can be clearly seen how both the observers are able to correctly track the Chaser
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Figure 6.4: Scenario 1, SMC: real and estimated trajectory of the Chaser s/c in the Vbar − Rbar

and Vbar − Hbar planes.
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Figure 6.5: Scenario 1, SMC: velocity components of the Chaser s/c in the Vbar, Hbar, Rbar

directions.

trajectory, even though starting from the initial position estimate r̂(0) = [−500; 0; 0] m.
However, the robust SMO, the algorithm actually used for navigation purposes, is less
afflicted by the chattering phenomenon. In particular, the robust SMO position accuracy
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is 2 · 10−1 m at x = −500 m and, thanks to the increase of accuracy characterising the
optical camera measurements, becomes 4 · 10−2 m at x = −100 m. The classic SMO
position accuracy is roughly ten times bigger, going from 2 m to 4 ∗ 10−1 m. Furthermore,
the discontinuous control approach adopted creates a zig zag trend in the manoeuvre
execution, especially in the Vbar − Rbar plane. As for the Hbar direction, no control effort
is required roughly after x = −480 m since the y-displacement remains minor than 10 m.
The discontinuous control approach also causes a step trend in the Chaser velocity, as
shown in Fig. 6.5, where the actual velocity components are compared to the ideal velocity
characterising the radial boosts. Accordingly to Fig. 6.4, no vy step is noticeable after
about 600 s, i.e. absence of control effort in the Hbar direction. Fig. 6.6, instead, reports
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Figure 6.6: Scenario 1, SMC: estimates of the x-component of the Chaser velocity.

the estimate of vx provided by both the SMOs. It is clear how, while the classic SMO
estimate loses accuracy every time the control system is in action, the robust SMO is able
to constantly track the velocity even with half knowledge of the control input as explained
in Sec. 6.2.3. The robust SMO error peak noticeable at the start of the simulation is caused
by the fact that the data fusion method described in Fig. 6.3 provides the corrected velocity
input to the algorithm from t = 20 s on. The robust SMO velocity accuracy increases from
2 · 10−2 m/s at x = −500 m to 7 · 10−3 m/s when x = −100 m.
The fuel consumption characterising this approach is mp = 13.467 kg.

Afterwards, the same scenario is executed using the combination of HAPF and SMC
described in Sec. 6.2.4. Observing the Chaser trajectory in the Vbar −Rbar and Vbar −Hbar

planes reported in Fig. 6.7 and the velocity evolution over time shown in Fig. 6.8, it
can be noted that the results obtained are smoother and more similar to the ideal profiles
characterising radial boost manoeuvres. This is caused by the fact that the deactivation of
the SMC, this time, is determined by the difference between the desired velocity computed
by the HAPF and the actual one, resulting in a more accurate trajectory correction method.
Fig. 6.9 shows the x-velocity estimation provided by both the SMOs when the manoeuvre
is performed with the combination of HAPF and SMC. Once again it is possible to notice
the robust SMO error peak which characterises the first seconds of simulation. This time,
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Figure 6.7: Scenario 1, HAPF+SMC: real and estimated trajectory of the Chaser s/c in the
Vbar − Rbar and Vbar − Hbar planes.
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Figure 6.8: Scenario 1, HAPF+SMC: velocity components of the Chaser s/c in the
Vbar, Hbar, Rbar directions.

however, the error actually causes a peak in the real vx, too. This is caused by the
erroneous action of HAPF and SMC, temporarily provided with an inaccurate velocity
estimate. The loss of accuracy characterising the classic SMO estimates due to the action
of the control system, instead, results to be less noticeable in correspondence of slight
trajectory corrections, while becomes clearly visible when manoeuvring from the first to
the second radial boost. The level of accuracy achieved by the robust SMO are analogous
to the ones presented in the previous case.
Even though this approach permits to achieve smoother and more precise results, the fuel
consumption estimated is just mp = 3.893 kg. Propellant saving is actually a consequence
of the higher level of accuracy that characterise the combination of HAPF and SMC. In
fact, since both the ideal position and velocity are achieved with great precision, the Chaser
naturally tends to follow the ideal radial boosts trajectory and requires less pronounced
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Figure 6.9: Scenario 1, HAPF+SMC: estimates of the x-component of the Chaser velocity.

trajectory corrections.

Scenario 2

In the second scenario, the presence of both mobile and fixed obstacles during the closing
phase requires the adoption of obstacle avoidance techniques. Therefore, the approach
selected is the combination of HAPF and SMC. Analogously to previous cases, Fig. 6.10
and Fig. 6.11 reports the evolution of the real and estimated Chaser position in the
Vbar − Rbar and Vbar − Hbar planes and its velocity components profile. In Fig. 6.10, the
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mobile obstacle at the end of the first radial boost and its safety ellipsoid (dashed, Rs =
10 m) represent the obstacle position when the Chaser begins the avoidance manoeuvre
(black asterisk). The red dashed line and the red arrow, instead, identify the object motion.
It is possible to notice that, since the mobile obstacle is characterised by vobs,y /= 0, the
avoidance manoeuvre performed by the Chaser affects its trajectory and velocity both in
the Vbar −Rbar and Vbar −Hbar planes. The fixed obstacle encountered in the middle of the
second radial boost, instead, is avoided manoeuvring just in the Vbar −Rbar plane, due to
the fact that both its centre and the moving goal point of the algorithm are contained in the
Vbar −Rbar plane itself. Although in these 2D graphs it could seem that the obstacle safety
ellipsoids are sometimes crossed into, the Chaser actually satisfies the safety requirements,
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Figure 6.12: Scenario 2, HAPF+SMC: 3D representation of the avoidance manoeuvres with
obstacles safety ellipsoids in red.
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as clearly visible in the 3D representation of the manoeuvre depicted in Fig. 6.12. As for
Navigation performances, the classic SMO is once again not able to accurately estimate
the velocity vector under the effect of unknown inputs, losing accuracy especially during
the avoidance manoeuvres. Position and velocity accuracy achieved by the robust SMOs,
instead, is analogous to the ones obtained in the previous scenario.
The total propellant consumption estimated is mp = 14.242 kg, which is comparable to
the fuel mass consumed in the first case presented in the present section.

6.3.2 Final approach
Since the obstacles configuration characterising the final approach does not differ from
one case to the other, only the simulation results of the second scenario will be discussed.
All other scenario simulations are characterised by analogous results. In this phase, the
Guidance and Control algorithms consist of the combination of HAPF with fixed goal
and discontinuous SMC described in Sec. 6.2.4. This approach would lead to a forced
straight-line motion towards the Target in absence of obstacles.

Fig. 6.13 reports the real and the estimated trajectory of the Chaser in the Vbar −Rbar
and Vbar − Hbar planes. The four fixed obstacles characterising the phase are depicted
in red and contoured by their dashed safety ellipsoids (Rs = 5 s). The Chaser starts
roughly 100 m behind the Target and, due to the symmetrical configuration of the obstacles
w.r.t. the Vbar −Rbar plane, the avoidance manoeuvre is executed mainly inside the plane
itself. The position estimates provided by the SMOs are more precise than in the closing
phase, thanks to the reduction of the noise corrupting the position measured by optical
camera. Robust SMO position estimates are characterised by an accuracy of 8 · 10−2 m at
x = −100m which increase to 1·10−2 m at x = −4m. Analogously to the previous case, the
classic SMO position outputs are roughly ten times less precise. Fig. 6.14, instead, shows
the velocity components evolution over time. It can be clearly seen that vx is immediately
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Figure 6.13: Real and estimated trajectory of the Chaser s/c in the Vbar −Rbar and Vbar −Hbar

planes during the final approach.
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Figure 6.14: Velocity components of the Chaser s/c in the Vbar, Hbar, Rbar directions during
the final approach.

modified by the algorithm in order to acquire the value of 0.5 m/s at x = −100 m and then
decreases gradually as the Chaser gets nearer to the goal point rgoal = [−4; 0; 0]. When the
group of obstacles is encountered, both vx and vz variations can be noted, while vy is kept
close to zero. Lastly, Fig. 6.15 reports the x-velocity estimates provided by the SMOs.
As expected, the classic SMO is not able to correctly track the velocity under unknown
inputs, especially during the avoidance manoeuvre execution. The robust SMO, instead,
is characterised by a constant accuracy of 7 · 10−3 m/s throughout the whole approach.
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Figure 6.15: Estimates of the x-component of the Chaser velocity during the final approach.

The propellant consumption estimated for this approach manoeuvre is mp = 3.344 kg.
Lastly, Fig. 6.16 reports the gradient lines of the HAPF characterising the final approach

with the obstacles safety ellipsoids depicted in red. It can be noted that the Chaser could
have followed different trajectories to overcome the group of obstacles without encountering
the local minima problem. The algorithm, therefore, would be able to overcome the local
minima criticality even in case of different initial conditions and the fuel consumption
would remain comparable to the one characterising the specific manoeuvre showed in the
present section.
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Figure 6.16: Gradient lines of the HAPF characterising the final approach.

6.3.3 Final position station-keeping

In the final position station-keeping, the Chaser must maintain the desired final position
while moving the robotic arm to reach the Target. The disturbance forces created by the
movimentation of the robotic arm are computed in [27] and reported in Fig. 6.17. Note
that these forces are entirely contained inside the Vbar −Rbar plane, since the robotic arm
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Figure 6.17: Disturbance forces created by the movimentation of the robotic arm in the Vbar −
Rbar plane.
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is not manoeuvred in the Hbar direction, and last only 25 s. The guidance and control
approach is, once again, the combination of HAPF and SMC formulated in Sec. 6.2.4.

Fig. 6.18 and 6.19 depict the relative position and velocity of the Chaser w.r.t. the
Target, as well as the state estimates provided by the robust SMO. As for Navigation
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Figure 6.18: Position evolution during the final station-keeping.
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Figure 6.19: Residual velocity during the final station-keeping.
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Simulation results

performances, while the position is tracked with precision, the velocity estimates result to
be less precise. This is caused by the fact that the real velocity is of the same order of
magnitude that characterise the robust SMO velocity accuracy. However, the GNC system
is still able to maintain the position with an error of the order of 10−1 m and achieve
residual velocity of the order of 10−3 m/s. The approach selected requires just few grams
of propellant to maintain the position (in the specific case reported mp = 0.044 kg).

6.3.4 Fuel consumption considerations
Tab. 6.3 summarises the fuel consumption estimates computed for the closing phase of
each approach and scenario considered.

Table 6.3: Closing phase propellant consumption summary.

Scenario Closing phase
Algorithm Fixed obstacles Mobile obstacles Fuel consumption

1 SMC // // 13.467 kg
1 HAPF+SMC // // 3.893 kg

2 HAPF+SMC one in the second one in the first 14.242 kg
RB (Rs,i = 10 m) RB (Rs,i = 10 m)

3 HAPF+SMC one in the second one in the first 24.904 kg
RB (Rs,i = 20 m) RB (Rs,i = 20 m)

It is possible to notice that, even in absence of obstacles, the approach consisting of the
HAPF and SMC combination is preferable to the use of the single Sliding-Mode Controller
since it results not only in smoother trajectories, but also in lower fuel consumption.
As previously explained, propellant saving is a direct consequence of the higher level of
precision with which the HAPF+SMC approach achieves both the position and velocity
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Figure 6.20: Scenario 1, SMC: control forces applied during the closing phase.
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Figure 6.21: Scenario 1, HAPF+SMC: control forces applied during the closing phase.

characterising the ideal radial boost. This is noticeable also in Fig. 6.20 and 6.21, in which
the control forces of the two different approach applied to the first scenario are reported.
The HAPF+SMC approach is characterised by slight and brief corrections the frequency
of which strongly decreases as the trajectory is acquired, roughly after the first half of the
first radial boost. The SMC approach, instead, is characterised by stronger and longer
corrections which remains frequent throughout the entire closing phase.

The advantage characterising the combination of HAPF and SMC is clearly noticeable
in the second scenario, where the algorithm must face the presence of both moving and fixed
obstacles. Even though two avoidance manoeuvres are performed during the execution of
the radial boosts, in fact, the fuel consumption estimate is comparable to the one computed
for the SMC approach in scenario 1. If compared to the case of HAPF+SMC applied to
scenario 1, instead, an increase in fuel consumption is obviously observed. As clearly visible
from Fig. 6.22, the consumption rise is caused by the increase of control effort required
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Figure 6.22: Scenario 2, HAPF+SMC: control forces applied during the closing phase.
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Simulation results

roughly at t = 1700 s and t = 4000 s to avoid the obstacles.
Lastly, in scenario 3, an important rise of fuel consumption is encountered during the

closing phase. The increase is caused by the augmentation of the obstacles safety radius
Rs,i, which results in the Chaser performing wider avoidance manoeuvres and requiring
higher quantities of propellant. Even in this scenario, however, the total fuel consumption
characterising the entire rendezvous and berthing manoeuvre would be minor than 30 kg,
i.e. minor than 2% of the Chaser initial mass, as shown in Tab. 6.4.

Table 6.4: Total fuel consumption estimated for the most expensive scenario.

Scenario Closing phase Final approach Station-keeping Total fuel
consumption

3 ≈ 25 kg ≈ 3 − 4 kg < 0.1 kg < 30 kg (< 2%)

Hence, supposing that the Chaser mass is constant throughout the whole manoeuvre can
be considered correct with good approximation.
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Chapter 7

Conclusions

The aim of this thesis work was the evaluation and design of Navigation and Guidance
algorithms for Rendezvous and Proximity Operations (RPOs), particularly for the closing
and final approach phases of a rendezvous and berthing mission. Simulations have been
carried out in MATLAB&Simulink environment and, as an example, Fig. 7.1 reports the
whole manoeuvre executed by the designed GNC system in the second scenario simulated.
Obstacles safety ellipsoids are depicted in red, while the mobile obstacle moving along the
red line is reported in the time instant when the Chaser starts performing the avoidance
manoeuvre (instant Chaser position represented by the black asterisk).
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Figure 7.1: Scenario 2: rendezvous manoeuvre executed with the combination of SMO, HAPF
and SMC.

Systems dynamics have been modelled through Hill’s equations and the Chaser relative
acceleration, velocity and position signals w.r.t. the Target have been properly corrupted
by the noise characterising the onboard position sensors, an optical camera and an ac-
celerometer. Furthermore, in simulations, not only control forces, but also disturbance
forces generated by the movimentation of the robotic arm during the final position station-
keeping have been considered as Hill’s equations inputs.
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Conclusions

The Navigation algorithm designed is a robust first-order Sliding-Mode Observer which,
in contrast to Kalman filters, does not require any statistics knowledge of measurement
noise. Thanks to its robustness, the designed algorithm has shown better performances
than the classic SMO counterpart, being able to correctly track both the Chaser relative
position and velocity even when bounded unknown forces are acting on the system. Con-
vergence in finite time, achieved thanks to the Sliding-Mode technique, is also another
interesting feature of the algorithm. Lastly, the data fusion method designed to correct
the accelerometer drift exploiting the position measurement provided by the optical camera
and the position estimate formulated by the SMO has proven to be effective. The robust
first-order SMO estimate accuracy achieved in the last metres of the approach is 10−2 m
on relative position and 7 · 10−3 m/s on relative velocity.

The Guidance and Control approach designed, instead, consists in the combination
of Harmonic Artificial Potential Fields (HAPF) and Sliding-Mode Control (SMC). The
adoption of harmonic functions has cancelled the local minima problem affecting the classic
APF while maintaining the algorithm intuitive and suitable for online collision-free path
planning. Pre-designed manoeuvres have been safely reproduced thanks to the inclusion
of mobile goal points, and both moving and fixed obstacles safety ellipsoids have never
been crossed into, even considering the geometrical shape of the Chaser itself. For sake
of comparison, an alternative approach consisting of the use of the only SMC has also
been adopted to reproduce the rendezvous closing phase. This approach, anyway, has
shown worse performances than the combination of HAPF and SMC, which is characterised
by smoother results, obstacle avoidance capabilities, online path computation and lower
propellant consumption. An increase in fuel consumption estimate has been observed when
the safety radius of the obstacles is augmented and the Chaser is forced to manoeuvre far
away from the nominal trajectory. The level of station-keeping accuracy obtained with the
HAPF+SMC approach during the movimentation of the robotic arm are 3 · 10−1 m on
position and ≈ 6 − 7 · 10−3 m/s on velocity.

The accuracy of relative position and velocity control obtained in the final station-
keeping, however, is at the limits of berthing operations requirements. This limitation is
caused by the estimate accuracy achieved by the designed SMO and data fusion method.
Hence, in future works, it would be advisable to deepen the research on sensors models
and data fusion methods exploiting SMOs in order to achieve higher accuracy in both the
states estimate and control. Furthermore, in the present work, the ellipsoidal shape of the
obstacles has been reproduced considering the obstacles as ellipsoidal sets of points. This
approach requires an iterative evaluation to identify the point of the obstacle which is closer
to the Chaser before computing the repulsive potential field. In order to avoid this iterative
approach, which increases the computational cost of the algorithm, future works could
deepen the research on diffeomorphic mappings and sphere to ellipsoid transformations.
These methods could permit to consider just the centre of mass (CoM) of each obstacle and
use the equilibrium point placement method to directly create an ellipsoidal zone around
the obstacle CoM which is never crossed into by the gradient lines of the artificial potential
field.
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Appendix A

Simulations results of scenario
no. 3

In the present appendix, simulation results relative to scenario 3 are reported. The only
difference which is noticeable with respect to the second scenario results is that, since the
obstacles safety radius Rs,i is increased to 20 m, the avoidance manoeuvres are conse-
quently wider. This means that greater position and velocity modifications, as well as an
higher control effort and thus fuel consumption, are observed in obstacles proximity. Fuel
consumption estimate for the only closing phase is mp = 24.904 kg.
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Simulations results of scenario no. 3
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Figure A.2: Scenario 3, HAPF+SMC: velocity components of the Chaser s/c in the
Vbar, Hbar, Rbar directions.
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Simulations results of scenario no. 3
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Figure A.4: Scenario 3, HAPF+SMC: control forces applied during the closing phase.
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