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ABSTRACT 
 

A model is a simplified or partial representation of reality, defined in order to accomplish a task or 

to reach an agreement. It is based on an original system reflecting the relevant selection of the 

original system properties. The model is the central artifact of software development, it includes the 

documentation, static analysis, rapid prototyping, automated testing, refactoring, transformation and 

code generation. 
The increasing complexity of software in engineering applications leads to problems in the software 

development like production delay, wrong functionalities, software poorly documented or 

commented. 
Modelling allows to increase productivity, efficiency, reusability, improve portability of the 

software and is easy to test. 
This are the main reason why nowadays the model-based method is being used in the complex 

engineering projects. 
In this thesis it will be discussed specifically the model of a skid steering mobile robot, courtesy of 

Brain Technologies, with ultrasonic sensors in order to define its position with respect to another 

object and follow the tracked object in an S shape path by means of Matlab and Simulink.  
In the end, after testing the single components and the whole model of the robot, the model will be 

code generated via Embedded coder and deployed in the Arduino board. 
The code generated by Simulink used a huge amount of memory and it was needed to reduce and 

remove some redundant code generated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 1  
Introduction 
 
This thesis refers to the development of autonomous guidance features of a mobile robot, in 

collaboration with Brain Technologies, a company of engineering and scientific services for 

industrial projects, head-quartered in Turin, Italy. 
The thesis proposal is inside the development program of BAT-MAN projects. In particular, the 

BAT-MOB project scope is to apply estimation and sensor fusion techniques, developed during 

previous BAT-MAN projects, to an autonomous vehicle (e.g., odometric problem). 
This thesis was carried mostly on smart working with an Arduino board. 
 
Problem overview 
“Autonomous systems rely on sensor suites that provide data about the surrounding environment to 

feed the perception system. These sensors include radars and cameras, which provide detections of 

objects in their field of view.” [1] 
 
In this thesis we will focus on the integration of ultrasonic sensors in order to calculate the pose of a 

vehicle in front of ours and follow it keeping a desirable safety distance by means of a technic 

similar to the adaptive cruise controls of the automotive vehicles. In case there is no forward 

vehicle, my vehicle needs to keep moving forward in an S shaped path. 
For the path planning, among all the techniques, it was used the cubic polynomial path using as 

parameters the desired linear speed of the x and y coordinates, lateral and longitudinal speeds, and 

limiting the displacement within a certain limit distance. 
 
 
Objective of the thesis 
The scope of the thesis work is to develop some autonomous guidance for a mobile robot in order to 

make it move forward in case of no vehicle is detected and if detected, then to follow that forward 

vehicle. 
An initial part of the thesis is devoted to the study of kinematic and dynamic equations for the 

mobile robot, a type of skid steer robot. Then its implementation as a Simulink model using the 

model-based method. 
 A part will be devoted to the integration of the ultrasonic sensors which will be used in order to 

retrieve the pose of the forward vehicle, called R1. Then make it move in an S path either during the 

follow up of R1 and when moving forward. 
In the last part of the thesis, the code generation and a test of it. 
 
Thesis outline 
The thesis is developed in 8 chapters: 
 

• Chapter 1: A brief introduction of the thesis and its research topics are presented. 
• Chapter 2: A brief description of what does robotics means, in particular an overview of 

mobile robots and the considerations done for the particular mobile robot used for the 

thesis, the 4WD Hercules mobile robot. 
• Chapter 3: Mathematical description of the Kinematic and Inverse Kinematic models of 

the mobile robot, with their Simulink test. 
• Chapter 4: Mathematical description of the Dynamic model of the mobile robot, with its 

Simulink test. 
• Chapter 5: Considerations of mobile robot path planning and choice of the method in 



order to have an S shaped path considering the linear speeds of the vehicle. 
• Chapter 6: Integration of Ultrasonic Sensors in the Simulink Model 
• Chapter 7: Code Generation and testing 
• Chapter 8: Conclusions 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



CHAPTER 2 
Mobile Robots 
 
2.1 Robotics introduction 
 
“Robotics is the science studying the intelligent connection between perception and action. 

Therefore, a robotic system is a complex system, functionally represented by multiple subsystems.” 

[2] 
 

 
 
 
 
 
The type of robot that will be discussed in this thesis is a mobile robot. 
 
The essential components of a mobile robot system are: 

• Control, which is done in this thesis via a Simulink model of the dynamic and kinematic 

equations of the robot; 
• Actuators, which are the encoder motors;  
• Plant, the wheels; 
• Sensors, which are the ultrasonic sensors. 

 
2.2 4WD Hercules Mobile Robot 
 
The 4WD Hercules Mobile Robotic Platform, is a discontinued bot from the Seed Studio company, 

it is designed such that one can enter into the robotic world making their own robot mobile 

platform. It is also Arduino compatible, therefore there could be encountered many open-source 

applications to test it. 
 
 

Figure 2.1 Components of a robotic system 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3 Skid Steer Drive 
 
In order to choose the best vehicle equations, a small debate of which type of drive our vehicle 

might be considering the number of wheels and that it does not have the steering angle, the one 

between the longitudinal axis and the steered wheel since the wheel is constrained by the robot 

chassis. 
 
Differential Drive or Skid Steer Drive?  
 
“Differential drive vehicles, are two-wheeled drive systems with independent actuators for each 

wheel. The drive wheels are usually placed on each side of the robot and towards the front. 
Sometimes it has an extra wheel, a non-driven wheel which forms a tripod-like support structure for 

the body of the robot. Often, the non-driven wheel is a caster wheel, a small swivelled wheel used 

on office furniture. It has two motors, one for each drive wheel. 
 
The advantages are that it is very simple, often the drive wheel is directly connected to the motor, 

usually a gear motor (a motor with internal gear reduction) because most motors do not have 

enough torque to drive a wheel directly. 
 
The disadvantages are that it is difficult to move a robot in a straight line. The drive wheels are 

independent, if they are not turning at exactly the same rate the robot will veer to one side. Making 

the drive motors turn at the same rate is a challenge due to slight differences in the motors, friction 

differences in the drive trains, and friction differences in the wheel-ground interface. To ensure that 

the robot is traveling in a straight line, it may be necessary to adjust the motor RPM very often 

(many times per second). It may require interrupt-based software and assembly language 

programming. It is also very important to have accurate information on wheel position usually using 

odometry sensors.” [3] 
 
 
“Skid Steer locomotion, is used on tracked vehicles such as tanks and bulldozers, but is also used on 

some four- and six-wheeled vehicles. On these vehicles, the wheels on each side can be driven at 

various speeds in forward and reverse (all wheels on a side are driven at the same rate). There is no 

explicit steering mechanism, the name implies steering is accomplished by actuating each side at a 

different rate or in a different direction, causing the wheels or tracks to slip, or skid, on the ground. 
Vehicles that use skid-steer usually are off-road types such as construction equipment and tanks, the 

Figure 2.2 Hercules 4WD 



reduced friction of a non-paved surface helps to reduce tire/track wear. These disadvantages are 

offset by the simplicity of the drive system because of the negative effect it has on odometry: 

wheels that are skidding are not tracking the exact movement of the robot. Skid-steer is not 

commonly used on robots with sparse sensing (with no video cameras or sonar) that require 

accurate position determination. 
Skid-steer is closely related to the differential drive system, replacing the caster wheel with extra 

drive wheels. It has the same disadvantage: moving in a straight line requires the wheels on each 

side to be turning at the same speed, which can be difficult to achieve. The advantage of skid-steer 

is the increased traction and no "caster wheel effect". 
It has two motors, one for each side of the robot.” [4] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Considering all the aspects described above, the choice of a skid steer robot was done in order to be 

more compliant with the specifications of Hercules which has no steering wheel but the steer 

depends on the change of speed on the left and right wheels. 
 
 
 
 
 
 
 

Figure 2.3 Skid-steer mobile robot Figure 2.4 SSMR Free body 

diagram 

Figure 2.5 Tricycle mobile robot and 

differential-drive mobile robot 
Figure 2.6 Car-like mobile robot Figure 2.7 Synchro-drive mobile 

robot 



CHAPTER 3 
Kinematic Model and Inverse Kinematic 

Model 
 
“Modelling of mobile robots requires a preliminary analysis of the kinematic constraint imposed by 

the presence of wheels. Depending on the mechanical structure, such constraints can be integrable 

or not. 
The kinematic model of a mobile robot is essentially the description of the admissible instantaneous 

motions in respect of the constraints.” 
“The direct kinematics equation, establishes the functional relationship between the joint variables 

and the end effector position and orientation. The inverse kinematics consists of the determination 

of the joint variables corresponding to a given end-effector position and orientation.” [2] 
 
“The kinematic motion model is a mathematical model that describe the motion of objects without 

consideration of forces.” [5] 
 
 
3.1 Model of an SSMR 
 
The model of a SSMR, Skid-Steer Mobile Robot, is similar to the one of the bicycle without a 

steering angle. 
The Kinematic equations extracted from the study done by Krzysztof Kozlowski and Dariusz 

Pazderski, considering the robot in a plane surface with inertial orthonormal basis (𝑋𝑔, 𝑌𝑔, 𝑍𝑔) and 

the robot coordinates are (𝑥𝑙, 𝑦𝑙 , 𝑧𝑙), assigned to the robot on its COM, Centre of Mass. 
Having as lengths: 

• a, the longitudinal distance between the COM and the centres of the backward wheels; 
• b, the longitudinal distance between the COM and the centres of the forward wheels; 
• c, the lateral distance between the COM and the centre of the left or right wheels. 

 
moving with a linear velocity in the local frame  𝑣 = [𝑣𝑥   𝑣𝑦  0]𝑇  and rotating with an angular 

velocity 𝜔 = [0  0  𝜔]𝑇 = [0  0  �̇�]𝑇, �̇� = 𝜔  holds due to the planar motion. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The state vector of the robot 𝑞 = [𝑋 𝑌 𝜃]𝑇, describes position and orientation of the robot with 

respect to the inertial frame. 
The velocity vector �̇� = [𝑋 ̇ �̇� �̇�]𝑇 denotes the vector of generalized velocities, the time variation of 

the position and orientation, again with respect to the inertial frame. 
 
Putting all together the kinematic model equations can be seen as: 
 

[
�̇�
�̇�
�̇�

] = [
cos𝜃  − sin𝜃   0
sin𝜃    cos𝜃      0
0            0           1

] [
𝑣𝑥

𝑣𝑦

𝜔
].                                                               (3.1) 

 
Considering the Pacejka Magic Formula tire model for the i-th wheel (i=1,2,3,4): 
 

𝑣𝑖𝑥 = 𝑟𝑖𝜔𝑖 ,                                                                                   (3.2) 
 
where vix is the longitudinal component of the total velocity vector vi of the i-th wheel expressed in 

the local frame and ri denotes the effective rolling radius of that wheel. 
And the geometry of the model we can have the relationship linking the linear velocities, the ICR, 

instant centre of rotation, the coordinates and the angular robot velocity: 
 

𝑣𝑥

𝑦𝐼𝐶𝑅
= −

𝑣𝑦

𝑥𝐼𝐶𝑅
= 𝜔.                                                                          (3.3) 

 
where vx is the longitudinal velocity and vy the lateral velocity. 
 
 

Figure 3.1 Robot Free Body Diagram 



 
 
 
 
 
 
  
 
 
 
 
 
 
 

 
 
 
In brief, the kinematic model, uses as input the measured left and right wheel’s angular velocities 

ωL and ωR and the physical parameters of the vehicle, the effective radius of the wheel r and the 

horizontal distance from the wheels to the centre of mass c to determine the longitudinal speed vx 

and the angle of the vehicle with respect the centre of mass θ (=ω). 
Thus, we are moving from the wheels towards the operating space, the vehicle generalized 

velocities and generalized angle with respect the centre of mass: �̇�, �̇�, 𝜃. 
 
In order to design a Simulink model which controls the wheels deciding the path the vehicle should 

follow we need the Inverse Kinematic equations, thus given a generalized pose, retrieve the 

generalized velocities and so get the angular left and right velocities. 
To retrieve the Inverse Kinematic model, I took the Kinematic model and reverse the equations, so 

we end up with the system: 
[
𝑣𝑥

𝑣𝑦
] = [  cos𝜃         sin𝜃

−sin𝜃       cos𝜃
] [�̇�

�̇�
]

𝜔𝑅 =
2𝑣𝑥

𝑟
− 𝜔𝐿                    

𝜔𝐿 =
𝑣𝑥 − �̇�𝑐

𝑟
                       

𝜔 = �̇�                                   

                                                         (3.4) 

 
The following Simulink model refers to the test of the direct and inverse kinematics models 

Figure 3.2 Velocities of one wheel Figure 3.3 Wheel velocities 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 3.4 Kinematic Test 

Figure 3.5 DK_model Figure 3.6 VX_omega_input 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

Figure 3.7 Kinematic model 

Figure 3.8 IK_model 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
From the graphs it can be seen that for the input given to wr and wl is of 5 rad/s, entering in the 

direct kinematics model and the measured values from the inverse kinematic model we have the 

same values. Thus, the test is successfully completed. 

Figure 3.9 velocities 

Figure 3.10 Test input and measured angular left and right speeds 



CHAPTER 4 
DYNAMIC MODEL  
 
“The dynamic model accounts for the reaction forces and describes the relationship between the 

motions and the generalized forces acting on the robot.” [2] 
 
 
4.1 SSMR Dynamic model 
 
The dynamic model from the study done by Krzysztof Kozlowski and Dariusz Pazderski, considers 

as main blocks the active forces Fi and the reactive forces Ni, which are the vertical normal force 

acting on the wheels. 
The first ones are linearly dependent on the wheel torque τi and the latter ones are dependent of the 

gravity g: 
𝐹𝑖 =

𝜏𝑖

𝑟
.                                                                                   (4.1) 

 

∑ 𝑁𝑖

4

𝑖=1

= 𝑚𝑔,                                                                         (4.2) 

 
where r denotes the wheel radius and m the vehicle mass. 
The symmetry of the vehicle along the longitudinal midline we can have the backward wheels 

normal forces and the forward normal forces are equal as well, this allows us to further simplify the 

number of equations: 

𝑁1 = 𝑁4 =
𝑏

2(𝑎 + 𝑏)
𝑚𝑔,

𝑁2 = 𝑁3 =
𝑎

2(𝑎 + 𝑏)
𝑚𝑔.

                                               (4.3) 

 
 
 
 
The dynamic properties of the SSMR are caused by unknown lateral skidding ground interaction 

forces. The active force Fi and reactive force Ni which are related to the wheel torque τ and gravity 

g. 
The active force Fi is linearly dependent on the wheel control input τi 
 

𝐹𝑖 =
𝜏𝑖

𝑟
.                                                                           (4.4) 

 
The vertical normal force Ni, based on the Pacejka Magic Formula, acts from the surface to the 

wheel. 
Considering the four wheels of the vehicle and neglecting additional dynamic properties, the 

equilibrium equations are: 

∑𝑁𝑖

4

𝑖=1

= 𝑚𝑔,                                                                     (4.5) 

 
𝑁1𝑎 = 𝑁2𝑏,                                                                     (4.6) 



 
𝑁4𝑎 = 𝑁3𝑏                                                                    (4.7) 

 
    

 
where m denotes the vehicle mass and g the gravity acceleration. 
Considering the Potential energy equal to zero due to the planar motion, neglecting the energy of 

the wheels and having homogeneous mass distribution, one can have the longitudinal and lateral 

active forces and the resistant moment generated by the actuators in the inertial frame around the 

centre of mass generated by the actuators: 
 

𝐹 = [
𝐹𝑥

𝐹𝑦

𝑀

] =
1

𝑟

[
 
 
 
 
 
 

cos𝜃 ∑𝜏𝑖

4

𝑖=1

sin𝜃 ∑𝜏𝑖

4

𝑖=1

𝑐(−𝜏1 − 𝜏2 + 𝜏3 + 𝜏4)]
 
 
 
 
 
 

                                       (4.8) 

 
The torque control input is divided in left and right torques produced by the wheels of the vehicle 
 

𝜏 = [
𝜏𝐿

𝜏𝑅
] = [

𝜏1 + 𝜏2

𝜏3 + 𝜏4
] ,                                                                  (4.9) 

 
 
 
On my Simulink model, the dynamic block has as inputs the right and left torques of the vehicle and 

the centre of mass angular speed ω and returns as output the generalized velocities of the wheels 

�̇�, �̇�, �̇� which later on will be converted into wheel angular velocities via an inverse kinematics 

block and then compared with the desired ones via a PID block. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.1 Dynamic model test 



 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4.2 Dynamic model 



  

Figure 4.3 Active Forces 



 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

Figure 4.4 Resistive Forces 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.5 Scopes of input torques and angle on the dynamic model 

Figure 4.6 Scopes of Active and Reactive Forces and Dynamic accelerations 



 

 
 
 
As can be seen from the graphs, whenever the pose of the robot turns to the left, the right velocity 

increase in order to make it rotate towards the left. 
 
  

Figure 4.7 Scopes of Dynamic velocities and pose 



 

CHAPTER 5 
Trajectory Planning  
 
 
“Planning a trajectory for a mobile robot can be broken down in finding a path and defining a 

timing law on the path.” [2] 
 
The scope of the thesis is to make the robot to move in an S path whenever a target, robot R1, is 

found and to follow it keeping a safety distance. In case the target is not detected, the robot should 

keep moving forward. In particular, the displacement should be linked to the lateral and longitudinal 

speeds of the robot. 
 
In literature [2] there are three types of algorithms for mobile robots: 

• Cubic Cartesian polynomials, based in the interpolation of the initial values xi, yi and the 

final values xf, yf  of the flat outputs x, y. Furthermore, they can be integrated with some 

constraints, depending on the initial and final values, but for the purpose of this thesis were 

substituted with the lateral and longitudinal velocities. 
• Chained form, the path is planned in the chained form coordinates z. Computing the initial 

and final values zi and zf  that correspond to qi and qf, by using the change of coordinates. 

Then interpolating the initial and final values of z1 and z3 (the flat outputs) with the 

appropriate boundary conditions on the remaining variable z2=z3'/z1'. 
• Parameterized inputs, it consists on writing the inputs, rather than the path, in 

parameterized form, and computing the value of the parameters so as to drive the robot from 

qi to qf.   
 
As anticipated before, the method used in this thesis is the Cubic Cartesian polynomial method due 

to its simplicity in application. As a start point it was tested an S shaped path from the starting 

position to the final position as shown in fig.5.1. Later on, the same method will be discussed but 

integrating the linear speed of the vehicle in the parameters and keeping a safety distance from the 

vehicle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 S path from initial pose (0, 0) to (0.6, 0.6) 



  

Figure 5.2 Comparison of pose and wheels turning to the right direction 

Figure 5.3 Complete model 



CHAPTER 6: 
Integration of Ultrasonic Sensors in the 

Simulink Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.1 Pose R1 
 
As a first test, it was taken as an example the project Ultrasound Sensor: 2D Tracking with Arduino 

from Instructables [6] which introduces two ultrasonic sensors and a triangulation method 

depending on the distance between the sensors and the object detected, robot R1. They can be seen 

as a triangle. 
Pose of R1 is retrieved by the ultrasonic sensors, connected to the Arduino board on pins 4,5,6 and 

7, which measures d1 and d2 in meters, I converted it in centimetres. The baseline is the distance 

between the sensors and so we can retrieve the internal angle thetatrig via the cosine rule, to 

identify the distance of the object in front of our vehicle. The code give as output the pose of the 

forward vehicle in X,Y,θ coordinates. 
Once it has been tested in Arduino, it is added to a Matlab function in Simulink on a function called 

PoseR1_fcn. 
In order to avoid NaN values, I have defined a constraint to the internal angle to a fixed point, so 

that later on whenever my vehicle wants to move forward and there are no objects nearby it can 

have a reference point to reach at each cycle, until it encounters an object.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1 Triangulation scheme 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.2 Path Plan  
 
On the Matlab function pp_fcn we have as input the pose of the forward vehicle and as feedback the 

previous pose of my vehicle, designed by taking the pose of my vehicle signal going through a 

delay block. The S path formulas where updated giving velocity constraints in order to move 

towards the object with a certain speed. In case the vehicle approaches an object, the vehicle needs 

to reduce the speed proportionally to the distance measured, and in case the object stands still, the 

vehicle should stop keeping the safety distance.  

Figure 6.2 PoseR1_fcn 

Figure 6.3 pp_fcn 



 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5 Final model integrating poseR1, path plan and Inverse Kinematic equations 

Figure 6.4 Measurements and follow up simulation 



CHAPTER 7: 
Code Generation 
 
 

 
 
 
In order to test the model inside the Arduino UNO board, Hardware in the loop method, I have 

prepared the model for code generation by specifying code generation settings in the Configuration 

Parameters dialog box.  
 
On the Code Generation section, I choose the System target file ert.tlc (Embedded Coder) and 

language C. Also ticked the Package code and artifacts in order to have an easier transportability of 

the code files to deploy the files later on in the Arduino sketch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1 Model for code generation 

Figure 7.2 Configuration Code Generation 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The model blocks are the ones shown in the following pictures 
 
 

 
  
 
  

Figure 7.3 Configuration Hardware Implementation 

Figure 7.4 Sensors 

Figure 7.5 PoseR1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.6 Path Plan 

Figure 7.7 Integrators 

Figure 7.8 Inverse Kinematic model 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As can be seen the Simulink model comply with the MAAB rules: 
- Inport blocks on the left side of the diagram and the Output ones on the right side of the 

diagram.  
- The names of the blocks are below the blocks.  
- The Signal lines are drawn with right angles. There are some intersections that I could not 

avoid. The signals flow moves from left to right. 
 
Whenever one builds a model via the Embedded Coder, one has 3 folders: otherFiles, R2020a and 

sim31012021 (the model’s name folder). On the model’s folder there is an extra folder ending with 

ert_rtw, which stands for embedded real time code in real-time workshop, and inside of it there are 

some header and source code C files that I used to deploy the model inside Arduino. 
 
 
 
 
 
 
 
 
 
 
 The ert_main.c file is the testbench for the model and was skipped since is what the Arduino ino 

sketch file does in practice. 
The rtmodel header file was not used since it is just defining the rtmGetStopRequested macros 

which was not used on the code. 
Taking some parts that were inside the source code file of the model and arranging them inside the 

sketch file, including the header files needed to compile the code. 
The header files that were used are described as follows: 

• Rtwtypes, which assigns the Arduino hardware-specific data types to the ones used in 

Figure 7.9 Velocities of Inverse Kinematic model 

Figure 7.10 Generated files 



Simulink. 
• Sim31012021, define the model-specific data types via typedef struct definitions. 
• MW_Ultrasonic, this extra header file was added from another folder of Simulink which 

defines the setup and read of the ultrasonic sensors, in order to use them on the main code 

without defining trig pin or echo pin explicitly. 
 
The code was then compiled and tested in the robot. 
 

 
 
 
 
 
 
 
 
  

Figure 7.11 Hercules 4WD Brain Technologies 



Chapter 8 
Conclusions 
 
The scope of the thesis was to make a mobile robot autonomous by integrating ultrasonic sensors as 

vision system, using that vision system as inputs to define the path plan of the robot and control the 

vehicle wheels accordingly. 
As described above on the previous chapters, all the tests where successfully done, the testing of the 

whole system was sometimes tedious due to the fact that the generated code model was too big for 

the Arduino memory, reason why it was necessary to reassemble the code for the Arduino IDE with 

the functions created by Simulink and connect them all together “manually”. 
 
Further developments can be done on the testing of the mobile robot for more complex 

environments with more than one object moving, for example. 
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Appendix 
 

A. Sensors 
 
“A sensor is a device, module, machine, or subsystem whose purpose is to detect events or changes 

in its environment and send the information to other electronics, frequently a computer processor.” 

[7] 
 
“A device that responds to a physical stimulus (such as heat, light, sound, pressure, magnetism, or a 

particular motion) and transmits a resulting impulse (as for measurement or operating a control).” 

[8] 
 
“Autonomous systems rely on sensor suites that provide data about the surrounding environment to 

feed the perception system. These sensors include radars and cameras, which provide detections of 

objects in their field of view. 
They also include LiDAR sensors, which provide point clouds of returns from obstacles in the 

environment, and in some cases, ultrasound and sonar sensors. Autonomous systems must also be 

able to estimate their position to maintain self-awareness. For this, sensors such as Inertial 

Measurement Unit (IMU) and Global Positioning System (GPS) receivers are used.” [1] 
 

 
Figure 2 Types of Sensors [9] 

 
 
Ultrasonic sensors: They are used primarily as proximity sensors. They can be found in automobile 

self-parking technology and anti-collision safety system. They are also used in robotic obstacle 

detection systems as well as manufacturing technology. In comparison to infrared (IR) sensors in 

proximity sensing applications, ultrasonic sensors are not as susceptible to interference of smoke, 

gas, and other airborne particles (through the physical components are still affected by variables 

such as heat, in some cases one can use a temperature). 
Ultrasonic sensors are also used as level sensors to detect, monitor, and regulate liquid levels in 

closed containers (such as vats in chemical factories). Most notably, ultrasonic technology has 



enabled the medical industry to produce images of internal organs, identify tumours, and ensure the 

health of babies in the womb. [10] 
In order to make more accurate measurements in hot environments one can use the temperature 

sensor LM35 combined with the Ultrasonic sensors. 
Robotics 
 
The essential component of a robot is the mechanical system endowed, in general, with a 

locomotion apparatus (wheel, crawlers, mechanical legs) and a manipulation apparatus (mechanical 

arms, end-effectors, artificial hands). 
The capability to exert an action, both locomotion and manipulation, is provided by an actuation 

system which animates the mechanical components of the robot. The concept of such a system 

refers to the context of motion control, dealing with servomotors, drives and transmissions. 
 
The capability for perception is entrusted to a sensory system which can acquire data on the internal 

status of the mechanical system (proprioceptive sensors, such as position transducers) as well as on 

the external status of the environment (exteroceptive sensors, such as force sensors and cameras).  
The realization of such a system refers to the context of materials properties, signal conditioning, 

data processing, and information retrieval. 
The capability for connecting action to perception in an intelligent fashion is provided by a control 

system which can command the execution of the action in respect to the goals set by a task planning 

technique, as well as of the constraints imposed by the robot and the environment. The realization 

of such a system follows the same feedback principle devoted to control of human body functions, 

possibly exploiting the description of the robotic system’s components (modelling). The context is 

that of cybernetics, dealing with control and supervision of robot motions, artificial intelligence and 

expert systems, the computational architecture and programming environment. [2] 
 

B. Mobile robots 
“The main feature of mobile robots is the presence of a mobile base which allows the robot to move 

freely in the environment. From a mechanical point of view, a mobile robot consists of one or more 

rigid bodies equipped with a locomotion system.” [2] 
 
 
There are two main classes of mobile robots: 
Wheeled mobile robots, which consist of a rigid body and a system of wheels which provide 

motion with respect to the ground. 
Legged mobile robots, which are made of multiple rigid bodies, interconnected by prismatic joints 

or by revolute joints. 
 
Here we are going to deal with wheeled robots. 
There are three types of conventional wheels: 

1) The fixed wheel, it can rotate about an axis that goes through the centre of the wheel and is 

orthogonal to the wheel plane. The wheel is rigidly attached to the chassis, whose 

orientation with respect to the wheel is therefore constant. 
2) The steerable wheel, it has two axes of rotation. The first is the same as a fixed wheel, 

while the second is vertical and goes through the centre of the wheel. This allows the wheel 

to change its orientation with respect to the chassis. 
3) The caster wheel, it has two axes of rotation, but the vertical axis does not pass through the 

centre of the wheel, from which it is displaced by a constant offset. Such an arrangement 

causes the wheel to swivel automatically, rapidly aligning with the direction of motion of the 

chassis. This type of wheel is introduced to provide a supporting point for static balance 

without affecting the mobility of the base. 
 



 
 
 
 
 
 
 
 
 
 
 
In a differential-drive vehicle there are two fixed wheels with a common axis of rotation, and one or 

more caster wheels, typically smaller, whose function is to keep the robot statically balanced. The 

two fixed wheels are separately controlled, in that different values of angular velocity may be 

arbitrarily imposed, while the caster wheel is passive. Such a robot can rotate on the spot, provided 

that the angular velocities of the two wheels are equal and opposite. 
In this thesis it will be used a subsystem of the differential-drive vehicle called Skid Steer Drive, 

technically speaking it does not have the steering angle. 
There exists another vehicle with similar mobility using a synchro-drive kinematic 

arrangement. This robot has three aligned steerable wheels which are synchronously driven by only 

two motors through a mechanical coupling, e.g., a chain or a transmission belt. The first motor 

controls the rotation of the wheels around the horizontal axis, thus providing the driving force 

(traction) to the vehicle. The second motor controls the rotation of the wheels around the vertical 

axis, hence affecting their orientation. 
There is also a tricycle vehicle where there are two fixed wheels mounted on a rear axle and 

a steerable wheel in front. The fixed wheels are driven by a single motor which controls their 

traction, while the steerable wheel is driven by another motor which changes its orientation, acting 

then as a steering device. Alternatively, the two rear wheels may be passive and the front wheel may 

provide traction as well as steering. 
A car-like vehicle has two fixed wheels mounted on a rear axle and two steerable wheels 

mounted on a front axle. One motor provides traction while the other changes the orientation of the 

front wheels with respect to the vehicle. In order to avoid slippage, the two front wheels must have 

a different orientation when the vehicle moves along a curve; in particular, the internal wheel is 

slightly more steered with respect to the external one. This is guaranteed by the use of a specific 

device called Ackermann steering. [2] 
 
 

 
 

C. 4WD Hercules Mobile Robot 
 
The 4WD Hercules Mobile Robotic Platform, is a discontinued bot from the Seed Studio company, 

it is designed such that one can enter into the robotic world making their own robot mobile 

Figure 3.2 Conventional wheels 

Figure 3.3 Tricycle mobile robot and 

differential-drive mobile robot 
Figure 3.3 Car-like mobile robot Figure 3.4 Synchro-drive mobile 

robot 



platform. 
The name Hercules comes from the Titan in Greek mythology, known for his strength and spirit of 

adventure. 
 
It consists of the component of Hercules motor controller, Hercules skeleton, gear motor etc. The 

Hercules motor controller can consistently support the current up to 15A and driving voltage in the 

range of 6V-20V, thus, it can supply strong motive power to the whole platform. The Hercules 

skeleton is made up of aluminium alloy plate with firm but pliable texture which can carry, display 

and connect sorts of accessories in the project. Its 4 powerful gear motors, especially a couple of 

them from Seeed’s original encipheror (encoder) can monitor the running speed of your platform 

and amend the process parameter by the shaped closed-loop control. This provides a possibility to 

control precise process. Besides, other accessories such as wheels, cooper cylinder and acrylic 

guard plate that make the platform to be a completely mobile platform.   
 
Hercules is a suite of open-platform. It is convenient for users to install all kinds of components 

through the hole sites on the board. In addition, the Grove connector reserved on the board can help 

the inventor input several sorts of sensor data into system. What’s more, Hercules controller is 

Arduino compatible, so you can freely alter the device drives and programs. [11] 
 

D. Kinematic Model 
 
D.1 Nonholonomic Constraints 
 
There are some nonlinear behaviours typical of the mobile robots and are the non-holonomic 

constraints which develop on the wheels as a kinematic constraint that reduce in general its local 

mobility, while leaving intact the possibility of reaching arbitrary configurations by appropriate 

manoeuvres. 
For example, consider a mechanical system whose configuration 𝑞 ∈ 𝐶 is described by a vector of 

generalized coordinates, and assume that the configuration space 𝐶 coincides with ℝ𝑛 . 
The motion of the system that is represented by the evolution of q over time may be subjected to 

constraints that can be classified under various criteria, like being expressed as equalities (bilateral) 

or inequalities (unilateral), and may depend explicitly on time (rheonomic) or not (scleronomic). 
 
The holonomic or integrable constraints are of the form: 
 

ℎ𝑖(𝑞) = 0        𝑖 = 1, . . . , 𝑘 < 𝑛                                                      (𝐷. 1.1) 
 

Assuming that the functions ℎ𝑖: 𝐶 → ℝ are of class 𝐶∞ smooth and independent. 
The effect of holonomic constraints is to reduce the space of accessible configurations to a subset of 

C with dimension n-k. A mechanical system for which all the constraint can be expressed in the 

form of (D.1.1) is called holonomic. 
In the presence of holonomic constraints, the implicit function theorem can be used in principle to 

solve the equations in (D.1.1) by expressing k generalized coordinates as a function of the 

remaining n-k, so as to eliminate them from the formulation of the problem. In general, this 

procedure is only valid locally, and may introduce singularities. 
 
Holonomic constraints are generally the result of mechanical interconnections between the various 

bodies of the system. 
 
Constraints that involve generalized coordinates and velocities 
 

𝑎𝑖(𝑞, �̇�) = 0          𝑖 = 1, . . . , 𝑘 < 𝑛                                                (𝐷. 1.2) 



 
are called kinematic. They constrain the instantaneous admissible motion of the mechanical system 

by reducing the set of generalized velocities that can be attained at each configuration. Kinematic 

constraints are generally expressed in Pfaffian form, i.e., they are linear in the generalized velocities 

in vector or matrix form: 
𝑎𝑖

𝑇(𝑞)�̇� = 0       𝑖 = 1, . . . , 𝑘 < 𝑛,                                                  (𝐷. 1.3)

𝐴𝑇(𝑞)�̇� = 0                                                                                       (𝐷. 1.4)
 

 
Vectors 𝑎𝑖: 𝐶 → ℝ𝑛 are assumed to be smooth as well as linearly independent. 
The existence of k holonomic constraints (𝐷. 1.1) implies that of an equal number of kinematic 

constraints: 
𝑑ℎ𝑖(𝑞)

𝑑𝑡
=

𝜕ℎ𝑖(𝑞)

𝜕𝑡
�̇� = 0   𝑖 = 1, . . . , 𝑘                                          (𝐷. 1.5) 
 

A system of kinematic constraints in the form (D.1.4) may or may not be integrable to the form of 

(D.1.1). In the negative case, the kinematic constraints are said to be non-holonomic or non-

integrable. A mechanical system that is subject to at least one such constraint is called 

nonholonomic. 
The nonholonomic constraints reduce the mobility of the mechanical system in a completely 

different way with respect to holonomic constraints. 
Considering a single Pfaffian constraint 

𝑎𝑇(𝑞)�̇� = 0                                                                           (𝐷. 1.6) 
 

If the constraint is holonomic, it can be integrated and written as 
 

ℎ(𝑞) = 𝑐,                                                                             (𝐷. 1.7) 
 
where  

𝜕ℎ

𝜕𝑞
= 𝛾(𝑞)𝑎𝑇(𝑞), with 𝛾(𝑞) ≠ 0 an integrating factor and c an integration constant. 

Therefore, there is a loss of accessibility in the configuration space, because the motion of the 

mechanical system in C is confined to a particular level surface of the scalar function h. This 

surface, which depends on the initial configuration q0 through the values of ℎ(𝑞0) = 𝑐, has 

dimension n-1. 
Assuming that the constraint (D.1.6) is nonholonomic, then the generalized velocities are indeed 

constrained to belong to a subspace of dimension n-1, i.e., the null space of matrix 𝑎𝑇(𝑞). 
Nevertheless, the fact that the constraint is non-integrable means that there is no loss of accessibility 

in C for the system. While the number of DOFs decreases to n-1 due to the constraint, the number 

of generalized coordinates cannot be reduced, not even locally. 
An n-dimensional mechanical system subject to k nonholonomic constraints can access its whole 

configuration space C, although at any configuration its generalized velocities must belong to an (n-

k) -dimensional subspace. 
 
D.2 Integrability Conditions 
 
In the presence of Pfaffian kinematic constraints, integrability conditions can be used to decide 

whether the system is holonomic or nonholonomic. 
Considering the case of a single Pfaffian constraint: 

𝑎𝑇(𝑞)�̇� = ∑𝑎𝑗(𝑞)𝑞�̇�

𝑛

𝑗=1

= 0.                                                           (𝐷. 1.8) 

 
For this constraint to be integrable, there must exist a scalar function ℎ(𝑞) and an integrating factor 



𝛾(𝑞) ≠ 0 such that the following condition holds: 
 

𝛾(𝑞)𝑎𝑗(𝑞) =
𝜕ℎ(𝑞)

𝜕𝑞𝑗
                   𝑗 = 1, . . . , 𝑛.                               (𝐷. 1.9) 

 
the converse is also true: if there exists and integrating factor 𝛾(𝑞) ≠ 0 such that 𝛾(𝑞)𝑎(𝑞) is the 

gradient of a scalar function ℎ(𝑞), constraint (D.1.8) is integrable, by using Schwarz theorem on the 

symmetry of second derivatives, the integrability condition (D.1.9) may be replaced by the 

following system of partial differential equations: 
𝜕(𝛾𝑎𝑘)

𝜕𝑞𝑗
=

𝜕(𝛾𝑎𝑗)

𝜕𝑞𝑘
𝑗, 𝑘 = 1, . . . , 𝑛, 𝑗 ≠ 𝑘,                                    (𝐷. 1.10) 

 
that does not contain the unknown function ℎ(𝑞). This last equation implies that Pfaffian constrain 

with constant coefficients 𝑎𝑗 is always holonomic. [2] 
 
 
The system of k Pfaffian constraints (D.1.4) entails that the admissible generalized velocities at each 

configuration q belong to the (n-k)-dimensional null space of matrix 𝐴𝑇(𝑞). Denoting by 

{𝑔1(𝑞), . . . , 𝑔𝑛−𝑘(𝑞)} a basis of 𝑁(𝐴𝑇(𝑞)), the admissible trajectories for the mechanical system can 

then be characterized as the solutions of the nonlinear dynamic system 
 

�̇� = ∑ 𝑔𝑖(𝑞)𝑢𝑗

𝑚

𝑗=1

= 𝐺(𝑞)𝑢                    𝑚 = 𝑛 − 𝑘,                             (𝐷. 1.11) 

 
where 𝑞 ∈ ℝ𝑛 is the state vector and 𝑢 = [𝑢1. . . 𝑢𝑚]𝑇 ∈ ℝ𝑚 is the input vector. The system (D.1.11) 

is said to be driftless because one has �̇� = 0 if the input is zero. 
The choice of the input vector fields 𝑔1(𝑞), . . . , 𝑔𝑚(𝑞)  in (D.11) is not unique. The components of u 

may have different meanings. In general, it is possible to choose the basis of 𝑁(𝐴𝑇(𝑞)) in such a 

way that the 𝑢𝑗𝑠 have a physical interpretation. In any case vector u may not be directly related to 

the actual control inputs, that are in general forces and/or torques. That's why the equation (D.1.11) 

is referred as the kinematic model of the constrained mechanical system. 
The holonomy or non-holonomy of constraints (D.1.4) can be established by analysing the 

controllability properties of the associated kinematic model (D.1.11). 
 
Two cases are possible: 

1. If system (D.1.11) is controllable, given two arbitrary configurations 𝑞𝑖 and 𝑞𝑓 in 𝐶, there 

exist a choice of 𝑢(𝑡) that steers the system from 𝑞𝑖 to 𝑞𝑓, i.e., there exist a trajectory that 

joins the two configurations and satisfies the kinematic constraints (D.1.4). Therefore, these 

do not affect in any way the accessibility of 𝐶, and they are nonholonomic. 
2. If system (D.1.11) is not controllable, the kinematic constraints (D.1.4) reduce the set of 

accessible configurations in 𝐶. Hence, the constraints are partially or completely integrable 

depending on the dimension 𝜈 < 𝑛 of the accessible configuration space. In particular: 
2a. If 𝑚 < 𝜈 < 𝑛, the loss of accessibility is not maximal, and thus constraints (D.1.4) are only 

partially integrable. The mechanical system is still nonholonomic. 
2b. If 𝜈 = 𝑚, the loss of accessibility is maximal, and constraints (D.1.4) are completely integrable. 

Therefore, the mechanical system is holonomic. [2] 
 
In brief, the holonomic motion is whenever a vehicle can go in all x and y directions and it is not 

constrained. The nonholonomic motion is whenever a vehicle is constrained to only certain 

motions. 



 
D.2.1 Unicycle mobile robot 
 
A unicycle is a vehicle with a single orientable wheel. Its configuration is completely described by 
𝑞 = [𝑥 𝑦 𝜃]𝑇, where (𝑥, 𝑦) are the Cartesian coordinates of the contact point of the wheel with the 

ground (or equivalently, of the wheel centre) and θ is the orientation of the wheel with respect to the 

x axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The pure rolling constraint for the wheel is expressed as 
 

�̇�𝑠𝑖𝑛𝜃 − �̇�𝑐𝑜𝑠𝜃 = [𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜃 0]�̇� = 0,                                           (𝐷. 1.12) 
 

entailing that the velocity of the contact point is zero in the direction orthogonal to the sagittal axis 

of the vehicle. The line passing through the contact point and having such direction is therefore 

called zero motion line. 
Consider the matrix 

𝐺(𝑞) = [𝑔1(𝑞)     𝑔2(𝑞)] = [
𝑐𝑜𝑠𝜃    0
𝑠𝑖𝑛𝜃    0
  0        1

],                                        (𝐷. 1.13) 

 
whose columns 𝑔1(𝑞) and 𝑔2(𝑞) are, for each q, a basis of the null space of the matrix associated 

with the Pfaffian constraint. All the admissible generalized velocities at q are therefore obtained as a 

linear combination of 𝑔1(𝑞) and 𝑔2(𝑞). The kinematic model of the unicycle is then 
 

[
�̇�
�̇�

�̇�

] = [
𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

0
] 𝑣 + [

0
0
1
]𝑤,                                                       (𝐷. 1.14) 

 
where the inputs 𝑣 and 𝑤 have a clear physical interpretation. Where 𝑣 is the driving velocity, i.e., 

the modulus (with sign) of the contact point velocity vector, it's given by the angular speed of the 

wheel around its horizontal axis multiplied by the wheel radius, whereas the steering velocity 𝑤 is 

the wheel angular speed around the vertical axis. 
A unicycle, a vehicle equipped with a single wheel, is a robot with a serious problem of 

balance in static conditions. There exist vehicles that are kinematically equivalent to a unicycle but 

more stable from a mechanical viewpoint. The most important ones are the differential drive and the 

synchro drive vehicles. 
For the differential drive mobile robot, denote by (𝑥, 𝑦) the Cartesian coordinates of the 

midpoint of the segment joining the two-wheel centres, and by θ the common orientation of the 

fixed wheels, thus the vehicle body. Then, the kinematic model of the unicycle also applies to the 

Figure 4.1 Generalized coordinates for a unicycle 



differential drive vehicle, provided that the driving and steering velocities 𝑣 and 𝑤 are expressed as 

a function of the actual velocity inputs, i.e., the angular speed 𝑤𝑅  and 𝑤𝐿 of the right and left wheel, 

respectively. There is a one-to-one correspondence between the two sets of inputs: 
 

𝑣 =
𝑟(𝑤𝑅 + 𝑤𝑙)

2
     𝑤 =

𝑟(𝑤𝑅 − 𝑤𝑙)

2
,                                               (𝐷. 1.15) 

 
where r is the radius of the wheels and d is the distance between their centres. 
The equivalence with the kinematic model is even more straight forward for the synchro drive 

mobile robot, whose control inputs are indeed the driving velocity 𝑣 and the steering velocity 𝑤, 
that are common to the three orientable wheels. The Cartesian coordinates (𝑥, 𝑦) may represent in 

this case any point of the robot, while θ is the common orientation of the body of a synchro drive 

vehicle never changes, unless a third actuator is added for this specific purpose. 
(Robotics-Modelling, Planning and Control Chapter 11 page 479) 
 
 
D.2.2 Bicycle mobile robot 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The bicycle is a vehicle having an orientable wheel and a fixed wheel arranged. A possible choice 

for the generalized coordinates is 𝑞 = [𝑥 𝑦 𝜃 𝜙]𝑇, where (𝑥, 𝑦) are the Cartesian coordinates of the 

contact point between the rear wheel and the ground, θ is the orientation of the vehicle with respect 

to the x axis, and ϕ is the steering angle of the front wheel with respect to the vehicle. 
The motion of the vehicles is subject to two pure rolling constraints, one for each wheel: 
 

𝑥�̇�sin(𝜃 + 𝜙) − 𝑦�̇�cos(𝜃 + 𝜙) = 0                                                         (𝐷. 1.16)

                            �̇�𝑠𝑖𝑛𝜃 − �̇�𝑐𝑜𝑠𝜃 = 0                                                         (𝐷. 1.17)
 

 
where (𝑥𝑓, 𝑦𝑓) is the Cartesian position of the centre of the front wheel. The geometric meaning of 

these constraints is obvious: the velocity of the centre of the from wheel is zero in the direction 

orthogonal to the wheel itself, while the velocity of the centre of the rear wheel is zero in the 

direction orthogonal to the sagittal axis of the vehicle. The zero motion lines of the two wheels meet 

at a point C called instantaneous centre of rotation (Fig. 4.2), whose position depends only on (and 

changes with) the configuration q of the bicycle. Each with centre in C. 
Using the rigid body constraints 

𝑥𝑓 = 𝑥 + 𝑙𝑐𝑜𝑠𝜃

𝑦𝑓 = 𝑦 + 𝑙𝑠𝑖𝑛𝜃,
                                                                      (𝐷. 1.18) 

 
where l is the distance between the wheels, constraint (𝐷. 1.16) can be rewritten as 

Figure 4.2 Generalized coordinates and instantaneous centre of rotation for a 

bicycle 



 
�̇�sin(𝜃 + 𝜙) − �̇�cos(𝜃 + 𝜙) − 𝑙�̇�𝑐𝑜𝑠𝜙 = 0                                      (𝐷. 1.19) 

 
The matrix associated with the Pfaffian constraints (𝐷. 1.17), (𝐷. 1.19) is then 
 

𝐴𝑡(𝑞) = [
     𝑠𝑖𝑛𝜃                − 𝑐𝑜𝑠𝜃                 0                 0
sin(𝜃 + 𝜙)   − cos(𝜃 + 𝜙)     − 𝑙𝑐𝑜𝑠𝜙         0

],                      (𝐷. 1.20) 

 
with constant rank k=2. The dimension of its null space is n-k=2, and all the admissible velocities at 

q may be written as a linear combination of a basis of 𝑁(𝐴𝑇(𝑞)), for example 
 

[
 
 
 
�̇�
�̇�

�̇�
�̇�]

 
 
 
= [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙

𝑠𝑖𝑛𝜙 𝑙⁄
0

] 𝑢1 + [

0
0
0
1

] 𝑢2.                                              (𝐷. 1.21) 

 
Since the front wheel is orientable, it is immediate to set 𝑢2 = 𝜔, where 𝜔 is the steering velocity. 

The expression of 𝑢1 depends instead on how the vehicle is driven. 
 
If the bicycle has front-wheel drive, one has directly 𝑢1 = 𝑣, where 𝑣 is the driving velocity of the 

front wheel. The corresponding kinematic model is 
 

[
 
 
 
�̇�
�̇�

�̇�
�̇�]
 
 
 
= [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙

𝑠𝑖𝑛𝜙 𝑙⁄
0

] 𝑣 + [

0
0
0
1

]𝜔.                                                      (𝐷. 1.22) 

 
Denoting by 𝑔1(𝑞) and 𝑔2(𝑞) the two input vector fields, simple computations give 
 

𝑔3(𝑞) = [𝑔1,𝑔2](𝑞) = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙

𝑠𝑖𝑛𝜙 𝑙⁄
0

]     𝑔4(𝑞) = [𝑔1,𝑔3](𝑞) = [

−𝑠𝑖𝑛𝜃 𝑙⁄

𝑐𝑜𝑠𝜃 𝑙⁄
0
0

],        (𝐷. 1.23) 

 
both linearly independent from 𝑔1(𝑞) and 𝑔2(𝑞). Hence, the iterative procedure for building the 

accessibility distribution 𝛥𝐴 ends with 
 

𝑑𝑖𝑚𝛥𝐴 = 𝑑𝑖𝑚𝛥3 = dim 𝑠𝑝𝑎𝑛 {𝑔1,𝑔2, 𝑔3, 𝑔4} = 4. 
 
The front-wheel drive bicycle is controllable with degree of nonholonomy k=3, and constraints 

(4.17), (4.19) are nonholonomic. 
 
If the bicycle with rear-wheel drive can be derived by noting that in this case the first two equations 

must coincide with those of the unicycle model (5.4). It is then sufficient to set 𝑢1 = 𝑣 𝑐𝑜𝑠𝜙⁄  to 

obtain 

[
 
 
 
�̇�
�̇�

�̇�
�̇�]

 
 
 
= [

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

tan𝜙 𝑙⁄
0

] 𝑣 + [

0
0
0
1

]𝜔,                                                       (𝐷. 1.24) 

Where 𝑣 is the driving velocity of the rear wheel. 
In this case, one has 



𝑔3(𝑞) = [𝑔1,𝑔2](𝑞) =

[
 
 
 
 

0
0

−1

𝑙𝑐𝑜𝑠2𝜙
0 ]

 
 
 
 

𝑔4(𝑞) = [𝑔1,𝑔3](𝑞) =

[
 
 
 
 
 
−𝑠𝑖𝑛𝜃

𝑙𝑐𝑜𝑠2𝜙
𝑐𝑜𝑠𝜃

𝑙𝑐𝑜𝑠2𝜙
0
0 ]

 
 
 
 
 

,             (𝐷. 1.25) 

 
and it is linearly independent from 𝑔1(𝑞) and 𝑔2(𝑞). Hence, the rear-wheel drive bicycle is also 

controllable with degree of nonholonomy k=3. 
 
Like the unicycle, the bicycle is also unstable in static conditions. [2] 
 
 
 
To consider the kinematic model of a SSMR, it is assumed that the robot is placed on a plane 

surface with the inertial orthonormal basis (𝑋𝑔, 𝑌𝑔, 𝑍𝑔), the robot has a local coordinate frame 

denoted as (𝑥𝑙, 𝑦𝑙 , 𝑧𝑙) assigned to the robot at its centre of mass. Considering the Z-coordinate 

constant.  The robot moves on a plane with linear velocity in the local frame as 𝑣 = [𝑣𝑥  𝑣𝑦 0]𝑇 and 

rotates with an angular velocity 𝜔 = [0  0  𝜔]𝑇. 
Considering the state vector as 𝑞 = [𝑋 𝑌 𝜃]𝑇, which describes the state vector generalized 

coordinates of the robot, position and orientation of the robot with respect to the inertial frame, then 

�̇� = [𝑋 ̇ �̇� �̇�]𝑇 denotes the vector of generalized velocities. 
The variables �̇� and  �̇� are related to the coordinates of the local velocity vector (𝑣𝑥 , 𝑣𝑦): 
 

[�̇�
�̇�
] = [

cos𝜃 − sin𝜃
sin𝜃cos𝜃

] [
𝑣𝑥

𝑣𝑦
].                                                              (𝐷. 1.26) 

 
and due to the planar motion one can write �̇� = 𝜔. 
So, we can get the general kinematic model equation as: 
 

[
�̇�
�̇�
�̇�

] = [
cos𝜃  − sin𝜃   0
sin𝜃    cos𝜃      0
0            0           1

] [
𝑣𝑥

𝑣𝑦

𝜔
].                                                       (𝐷. 1.27) 

 
The equation (𝐷. 1.26) does not impose any restrictions on the SSMR plane movement, since it 

describes free-body kinematics only. To add these constraints, it is considered the analysis of the 

relationship between wheel velocities and local velocities. 
Supposing that the i-th wheel rotates with an angular velocity ωi(t), where i=1, 2, 3, 4, which can be 

seen as a control input. For simplicity the thickness of the wheel is neglected and is assumed to be 

in contact with the plane at point Pi as illustrated in Fig.4.3. In contrast to most wheeled vehicles, 

the lateral velocity of the SMRR, viy is generally non-zero. This property comes from the 

mechanical structure of the SSMR that makes lateral skidding necessary if the vehicle changes its 

orientation. Therefore, the wheels are tangent to the path only if 𝜔 = 0, i.e., when the robot moves 

along a straight line. 
Considering only a simplified case of the SSMR movement for which the longitudinal slip between 

the wheels and the surface can be neglected.  Based on the Pacejka Magic Formula tire model, we 

get the relation: 
𝑣𝑖𝑥 = 𝑟𝑖𝜔𝑖 ,                                                                     (𝐷. 1.28) 

 
where vix is the longitudinal component of the total velocity vector vi of the i-th wheel expressed in 

the local frame and ri denotes the effective rolling radius of that wheel. 



To develop a kinematic model, it is necessary to take into consideration all wheels together. 
The radius vectors 𝑑𝑖 = [𝑑𝑖𝑥  𝑑𝑖𝑦]𝑇and 𝑑𝐶 = [𝑑𝐶𝑥  𝑑𝐶𝑦]𝑇are defined with respect to the local frame 

from the instantaneous centre of rotation (ICR). Based on the geometry, the following expression 

can be deduced: 
 

∥ 𝑣𝑖 ∥

∥ 𝑑𝑖 ∥
=

∥ 𝑣 ∥

∥ 𝑑𝐶 ∥
=∣ 𝜔 ∣                                                      (𝐷. 1.29) 

 
where the symbol ||.|| denotes the Euclidean norm. 
And in the detailed form, 
 

𝑣𝑖𝑥

−𝑑𝑖𝑦
=

𝑣𝑥

−𝑑𝐶𝑦
=

𝑣𝑖𝑦

𝑑𝑖𝑥
=

𝑣𝑦

𝑑𝐶𝑥
= 𝜔,                                                  (𝐷. 1.30) 

 
Defining the coordinates of the ICR in the local frame as 
 

𝐼𝐶𝑅 = (𝑥𝐼𝐶𝑅, 𝑦𝐼𝐶𝑅) = (−𝑑𝐶𝑥 , −𝑑𝐶𝑦)                                                 (𝐷. 1.31) 
 
lead to the equivalence: 
 

𝑣𝑥

𝑦𝐼𝐶𝑅
= −

𝑣𝑦

𝑥𝐼𝐶𝑅
= 𝜔.                                                                   (𝐷. 1.32) 

 
The coordinates of vectors di satisfy the following relationships: 
 

𝑑1y = 𝑑2y = 𝑑𝐶𝑦 + 𝑐,

𝑑3y = 𝑑4y = 𝑑𝐶𝑦 − 𝑐,

𝑑1x = 𝑑4x = 𝑑𝐶𝑥 − 𝑎,
𝑑2x = 𝑑3x = 𝑑𝐶𝑥 + 𝑏,

                                                              (𝐷. 1.33) 

 
where a, b and c are positive kinematic parameters of the robot. After combining (𝐷. 1.30) and 

(𝐷. 1.33) 
one can get the relationships between wheel velocities: 
 

𝑣𝐿 = 𝑣1x = 𝑣2x,
𝑣𝑅 = 𝑣3x = 𝑣4x,
𝑣𝐹 = 𝑣2y = 𝑣3y,
𝑣𝐵 = 𝑣1y = 𝑣4y,

                                                                       (𝐷. 1.34) 

 
where vL and vR denote the longitudinal coordinates of the left and right wheel velocities, vF and vB 

are the lateral coordinates of the velocities of the front and rear wheels, respectively. 
Combining from (𝐷. 1.30) to (𝐷. 1.34) it is possible to obtain the transformation describing the 

relationship between the wheel velocities and the velocity of the robot: 
 

[

𝑣𝐿

𝑣𝑅

𝑣𝐹

𝑣𝐵

] = [

1                     − 𝑐        
1                          𝑐         
0               − 𝑥𝐼𝐶𝑅 + 𝑏
0               − 𝑥𝐼𝐶𝑅 − 𝑎

] [
𝑣𝑥

𝜔
].                                                       (𝐷. 1.35) 

 
In accordance with (𝐷. 1.28) and (𝐷. 1.34), assuming that the effective radius is ri=r for each wheel, 

it can be written 



𝜔𝑤 = [
𝜔𝐿

𝜔𝑅
] =

1

𝑟
[
𝑣𝐿

𝑣𝑅
],                                                                     (𝐷. 1.36) 

 
where ωL and ωR are the angular velocities of the left and right wheels, respectively. 
Combining (𝐷. 1.35) and (𝐷. 1.36), it can be found the relation between the angular wheel velocities 

and the velocities of the robot: 

𝜂 = [
𝑣𝑥

𝜔
] = 𝑟 [

𝜔𝐿 + 𝜔𝑅

2
−𝜔𝐿 + 𝜔𝑅

2c

],                                                          (𝐷. 1.37) 

 
where η is a new control input introduced at the kinematic level. 
It can be noticed that the pair of velocities ωL and ωR can be treated as a control kinematic input 

signal as well as velocities vx and ω. The accuracy of (𝐷. 1.37) depends mostly on the longitudinal 

slip and can be valid only if this phenomenon is not dominant. In addition, the parameters r and c 

may be identified experimentally to ensure a high validity of the determination of the angular robot 

velocity with respect to the angular velocities of the wheels. 
 From (𝐷. 1.33), the velocity constraint introduced in (Caracciolo et al., 1999) can be 

considered: 
𝑣𝑦 + 𝑥𝐼𝐶𝑅�̇� = 0.                                                                   (𝐷. 1.38) 

 
This equation is not integrable. Thus, it describes a nonholonomic constraint which can be rewritten 

in the Pfaffian form: 
[−sin𝜃  cos𝜃  𝑥𝐼𝐶𝑅][𝑋  ̇ �̇�  �̇�]

𝑇
= 𝐴(𝑞)�̇� = 0,                                        (𝐷. 1.39) 

 
since the generalized velocity�̇�us always in the null space of A, we can write 
 

�̇� = 𝑆(𝑞)𝜂,                                                                         (𝐷. 1.40) 
where 

𝑆𝑇(𝑞)𝐴𝑇(𝑞) = 0                                                                   (𝐷. 1.41) 
and 

𝑆(𝑞) = [
cos𝜃𝑥𝐼𝐶𝑅sin𝜃

sin𝜃 − 𝑥𝐼𝐶𝑅cos𝜃
01

].                                                       (𝐷. 1.42) 

 
It should be noted that since dim(η)=2 < dim(q)=3, the equation (𝐷. 1.40) describes the kinematics 

of the robot, which is underactuated. Additionally, this is a nonholonomic system because of the 

constraint described by (𝐷. 1.38). 
From (𝐷. 1.32) and (𝐷. 1.35) it can be seen that the control of the vy and vyi velocity coordinates is 

not possible without the knowledge of the xl-axis projection of the ICR. Therefore, considering the 

linear velocity vx and the angular velocity w as control signals seems to have an advantage over 

other propositions where instead of w, the velocity vy was used. [12] 
 

E. Dynamic model definition 
 
A consequence of nonholonomy in the mobile robots is that there is no exact linearization of the 

dynamic model via feedback. That's why the Lagrange formulation is used to obtain the dynamic 

model of an n-dimensional mechanical system subject to k < n kinematic constraints, in the form 

(𝐷. 1.4), which can be partially linearized via feedback. 
The Lagrangian ℒ of the mechanical system is defined as the difference between its kinetic 

energy T and potential energy U: 



ℒ(𝑞, �̇�) = 𝑇(𝑞, �̇�) − 𝑈(𝑞) =
1

2
  𝑞𝑇̇ 𝐵(𝑞)�̇� − 𝑈(𝑞),                                 (𝐸. 1.1) 

 
where B(q) is the symmetric and positive definite inertia matrix of the mechanical system. The 

Lagrange equations are 
𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
)
𝑇

= 𝑆(𝑞)𝜏 + 𝐴(𝑞)𝜆,                                                          (𝐸. 1.2) 

 
where S(q) is an (𝑛 × 𝑚) matrix mapping the 𝑚 = 𝑛 − 𝑘 external inputs τ to generalized forces 

performing work on q, A(q) is the transpose of the (𝑘 × 𝑛) matrix characterizing the kinematic 

constraints, and𝜆 ∈ ℝ𝑚 is the vector of Lagrange multipliers. The term A(q)λ represents the vector 

of reaction forces at the generalized coordinate level. It has been assumed that the number of 

available inputs matches the number of DOFs (full actuation), that is, equal to the number n of 

generalized coordinates minus the number k of constraints. 
Using (𝐸. 1.1), (𝐸. 1.2), the dynamic model of the constrained mechanical system is expressed as 
 

𝐵(𝑞)�̈� + 𝑛(𝑞, �̇�) = 𝑆(𝑞)𝜏 + 𝐴(𝑞)𝜆                                                      (𝐸. 1.3)

                  𝐴𝑇(𝑞)�̇� = 0,                                                                               (𝐸. 1.4)
 

where 

𝑛(𝑞, �̇�) = �̇�(𝑞)�̇� −
1

2
(

𝜕

𝜕𝑞
(�̇�𝑇𝐵(𝑞)�̇�))

𝑇

+ (
𝜕𝑈(𝑞)

𝜕𝑞
)

𝑇

.                           (𝐸. 1.5) 

 
 
Consider now a matrix G(q) whose columns are a basis for the null space of AT(q), so that 

𝐴𝑇(𝑞)𝐺(𝑞) = 0. One can replace the constraint given by (𝐸. 1.4), with the kinematic model 
 

�̇� = 𝐺(𝑞)𝑣 = ∑𝑔𝑖(𝑞)𝑣𝑖

𝑚

𝑖=1

,                                                          (𝐸. 1.6) 

 
Where 𝑣 ∈ ℝ𝑚  is the vector of pseudo-velocities, the actual (generalized) velocities of the 

mechanical system are referred as �̇�; for example, in the case of unicycle the components of this 

vector are the driving velocity v and the steering velocity ω. 
Moreover, the Lagrange multipliers in (𝐸. 1.3) can be eliminated premultiplying both sides of the 

equation by GT (q). This leads to the reduced dynamic model 
 

𝐺𝑇(𝑞)(𝐵(𝑞)�̈� + 𝑛(𝑞, �̇�)) = 𝐺𝑇(𝑞)𝑆(𝑞)𝜏,                                     (𝐸. 1.7) 
 
a system of m differential equations. 
Differentiation of (𝐸. 1.6) with respect to time gives 

�̈� = �̇�(𝑞)𝑣 + 𝐺(𝑞)𝑣.̇                                                         (𝐸. 1.8) 
 

Premultiplying (𝐸. 1.8) by 𝐺𝑇(𝑞)𝐵(𝑞) and using the reduced dynamic model (𝐸. 1.7), one obtains 
 

𝑀(𝑞)�̇� + 𝑚(𝑞, 𝑣) = 𝐺𝑇(𝑞)𝑆(𝑞)𝜏,                                               (𝐸. 1.9) 
where 

    𝑀(𝑞) = 𝐺𝑇(𝑞)𝐵(𝑞)𝐺(𝑞)                                                           (𝐸. 1.10)

𝑚(𝑞, 𝑣) = 𝐺𝑇(𝑞)𝐵(𝑞)�̇�(𝑞)𝑣 + 𝐺𝑇(𝑞)𝑛(𝑞, 𝐺(𝑞)𝑣),                (𝐸. 1.11)
 

 
 



With 𝑀(𝑞) positive definite and  
 

�̇�(𝑞)𝑣 = ∑(𝑣𝑖

𝜕𝑔𝑖

𝜕𝑞
(𝑞))

𝑚

𝑖=1

𝐺(𝑞)𝑣.                                                    (𝐸. 1.12) 

 
 
This finally leads to the state-space reduced model 
 

�̇� = 𝐺(𝑞)𝑣                                                                                   (𝐸. 1.13)

�̇� = 𝑀−1(𝑞)𝑚(𝑞, 𝑣) + 𝑀−1(𝑞)𝐺𝑇(𝑞)𝑆(𝑞)𝜏,                      (𝐸. 1.14)
 

 
that represents in a compact form the kinematic and dynamic models of the constrained system as a 

set of 𝑛 + 𝑚 differential equations. 
Suppose that we have the following assumption on the 'control availability' 

𝑑𝑒𝑡(𝐺𝑇(𝑞)𝑆(𝑞)) ≠ 0.                                                                (𝐸. 1.15) 
 
The it is possible to perform a partial linearization via feedback of (𝐸. 1.13) and (𝐸. 1.14) by letting 
 

𝜏 = (𝐺𝑇(𝑞)𝑆(𝑞))−1(𝑀(𝑞)𝑎 + 𝑚(𝑞, 𝑣)),                                   (𝐸. 1.16) 
                                                                  
where 𝑎 ∈ ℝ𝑚 is the pseudo-acceleration vector. The resulting system is 
 

�̇� = 𝐺(𝑞)𝑣                                                                        (𝐸. 1.17)
�̇� = 𝑎.                                                                                (𝐸. 1.18)

 

 
Note that the structure of this system: the first n equations are the kinematic model, of which the 

last integrator m on the input channels, are a dynamic extension. If the system is unconstrained and 

fully actuated, it is 𝐺(𝑞) = 𝑆(𝑞) = 𝐼𝑛;  then, the feedback law (𝐸. 1.16) simply reduces to an 

inverse dynamics control, and correspondingly the closed-loop system is equivalent to n decoupled 

double integrators. 
The implementation of the feedback control (𝐸. 1.16) requires the measurement of v, and it could 

not be available, but the pseudo velocities can be computed via the kinematic model as 
 

𝑣 = 𝐺†(𝑞)�̇� = (𝐺𝑇(𝑞)𝐺(𝑞))
−1

𝐺𝑇(𝑞)�̇�,                                        (𝐸. 1.19) 
 
provided that 𝑞 and �̇� are measured. 
By defining the state 𝑥 = (𝑞, 𝑣) ∈ ℝ𝑛+𝑚 and the input 𝑢 = 𝑎 ∈ ℝ𝑚 , system (𝐸. 1.17) and (𝐸. 1.18) 

can be expressed as 

�̇� = 𝑓(𝑥) + 𝐺(𝑥)𝑢 = [𝐺
(𝑞)𝑣
0

] + [
0
𝐼𝑚

] 𝑢,                                       (𝐸. 1.20) 

 
i.e., a nonlinear system with drift also known as the second-order kinematic model of the 

constrained mechanical system. The equation (𝐸. 1.17) is also called first-order kinematic model. Its 

controllability guarantees the controllability of the system (𝐸. 1.20). 
In brief, in nonholonomic mechanical systems, it is possible to 'cancel' the dynamic effects via 

nonlinear state feedback, provided that the dynamic parameters are exactly known and the complete 

state of the system, the generalized coordinates and velocities 𝑞 and �̇�, are measured. 
Under these assumptions, the control problem can be addressed at a pseudo-velocity level, like 

choosing v in such a way that the kinematic model 
 

�̇� = 𝐺(𝑞)𝑣                                                                            (𝐸. 1.21) 



 
behaves as desired. From v, it is possible to derive the actual control inputs at the generalized force 

level through (𝐸. 1.16). Since 𝑎 = �̇� appears in this equation, the pseudo-velocities v must be 

differentiable with respect to time. [2] 
 
The components described above are: 
G(q) input vectors matrix 
u is the input vector 
q is the generalized state vector 
I is the identity matrix 
n mechanical system, number of generalized coordinates 
k kinematic constraints 
m difference between mechanical system and kinematic constrains, thus DOF 
λ Lagrange multipliers 
S(q) maps the external inputs τ to generalized forces performing work on q 
A(q) transpose of the matrix characterizing the kinematic constrains 
ℒ  Lagrangian 
B(q) Inertia matrix 
 
Due to symmetry along the longitudinal midline, we obtain 
 

𝑁1 = 𝑁4 =
𝑏

2(𝑎 + 𝑏)
𝑚𝑔,

𝑁2 = 𝑁3 =
𝑎

2(𝑎 + 𝑏)
𝑚𝑔.

                                               (𝐸. 1.24) 

 
The vector Fsi results from the rolling resistant moment τri and the lateral reactive force Fli. These 

reactive forces can be regarded as friction ones, but it is important to note that friction modelling is 

complex since it is highly nonlinear and depends on many variables. 
Here we are going to consider a simplified approximation describing the friction Ff depending on 

the linear velocity σ, the force perpendicular to the surface N, the Coulomb coefficient μc and 

viscous friction μv. 
It can be written as: 

𝐹𝑓(𝜎) = 𝜇𝑐𝑁𝑠𝑔𝑛(𝜎) + 𝜇𝑣𝜎,                                         (𝐸. 1.25) 
 

Since for the SSMR the velocity σ is relatively low, especially during lateral slippage, the relation 

𝜇𝑐𝑁 ≫ ∣∣𝜇𝑣𝜎∣∣ is valid, which allows to neglect the term μvσ to simplify the model. The function 

(𝐸. 1.25) is not smooth when the velocity σ equals to zero, due to the sign function sgn(σ). Hence, it 

is not differentiable at σ=0. So, we need an approximation of this function like: 
 

𝑠𝑔𝑛(𝜎)̂ =
2

𝜋
arctan(𝑘𝑠𝜎),                                              (𝐸. 1.26) 

 
where ks>>1 is a constant which determines the approximation accuracy according to the relation 
 

lim
𝑘𝑠→∞

2

𝜋
arctan(𝑘𝑠𝜎) = 𝑠𝑔𝑛(𝑥).                                      (𝐸. 1.27) 

 
So, the friction forces for each wheel are longitudinal and lateral and depend on the coefficients of 

each force, mass, gravity acceleration and the sign of the linear speeds. 
 



𝐹𝑙𝑖 = 𝜇𝑙𝑐𝑖𝑚𝑔𝑠𝑔�̂�(𝑣𝑦𝑖),                                                            (𝐸. 1.28)

𝐹𝑠𝑖 = 𝜇𝑠𝑐𝑖𝑚𝑔sgn̂(𝑣𝑥𝑖),                                                             (𝐸. 1.29)
 

 
where μlci and μsci denote the coefficients of the lateral and longitudinal forces. 
By means of Lagrange-Euler formula with the Lagrange multipliers including the nonholonomic 

constraint (D.1.38) it's possible to find the dynamic equation of the robot. 
Assuming the potential energy PE(q)=0 due to the planar motion. 
 
The Lagrangian ℒ of the system equals the kinetic energy: 
 

ℒ(𝑞, �̇�) = 𝑇(𝑞, �̇�)                                                                  (𝐸. 1.30) 
 

Considering the kinetic energy of the vehicle and neglecting the energy of rotating wheels: 
 

𝑇 =
1

2
𝑚𝑣𝑇𝑣 +

1

2
𝐼𝜔2,                                                             (𝐸. 1.31) 

 
where m is the mass of the robot and I is the moment of inertia of the robot about the centre of 

mass. 
Assuming homogeneous mass distribution: 
 

𝑣𝑇𝑣 = 𝑣𝑥
2 + 𝑣𝑦

2 = �̇�2 + �̇�2                                                    (𝐸. 1.32)

    𝜔 = �̇�                                                                                      (𝐸. 1.33)

     𝑇 =
1

2
𝑚(�̇�2 + �̇�2) +

1

2
𝐼�̇�2.                                              (𝐸. 1.34)

 

 
Calculating the partial derivative of kinetic energy and its time-derivative to get the inertial forces 

which causes the dissipation of energy. 
 

𝑑

𝑑𝑡
(
𝜕𝐸𝑘

𝜕�̇�
) = [

𝑚�̈�
𝑚�̈�
𝐼�̈�

] = 𝑀�̈�,                                                          (𝐸. 1.35) 

 
Where the mass matrix M is 

𝑀 = [
𝑚   0    0
0   𝑚   0
0    0    𝐼

].                                                                       (𝐸. 1.36) 

 
So, the active forces generated by the actuators can be expressed in the inertial frame, 
 

𝐹𝑟𝑥(�̇�) = cos𝜃 ∑𝐹𝑠𝑖(𝑣𝑥𝑖)

4

𝑖=1

− sin𝜃 ∑ 𝐹𝑙𝑖(𝑣𝑦𝑖)

4

𝑖=1

,                      (𝐸. 1.37)

𝐹𝑟𝑦(�̇�) = sin𝜃 ∑𝐹𝑠𝑖(𝑣𝑥𝑖)

4

𝑖=1

+ cos𝜃 ∑𝐹𝑙𝑖(𝑣𝑦𝑖)

4

𝑖=1

.                      (𝐸. 1.38)

 

 
The resistant moment around the centre of mass Mr can be obtained as 

𝑀𝑟(�̇�) = −𝑎 ∑ 𝐹𝑙𝑖(𝑣𝑦𝑖)

𝑖=1,4

+ 𝑏 ∑ 𝐹𝑙𝑖(𝑣𝑦𝑖)

𝑖=2,3

+ 𝑐 [− ∑ 𝐹𝑠𝑖(𝑣𝑥𝑖)

𝑖=1,2

+ ∑ 𝐹𝑠𝑖(𝑣𝑥𝑖)

𝑖=3,4

].     (𝐸. 1.39) 

 



To define generalized resistive forces, it is used the vector 
𝑅(�̇�) = [𝐹𝑟𝑥(�̇�)𝐹𝑟𝑦(�̇�)𝑀𝑟(�̇�)]

𝑇
                                                  (𝐸. 1.40) 

 
The active forces and torque around the centre of mass generated by the actuators, can be expressed 

in torque equations considering all the wheels have the same radius: 

𝐹𝑥 = 𝑐𝑜𝑠𝜗 ∑𝐹𝑖

4

𝑖=1

=
1

𝑟
𝑐𝑜𝑠𝜗 ∑𝜏𝑖

4

𝑖=1

                                              (𝐸. 1.41)

𝐹𝑦 = 𝑠𝑖𝑛𝜗∑ 𝐹𝑖

4

𝑖=1

=
1

𝑟
𝑠𝑖𝑛𝜗 ∑𝜏𝑖

4

𝑖=1

                                                (𝐸. 1.42)

𝑀 = 𝑐(−𝐹1 − 𝐹2 + 𝐹3 + 𝐹4) =
𝑐

𝑟
(−𝜏1 − 𝜏2 + 𝜏3 + 𝜏4).     (𝐸. 1.43)

 

 
As a consequence, the vector F of active forces has the following form: 
 

𝐹 = [
𝐹𝑥

𝐹𝑦

𝑀

] =
1

𝑟

[
 
 
 
 
 
 

cos𝜃 ∑𝜏𝑖

4

𝑖=1

sin𝜃 ∑ 𝜏𝑖

4

𝑖=1

𝑐(−𝜏1 − 𝜏2 + 𝜏3 + 𝜏4)]
 
 
 
 
 
 

.                                            (𝐸. 1.44) 

 
The torque control input is divided in left and right torques produced by the wheels of the vehicle 
 

𝜏 = [
𝜏𝐿

𝜏𝑅
] = [

𝜏1 + 𝜏2

𝜏3 + 𝜏4
],                                                                  (𝐸. 1.45) 

 
Combining (𝐸. 1.44) and (𝐸. 1.45), we get 
 

𝐹 = 𝐵(𝑞)𝜏,                                                                                     (𝐸. 1.46) 
 

where B is the input transformation matrix defined as 
 

𝐵(𝑞) =
1

𝑟
[
cos𝜃   cos𝜃
sin𝜃    sin𝜃
−𝑐           𝑐

].                                                                (𝐸. 1.47) 

 
The dynamic model describing the dynamics of a free body only and does not include the non-

holonomic constraint of the wheels. 
 

𝑀(𝑞)�̈� + 𝑅(�̇�) = 𝐵(𝑞)𝜏                                                                   (𝐸. 1.48) 
 

In case one need to add such constraint, the equation will be integrated with Lagrange multipliers λ. 
 

𝑀(𝑞)�̈� + 𝑅(�̇�) = 𝐵(𝑞)𝜏 + 𝐴𝑇(𝑞)𝜆.                                                (𝐸. 1.49) 
 

For control purposes it would be more suitable to express it in terms of the internal velocity vector 

η. Therefore, the equation is multiplied from the left by ST(q), which results in 
 

𝑆𝑇(𝑞)𝑀(𝑞)�̈� + 𝑆𝑇(𝑞)𝑅(�̇�) = 𝑆(𝑞)𝑇𝐵(𝑞)𝜏 + 𝑆𝑇(𝑞)𝐴𝑇(𝑞)𝜆.             (𝐸. 1.50) 



 
After taking the time derivative of (4.39), we obtain 
 

�̈� = �̇�(𝑞)𝜂 + 𝑆(𝑞)�̇�.                                                                       (𝐸. 1.51) 
 
[12] 
 
 

F. Path and Timing Law 
 
Whenever one wants to plan a trajectory q(t), for 𝑡 ∈ [𝑡𝑖 , 𝑡𝑓], which leads the mobile robot from an 

initial configuration 𝑞(𝑡𝑖) = 𝑞𝑖 to a final configuration 𝑞(𝑡𝑓) = 𝑞𝑓  in the absence of obstacles. The 

trajectory 𝑞(𝑡) can be broken down into a geometric path 𝑞(𝑠), with  
𝑑𝑞(𝑠)

𝑑𝑠
≠ 0 for any value of s, 

and 𝑠(𝑡𝑓) = 𝑠𝑓 in a monotonic fashion, i.e., with �̇�(𝑡) ⩾ 0, 𝑓𝑜𝑟 𝑡 ∈ [𝑡𝑖, 𝑡𝑓]. 
A possible choice for s is the arc length along the path.  
If we consider 𝑠𝑖 = 0 and 𝑠𝑓 = 𝐿, where L is the length of the path. 
The space-time separation implies that 

�̇� =
𝑑𝑞

𝑑𝑡
=

𝑑𝑞

𝑑𝑠
�̇� = 𝑞′�̇�,                                                          (𝐹. 1.1) 

 
where the prime symbol denotes differentiation with respect to s. The generalized velocity vector is 

then obtained as the product of the vector q’, which is directed as the tangent to the path in 

configuration space, by the scalar �̇�, that varies its modulus. Note that the vector 𝑞′ = [𝑥′  𝑦′]𝑇 ∈
ℝ2 is directed as the tangent to the Cartesian path, and has unit norm if s is the Cartesian arc length. 
The nonholonomic constraints of the form (D.1.4) can be rewritten as 
 

𝐴(𝑞)�̇� = 𝐴(𝑞)𝑞′�̇� = 0                                                           (𝐹. 1.2) 
If �̇�(𝑡) > 0, for 𝑡 ∈ [𝑡𝑖, 𝑡𝑓], one has  

𝐴(𝑞)𝑞′ = 0.                                                                               (𝐹. 1.3) 
 
This condition, that must be verified at all points by the tangent vector on the configurations space 

path, characterizes the notion of geometric path admissibility induced by the kinematic constraint 

(D.1.4) that actually affects generalized velocities. Geometrically admissible paths can be explicitly 

defined as the solutions of the nonlinear system 
 

𝑞′ = 𝐺(𝑞)𝑢 ̃,                                                                          (𝐹. 1.4)  
 
Where 𝑢 ̃ is a vector of geometric inputs that are related to the velocity inputs u by the relationship 

 𝑢(𝑡) = 𝑢 ̃(𝑠)�̇�(𝑡). Once the geometric inputs 𝑢 ̃(𝑠) are assigned for 𝑠 𝜖 [𝑠𝑖 , 𝑠𝑓], the path of the robot 

in configuration space is uniquely determined. The choice of a timing law 𝑠 = 𝑠(𝑡), for  𝑡 ∈ [𝑡𝑖, 𝑡𝑓], 

will then identify a particular trajectory along this path. 
 
F.2 Flat Outputs 
 
Kinematic models of mobile robots exhibit a property known as differential flatness. 
A nonlinear dynamic system �̇� = 𝑓(𝑥) + 𝐺(𝑥)𝑢 is differential flat if there exists a set of outputs y, 

called flat outputs, such that the state x and the control inputs u can be expressed algebraically as a 

function of y and its time derivatives up to a certain order: 
 



𝑥 = 𝑥(𝑦, �̇�, �̈�, . . . , 𝑦(𝑟))                                                          (𝐹. 1.5)

𝑢 = 𝑢(𝑦, �̇�, �̈�, . . . , 𝑦(𝑟)).                                                         (𝐹. 1.6)
 

 
As a consequence, once an output trajectory is assigned for y, the associated trajectory of the state x 

and history of control inputs u are uniquely determined. 
Since the Cartesian coordinates are indeed flat outputs, given the Cartesian path (𝑥(𝑠)𝑦(𝑠)), the 

associated state trajectory is 𝑞(𝑠) = [𝑥(𝑠)𝑦(𝑠)𝜗(𝑠)]𝑇 where 𝜗(𝑠) = 𝑎𝑡𝑎𝑛2(𝑦′(𝑠), 𝑥′(𝑠)) + 𝑘𝜋 with 

(k=0) for forward motion and (k=1) for backward motion. 
 
 
F.3 Path Planning  
 
Whenever a mobile robot admits a set of flat outputs y, there may be exploited to solve planning 

problems efficiently. One may use any interpolation scheme to plan the path of y in such a way as to 

satisfy the appropriate boundary conditions. The evolution of the other configuration variables, 

together with the associated control inputs, can then be computed algebraically from y(s). The 

resulting configuration space path will automatically satisfy the nonholonomic constraints (F.1.3). 
 
There are three ways to do a path plan for a mobile robot: 
 
Cubic Cartesian polynomials, based in the interpolation of the initial values xi, yi and the final 

values xf, yf  of the flat outputs x, y. Letting si =0 and sf =1, using the cubic polynomials: 
 

𝑥(𝑠) = 𝑠3𝑥𝑓 − (𝑠 − 1)3𝑥𝑖 + 𝛼𝑥𝑠
2(𝑠 − 1) + 𝛽𝑥𝑠(𝑠 − 1)2                (𝐹. 1.7)

𝑦(𝑠) = 𝑠3𝑦𝑓 − (𝑠 − 1)3𝑦𝑖 + 𝛼𝑦𝑠2(𝑠 − 1) + 𝛽𝑦𝑠(𝑠 − 1)2                (𝐹. 1.8)
 

 
which automatically satisfy the boundary conditions on x and y. 
The orientation at each point is related to x' and y' and the additional boundary conditions are: 
 

𝑥′(0) = 𝑘𝑖cos(𝜗𝑖)                 𝑥
′(1) = 𝑘𝑓cos(𝜗𝑓)                                 (𝐹. 1.9)

𝑦′(0) = 𝑘𝑖sin(𝜗𝑖)                  𝑦
′(1) = 𝑘𝑓sin(𝜗𝑓)                                  (𝐹. 1.10)

                      

 

The parameters 𝑘𝑖 ≠ 0, 𝑘𝑓 ≠ 0  are free parameters that must have the same sign, so that the robot 

arrives in qf with the same kind of motion (forward or backwards) with which it leaves qi, and since 

x(s) and y(s) are cubic polynomials, the Cartesian path does not contain motion inversions in 

general. 
For 𝑘𝑖 = 𝑘𝑓 = 𝑘 > 0, one obtains α and β of the form: 
 

𝛼𝑥 = 𝑘𝑐𝑜𝑠(𝜗𝑓) − 3x𝑓             𝛼𝑦 = 𝑘𝑠𝑖𝑛(𝜗𝑓) − 3y𝑓                      (𝐹. 1.11) 

𝛽𝑥 = 𝑘𝑐𝑜𝑠(𝜗𝑖) + 3x𝑖               𝛽𝑦 = 𝑘𝑠𝑖𝑛(𝜗𝑖) + 3y𝑖                      (𝐹. 1.12) 

 
Chained form, the path is planned in the chained form coordinates z. First it is necessary to 

compute the initial and final values zi and zf that correspond to qi and qf, by using the change of 

coordinates. 
Then it is enough to interpolate the initial and final values of z1 and z3 (the flat outputs) with the 

appropriate boundary conditions on the remaining variable z2=z3'/z1'. 
It's possible to adopt a cubic polynomial to solve the problem. As an alternative, one may use 

polynomials of different degree for x and y in order to reduce the number of unknown coefficients 

to be computed. 
Once the path has been planned for the chained form, the path q(s) in the original coordinates and 



the associated geometric inputs ũ(s) are reconstructed by inverting the change of coordinates and of 

inputs. 
 
Parameterized inputs, it consists on writing the inputs, rather than the path, in parameterized form, 

and computing the value of the parameters so as to drive the robot from qi to qf.  It is convenient to 

work on the chained form, whose equations are easily integrable in closed form under appropriate 

inputs. This method does not make explicit use of the flat outputs, but relies on the closed-form 

integrability of the chained form, whose existence is equivalent to differential flatness. [2] 
 

G. Microcontroller ARDUINO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Arduino is an open-source electronics platform based on easy-to-use hardware and software. 
Arduino boards are able to read inputs - light on a sensor, a finger on a button, or a Twitter message 

- and turn it into an output - activating a motor, turning on an LED, publishing something online. 

One can tell your board what to do by sending a set of instructions to the microcontroller on the 

board. To do so one use the Arduino programming language (based on Wiring), and the Arduino 

Software (IDE), based on Processing. 

Over the years Arduino has been the brain of thousands of projects, from everyday objects to com-
plex scientific instruments. A worldwide community of makers - students, hobbyists, artists, pro-
grammers, and professionals - has gathered around this open-source platform, their contributions 
have added up to an incredible amount of accessible knowledge that can be of great help to novices 
and experts alike. 

Arduino was born at the Ivrea Interaction Design Institute as an easy tool for fast prototyping, 
aimed at students without a background in electronics and programming. As soon as it reached a 
wider community, the Arduino board started changing to adapt to new needs and challenges, differ-
entiating its offer from simple 8-bit boards to products for IoT applications, wearable, 3D printing, 
and embedded environments. All Arduino boards are completely open-source, empowering users to 
build them independently and eventually adapt them to their particular needs. The software, too, is 
open-source, and it is growing through the contributions of users worldwide.  

Some reasons to use Arduino are: 
• It is inexpensive, compared to other microcontroller platforms. 
• It is a cross-platform, thus it can be run on Windows, Macintosh OSX and Linux operating 

systems. 

Figure 7.1 Arduino Uno board 



• It is simple and clear programming environment, the IDE is easy-to-use for beginners, yet 

flexible enough for advanced users to take advantage of as well. 
• It is open source and has an extensible software that can be expanded through C++ libraries. 
• It has an extensible hardware as well, since the Arduino boards are published under a 

Creative Commons license, so experienced circuit designers can make their own version of 

the module, extending it and improving it. [13] 
 

 
G.1 Arduino Uno 
 
Arduino Uno is a microcontroller board based on the Atmega328P. It has 14 digital input/output 

pins (of which 6 can be used as PWM outputs), 6 analog inputs, at 16MHz ceramic resonator, a 

USB connection, a power jack, and ICSP header and a reset button. It contains everything needed to 

support the microcontroller. 
It has its own Integrated Development environment, IDE, where one can write their own programs, 

called sketch, which will be executed by the microcontroller. 
The development board is open source in both Hardware and Software. It is cheap, easy to retrieve 

and can be expanded by means of shields. 
 
Arduino can be power up either using power supplied from the computer via a USB cable and/or by 

using external power sources like batteries, wall-warts or solar panels. [14] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2 Schematics of Arduino Uno rev.3 board 


