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Abstract

The aim of this Master Thesis is to learn and explain all the cryptographic
instruments and how they are used in web page password.link. The idea
is to follow the interaction of an user with password.link explaining all the
cryptographic/informatics passages with the aim of evaluate its security. So
we have also to study the computer side of Internet e.g. the TCP/IP protocol.
Password.link enables secrets to be sent through insecure channels.

The thesis is divided into three chapters. Chapter 1 is related to crypto-
graphic concepts. Chapter 2 explains how the internet connection is estab-
lished. Chapter 3 explains how password.link uses the tools described in
Chapter 1 and Chapter 2 to achieve the goal.
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Chapter 1

Cryptography

All the cryptographic functions that password.link uses are explained in this
chapter. The main topics are the generation of random numbers, the encryp-
tion and decryption of data and mechanisms to ensure the authenticity.

The encryption and decryption of data can be done with symmetric algo-
rithms or asymmetric algorithms.

Symmetric algorithms encryption and decryption of data can be realized by
two parties with a secret key. The key must be preshared through a secure
channel. Symmetric ciphers split into stream ciphers and block ciphers.

The encryption in a stream cipher is realized bit by bit and every bit of the
message is XORed with a new and unpredictable bit produced by Random
Number Generator.

In a block cipher the message is divided into blocks. Each block has the same
length and it is encrypted and decrypted with the key. The last blocks are
padded to guarantee that the lenght is the desired.

Asymmetric cipher encrypts and decrypts messages with two keys. One of
them is the public key, this key enables to encrypt messages and can be
known by anyone. The other key is the secret key which must be kept in
secret and it is used to decrypt messages.

13
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1.1 Random Number Generator (RNG)
The random numbers are very versatile in terms of cryptography so, a Ran-
dom Number Generator (RNG) is essential. There are three different types of
RNG. These are True Random Number Generators (TRNG), Pseudorandom
Number Generators (PRNG) and Cryptographically Secure Pseudorandom
Number Generators (CSPNG).

1.1.1 True Random Number Generators (TRNG)

TNRGs are based on physical processes and his main characteristic is that
the output cannot be reproduced. To create a TRN an extra device is needed
because a PC cannot create these numbers. Speaking in terms of a web page,
the requirement of an extra device is enough to discard this method because
the web pages must be used by anyone.

1.1.2 Pseudorandom Number Generators (PRNG)

PRNG create a sequence of numbers from an initial seed value.

s0 = seed

si+1 = f(i), i = 0, 1, ...

One of the most common PRNG is the linear congruential generator com-
puted as:

s0 = seed

si+1 = (a · si + b) mod m, i = 0, 1, ...

15



PRNGs can be broken easily if someone has enough values of s. Once the
PRNG is broken all the past and futures values can be discovered. PRNGs are
not cryptographically secure and cannot be used for these purposes because
the PNRGs was born to perform simulations as Montecarlo. The initial
purpose of the PRNGs was not to be cryptographically secure.

1.1.3 Cryptographically Secure Pseudorandom Number
Generators (CSPNG)

A CSPRNG is PRNG which is unpredictable. It means that if someone has
the values between s

0
and s

n
, the person cannot establish a relationship to

discover the value of s
n+1

.

The outputs of the CSPRNGs should be computationally indistinguishable
(IND goal), the CSPRNG are tested to check it. For example, a CSPRNG
must pass the statitical tests developed by the National Institute of Standards
and Technology (NIST), see e.g. A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications
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1.2 RC4
Once that RNG are explained, it is the time to explain the algorithm RC4
and the particular form it is implemented in password.link.

1.2.1 RC4 algorithm

To perform the RC4 algorithm a key is needed. The length of the key is not
limited but note that a key longer than 256 characters will produce the same
effect that the same key truncated from the characters 1 to 256. If a key is
shorter than 256 characters, also will be accepted. The first step to perform
is a conversion from characters to numbers. It is done with ASCII table.

Figure 1.1: ASCII characters

RC4 creates an initial array with a length of 256 called S-box. The initial

17
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S-box is:

S = [0, 1, 2, 3, 4, ..., 255]

Once it is defined, it is the time to combine the key with the S-box. To do it,
each position of S-Box will have a new value which depends on the current
value and the key.

j = 0

for i from 0 to 255 :

j = 111111112&(j + key(i mod lengthkey) + S(i))

swap values of S(i) and S(j)

end for

The symbol & indicates the bitwise AND operation. It is used when j has a
value bigger than 256.

To understand it better an example will be performed. Note that the example
is realized with an S-Box which has a length of 4 instead of 256. It also has
influence where j is calculated, the bitwise and operation now is:

j = 112&(j + key(i mod lengthkey) + S(i))

Suppose that the key is:
key = [1, 2, 3, 0]

lengthkey = 4

Sinitial = [0, 1, 2, 3]

Now, the operations inside the loop for are performed.

j = 0

18



for i=0
j = 112&(0 + 1 + 0) = 1

S(0) = 1

S(1) = 0

S = [1, 0, 2, 3]

for i=1
j = 112&(1 + 2 + 0) = 3

S(1) = 3

S(3) = 0

S = [1, 3, 2, 0]

for i=2

j = 112&(3 + 3 + 2) = 112&8 = 112&10002 = 002 = 0

S(2) = 1

S(0) = 2

S = [2, 3, 1, 0]

for i=3
j = 112&(0 + 0 + 0) = 0

S(3) = 2

S(0) = 0

S = [0, 3, 1, 2]

19



1.2.2 RC4 RNG

The previous RC4 algorithm can be used as RNG. To do it possible, another
loop is implemented. The number of times that each operation is executed
is chosen by the user through the variable count. It means, that if the value
of count is for instance equal to 5, each operation inside the loop will be
executed 5 times. Usually, this parameter is fixed. The another initial pa-
rameter is the S-box. The first time RC4 RNG is run, the S-Box initial value
coincides with the S-box final value of the RC4 algorithm. Once RC4 RNG
is compiled, it saves the final value of S-box and it will be used as the ini-
tial value if the function is called again. Note that if the initial S-box does
not change and count is fixed, RC4 RNG will always return the same number.

i = 0

j = 0

r = 0

while count > 0 :

count = count− 1

i = 111111112&(i+ 1)

j = 111111112&(j + S(i)) = 0

swap values of S(i) and S(j)

r = 256 · r + S(111111112 · (S(i) + S(j)))

return r

An example will be shown in this section, the values of the initial parameters
are count=4 and S=[0,3,1,2]. This is a simulation of the first time that RC4
RNG is called so, S has the same value that the final S in the section 1.2.1
RC4 algorithm.

i = 0

j = 0

r = 0

20



count = 4
count = 3

i = 112&(0 + 1) = 1

j = 112&(0 + 3) = 3

S(1) = 2

S(3) = 3

S = [0, 2, 1, 3]

r = 4∗r+S(112&(2+3)) = 0+S(112&5) = S(112&1012) = S(012) = S(1) = 2

count = 3
count = 2

i = 112&(0 + 1) = 2

j = 112&(3 + 1) = 0

S(2) = 0

S(0) = 1

S = [1, 2, 0, 3]

r = 4 ∗ r + S(112&(0 + 1)) = 8 + S(112&1) = 10

count = 2
count = 1

i = 112&(0 + 1) = 3

j = 112&(0 + 3) = 3

S(3) = 3

S(3) = 3

S = [1, 2, 0, 3]

r = 4 ∗ r + S(112&(3 + 3)) = 40 + S(112&6) = 40

count = 1
count = 0

i = 112&(0 + 1) = 0
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j = 112&(3 + 1) = 0

S(0) = 1

S(3) = 1

S = [1, 2, 0, 3]

r = 4 ∗ r + S(112&(1 + 1)) = 160 + S(112&2) = 160

return r = 160

If RC4 RNG is called again the initial value of S-box is S=[1,2,0,3].

Multiple vulnerabilities have been discovered in RC4, converting it insecure.
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1.3 Advanced Encryption System (AES)
The Advanced Encryption System (AES) is the most widely symmetric block
cipher used. Notice that a block cipher encrypts and decrypts a message
splitting it into different blocks where each block has the same length. If the
last block is shorter, it will be padded. To encrypt a secret, a key is used.
The AES encrypts and decrypts 128 bits blocks of 128 bits and it supports
keys of 128, 192, 256 bits. The ciphertext produced in the encryption also
has a length of 128 bits.

Figure 1.2: AES input/output parameters

According to the length of the key, the AES will execute 10 rounds (128 bits),
12 rounds (192 bits) or 14 rounds (256 bits). The AES encrypts all 128 bits
in one round. All the rounds are composed of three layers unless the first
and the last layer.

• Byte Substitution layer (S-Box): It provides confusion over the
data assuring that changes in individual bits will propagate quickly
across the data path. A non-linearity transformation is performed with
tables which have special mathematical properties.

• Diffusion layer: It introduces diffusion to all state bits through two
sublayers, which perform linear operations:

– Shift rows layer

– Mix column layer

• Key Addition layer: A 128-bit round key, or subkey, which has been
derived from the main key in the key schedule, is XORed to the state.

23



The concepts of confusion and diffusion are two properties of the operation
of a secure cipher identified by Claude Shannon.

• Confusion: hides the relationship between the ciphertext and the key,
increasing the ambiguity of ciphertext.

• Diffusion: means that if a bit of the plaintext changes, the ciphertext
will change the half of its bits and the same occurs in reverse.

The first round includes an additional Key Addition layer before the three
layers and the last round does not have Mix Columns layer.

The plaintext has a length of 128 bits (16 bytes) and it is arranged in a
four-by-four byte matrix. Something similar occurs to the key.

Plaintext
A0 A4 A8 A12

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15

Table 1.1: Plaintext bytes

Key 16 bytes
k0 k4 k8 k12
k1 k5 k9 k13
k2 k6 k10 k14
k3 k7 k11 k15

Table 1.2: Key bytes (128 bits)

The internal structure of a round is shown in 1.4.

24



Figure 1.3: AES encryption block diagram
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Key 24 bytes
k0 k4 k8 k12 k16 k20
k1 k5 k9 k13 k17 k21
k2 k6 k10 k14 k18 k22
k3 k7 k11 k15 k19 k23

Table 1.3: Key bytes (192 bits)

Key 32 bytes
k0 k4 k8 k12 k16 k20 k24 k28
k1 k5 k9 k13 k17 k21 k25 k29
k2 k6 k10 k14 k18 k22 k26 k30
k3 k7 k11 k15 k19 k23 k27 k31

Table 1.4: Key bytes (256 bits)

1.3.1 Byte Substitution Layer

In the Byte Substitution layer, each byte Ai is replaced by another byte Bi

as shown in 1.4.
S(Ai) = Bi

It is a non-linear operation which means:

S(C) + S(D) 6= S(C +D)

To perform the substitution, a conversion to hexadecimal is needed. One the
byte is in hexadecimal, the first character chooses the row and the second
the column.

To try to understand it better an example will be realized. Suppose Aexample
is a matrix of 128 bits (16 bytes) where all the bytes are the character "M".
The substitution is:

Aexample =


M M M M
M M M M
M M M M
M M M M


ASCII

MASCII = 7710 = 10011012 = 4Dhex

26



Figure 1.4: AES encryption round

S(4Dhex) = E3hex = 111000112

S(Aexample) =


E3 E3 E3 E3
E3 E3 E3 E3
E3 E3 E3 E3
E3 E3 E3 E3


hex

The result of this layer is a matrix where each byte has been substituted.

27



Figure 1.5: AES substitution table S-Box

1.3.2 Diffusion Layer

As it is explained before, the Diffusion layer performs two linear operations:

DIFF (C) +DIFF (D) = DIFF (C +D)

Shift Rows

The Shift Rows shifts the second row three bytes to the right, the third row
is shifted two bytes to the right and the fourth row is shifted one byte to the
right.

In the previous example obviously, the shift rows do not change anything
because all the bytes are the same.

28



Key 16 bytes
B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

Table 1.5: Result of substitution

Key 16 bytes
B0 B4 B8 B12

B5 B9 B13 B1

B10 B14 B2 B6

B15 B3 B7 B11

Table 1.6: Result of shift rows

Mix Columns

Mix Columns mixes each column of the state matrix. Multiplication and
addition of the coefficients is done in the Galois Field (28).


C0

C1

C2

C3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·

B0

B5

B10

B15



C4

C5

C6

C7

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·

B4

B9

B14

B3



C8

C9

C10

C11

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·

B8

B13

B2

B7
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C12

C13

C14

C15

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·

B12

B1

B6

B11



The numbers 01, 02 and 03 represent polynomials in the GF(28). The mod-
ular reduction polynomial is P(x).

01 = 000000012 = (1)GF

02 = 000000102 = (x)GF

03 = 000000112 = (x+ 1)GF

P (x) = x8 + x4 + x3 + x+ 1

Continuing with the example:

E3hex = 111000112 = (x7 + x6 + x5 + x+ 1)GF

01 · E3 = (x7 + x6 + x5 + x+ 1)GF = 111000112

02·E3 = (x8+x7+x6+x2+x)GF = (x7+x6+x4+x3+x2+1)GF = 110111012

03 · E3 = (x8 + x5 + x2 + 1)GF = (x5 + x4 + x3 + x)GF = 001111102

Note that the results of 02 · E3 and 03 · E3 has a degree bigger than 8 and
a modular reduction with the polynomial must be realized.

01·E3+01·E3+02·E3+03·E3 = 111000112+111000112+110111012+001111102

01 · E3 + 01 · E3 + 02 · E3 + 03 · E3 = 111000112 = E3hex

C =


E3 E3 E3 E3
E3 E3 E3 E3
E3 E3 E3 E3
E3 E3 E3 E3


hex
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1.3.3 Key Addition Layer

In the key addition layer, the state matrix (16 bytes) is XORed with a subkey
which has also 16 bytes. The subkeys are obtained from the original key. The
original key can be 128 bits, 192 bits or 256 bits. The question is how to
obtain the subkeys from the original key. Only 256 bits and 128 bits will be
considered this paper.

AES-256

It is important to notice that AES-256 does 14 rounds. In each round, a
subkey is needed and in the first round, an extra subkey is needed. The total
number of subkeys is 15. The original key has 32 bytes.

Key = [K0, K1, K2, ..., K31]

The subkeys are stored in words, each word has 32 bits. The subkeys have a
length of 128 bits. It indicates that each is subkey is composed of four words
and 60 words are required.

ki = [W [4∗(i−1)],W [4∗(i−1)+1],W [4∗(i−1)+2],W [4∗(i−1)+3] i = 1, ..., 15

The words are formed as follows:

W [i] = [K4i, K4i+1, K4i+2, K4i+3] i = 0, 1, 2, ..., 7

W [8i] = [W [8(i− 1)] + g(W [8i− 1])] i = 1, 2, ...7

W [8i+ 4] = [W [8(i− 1) + 4] + h(W [8i+ 3])] i = 1, 2, ...6

W [i] = W [i− 8] +W [i− 1] i > 8 & i mod 4 6= 0

The function g() is non-linear and has as input 1 word (4 bytes). Each byte
is shifted three positions to the right, then the S-box is applied to each byte
and finally, the most left byte is XORed with RC[i]. The values of RC[i] are:

RC[1] = x0 = 000000012

RC[2] = x1 = 000000102

RC[3] = x2 = 000001002
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Figure 1.6: AES subkeys 256 bits

RC[4] = x3 = 000010002

RC[5] = x4 = 000100002

RC[6] = x5 = 001000002
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RC[7] = x6 = 010000002

The function h() is non-linear, which has as input 1 word (4 bytes). Each
byte is introduced to the S-box.

AES-128

In the case of AES-128, 10 rounds are performed and in each round a subkey
is needed but the first round needs an extra subkey so, the total number of
subkeys is 11. The original key has 128 bits, it means 16 bytes and only 44
words are required. The process is similar to the AES-256.

Key = [K0, K1, K2, ..., K15]

ki = [W [4∗(i−1)],W [4∗(i−1)+1],W [4∗(i−1)+2],W [4∗(i−1)+3] i = 1, ..., 11

W [i] = [K4i, K4i+1, K4i+2, K4i+3] i = 0, 1, 2, 3

W [4i] = [W [4(i− 1)] + g(W [4i− 1])] i = 1, 2, ...7

W [i] = W [i− 4] +W [i− 1] i > 3 & i mod 4 6= 0

1.3.4 Decryption

To decrypt a message all the operations must be inverted.

The inversion of Key Addition layer is performed XORing the ciphertext with
the subkeys. The only difference that exists is that the order of the subkeys
is the inverse. The order to XOR the subkeys is:

k15, k14, k13, ..., k1, k0
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Figure 1.7: AES subkeys 128 bits

To invert the Mix Columns the process is the same, an operation with matrix
in the Galois Field (28) but the matrix changes.


B0

B1

B2

B3

 =


0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0B 09 0E

 ·

C0

C1

C2

C3
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Figure 1.8: AES decryption block diagram


B4

B5

B6

B7

 =


0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0B 09 0E

 ·

C4

C5

C6

C7
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Figure 1.9: AES decryption round


B8

B9

B10

B11

 =


0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0B 09 0E

 ·

C8

C9

C10

C11



B12

B13

B14

B15

 =


0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0B 09 0E

 ·

C12

C13

C14

C15
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09hex = 000010012 = (x3 + 1)GF

0Bhex = 000010112 = (x3 + x+ 1)GF

0Dhex = 000011012 = (x3 + x2 + 1)GF

0Ehex = 000011102 = (x3 + x2 + x)GF

Using it to the inverse the example. It follows as:

C =


E3 E3 E3 E3
E3 E3 E3 E3
E3 E3 E3 E3
E3 E3 E3 E3


hex

09 · E3 = (x7 + x5 + x4 + x3 + x+ 1)GF = 101110102

0B · E3 = (x3 + x+ 1)GF = 011001112

0D · E3 = (x4 + x3 + x+ 1)GF = 000110112

0E · E3 = (x5 + x2 + 1)GF = 001001012

09·C5+0B·C5+0D·C5+0E·C5 = 101110102+011001112+000110112+001001012

09 · C5 + 0B · C5 + 0D · C5 + 0E · C5 = 111000112 = E3hex

B =


E3 E3 E3 E3
E3 E3 E3 E3
E3 E3 E3 E3
E3 E3 E3 E3


hex

The operation to invert Shift Rows is similar to the original operation. The
second row of the state matrix is shifted one byte to the right, the third two
bytes to the right and the fourth three bytes to the right.

Finally, to invert the substitution is necessary to realize other substitution.
The table to do it is shown in Figure 1.10.

In the example:

Sinv(E3hex) = D4hex = 010011012 = 7710 = MASCII

37



Figure 1.10: AES inverse substitution table S-Box

38



1.4 Galois Counter Mode (GCM)
In the previous section is explained how to encrypt a 128 bits plaintext.
In practice, the plaintexts are longer than 8 bytes. The way to encrypt and
decrypt long plaintexts is through the operations mode. One of them is Galois
Counter Mode (GCM). GCM not only enables to encrypt and decrypt long
plaintexts but also it guarantees authentication and integrity. It means that
the message was created by the correct person and that nobody tampered
with the ciphertext during transmission.

The input parameters are plaintext, additional authenticated data (ADD)
and initialization vector (IV).

The plaintext is divided in 128 bits plaintexts length as follows:

Plaintext = [x1||x2||...||xn]

where || denotes concatenation.

ADD might include addresses, ports, sequence numbers, protocol version
numbers, and other fields that indicate how the plaintext should be treated.

IV is a nonce, i.e, a value that is unique within the specified context. It is
used for deriving a counter value (CTR0).

CTRi = CTRi−1 + 1

GCM obtains the ciphertext encrypting CTRi and then XORing it with the
plaintext xi.

yi = ek(CTRi)⊕ xi

The value H is generated by encryption of the all-zeros input with the block
cipher.

H = ek(0)

The values of gi are obtained as:

g0 = ADD ⊗H
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Figure 1.11: GCM algorithm

gi = (gi−1 ⊕ yi)⊗H i = 1, 2, ..., n

The operation ⊗ is a multiplication in the GF (2128) with the irreducible
polynomial P (x) = x128 + x7 + x2 + x+ 1.

The authentication (T) is computed as:

T = (gn ⊗H)⊕ ek(CTR0)

The person who receives the message must have the key and IV to decrypt the
message. The message sent contains [(y1, y2, ..., yn), T, ADD]. This person
realizes the same operations that the sender and finally has T ′. If T = T ′, it
assures who is the sender and that the message has not been manipulated.
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1.5 Introduction to Public-Key Cryptography
Public-Key Cryptography (PKC) or asymmetric cryptography was intro-
duced in 1976 whereas symmetric cryptography is used for at least 4000
years. Symmetric cryptography has some issues. These are key distribution
problem, number of keys, no protection against cheating and other malicious
actions.

Key distribution problem is referred to as the key shared between two persons
before a secure channel is used.

The number of keys required to establish a communication with n users is:

n(̇n− 1)

2

because each person needs a different key to communicate with each person.
If a sender uses the same key for everybody, any receiver could encrypt and
decrypt the messages between the sender and the other receivers.

No protection against cheating means that having communication between
a user A and a user B and having a message it is not possible to know who
has sent it.

In asymmetric cryptography, the key used for encrypting messages can be
public without problems. But the ciphertext is decrypted with a secret key.
It means that in PKC there are two keys: kpublic and kprivate.

A B

(kpu, kpr) = k.

kpu←−−−−−−−−

y = ekpu(x).

y−−−−−−−−→

x = dkpr(y).
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Two basic characteristics are: the algorithm used for encryption must be
computationally infeasible to invert and the message only can be decrypted
with the secret key. PKC is much slower than symmetric cryptography so,
once the channel is established through PKC, AES can be used to commu-
nicate.

The main security mechanics that PKC enables are:

• Key establishment through an insecure channel.

• Non-repudiation and message integrity.

• Identification

• Encryption

The algorithms utilized are based on modular arithmetic and especially on:

• Integer-Factorization Schemes: The difficulty to factor large inte-
gers (RSA).

• Discrete Logarithm Schemes: The discrete logarithm problem in
finite fields (DH, DSA, Elgamal).

• Elliptic Curves Schemes: A generalization of the discrete logarithm
problem (ECDH, ECDSA).

Speaking in terms of security and key lengths, asymmetric cryptography
requires longer keys than symmetric cryptography.

Algorithm family Cryptosystems Security level (bits)
Symmetric key AES, 3DES 80 bits 128 bits 192 bits 256 bits

Integer Factorization RSA 1024 bits 3072 bits 7680 bits 15360 bits
Discrete Logarithm DH, DSA, Elgamal 1024 bits 3072 bits 7680 bits 15360 bits
Elliptic Curves ECDH, ECDSA 160 bits 256 bits 384 bits 512 bits

Table 1.7: Bit lengths of public-key algorithms for different security levels
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1.6 RSA
RSA algorithm belongs to asymmetric cryptography. RSA is based on the
integer factorization problem. The problem is that multiplying two primes
is computationally easy whereas factoring the product is very hard.

1.6.1 Encryption and decryption

In asymmetric cryptography, there is a public key and a private key. In RSA
the public key is kpu = (n, e) and the private key is kpr = d. RSA encrypts
plaintexts x with a lower binary value than n. The numbers p and q are two
primes number. As n should have a length equal or bigger than 1024 bits, p
and q should have 512 bits or more.

n = p · q

The value of e must satisfy the condition:

Φ(n) = (p− 1) · (q − 1)

gcd(Φ(n), e) = 1

it means that the inverse of e exists and it is the private key.

d = e−1 mod Φ(n)

RSA encrypts and decrypts as follow:

y = ekpu(x) = xe mod n

x = dkpr(y) = yd mod n

RSA must meet the following characteristics:

• For a given public key kpu = (n, e) must be computationally infeasible
to determine the private key kpr = d.
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• Plaintexts with more bit than the length of n cannot be encrypted.

• To calculate exponentiation with large numbers should be easy.

• There should be many private key/public key pairs for a value of n.

For instance:

A B .

Plaintext x = 2.

Choose two primes p = 5 q = 11.

n = 5 · 11 = 55.

Φ(n) = (5− 1) · (11− 1) = 40.

Choose e = 7.

Verify gcd(Φ(n), e) = gcd(40, 7) = 1.

d = e−1 mod Φ(n) = 7−1 mod 40 = 23.

kpu = (n, e) = (55, 7)
←−−−−−−−−−−−−−−−

y = xe mod n = 27 mod 55 = 18.

y = 18−−−−−−−−−−−−−−−→

x = yd mod n = 1823 mod 55 = 2.

Public key e e as a binary string
3 112

17 100012

216 + 1 100000000000000012

Table 1.8: RSA exponentiation with short public exponents

Even the values of p and q should have 512 bits at least, the value of e can
be a small value. The most common values for e are e = 3, e = 17 and
e = 216 + 1. These values enable fast exponentiation.
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1.6.2 RSA in practice

The RSA described so far has some drawbacks.

• RSA encryption for a key is deterministic. It means that given a plain-
text, the ciphertext always will be the same.

• Plaintexts x = 0, x = 1 and x = −1 has as ciphertext 1, 0 or −1.

• Without padding small plaintexts and small public key exponent might
be attacked but, there is not any attack discovered against e = 3.

• An attacker can manipulate the ciphertext by replacing it with a past
ciphertext.

To solve these problems RSA padding is the solution. Being M the message,
k the length of the modulus n in bytes, |H| the length of the hash function
output in bytes and |M | the length of the message in bytes. Padding consist
of:

Figure 1.12: RSA encryption of a message M with padding

1. Generate a string PS of zeroed bytes which length is k−|M |−2|H|−2.

2. Concatenate Hash(L), PS, a single byte with hexadecimal value 0x01,
and M to form a data block DB of length k − |H| − 1 byte as:

DB = Hash(L)||PS||0x01||M

3. Generate a random byte string seed of length |H|.
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4. Let dbMask = MGF (seed, k − |H| − 1), where MGF is the mask
generation function.

5. Let maskedDB = DB ⊕ dbMask.

6. Let seedMask = MGF (maskedDB, |H|).

7. Let maskedSeed = seed⊕ seedMask.

8. Concatenate a single byte with hexadecimal value 0x00, maskedSeed
and maskedDB to form an encoded message EM of length k bytes as:

EM = 0x00||maskedSeed||maskedDB
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1.7 Discrete Logarithm Problem (DLP) and
Diffie−Hellman Key Exchange (DHKE)

Discrete Logarithm Problem (DLP) is based on the fact that computing dis-
crete logarithms with modulo prime is a very hard problem if the parameters
are sufficiently large. DLP belongs to asymmetric cryptography.

1.7.1 Discrete Logarithm Problem (DLP)

The problem is started with a finite cyclic group Z∗p of order p − 1 where p
is prime and a primitive element α ∈ Z∗p and another element β ∈ Z∗p. The
DLP is the problem of determining the integer 1 ≤ x ≤ p− 1 such that:

αx = β mod p

x = logα β mod p

For example, considering the cyclic group Z∗59, a primitive element α = 2 and
β = 30:

2x = 7 mod 59

x = log2 7 mod 59

For small numbers, the value of x can be determined by using a brute force
attack.

218 = 262144 = 7 mod 59

Using numbers with a length equal or bigger than 1024 bits, the DLP is a
one-way function. It means, for a given p, α and β must be computationally
infeasible to determine the value of x.
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1.7.2 Diffie−Hellman Key Exchange (DHKE)

The Diffie−Hellman Key Exchange (DHKE) is an application of the DLP
which enables two parties to derive a common secret key by communicating
over an insecure channel.

A B .

Choose a large prime p.

Choose an integer α ∈ {2, 3, ..., p−2}.

(p, α)
←−−−−−−−−−−

Choose a = kpr,A ∈ {2, 3, ..., p− 2}.

Compute A = kpu = αa mod p.

Choose b = kpr,B ∈ {2, 3, ..., p− 2}.

Compute B = kpu = αb mod p.

kpu = A
−−−−−−−−−−→

kpu = B
←−−−−−−−−−−

kAB = k
kpr,A
pu,B = Ba mod p.

kAB = k
kpr,B
pu,A = Ab mod p.

Both parties share the same key kAB because:

Ba = (αb)a = αab mod p

Ab = (αa)b = αab mod p

Before of using kAB as a symmetric key, it must be verified that p is prime
and has a minimum length of 1024 bits, α is a primitive element of the group
Z∗p and the private keys a and b are generated with a random generator.
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For instance, p = 59 and α = 2

A B .

Choose a = kpr,A = 3.

Compute A = kpu = 23 mod 59 =

= 8 mod 59.

Choose b = kpr,B = 4.

Compute B = kpu = 24 mod 59 =

= 16 mod 59.

kpu = A = 8
−−−−−−−−−−−−−−−→

kpu = B = 16
←−−−−−−−−−−−−−−−

kAB = k
kpr,A
pu,B = 163 mod 59 = 25 mod 59.

kAB = k
kpr,B
pu,A = 84 mod 59 = 25 mod 59.
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1.8 Elliptic Curve Cryptosystems (ECC)
Elliptic Curve Cryptosystems (ECC) are Public Key Cryptographic algo-
rithms (PKC) and are based on the Discrete Logarithm Problem (DLP). ECC
has the same level of security that RSA and DLP with shorter operands. As
RSA and DLP, ECC are one-way systems.

1.8.1 Theory of Elliptic Curves

Given a polynomial equation, an elliptic curve is formed by all the points
(x, y) that fulfil the equation. For cryptographic use, the curve is considered
over a finite field. The natural choice is prime fields GF (p), where all arith-
metic is performed modulo a prime p.

The elliptic curve over Zp, p>3 is the set of pairs (x, y) ∈ Zp which fulfil:

y2 = x3 + a · x+ b mod p

together with an imaginary point of infinity ϑ, where:

a, b ∈ Zp

and the condition 4 · a3 + 27 · b2 6= 0.

The last condition states that the curve is non-singular. It means that the
plot has no self-intersections or vertices. The elliptic curve is symmetric with
respect to the x− axis.

The operation "addition" which is defined with the symbol "+" means that
given two points P and Q, another point R which belongs to the elliptic
curve is computed.

P +Q = R

(x1, y1) + (x2, y2) = (x3, y3)

The addition operation varies if the two points to add are equal or not.
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Figure 1.13: y2 = x3 − 3x+ 3 over R

• P+Q: The addition is computed drawing a line through P and Q.
This line intersects the curve in a third point. The result of the addi-
tion is the symmetric point with respect to the x − axis of the third
intersection.

• P+P: To obtain the result, a tangent line through P must be drawn.
The symmetric point with respect to the x − axis of the intersection
through the tangent line and the curve is the result.

Figure 1.14: P +Q
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Figure 1.15: P + P

The operation addition described above can be seen from a mathematical
point of view as:

x3 = s2 − x1 − x2 mod p

y3 = s(x1 − x3)− y1 mod p

where:

s =

{
y2−y1
x2−x1 mod p ; if P 6= Q
3x21+a

2y1
mod p ; if P = Q

Also, a neutral element ϑ is established:

P + ϑ = P

P + (−P ) = ϑ

−P = (−xp,−yp) = (−xp, p− yp)

For example, given the elliptic curve y2 = x3 + 3x+ 2 mod 7 and the point
P = (0, 3), derive the points 2P and 3P .

First, a verification that P belongs to the elliptic curve is done.

9 = 0 + 0 + 2 mod 7 = 2 mod 7
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Figure 1.16: P and −P

Then, 2P can be calculated as P + P :

2P = P + P = (0, 3) + (0, 3)

s2P =
3x21 + a

2y1
mod p =

3 · 02 + 3

2 · 3
= 3·(6)−1 mod 7 = 3·6 mod 7 = 4 mod 7

x2P = 42 − 0− 0 mod 7 = 2 mod 7

y2P = 4(0− 2)− 3 mod 7 = −11 mod 7 = 3 mod 7

2P = (2, 3)

and 3P is calculated as 2P + P :

s3P =
y2 − y1
x2 − x1

=
3− 3

2− 0
= 0 · (2)−1 mod 7 = 0 mod 7

x3P = 02 − 0− 2 mod 7 = −2 mod 7 = 5 mod 7

y3P = 0(0− 5)− 3 mod 7 = −3 mod 7 = 4 mod 7

3P = (5, 4)
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1.8.2 The Discrete Logarithm Problem with Elliptic
Curves

The points on an elliptic curve together with ϑ have cyclic subgroups. Under
certain conditions, all points on an elliptic curve form a cyclic group.

Continuing with the previous example, where the elliptic curve is y2 = x3 +
3x+ 2 mod 7 and the point is P = (0, 3).

P = (0, 3)

2P = (2, 3)

3P = (5, 4)

4P = (4, 6)

5P = (4, 1)

6P = (5, 3)

7P = (2, 4)

8P = (0, 4)

9P = ϑ

10P = (0, 3) = P

These points are part of a cyclic group. The order of this cyclic group is
#E = 9 because the point 10P is equal than P . The order is represented
with #E.

The Discrete Logarithm Problem with Elliptic Curves can be described as
given an elliptic curve E and considering a primitive element P and another
element T. The Discrete Logarithm Problem is finding the integer d, where
1 ≤ d ≤ #E, such that:

dP = T
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1.8.3 Diffie−Hellman Key Exchange (DHKE) with
Elliptic Curves

Also, the DHKE can be used with Elliptic Curves and the process is quite
similar.

A B .

Choose a prime p.

Choose an elliptic curve E.

E : y2 = x3 + a · x+ b.

Choose a primitive element P = (xp, yp).

(p, E, P )
←−−−−−−−−−−

Choose ak = kpr,A ∈ {2, 3, ...,#E − 1}.

Compute A = kpu = akP = A = (xA, yA).

Choose bk = kpr,B ∈ {2, 3, ...,#E −
1}.

Compute B = kpu = bkP = (xB, yB).

kpu = A
−−−−−−−−−−→

kpu = B
←−−−−−−−−−−

TAB = kpr,A · kpub,B = akB = (xAB, yAB).

TAB = kpr,B·kpub,A = bkA = (xAB, yAB)

Both parties share the same key TAB because:

akB = ak(bkP ) = akbkP

bkA = bk(akP ) = akbkP
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For instance, p = 7, E : y2 = x3 + 3x+ 2 and P = (0, 3).

A B .

Choose ak = kpr,A = 3.

Compute A = kpu = 3P = (5, 4).

Choose bk = kpr,B = 4.

Compute B = kpu = 4P = (4, 6).

kpu = A = (5, 4)
−−−−−−−−−−−−−−−→

kpu = B = (4, 6)
←−−−−−−−−−−−−−−−

TAB = akB = 3(4, 6) = (5, 4).

TAB = bkA = 4(5, 4) = (5, 4).
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1.9 Hash Functions
Hash Functions digest messages of any size producing fixed-length output.
Output length varies between 128 and 512 bits. Hash Functions do not
require keys and are easy to compute. It means that for an input, the output
will be always the same. The output is very sensitive to any change in the
input.

The length of the input does not change the length of the output, here
are three examples. The only difference between the second and third
example is a character and the difference is noticeable.

⇓

7CDD6D5083F029DD2870F395894A32A3

The budget is a million.

⇓

1C2C95D5AE6EDE25134BFD0405AF5B02

The budget is a billion.

⇓

51F1F275741BCA8795221C508C685B58
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As hash functions do not have keys. These should meet three characteristics.

Figure 1.17: Characteristics of hash functions

1.9.1 Preimage resistance

Preimage resistance indicates that given the output of the hash z = h(x)
it should be computationally infeasible to obtain the message x. The hash
function has to be one-way.

1.9.2 Second preimage resistance

Second preimage resistance means that given a message x1. It is computa-
tionally infeasible to find another message x2 that verify h(x1) = h(x2). As
the output has a fixed length whereas the input can have any length, the
number of possible inputs is greater than the number of possible outputs. It
means that some inputs share the same output. A person could find it with
a process similar to a key exhaustive search. To avoid it the length of the
output should be at least 80 bits.
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1.9.3 Collision resistance

Collision resistance is similar to second preimage resistance. To find two
messages x1, x2 that have the same output h(x1) = h(x2). Note that in the
collision resistance, the freedom has increased because x1 and x2 can vary.
In the second preimage resistance only x2 can change. The probability for
no collision in t messages is calculated as:

P (no collision) =

(
1− 1

2n

)(
1− 2

2n

)(
1− t− 1

2n

)

=
t−1∏
i=1

(
1− i

2n

)

e−x ≈ 1− x

P (no collision) ≈
t−1∏
i=1

e−
i

2n ≈ e−
1+2+3...+t−1

2n

1 + 2 + 3 + ...+ t− 1 = t(t− 1)/2

P (no collision) ≈ e−
t(t−1)

2n+1

The probability of at least one collision is:

λ = 1− P (no collision)

λ = 1− e−
t(t−1)

2n+1
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ln(λ− 1) ≈ −t(t− 1)

2n+1

t(t− 1) ≈ 2n+1 ln

(
1

1− λ

)

As t is the number of messages and it is a natural number t >> 1.

t ≈ 2(n+1)/2

√
ln

(
1

1− λ

)
The numbers of messages t require to find at least one collision in a hash
function 80 bits output with a probability of 50% is:

t ≈ 2(80+1)/2

√
ln

(
1

1− 0.5

)
≈ 240.2

This shows that the number of messages hashed needed to find a collision is
roughly equal to 2n/2.
Current laptops can compute 240 without any difficulty. The length of the
output should be increased to avoid it.

To sum up, the requirements for hash functions are:

1. Arbitrary message size.

2. Fixed output length.

3. Easy to compute.

4. Preimage resistance.

5. Second preimage resistance.

6. Collision resistance.

62



A hash function can be constructed in various ways. Speaking in terms of
hash functions types, exist two ways:

• Dedicated hash functions: These are functions designed explicitly
to hash messages such as the MD4 family.

• Block cipher-based hash functions: Also block ciphers can be used
for hashing messages.
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1.10 SHA 256 algorithm
SHA 256 is a hash function which belongs to dedicated hash functions. In
this section, the algorithm that uses SHA 256 to digest messages will be
explained. Notice that the size of the message is arbitrary, the length of the
output is fixed, hash functions are easy to compute and should have preimage
resistance, second preimage resistance, collision resistance. SHA 256 has a
256 bits output length. The algorithm is divided into preprocessing and hash
computation.

1.10.1 Preprocessing

First of all, as the length of the input depends on the message, it is necessary
to convert the size of the input in a multiple of 512 bits. To do it, padding
will be applied. Padding is performed adding a ’1’ bit, then adding K ’0’ bits
and the last 64 bits are the length of the message in binary.

L+ 1 +K + 64 = 512 · n n ∈ N

K = 512 · n− 64− 1− L n ∈ N

Figure 1.18: Padding of a message

For instance, padding is shown with the message ’Hello’. Each character has
8 bits so, the length of the message is 40 bits.
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HASCII = 010010002

eASCII = 011001012

lASCII = 011011002

lASCII = 011011002

oASCII = 011011112

K = 512− 64− 1− 40 = 407

01001000︸ ︷︷ ︸
H

01100101︸ ︷︷ ︸
e

01101100︸ ︷︷ ︸
l

01101100︸ ︷︷ ︸
l

01101111︸ ︷︷ ︸
o

1 0 . . . 0︸ ︷︷ ︸
407zeros

0 . . . 00101000︸ ︷︷ ︸
l=40

One that the message has been padded, it is the time to define constants.

h0 = 0x6a09e667

h1 = 0xbb67ae85

h2 = 0x3c6ef372

h3 = 0xa54ff53a

h4 = 0x510e527f

h5 = 0x9b05688c

h6 = 0x1f83d9ab

h7 = 0x5be0cd19
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K =



0x428a2f98 0x71374491 0xb5c0fbcf 0xe9b5dba5
0x3956c25b 0x59f111f1 0x923f82a4 0xab1c5ed5
0xd807aa98 0x12835b01 0x243185be 0x550c7dc3
0x72be5d74 0x80deb1fe 0x9bdc06a7 0xc19bf174
0xe49b69c1 0xefbe4786 0x0fc19dc6 0x240ca1cc
0x2de92c6f 0x4a7484aa 0x5cb0a9dc 0x76f988da
0x983e5152 0xa831c66d 0xb00327c8 0xbf597fc7
0xc6e00bf3 0xd5a79147 0x06ca6351 0x14292967
0x27b70a85 0x2e1b2138 0x4d2c6dfc 0x53380d13
0x650a7354 0x766a0abb 0x81c2c92e 0x92722c85
0xa2bfe8a1 0xa81a664b 0xc24b8b70 0xc76c51a3
0xd192e819 0xd6990624 0xf40e3585 0x106aa070
0x19a4c116 0x1e376c08 0x2748774c 0x34b0bcb5
0x391c0cb3 0x4ed8aa4a 0x5b9cca4f 0x682e6ff3
0x748f82ee 0x78a5636f 0x84c87814 0x8cc70208
0x90befffa 0xa4506ceb 0xbef9a3f7 0xc67178f2


Here K(0, 1, ..., 63) has been shown as a matrix but it is an array. For exam-
ple, K(6) = 0x923f82a4.

Another array W (0, 1, ..., 63) is created, it is an array of words where each
word has 32 bits. The initial values of the array W (0, 1, ..., 63) are zero.

1.10.2 Hash computation

The first 16 words contain the message padded. As each word has 16 bits
and there are 16 words, this makes a total of 512 bits.
In the example:

W (0) = 010010000110010101101100011011002

W (1) = 011011111000000000000000000000002

W (2, 3, ...14) = 000000000000000000000000000000002

W (15) = 000000000000000000000000001010002
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Before the algorithm will be explained, it is important to understand the
meaning of >>> and >>. The symbol >>> denotes a right rotation and
>> a right shift. In the right rotation >>>, bits are shifted to the right
and the least significant bit is moved to the most significant bit. In the right
shift, the least significant bit is deleted and a ’0’ is put in the most significant
bit.

0110010>>>1 = 0011001

0110010>>>2 = 1001100

0110010>>1 = 0011001

0110010>>2 = 0001100

The symbols ⊕, ⊗ and x̄ denote the operations XOR, AND and NOT re-
spectively. The algorithm is:

for i from 16 to 63:

S0 = (W (i− 15)>>>7)⊕ (W (i− 15)>>>18)⊕ (W (i− 15)>>3)

S1 = (W (i− 15)>>>17)⊕ (W (i− 15)>>>19)⊕ (W (i− 15)>>10)

W (i) = W (i− 16) + S0 +W (i− 7) + S1

end for

a = h0 b = h1 c = h2 d = h3 e = h4 f = h5 g = h6 h = h7

for i from 0 to 63:

S1 = e>>>6 ⊕ e>>>11 ⊕ e>>>25

ch = (e⊗ f)⊕ (ē⊗ g)

temp1 = h+ S11 + ch+K(i) +W (i)

S0 = a>>>2 ⊕ a>>>13 ⊕ a>>>22

maj = (a⊗ b)⊕ (a⊗ c)⊕ (b⊗ c)

temp2 = S0 +maj
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h = g

g = f

f = e

e = d+ temp1

d = c

c = b

b = a

a = temp1 + temp2

end for

h0 = h0 + a
h1 = h1 + b
h2 = h2 + c
h3 = h3 + d
h4 = h4 + e
h5 = h5 + f
h6 = h6 + g
h7 = h7 + h

return
hash=h0 append h1 append h2 append h3 append h4 append h5 append h6
append h7

Another point of view of the same algorithm is shown below with the infor-
mation included in Figure 1.19.

W (i) = Mi i = 0, 1, ..., 15

W (i) = σ1(W (i−2))+W (i−7)+σ0(W (i−15))+W (i−16) i = 16, ..., 63

σ0(X) = X>>>7 ⊕X>>>18 ⊕X>>3

σ1(X) = X>>>17 ⊕X>>>19 ⊕X>>10

f0 = (X, Y, Z) = (X × Y )⊕ (Y ⊗ Z)⊕ (X ⊗ Z)
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Figure 1.19: Hash computation

f1 = (X, Y, Z) = (X × Y )⊕ (X̄ ⊗ Z)∑
0(X) = X>>>2 ⊕X>>>13 ⊕X>>>22∑
1(X) = X>>>6 ⊕X>>>11 ⊕X>>>25
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1.11 PBKDF
For the security of cryptographic applications is essential keys with a high
degree of randomness. Sometimes the keys are given by users and these do
not have enough entropy. An example of it is shown in Table 1.9.

Rank 2015 2016 2017 2018 2019
1 123456 123456 123456 123456 123456
2 password password password password 123456789
3 12345678 12345 12345678 123456789 qwerty
4 qwerty 12345678 qwerty 12345678 password
5 12345 football 12345 12345 1234567
6 123456789 qwerty 123456789 111111 12345678
7 football 1234567890 letmein 1234567 12345
8 1234 1234567 1234567 sunshine iloveyou
9 1234567 princess football qwerty 111111
10 baseball 1234 iloveyou iloveyou 123123

Table 1.9: Top 10 most common passwords by year according to Splash Data

Password-based key derivation functions (PBKDFs) derive cryptographic
keys from passwords or passphrases. To do it, PBKDFs need as inputs a
hash function, a key, a random number and the number of iterations, With
this information PBKDFs derive a key. Note that the input key can be a key
with low entropy.

MK = PBKDF (PRF, P, S, C)

where:

MK → Derived Key

PRF → Hash Function

P → Input Key or password

S → Salt : Random Number

C → Number of iterations
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The algorithm that executes PBKDF is easy and fast to compute. It is
explained below:

U1 = PRF (P, S||int(j))

Ui = PRF (P,Ui−1) i = 2, 3, ..., C

Tj = U1, U2, ..., UC j = 1, 2, ..., l

MK = [T1, T2, ..., Tl]

As the length of Ui is the length of hash function output and Tj has the same
size that Ui, the value of l can be calculated with the size of hash function
output and the length desired for the MK.

l =
Length(MK)

Length(Output Hash Function)

The abbreviation int(j) represents the 32-bits encoding of integer j.

int(0) = 000000000000000000000000000000002

int(5) = 000000000000000000000000000001012

Here is shown an example using:

PRF = SHA 256

P =′ PolitecnicodiTorino′

S = F0AF0EE1hex

C = 3

Length(MK) = 512− bits

Notice that the length of the output of SHA 256 is 256 bits.

l =
Length(MK)

Length(Output Hash Function)
=

512bits

256bits
= 2
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Figure 1.20: PBKDF algorithm

U1 = SHA256(′PolitecnicodiTorino′,

11110000101011110000111011100001000000000000000000000000000000012)

U2 = SHA256(PolitecnicodiTorino′, U1)

U3 = SHA256(PolitecnicodiTorino′, U2)

T1 = U1 ⊕ U2 ⊕ U3

U1 = SHA256(′PolitecnicodiTorino′,

11110000101011110000111011100001000000000000000000000000000000102)

U2 = SHA256(PolitecnicodiTorino′, U1)
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U3 = SHA256(PolitecnicodiTorino′, U2)

T2 = U1 ⊕ U2 ⊕ U3

MK = [T1||T2]
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1.12 Digital Signatures
The Digital Signature is a tool widely used in cryptography. It enables to
verify if a message was generated by the sender. The protocol to achieve that
is described below and it is basen on Public Key Cryptography.

A B .

Choose kpr,B, kpu,B.

kpu,B←−−−−−−−−

Sign message s = sigkpr(x).

(x, s)
←−−−−−−−−

Verify signature:

verkpu,B(x, s) = true/false.

1.12.1 The RSA Signature Scheme

The protocol to sign a message using the algorithm explained in 1.6.1 is:

A B .

kpr = d, kpu = (n, e).

kpu = (n, e)
←−−−−−−−−−−−−−−−

Sign message:

s = sigkpr(x) = xd mod n.
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(x, s)
←−−−−−−−−−−−−−−−

Verify signature:

verkpu,B(x, s) = true/false.

x′ = se mod n.

x′
{

= x mod n ; valid signature
6= x mod n ; invalid signature

If the message is unaltered, x′ must be equal than x:

x′ = se = (xd)e = xde = x

A practical example:

A B .

kpr = 23 kpu = (55, 7).

kpu = (55, 7)
←−−−−−−−−−−−−−−−

Sign message x = 2:

s = sigkpr(x) = 223 mod 55 = 8.

(x, s) = (2, 8)
←−−−−−−−−−−−−−−−

Verify signature:

x′ = 87 mod 55 = 2.

x′ = x valid signature.

This method has the same drawbacks shown in 1.6.1. This can be avoided
using the padding scheme. Being M the message and n the length of the
modulus RSA in bits, to perform the method:
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1. Generate a random value salt.

2. Concatenate fixed padding (padding1), the message hashed (mhash =
h(M)) and salt to obtain M ′.

3. Calculate the hash of M ′.

4. Concatenate fixed padding (padding2) and salt to obtain DB.

5. Apply a mask generation function, often a hash function, to the hashed
value of M ′ and obtain dbMask.

6. XOR DB and dbMask to compute maskedDB.

7. Compute the encoded message EM concatenating maskedDB, the
hashed value of M ′ and the fixed padding bc.

Figure 1.21: RSA encryption of a message M with padding
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Once the encoded message EM is computed, the digital signature is calcu-
lated as:

s = sigkpr(x) = EMd mod n

To verify the signature, the second party do the same process with the values
salt, padding1, padding2 and bc to obtain EM ′ and check if EM is equal than
EM ′ where:

EM ′ = EM e mod n

EM ′
{

= EM mod n ; valid signature
6= EM mod n ; invalid signature

1.12.2 A complete example

Note that the message can be encrypted using symmetric cryptography with
a key shared previously through asymmetric cryptography. Adding it, the
protocol is completed. In the example, Elliptic Curves with Diffie−Hellman
Key Exchange, AES, SHA 256 and PBKDF are used. This is the most
ambitious example written in this paper so far.

A B .

Information about the functions used←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Choose a prime p.

Choose an elliptic curve E.

E : y2 = x3 + a · x+ b.

Choose a primitive element P = (xp, yp).

(p, E, P )
←−−−−−−−−−−
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Choose a = kpr,A ∈ {2, 3, ...,#E − 1}.

Compute A = kpu = aP = A = (xA, yA).

Choose b = kpr,B ∈ {2, 3, ...,#E−1}.

Compute B = kpu = bP = (xB, yB).

kpu = A
−−−−−−−−−−→

kpu = B
←−−−−−−−−−−

TAB = kpr,A · kpub,B = aB = (xAB, yAB).

P = SHA256(xAB).

Compute salt = RC4RNG(xAB).

MK = PBKDF (SHA256, P, salt, C).

TAB = kpr,B·kpub,A = bA = (xAB, yAB).

P = SHA256(xAB).

Compute salt = RC4RNG(xAB).

MK = PBKDF (SHA256, P, salt, C).

[y1, ..., yn, T, ADD] = GCM−AESMK(x1, ..., xn).

kpr = d kpu = (n, e).

kpu = (n, e)
←−−−−−−−−−−

s = (EM(y2, ..., yn))d mod n.

[y2, ..., yn, T, ADD, s]←−−−−−−−−−−

[x2, ..., xn, T
′] = GCM − AES−1MK([y2, ..., yn, T, ADD]).
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Check T ′ = T .

s′ = (EM(y2, ..., yn))e mod n.

Check s′ = s.
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1.13 Certificates
In this thesis has been shown in 1.12.2 how communications can be carried
out but this requires that each party trust in the other. This is vulnerable
to the man in the middle attack. In this subsection is explained in what
consists the man in the middle attack and how to avoid it using certificates.

1.13.1 Man in the middle attack

Asymmetric cryptography is vulnerable to attacks where a user replaces the
public keys sent by both parties with his keys. This is known as man in the
middle attack.

A C B

kpr,A = a.

A = kpu,A = αa mod n.

kpr,B = b.

B = kpu,B = αb mod n.

A−−→ substitute Â = αo
Â−−→

B̂←−− substitute B̂ = αo
B←−−

kAO = (B̂)a mod n.

kBO = (Â)b mod n.

kAO = Ao mod n.

kBO = Bo mod n.

Note that the malicious user (C) has the same keys that the parties A and
B.
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kAO = (B̂)a mod n = αoa mod n

kAO = Ao mod n = αao mod n

kBO = (Â)b mod n = αob mod n

kBO = Bo mod n = αob mod n

These keys usually are used for the key of symmetric cryptography and the
user C could intercept the ciphertexts, decrypt them, encrypt the message
that he wants and nobody would notice it.

1.13.2 Certificates

Even though public-key schemes do not require a secure channel, these require
authenticated channels for the distribution of the public keys. Certificates
are used to authenticate and are based on digital signatures. A certificate
contains the public key, the identifying information and digital signature of
the public key and the identifying information. These certificates travel in
the transport layer.

CertA = [(kpu,A, IDA), sigkpr(kpu,A, IDA)]

If a user tries to replace the public key, the change will be detected because
the digital signature will not be valid.

The signatures for certificates are given by a trusted third party which is
called Certification Authority (CA). This CA provides the public and private
keys.

Now, the users do not need to trust in another party which is vulnerable to
man in the middle attack. They only must trust in the CA. At the same
same time CA trust in others CA. This is called a chain of trust and there
are three types of CA (root, intermediate and end-entity CA).
At the top level is a root CA, who signs his own certificate and also signs
the intermediate certificates. An intermediate CA is referenced to a root
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CA and signs the end-entity certificates. An end-entity CA is referenced to
intermediate CA.

Figure 1.22: Chain of trust

1.13.3 X.509

X.509 is the most used certificate on internet connections. The structure of
this certificate is:

• Version: The version number indicates changes in certificate format
over time.

• Serial number: The serial number is an identifier for each certifi-
cate generated by an issuer. Two different certificates must have two
different serial numbers.

• Signature: This field points out the algorithm and the parameters
needed to sign the certificate.

• Issuer name: The name of the CA.
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Figure 1.23: Version, serial number and signature

Figure 1.24: Issuer name

• Validity period: Two times and dates that indicate the start and the
end of the period when the certificate can be used.

Figure 1.25: Validity period

• Subject name: A representation of its subject’s identity in the form
of a Distinguished Name.

Figure 1.26: Subject name

• Subject of Public Key: The algorithms and parameters associated
with the subject.

• Fingerprint: A digest using a hash function of the certificate.
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Figure 1.27: Subject of Public Key

Figure 1.28: Fingerprint
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Chapter 2

Internet connection

Internet has become a fundamental tool in any field. Internet is used to
communicate people, to share documents, to access to the bank, to make
transactions, to shop online, to sell, to make money... These connections
must be secure otherwise the attacks to stole money and other malicious
actions will be a constant and anybody will use internet.

Figure 2.1: Evolution of internet users

The connection between a computer and a server through internet is carried
out with the Internet Protocol Suite (TCP/IP). The structure of TCP/IP is
explained in this chapter focusing on cryptographic aspects.
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2.1 Hypertext Transfer Protocol Secure (HTTPS)
Hypertext Transfer Protocol Secure (HTTPS) is a combination of Hypertext
Transfer Protocol (HTTP) and Transport Layer Security (TLS).

Figure 2.2: HTTPS

2.1.1 Hypertext Transfer Protocol (HTTP)

Hypertext Transfer Protocol (HTTP) is a protocol which allows data ex-
change.

Client Server
.

HTTP request−−−−−−−−−−−−−−−−−−−−−→

HTTP response←−−−−−−−−−−−−−−−−−−−−−

The process that occurs in the exchange is:

1. A client (a browser as Mozilla, Chrome,...) sends a HTTP request.

2. The server receives the request.
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3. The server processes the request.

4. The server returns a HTTP response to the client.

5. The client receives the response.

The HTTP response depends on the HTML request.

Request Response
HTML page HTML file
Style of sheet CSS file
JPG image JPG file

JavaScript code JS file
Data Data

Table 2.1: HTTP request and response

2.1.2 Transport Layer Security (TLS)

Transport Layer Security (TLS) is a cryptographic protocol whose function
is to provide communication security over a computer network. TLS uses
asymmetric cryptography to key exchange, symmetric cryptography to cipher
HTTP request and response and digital certificates to authenticate the keys.
Currently only there are two versions of TLS allowed which are TLS 1.2 and
TLS 1.3.

Cipher TLS 1.2 TLS 1.3
AES GCM Yes Yes
AES CCM Yes Yes

Camellia GCM Yes No
ARIA GCM Yes No

ChaCha20-Poly1305 Yes Yes

Table 2.2: TLS Ciphers supported

90



Algorithm TLS 1.2 TLS 1.3
RSA Yes No

DH-RSA Yes No
DHE-RSA Yes Yes
ECDH-RSA Yes No
ECDHE-RSA Yes Yes

DH-DSS Yes No
DHE-DSS Yes No

ECDH-ECDSA Yes No
ECDHE-ECDSA Yes Yes
ECDH-EdDSA Yes No
ECDHE-EdDSA Yes Yes

DHE-PSK Yes Yes
ECDHE-PSK Yes Yes

Table 2.3: TLS Key exchange algorithms supported

TLS 1.2

The protocol of TLS 1.2 establishes a new session as it is shown. The symbol ∗
denotes that the message is optional and the meaning of each communication
between the client and the server is explained below.

Client Server
.

Hello request*←−−−−−−−−−−−−−−−−−−−−−

Client Hello−−−−−−−−−−−−−−−−−−−−−→

Server Hello←−−−−−−−−−−−−−−−−−−−−−

Certificate←−−−−−−−−−−−−−−−−−−−−−
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Server Key Exchange←−−−−−−−−−−−−−−−−−−−−−

Certificate request*←−−−−−−−−−−−−−−−−−−−−−

Server Hello done←−−−−−−−−−−−−−−−−−−−−−

Certificate*−−−−−−−−−−−−−−−−−−−−−→

Certificate Verify−−−−−−−−−−−−−−−−−−−−−→

Client Key Exchange−−−−−−−−−−−−−−−−−−−−−→

Change Cipher−−−−−−−−−−−−−−−−−−−−−→

Finished−−−−−−−−−−−−−−−−−−−−−→

Change Cipher←−−−−−−−−−−−−−−−−−−−−−

Finished←−−−−−−−−−−−−−−−−−−−−−

Application data←−−−−−−−−−−−−−−−−−−−−→

• Hello request: This is an optional message sent by the server and is
a notification that the client should begin the negotiation process.
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• Client Hello: This message is in response to a Hello request or by the
client initiative. The Client Hello contains the following fields:

– Protocol version: Indicate the version of the TLS protocol by
which the client wishes to communicate during this session.

– Random value: This field contains the time and date in millisec-
onds since the midnight Jan. 1, 1970, UTC and 28 bytes generated
by a secure random number generator.

– Session ID: Empty or provides the ID of a previous session that
the client wishes to use.

– Cipher Suite: List of cryptographic options supported by the
client. If Session ID is not empty, it must contain the cipher suite
from that session.

– Compression method: List of compression methods supported
by the client. If Session ID is not empty, it must contain the
compression method from that session.

– Extension: Empty or indicates the signature and hash algo-
rithms that the client wishes to use for digital signatures.

• Server Hello: This message is in response to a Client Hello. The
Server Hello contains the following fields:

– Protocol version: Indicates the version chosen by the server.

– Random value: This field contains the time and date in mil-
liseconds since the midnight Jan. 1, 1970, UTC and 28 bytes
generated by a secure random number generator. This number
must be independent of the value generated by the client.

– Session ID: If the client Session ID is empty, the server will assign
a value to Session ID for this communication. If the client Session
ID is not empty, the server will look for a match in the cache.

– Cipher Suite: The cipher suite chosen by the server.

– Compression method: The compression method chosen by the
server.
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– Extension: If the client Extension is empty, the server will send
the signature algorithm for key exchange.

• Server Certificate: The server sends a certificate message for au-
thentication in the key exchange method. This message is a chain of
certificates. The first certificate in the chain is the server’s certificate
and it is referenced to other certificates. The last certificate is a root
certificate self-signed.

• Server Key Exchange: This message contains the key exchange
method and the parameters needed for the key exchange.

• Certificate request: The server can send this message to request
a certificate to authenticate the client. In this message, the server
includes the type of certificates, the signature algorithms, the hash
algorithms and the certificate authorities (CA) that supports.

• Server Hello done: A message to indicate that the Server Hello
protocol is completed.

• Client Certificate: In the case that the server has requested a certifi-
cate to the client, the client will send this message that includes his own
chain of certificates and the signature algorithms and hash algorithms
used for it.

• Certificate Verify: Message sent by the client in order to confirm
that he has verified the certificates.

• Client Key Exchange: This message includes the key exchange pa-
rameters needed to complete the key exchange.

• Change Cipher: A short message which length with a single byte of
value 1 encrypted by the current method.

• Finished: Both, the server and the client send this message to confirm
that the change cipher has been received, the authentication and the
key exchange processes have been a success.

In the case that a session had been established before and the client wants to
recover it, the protocol change to avoid unnecessary repetitions. The client
sends Client Hello and in the field Session ID, he includes the number of the
previous version.
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Client Server
.

Hello request*←−−−−−−−−−−−−−−−−−−−−−

Client Hello−−−−−−−−−−−−−−−−−−−−−→

Server Hello←−−−−−−−−−−−−−−−−−−−−−

Change Cipher−−−−−−−−−−−−−−−−−−−−−→

Finished−−−−−−−−−−−−−−−−−−−−−→

Change Cipher←−−−−−−−−−−−−−−−−−−−−−

Finished←−−−−−−−−−−−−−−−−−−−−−

Application data←−−−−−−−−−−−−−−−−−−−−→
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2.2 TCP/IP
The Transmission Control Protocol (TCP) and Internet Protocol (IP) are
known as Internet Protocol Suite (TCP/IP). The Internet Protocol enables
the communication between computers, specifying how the data should be
packetized, addressed, transmitted, routed and received. To achieve that,
the protocol is divided into five layers. The physical and data link layer
constitute the link layer shown in Figure 2.3. From the lowest to the highest,
these are:

• Physical: This layer deals with bit-level transmission between different
devices and supports electrical or mechanical interfaces connecting to
the physical medium for synchronized communication.

• Data Link: The data link layer is used for the encoding, decoding
and logical organization of data bits. Data packets are framed and
addressed by this layer.

• Network Layer: This layer is responsible for sending packets across
multiple networks. The protocols used for it are IPv4 and IPv6. IPv4
works with addresses of 32 bytes whereas IPv6 uses addresses of 128
bytes.

• Transport Layer: It is responsible for end-to-end communication
over a network. It provides logical communication between applica-
tion processes running on different hosts within a layered architecture
of protocols and other network components. The transport layer is also
responsible for the management of error correction, providing quality
and reliability to the end user. The protocols defined to do it are TCP
and UDP. TCP perform a more exhaustive search for errors than UDP
but UDP is faster and more efficient.

• Application: The highest layer, it provides the interfaces and pro-
tocols needed by the users. Some application layer protocols include
the Hypertext Transfer Protocol (HTTP), the File Transfer Protocol
(FTP), the Simple Mail Transfer Protocol (SMTP), and the Dynamic
Host Configuration Protocol (DHCP).
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Figure 2.3: Internet Protocol
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Chapter 3

Password.link

The web page password.link allows any message to be safely delivered through
an insecure media.

Figure 3.1: Dashboard of password.link

Password.link defines itself as:
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"Do you know who reads your passwords and other secrets when
you send them over email? We have a solution."

"Password.link is perfect for sending user passwords, Cisco ASA, IKE and
other pre-shared VPN keys, WLAN passwords, license keys for games and
software and anything alike. Create a link to the secret that works only one
time and get a notification when the link has been accessed. Encryption and
decryption of the secret always happen in the browser using an encryption
key fully known only by the browser that generates the link."

"Our service encrypts the secret and seals it behind a link that can be opened
just once. If the link recipient is unable to open the secret, then someone
else has already seen it and proper actions should be taken. Different kind
of notifications can also be configured to be sent right away when the secret
has been viewed. Encrypting and decrypting the secret always happens in
the browser and the actual secret cannot be seen by us."

"We also have an API which can be used to easily integrate the service into
any application or service. In addition we also offer licenses to the full source
code of the service so companies can run it in their internal networks or other
private services, modify it to suit their needs and be sure that they are in
full control of all data passed through the service."

"Password.link is being used by all kinds of technology companies all around
the world."

Once that the description is completed. It is the time to prove that through
a practical example. To do it, it is necessary to create an account. Pass-
word.link offers four different plans:

Figure 3.2: Plans offered by password.link
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Now all is ready to perform the example. The secret to sending is "The
code has changed. The new code is RC25js79.". There are other fields to
complete. These are description, message, expiration time and view button.
The description is only seen by the sender and it is a name to recognize the
secret. The message is an additional message that will be shown with the
secret. The expiration time is the time in hours that the viewer has available
to view the secret once it has been sent. The view button is a confirmation
button and it is shown before the message. Figure 3.3.

Figure 3.3: Dashboard fulfilled

Then the create link button is pressed and it returns a link. This link is sent
to another party through any channel (secure or insecure). Figure 3.4.

When the viewer receives the link and introduces it in his navigator, he will
see the view secret button because it was activated. Figure 3.5.

If he clicks in the view button the secret will be revealed with the message.
Figure 3.6.

If anybody tries to use this link the message will not be shown again. The
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same occurs when the first viewer refreshes the page. Another possibility is
that the expiration time has over. Figure 3.7.

Finally, the sender can check if his message has been viewed, has expired or
is still waiting for an action by the viewer. Figure 3.8.

Figure 3.4: Link created
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Figure 3.5: View secret button

Figure 3.6: Secret and message are revealed
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Figure 3.7: Secret viewed or expired

Figure 3.8: Secret’s situation
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3.1 Internet connection
The communication between a user and password.link is made through TCP/IP.
In particular, the server uses HTTPS. It can be checked easily in the domain
of the website.

Figure 3.9: Domain of password.link

Clicking on the lock is possible to see which version of TLS is using.

Figure 3.10: Version of TLS and algorithms used

TLS ECDHE RSA WITH AES 128 GCM SHA256, 128 bits keys, TLS 1.2
means:

• TLS version: 1.2.

• Key exchange: Elliptic Curves Diffie−Hellman Ephemeral (ECDHE).

• Authentication: RSA.

• Encryption: Advanced Encryption System 128 bits (AES-128) with
Galois Counter Mode (GCM).

• Hash function: SHA 256.

Elliptic Curves Diffie−Hellman Ephemeral (ECDHE) is Diffie−Hellman Key
Exchange with Elliptic Curves viewed in 1.8.3. The only difference is that
the word Ephemeral is added. It means that the parameters to generate the
key exchange are refreshed each time that this process is performed. As it is
explained in 1.13, authentication is necessary to avoid the man in the middle
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attack. It is done with certificates. These certificates use RSA to sign. A
scheme is shown below.

Client Server
.

Hello request*←−−−−−−−−−−−−−−−−−−−−−

Client Hello−−−−−−−−−−−−−−−−−−−−−→

Server Hello←−−−−−−−−−−−−−−−−−−−−−

Elliptic Curves parameters p, E, P .

RSA parameters d, n, e.

Certificate (n, e)
←−−−−−−−−−−−−−−−−−−−−−

B = bP .

x = (p, E, P,B).

ss = sign(x) = xd mod n.

Server Key Exchange (x, ss)←−−−−−−−−−−−−−−−−−−−−−

Certificate request*←−−−−−−−−−−−−−−−−−−−−−

Server Hello done←−−−−−−−−−−−−−−−−−−−−−

Certificate*−−−−−−−−−−−−−−−−−−−−−→
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Certificate Verify−−−−−−−−−−−−−−−−−−−−−→

A = aP .

sc = sign(A)∗.

Client Key Exchange (A, sc∗)−−−−−−−−−−−−−−−−−−−−−→

Change Cipher−−−−−−−−−−−−−−−−−−−−−→

Finished−−−−−−−−−−−−−−−−−−−−−→

Change Cipher←−−−−−−−−−−−−−−−−−−−−−

Finished←−−−−−−−−−−−−−−−−−−−−−

Application data←−−−−−−−−−−−−−−−−−−−−→

Password.link uses three certificates to authenticate. The first one is the
end-entity certificate which belongs to password.link and is referred to the
intermediate certificate. Figure 3.11.

The second is the intermediate certificate which belongs to Let’s Encrypt
Authority X3 and is referred to the root certificate. Figure 3.12.

The root certificate belongs to Digital Signature Trust Co. and is self-signed.
This CA is widely recognized. Figure 3.13.

The three certificates use RSA to verify to encrypt and the length of the key
is 2048 bits. The user receives:

(n, e)
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Figure 3.11: End-entity certificate

x = (p, E, P,B)

ss = sign(x) = xd mod n

he must compute
x′ = ses mod n

and check that
x′ = x
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Figure 3.12: Intermediate certificate

if the two variable has the same value he will check that the end-entity
certificate is signed by the intermediate certificate and that the intermediate
certificate is signed by the root certificate. This operation is called Certificate
Verify and is inside that TLS 1.2.

When it has been checked, the server and the user shares the same key, it
will be used to transfer application data encrypting and decrypting it with
AES-128 and the GCM. In this case, the application data is a hypertext
transfer.
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Figure 3.13: Root certificate
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3.2 Password.link operation
To sum up the process, a user introduces a secret, a message and the expi-
ration time, the web page returns a secret link and encrypt the secret, the
viewer will open the link and will decrypt it to view the secret. The question
is how occurs it and if there is any cryptographic function participating in
the process.

3.2.1 Generate the link

The secret link that the user request to send the secret to the viewer has
always the same structure.

Secret Link = Link Base + ”/” + Secret ID + ”/” + ”#” +

+Password Part Public Base64

The Link Base is https : //password.link.

The Secret ID is the value generated with a simple hash function, where the
secret, the message, the expiration time and time expressed in milliseconds
since the midnight Jan. 1, 1970, UTC are hashed. This hash function has 6
characters as output.

The Password Part Public Base 64 is slightly more complex to calculate. The
web page generates two string called Password Part Public and Password
Part Private. Each string has 18 characters. The strings are generated by a
random function explained below. The strings only can have the characters
included in Table 3.1. For instance, the characters ; : will not appear in any
string.

The strings are generated character by character. To generate a character the
functionMath.seedrandom is used. This function returns a random number
in [0, 1). This random number is multiplied by 87 and the largest integer less
or equal than the given number is utilized to choose the character.
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Number Character Number Character Number Character
0 A 29 d 58 6
1 B 30 e 59 7
2 C 31 f 60 8
3 D 32 g 61 9
4 E 33 h 62 $
5 F 34 i 63 |
6 G 35 j 64 /
7 H 36 k 65 \
8 I 37 l 66 !
9 J 38 m 67 _
10 K 39 n 68 +
11 L 40 o 69 ,
12 M 41 p 70 .
13 N 42 q 71 −
14 O 43 r 72 ?
15 P 44 s 73 (
16 Q 45 t 74 )
17 R 46 u 75 [
18 S 47 v 76 ]
19 T 48 w 77 {
20 U 49 x 78 }
21 V 50 y 79 <
22 W 51 z 80 >
23 X 52 0 81 &
24 Y 53 1 82 #
25 Z 54 2 83 ˆ
26 a 55 3 84 ∗
27 b 56 4 85 =
28 c 57 5 86 @

Table 3.1: Equivalence between numbers and characters

For example, 0.0988257879579245 is the value obtained fromMath.seedrandom:

87 ∗ 0.0988257879579245 = 8.597843552
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The largest integer less than or equal than 8.5978... is 8.

8⇒ I

This process is repeated 18 times to generate a string with 18 characters.
Once the Password Part Public and Password Part Private has been gener-
ated, these must be converted in Base64.

Math.seedrandom

The main question here is how the numbers are generated. Math.seedrandom
uses RC4 which is explained in 1.2. Notice that RC4 algorithm needs a key
to calculate the S-Box. Once the S-box is calculated, the RC4 RNG is used
to calculate a random number r with count = 6. Notice that the output of
Math.seedrandom is in the interval [0, 1) while r is always bigger than 1. To
convert the number in the interval:

n = RC4RNG (count = 6)

d = 248

x = 0

while(n < 252)

n = (n+ x) · 256

d = d · 256

x = RC4RNG (count = 1)

while(n > 252)

n = n/2 · 256

d = d/2 · 256

x >>>= 1

return(n+ x)/d [0, 1)

The operation >>>= called as right shift assignment moves the specified
amount of bits to the right and assigns the result to the variable.

16 >>>= 2→ 100002 >>>= 2→ 001002 = 4

5 >>>= 1→ 1012 >>>= 1→ 0102 = 2
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Entropy?

seed? seed?

rv=math.random()error seed=autoseed()

seed=conc(seed,rv)

key=mixkey(seed,[])

yes

no

yes

no

yes

no

The key for generating the S-Box is obtained through a seed and entropy.
The user can choose one of the following options: Entropy and seed, only
seed or neither. These fields are introduced when the user calls the function.
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Math.seedrandom(′hello′, {entropy : true}) Entropy and a seed

Math.seedrandom(′hello′) A seed

Math.seedrandom()

Math.random() is a function which generates random values without any
security. The values are in [0, 1). The function conc() concatenates two
variables given as inputs and converts them into a string.

conc(′hello′, 0.731861861) =′ hello0.731861861′

The function autoseed() does not need any input. His output is a string that
depends on the time expressed in milliseconds since the midnight Jan. 1,
1970, UTC and local variables such as the plugins, the screen...

The last function is mixkey, his goal is to obtain a key from a seed.

mixkey(seed, initkey)

stringseed = seed+′′

j = 0

mask = 255 25510 = 111111112

smear = 0

while(j < length(stringseed))

smearˆ= initkey[mask&j] · 19

key[mask&j] = mask&((smear (̂initkey[mask&j]·19)+ASCII(stringseed(j)))

smear = smear înitkey[mask&j] · 19

j = j + 1

return key

The symbol & is the bitwise AND operation and it avoids keys longer than
256 characters. Notice that to obtain the S-Box a key longer than 256 char-
acters will produce the same effect that the same key truncated from the
characters 1 to 256. The symbolˆ= represents the bitwise assignment XOR
operation.

115



For instance, seed =′ hyt′ and initkey = [37452].

mixkey(′hyt′, [3, 7, 4, 5, 2])

stringseed =′ hyt ′

j = 0

mask = 255

smear = 0

while(0 < 3)

key[111111112&0] = 111111112&((0⊕ (initkey[111111112&0] · 19)+

+ASCII(stringseed(h))))

key[0] = 0⊕ (3 · 19) + 104 = 57 + 104 = 161

smear = 0⊕ initkey[111111112&0] · 19 = initkey[0] · 19 = 3 ∗ 19 = 57

j = 1

while(1 < 3)

key[1] = 111111112&((57⊕ (initkey[1] · 19) +ASCII(stringseed(y))))

key[1] = 111111112&((57⊕ (7 · 19) + 121 = 111111112&((57⊕ 133)+

+161) = 111111112&((1110012⊕100001012)+121) = 111111112&(101111002+

+161) = 111111112&(188+121) = 111111112&309 = 111111112&001101012 =

= 010111012 = 53

smear = 57⊕ (initkey[1] · 19) = 57⊕ (7 ∗ 19) = 57⊕ 133 = 188

j = 2

while(2 < 3)

key[2] = 111111112&((188⊕ (initkey[2] ·19) +ASCII(stringseed(t))))

key[2] = 111111112&((188⊕ (4 · 19) + 116 = 111111112&((188⊕ 133)+

+116) = 111111112&((101111002⊕100001012)+116) = 111111112&(111100002+

+116) = 111111112&(240+116) = 111111112&356 = 111111112&1011001002 =
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= 011001002 = 100

smear = 240

j = 3

return key = [161, 53, 100]

Note that the initkey is always empty when Math.seedrandom is called.
When it occurs, mixkey performs a simply conversion from characters to
numbers using ASCII. The same example but with initkey = [].

mixkey(′hyt′, [])

stringseed =′ hyt ′

j = 0

mask = 255

smear = 0

while(0 < 3)

key[111111112&0] = 111111112&((0⊕ (initkey[111111112&0] · 19)+

+ASCII(stringseed(h))))

key[0] = 0⊕ (0 · 19) + 104 = 104

smear = 0⊕ initkey[111111112&0] · 19 = initkey[0] · 19 = 0 ∗ 19 = 0

j = 1

while(1 < 3)

key[1] = 111111112&((0⊕ (initkey[1] · 19) + ASCII(stringseed(y))))

key[1] = 111111112&((0⊕ (0 · 19) + 121 = 111111112&121 = 121

smear = 0⊕ (initkey[1] · 19) = 0⊕ (0 ∗ 19) = 0

j = 2

while(2 < 3)

key[2] = 111111112&((0⊕ (initkey[2] · 19) + ASCII(stringseed(t))))

key[2] = 111111112&((0⊕ (0 · 19) + 116 = 111111112&116 = 116
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smear = 0

j = 3

retun key = [104, 121, 116]

To generate the random numbers that influence the characters and so that the
Password Part Public and Password Part Private the functionMath.seedrandom
is called without any seed or entropy, it means Math.seeedrandom(). Ran-
dom numbers are generated because entropy is introduced in autoseed() to
generate the keys and then these are used in RC4 algorithm to provide the
S-Boxes which enable to calculate random numbers through RC4 RNG.

Conversion to Base64

The ASCII code has a Base256 because each character is defined by 8 bits.
Each character in a Base64 must be defined with 6 bits.

To convert the text in ASCII to Base64, the text is written in binary and
then groups of 6 bits are formed, the groups are substituted by letters using
Table 3.2. An example with the word Sun is shown:

S = 8310 = 010100112

u = 11710 = 011101012

n = 11010 = 011011102

Sun = 0101001101110101011011102 = 010100︸ ︷︷ ︸
2010

110111︸ ︷︷ ︸
5510

010101︸ ︷︷ ︸
2110

101110︸ ︷︷ ︸
4610

SunBase256 = U3V uBase64

When the number of characters in Base256 is not a multiple of 3, padding
with the symbol = is required but in the case of password.link the strings
have 18 characters and as 18 is a multiple of 3 any padding is required.
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Number Character Number Character
0 A 32 g
1 B 33 h
2 C 34 i
3 D 35 j
4 E 36 k
5 F 37 l
6 G 38 m
7 H 39 n
8 I 40 o
9 J 41 p
10 K 42 q
11 L 43 r
12 M 44 s
13 N 45 t
14 O 46 u
15 P 47 v
16 Q 48 w
17 R 49 x
18 S 50 y
19 T 51 z
20 U 52 0
21 V 53 1
22 W 54 2
23 X 55 3
24 Y 56 4
25 Z 57 5
26 a 58 6
27 b 59 7
28 c 60 8
29 d 61 9
30 e 62 +
31 f 63 /

Table 3.2: Equivalence between numbers and characters Base64
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3.2.2 Encrypt the secret and send the information

Simultaneously to the link generation, the secret is encrypted. The Password
Part Public and Password Part Private are used as the initial key. The
algorithms to do it are PBKDF, AES 256, GCM and SHA 256. The function
to encrypt:

CiphertextBase64 = Base64(Encrypt(PasswordPartPublic, PasswordPartPrivate,

Secret,Mode, Cipher,Ks, Iter))

where:

Mode =′ gcm′

Cipher =′ aes′

Ks = 256

Iter = 10000

The process is:

1. To concatenate the PasswordPartPublic and PasswordPartPrivate
PW = conc(PasswordPartPublic, PasswordPartPrivate) and to con-
vert it to Base64.

2. To generate four random numbers called as IV .

3. To generate two random numbers called as Salt.

4. To perform Key = PBKDF (SHA256, PW, Salt, 10000).

5. To encrypt Ct = AES256Encrypt −GCM(Key, Secret, IV ).

6. To convert to Base64 CiphertextBase64 = Base64(IV, Iter,Ks,Mode, Cipher, Salt, Ct).

7. To send the CiphertextBase64, the PasswordPartPrivateBase64, the
SecretID and the message details to Password.link.

The function to generate the random numbers IV and Salt depends on the
time since the midnight Jan. 1, 1970, UTC and other parameters with en-
tropy but it has not any security in terms of cryptography.
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3.2.3 View, decrypt and delete the secret

When a user access to the link, password.link shows the secret and delete all
the information about this secret.

1. To get the SecretID and the PasswordPartPublicBase64 from the
link.

2. To search for a SecretID match in Password.link.

3. To obtain the PasswordPartPrivateBase64, the CiphertextBase64 and
the message details from the match in Password Link.

4. To delete the information related with this secret which was stored in
Password Link.

5. To invert the Base64 transformation to obtain PasswordPartPublic,

PasswordPartPrivate and Ciphertext = IV, Iter,Ks,Mode, Cipher, Salt, Ct.

6. Concatenate the PasswordPartPublic and PasswordPartPrivate

PW = conc(PasswordPartPublic, PasswordPartPrivate).

7. Perform Key = PBKDF (SHA256, PW, Salt, 10000).

8. Finally the Secret = AES256Decrypt −GCM(Key,Ct, IV ).

9. Show the Secret with the message details.

Note that for decryption both, Password Part Public and Password Part Pri-
vate are needed. The user sent the Password Part Private and it guarantees
that Password.link can not decrypt the secret until the user access to the
link.

Chipertext Base64
eyJpdiI6IitxQlJ4TkdRUEIvOXVlNGNmVVBVZ2c9PSIsInYiOjEsIml0Z
XIiOjEwMDAwLCJrcyI6MjU2LCJ0cyI6NjQsIm1vZGUiOiJnY20iLCJh
ZGF0YSI6IiIsImNpcGhlciI6ImFlcyIsInNhbHQiOiI5TGhNeVpXbXNrT
T0iLCJjdCI6IlpTbStxSmxOUHV1eWdHU3MwRFkvY2tqSUsyZlBCaW

IvWjBvPSJ9
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Chipertext
{"iv":"+qBRxNGQPB/9ue4cfUPUgg==","v":1,"iter":10000,"ks":256,
"ts":64,"mode":"gcm","adata":"","cipher":"aes","salt":"9LhMyZWmsk

M=","ct":"ZSm+qJlNPuuygGSs0DY/ckjIK2fPBib/Z0o="}
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3.3 Additional Features
There are two additional features which are an option to personalize the
service in order to integrate with other app and a generator of passwords.

3.3.1 Personalize the service

Password.link provides all the code use and his API. It enables someone to
incorporate this service in his own app and customize the to match his brand.
Also, it enables configure notifications when the secret has been viewed.

3.3.2 Generator of passwords

It generates strong xkcd-style passwords using EFF’s Long Wordlist for
words. The user chooses the characters to separate the words, the padding
characters and the amount of random words. The process is simple.

Figure 3.14: Password generation

1. Generate five random numbers. The numbers allowed only can be 1,
2, 3, 4, 5 or 6.

2. Use the EEF’s Long Wordlist with the previous numbers. An example
of it is the sequence 5,1,4,2,5 corresponds to the word ’repayment’.
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3. Repeat steps 1 and 2 to come up with the correct number of random
words

4. Form the password using the random words, the characters to separate
the words and the padding characters.
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3.4 Conclusion
Password.link offers a service that allows you to send a message through an
insecure channel.

First of all, the connection between a user and password.link through internet
is secure due to both parties are authenticated and the internet connection
satifies all the requirements.

From a cryptographic point of view, the password.link operation is secure
but it can be improved replacing RC4 for a safer RNG. The reason because
password.link is secure even when it uses RC4, which is no recommended, is
beacause the whole procces occurs in your own computer and only then Pass-
word Part Private is sent to password.link and both passwords are required
to decrypt. All the other functions that it uses to encrypt the message can
be considered secure until now since there are no known feasible attacks at
present. Also, as consequence that all the encryption process is carried out
by the user and the user only sends a half of the key password.link will never
be able to decrypt the ciphertext unless someone accesses the link.

If someone intercepts the link and opens it, the secret will be revealed. It
does not make password.link appropriate to send detailed information about
credit cards, router keys, licence keys for games, etc. "

Password.link is an incomplete service since it does not allow sending the link
to another user from their own page. That is why the option of integrating
this system into other applications is suitable.

Finally, I have to say that having all the code at a single click has been quite
useful and that despite being a simply registered user and not having bought
any of their subscription plans, all the questions asked through the technical
service have been answered the same day and with impeccable precision.
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3.5 Code
All the code used for understanding how password.link and to perform some
simulations is included above. To use it and simulate secret encryption the
text must be copied in a text file and edit his format. Once it is done,
simulation.html is opened with a navigator, F12 and Console are pressed.

Figure 3.15: Example using the code

3.5.1 simulation.html

<!DOCTYPE html >

<head >
<meta charset ="utf -8">
<title > Simulation </title >

<script type="text/javascript" src=" simulation.js"></script >

</head >

<body >
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Press F12 and then press Console

</body >

</html >

3.5.2 simulation.js
"use strict ";

var sjcl={
cipher :{},
hash:{},
keyexchange :{},
mode:{},
misc:{},
codec:{},
exception :{

corrupt:function(a){
this.toString=function (){

return"CORRUPT: "+this.message
};
this.message=a

},
invalid:function(a){

this.toString=function (){
return"INVALID: "+this.message

};
this.message=a

},
bug:function(a){

this.toString=function (){
return"BUG: "+this.message

};
this.message=a

},
notReady:function(a){

this.toString=function (){
return"NOT READY: "+this.message

};
this.message=a

}
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}
};

sjcl.cipher.aes=function(a){
this.s[0][0][0]|| this.O();
var b,c,d,e,f=this.s[0][4] ,g=this.s[1];
b=a.length;
var h=1;
if(4!==b&&6!==b&&8!==b)throw new sjcl.exception.invalid ("
invalid aes key size");

this.b=[d=a.slice (0),e=[]];
for(a=b;a<4*b+28;a++){

c=d[a-1];
if(0===a%b||8===b&&4===a%b)c=f[c>>>24]<<24^f[c
> >16&255] < <16^f[c> >8&255]< <8^f[c&255] ,0===a%b&&(c=c<<8^c
>>>24^h<<24,h=h< <1^283*(h>>7));
d[a]=d[a-b]^c

}
for(b=0;a;b++,a--)c=d[b&3?a:a-4],e[b]=4>=a||4>b?c:g[0][f[c
>>>24]]^g[1][f[c > >16&255]]^g[2][f[c > >8&255]]^g[3][f[c
&255]]

};

sjcl.cipher.aes.prototype ={
encrypt:function(a){

return t(this ,a,0)
},
decrypt:function(a){

return t(this ,a,1)
},
s:[[[] ,[] ,[] ,[] ,[]] ,[[] ,[] ,[] ,[] ,[]]] ,
O:function (){

var a=this.s[0],b=this.s[1],c=a[4],d=b[4],e,f,g,h=[],k
=[],l,n,m,p;
for(e=0;0x100 >e;e++)k[(h[e]=e< <1^283*(e>>7))^e]=e;
for(f=g=0;!c[f];f^=l||1,g=k[g]||1) for(m=g^g<<1^g<<2^g<<3^

g<<4,m=m>>8^m&255^99 ,c[f]=m,d[m]=f,n=h[e=h[l=h[f]]],p=0
x1010101*n^0 x10001*e^0x101*l^0 x1010100*f,n=0x101*h[m]^0
x1010100*m,e=0;4>e;e++)a[e][f]=n=n<<24^n>>>8,b[e][m]=p=p
<<24^p>>>8;
for(e=0;5>e;e++)a[e]=a[e]. slice (0),b[e]=b[e]. slice (0)

}
};

function t(a,b,c){
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if(4!==b.length)throw new sjcl.exception.invalid (" invalid
aes block size");

var d=a.b[c],e=b[0]^d[0],f=b[c?3:1]^d[1],g=b[2]^d[2];
b=b[c?1:3]^d[3];
var h,k,l,n=d.length/4-2,m,p=4,r=[0,0,0,0];
h=a.s[c];
a=h[0];
var q=h[1],v=h[2],w=h[3],x=h[4];
for(m=0;m<n;m++)h=a[e>>>24]^q[f> >16&255]^v[g> >8&255]^w[b
&255]^d[p],k=a[f>>>24]^q[g> >16&255]^v[b> >8&255]^w[e&255]^d
[p+1],l=a[g>>>24]^q[b> >16&255]^v[e> >8&255]^w[f&255]^d[p
+2],b=a[b>>>24]^q[e > >16&255]^v[f> >8&255]^w[g&255]^d[p+3],p
+=4,e=h,f=k,g=l;

for(m=0;4>m;m++)r[c?3&-m:m]=x[e>>>24]<<24^x[f> >16&255] < <16^
x[g> >8&255]< <8^x[b&255]^d[p++],h=e,e=f,f=g,g=b,b=h;

return r
}

sjcl.bitArray ={
bitSlice:function(a,b,c){

a=sjcl.bitArray.$(a.slice(b/32) ,32-(b&31)).slice (1);
return void 0===c?a:sjcl.bitArray.clamp(a,c-b)

},
extract:function(a,b,c){

var d=Math.floor(-b-c&31);
return ((b+c-1^b)&-32?a[b/32|0]<<32-d^a[b/32+1|0]>>>d:a[b

/32|0]>>>d)&(1<<c)-1
},
concat:function(a,b){

if(0===a.length ||0===b.length)return a.concat(b);
var c=a[a.length -1],d=sjcl.bitArray.getPartial(c);
return 32===d?a.concat(b):sjcl.bitArray.$(b,d,c|0,a.slice

(0,a.length -1))
},
bitLength:function(a){

var b=a.length;
return 0===b?0:32*(b-1)+sjcl.bitArray.getPartial(a[b-1])

},
clamp:function(a,b){

if(32*a.length <b)return a;
a=a.slice(0,Math.ceil(b/32));
var c=a.length;
b=b&31;
0<c&&b&&(a[c-1]= sjcl.bitArray.partial(b,a[c
-1]&2147483648 > >b-1,1));
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return a
},
partial:function(a,b,c){

return 32===a?b:(c?b|0:b<<32-a)+0 x10000000000*a
},
getPartial:function(a){

return Math.round(a/0 x10000000000)||32
},
equal:function(a,b){

if(sjcl.bitArray.bitLength(a)!== sjcl.bitArray.bitLength(b
))return !1;
var c=0,d;
for(d=0;d<a.length;d++)c|=a[d]^b[d];
return 0===c

},
$:function(a,b,c,d){

var e;
e=0;
for(void 0===d&&(d=[]) ;32<=b;b-=32)d.push(c),c=0;
if(0===b)return d.concat(a);
for(e=0;e<a.length;e++)d.push(c|a[e]>>>b),c=a[e]<<32-b;
e=a.length?a[a.length -1]:0;
a=sjcl.bitArray.getPartial(e);
d.push(sjcl.bitArray.partial(b+a&31,32<b+a?c:d.pop() ,1));
return d

},
i:function(a,b){

return[a[0]^b[0],a[1]^b[1],a[2]^b[2],a[3]^b[3]]
},
byteswapM:function(a){

var b,c;
for(b=0;b<a.length ;++b)c=a[b],a[b]=c>>>24|c>>>8&0 xff00 |(c

&0xff00) <<8|c<<24;
return a

}
};

sjcl.codec.utf8String ={
fromBits:function(a){

var b="",c=sjcl.bitArray.bitLength(a),d,e;
for(d=0;d<c/8;d++) 0===(d&3) &&(e=a[d/4]),b+= String.
fromCharCode(e>>>8>>>8>>>8),e<<=8;
return decodeURIComponent(escape(b))

},
toBits:function(a){
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a=unescape(encodeURIComponent(a));
var b=[],c,d=0;
for(c=0;c<a.length;c++)d=d<<8|a.charCodeAt(c) ,3===(c&3)
&&(b.push(d),d=0);
c&3&&b.push(sjcl.bitArray.partial (8*(c&3),d));
return b

}
};

sjcl.codec.base64 ={
B:"
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
+/",

fromBits:function(a,b,c){
var d="",e=0,f=sjcl.codec.base64.B,g=0,h=sjcl.bitArray.
bitLength(a);
c&&(f=f.substr (0 ,62)+"-_");
for(c=0;6*d.length <h;)d+=f.charAt ((g^a[c]>>>e) >>>26) ,6>e

?(g=a[c]<<6-e,e+=26,c++):(g<<=6,e-=6);
for(;d.length &3&&!b;)d+="="; return d

},
toBits:function(a,b){

a=a.replace (/\s|=/g,"");
var c=[],d,e=0,f=sjcl.codec.base64.B,g=0,h;
b&&(f=f.substr (0 ,62)+"-_");
for(d=0;d<a.length;d++){

h=f.indexOf(a.charAt(d));
if(0>h)throw new sjcl.exception.invalid ("this isn ’t

base64 !");
26<e?(e-=26,c.push(g^h>>>e),g=h<<32-e):(e+=6,g^=h<<32-e

)
}
e&56&&c.push(sjcl.bitArray.partial(e&56,g,1));
return c

}
};

sjcl.codec.base64url ={
fromBits:function(a){

return sjcl.codec.base64.fromBits(a,1,1)
},
toBits:function(a){

return sjcl.codec.base64.toBits(a,1)
}

};
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sjcl.hash.sha256=function(a){
this.b[0]|| this.O();
a?(this.F=a.F.slice (0),this.A=a.A.slice (0),this.l=a.l):this
.reset()

};

sjcl.hash.sha256.hash=function(a){
return(new sjcl.hash.sha256).update(a).finalize ()

};

sjcl.hash.sha256.prototype ={
blockSize :512, reset:function (){

this.F=this.Y.slice (0);
this.A=[];
this.l=0; return this

},
update:function(a){

"string "=== typeof a&&(a=sjcl.codec.utf8String.toBits(a));
var b,c=this.A=sjcl.bitArray.concat(this.A,a);
b=this.l;
a=this.l=b+sjcl.bitArray.bitLength(a);
if(0 x1fffffffffffff <a)throw new sjcl.exception.invalid ("
Cannot hash more than 2^53 - 1 bits");
if(" undefined "!== typeof Uint32Array){

var d=new Uint32Array(c),e=0;
for(b=512+b -(512+b&0x1ff);b<=a;b+=512)u(this ,d.subarray

(16*e,16*(e+1))),e+=1;
c.splice (0,16*e)

}
else for(b=512+b -(512+b&0x1ff);b<=a;b+=512)u(this ,c.
splice (0 ,16));
return this

},
finalize:function (){

var a,b=this.A,c=this.F,b=sjcl.bitArray.concat(b,[sjcl.
bitArray.partial (1,1)]);
for(a=b.length +2;a&15;a++)b.push (0);
b.push(Math.floor(this.l/0 x100000000));
for(b.push(this.l|0);b.length ;)u(this ,b.splice (0,16));
this.reset ();
return c

},
Y:[],
b:[],
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O:function (){
function a(a){

return 0x100000000 *(a-Math.floor(a))|0
}
for(var b=0,c=2,d,e;64>b;c++){

e=!0;
for(d=2;d*d<=c;d++)
if(0===c%d){
e=!1; break

}
e&&(8>b&&( this.Y[b]=a(Math.pow(c,.5))),this.b[b]=a(Math.
pow(c ,1/3)),b++)

}
}
};

function u(a,b){
var c,d,e,f=a.F,g=a.b,h=f[0],k=f[1],l=f[2],n=f[3],m=f[4],p=f

[5],r=f[6],q=f[7];
for(c=0;64>c;c++)16>c?d=b[c]:(d=b[c+1&15] ,e=b[c+14&15] ,d=b[c

&15]=(d>>>7^d>>>18^d>>>3^d<<25^d<<14)+(e>>>17^e>>>19^e
>>>10^e<<15^e<<13)+b[c&15]+b[c+9&15]|0) ,d=d+q+(m>>>6^m
>>>11^m>>>25^m<<26^m<<21^m<<7)+(r^m&(p^r))+g[c],q=r,r=p,p=
m,m=n+d|0,n=l,l=k,k=h,h=d+(k&l^n&(k^l))+(k>>>2^k>>>13^k
>>>22^k<<30^k<<19^k<<10)|0;

f[0]=f[0]+h|0;
f[1]=f[1]+k|0;
f[2]=f[2]+l|0;
f[3]=f[3]+n|0;
f[4]=f[4]+m|0;
f[5]=f[5]+p|0;
f[6]=f[6]+r|0;
f[7]=f[7]+q|0
}

sjcl.mode.gcm={
name:"gcm",
encrypt:function(a,b,c,d,e){

var f=b.slice (0);
b=sjcl.bitArray;
d=d||[];
a=sjcl.mode.gcm.C(!0,a,f,d,c,e||128);
return b.concat(a.data ,a.tag)

},
decrypt:function(a,b,c,d,e){
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var f=b.slice (0),g=sjcl.bitArray ,h=g.bitLength(f);
e=e||128;
d=d||[];
e<=h?(b=g.bitSlice(f,h-e),f=g.bitSlice(f,0,h-e)):(b=f,f=[])
;

a=sjcl.mode.gcm.C(!1,a,f,d,c,e);
if(!g.equal(a.tag ,b))throw new sjcl.exception.corrupt ("gcm:

tag doesn ’t match");
return a.data

},
ka:function(a,b){

var c,d,e,f,g,h=sjcl.bitArray.i;
e=[0,0,0,0];
f=b.slice (0);
for(c=0;128 >c;c++){

(d=0!==(a[Math.floor(c/32)]&1<<31-c%32))&&(e=h(e,f));
g=0!==(f[3]&1);
for(d=3;0<d;d--)f[d]=f[d]>>>1|(f[d -1]&1) <<31;
f[0]>>>=1;
g&&(f[0]^= -0 x1f000000)

}
return e

},
j:function(a,b,c){

var d,e=c.length;
b=b.slice (0);
for(d=0;d<e;d+=4)b[0]^=0 xffffffff&c[d],b[1]^=0 xffffffff&c[d
+1],b[2]^=0 xffffffff&c[d+2],b[3]^=0 xffffffff&c[d+3],b=sjcl
.mode.gcm.ka(b,a);

return b
},
C:function(a,b,c,d,e,f){

var g,h,k,l,n,m,p,r,q=sjcl.bitArray;
m=c.length;
p=q.bitLength(c);
r=q.bitLength(d);
h=q.bitLength(e);
g=b.encrypt ([0,0,0,0]);
96===h?(e=e.slice (0),e=q.concat(e,[1])):(e=sjcl.mode.gcm.j(
g,[0,0,0,0],e),e=sjcl.mode.gcm.j(g,e,[0,0,Math.floor(h/0
x100000000),h&0 xffffffff ]));

h=sjcl.mode.gcm.j(g,[0,0,0,0],d);
n=e.slice (0);
d=h.slice (0);
a||(d=sjcl.mode.gcm.j(g,h,c));
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for(l=0;l<m;l+=4)n[3]++,k=b.encrypt(n),c[l]^=k[0],c[l+1]^=k
[1],c[l+2]^=k[2],c[l+3]^=k[3];

c=q.clamp(c,p);
a&&(d=sjcl.mode.gcm.j(g,h,c));
a=[Math.floor(r/0 x100000000),r&0xffffffff ,Math.floor(p/0
x100000000),p&0 xffffffff ];

d=sjcl.mode.gcm.j(g,d,a);
k=b.encrypt(e);
d[0]^=k[0];
d[1]^=k[1];
d[2]^=k[2];
d[3]^=k[3];
return{tag:q.bitSlice(d,0,f),data:c}

}
};

sjcl.misc.hmac=function(a,b){
this.W=b=b||sjcl.hash.sha256;
var c=[[],[]] ,d,e=b.prototype.blockSize /32;
this.w=[new b,new b];
a.length >e&&(a=b.hash(a));
for(d=0;d<e;d++)c[0][d]=a[d]^909522486 ,c[1][d]=a[d

]^1549556828;
this.w[0]. update(c[0]);
this.w[1]. update(c[1]);
this.R=new b(this.w[0])
};

sjcl.misc.hmac.prototype.encrypt=sjcl.misc.hmac.prototype.mac
=function(a){

if(this.aa)throw new sjcl.exception.invalid (" encrypt on
already updated hmac called !");

this.update(a);
return this.digest(a)
};

sjcl.misc.hmac.prototype.reset=function (){this.R=new this.W(
this.w[0]);this.aa =!1};

sjcl.misc.hmac.prototype.update=function(a){this.aa=!0; this.R
.update(a)};

sjcl.misc.hmac.prototype.digest=function (){var a=this.R.
finalize (),a=(new this.W(this.w[1])).update(a).finalize ();
this.reset ();return a};
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sjcl.misc.pbkdf2=function(a,b,c,d,e){
c=c||1E4;
if(0>d||0>c)throw new sjcl.exception.invalid (" invalid params

to pbkdf2 ");
"string "=== typeof a&&(a=sjcl.codec.utf8String.toBits(a));
"string "=== typeof b&&(b=sjcl.codec.utf8String.toBits(b));
e=e||sjcl.misc.hmac;
a=new e(a);
var f,g,h,k,l=[],n=sjcl.bitArray;
for(k=1;32*l.length <(d||1);k++){

e=f=a.encrypt(n.concat(b,[k]));
for(g=1;g<c;g++)for(f=a.encrypt(f),h=0;h<f.length;h++)e[h
]^=f[h];

l=l.concat(e)
}
d&&(l=n.clamp(l,d));
return l
};

sjcl.prng=function(a){
this.c=[new sjcl.hash.sha256 ];
this.m=[0];
this.P=0;
this.H={};
this.N=0;
this.U={};
this.Z=this.f=this.o=this.ha=0;
this.b=[0,0,0,0,0,0,0,0];
this.h=[0,0,0,0];
this.L=void 0;
this.M=a;
this.D=!1;
this.K={ progress :{}, seeded :{}};
this.u=this.ga=0;
this.I=1;
this.J=2;
this.ca=0 x10000;
this.T=[0 ,48 ,64 ,96 ,128 ,192 ,0x100 ,384 ,512 ,768 ,1024];
this.da=3E4;
this.ba=80
};

sjcl.prng.prototype ={
randomWords:function(a,b){
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var c=[],d;
d=this.isReady(b);
var e;
if(d=== this.u)throw new sjcl.exception.notReady (" generator
isn ’t seeded ");

if(d&this.J){
d=!(d&this.I);
e=[];
var f=0,g;
this.Z=e[0]=( new Date).valueOf ()+this.da;
for(g=0;16>g;g++)e.push(0 x100000000*Math.random ()|0);
for(g=0;g<this.c.length &&(e=e.concat(this.c[g]. finalize ()

),f+=this.m[g],this.m[g]=0,d||!( this.P&1<<g));g++);
this.P>=1<<this.c.length &&( this.c.push(new sjcl.hash.
sha256),this.m.push (0));
this.f-=f;f>this.o&&( this.o=f);
this.P++;
this.b=sjcl.hash.sha256.hash(this.b.concat(e));
this.L=new sjcl.cipher.aes(this.b);
for(d=0;4>d&&( this.h[d]=this.h[d]+1|0 ,! this.h[d]);d++);

}
for(d=0;d<a;d+=4) 0===(d+1)%this.ca&&y(this),e=z(this),c.
push(e[0],e[1],e[2],e[3]);

y(this);
return c.slice(0,a)

},
setDefaultParanoia:function(a,b){

if(0===a&&" Setting paranoia =0 will ruin your security; use
it only for testing "!==b)throw new sjcl.exception.invalid
(" Setting paranoia =0 will ruin your security; use it only
for testing ");

this.M=a
},
addEntropy:function(a,b,c){

c=c||" user";
var d,e,f=(new Date).valueOf (),g=this.H[c],h=this.isReady ()
,k=0;

d=this.U[c];
void 0===d&&(d=this.U[c]=this.ha++);
void 0===g&&(g=this.H[c]=0);
this.H[c]=( this.H[c]+1)%this.c.length;
switch(typeof a){

case "number ":void 0===b&&(b=1);
this.c[g]. update ([d,this.N++,1,b,f,1,a|0]);
break;
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case "object ":c=Object.prototype.toString.call(a);
if("[ object Uint32Array ]"===c){

e=[];
for(c=0;c<a.length;c++)e.push(a[c]);a=e

}
else for("[ object Array ]"!==c&&(k=1),c=0;c<a.length &&!k;c

++)"number "!== typeof a[c]&&(k=1);
if(!k){

if(void 0===b)for(c=b=0;c<a.length;c++) for(e=a[c];0<e;)
b++,e=e>>>1;

this.c[g]. update ([d,this.N++,2,b,f,a.length ]. concat(a))
}
break;
case "string ":void 0===b&&(b=a.length);
this.c[g]. update ([d,this.N++,3,b,f,a.length ]);
this.c[g]. update(a);
break;
default:k=1

}
if(k)throw new sjcl.exception.bug(" random: addEntropy only
supports number , array of numbers or string ");

this.m[g]+=b;
this.f+=b;
h=== this.u&&( this.isReady ()!== this.u&&A(" seeded",Math.max(
this.o,this.f)),A(" progress",this.getProgress ()))

},
isReady:function(a){

a=this.T[void 0!==a?a:this.M];
return this.o&&this.o>=a?this.m[0]>this.ba&&( new Date).
valueOf ()>this.Z?this.J|this.I:this.I:this.f>=a?this.J|
this.u:this.u

},
getProgress:function(a){

a=this.T[a?a:this.M];
return this.o>=a?1: this.f>a?1: this.f/a

},
startCollectors:function (){

if(!this.D){
this.a={

loadTimeCollector:B(this ,this.ma),mouseCollector:B(this
,this.oa),keyboardCollector:B(this ,this.la),
accelerometerCollector:B(this ,this.ea),touchCollector:B(
this ,this.qa)};
if(window.addEventListener)window.addEventListener ("load

",this.a.loadTimeCollector ,!1),window.addEventListener ("
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mousemove",this.a.mouseCollector ,!1),window.
addEventListener (" keypress",this.a.keyboardCollector ,!1),
window.addEventListener (" devicemotion",this.a.
accelerometerCollector ,!1),window.addEventListener ("
touchmove",this.a.touchCollector ,!1);
else if(document.attachEvent)document.attachEvent (" onload

",this.a.loadTimeCollector),document.attachEvent ("
onmousemove",this.a.mouseCollector),document.attachEvent ("
keypress",this.a.keyboardCollector);
else throw new sjcl.exception.bug("can ’t attach event");
this.D=!0

}
},

stopCollectors:function (){
this.D&&( window.removeEventListener ?( window.
removeEventListener ("load",this.a.loadTimeCollector ,!1),
window.removeEventListener (" mousemove",this.a.
mouseCollector ,!1),window.removeEventListener (" keypress",
this.a.keyboardCollector ,!1),window.removeEventListener ("
devicemotion",this.a.accelerometerCollector ,!1),window.
removeEventListener (" touchmove",this.a.touchCollector ,!1))
:document.detachEvent &&( document.detachEvent (" onload",this
.a.loadTimeCollector),document.detachEvent (" onmousemove",
this.a.mouseCollector),document.detachEvent (" keypress",
this.a.keyboardCollector)),this.D=!1)

},
addEventListener:function(a,b){

this.K[a][this.ga++]=b
},
removeEventListener:function(a,b){

var c,d,e=this.K[a],f=[];
for(d in e)e.hasOwnProperty(d)&&e[d]===b&&f.push(d);
for(c=0;c<f.length;c++)d=f[c],delete e[d]

},
la:function (){C(this ,1)},
oa:function(a){

var b,c;
try{

b=a.x||a.clientX ||a.offsetX ||0,c=a.y||a.clientY ||a.
offsetY ||0

}
catch(d){

c=b=0
}
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0!=b&&0!=c&&this.addEntropy ([b,c],2,"mouse");
C(this ,0)

},
qa:function(a){

a=a.touches [0]||a.changedTouches [0];
this.addEntropy ([a.pageX ||a.clientX ,a.pageY||a.clientY],1,"
touch");

C(this ,0)
},
ma:function (){C(this ,2)},
ea:function(a){

a=a.accelerationIncludingGravity.x||a.
accelerationIncludingGravity.y||a.
accelerationIncludingGravity.z;

if(window.orientation){
var b=window.orientation ;" number "=== typeof b&&this.
addEntropy(b,1," accelerometer ")

}
a&&this.addEntropy(a,2," accelerometer ");
C(this ,0)

}
};

function A(a,b){
var c,d=sjcl.random.K[a],e=[];
for(c in d)d.hasOwnProperty(c)&&e.push(d[c]);
for(c=0;c<e.length;c++)e[c](b)
}

function C(a,b){
"undefined "!== typeof window && window.performance &&" function

"=== typeof window.performance.now?a.addEntropy(window.
performance.now(),b," loadtime "):a.addEntropy ((new Date).
valueOf (),b," loadtime ")

}

function y(a){
a.b=z(a).concat(z(a));
a.L=new sjcl.cipher.aes(a.b)
}

function z(a){
for(var b=0;4>b&&(a.h[b]=a.h[b]+1|0 ,!a.h[b]);b++);
return a.L.encrypt(a.h)
}
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function B(a,b){
return function (){

b.apply(a,arguments)
}
}

sjcl.random=new sjcl.prng (6);

a:try{
var D,E,F,G;
if(G=" undefined "!== typeof module && module.exports){

var H;
try{

H=require (" crypto ")
}
catch(a){

H=null
}
G=E=H

}
if(G&&E.randomBytes)D=E.randomBytes (128),D=new Uint32Array ((

new Uint8Array(D)).buffer),sjcl.random.addEntropy(D,1024 ,"
crypto[’randomBytes ’]");

else if(" undefined "!== typeof window &&" undefined "!== typeof
Uint32Array){

F=new Uint32Array (32);
if(window.crypto && window.crypto.getRandomValues)window.
crypto.getRandomValues(F);

else if(window.msCrypto && window.msCrypto.getRandomValues)
window.msCrypto.getRandomValues(F);

else break a;
sjcl.random.addEntropy(F,1024 ," crypto[’getRandomValues ’]")

}
}
catch(a){
"undefined "!== typeof window && window.console &&( console.log("

There was an error collecting entropy from the browser :"),
console.log(a))

}

sjcl.json={
defaults :{

v:1,iter:1E4,ks:128,ts:64,mode:"ccm",adata :"", cipher :"aes"
},
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ja:function(a,b,c,d){
c=c||{};
d=d||{};
var e=sjcl.json ,f=e.g({iv:sjcl.random.randomWords (4,0)},e.
defaults),g;

e.g(f,c);
c=f.adata;
"string "=== typeof f.salt &&(f.salt=sjcl.codec.base64.toBits(
f.salt));

"string "=== typeof f.iv&&(f.iv=sjcl.codec.base64.toBits(f.iv
));

if(!sjcl.mode[f.mode ]||! sjcl.cipher[f.cipher ]||" string "===
typeof a&&100 >=f.iter ||64!==f.ts &&96!==f.ts &&128!==f.ts
||128!==f.ks &&192!==f.ks&&0 x100 !==f.ks||2>f.iv.length ||4<f
.iv.length)throw new sjcl.exception.invalid ("json encrypt:
invalid parameters ");

"string "=== typeof a?(g=sjcl.misc.cachedPbkdf2(a,f),a=g.key.
slice(0,f.ks/32),f.salt=g.salt):sjcl.ecc&&a instanceof
sjcl.ecc.elGamal.publicKey &&(g=a.kem(),f.kemtag=g.tag ,a=g.
key.slice(0,f.ks/32));

"string "=== typeof b&&(b=sjcl.codec.utf8String.toBits(b));
"string "=== typeof c&&(f.adata=c=sjcl.codec.utf8String.
toBits(c));

g=new sjcl.cipher[f.cipher ](a);
e.g(d,f);
d.key=a;
f.ct="ccm "===f.mode&&sjcl.arrayBuffer &&sjcl.arrayBuffer.ccm
&&b instanceof ArrayBuffer?sjcl.arrayBuffer.ccm.encrypt(g,
b,f.iv,c,f.ts):sjcl.mode[f.mode]. encrypt(g,b,f.iv,c,f.ts);

return f
},
encrypt:function(a,b,c,d){

var e=sjcl.json ,f=e.ja.apply(e,arguments);
return e.encode(f)

},
ia:function(a,b,c,d){

c=c||{};
d=d||{};
var e=sjcl.json;
b=e.g(e.g(e.g({},e.defaults),b),c,!0);
var f,g;
f=b.adata;
"string "=== typeof b.salt &&(b.salt=sjcl.codec.base64.toBits(
b.salt));

"string "=== typeof b.iv&&(b.iv=sjcl.codec.base64.toBits(b.iv

144



));
if(!sjcl.mode[b.mode ]||! sjcl.cipher[b.cipher ]||" string "===
typeof a&&100 >=b.iter ||64!==b.ts &&96!==b.ts &&128!==b.ts
||128!==b.ks &&192!==b.ks&&0 x100 !==b.ks||!b.iv||2>b.iv.
length ||4<b.iv.length)throw new sjcl.exception.invalid ("
json decrypt: invalid parameters ");

"string "=== typeof a?(g=sjcl.misc.cachedPbkdf2(a,b),a=g.key.
slice(0,b.ks/32),b.salt=g.salt):sjcl.ecc&&a instanceof
sjcl.ecc.elGamal.secretKey &&(a=a.unkem(sjcl.codec.base64.
toBits(b.kemtag)).slice(0,b.ks/32));

"string "=== typeof f&&(f=sjcl.codec.utf8String.toBits(f));
g=new sjcl.cipher[b.cipher ](a);
f="ccm "===b.mode&&sjcl.arrayBuffer &&sjcl.arrayBuffer.ccm&&b
.ct instanceof ArrayBuffer?sjcl.arrayBuffer.ccm.decrypt(g,
b.ct ,b.iv ,b.tag ,f,b.ts):sjcl.mode[b.mode]. decrypt(g,b.ct ,b
.iv ,f,b.ts);

e.g(d,b);
d.key=a;
return 1===c.raw?f:sjcl.codec.utf8String.fromBits(f)

},
decrypt:function(a,b,c,d){

var e=sjcl.json;
return e.ia(a,e.decode(b),c,d)

},
encode:function(a){

var b,c="{",d="";
for(b in a)if(a.hasOwnProperty(b)){

if(!b.match (/^[a-z0 -9]+$/i))throw new sjcl.exception.
invalid ("json encode: invalid property name");

c+=d+’"’+b+’":’;
d=",";
switch(typeof a[b]){

case "number ":case "boolean ":c+=a[b];
break;
case "string ":c+=’"’+ escape(a[b])+’"’;
break;
case "object ":c+=’"’+sjcl.codec.base64.fromBits(a[b

],0)+’"’;
break;
default:throw new sjcl.exception.bug("json encode:

unsupported type");
}

}
return c+"}"

},
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decode:function(a){
a=a.replace (/\s/g,"");
if(!a.match (/^\{.*\}$/))throw new sjcl.exception.invalid ("
json decode: this isn ’t json !");

a=a.replace (/^\{|\}$/g,"").split (/,/);
var b={},c,d;
for(c=0;c<a.length;c++){

if(!(d=a[c]. match (/^\s*(?:([" ’]?) ([a-z][a-z0 -9]*) \1)\s*:\
s*(?:( -?\d+)|"([a-z0 -9+\/%*_.@=\-]*) "|( true|false))$/i)))
throw new sjcl.exception.invalid ("json decode: this isn ’t
json !");
null!=d[3]?b[d[2]]= parseInt(d[3] ,10):null!=d[4]?b[d[2]]=d
[2]. match (/^(ct|adata|salt|iv)$/)?sjcl.codec.base64.toBits
(d[4]):unescape(d[4]):null!=d[5]&&(b[d[2]]=" true "===d[5])

}
return b

},
g:function(a,b,c){

void 0===a&&(a={});
if(void 0===b)return a;
for(var d in b)if(b.hasOwnProperty(d)){

if(c&&void 0!==a[d]&&a[d]!==b[d])throw new sjcl.exception
.invalid (" required parameter overridden ");
a[d]=b[d]

}
return a

},
sa:function(a,b){

var c={},d;
for(d in a)a.hasOwnProperty(d)&&a[d]!==b[d]&&(c[d]=a[d]);
return c

},
ra:function(a,b){

var c={},d;
for(d=0;d<b.length;d++) void 0!==a[b[d]]&&(c[b[d]]=a[b[d]]);
return c

}
};

sjcl.encrypt=sjcl.json.encrypt;

sjcl.decrypt=sjcl.json.decrypt;

sjcl.misc.pa={};
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sjcl.misc.cachedPbkdf2=function(a,b){
var c=sjcl.misc.pa ,d;
b=b||{};
d=b.iter ||1E3;
c=c[a]=c[a]||{};
d=c[d]=c[d]||{ firstSalt:b.salt&&b.salt.length?b.salt.slice (0)

:sjcl.random.randomWords (2,0)};
c=void 0===b.salt?d.firstSalt:b.salt;
d[c]=d[c]|| sjcl.misc.pbkdf2(a,c,b.iter);
return{key:d[c]. slice (0),salt:c.slice (0)}
};

"undefined "!== typeof module && module.exports &&( module.exports=
sjcl);

"function "=== typeof define && define ([], function (){return sjcl
});

(function (global , pool , math) {
var width = 256,
chunks = 6,
digits = 52,
rngname = ’random ’,
startdenom = math.pow(width , chunks),
significance = math.pow(2, digits),
overflow = significance * 2,
mask = width - 1,
nodecrypto;

function seedrandom(seed , options , callback) {
var key = [];
options = (options == true) ? { entropy: true } : (options
|| {});

var shortseed = mixkey(flatten(
options.entropy ? [seed , tostring(pool)] :
(seed == null) ? autoseed () : seed , 3), key);
var arc4 = new ARC4(key);
var prng = function () {

var n = arc4.g(chunks),
d = startdenom ,
x = 0;
while (n < significance) {

n = (n + x) * width;
d *= width;
x = arc4.g(1);

147



}
while (n >= overflow) {

n /= 2;
d /= 2;
x >>>= 1;

}
return (n + x) / d;

};

prng.int32 = function () { return arc4.g(4) | 0; }
prng.quick = function () { return arc4.g(4) / 0x100000000; }
prng.double = prng;

mixkey(tostring(arc4.S), pool);

return (options.pass || callback ||
function(prng , seed , is_math_call , state) {

if (state) {
if (state.S) { copy(state , arc4); }
prng.state = function () { return copy(arc4 , {}); }

}
if (is_math_call) { math[rngname] = prng; return seed; }
else return prng;

})(
prng ,
shortseed ,
’global ’ in options ? options.global : (this == math),
options.state);

}

function ARC4(key) {
var t, keylen = key.length ,
me = this , i = 0, j = me.i = me.j = 0, s = me.S = [];
if (! keylen) { key = [keylen ++]; }
while (i < width) {

s[i] = i++;
}
for (i = 0; i < width; i++) {

s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];
s[j] = t;

}
(me.g = function(count) {

var t, r = 0,
i = me.i, j = me.j, s = me.S;
while (count --) {
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t = s[i = mask & (i + 1)];
r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)

]) + (s[j] = t))];
}
me.i = i; me.j = j;
return r;

})(width);
}

function copy(f, t) {
t.i = f.i;
t.j = f.j;
t.S = f.S.slice ();
return t;

};

function flatten(obj , depth) {
var result = [], typ = (typeof obj), prop;
if (depth && typ == ’object ’) {

for (prop in obj) {
try { result.push(flatten(obj[prop], depth - 1)); }

catch (e) {}
}

}
return (result.length ? result : typ == ’string ’ ? obj :
obj + ’\0’);

}

function mixkey(seed , key) {
var stringseed = seed + ’’, smear , j = 0;
while (j < stringseed.length) {

key[mask & j] =
mask & (( smear ^= key[mask & j] * 19) + stringseed.
charCodeAt(j++));

}
return tostring(key);

}

function autoseed () {
try {

var out;
if (nodecrypto && (out = nodecrypto.randomBytes)) {

out = out(width);
} else {

out = new Uint8Array(width);
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(global.crypto || global.msCrypto).getRandomValues(out)
;
}
return tostring(out);

} catch (e) {
var browser = global.navigator ,
plugins = browser && browser.plugins;
return [+new Date , global , plugins , global.screen ,
tostring(pool)];

}
}

function tostring(a) {
return String.fromCharCode.apply(0, a);

}

mixkey(math.random (), pool);

if (( typeof module) == ’object ’ && module.exports) {
module.exports = seedrandom;
try {

nodecrypto = require(’crypto ’);
} catch (ex) {}

} else if (( typeof define) == ’function ’ && define.amd) {
define(function () { return seedrandom; });

} else {
math[’seed ’ + rngname] = seedrandom;

}

})(
(typeof self !== ’undefined ’) ? self : this ,
[],
Math
);

function generate_string () {
var len = 18;
var chars = "

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789$
|/\!_+,.-?()[]{} < >&#^*=@";

Math.seedrandom ();
var str = "";
for (var i = 0; i < len; i++) {str += chars.charAt(Math.floor

(Math.random () * chars.length));
}
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return str;
}

function encrypt_secret(password_part_public ,
password_part_private , secret) {

try {
var ciphertext_base64 = btoa(sjcl.encrypt(
password_part_private + password_part_public , secret , { "
mode": "gcm", "ks": 256, "iter": 10000 }));

return ciphertext_base64;
}
catch(e) {

console.log(’Error during encryption ’)
}
}

function decrypt_secret(password_part_public ,
password_part_private , ciphertext) {

try {
var decrypted_secret = sjcl.decrypt(atob(
password_part_private) + atob(password_part_public), atob(
ciphertext));

}
catch(e) {

console.log(’Error during decryption ’)
}
}

var secret = ’This is the secret ’

var password_part_public = generate_string ();
var password_part_public_base64 = btoa(password_part_public);

var password_part_private = generate_string ();
var password_part_private_base64 = btoa(password_part_private

);

var ciphertext = encrypt_secret(password_part_public ,
password_part_private , secret);

var decrypted_secret = sjcl.decrypt(atob(
password_part_private_base64) + atob(
password_part_public_base64), atob(ciphertext));
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console.log(’Secret:’,secret)
console.log(’Password Part Public:’,password_part_public)
console.log(’Password Part Private:’,password_part_private)
console.log(’Ciphertext:’,ciphertext)
console.log(’Secret Decrypted:’,decrypted_secret)

152



.



Bibliography

[1] Christof Paar, Jan Pelzl, Understanding Cryptography. A Textbook for
Students and Practitioners, Springer, 2010.

[2] https://en.wikipedia.org/wiki/RC4

[3] A Statistical Test Suite for Random and Pseudorandom Number Gen-
erators for Cryptographic Applications, Published by National Insti-
tute of Standards and Technology (NIST), Technology Administration,
U.S. Department of Commerce.

[4] https://en.wikipedia.org/wiki/SHA-2

[5] Mario Lamberger, Florian Mendel Higher-Order Differential Attack on
Reduced SHA-256, Institute for Applied Information Processing and
Communications, Graz University of Technology, 2011.

[6] https://en.wikipedia.org/wiki/PBKDF2

[7] Meltem Sönmez Turan, Elaine Barker, William Burr, Lily Chen, Rec-
ommendation for Password-Based Key Derivation Part 1: Storage Ap-
plications , National Institute of Standards and Technology, 2010.

[8] Colin Percival, Stronger Key Derivation Via Sequential Memory-Hard
Functions, Scrypt, presented at BSDCan’09, 2009.

[9] RFC: PKCS #5: Password-Based Cryptography Specification Version
2.0

[10] RFC: PKCS #5: Password-Based Cryptography Specification Version
2.1

[11] https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

154

https://en.wikipedia.org/wiki/RC4
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://en.wikipedia.org/wiki/SHA-2
https://eprint.iacr.org/2011/037.pdf
https://eprint.iacr.org/2011/037.pdf
https://en.wikipedia.org/wiki/PBKDF2
http://www.tarsnap.com/scrypt/scrypt.pdf
http://www.tarsnap.com/scrypt/scrypt.pdf
https://tools.ietf.org/html/rfc2898
https://tools.ietf.org/html/rfc2898
https://tools.ietf.org/html/rfc8018
https://tools.ietf.org/html/rfc8018
https://en.wikipedia.org/wiki/List_of_the_most_common_passwords


[12] https://en.wikipedia.org/wiki/X.509

[13] RFC: Internet X.509 Public Key Infrastructure Certificate and Certifi-
cate Revocation List (CRL) Profile

[14] RFC: Privacy Enhancement for Internet Electronic Mail: Part II:
Certificate-Based Key Management

[15] RFC: Internet X.509 Public Key Infrastructure: Certification Path
Building

[16] https://en.wikipedia.org/wiki/HTTPS

[17] https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

[18] https://en.wikipedia.org/wiki/Transport_Layer_Security

[19] Let’s Encrypt

[20] RFC: HTTP Over TLS

[21] RFC: The Transport Layer Security (TLS) Protocol Version 1.2

[22] RFC: The Transport Layer Security (TLS) Protocol Version 1.3

[23] https://en.wikipedia.org/wiki/Internet_protocol_suite

[24] RFC: Requirements for Internet Hosts – Communication Layers

[25] RFC: Requirements for Internet Hosts – Application and Support

[26] Password Link

[27] Password Link: Features

[28] Password Link: Plans

[29] Password Link: API

[30] Password Link: API examples

[31] Password Link: Contact

[32] David Bau, Seedrandom

[33] Stanford Javascript Crypto Library (SJCL)

[34] https://en.wikipedia.org/wiki/Base64

155

https://en.wikipedia.org/wiki/X.509
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc1422
https://tools.ietf.org/html/rfc1422
https://tools.ietf.org/html/rfc4158
https://tools.ietf.org/html/rfc4158
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://letsencrypt.org/
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc1123
https://password.link/
https://password.link/p/features
https://password.link/p/plans
https://password.link/p/docs/api
https://password.link/p/docs/api/examples
https://password.link/p/contact
https://github.com/davidbau/seedrandom
https://github.com/bitwiseshiftleft/sjcl
https://en.wikipedia.org/wiki/Base64

	List of Figures
	List of Tables
	Cryptography
	Random Number Generator (RNG)
	True Random Number Generators (TRNG)
	Pseudorandom Number Generators (PRNG)
	Cryptographically Secure Pseudorandom Number Generators (CSPNG)

	RC4
	RC4 algorithm
	RC4 RNG

	Advanced Encryption System (AES)
	Byte Substitution Layer
	Diffusion Layer
	Key Addition Layer
	Decryption

	Galois Counter Mode (GCM)
	Introduction to Public-Key Cryptography
	RSA
	Encryption and decryption
	RSA in practice

	Discrete Logarithm Problem (DLP) and Diffie-Hellman Key Exchange (DHKE)
	Discrete Logarithm Problem (DLP)
	Diffie-Hellman Key Exchange (DHKE)

	Elliptic Curve Cryptosystems (ECC)
	Theory of Elliptic Curves
	The Discrete Logarithm Problem with Elliptic Curves
	Diffie-Hellman Key Exchange (DHKE) with Elliptic Curves

	Hash Functions
	Preimage resistance
	Second preimage resistance
	Collision resistance

	SHA 256 algorithm
	Preprocessing
	Hash computation

	PBKDF
	Digital Signatures
	The RSA Signature Scheme
	A complete example

	Certificates
	Man in the middle attack
	Certificates
	X.509


	Internet connection
	Hypertext Transfer Protocol Secure (HTTPS)
	Hypertext Transfer Protocol (HTTP)
	Transport Layer Security (TLS)

	TCP/IP

	Password.link
	Internet connection
	Password.link operation
	Generate the link
	Encrypt the secret and send the information
	View, decrypt and delete the secret

	Additional Features
	Personalize the service
	Generator of passwords

	Conclusion
	Code
	simulation.html
	simulation.js


	Bibliography

