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«Remember to look up at the stars and not down at your feet. Try to make sense
of what you see and wonder about what makes the universe exist. Be curious. And
however difficult life may seem, there is always something you can do and succeed at.
It matters that you don’t just give up.».

- S. Hawking
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Abstract

Since the beginning of this century, gravimetric missions have started to become one of
the most interesting topics in the field of space research. The reason behind the growing
attention paid to this type of missions is certainly to be found in its ambitious objective,
which is the accurate measurement of the temporal variations of the Earth gravity field. As
a matter of fact, the observation and monitoring of these variations could improve the un-
derstanding about some geophysical processes involving Earth’s mass change phenomena,
such as water cycles, glaciers formation and melting, tectonic plates displacement, etc.
The concept of Next Generation Gravity Mission (NGGM) has been proposed by ESA
with the aim to raise the bar on the work started by the previous gravimetric missions,
like GOCE and GRACE. Indeed, relying on the heritage gained from these two successful
missions, NGGM sets its ambitious goal in the measurement of the temporal variations of
the Earth’s gravity field, over a long time span, with an unprecedented level of accuracy.
This thesis focuses on the formation control design, implementation, and simulation for the
Next Generation Gravity Mission. NGGM formation consists of a group of two satellites,
where each of them has to be drag-free controlled, in order to be ideally subject only to the
gravity. The main aim of formation control is to counteract bias and drift of the residual
drag-free accelerations while guaranteeing, at the same time, the long-term stability of the
triangular virtual structure composed by the satellites’ and Earth’s Center of Masses. At
this purpose, a Nonlinear Model Predictive Control (NMPC) framework for autonomous
orbit and formation control is considered. The advantages of using this technique mainly
consist in its ability to find an optimal control law managing at the same time state and
input constraints and providing an online adaptation of the control action to possible vari-
ations of the process conditions. A key element of NMPC is an internal prediction model,
used to find an optimal trajectory over a finite time interval. Here, an integrated forma-
tion control (IFC) model, based on a novel set of Hill-type equations, has been used. This
model allows the description of both the formation altitude and inter-satellite distance, by
defining a specific orbital reference frame called Formation Local Orbital Frame (FLOF).
The obtained results, from long-run simulations performed by means of an accurate nonlin-
ear model, prove the validity of this control strategy and show its capability of guaranteeing
the long-term stability of formation variables, although the use of a very approximated in-
ternal model and low command effort.
Further, to make a more realistic simulator, the difficulty that exists in the transmission
of data between satellites is taken into account by assuming long sampling times of mea-
surements due to the absence of a radio-frequency inter-satellite link. In this regard, the
last part of this thesis is dedicated to the implementation of low-fidelity orbit propagators
whose aim consists in computing, on board of each spacecraft, the companion satellite’s
orbit during the time intervals in which no real-time information is available. To reduce
their computational complexity, these propagators approximate the effects of some forces
while completely disregarding others. However, despite their simplicity, simulated results
show that they well fit the proposed design scenario, without impinging the NMPC capa-
bility of guaranteeing formation long-term stability.
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Chapter 1

Introduction

In the first decades of the XXI century an increasing attention has been devoted to the
space gravimetric missions. The main purpose of this type of missions consists in determin-
ing with high accuracy and resolution the value of the Earth’s gravity field while monitoring
its changes in time and space. As a matter of fact, the Earth’s gravitational field is not
constant and homogeneous over the entire surface of our planet but it specifically depends
on the mass distribution among all its layers. As a result, the measure of the gravity field
could be an important instrument of information about the morphology and the density
of all the different parts of the Earth, from its interiors to the crust, involving also the
atmosphere [8]. Since the value of this measure is influenced by mass change phenomena,
it results evident the reason that pushes the research to place ever greater emphasis on
this type of studies. Indeed, mass changes phenomena are strictly linked with all the cli-
mate variables and their observation and monitoring enables the investigation on all those
geophysical processes which involve water cycles, tectonic plates displacement, changes in
the mass of ice sheets, ocean and atmosphere circulation, and so forth [15].
In order to observe mass distribution changes and transport in and between the different
Earth’s system layers (Atmosphere, Oceans, Hydrosphere, Cryosphere, and Solid Earth),
the most direct way consists in measuring the temporal variations of the Earth gravity field
over a long time span [15]. Further, thanks to this information, it is possible to develop
a more comprehensive knowledge of the Earth’s interior, improving applications in many
disciplines such as geodesy, oceanography, glaciology, and many other fields [8],[15].
Gravity constraints the motion of Earth’s satellites, both natural and artificial. Thus,
studying the perturbations introduced in the orbits of artificial satellites gives us a good
source of information to measure the gravitational field [8]. At this purpose, in the last 50
years different satellites dedicated to geodesy have been conceived. The first that fits inside
this context is the LAGEOS (Laser Geodynamics Satellite), launched in 1976 [8]. It made
use of very low altitude satellites and novel measurement techniques to provide a measure
of the gravity field with good spatial and temporal resolution. Nevertheless, it is especially
in the last 20 years that many steps forward have been made in this direction thanks to the
progresses given by the successful European gravity missions GRACE (Gravity Recovery
and Climate Ex-periment, launched in 2002) and GOCE (Gravity Field and steady-state
Ocean Circulation Explorer, launched in 2009) [8].
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The Next Generation Gravity Mission (NGGM) proposes itself as the heir of the mis-
sions mentioned so far as its main objective consists in the measurement of the temporal
variations of the Earth’s gravity field, over a long time span (namely a full solar cycle),
with an unprecedented level of accuracy, both in terms of spatial and temporal resolution
[10]. To accomplish its ambitious goal, NGGM makes good use of the enormous progresses
made by the previous missions but also envisages the development of many technological
innovations, as the usage of laser interferometry for the satellite-to-satellite tracking, and
breakthrough solutions for Guidance, Navigation, and Control (GNC). In this framework,
this thesis aims to make a contribution to the scientific phase of this mission by proposing
an alternative strategy for the NGGM orbit and formation control.
In this first chapter, an overview about the concept of this mission and its technologi-
cal heritage is presented. Further, an explanation about the control requirements and the
state of art of the NGGM control unit is introduced in order to analyse the automatic
control topics addressed until now and provide a good starting point to illustrate the al-
ternative approach developed in work. Finally, the chapter ends by summarizing the main
contributions given by this thesis and briefly describing how the work has been organized.

1.1 The Heritage of The Mission

Past and present gravity missions, such as GRACE and GOCE have prepared the ground
for the NGGM, providing precious experience and good technological heritage for the de-
velopment of the concepts on which this new type of mission is based. Specifically, GRACE
has been one of the first space missions designed to track changes in the Earth’s gravity field
using two identical spacecrafts flying about 220 km apart in a near-polar low-Earth orbit
[8], while GOCE employed a three-axis gradiometer to provide a new global and regional
model of the static Earth’s gravity field and valuable lessons on the drag-free system and
control. In the first design phase, GOCE drag-free control encompassed six degrees of free-
dom with the aim to improve robustness versus the uncertainty given to environment and
gradiometer response. Its design was composed by two ion thrusters for drag compensation
and eight microthrusters for lateral drag and attitude control [8]. However, due to some
problems, it became later necessary to move to a four degrees of freedom design, using ion
thrusters for drag control and magnetic torquers for attitude control [8]. Besides GRACE
and GOCE, it is worth considering in this hereditary background, also the GRACE Follow
On mission (GRACE-FO, launched in 2018), whose intent was to provide continuity with
the previous missions and similar quality data to those supplied by GRACE. Its contri-
bution extended the time series of the time-variable gravity field initiated by GRACE by
using the Laser Ranging Interferometer for the measure of the inter-satellite distance vari-
ation and consequently of the temporal variations of the Earth’s gravitational field [1],[19].
Since 2003, the European Space Agency (ESA) has proposed some new initiatives in the
gravimetry field, opening the way to the NGGM. The main objective of NGGM is the long
term monitoring of the time-variable gravity field with unprecedented temporal resolution
(weekly or better) and spatial resolution (comparable to the one provided by GOCE),
possibly covering a time span of a complete solar cycle [10].
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1.2 The Next Generation Gravity Mission
Since the objective of the Next Generation Gravity Mission is to measure small variations
of the Earth’s gravitational field, the most suitable technique resulted to be the low-Earth
orbit satellite-to-satellite tracking (SST) [14]. This technique, illustrated in Figure 1.1, fore-
sees the use of two satellites flying in loose formation such that it is possible to obtain the
measure of the gravity field temporal variations simply by monitoring the inter-satellite
distance fluctuations induced by gravity anomalies. The satellites are equipped with an
optical link between them, capable to determine the acceleration differences [10].

Figure 1.1: Principle of the SST Technique [8]

Following these main principles, the NGGM will consist in a formation of a pair of satel-
lites, placed in a near-polar orbit at an altitude between 300 and 450 km. In order to take
in consideration only the gravity acceleration component, all the non-gravitational terms
need to be cancelled. Thus, each satellite must be controlled to be drag-free in order to
counteract the atmospheric disturbances, the solar pressure and others unknown effects,
making in this way the satellites ideally subject only to gravity force [11].
At this purpose, the first NGGM requirement consists in the development of a drag-free
control algorithm able to remove all the non-gravitational accelerations. A second require-
ment concerns the orbit and formation control, needed to counteract bias and drift of the
drag-free residual accelerations which can cause the divergence of the satellite formation
[11]. Finally, one last requirement refers to the attitude and pointing control system which
is needed to guarantee the alignment of both spacecrafts’ optical axis to the satellite-to-
satellite line with a micro-radian accuracy, and to ensure an orbital roll motion for tracking
the Sun beam [11]. As already specified, this thesis work deals in particular with the second
mission requirement, that is the orbit and formation control. Generally speaking, the ex-
pression "formation" refers to a group of cooperating satellites which perform their mission
objectives working together and realizing their tasks in place of a unique, bigger, space-
craft [10]. The innovation of NGGM concept consists precisely in its objective of realizing
a drag-free formation flying mission. Its formation is composed by two satellites, flying in
a low-Earth orbit and acting as proof-masses immersed in the Earth’s gravity field. This
pair of drag-free satellites, placed at a certain distance, acts as a sort of gradiometer with
a very long baseline [11].
The simplest mission scenario consists in a single pair of satellites flying on the same circu-
lar orbit with different true anomalies. This type of formation is called “in-line” or “pearl
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string” formation [8] and is illustrated in Figure 1.2 (a). For the specific mission under as-
sessment, a near-polar orbit has been considered as the most suitable to avoid blind spots
around the poles in the geographic coverage [10]. With the in-line formation, the gravity
field is sampled only in the tangential (along-track) direction and the measurements of
gravity field are more sensitive to variations in the North-South direction then in Est-West
direction, that implies an anisotropic signal structure [8].
Other possible, but more complex, types of formations are the Pendulum Formation and
the Bender Constellation. In the following, we briefly explain the principles of these other
two types of configurations but, for the sake of simplicity, in this thesis we will always refer
only to the in-line formation as some latest studies have identified it as the best option
[10]. The Pendulum Formation (Figure 1.2 (b)) foresees two satellites flying on two slightly
separated but intersecting orbits characterized by different inclination or right ascension of
the ascending node (RAAN) [11]. The advantage of this configuration consists in its ability
to capture both along-track and cross-track gravity signals, but this benefit is counterbal-
anced by the additional design complexity and the particular spacecraft payload needed.
Moreover, the only possibility to increase the temporal resolution of the gravity field mon-
itoring consists in the addition of more satellite pairs to the constellation [8].
Finally, the Bender Constellation, depicted in Figure 1.2 (c), is composed by two pairs
of in-line satellites, flying on circular orbits with polar and medium inclinations [3]. Its
advantage is to be found in the fact that it allows a significant reduction of spatial and
temporal aliasing and anisotropic errors by sampling the gravity fields in both North–South
and East–West directions with an higher temporal frequency. Even in this case, the results
can be further improved by enlarging the basic constellation with other satellite pairs.
In NGGM, the minimum altitude at which the formation can fly depends on its long-time
duration (at least one solar cycle, i.e 11 years), propulsion performance and spacecraft
mass (limited by the requirement of guaranteeing a dual launch by a small rocket) [8]. By
analysing these constraints, it was estimated that the lower limit for the in-line formation
is about 340 km of altitude, considering also that the lower the altitude, the higher the
drag acceleration to be compensated, implying a more significant spacecraft power demand
and propellant load [8].

Figure 1.2: Satellite Orbital Configurations for NGGM [8]
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1.3 The Mission Technology
For what concerns the technology used to satisfy the established requirements, numerous
sensors are involved. The drag-free control requires one or more ultrasensitive accelerome-
ters (as the ones tested in GOCE) in order to provide both linear and angular accelerations;
the formation control makes use of a global navigation satellite system (GNSS) to provide
the satellite position and velocity and, finally, the attitude and pointing control involves an
inter-satellite laser interferometer and other optical sensors capable to provide the measure
of the satellite-to-satellite mutual alignment variations [11]. The design of the laser ranging
system, whose main task is the measure of the satellite-to-satellite distance fluctuations, is
precisely driven by the inter-satellite distance [8].
The optimal nominal distance between the two satellites has been chosen equal to 100 km
noting that the laser ranging noise increases with the distance [9]. Further, up to about 100
km, it is possible to adopt the Michelson-type heterodyne laser interferometer, designed
and tested by Thales Alenia Space (TAS) in cooperation with the Italian Metrology In-
stitute (INRIM). This kind of interferometer is based on a simple retro-reflector scheme
and is adapted for long distance operations by using a 500 mW laser source [8]. The retro-
reflector scheme acts by passively back-reflecting on one satellite the laser beam coming
from the other one [18]. It is possible to cope with eventual failures by endowing both
spacecrafts with the same metrology apparatus and exchanging the position of the two
satellites [8]. Above 100 km distance, the retro-reflector concept can be replaced with the
offset phase-locked transponder configuration, already tested on the GRACE-FO mission,
based on the Laser Interferometer Space Antenna (LISA) [16]. Here, the laser beam gen-
erated on one satellite, is received by the other satellite, which makes use of its own laser
source, phase-locked to the incoming beam, to regenerate and retransmit the laser beam
back to the first satellite [8],[15].
Besides the laser interferometer, TAS and INRIM have also developed an auxiliary optical
metrology system for driving the laser beam pointing and simplifying the acquisition of the
optical link between the two spacecrafts [8]. This metrology system is composed by three
optical heads, each one endowed by a large field of view and equipped with position sensors.
Thanks to these optical heads, it is possible to measure the direction and the intensity of
the incoming laser beam and reveal the lateral offset of the companion spacecraft with
respect to the beam centre, by sampling the intensity of the incoming laser beam at three
different points [8].
For the retro-reflector design, the set of sensors used to measure the non-gravitational
accelerations makes use of the heredity left by GOCE, leveraging a system composed by
four and two accelerometers for measuring respectively the linear non-gravitational ac-
celerations and the angular accelerations about each axis [17]. These accelerometers are
arranged around the optical bench of the laser interferometer such that the midpoint of
the line connecting two opposite accelerometers is placed at the satellite CoM [8].

1.4 State of Art
This section is aimed at providing an overview about the most important scientific literature
regarding the topics on which this thesis work is focused. The research arguments here
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presented are a good starting point to introduce the alternative approach developed for the
NGGM formation control. At this purpose, the topics addressed in the following subsections
aim at introducing in the reader a general knowledge about the organization of the overall
NGGM control unit and to describe the Embedded Model Control (EMC) methodology,
namely the control technique adopted in the current control unit.

1.4.1 The NGGM Control Unit
The system to be controlled, namely the plant, is the entire NGGM spacecraft formation,
whereas the digital control unit concerns the NGGM AOCS, that accounts for attitude,
formation and orbital control systems.
The NGGM control unit, illustrated in Figure 1.3, is organized in a multi-hierarchical
structure where the orbit/formation together with the attitude/pointing controls represent
two narrow-band outer loops whose aim is to provide the reference accelerations to the
drag-free control, which constitutes a wide-band inner loop [10]. It is worth noticing that,

Figure 1.3: Block Diagram of the NGGM AOCS Architecture [11]

drag-free and attitude/formation controls should be actuated at different bands in order
to avoid any possible interference between the different loops [11]. The current design of
the NGGM AOCS relies on few important principles. First of all, the orbit and formation
control is based on the definition of the so-called triangular virtual structure, that is in
the system composed by the two satellites’ and the Earth’s center of masses (CoMs). This
new modelling idea leads to the formulation of new CW-type equations through which to
describe both the formation altitude and the inter-satellite distance [10]. Secondly, drag-
free control is intended to make each satellite ideally affected only by local gravity. It is
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possible to distinguish the linear drag-free, which aims at zeroing the non-gravitational ac-
celerations, and the angular drag-free, whose purpose is to cancel the disturbance torques,
such as gyrocopic effects, gravity gradient and aerodynamic torques [10]. Each satellite
is controlled to be drag-free using the accelerometer concept that envisages the presence
of free-falling masses actively suspended and maintained centred in a cage by means of
an active suspension system. The measure of the non-gravitational effects to be zeroed
by drag-free control is obtained from the value of the suspension force. At this purpose,
NGGM drag-free control system adopts three pairs of proof-masses disposed in an orthog-
onal way in order to form a 3D gradiometer [10].
Notwithstanding, some secular (low frequency) residual accelerations will always affect the
satellites orbit due to accelerometer errors. At this purpose, besides constraining the rela-
tive position of the two satellites, a second important objective of formation control is to
counteract the bias and drift of the residual drag-free accelerations [11].
From the sensor and actuators point of view, the formation control is fed by the measure-
ments coming from the GNSS, which are influenced by the differential acceleration and
consequently by the differential gravity, namely the objective of this mission.
As above mentioned, the third part of NGGM control unit is composed by the attitude
and pointing control system, whose aim is to guarantee the alignment of the satellites op-
tical axis with the satellite-to-satellite line [11]. The control action is obtained disposing of
proper optical sensors aimed to measure mismatch of the satellite’s optical axis from the
inter-satellite line [6]. Further, the pointing control has to be coordinated with the angular
drag-free control, since this last constraints the frequency of pointing control by setting on
it an upper bound [11].
Each satellite is equipped with the same optical metrology, whose sensors are able to mea-
sure the pitch and yaw tilt of the laser beam coming from the other satellite and with
the same attitude sensors, such as Sun and Earth sensors and star trackers. In addition,
the actuation system exploited by attitude/pointing control is the same that accounts for
linear drag-free control, which is composed of eight small proportional thrusters, capable
of few milli-Newton thrust [10].
The overall current control unit designed for NGGM mission makes use of the Embedded
Model Control (EMC) methodology, described in the following section.

1.4.2 Embedded Model Control
The Embedded Model Control is an efficient and robust technique for model-based design.
Its main advantage consists in the capability of stabilizing systems affected by parametric
and structural uncertainties [4]. For this reason, this methodology seems one of the most
suitable techniques to address the NGGM control problem using a very approximated
model, namely the IFC model.
According to the Embedded Model Control, it is possible to distinguish three levels of
models [4]:

1. The fine model, which is the more refined level, replaces the satellite systems and
external environment and is composed by a mix of hardware and software components,
written and coded by means of both continuous time (CT) and discrete time (DT)
equations [10].
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2. The design model, which is the DT conversion of the fine model, is formed by the
controllable dynamics (to be included in the Embedded Model) and the neglected
dynamics. The controllable dynamics encompasses three different types of disturbance
signals: known disturbances that are not needed for controllability purposes, unknown
disturbances that influences parametric uncertainty, and unpredictable disturbances
due to causal uncertainty [10],[4].

3. The embedded model (EM), which is the real-time realization of the design model,
is coded and embedded inside the control unit which runs in parallel with the plant
[11]. Here the neglected dynamics is not considered, and no parameter estimation is
performed, as the unknown disturbances are seen as part of the unpredictable distur-
bances [4].
The EM is written with DT state equations online updated by command and noise in
order to keep the controllable and disturbance state variables active, as they are the
most relevant source of command synthesis [4]. The Embedded Model consists of the
controllable dynamics developed in the design model and the disturbance dynamics,
which allows to treat all the model errors, non-linear effects and parameter uncer-
tainties as disturbances with a totally stochastic and parameter-free dynamics[10].

The EMC allows to proceed in a systematic way from the fine plant dynamics and control
requirements to the Embedded Model, which is the central part of the control algorithm.
As mentioned above, this technique is based on the interconnection of three parts: the
controllable dynamics, the disturbance dynamics and the neglected dynamics. The first
two parts are intended to be observable from plant measurements in order to derive the
control algorithm, while stability and performance are influenced by the third part [4].
Consequently, the main design issue is to distinguish between driving noise and neglected
dynamics, in order to perform disturbance update and rejection [4].
From a practical point of view, disturbance dynamics is obtained by means of pure DT
integrators combined together and driven by arbitrary signals in order to obtain random
drifts. This processes are non-stationary but their finite-time realization however encompass
those of stationary processes with variable time constants longer then the realization time-
span. In this way it is possible to obtain simple parameter-free models defined only by
the number of integrators and their typology[4]. In addition, the disturbance dynamics is
driven by a disturbance input which is retrieved in real-time from the model error (given
by the difference between plant output and model output). For noise estimation is used
an output-to-state feedback state observer, whose corresponding algorithm is called Noise
Estimator (NE). This last, when closed around the Embedded Model takes the form of
a state predictor and together with a reference generator, constitutes the Measurement
Law[10].
The overall EMC architecture includes two main sets of feedback channels [4]:

1. The output-to-state feedback of the Noise Estimator, whose aim is to estimate the
current noise.

2. The state-to-command feedback of the Control Law, in charge of providing commands
one-step ahead.
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1.5 Thesis Objective and Organization

The main objective of this thesis consists in exploring the possibility to apply a Nonlin-
ear Model Predictive Control (NMPC) methodology for the NGGM orbit and formation
control. The idea comes from the need of developing an optimal control law managing,
at the same time, state and input constraints due to the numerous formation scientific
requirements and the limited thruster range. Indeed, besides the formation requirements,
also the very low thruster authority and the need to cancel the drag-free residual acceler-
ation strongly constraint the problem under study. Being the NMPC an optimal control
technique, it could be a suitable method to solve the problem, evaluating the possibility to
improve the results obtained with the EMC methodology and proposing a valid alternative
strategy. As a matter of fact, the implementation of different techniques is a key point in
finding the best and most reliable strategy for the control of a space mission. Indeed, it is
worth noticing that the development of a fully autonomous on-board orbit and formation
control system is one of the novelties of NGGM since the previous missions, namely GOCE
and GRACE, did not require on-board formation control but were managed by on-ground
station activity. Thus, like EMC, also the NMPC technique strives to demonstrate the pos-
sibility to use an autonomous formation control which real time adapts its control action
to the possible variations of the process condition.
Another research question and contribution addressed by this thesis work concerns the
development of low-fidelity orbit propagators to cope with the difficulty that exists in the
transmission of data between satellites due to the need of using long sampling times of
measurements because of the absence of a radio-frequency inter-satellite link. In this re-
gard, the simulator has been made more realistic by means of the implementation of orbit
propagators able to compute, on board of each spacecraft, the companion satellite’s orbit
during the period of time that elapses between the arrival of one measurement data and
the next.
The objectives described so far are addressed in six chapters, whose main topics are out-
lined below in order to provide in the reader a general understanding on how the work has
been organized.
Chapter 1 has the intent to introduce the main topics involved in this thesis work, explain-
ing the rationale behind gravimetric missions and then focusing the attention on the main
features of the Next Generation Gravity Mission and the technological heritage involved.
Beside this, the state of art of the NGGM control unit and the methodology currently
adopted for control purposes is provided. Finally, the chapter ends with a brief explana-
tion of the conventional notations adopted for the writing of this thesis.
Chapter 2 presents an overview about the nonlinear model developed in Simulink for the
NGGM mission, explaining one by one the blocks which are involved and illustrating how
the system components have been modelled to take into account all the atmospheric and
gravity disturbances which affect the satellite formation. In addition, after a brief expla-
nation of the different frames of reference involved in this study, a function able to provide
the satellites’ nominal attitude is introduced in place of the attitude and pointing control
system. Finally some simulated results are presented.
Chapter 3 addresses the main aspects of the drag-free, placing the focus on the impor-
tance, for gravimetric mission, of having an accurate drag-free controller able to zero all
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the disturbance forces and torques affecting the satellites. Further, the control EMC archi-
tecture developed for the drag-free control, already exploited for the GOCE space mission
is presented and embedded in the nonlinear simulator. This chapter, as the previous one,
ends with a section in which the relevant simulated results are summarized.
Chapter 4 is mainly devoted to the orbit and formation control. The main formation re-
quirements are here reported and the development of an NMPC framework for the solution
of the problem under study is presented. After a theoretical description of the Model Pre-
dictive Control methodology, two different models (HCW vs IFC) are explored as possible
candidates for being used as internal prediction model of the control algorithm. After hav-
ing identified the IFC as the most suitable one, the main concepts about the developed
control architecture are outlined and the different NMPC configurations identified during
the simulation campaign are presented with their relative results.
Chapter 5 deals with the introduction of low-fidelity orbit propagators to cope with the
problem existing in the transmission of data between satellites due to the long sampling
times of measurements. Specifically, different versions of orbit propagators are proposed in
order to find the model that best computes the satellite’s orbit facing the lack of data due
to the absence of a radio-frequency inter-satellite link.
Finally, Chapter 6 mainly intends to summarize the achieved results and the still present
critical points, concluding by illustrating what could be the possible future developments
and research activities in this context.

1.6 Notation Rules
In the following, some notation conventions are specified in order to make the reader
aware of the rules adopted to write this thesis and generate a universal language for its
understanding.
Free 3D vectors, that are those vectors not defined in a specific frame of reference, are
denoted by using an arrow upon their symbol, such as þv; coordinate vectors, instead, that
are those vectors existing in a specific frame of reference, are written in bold style as v, and
finally the symbols referring to coordinate frames of reference are indicated by a subscript.
For instance, considering an inertial frame of reference I = {O,þi1,þi2,þi3}, the coordinate
vector of þv in the inertial frame will be denoted as vi. The coordinates of a coordinate
vector are written unbolded by specifying the components with a numeric subscript, such
as vj , j = 1,2,3, while the magnitude of a vector is specified by its unbolded name, such
as v. The coordinate vectors are column vectors but when they are inserted in a text line
the inline notation v = [v1, v2, v3] is adopted.
For what concerns the quaternion notation, the italics style q is used. Its coordinates
are ordered as per the Hamilton representation, with the real part q0 that precedes the
imaginary one q as in complex numbers. Thus, in vectorial form, a quaternion is represented
as

q =
5
q0
q

6
=


q0
q1
q2
q3

 (1.1)
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1.7 Abbreviations
The main abbreviations, filed in alphabetical order, are collected in the following Table.

No. Acronym Meaning No. Acronym Meaning
1 CoM Center of Mass 17 INRIM Italian Metrology

Institute
2 CoP Center of Pressure 18 LAGEOS Laser Geodynamics

Satellite
3 CT Continuous Time 19 LEO Low Earth Orbit
4 DT Discrete Time 20 LISA Laser interferometer

Space Antenna
5 ESA European Space 21 LTI Linear Time

Agency Invariant
6 EMC Embedded Model 22 MPC Model Predictive

Control Control
7 EM Embedded Model 23 NE Noise Estimator
8 FLOF Formation Local 24 NGA National Geospatial

Orbital Frame NGA Intelligence Agency
9 GE Geocentric Equatorial 25 NGGM Next Generation

25 Gravity Mission
10 GOCE Gravity Field and 26 NMPC Nonlinear Model

steady-state Ocean Predictive Control
Circulation Explorer

11 GRACE Gravity Recovery 27 RAAN Right Ascension of
Climate Ex-periment the Ascending Node

12 GRACE-FO Grace Follow-On 28 RHC Receding Horizon
Control

13 GNC Guidance, Navigation 29 SST Satellite-to-Satellite
and Control Tracking

14 GNSS Global Navigation 30 Sat-1 Satellite 1
Satellite System

15 HCW Hill-Clohessy-Wiltshire 31 Sat-2 Satellite 2
16 IFC Integrated Formation 32 TAS Thales Alenia

Control Space

Table 1.1: Main Abbreviations
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Chapter 2

NGGM Nonlinear Model

The aim of this chapter is to provide an overview about the nonlinear model developed in
Simulink for the NGGM mission, explaining one by one the blocks which constitute the
plant and the disturbances involved in this study. The part of the simulator presented in
this chapter does not consider the control system since the different parts of the control unit
will be added one at a time in the following chapters in order to show how the controlled
variables, in particular the Satellite-To-Satellite distance, react to the control action.
As shown in figure 2.1, the simulator is composed of three main blocks:

• Satellite 1

• Satellite 2

• Formation Variables

Figure 2.1: NGGM Nonlinear Model
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The block "Formation Variables", as shown in Figure 2.2, takes as input the simulated
variables of the two satellites and generates the nominal variables of the Formation Local
Orbital Frame (FLOF), such as the formation radius, the formation distance, the angular
velocity of the FLOF frame, the FLOF quaternion and so on.

Figure 2.2: NGGM Formation variables

The blocks "Satellite1" and "Satellite2", instead, are identical and each of them includes
three parts, as shown in Figure 2.3:

• Satellite

• Atmospheric and Gravity Disturbances

• Sensors

The block "Satellite" contains the satellite kinematics and dynamics and the orbital dynam-
ics block which from the satellite position and velocity vectors derives the orbital elements.
The block "Atmospheric and Gravity Disturbances" contains all those models devoted to
compute the forces and torques acting on the satellite depending on the environment in
which the spacecraft operates. Indeed, the overall forces and torques acting on the space-
craft will be the resultant of the interaction between the satellite and the outside world,
and the control actions of the actuators.
The block "Sensors" contains the models of all the measurement instruments and metrology
systems adopted by each spacecraft to measure and monitor the variables of interest.
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Figure 2.3: Satellite 1 Nonlinear Model

2.1 Satellite Kinematics and Dynamics
A spacecraft can be approximately described as a rigid body which moves with respect to
some inertial frame. Its movement is composed by a translation of the body CoM and a
rotation of the body about an axis passing through the CoM. The dynamic and kinematic
equations are fundamental for spacecraft attitude control and can be seen as a series con-
nection of two nonlinear systems (figure 2.4):

1. The dynamic equations define a system from M (sum of moments or torques) to ω
(angular velocity);

2. The kinematic equations define a system from ω (angular velocity) to q (body quater-
nion) which is the output to control.

Figure 2.4: Satellite Kinematics and Dynamics

14



NGGM Nonlinear Model

In the simulator, the satellite kinematics and dynamics block receives as input the gravity
force, the non-gravitational body forces and the total torques from the atmospheric and
gravity disturbance block. The total torques become the input of the attitude dynamics,
which contains the dynamic equations, and returns the angular velocity and acceleration
of the spacecraft in the body frame. The direction of the vector ω represents the axis of
rotation of the spacecraft and its magnitude is the speed of rotation. Given the inertia
matrix J, the dynamic equations of a spacecraft come from the Euler moment equation:

Jω̇ = M − ω × Jω (2.1)

which can be implemented with the block scheme in figure 2.5.
The angular velocity exiting from the attitude dynamics block is the input of the attitude
kinematic equation, whose output is the body quaternion according to the equation

q̇ = 1
2q⊗ ωq (2.2)

where ωq = (0, ω) is the quaternion translation of the angular velocity vector ω.

Figure 2.5: Implementation of the Euler Moment Equation

The body quaternion exiting from the attitude kinematic block is then used to perform a
frame transformation (from body to inertial) of the non-gravitational body forces which,
together with gravity forces, are used in the Orbit Dynamics block to compute the satellite
CoM acceleration aCoM and, by integration, the satellite CoM velocity vCoM and posi-
tion rCoM .
The CoM position and velocity, together with the angular momentum h = rCoM ×
vCoM are finally used to obtain the six classical orbital elements (a, e, inc, RAAN, θ, arg),
among which we find 5 indipendent quantities used to completely describe the orbit
(a,e,ing,RAAN,arg), and one quantity (θ), used to define the spacecraft position on the
orbit.
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2.2 Orbital Dynamics
The objective of this section is to study the orbital dynamics, that is the translational
motion of a mass in a gravitational field. This study is fundamental for spacecraft control
and is based on celestial mechanics, in which are involved the following concepts:

• The Kepler’s laws, which are empirical laws describing the motion of a body in un-
perturbed planetary orbits;

• The Newton’s laws, which are general physical laws involving the three dynamic
principles of motion and the universal gravitational law.

Going more into detail, the Kepler’s laws state that:

1. The shape of the orbit of a planet that moves around the Sun is always elliptical;

2. The radius vector between planet and Sun sweeps out equal areas in equal time
intervals, that means the areal velocity is constant;

3. The planetary orbital periods are always proportional to
ð

r3
m, where rm is the mean

distance between planet and Sun.

The above-mentioned Kepler’s law can be derived from the more general Newton’s law
reported in the following:

1. First dynamics principle: a particle remains at rest or continues to move at a constant
velocity, unless an external force perturbs its motion;

2. Second dynamics principle: the rate of change of momentum of a body over time is
directly proportional to the force applied and occurs in the same direction as the
applied force:

F = m
dv

dt
= ma (2.3)

3. Third dynamics principle: for any force F12 exerted by a particle 1 on a particle 2,
there exist a force F21 = −F12 exerted by particle 2 on particle 1.

4. Universal gravitational law: any two particles m1 and m2, placed at a certain distance,
attract each other with a force

F = G
m1m2r

r3 (2.4)

where r is the vector of magnitude r = |r| connecting the two particles and
G = 6.67× 10−11 Nm2/kg2 is the universal constant of gravitation.

Inside the block "Satellite" of the nonlinear model in Figure 2.3 the orbital elements of
the satellite motion are derived starting from the values of satellite’s velocity and position.
In particular, the orbital dynamics block receives as input only the gravity acceleration
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and the non gravitational body forces that are both involved in the computation of the
satellite’s acceleration:

a = −g + fdrag

m
+ fsun

m
. (2.5)

The above quantity is then used to obtain the velocity and position vectors, namely rCoM

and vCoM , by means of two integrators; then, from these two variables the value of the
body angular momentum h can be computed instant by instant as

h = rCoM × vCoM . (2.6)

As a matter of fact, rCoM , vCoM and h are all necessary for the derivation of the 6 orbital
elements used to completely describe the orbit of the spacecraft and its position. Let’s recall
that knowing the 6 orbital elements is equivalent to know the velocity and position vectors
of a spacecraft since they fully describe the body motion. In particular, these elements,
collected in Table 2.1, are composed by 5 independent quantities (a,e,Ω,i,ω) which define
the orbit of a body and 1 quantity (ν) which gives the body position on the orbit.

Element Description Range Undefined
a: semimajor axis Size Depends on never

the conic section
e: eccentricity Shape e = 0: circle never

0 < e < 1: ellipse
i: inclination Tilt angle between equato- 0 ≤ i ≤ 180◦ never

rial and orbital planes
Ω: RAAN Angle from vernal equinox 0 ≤ Ω ≤ 360◦ when i = 0◦

to ascending node or i = 180◦

ω: argument of perigee Angle from ascending node 0 ≤ ω ≤ 360◦ when i = 0◦,
to perigee i = 180◦

or e = 0
ν: true anomaly Angle from perigee to 0 ≤ ν ≤ 360◦ when e = 0

the spacecraft position

Table 2.1: Classical Orbital Elements

The elements mentioned above can be obtained from the known quantities as follows:

e = 1
µ

vCoM × h− rCoM

rCoM
, a = h2

(µ(1− e2)) , cos i = K · h

h

cos ω = IÍ · e

e
, cos Ω = I · IÍ, cos ν = rCoM ·

e

re

(2.7)

where µ is the gravitational parameter and I and K define the coordinate vectors of
the first and the third axis of the inertial geocentric equatorial frame which will be later
described in detail in Section 2.5.
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2.3 Atmospheric and Gravity disturbances
The block used to model the disturbances involved in this study is composed by two main
contributions: one to derive the gravity force and torque and the other one to obtain the
environmental forces and torques acting on the satellite.
Firstly, let’s analyse the Atmospheric Disturbance block. This block takes as input the
data coming from the Satellite Dynamics and Kinematics, and in particular the needed
variables are the satellite position rCoM and velocity vCoM .

2.3.1 Aerodynamic Drag
The Drag Model is used to derive the Aerodynamic Drag, that is the atmospheric friction
opposing the spacecraft velocity vector [7]. Since it is proportional to the density, drag rep-
resents a significant disturbance force, especially in Low Earth Orbits as density decreases
exponentially with the altitude. The atmospheric drag reduces the energy of the orbit and
produces the decrease of the apogee height, reducing the eccentricity and therefore causing
orbital decay.
The NGGM spacecraft can be considered made by several flat surfaces, each one identified
by its normal unit vector and its centre. The actual model of the spacecraft is composed
by 18 surfaces, which is a good trade-off considering that increasing the number of flat
surfaces the computational load grows but forces and torque profiles, which show some
discontinuities due to the finite dimension of each tile, can be smoothed by reducing the
surfaces dimension.
Given the direction of the air flow, a tile is considered shadowed if its centre is not directly
exposed to the current and, generally, its contribution in the resultant aerodynamic force
and torque can be neglected. Only in the case of thermal effects, even the shadowed ele-
ments must be considered since they can give a not null contribution.
The contribution given by each tile depends on the element surface, the relative wind ve-
locity and the air density. Indeed, the Drag Model block takes as input the body wind
velocity and the body angular rate and computes the relative velocity of each flat surface;
then, the contributions of all the surfaces are combined to obtain the overall drag forces
and torques.
For each flat surface element, given the relative direction of the air flow, drag and lift forces,
or alternatively normal and tangential forces, are computed as follows [7]:

þDA = −1
2ρV 2ACDþuV , þLA = −1

2ρV 2ACLþuZ ;

þNA = −1
2ρV 2ACNþnA, þTA = −1

2ρV 2ACTþtA;
(2.8)

where CD, CL, CN , CT are respectively the drag, lift, normal and tangential coefficients, A
[m2] is the surface area, ρ [kg/m3] is the air density, V [m/s] is the airflow velocity and
þuV , þuZ , þnA,þtA are respectively the drag, lift, normal and tangent unit vectors.
The Drag Model needs as input the atmospheric density which is obtained by the Density
Model. Since air density is not constant and it is complex to write it with an equation, we
make use of a sort of look up table (the density NASA model) that gives as output the value
of the air density for each position rCoM . In order to indicate exactly the position of the
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satellite CoM, we need to use a clear and universal reference system. Thus, the Geodetic
function is used to transform rCoM into geodetic coordinates i.e. longitude, latitude and
height. In addition, even if the position is exactly known, being the models always affected
by uncertainty, we need also to consider such uncertainty by adding a filtered noise to the
output of the look up table.
To compute the aerodynamic coefficients, the kind of interaction between the body and
the air flow must be considered, eventually taking into account the momentum transfer
between the gas particle and the surface element. This interaction is described by the
collision of the air molecules with the surface. The velocity þV of such molecules is given by
two contributions: the avarage relative velocity þVR of the air with respect to the spacecraft
and the thermal velocity þVa of the particle: þV = þVR + þVa.
Therefore, we can distinguish two models [7]:

1. Hyper-thermal model: þVa is assumed negligible with respect to þVR, the particles move
in straight lines parallel to the airflow and only those surfaces directly invested by the
airflow contribute to the definition of the aerodynamic coefficients. The hyper-thermal
flow occurs when VR/Va ≥ 10;

2. Thermal model: þVa is assumed comparable with respect to þVR, the particles motion is
not parallel to the airflow direction and also the shadowed surfaces contribute to the
definition of the aerodynamic coefficients. The thermal flow occurs when VR/Va < 10.

The ratio S = VR/Va is called molecular speed ratio and is the ratio of the spacecraft
relative velocity modulus to the speed of air Va at temperature Ta. Further, the kind
of interaction influences also the momentum exchange. A particle hitting a surface gets
trapped by the surface itself transferring its momentum, but it can be eventually re-emitted
by the surface along a direction and with a velocity which depends on the type of collision
[7]. Two limit cases can be distinguished:

1. Specular reflection: the particles are re-emitted along a specular direction without
momentum variation (perfect elastic collision).

2. Diffused reflection: the particles are scattered in all the directions, according to the
cosine law, with a velocity depending on a probabilistic law.

The coefficients σn and σt are introduced to take into account the relative importance of
diffused reflection with respect to specular reflection [7].
The aerodynamic coefficients are obtained in the following way:

Hyper-Thermal Model

CL = 2
è
(2− σn − σt) cos θ + σn

Vb

VR

é
sin θ cos θ

CD = 2
è
(2− σn − σt) cos2 θ + σn

Vb

VR
cos θ + σt

é
cos θ

(2.9)
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Thermal Model

CL = 2
è2− σn

S
√

π
cos θ − σt

S
√

π
cos θ + σn

2S2

ó
Tb

Ta

é
sin θexp(−S2 cos2 θ)+

+
è
(2− σn)( 1

2S2 + cos2 θ)− σt cos2 θ + σn

S

√
π

2 cos θ

ó
Tb

Ta

é
sin θ(1 + erf(S cos θ))

CD = 2
è2− σn

S
√

π
cos2 θ + σt

S
√

π
sin2 θ + σn

2S2 cos θ

ó
Tb

Ta

é
exp(−S2 cos2 θ)+

+
è
(2− σn)( 1

2S2 + cos2 θ) + σt sin2 θ + σn

S

√
π

2 cos θ

ó
Tb

Ta

é
cos θ(1 + erf(S cos θ))

(2.10)

where Vb and Tb are respectively the body velocity and temperature and erf(x) is the error
function:

erf(x) = 2√
π

Ú x

0
e−t2

dt (2.11)

In the non-linear simulator presented here, the thermal model has been adopted as it is
conservative with respect to the hyper-thermal and allows to consider the worst case.
The point in which the drag force is applied is called Centre of Pressure (CoP). Therefore,
the drag force produces also a torque having magnitude proportional to the lever arm, that
is the distance between CoM and CoP. Nevertheless, the CoP is not a fixed point and its
position is determined a posteriori. Thus, the CoP can be approximated by the CoA; this
approximation is conservative in the sense of aerodynamic stability.
In the simulator the drag forces and torques are multiplied by a respective flag. In our
study we set to zero the flag which multiplies the drag torque in order to consider for
simplicity only the drag force.

2.3.2 Solar Pressure
The second important atmospheric disturbance to be considered in this study is the solar
radiation pressure, that is the mechanical pressure exerted upon the spacecraft surfaces due
to the exchange of momentum between the spacecraft and the electromagnetic field [7]. The
effects of this disturbance are modelled in the simulator by means of the Sun Model. The
concept of solar radiation pressure revolves around the idea that electromagnetic waves are
massless, but exhibit mass-like properties [7]. The photons in the light emitted from the
sun move at light velocity and have momentum. Since they have momentum, when they
hit an other object, such as a spacecraft, they transfer momentum to it, causing a boost in
its velocity. However, the momentum carried by these photons is extremely small. Thus,
the perturbing force isn’t really observed in low earth orbit (LEO) spacecrafts but becomes
more significant for higher orbits.
The input of the Sun Model is the spacecraft position rCoM because in order to compute
the sun forces and torques, the spacecraft and sun positions in both inertial and body frame
are needed; the last one is obtained with a reference frame transformation from Inertial to
Body using the disturbance attitude quaternion, given by a quaternion product between
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the LORF quaternion and the quaternion error. The sun position is needed because only
the surfaces that are directly exposed to the sun must be taken in consideration.
The effect of solar pressure is computed considering the solar flux hitting each surface of the
spacecraft. Thus, for each surface is defined the solar pressure force þFrk, which is applied
in the surface CoP, and is computed considering the contribution of specular reflections,
diffuse reflections and total absorption [7]. Indeed, an incident electromagnetic wave can
interact with a surface in four different modes:

1. pure absorption: radiation is completely absorbed by the surface;

2. specular reflection: radiation is specularly reflected;

3. diffuse reflection: radiation is diffusely reflected in any direction;

4. transmission: radiation is transmitted through the surface.
The sum of the fractions of the different modes (represented respectively by suitable coef-
ficients Ca, Cs, Cd, and Ct) must be equal to 1 [7]:

Ca + Cs + Cd + Ct = 1 (2.12)

However, since most of the spacecraft surfaces are optically opaque, it is possible to assume
Ct
∼= 0.

The electromagnetic radiation pressure can be computed in magnitude as the ratio of the
source irradiance Φ [W/m2] to the speed of light in vacuum c [m/s]:

p = Φ
c

(2.13)

At the Sun-Earth distance the magnitude of the solar radiation is Φsun = 1371±10 W/m2

and the corresponding solar radiation pressure is p = 4.6× 106 Pa.
By denoting with þn the outward normal of an infinitesimal area dA, þs the opposite direction
of the incoming wave and α the incidence angle, the elementary radiation force d þFr relative
to the elementary area dA is:

d þFr = −p cos αdA(Cd(þs + 2þn/3) + Caþs + 2Cs cos αþn)
= −p cos αdA((1− Cs)þs + 2(Cs cos α + Cd/3)þn)

(2.14)

It is worth to notice that the formula written above is valid only for the surfaces exposed
to the solar irradiation, i.e. only when cos α = þn · þs ≥ 0 [7]. In the other case, that is when
cos α < 0, the elementary radiation force d þFr is null [7]. Consequently, we can introduce a
coefficient called illumination that varies between 0 and 1 depending on how the surface
is exposed to the solar radiations.
The spacecraft surface is subdivided into n = 18 planar surfaces of area Ak, with k =
1, . . . , n. Therefore, the overall sun force and torque are computed by summing the contri-
butions of all the 18 surfaces as follows:

þFr =
nØ

k=1
illuminationk ∗ þFrk

þMr =
nØ

k=1
þrcpk
× (illuminationk ∗ þFrk)

(2.15)
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where the CoP of the k-th surface is denoted with þrcpk
and the k-th surface force is obtained

in the following way, upon denoting the surface normal with þnk, the incidence angle with
αk and the diffusion and specular coefficients with Cdk and Csk [7]:

þFrk =
ÚÚ

Ak

d þFrk = −p((1− Csk)þsk + 2(Cskmax(cos αk,0) + Cdk/3)þnk)max(cos αk,0)Ak

(2.16)
In our simulator, the reflection model adopted is totally reflective and poor reflectivity is
attributed to the solar arrays.

2.3.3 Gravity Disturbance
The Earth gravity field interacts with the satellite generating a force that applied in the
CoM determines the body orbit, and a torque that acts as an attitude perturbation. This
disturbance is modelled in the simulator by means of the Gravity Model which takes as
input the spacecraft position rCoM and gives as output the gravity force and torque.

Gravity Force

The gravity force is obtained by means of a Simulink block called "Spherical Harmonics",
which is part of the Aerospace Blockset library. This block implements a spherical harmonic
representation of planetary gravity at a specific location based on planetary gravitational
potential and provides a good way to represent the spherical harmonic expansion of the
Earth gravitational field outside of its surface [7]. The planetary model used in our specific
case is EGM2008, that is the latest Earth spherical harmonic gravitational model from
National Geospatial-Intelligence Agency (NGA). This block is needed to consider more
accurate gravity values than those obtained by the spherical gravity model, which ideally
assumes the Earth mass concentrated in its centre as in a central force field.
In this case, the gravity acceleration þg(þr) at a point P located at a distance þr from the
Earth CoM is given by the formula

þg(þr) = −Gm0
þr

r3
(2.17)

where m0 = 5.972×1024 [kg] is the Earth mass and G = 0.3986×1015 [m3/s2] is the Earth
universal gravitational constant.
Nevertheless, it is worth considering that the Earth is not a perfect sphere and its mass
is not uniformly distributed. Indeed, in the realistic situation, the Earth mass is spatially
distributed within a radius r0, with r0 < r, and the Earth is an oblate spheroid, flattened
at the poles, with a difference between the two semi-axes of 21 km; thus, the mass distri-
bution must be accounted for by decomposing m0 into infinitesimal masses in position þs
from the Earth CoM and then summing all the contributions given by these elementary
masses [7].
Since the gravity force is conservative, that is a function of the distance |þr − þs|, it is conve-
nient to obtain the gravity acceleration in P as the negative gradient of the gravitational
potential [7], defined as:

U(þr) = G

ÚÚÚ
V

dm

|þr − þs| (2.18)
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where dm = ρ(þs)d3þs is an infinitesimal mass element of density ρ(þs), |þr − þs| is the relative
position of P, and V is the volume of the Earth [7]. Thus, the gravity acceleration can be
obtained by

þg(þr) = −∇U(þr) =
1∂U

∂x
,
∂U

∂y
,
∂U

∂z

2
(2.19)

The vectors þr and þs can be expressed in spherical coordinates, respectively as [r, λ, θ] and
[s, λs, θs], where the first component is the vector module, the second component is the
polar (or zenith) angle and the third component is the azimuthal angle [7]. The Cartesian
coordinates in the Earth-Centered-Earth-Fixed frame (ECEF) of the two vectors are:

r =

r1
r2
r3

 = r

sin θ cos λ
sin θ sin λ

cos θ

 , s = s

sin θs cos λs

sin θs sin λs

cos θs

 (2.20)

With this notation it is possible to rewrite the mass element dm in Eq. 2.18 as

dm = ρ(þs)d3þs = ρ(s, λs, θs)s2 sin θsdsdλsdθs. (2.21)

Now, lets consider the case r > s = |þs|, that is when the point P, for instance the spacecraft
CoM, is outside the Earth surface [7]. In this case, Eq. 2.18 may be expanded into the
following series of spherical harmonics, also called Legendre polynomials:

1
|þr − þs|

= 1
r
ñ

1 + s2

r2 − 2 s
r cos α

= 1
r

∞Ø
k=0

1s

r

2k
Pk(cos α) (2.22)

where cos α = þr·þs
rs = cos θ cos θs + sin θ sin θs cos (λ− λs), and the function Pk(x) comes

from the Rodrigues formula:

Pk(x) = 1
2kk!

dk(x2 − 1)k

dxk
(2.23)

which can be used to obtain the following low-degree Legendre polynomials:

P0(cos α) = 1
P1(cos α) = cos α

P2(cos α) = 1
2(3 cos2 α− 1)

P3(cos α) = 1
2(5 cos3 α− 3 cos α)

P4(cos α) = 1
8(35 cos4 α− 30 cos2 α + 3).

(2.24)

From the Legendre polynomials addition theorem, it is allowed to rewrite Pk(cos α) as:

Pk(cos α) = Pk(cos θ)Pk(cos θs) + Qk(θ, θs, λ− λs) (2.25)
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where Qk(θ, θs, λ− λs) is a sequence of other Legendre functions:

Qk(θ, θs, λ− λs) = 2
kØ

j=1

(k − j)!
(k + j)! × cos (j(λ− λs))P k

j cos θP k
j (cos θs) (2.26)

and P j
k (x) is given by:

P j
k (x) = (1− x2)j/2 dj

dxj
Pk(x) = (1− x2)j/2

2kk!
dk+j

dxk+j
(x2 − 1)k (2.27)

where k is the degree, j is the order and P 0
k (x) = Pk(x).

We can now insert these formulas inside the Eq. 2.18 obtaining a new expression for the
gravitational potential:

U(þr) = µ

r

è
1 +

∞Ø
k=2

kØ
j=0

1Re

r

2k
P j

k cos θ(Cj
k cos jλ + Sj

k sin jλ)
é

= µ

r

è
1−

∞Ø
k=2

1Re

r

2k
JkPk cos θ +

∞Ø
k=2

kØ
j=1

1Re

r

2k
P j

k cos θ(Cj
k cos jλ + Sj

k sin jλ)
é (2.28)

where µ = Gm0 is the Earth gravitational parameter, Re is the Earth equatorial radius
and Cj

k, Sj
k and Jk = −C0

k are coefficients obtained from satellite observations.
The functions

1
rk+1 P j

k cos θ cos jλ

1
rk+1 P j

k cos θ sin jλ
(2.29)

are called Spherical Harmonics.
On the basis of the values of k and j we can distinguish three types of harmonics, as shown
in Figure 2.6:

1. The zonal harmonics are those with j = 0. The superposition of these harmonics
is useful to describe variations in latitude, not depending on longitude. Indeed, zonal
harmonics divide the sphere into k latitudinal zones.

2. The sectorial harmonics are those with k = |j|. They divide the globe into 2j
vertical sectors by means of 2j meridians.

3. The tesseral harmonics are those with k /= j and j /= 0. Tesseral harmonics vanishes
at 2j meridians of longitude and k − j parallels of latitude.

Summing up, the degree k gives the total number of nodal lines and the order j decides
how this number is distributed over nodal meridians and parallels. The higher the degree
and the order, the finer the details that can be represented.
Coming back to the ideal case, in which we have considered the Earth as a perfect sphere
with density ρ(þs) constant in space, it is possible to obtain the formula written in Eq. 2.17,
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Figure 2.6: Types of Spherical Harmonics: (a) Zonal, (b) Sectorial, (c) Tesseral

by means of the spherical harmonic expansion noting that, under these ideal assumptions,
Jk = Cj

k = Sj
k = 0, that implies:

U(þr) = µ

r
, þg(þr) = −µ

þr

r3
(2.30)

In a more realistic situation, being ρ(þs) not constant but symmetric about the z axis,
Cj

k = Sj
k = 0, implying

U(þr) = µ

r

è
1−

∞Ø
k=2

1Re

r

2k
JkPk cos θ

é
(2.31)

where Jk are the zonal harmonic coefficients.
In our Gravity Model we have considered a degree k = 30 in order to have an efficient and
accurate high-degree spherical harmonic representation of the gravity field.

Gravity Gradient Torque

As previously said, a second contribution given by the Earth gravity field is the gravity
gradient torque. This torque is due to the nonuniform gravity forces acting on extended
bodies [7]. Let’s denote the position of an elementary body mass with respect to the body
CoM with þs = þr − þrc where þr is the mass position and þrc is the spacecraft CoM position
[7].The moment about the spacecraft CoM is given by

þMg =
Ú

B
þs× þg(þr) dm (2.32)

where B is the body volume [7].
By defining the gravity tensor Ub(rc) = ∇g(rc), we can expand the gravity acceleration
around the spacecraft CoM in the following way [7]:

þg(þr) = þg(þrc) +∇þg(þrc)þs + . . . (2.33)

Now, using the previous equations and recalling that by definition of CoM
s

B þs dm = 0,
we can express the coordinate vector Mg as

Mg =
1Ú

B
s dm

2
× g(rc) +

Ú
B

s× Ub(rc)s dm =
Ú

B
s× Ub(rc)s dm (2.34)
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that in matrix form becomes

Mg =
Ú

B

 0 −s3 s2
s3 0 −s1
−s2 s1 0

U11s1 U12s2 U13s3
U21s1 U22s2 U23s3
U31s1 U32s2 U33s3

 dm. (2.35)

The integral in Eq. 2.35 can be substituted considering the inertia matrix J of the mass
distribution with respect to the body axes [7]. To this purpose, let’s recall the expression
of J as function of the mass element position with respect to the body CoM:

J =
Ú

B
(sT sI3 − ssT ) dm. (2.36)

Replacing the inertia matrix J inside Eq. 2.35 it is possible to obtain a more general
expression of the gravity gradient torque as a function of the matrix J and the gravity
tensor Ub(rc) as follows [7]:

Mg =

(J33 − J22)U23 + (U22 − U33)J23 + U12J13 − U13J12
(J11 − J33)U13 + (U33 − U11)J13 + U23J12 − U12J23
(J22 − J11)U12 + (U11 − U22)J12 + U13J23 − U23J13

 . (2.37)

This time, in order to simplify the formula in Eq. 2.37, we assume to consider only the
spherical gravity term. From Eq. 2.30, we recall that, with this assumption, the gravity
acceleration is g(rc) = −(µ/r3

c )rc, where rc = |þrc|.
Since the Jacobian matrix of rc is the identity matrix and the gradient of r3

c = (rT
c rc)3/2

is 3rT
c (rT

c rc)1/2 = 3rT
c rc, the following expression for the gravity tensor holds:

Ub(rc) = −µ

A
I3

r3
c

− 3
r5

c

 r2
1c r1cr2c r1cr3c

r1cr2c r2
2c r2cr3c

r1cr3c r2cr3c r2
3c

B = 3µ

r5
c

1
rcr

T
c −

rT
c rc

3 I3
2
. (2.38)

With the gravity tensor expression written above, the Eq. 2.37 becomes:

Mg = 3µ

r5
c

(J33 − J22)r2cr3c + (r2
2c − r2

3c)J23 + r1c(r2cJ13 − r3cJ12)
(J11 − J33)r3cr1c + (r2

3c − r2
1c)J13 + r2c(r3cJ12 − r1cJ23)

(J22 − J11)r1cr2c + (r2
1c − r2

2c)J12 + r3c(r1cJ23 − r2cJ13)

 (2.39)

where r1c, r2c and r3c are the coordinates of the vector rc expressed in the body frame [7].
Finally, to rewrite the Eq. 2.39 in a more compact way, it can be proven that in case of
spherical gravity and for an arbitrary inertia matrix J, the gravity gradient torque can be
computed as [7]:

Mg = 3µ

r3
c

rc

rc
× J

rc

rc
= 3µ

r5
c

rc × Jrc. (2.40)

2.4 Sensors
This paragraph briefly illustrates the operating principles and models of the most common
orbit and attitude sensors. The term sensor is here used to represent an instrument mounted
on the satellite whose aim is to measure a certain quantity. Starting from physical principles,
the aim is to derive a measurement model that consists of the error model plus the sensor
dynamics.
Spacecraft sensors may roughly be subdivided into three main categories:
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1. Inertial navigation sensors, such as accelerometers and gyroscopes. These sensors are
able to detect acceleration and angular rate variations, without any field-of-view for
observing external electromagnetic sources and any link with ground stations and
other satellites. In particular, accelerometers are compulsory for drag-free control
purposes because they measure the non-gravitational forces acting on a spacecraft
that must be counteracted by propulsion actuators.

2. Position and navigation sensors, such as the Global Navigation Satellite System
[GNSS]. These sensors observe the motion of the spacecraft CoM with respect to
the GNSS constellation and measures the spacecraft position and velocity. In our
nonlinear model the only navigation sensor that has been considered is the GPS since
it represent a standard model for all the other GNSS constellations.

3. Attitude sensors, such as Sun and Earth sensors, star trackers and magnetometers.
These last, together with position sensors, are complementary to the inertial ones
since they are used to correct trajectories affected by drift and reset the inertial
sensor drift to zero. Attitude sensors observe the spacecraft orientation with respect
to a reference frame given by visible objects, such as stars or planets, and so they
need a field-of-view for receiving the light emitted by such objects.

The sensors modelled in our nonlinear simulator are:

• Accelerometers to measure the non-gravitational body accelerations

• GPS to measure the spacecraft position and velocity

• Star trackers to measure the satellite attitude quaternion

• Acquisition and pointing metrology system developed by TAS

All sensors are modelled by summing a noise to the clean signal. For instance, in the
accelerometer model, there is a filtered high frequency noise to which are added bias and
drift. This noise is given by a random number processed by a second order low-pass-filter in
order to represent the low frequency variations which implies a non-constant bias. Moreover,
in the model we can notice also the presence of some integrators with feedback used as
filters in order to consider the sensor finite bandwidth.
Star trackers, instead, are the most accurate attitude sensors and directly provide a measure
of the spacecraft attitude quaternion. Since they measure attitude errors, the noise to be
added to the clean signal in this case is given by an additional rotation. The sensor is
modelled by a quaternion product between the clean attitude quaternion and a filtered
noise which is expressed in quaternion form. Sometimes two quaternion products must
be considered, the first one to take into account the star tracker assembly errors and the
second one to account for the error given by additional rotations.

2.5 Frames of Reference
After having described the main parts composing the NGGM nonlinear model, it is worth
to mention which are the main reference frames exploited in this model in order to represent

27



NGGM Nonlinear Model

variables. In particular, two of them are observational frames, used to describe the motion
of the system, while the last one is referred to as "body frame", and it is defined for each
satellite in order to describe its attitude.

Inertial Frame of Reference

The first relevant reference frame is the observer’s inertial frame. We recall that an Inertial
frame of reference is a reference frame in which the Newton’s first law of motion holds. This
means that, in an inertial frame, a physical object, with zero net force acting on it, will
persist in its state of rest or uniform rectilinear motion until it is perturbed. In a purely
kinematic definition, a frame R = {O,þi,þj,þk} is inertial when the origin O is not accelerating
and its axes are not rotating. Several reference frames may be associated to elliptic orbits in
order to specify the positions of celestial objects. In this thesis, the observer’s inertial frame
that has been considered is the Geocentric Equatorial (GE) frame Rge = {CE , þI, þJ, þK}
frozen at some date. This frame is centred in the Earth CoM CE , not rotating with the
Earth and independent of the spacecraft orbit. To define it, the undisturbed orbital plane
described by the Earth revolution about the Sun must be considered. This inertial plane
is called “ecliptic”, and is the plane where the unitary vectors þI and þJ lies. The normal

Figure 2.7: Ecliptic Plane, Earth-Sun Orbit and Equatorial Plane [7]

to the ecliptic plane points in the same direction of the Earth’s North Pole and defines
the direction of the unitary vector þK. Then, þI is selected to be aligned with the ecliptic
and equatorial plane intersection and is defined as the Earth-Sun direction at the vernal
equinox, as shown in the Figure 2.7. Finally, þJ is selected as þJ = þK × þI and lies on the
equatorial plane. Figure 2.8 represents the Geocentric Equatorial frame.

Formation Local Orbital Frame

The NGGM formation is composed by a pair of satellites which perform the mission ob-
jectives working together. These two spacecrafts form with the Earth a triangular virtual
structure, whose vertices are the satellites and the Earth CoMs.
It follows that the second relevant reference frame, called "Formation Local Orbital Frame"
(FLOF), is the one used to define the formation dynamics and to describe the motion
between the two satellites, whose positions from the origin of the inertial frame, i.e. the
Earth CoM, is identified by the vectors þr1 and þr2. The centre of this frame is the middle
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Figure 2.8: Geocentric Inertial Equatorial Frame [7]

point between the two satellites, i.e. the formation centre. In order to define the FLOF
axes we introduce the following quantities:

∆þr = þr1 − þr2

þr = þr1 + þr2

2
(2.41)

where ∆þr represents the relative distance between the satellites, and þr stands for the mean
formation radius. Therefore, the FLOF axes, as illustrated in Figure 2.9, are defined as:

þo1 = ∆þr

d

þo2 =
þr
r × þo1

sin θ

þo3 = þo1 × þo2 = ∆þr

d
×

þr
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d
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d

"
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sin θ
(þr

r
− cos θ

∆þr

d
)

(2.42)

where d is the norm of the relative distance, r is the norm of the mean formation radius
and θ is the angle between þr and þo1.

Figure 2.9: FLOF Coordinate Axis [10]
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Spacecraft Body Frames of Reference

This section aims to describe the spacecraft body reference frame, that is a frame rotating
with the spacecraft and with the origin in its CoM. Therefore, the definition of two body
reference frames, i.e. one for each satellite, is needed. In our case, the first axis of the body
frame, also called "sensor axis", is defined as aligned with the outcoming laser beam, while
the third axis is assumed to be normal to the solar panels plane.
Thanks to the attitude and pointing control system, the body reference frames are guar-
anteed to be such that their sensor axis, which coincides with the spacecraft’s optical axis,
is aligned to the satellite-to-satellite line. Indeed, the nominal attitude of the two satellites
is the one that guarantees they always point towards each other. In order to get to this in
real conditions, it is necessary to implement a spacecraft attitude control.

2.6 Nominal Attitude
Since the main objective of this thesis is the development of a new kind of control system
for the NGGM formation, from now on it is better to carry out all the analyzes and sim-
ulations without taking into account the errors due to the attitude and pointing control
system. The idea is to substitute, for both satellites, the attitude dynamics with a function
that provides a nominal attitude, that makes the spacecrafts be always oriented towards
each other without the need to implement an attitude and pointing control system.
By introducing a function for the nominal attitude, we assume the presence of a closed-loop
control, whose aim, as previously specified, is to guarantee the alignment of each space-
craft’s optical axis to the satellite-to-satellite line.
The function to be implemented must provide as output, for each satellite, a reference
quaternion that represents the nominal rotation needed to maintain time by time each
spacecraft aligned with the inter-satellite line. Moreover, the same function must also pro-
vide the spacecraft angular velocity vector needed for the disturbance analysis.
For each spacecraft the nominal attitude is introduced as a set of unitary orthogonal vectors

{þI1, þJ1, þK1}
{þI2, þJ2, þK2}

(2.43)

which represent the axes of the two nominal body frames of reference, centered respectively
in the CoMs of Satellite 1 (Sat-1) and Satellite 2 (Sat-2). Therefore, the two nominal
reference frames are defined as

R1 = {C1, þI1, þJ1, þK1}
R2 = {C2, þI2, þJ2, þK2}

(2.44)

The only important requirement for the definition of these body frames is that the two
satellites must point towards each other, thus we can orient the þI2 axis of Sat-2 towards Sat-
1, and conversely the þI1 axis of Sat-1 in the opposite direction with respect to þI2. Since, by
definition, the þo1 axis of the FLOF frame is pointing towards Sat-1 along the inter-satellite
line, the body frame of Sat-2 can be chosen equal to the FLOF frame, defining its axes in
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the same way of the FLOF axes:

þI2 = ∆þr

d

þJ2 =
þr
r × þo1

sin θ

þK2 = þI2 × þJ2 = ∆þr

d
×

þr
r ×

∆þr
d

sin θ
= 1

sin θ

!
(∆þr

d
· ∆þr

d
)þr

r
− (∆þr

d
· þr

r
)∆þr

d

"
= 1

sin θ
(þr

r
− cos θ

∆þr

d
)

(2.45)

Therefore, the axes of Sat-2 body frame are oriented as depicted in Figure 2.10 (b):

• þI2 lies along the satellite-to-satellite direction and points towards Sat-1

• þJ2 is perpendicular to the triangle plane

• þK2 forms with the previous axes a right handed frame

Consequently, to obtain the nominal attitude of Sat-1, the axes of its body frame must be
defined as shown in Figure 2.10 (a):

• þI1 lies along the satellite-to-satellite direction, pointing towards Sat-2

• þJ1 is perpendicular to the triangle plane, in the opposite direction with respect to þJ2

• þK1 forms a right handed frame with þI1 and þJ1.

Figure 2.10: Nominal Attitude of Satellite 1 (a) and Satellite 2 (b)

From Figure 2.10 (a) it is easy to see that the nominal attitude of Sat-1 can be obtained
rotating the axes of Sat-2 body frame of 180° about the þK2 axis.
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To this purpose, let’s call K2i =

k2ix

k2iy

k2iz

 the vector þK2 expressed in the inertial frame and

let’s define the DCM matrix T which allows the rotation of each axis of Sat-2 body frame
of an angle β=180° about K2i:

T =

 k2
2ix(1− cβ) + cβ k2ixk2iy(1− cβ)− k2izsβ k2ixk2iz(1− cβ) + k2iysβ

k2ixk2iy(1− cβ) + k2izsβ k2
2iy(1− cβ) + cβ k2iyk2iz(1− cβ)− k2ixsβ

k2ixk2iz(1− cβ)− k2iysβ k2iyk2iz(1− cβ) + k2ixsβ k2
2iz(1− cβ) + cβ


(2.46)

Using the notation I1i,J1i,K1i and I2i,J2i,K2i respectively for Sat-1 and Sat-2 axes in the
inertial frame, the following relation holds:

I1i = T I2i

J1i = TJ2i

K1i = TK2i

(2.47)

It is worth noticing that, since K2i is the axis of rotation, it is the only vector which re-
mains unchanged by the T matrix above defined, and so it follows that K1i = K2i.
The axes of the two satellites in the inertial frame define two rotation matrices that repre-
sent the rotations needed to guarantee their nominal attitude:

R1 =
#
I1i J1i K1i

$
=

i1ix j1ix k1ix

i1iy j1iy k1iy

i1iz j1iz k1iz


R2 =

#
I2i J2i K2i

$
=

i2ix j2ix k2ix

i2iy j2iy k2iy

i2iz j2iz k2iz


(2.48)

Finally, by using the formulas which allow to represent a rotation in quaternion form, it is
possible to obtain the two spacecrafts nominal attitude quaternions.
The nominal attitude of the two satellites above defined, together with the formation
triangular structure is depicted in Figure 2.11.

2.6.1 Satellites’ Angular Rate
After having described the nominal attitude of the two body frames, it is worth to define
also their angular rates, needed for the derivation of the disturbance forces and torques.
The angular rate of each satellite is composed by two contributions; indeed, each body
frame is centred in the spacecraft CoM which rotates on the orbit around the Earth, and
is affected by an additional rotation to always maintain the nominal attitude.
Let’s start with the definition of the angular rate of Sat-2 body frame R2 = {C2, þI2, þJ2, þK2}
about its own axes.
In order to determine the components of þω2 = ω2x

þI2 + ω2y
þJ2 + ω2z

þK2, we can consider an
infinitesimal rotation about each axis. For instance, let’s analyse what happens applying
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Figure 2.11: Formation Triangle and Satellites Nominal Attitude [11]

an infinitesimal rotation dδ about þJ2. This operation causes a rotation of the other two
axes þI2 and þK2. The variation of þI2 can be expressed in the following way:

dþI2

dt
= lim

∆t→0

þI2(t + ∆t)− þI2(t)
dt

(2.49)

Then, rewriting þI2(t + ∆t) as the sum of its projections on þI2 and þK2 and recalling that
for small angles cos(∆δ) ∼ 1 and sin(∆δ) ∼ ∆δ, we obtain:

dþI2

dt
= lim

∆t→0

cos(∆δ)þI2 − sin(∆δ) þK2 − þI2(t)
dt

= lim
∆t→0

−∆δ þK2

∆t
= −dδ þK2

dt
=

= −ω2y
þK2 =⇒ ω2y = −dþI2

dt
· þK2 = − þ̇I2 · þK2

(2.50)

In the same way, considering the variation of þK2 due to an infinitesimal rotation dδ about
the þJ2 axis, the component ω2y can be also obtained in the following way,

ω2y = d þK2

dt
· þI2 = þ̇K2 · þI2 (2.51)

Thus, repeating the process with the other two axes, i.e. considering infinitesimal rotations
dδ about þI2 and þK2, the following set of fundamental equations is obtained:

ω2x = d þJ2

dt
· þK2 = þ̇J2 · þK2 = −d þK2

dt
· þJ2 = − þ̇K2 · þJ2

ω2y = −dþI2

dt
· þK2 = − þ̇I2 · þK2 = d þK2

dt
· þI2 = þ̇K2 · þI2

ω2z = dþI2

dt
· þJ2 = þ̇I2 · þJ2 = −d þJ2

dt
· þI2 = − þ̇J2 · þI2

(2.52)

These equations allow to write the angular rate of Sat-2 body frame as þω2 = ω2x
þI2 +

ω2y
þJ2 + ω2z

þK2.
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Going more into detail, to determine the components ω2x, ω2y and ω2z, it is necessary to
compute the derivative of the axis vectors:

þ̇I2 = ∆þv

d
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d
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2

þJ2 + 1
sin θ

þv
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þ̇K2 = þ̇I2 × þJ2 + þI2 × þ̇J2

(2.53)

Then, using the formulas written in the Equation 2.52, the three components of Sat-2
angular rate, expressed with respect of its own axes, are:

ω2x = þ̇J2 · þK2
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1 1
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(2.54)

With the same procedure, it is possible to compute the angular rate of Sat-1 body frame
R1 = {C1, þI1, þJ1, þK1} about its own axes. Recalling that þI1 = −þI2, þJ1 = − þJ2 and þK1 = þK2
the derivative of the axis vectors are obtained as follows:

þ̇I1 = d

dt
(þI1) = d

dt
(−þI2) = − d

dt
(þI2) = − þ̇I2

þ̇J1 = d

dt
( þJ1) = d

dt
(− þJ2) = − d

dt
( þJ2) = − þ̇J2

þ̇K1 = d

dt
( þK1) = d

dt
( þK2) = − þ̇K2

(2.55)

34



NGGM Nonlinear Model

Finally, using again the formulas written in the Equation 2.52, the three components of
the Sat-1 angular rate, expressed with respect of its own axes, are:

ω1x = þ̇J1 · þK1 = − þ̇J2 · þK2 = −ω2x

ω1y = − þ̇I1 · þK1 = −(− þ̇I2) · þK2 = þ̇I2 · þK2 = −ω2y

ω1z = þ̇I1 · þJ1 = (− þ̇I2) · (− þJ2) = þ̇I2 · þJ2 = ω2z.

(2.56)

It is noticeable that the first two components above computed are different in sign from the
corresponding ones of Sat-2 due to the way in which we have defined the satellites’ nominal
attitude. However, actually, the angular rates of the two satellites can be represented by
the same vector if expressed in the same frame of reference:

þω1 = ω1x
þI1 + ω1y

þJ1 + ω1z
þK1

= −ω2x(−þI2)− ω2y(− þJ2) + ω2z
þK2

= ω2x
þI2 + ω2y

þJ2 + ω2z
þK2 = þω2

(2.57)

2.7 Simulations with Nominal Attitude
After having defined the satellites’ nominal attitude and angular rate, we can substitute the
spacecraft dynamic and kinematic blocks with a MATLAB function which takes as input
the satellite’s position and velocity and gives as output the reference body quaternion and
the angular rate. As previously said, this function is used in place of the attitude and
pointing control system in order to always guarantee the satellites’ nominal attitude and
to avoid considering in our study all the attitude errors.
In the following, some simulated results are presented, concerning in particular the satellite-
to-satellite distance in order to highlight how its behaviour varies after the introduction
of the satellites’ nominal attitude. The simulation was performed with the system in free
evolution, without yet considering any active control system. The objective is to show how
fast the two satellites diverge from the nominal orbit, and consequently how much the
satellite-to-satellite distance diverges from its nominal value dnom = 100 km, due to the
system instability. The expected result is that the distance between the two satellites, after
introducing the nominal attitude, will diverge slower than before. Indeed, before forcing
the nominal attitude, the two satellites were subject only to the disturbing torques and
forces which caused a very fast divergence from the satellites’ nominal position. With the
introduction of this function instead we assume the presence of a perfect control action
which counteracts the disturbing torques, giving the satellites the right rotation to maintain
the alignment of their optical axis with the inter-satellite line.
Figure 2.12 represents the comparison of the satellite-to-satellite distance behaviour before
and after the introduction of this function. Looking at the simulated result we can notice
that, as expected, forcing the nominal attitude the divergence of the distance from the
nominal value is significantly slower than before. The simulation was performed over a
period of 150 orbits.
Figure 2.13 depicts separately the two cases under study , highlighting when the distance
plots reach a limit of the 10% from the distance nominal value.
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Figure 2.12: No-Control vs Nominal Attitude

The line in green, that represents the plot of the formation distance with nominal attitude,
shows a divergence of the 10% from the nominal value at a time more or less equal to
126 orbits, indeed considering that an orbital period lasts for 5487 s, at t = 6.916× 105 s
the satellite-to-satellite distance reduces up to 90 km. Contrariwise, the line in blue, that
represents the plot of the formation distance without nominal attitude, reaches the limit
of the 10% from the nominal value, or rather arrives at 110 km, after just 3.892 × 104 s,
that means after only 7 orbits.
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Figure 2.13: Bound of 10% From the Nominal Value
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Chapter 3

Drag-Free Control

This chapter is intended to generally explain the concepts behind the drag-free control.
As already mentioned, after GOCE and GRACE, all the future missions about Earth
gravimetry will make use of satellite formations composed by free-falling proof-masses.
The rationale behind this concept is the need to make the distance variations not subject
to non-gravitational disturbances and consequently able to identify any kind of variation
in the planetary local gravity field. For this purpose, the satellites must be controlled to
be drag-free [10].
The drag-free control is designed as a faster inner loop with respect to the attitude and
formation control, which takes as input the measurement of external non-gravitational ac-
celerations (both linear and angular). Indeed, looking at the actuation system, both the
commanded force and torques are supplied by a thruster assembly driven by quite precise
measurements coming from GOCE-class accelerometers, as proof of the numerous common
points with the previous missions [10].
In order to take into account both linear and angular non-gravitational disturbances, within
this study we will distinguish between linear and angular drag-free control. These two prob-
lems are here addressed using the EMC perspective.
The main objective of the linear drag-free control is to make the satellites free-falling flying
masses [10]. This objective can be achieved by estimating and then rejecting, by means
of a proper actuation system, the disturbance forces acting upon the satellites. Similarly,
the main objective of the angular drag-free control is to zero all the disturbance torques
affecting the satellites [11].
Despite the several contact points with GOCE, NGGM can rely on the progresses made in
the field of propulsion systems and thanks to the technological improvement its satellites
will be made three-axially drag-free, differently from GOCE’s satellites which have only
one drag-free axis, namely the along-track one [10].
Finally, it is worth to point out that the linear and the angular drag-free controls make
use of the same models and control schemes with the only difference in the values used to
properly tune the control gains. For this reason, here we will take into account only the
linear drag-free control.
This chapter starts providing a general understanding about drag-free modelling and con-
trol, basing on the experience gained from GOCE mission, and finally ends showing some
simulated results.
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3.1 Drag-Free Concept
In NGGM implementation, the linear drag-free control makes use of some proof-masses
(also called test-masses), inserted within a cage inside the spacecraft. These test-masses
are positioned according to some geometry to create a multi-directional gradiometer [10].
They are the most important element for the development of a drag-free control system.
The linear drag-free control can be realized exploiting two possible different strategies. The
first strategy employs a free moving proof-mass placed within a cage and consists in using
the control law to command the spacecraft in order to track and centre in the cage the
proof-mass. Thus, instead of directly cancelling the non-gravitational forces, the satellite is
here controlled to be drag-free by forcing it to maintain the test-mass in the right position
and attitude inside the cage [10]. The control algorithm is fed by sensors which estimate
the proof-mass position and is actuated by a thruster assembly mounted on the cage. The
drawback of this technique consists in the practical impossibility for the satellite to track
more than one proof-mass [10].
The second strategy instead, makes use of the accelerometer concept, illustrated in Figure
3.1. This technique consists in controlling the spacecraft to be drag-free by directly esti-
mating and rejecting the non-gravitational forces. In this way, since the spacecraft is made
drag-free, the motion of the proof-masses, that in this case can be also more than one,
is shaped only by the gravity force [10]. Indeed, with this solution, the system is able to
leverage many proof-masses at the same time, positioning them in a certain configuration
in order to form a gradiometer [10].
With this second strategy, the test-mass is hooked with an active suspension system that
keeps the mass in its central position and uses the suspension force to measure the non-
gravitational effects and feed the control law [10].
To talk about the control perspective, let’s firstly define with r and v the spacecraft radius
and velocity vectors. The following standard dynamic equations hold:

ṙ(t) = v

v̇(t) = g(r(t)) +Ri
b

Fu(t) + Fd(t)
m

(3.1)

Consequently, the drag-free control ideally implies:

a(t) = Fu(t) + Fd(t)
m

= 0 (3.2)

where g(r(t)) is the gravitational acceleration, a(t) are the external non-gravitational
accelerations, while Fu(t) and Fd(t) are, respectively, the drag-free command force and the
non-gravitational forces, coming from environment disturbances and atmospheric drag.
However, despite the introduction of the drag-free control, a(t) cannot be exactly equal to
zero, due to the practical impossibility to perfectly reject all the non-gravitational effects
[11]. This problem let us to introduce the concept of drag-free residual non-gravitational
acceleration, that according to the NGGM requirements, must be constrained to remain
very limited, both in terms of time and frequency [10].

38



Drag-Free Control

Figure 3.1: Drag-free Accelerometer Strategy

3.2 Control Architecture
As already mentioned, the drag-free control was realized following the EMC methodology.
Indeed, thanks to this technique, it is possible to estimate the non-gravitational forces
using the EMC disturbance dynamics. This possibility makes the EMC one of the most
suitable methods to address the drag-free control problem.
The main issue for the estimation of these forces consists in their high-variability due
to the altitude and the solar and geomagnetic activity [10]. Therefore, the estimation
of the non-gravitational disturbances is performed adopting a third order stochastic and
parameter-free disturbance dynamics and the rejection of the estimated disturbing forces
is obtained (up to a certain frequency and accuracy) by means of a control law [10].
In this section a brief overview about the main parts composing the control architecture is
provided. We consider in the following a single degree of freedom, to be replicated for the
three spacecraft axis.
Let’s recall that the linear and the angular drag-free control are based on the same control
schemes, thus here for simplicity we will focus only on the first.
According to the EMC methodology, the control scheme is based on a state predictor, that
comes from the embedded model of the sensors-to-actuators drag-free chain, plus a control
law.
The simplified block-diagram of the drag-free models of a single satellite is shown Figure
3.2.
As we can notice, the same command signal feeds both the fine model/plant and the control
unit. Specifically, the system to be controlled, i.e. the plant, is driven by a digital command
ũt which feeds the thruster assembly, and gives as output the digital measurements ỹa

exiting from the accelerometer package [10]. The plant includes three main parts: the
environment forces and torques to accurately describe the non-gravitational effects due to
the external world, the accelerometer errors, trated as disturbances coming from formation
and attitude control models, and the dynamics of thrusters and accelerometers [10]. Within
the Embedded Model, instead, we can distinguish two parts: the controllable dynamics
M , that contains the nominal value of the relevant model parameters, and the disturbance
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Figure 3.2: Block Diagram of the Drag-Free Model of a Single Satellite [10]

dynamics D, that is usually parameter free [10]. Besides the Embedded Model, in the
Control Unit there is also the Noise Estimator, whose gains La are tuned by means of
simulations or tests and then maintained constant, and the Control Law that provides the
digital command ũt necessary to reject the estimated disturbances [10].
Going more into detail, the overall block scheme of the single-axis drag-free control unit
is depicted in Figure 3.3. As illustrated, the complete control law is obtained by summing
the command forces given by the drag-free control and the formation control.
Summarizing what has been said so far, in the overall drag-free controller block scheme we
can highlight the presence of three main components:

• The Controllable Dynamics, which is obtained with a delay block that shapes the
input-output relation between thruster command and accelerometer measurements.

• The Disturbance Dynamics, which, in order to satisfy the NGGM demanding re-
quirements, needs a third order stochastic dynamics to fit in a reliable way the high
frequency spectral density of the non-gravitational acceleration.

• The Noise Estimator, whose gains constitute a simple static estimator (such as a
Kalman Filter) with the aim of realizing the noise vector components as a linear
function of the measured model error.
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Figure 3.3: Overall Block Scheme of a Single-Axis EMC Drag-Free Controller [10]

3.3 Simulations with Drag-Free Control
After having explained the concept around the drag-free control, in the following we will
illustrate some simulated results obtained introducing the drag-free control block inside the
Simulink scheme presented in Figure 2.3. With this last modification, the simulator adopted
is composed by the nonlinear model previously described, plus a new block containing the
drag-free control system; this block receives as input the accelerometers measurement of
the non-gravitational body forces and gives as output the drag-free command. Then, the
command exiting from the drag-free control block is summed to the disturbance forces com-
ing from the atmospheric disturbance model in order to obtain the total non-gravitational
body forces, as depicted in Figure 3.4. Indeed, the overall force and torque acting on the
spacecraft are given by the resultant of the environment disturbances and the control forces.
At this purpose, later also the formation control command force will be added to this sum.
The Simulink scheme presented in Figure 3.4 is the one that includes the nominal attitude
function in place of the kinematic and dynamic blocks.
The simulation was performed over a period of 150 orbits as the one described in Section
2.7. In this way it is possible to make a further comparison on the formation distance
behaviour with respect to the cases previously illustrated. However, before checking the
distance behaviour, it is worth to take a look at the drag-free command force, in order to
have an idea about its order of magnitude and its shape. Figure 3.5 shows the three body
coordinates of the drag-free command force acting on both satellites. The control actions
applied at the two satellites are similar in magnitude, but have two components, namely
the first and the second body components, with the opposite sign. This can be due to
the way in which we defined the satellites’ nominal attitude. Indeed, let’s recall that the
nominal body reference frames were chosen with the first and the second coordinates in
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Figure 3.4: Satellite Block Scheme after Introducing the Drag-Free Control

the opposite direction to each other. Further, it is possible to compare the command force
with the total disturbance force coming from the atmospheric disturbance block. Basing
on what has been said so far, we expect that these two forces have more or less the same
magnitude but opposite sign since, by definition, the aim of the drag-free control is to
cancel the non-gravitational disturbances due to the environment effects. At this purpose,
in Figure 3.6 is reported the plot of the sum of these two quantities, for both satellites. As
we can notice, in both cases this sum results approximately equal to zero, pointing out that
the drag-free control works as expected, rejecting with a good accuracy the disturbance
forces.
Now let’s focus on the formation distance, that is the variable on which this study is cen-
tered. In Figure 3.7 the time profile of the satellite-to-satellite distance obtained with the
addition of the drag-free control is added to the plots reported in Section 2.7, stressing a
further improvement with respect to the previous cases since in this last simulation the
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Figure 3.6: Satellites Total Non-Gravitational Forces: Command + Disturbances

formation distance remains inside the limit of the 10% from the nominal value dnom = 100
km for more than 150 orbits.

3.3.1 No Nominal Attitude vs Nominal Attitude
Another interesting comparison that we can do is the one depicted in Figure 3.8, whose aim
is to collate the time profile of the formation distance presented so far with the one obtained
introducing the drag-free control inside the nonlinear model reported in Chapter 3 before
developing the function to force the satellites’ nominal attitude. The two plots in the figure
show an almost identical behaviour at the beginning, with a very slow divergence in both
cases. However, even if the formation distance remains in any case close to the nominal value
of dnom = 100 km, the nominal attitude introduces an even greater improvement, furtherly
slowing the divergence. Since the difference between the two simulations seems to be small
and insignificant, in order to highlight the importance of using the nominal attitude, let’s
plot the drag-free commands acting on the satellites in the two cases. These plots, shown
in Figure 3.9, point out that, even if the satellite-to-satellite distance seems similar, the
command is very different and specifically in case of nominal attitude it is remarkably
smaller. For the plots in Figure 3.9, a simulation time of 20 orbits has been used since
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Figure 3.7: No-Control vs Nominal Attitude vs Drag-Free control

0 1 2 3 4 5 6 7 8 9

Time [s] 10
5

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

D
is

ta
n
c
e
 [
m

]

10
5 SAT-SAT Distance

Nonlinear Model + Drag-Free Control

Nonlinear Model + Nominal Attitude + Drag-Free Control

Figure 3.8: Drag-Free Control: No Nominal Attitude vs Nominal Attitude

what matters to compare is only the order of magnitude of the variables. The difference
between the two cases is particularly due to the fact that using the nominal attitude, the
drag disturbance is smaller. Hence, we can say that using the nominal attitude allows us
to do a more meaningful analysis on disturbances, to avoid too large drag-free commands
and to easily control the formation distance.
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Chapter 4

Formation Control

This chapter is devoted to introduce the main features of the NGGM orbit and formation
control problem and to explain the rationale behind the strategy proposed for its solu-
tion. The ambitious objective of Formation Control consists in guaranteeing the system
long-term stability by simultaneously counteracting bias and drift of residual drag-free ac-
celerations. Let’s recall that the expression "formation" is related to a group of cooperating
satellites which perform the mission objective working together and realizing their tasks
in place of a unique, bigger, spacecraft. Thus, Formation Control should allow the con-
current monitoring of both satellites’ altitude and relative distance in order to maintain
them inside the required intervals. Let’s recall that the nominal values of spacecraft orbital
altitude and satellite-to-satellite distance have been chosen with the aim of maximizing the
capability to measure the gravity signal.
The Table 4.1 collects all the scientific requirements concerning the orbit and formation
control. These requirements are split into distance, radial and lateral variations. In partic-

Variable Bound Unit
Formation distance variation ηd = 10% %(distance)
Formation radial variation ηr = 2% %(altitude)
Formation lateral variation ηy = 1% %(distance)

Table 4.1: NGGM Orbit and Formation Requirements

ular, the latter refers only to the in-line formation type, that envisages the two satellites
flying on same nominal orbit but with different true anomalies. As it is evident from Table
4.1, the objective of Formation Control results in ensuring that the perturbations affect-
ing the formation altitude and inter-satellite distance remain bounded during the mission
lifetime, namely during a period of about 11 years in order to cover an entire solar cycle.
This objective can be achieved by limiting the free response inside some bounds as well as
cancelling as much as possible the secular components of residual drag-free accelerations.
The control unit previously designed for the NGGM Formation Control was realized using
the Embedded Model Control methodology, explained in Section 1.4. As a matter of fact,
this technique well fits the control problem under study, being able to guarantee the closed-
loop stability of a model-based control law in presence of big parametric and structural
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uncertainties.
This thesis work aims at studying the same problem by adopting a different control strat-
egy. In particular, a NMPC-based framework has been implemented. Thus, this chapter is
focused on the Formation Control design, implementation and simulations, by proposing
a valid alternative solution with respect to the EMC. As a matter of fact, thanks to its
advantages, the Model Predictive Control (MPC) has the ability to find an optimal con-
trol law managing at the same time state and input constraints and providing an online
adaptation of the control strategy to possible variations of the process conditions.
Being the Model Predictive Control a particular branch of model-based design, for the
NMPC internal prediction two LTI models have been explored in this study. The first
model is based on the standard Hill-Clohessy-Wiltshire equations while the second one
consists of an innovative integrated formation control (IFC) model that allows a common
description of the formation altitude and satellite-to-satellite distance, by defining a spe-
cific orbital reference frame called Formation Local Orbital Frame (FLOF). Specifically,
in the following, the theory behind the MPC technique and the two proposed models has
been described in detail. Then, for each one of them, a comparison of the free evolution of
its state variables with respect to the corresponding ones of the accurate nonlinear model
described in Chapter 3 is presented. After having highlighted the greater effectiveness of
the IFC model in approximating the real plant dynamics, an NMPC framework has been
developed for the specific control problem under study, and numerous configurations of
parameters have been tested and simulated.

4.1 Model Predictive Control
Model Predictive Control (MPC), also called Receding Horizon Control (RHC) is a modern
feedback strategy widely adopted for industry applications, especially for linear processes.
As the EMC, this advanced method, is a model-based design technique, but its advantage
consists in the possibility to control a process by explicitly taking into account constraints
on controls and states.
Linear MPC refers to a family of MPC schemes in which linear models are used to predict
the system dynamics, considering only linear state and input constraints. Nevertheless,
many systems are, in general, inherently nonlinear. In this cases, linear models are often
inadequate to represent the behaviour of the system and nonlinear models have to be used
[2], [13]. This is the rationale behind the NMPC, which is a variant of the standard MPC
based on nonlinear models and/or nonlinear constraints.
Both MPC and NMPC requires an iterative solution of optimal control problems on a
finite prediction horizon. This control technique is based on the idea to employ a dynamical
MODEL of the plant to PREDICT the future behaviour of the variables of interest and
compute an “optimal” CONTROL action. The need to use a model of the plant derives
from the fact that in real applications the exact plant dynamics is seldom known.
Since the problem we are addressing is nonlinear, let’s focus on the NMPC, considering a
MIMO nonlinear system

ẋ = f(x, u)
y = h(x, u)

(4.1)
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where x ∈ Rn is the state, u ∈ Rnu is the command input and y ∈ Rny is the output.
It is assumed that the state is measured, otherwise an observer or a model in input-output
form has to be used. The model contained in the NMPC algorithm is of the form

˙̂x = f̂(x, u)
ŷ = ĥ(x, u)

(4.2)

It is worth noticing that in the nominal case the prediction model is exactly equal to the
real plant, that means f = f̂ and h = ĥ.
The MPC strategy, illustrated in Figure 4.1, consists in solving on-line a finite horizon
open loop optimal control problem based on measurements obtained online, with sampling
time Ts. Let’s denote these measurements with x(tk) with tk = Tsk, k = 0,1, . . .
At each time t = tk, the controller exploits the model of the plant to predict the future
dynamic behaviour of the system over the time interval [t, t + Tp], where Tp > Ts is called
prediction horizon. This operation is obtained by the integration of Eq. 4.2 and gives as
output the predicted system state and output at any time τ ∈ [t, t + Tp], in function of the
initial state x(t) and the input signal u(t : τ), that is the input signal in the interval [t, τ ].

Figure 4.1: MPC Strategy [13]

Beside the prediction, at each time t = tk, the controller determines an optimal input
signal over a control horizon Tc < Tp, such that a predetermined open-loop performance
objective functional is optimized. Broadly speaking, the objective is to look for an input
signal able to generate the desired behaviour in the predicted output for τ ∈ [t, t + Tp].
The concept of desired behaviour is formalized by defining the objective functional

J(u(t : t + Tp)) =
Ú t+Tp

t
ëỹp(τ)ë2Q + ëu(τ)ë2Rdτ + ëỹp(t + Tp)ë2P (4.3)
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where ỹp(τ) = r(τ)− ỹ(τ) is the predicted tracking error, r(τ) ∈ Rny is a reference to track
and ë.ë2Q represents a square weighted norm. In general, the square weighted norm of a
vector v ∈ Rn is defined as ëvë2Q = vT Qv =

qn
i=1 qiv

2
i .

To set the controller we need to properly choose the weight matrices Q, R and P, which
are diagonal matrices composed of non-negative elements. The optimal input signal u∗(t :
t+Tp) is chosen as the one minimizing the objective function J(u(t : t+Tp)). In particular,
the goal is to minimize, at each time tk, the tracking error square norm over a finite time
interval, choosing in the correct way the weight matrix Q. The matrices P and R, instead,
are used to give more importance to the final tracking error and to manage the trade-
off between performance and command activity respectively. Further, the minimization of
J(u(t : t + Tp)) is subject to the following constraints

x̂(τ) = f̂(x(τ), u(τ)), x̂(t) = x(t), τ ∈ [t, t + Tp]
ŷ(τ) = ĥ(x(τ), u(τ))

(4.4)

while additional constraints may be present on the predicted state/output and on the
command input.
The optimization problem described above is generally convex in linear MPC, whereas in
NMPC it is not necessarily convex anymore; for this reason, an efficient numerical algorithm
is needed for its solution, providing in any case only a local minimum.
As depicted in Figure 4.1, the input is an arbitrary function of time, thus u(t : t + Tp)
can be seen as a vector with an infinite number of elements leading to an optimization
problem that involves an infinite number of decision variables. To overcome the problem,
it is often necessary to parametrize the input signal, choosing, for example, a piece-wise
constant input over the sampling time Ts:

u(τ) = up(τ) = ci for

I
τ ∈ [t + (i− 1)Ts, t + iTs]
i = 1, . . . , Tp

Ts

(4.5)

In the time interval [t, t + Tp], the input signal u∗(t : t + Tp) is an open-loop input since it
depends on x(t) but not on x(τ), τ > t. Thus, u∗(t : t + Tp), if applied for the entire time
interval [t, t + Tp], does not perform a feedback action and it cannot increase the precision
or reduce the errors. Consequently, in order to include some feedback mechanism, only the
first input value u∗(τ) = u∗(t = tk) is applied, keeping it constant until the next measure-
ments becomes available, i.e. ∀τ ∈ [tk, t(k + 1)]. This strategy is referred to as Receding
Horizon. Then, using the measurements obtained at the successive sampling instant, the
whole procedure of prediction and optimization is repeated to find a new input function,
with the control and prediction horizons moving forwards.
Summing up, the mathematical formulation for NMPC algorithm is described below:

At time t = tk, for τ ∈ [t, t + Tp],

1. The plant or its model is sampled in order to get the initial state x(tk) and to predict
the system future behaviour over the prediction horizon Tp.
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2. The optimization problem is solved in order to compute the minimizer

u∗(t : t + Tp) = argminJ(u(t : t + Tp))

subject to:

x̂(τ) = f̂(x(τ), u(τ)), x̂(t) = x(t)
ŷ(τ) = ĥ(x(τ), u(τ))
u(τ) = up(τ)
x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, u(τ) ∈ Uc

u(τ) = u(t + Tc), τ ∈ [t + Tc, t + Tp]

The last constraint means that the command input is optimized from t to t + Tc, and
then kept constant from t + Tc to t + Tp. Note that, since the input is parametrized,
the open loop optimal input is u∗(τ) = u∗

p(τ).

3. According to the receding horizon strategy, only the first element of the minimizer is
applied as present closed loop control action, i.e. u(τ) = u∗(tk), ∀τ ∈ [tk, t(k + 1)].

4. The algorithm sets k ← k + 1 and the procedure is repeated from step 1.

4.2 Hill-Clohessy-Wiltshire Equations
The model-based design control techniques, like EMC and MPC, foresee the presence of
internal models used to compute the control action. At this purpose, let’s introduce the
Hill-Clohessy-Wiltshire (HCW) equations, which constitutes a model often used to analyse
the relative motion of two spacecrafts in Earth-bound orbits. This analysis is usually carried
out on the basis of simplifying assumptions, such as assuming that the reference spacecraft,
called Target, follows a circular orbit about a central body, considered a point mass. This
model could be a good choice for the study of several orbital manoeuvres, such as the
"space rendezvous", which involves two spacecrafts approaching at a very close distance.
Since the in-line configuration of NGGM formation envisages a circular nominal orbit, one
of the ideas developed in this thesis work was to use the Hill-Clohessy-Wiltshire equations
to describe the relative motion of each spacecraft with respect to its nominal position on
the orbit.
The spacecraft dynamics in a neighborhood of the target is described by the following
equations:

z̈1 = 3ω2
nomz1 + 2ωnomż2 + u1

z̈2 = −2ωnomż1 + u2

z̈3 = −ω2
nomz3 + u3

(4.6)

where ωnom is the nominal angular velocity of the target point on the nominal orbit and
u1, u2, u3 are the accelerations produced by the command input along the three directions
of motion.
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The Hill-Clohessy-Wiltshire frame, illustrated in Figure 4.2 is centered in the target point
and have the z1-axis along the radius vector of the target point, the z3-axis along its angular
momentum vector, and the z2-axis which completes the right handed system.

Figure 4.2: Hill-Clohessy-Wiltshire Frame of Reference

Therefore, we define with zi the spacecraft coordinates in the target-centered frame of
reference.
The model equations previously defined can be rewritten in matricial form by means of
the following LTI system:

ẋ = Ax + Bu

y = Cx + Du
(4.7)

where:

x =



z1
z2
z3
ż1
ż2
ż3

 , A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2
nom 0 0 0 2ωnom 0
0 0 0 −2ωnom 0 0
0 0 −ω2

nom 0 0 0

 , B =
50
I

6
, C = I, D = 0,

4.3 Integrated Orbit and Formation Model
Besides the HCW equations, the other model taken in consideration, for the internal dy-
namics of the above-mentioned model-based techniques, makes use of a novel set of Hill-
type equations, initially developed for the EMC strategy currently adopted. This model,
called Integrated Formation Control (IFC), allows a common description of the formation
altitude and inter-satellite distance, basing its dynamics on the definition of the FLOF.
The model formulation assumes that the high-frequency acceleration components are only
due to the gravity term δgk, where k = 1,2 is a pedix used to denote which satellite is
considered. This assumption is realistic if the short-term non gravitational accelerations
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are cancelled, or in other words if a drag-free control is available [10].
The formation dynamics is derived with respect to the FLOF frame and requires the defi-
nition of the orbit and formation perturbations. In this context, let us consider the GNSS
measurements yrk and yvk of the spacecrafts’ CoMs position and velocity vectors, and
the measurements yak coming from accelerometers. Thus, for each satellite, the following
relations hold:

r̈k(t) = −g(rk) + ak(t) rk(0) = rk0 ṙk(0) = vk0

yrk(t) = rk(t) + erk(t)
yvk(t) = ṙk(t) + evk(t)
yak(t) = Pa(ak + nak) + wak

(4.8)

where erk and evk are the model errors which include both measurement errors and
neglected dynamics, Pa is the accelerometer dynamics, while nak and wak are the low-
frequency and the high-frequency accelerometer errors. Further, by denoting with m the
spacecraft mass and respectively with dk and uk the disturbance forces and the thruster
command forces, the term ak = (uk + dk)/m accounts for the non-gravitational accelera-
tions acting upon the k-th spacecraft.
Moving our attention from the single satellites to the overall formation, let’s denote the
mean and differential formation non-gravitational accelerations as:

a = a1 + a2

2 , ∆a = a1 − a2. (4.9)

Now, with the same logic used before, it is possible the write the following relations for the
formation mean and differential dynamics:

r̈k(t) = −g(r1) + g(r2)
2 + a(t) = −g(r) + a(t), r(0) = r0, ṙ(0) = v0

∆r̈(t) = −(g(r1)− g(r2)) + ∆a(t)
= −U(r)∆r(t) + ∆a(t) ∆r(0) = ∆r0, ∆ṙ(0) = ∆v0

(4.10)

where U(r) is the gravity tensor to be measured for obtaining the value of the local gravity
field.
Let’s recall that the objective of the drag-free control is to reach the condition:

ak = 0 =⇒ a = 0, ∆a = 0 (4.11)

This condition is obtained with a drag-free command uk able to cancel the real-time pre-
diction d̂k of the disturbance forces coming from accelerometer wide-band measurements.
Nevertheless, because of the limited BW of the drag-free control law, measurement errors
and causality, this cancellation cannot be perfect and produces always a residual drag-free
acceleration wak

uk = −d̂k =⇒ ak = (−dk + d̂k)/m Ä wak /= 0. (4.12)

52



Formation Control

As previously said, to build the integrated formation model, the preliminary definition of
formation and orbit perturbations is needed.
At this purpose, let’s consider a nominal reference sphere of radius rnom, that stands for the
nominal formation altitude, and the nominal inter-satellite distance dnom, whose direction
is set as tangent to the reference sphere. These quantities are associated respectively to the
formation CoM position r on the orbit and the satellites’ relative positions ∆r. Denoting
with r1 and r2 the satellites’ radii, the following relations hold:

r = rxþo1 + rzþo3, r1 − r2 = dnomþo1

r1 = (rx + d

2)þo1 + rzþo3, r2 = (rx −
d

2)þo1 + rzþo3
(4.13)

where, d is the inter-distance, rz is the height of the triangular virtual structure and rx is
the radius component along the satellite-to-satellite direction þo1.
One of the objectives of Orbit and Formation Control is to align the formation radius r
to þo3, bringing rx to its nominal condition, i.e. rx = 0. Consequently, the three Carte-
sian perturbations in FLOF coordinates are δd, δrx, δrz, which can be introduced in the
formulation of formation mean and differential radius as follows:

∆r = (dnom + δd)þo1,

r = rxþo1 + rzþo3 = (0 + δrx)þo1 + (rnom + δrz)þo3
(4.14)

Furthermore, three additional perturbations are provided by the 3D non-zero components
of the FLOF angular rate vector ω = ωxþo1 + ωyþo2 + ωzþo3, whose norm is defined by
ω = ωnom + δω. According to what has been said so far, the overall formation dynamics
can be described by 6 DoFs.
It is worth to notice that since the three Cartesian coordinates are defined considering a
reference sphere of radius rnom, they perfectly fit the in-line formation type, characterized
by a circular orbit. Conversely, the reference orbit described by the pendulum formation
has an elliptical shape. Nonetheless, it can be proved that this elliptical orbit can be ap-
proximated by the same circular polar orbit of the in-line case and so the discrepancy can
be neglected, thus making the three Cartesian perturbations valid in both cases [10].
The formation dynamics above defined is a necessary starting point for the derivation of
the continuous-time equations of the IFC model. Since, as previously specified, the orbit
and formation dynamics is based on 6 DoFs, the IFC model will involve six differential
equations. The first set of differential equations is obtained starting from the relative po-
sition vector ∆r, while the second set of differential equations comes from the kinematic
equation of the mean formation radius r. Thus, the final perturbation equations are ob-
tained by combining the kinematics equations involving the six selected perturbations with
the formation triangle dynamic equations.
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As a result of this combination, the six scalar second order differential equations are:

d̈ = −ω2
s(r)d(1− 3r2

x

r2 ) + d(ω2
y + ω2

z) + ∆ax

ω̇z = −2ḋ
ωz

d
− ωyωx + ∆ay

d

ω̇y = −3ω2
0(r)rxrz

r2 −
2
d

ḋωy + ωzωx −
∆az

d

r̈x = −ω2
s(r)rx(1− 3r2

z

r2 )− 2ωy ṙz + (ω2
y + ω2

z)rx − 2ωzωxrz + 2rz

d
ωyḋ + rz

d
∆az + ax

r̈z = −ω2
s(r)rz(1− 3r2

x

r2 ) + 2ωy ṙx + (ω2
x + ω2

y)rz − 2rx

d
ωyḋ− rx

d
∆az + az

ω̇x = 2
rz

(−ωxṙz + ωz ṙx) + ωzωy − 2 rx

drz
ωzḋ + rx

drz
∆ay −

ay

rz

(4.15)

where ω2
s = µ

r3 is the mean orbital rate.
As we can notice from Eq. 4.15, the FLOF components of the external mean and differential
accelerations (respectively a and ∆a) have been highlighted. Moreover, it is worth to
underline that, for the derivation of this model, the gravity gradient ∆g and the gravity
term g have been expressed in FLOF coordinates considering only the spherical gravity
term and ideally arranging the higher order terms, from J2 on, as part of the external
acceleration contribution.
Finally, the obtained perturbation equations need to be linearised around the equilibrium
point. As a matter of fact, since the aim of formation control is to keep the formation
variables above defined close to their nominal value, an equilibrium point must be identified.
To do this, under zero input signals, let’s set each formation variable derivative to zero,
obtaining in this way the following equilibrium components:

deq = dnom

rz,eq = rnom

rx,eq = 0
ωy,eq = ωs(rnom) = ωnom

ωx,eq = ωz,eq = 0

(4.16)

Now, let’s define the formation triangle perturbed states as the difference between the
actual and the nominal value and let’s explicit the non-gravitational acceleration input
vector as follows:
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δxf =

 δd = d− dnom

ρx = αrx

ρz = α(rz − rnom)

 , δvf =



δḋ/ωnom

ρ̇x/ωnom

δρ̇z/ωnom

wx = αṙx/ωnom

wy = dnom(ωy − ωnom)/ωnom

wz = αṙz/ωnom

 ,

af =



∆ax

∆ay

∆az

αax

αay

αaz



(4.17)

From Eq. 4.17, we can notice that the perturbed state vector δx is composed by two sub-
vectors δxf and δvf , that respectively represent the length and the rate state variables.
The adimensional factor α = dnom/rnom has been used in order to express all the quantities
in length unit. It is worth to underline that the model simplification introduced by consid-
ering only the spherical gravity term could influence the model capability to describe the
formation dynamic behaviour when the adimensional coefficient α = dnom/rnom is greater
than 0.01. In this case, J2 gravity term contribution to the gravity gradient should be taken
in consideration.
The model equations above defined can be rewritten in equilibrium conditions through the
perturbed state variables and inputs, leading to the following linear time-invariant (LTI)
continuous-time system:

5
δẋf

δv̇f

6
(t) = ωnom

5 0 A12
A21 A22

6 5
δxf

δvf

6
(t) = 1

ωnom

5 0
B2

6
af (t)

yf (t) =
#
C1 C2

$ 5δxf

δvf

6
(t)

(4.18)

where the matrices A12, A21, A22 and B2 are parameter free.
Note that, the matrix A is ninth order and its eigenvalues are

λ1,2,3 = 0, λ4,5,6 = jωnom, λ7,8,9 = −jωnom

Hence, the three eigenvalues λ1,2,3 = 0 need to be stabilized, while the others are imposed
by nature.
From the complete model defined in Eq. 4.18, it is possible to consider a restricted seventh
order one, which is proven to be observable and controllable when assuming yf (t) = δxf (t).
Such model considers only the three Cartesian perturbations ρx, ρz, δd and their normalized
rates wx, wz, wd, plus the normalized perturbation of the orbital rate wy. In addition, also
the input is restricted to the in-plane input variables in af . These last modifications lead
to the following 7-th order LTI system:
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5
ṙ
ẇ

6
(t) =

5 0 Iωnom

A21 A22

6 5
r
w

6
(t) =

5 0
B2

6
u(t)

y(t) =
#
I 0

$ 5r
w

6
(t),

5
r
w

6
(0) =

5
r0
w0

6 (4.19)

where:

r =

ρx = αδrx

ρz = αδrz

δd

 , w =


wx = αṙx/ωnom

wz = αṙz/ωnom

wd = ḋ/ωnom

wy = dnom(ωy − ωnom)/ωnom

 ,

u =


ufx

ufz

∆ufx

∆ufz

 =


αax

αaz

∆ax

∆az



A21 = 3ωnom


1 0 0
0 1 0
0 1 0
−1 0 0

 , A22 = 2ωnom


0 −1 1 0
1 0 0 1
0 0 0 1
0 0 −1 0

 ,

B2 =


α 0 0 1
0 α 0 0
0 0 1 0
0 0 0 −1

 /ωnom

(4.20)

4.4 Nonlinear Model vs Hill-Clohessy-Wiltshire
Equations

The first necessary step to be sure that the Hill-Clohessy-Wiltshire equations can represent
in a good way the dynamics of our system is to compare the free-evolution of its state
variables with the evolution of the corresponding ones obtained from the nonlinear model.
In order to put the two models in the same conditions, the simulation with the nonlinear
model must be performed after having zeroed the external disturbance forces caused by
atmospheric drag and solar pressure, and after having modified the gravity model in order
to consider only the spherical term. In addition, since it is necessary to start from the same
initial conditions in both cases, a frame transformation of the initial satellites’ position and
velocity vectors from the inertial frame to the HCW frame is needed.
Recalling that HCW equations are based on the assumption of using a circular target orbit,
let’s consider as target an Earth-centered orbit of radius rnom = (RE + h)(1 − e), where
RE = 6.3781 × 106 m is the Earth equatorial radius, h = 3.453 × 105 m is the nominal
formation altitude and e = 10−3 is the eccentricity value used in the nonlinear simulator.
Moreover, since we are assuming a circular orbit, the nominal angular velocity can be
computed as ωnom =

ð
µ/r3

nom = 0.0011 rad/s.
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To identify the satellites’ nominal initial position and velocity vectors in the inertial frame,
we need firstly to transform the position and velocity vectors on the equatorial plane written
in the Eq. 4.21, by means of the matrix T defined in the Eq. 4.22.

r =

rnom

0
0

 , v =

 0
vnom =

ñ
µ

rnom

0

 (4.21)

T = R3(Ω)R1(i)R3(ω) (4.22)

where:

R3(Ω) =

cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

 , R1(i) =

1 0 0
0 cos i − sin i
0 sin i cos i

 , R3(ω) =

cos ω − sin ω 0
sin ω cos ω 0

0 0 1


The transformation matrix T is composed by three rotations: the first is about the z axis
of an angle Ω = 0 rad, the second is about the x axis of an angle i = 1.1519 rad and the
third is about the z axis of an angle ω = 0.0074 rad for the nominal position of Satellite 1
and of an angle ω = −0.0074 rad for the nominal position of Satellite 2. Let’s recall that
Ω, i and ω represent respectively the Right Ascension of the Ascending Node (RAAN),
the orbit inclination and the argument of perigee. The above mentioned values of RAAN
and inclination are the same used for the nonlinear simulator, while the values of the two
arguments have been computed in order to guarantee a distance between the satellites
equal to the nominal value dnom = 100 km.
Finally, the initial conditions of the two satellites in the HCW frame are computed by
the difference between the satellites’ initial position and velocity vectors in the inertial
frame given by the nonlinear simulator, and their nominal values obtained by means of the
previous transformation, as illustrated in Figure 4.3.

rhcw0 = r0 − rnom0

vhcw0 = v0 − vnom0
(4.23)

Thus, the initial conditions of the two satellites in the HCW frame, obtained from Eq.
4.23, are respectively:

x01 =



−5.388× 10−5

26.904
1.4850×−12

−0.0309
3.8508

−2.5557× 10−13

 , x02 =



−5.388× 10−5

−26.904
−1.4850×−12

0.0309
3.8508

−2.5557× 10−13

 (4.24)

The six elements of each vector represent the state variables of the HCW system, namely
the components of position and velocity vectors expressed in the HCW frame.
In Figures 4.4 and 4.5 are compared the position and velocity inertial components obtained
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Figure 4.3: Tranformation from Inertial to HCW Frame
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Figure 4.4: Comparison between HCW Model and Nonlinear Model (Position Components)

from the HCW system with the corresponding variables obtained from the nonlinear model.
For simplicity only the Satellite 2 variables have been reported in this pictures, but the same
considerations hold also for Satellite 1. As we can notice, this comparison shows a faster
divergence of the HCW position components with respect to the corresponding nonlinear
ones. This may imply an inadequacy of the Hill-Clhoessy-Wiltshire equations in describing
the NGGM system due to the fact that these equations lead to a very approximated model
where a lot of effects are completely disregarded.
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Figure 4.5: Comparison between HCW Model and Nonlinear Model (Velocity Components)

4.5 Nonlinear Model vs IFC Model
Since the comparison between Nonlinear model and HCW equations has made it clear that
the Hill-Clohessy-Wiltshire model does not fit particularly well this kind of control problem,
let’s now focus on the Integrated Orbit and Formation model, explained in detail from a
theoretical point of view in Section 4.3. Even in this case, the first necessary step is the
comparison between the free-evolution of the formation state variables with the evolution
of the corresponding variables obtained from the nonlinear model. In this case, in order to
put the two models in the same conditions, besides zeroing the external disturbance forces,
we need also to modify the gravity model of the nonlinear simulator in order to consider
only the spherical term. This modification is needed because in the formulation of the IFC
model only the spherical gravity term has been taken into account, ideally treating all
the higher order terms as part of the external acceleration components. In addition, since
it is necessary to start from the same initial conditions, using the initial FLOF position
and velocity vectors given by the nonlinear simulator, it is possible to derive the following
initial conditions for the IFC model:

x0 =



0
−102.77

53.81
−1.18× 10−11

0
0

200.25


(4.25)

Notice that the values of rnom, dnom and ωnom that have been used to find these initial
conditions, are those corresponding to the values specified in the nonlinear simulator, i.e.
rnom = (RE + h), dnom = 100 km and ωnom = 0.001145201778066 rad/s.
In Figure 4.6 the output variables obtained from the IFC model are compared with the
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Figure 4.6: Comparison between IFC Model and Nonlinear Model

corresponding variables given by the Nonlinear model. Specifically, only the first three
state ρx, ρz, ∆d have been considered since they are the perturbed states needed for the
verification of the triangular virtual structure stability. As we can notice, the behaviour of
the 2nd and 3rd state variables, namely ρz and ∆d, is very similar in both cases, with a
discrepancy of only few tens of meters. The 1st state ρx, instead, shows a more significant
divergence since the values have different order of magnitude. However, as shown in more
detail in Figure 4.7, the values of ρx are in both cases very close to zero (10−6 for the
Nonlinear model and 10−11 for the IFC model), thus this difference is not particularly
worrying.
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Figure 4.7: Comparison between IFC Model and Nonlinear Model: ρx
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4.6 HCW Model vs IFC Model
In the previous sections, the theoretical description of both the HCW equations and the
IFC model has been presented. For both cases we stressed the attention on the comparison
between the free evolution of each model’s state variables and the corresponding variables of
the real plant, represented here by the high-fidelity nonlinear model, described in Chapter 3.
From the comparisons performed by placing the two models in the same initial conditions
and using the same order of gravity, the Figures 4.4, 4.5 and 4.6 have been obtained.
Looking at the first two pictures, namely those referred to the comparison between HCW
model and Nonlinear model, it has been emphasized how the plot referred to the position
components showed a faster divergence with respect to the one referred to the velocity
components. Indeed, as it is evident reading on the y-axis, the order of magnitude of these
components is quite big, so even if on a cursory glance, the difference seems minimal, in
reality there is a considerable disparity between the compared quantities.
Looking, instead, at the last figure, that is the one concerning the comparison between
IFC model and Nonlinear model, it is possible to observe a difference of only few tens of
meters between the two models. However, to be able to make sure to the greater capability
of the IFC model in describing our system dynamics, it is convenient to compare the same
quantities. Thus, since the Formation Control focuses on the satellite-to-satellite distance,
let’s plot in Figure 4.8 the comparison between HCW model and Nonlinear Model stressing
the attention on the quantity ∆d = d− dnom.
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Figure 4.8: Comparison between HCW Model and Nonlinear Model: ∆d

From this figure, it is evident that this quantity diverges much faster in HCW model than
in the Nonlinear one, where, on the contrary, it remains almost flat.
Finally, for the sake of completeness, it is worth to compare this plot with the one reported
in the third row of Figure 4.6, in which the same quantity ∆d is shown in the comparison
between IFC model and Nonlinear model. Analyzing the two plots, it becomes clear how
the IFC model is certainly more effective in approximating the real plant dynamics as it
shows a behavior much more similar to the nonlinear one.
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4.7 NMPC framework for Formation Control
From the previous section, it has been clarified that the most suitable model to be used
for the internal control dynamics is the Integrated Formation Control (IFC) model. Conse-
quently, from now on, in the development of the NMPC framework for this specific control
problem, the internal prediction will always rely on this linearized model, which is the one
that, despite its simplifications, best approximates the real plant dynamics.
Before introducing the implementation of the Formation Control block diagram via NMPC
strategy, it is worth to recap some general features to be taken into account. First of all,
let’s recall from Section 1.4 that the overall NGGM control unit is organized in a hier-
archical way, with two nested loops constituted by a wide-band Drag-Free Control and a
narrow-band Orbit and Formation Control. As consequence, to be sure that drag-free con-
trol does not influence the formation authority, the orbit and formation control should be
designed as ideally low-frequency with respect to the the other one. Therefore, its sampling
time Ts should be bigger than the one used for drag-free control, i.e. bigger than 1 s. Then,
the prediction horizon needs to be chosen with a trial and error procedure considering that
generally a large Tp increases the closed-loop stability properties but a "too large" Tp may
reduce the short time tracking accuracy.
Further, it is worth to underline that the problem under study is also constrained by strong
requirements on the command input, which should remain very limited in order to guar-
antee a very low thruster authority. Moreover, another constraint to be included in the
optimization problem concerns the requirement on the formation distance, whose variation
should stay within a limit of the 10% from the nominal value, that means it should stay
between 90 km and 110 km, as specified in Table 4.1. Thanks to the NMPC framework,
it is possible to manage all these constraints on state and input directly by setting upper
and lower bounds on the control command and by using a constraint on the 3rd state of
the IFC model, namely ∆d = d − dnom, so as to limit its variation to a maximum of 10
km.

4.7.1 NMPC with Ideal Plant
To develop an NMPC framework for the specific control problem under study we proceeded
step by step considering first of all an ideal situation where the plant is identical to the
internal prediction model, namely the IFC model, whose LTI system formulation is reported
in Eq. 4.19. As already explained, this system is proven to be observable and controllable
when C =

#
I 0

$
, that means when the output coincides with the first three perturbed

states ρx, ρz, and ∆d. The ideal plant, in this case, has been formulated using the same
IFC system equations, with the only difference in the matrix C, that has been chosen equal
to the identity matrix (C = I7×7) in order to give as output all the seven states needed for
the control algorithm.
The state constraint introduced at this step regards the third state ∆d, that is the one
that we want to maintain inside the limit specified by the scientific requirements. At this
purpose a state constraint Xc = {x : ë∆dë ≤ 10000} has been introduced. For what
concerns the input constraints, instead, we proceeded firstly choosing them as large as
possible, and then progressively reducing their order of magnitude until reaching the limit
after which the system stability was no longer guaranteed. Figure 4.9 depicts the Simulink
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scheme adopted in the development of an NMPC framework in ideal conditions, that is
with the plant ideally equal to the prediction model. Inside the block "NMPC law" is

Figure 4.9: NMPC Framework with Ideal Plant

present a structure which defines the IFC internal prediction model, the state and input
constraints and all the other parameters which characterize the NMPC framework, such
as the sampling time, the prediction horizon, the weight matrices and so forth. The block
"IFC equations", instead, represent the plant, that in this case exploits the same system
equations of the IFC model. The seven states exiting from the plant are feedbacked inside
the NMPC law, which takes as input also the reference to be tracked, and return as output
the optimal command obtained from the solution of the the specified optimization problem.
The reference to be tracked in this case is a vector r = [0; 0; 0], since we ideally want the
perturbed states goes to zero.

4.7.2 NMPC with Nonlinear Plant

The NMPC configurations, which show a good behaviour with the ideal plant, need to
be later inserted inside the nonlinear simulator composed by the system nonlinear model
described in Chapter 2, to which the drag-free control block had been added, as explained
in detail in Chapter 3. Indeed, the total non-gravitational forces acting on each spacecraft
must be given by the resultants of the atmospheric disturbances and the control actions
given by the actuators, namely the drag-free and the formation control command forces.
However, before summing these two contributions, some transformations are needed. In-
deed, looking at Eq. 4.20 we can notice that the input of the IFC model is given the
in-plane mean accelerations pre-multiplied by the adimensional factor α and the in-plane
differential accelerations, as reported in the following equation:

u =


ufx

ufz

∆ufx

∆ufz

 =


αax

αaz

∆ax

∆az

 . (4.26)
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In order to sum the same quantities we need to derive from the NMPC command input u
the single satellites accelerations a1 and a2. At this purpose, let’s recall that

a = a1 + a2

2 , ∆a = a1 − a2. (4.27)

Therefore, merging Eqs. 4.26 and 4.27 it is possible to derive the following system:
ufx = αa1x+a2x

2
ufz = αa1z+a2z

2
∆ufx = a1x − a2x

∆ufz = a1z − a2z.

(4.28)

From the solution of the system in Eq. 4.28, the in-plane FLOF coordinates of the satellites’
accelerations a1 and a2, can be derived:

a1x = 2ufx+α∆ufx

2α

a2x = 2ufx−α∆ufx

2α

a1z = 2ufz+α∆ufz

2α

a2z = 2ufz−α∆ufz

2α .

(4.29)

Consequently, knowing that the out-of-plane coordinates a1y and a2y are equal to zero, we
can write the satellites’ FLOF acceleration vectors given by thrusters as

a1 =

a1x

a1y

a1z

 =


2ufx+α∆ufx

2α
0

2ufz+α∆ufz

2α


a2 =

a2x

a2y

a2z

 =


2ufx−α∆ufx

2α
0

2ufz−α∆ufz

2α

 .

(4.30)

Further, since the drag-free command forces are expressed in the spacecraft body reference
frame, the single satellites accelerations a1 and a2, need to be multiplied by the spacecraft
mass and than two frame transformations have to be performed: the first one from FLOF
to Inertial frame and the second one from Inertial to Body frame.
Figure 4.10 depicts the first level of the nonlinear simulator, to which the formation control
block has been added. As we can notice, this block takes as input the IFC state variables
and the FLOF quaternion to perform the frame transformation mentioned before. The
inertial satellites’ accelerations a1 and a2 exiting from the formation control block feed
the respectively the Satellite 1 and Satellite 2 blocks. Going more into detail, inside the
formation control block we can find the NMPC control law and all the transformations
needed to derive the satellites’ accelerations starting from the NMPC command input, as
previously described in Eqs. 4.29 and 4.30. In addition, inside this block is also performed
the transformation from FLOF to Inertial frame, as shown in Figure 4.11.
Finally, inside Satellite 1 and Satellite 2 blocks the last transformation from Inertial to
Body frame is performed and the acceleration vectors are multiplied by the spacecraft
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Figure 4.10: Nonlinear Simulator with Formation Control Block

mass in order to obtain the formation control command force that enters in a summing
node with the drag-free command force, as represented in Figure 4.12. The quantity exiting
from this summing node contributes with the atmospheric disturbances to form the Non-
gravitational Body Forces needed for the orbital dynamics.

4.8 Simulated Results
In this section, some results concerning the simulations performed after the introduction
of the NMPC-based formation control are presented. Since the true spacecraft variables
cannot be obtained directly from the actual plant, a wide long-run simulation campaign
was performed using the high-fidelity simulator described in the previous chapters. In the
following, we select the most relevant configurations among all the simulations carried out
during this campaign, and we summarize the obtained results. In all the simulated condi-
tions, the NGGM mission requirements, detailed in Table 4.1, were checked. All the tests
were performed with a simulation time lasting for 2000 orbits.
As previously specified, for the development of an NMPC framework for the NGGM for-
mation control, a sampling time Ts as large as possible had to be considered in order to
avoid interference with the wide-band drag-free control. For what concerns the prediction
horizon, instead, it was chosen with a trial and error procedure remaining as close as possi-
ble to the duration of the orbital period, that is P = 5487 s. For each NMPC configuration
reported in the following, the main design parameters have been grouped in some tables.
Specifically, these relevant parameters are: the sampling time Ts, the prediction horizon
Tp, the weight matrices Q, P and R, and the command lower and upper bounds Lb and Ub

which represent the input constraints. Further, another quantity to be taken into account
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Figure 4.11: Formation Control Block Scheme

is the order of spherical harmonics used in the nonlinear simulator for the gravity model.
As a matter of fact, the first three simulations were performed using a 2nd order gravity
model J2 in order to reduce the gap between the nonlinear model, namely the plant, and
the internal prediction model of the NMPC algorithm which, as explained in Section 4.3,
considers only the spherical gravity term while treating the higher order terms as external
disturbances.
The first configuration presented in this section is reported in Table 4.2. According to what
has been said so far, the prediction horizon was chosen with a trial and error procedure
as Tp = 4000 s; indeed, this value turned out to be the best trade off between closed-loop
stability properties and tracking accuracy. Then, the sampling time was chosen as large
as possible noticing that values greater than Ts = 400 s failed in guaranteeing the system
stability. Further, the lower and upper bounds on command input were selected low enough
to ensure a very small command effort, and the diagonal elements of the weight matrices
were obtained with a trial and error procedure. Finally, as already explained, the J2 (2nd
order) gravity term was initially adopted for the gravity model of the nonlinear simulator
so as to proceed step by step in reducing the gap with the IFC internal prediction model,
however leading in this way to a less realistic situation. The NMPC configuration in Ta-
ble 4.2 was firstly simulated considering the ideal case where the plant is exactly equal
to the model used for the prediction, as detailed in Section 4.7.1. Figure 4.13 depicts the
behaviour of the first three state variables, namely the output variables ρx, ρz and ∆d of

66



Formation Control

Figure 4.12: Satellite Block Scheme after Introducing the Formation Control

Parameter NMPC Configuration 1
Ts 400 s
Tp 4000 s
Q diag([1,1,1])
P diag([1,1,1])
R diag([0.5,0.5,0.5,0.5])
Lb [-7e-7, -7e-7, -5e-7, -5e-7]
Ub [ 7e-7, 7e-7, 5e-7, 5e-7]
Gravity Order 2

Table 4.2: NMPC Configuration 1

the IFC model, in this ideal situation. As we can notice from the picture, the developed
NMPC framework is able to stabilize the system not only maintaining limited the value of
the states but also making their amplitude converge towards the zero value.
After having make sure that the identified configuration worked in the ideal case, we imple-
mented it on the high-fidelity simulator composed by the nonlinear plant affected by both
atmospheric and gravity disturbances as detailed in Section 4.7.2. Figures 4.14, 4.15 and
4.16 represent respectively the behaviour of the three system output states after a long-run
simulation lasting 2000 orbits. In each figure, the bounds imposed on each variable by the
formation requirements in Table 4.1 have been highlighted with a green line. In particular,
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Figure 4.13: NMPC Configuration 1: Behaviour of the State Variables (Ideal Plant)

the formation requirements are split into lateral, radial and distance variations to be cal-
culated with respect to a nominal circular orbit. Specifically, the requirements on distance
and lateral variations, namely ∆d and ρx, are expressed in terms of percentage with respect
to the nominal distance dnom = 100 km, while the requirement on the radial variation ρz

is expressed as a percentage with respect to the nominal altitude h = 3.453× 105 m.
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Figure 4.14: NMPC Configuration 1: Formation Lateral Variation

As shown in the figures here reported, because of the presence of model uncertainties and
plant nonlinearities, in the realistic situation the behaviour of these state variables get
worse if compared to the ideal one in Figure 4.13, in as much as the developed NMPC
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Figure 4.15: NMPC Configuration 1: Formation Radial Variation
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Figure 4.16: NMPC Configuration 1: Formation Distance Variation

framework is not able anymore to ensure the convergence towards the zero value. Never-
theless, looking at the requirements in Table 4.1, we can notice that they only require the
NMPC capability to ensure the orbit and formation long-term stability, though admitting
large ‘natural’ fluctuations around the altitude and distance nominal values. Consequently,
since the variables do not diverge and their value widely remain inside the specified limits,
it is possible to state that this first NMPC configuration is anyway able to stabilize the
system as the only task of orbit and formation control is to maintain the state variables
bounded in order to meet the scientific requirements, even without necessarily guarantee-
ing the tracking accuracy.
In the following (Figure 4.17), the plot of the Satellite-to-Satellite Distance is reported in
order to show that this variable remains around its nominal value throughout the entire

69



Formation Control

2 3 4 5 6 7 8 9 10 11

Time [s] 10
6

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

D
is

ta
n

c
e

 [
m

]

10
4 Satellite-to-Satellite Distance

Figure 4.17: NMPC Configuration 1: Satellite-to-Satellite Distance

simulation time thanks to the action of the control system.
However, it is worth to recall that the aim of orbit and formation control consists not only
in guaranteeing the formation stability but also in cancelling as much as possible the drag-
free residual acceleration acting on the two satellites. In this context, in order to have an
idea about how much the developed control framework is able to fulfill this last task, let’s
report in Figure 4.18 the three components of the body drag-free residual acceleration. For
the sake of brevity, only the Satellite 1 drag-free residual acceleration has been reported
since the behaviour of this quantity is more or less the same for both satellites.
The performed simulations made it clear that the drag-free residual acceleration was di-
rectly proportional to the command input. As a matter of fact, the behaviour depicted
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Figure 4.18: NMPC Configuration 1: Satellite 1 Body Residual Acceleration
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in the figure follows the shape of the command action that with this configuration was
always in saturation because of the very stringent input constraints. From Figure 4.18, we
can notice that the maximum value of the drag-free residual acceleration obtained with
this configuration is about 5 × 10−5 m/s2. Even if this value is quite small, in order to
furtherly increase the effectiveness of the developed orbit and formation control, several
other NMPC configurations were tested during our simulation campaign.
The second presented NMPC configuration, whose parameters have been collected in Table
4.3, had the intent to improve the simulated results presented so far by reducing the input
constraints in order to lower the residual acceleration. At this purpose, in the new configu-

Parameter NMPC Configuration 2
Ts 400 s
Tp 4000 s
Q diag([1,1,1])
P diag([1,1,1])
R diag([1e17,1e17,1e15,1e14])
Lb [-αe-5, -αe-5, -5e-5, -5e-5]
Ub [ αe-5, αe-5, 5e-5, 5e-5]
Gravity Order 2

Table 4.3: NMPC Configuration 2

ration the command lower and upper bounds have been modified in order to have smaller
limits on the first two input components, namely ufx and ufz, while the diagonal elements
of the R matrix, that is the one related to the command activity, have been chosen as large
as possible with respect to the Q and P matrices, in order to penalize the control signal
and try to stabilize the system with less weighted energy. Even in this case, the first sim-
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Figure 4.19: NMPC Configuration 2: Behaviour of the State Variables (Ideal Plant)
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ulation was carried out considering the ideal situation (plant = prediction model), whose
results have been reported in Figure 4.19. As it is evident, this time, even in the ideal case
the developed NMPC framework is not able to guarantee the state convergence to zero
but succeeds in any way in stabilizing the system maintaining limited the state variation.
Introducing this second NMPC configuration on the nonlinear plant, the behaviour of the
three output variables with their respective bounds have been reported in Figures 4.20,
4.21 and 4.22.
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Figure 4.20: NMPC Configuration 2: Formation Lateral Variation
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Figure 4.21: NMPC Configuration 2: Formation Radial Variation
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Figure 4.22: NMPC Configuration 2: Formation Distance Variation

As for the previous case, the state variables widely remain inside the green horizontal lines
which represent for each variables the correspondent requirement of Table 4.1. In this way,
the following figures are able to prove the capability of the new NMPC configuration of
ensuring that the perturbations affecting the spacecraft altitude and the inter-satellite dis-
tance remain bounded during the mission lifetime. At this point, as previously done for
the first configuration, the plot of the formation distance has been reported (Figure 4.23)
in order to clearly show that even with these parameters the NMPC is able to ensure the
formation stability and maintain the Satellite-to-Satellite Distance close to its reference
value.
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Figure 4.23: NMPC Configuration 2: Satellite-to-Satellite Distance
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Further, besides guaranteeing the formation stability, this configuration is also able to im-
prove the cancellation of the drag-free residual acceleration, whose plot in Figure 4.24,
exhibits a maximum value a little smaller than before (3.5 × 10−5m/s2), proving that
reducing the command input it is possible to better counteract the drag-free residual ac-
celeration.
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Figure 4.24: NMPC Configuration 2 : Satellite 1 Body Residual Acceleration

In order to have a more significant reduction of this quantity, a third NMPC configuration,
reported in Table 4.4 was implemented. Taking into account the fact that the drag-free
residual acceleration follows the behaviour of the command input, the command lower and
upper bounds have been even more reduced, considering smaller limits also on the last two
input components ∆ufx and ∆ufz. Nevertheless, in order to use such a stringent command
constraint, it has become necessary to choose the diagonal elements of the R matrix smaller
than those of the Q and P matrices, letting the input to saturate again as bigger elements
were not able anymore to further lower the command action. Moreover, it is worth to point
out that in order to compensate the introduction of a stricter input constraint and ensure
the system stability a lower value of sampling time Ts has been adopted.

Parameter NMPC Configuration 3
Ts 10 s
Tp 4000 s
Q diag([1,1,1])
P diag([1,1,1])
R diag([0.5,0.5,0.5,0.5])
Lb [-1e-7, -1e-7, -1e-7, -1e-7]
Ub [ 1e-7, 1e-7, 1e-7, 1e-7]
Gravity Order 2

Table 4.4: NMPC Configuration 3
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Figure 4.25 represents the behaviour of the first three state variables in the ideal case (plant
= prediction model). This time, the first two states, namely ρx and ρz, remain limited while
the third state ∆d slowly converges towards a value close to zero.
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Figure 4.25: NMPC Configuration 3: Behaviour of the State Variables (Ideal Plant)

After this initial step, the NMPC configuration written above was embedded in the non-
linear model for performing the simulation in realistic conditions, whose results have been
reported in Figures 4.26, 4.27 and 4.28. As it is evident, despite the larger oscillations
introduced on the plot of third state, the implemented NMPC controller is still able to
stabilize the system since its states remain inside the required bounds highlighted in green.
The worsening with respect to the ideal case is obviously caused by the fact that in the
realistic situation we are considering a nonlinear plant much more complex than the model
used for the internal prediction of the control algorithm.
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Figure 4.26: NMPC Configuration 3: Formation Lateral Variation
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Figure 4.27: NMPC Configuration 3: Formation Radial Variation
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Figure 4.28: NMPC Configuration 3: Formation Distance Variation

The Satellite-to-Satellite distance behaviour obtained with this third NMPC configura-
tion is shown in Figure 4.29, again with the aim to prove that, as in the previous cases,
the implemented control system succeeds in maintaining the two satellites at the desired
distance.
Finally, to verify that the new NMPC framework brings an improvement with respect to
the previous configurations, the last thing to check is the value of the drag-free residual
acceleration. According to what has been said before, having reduced the command input,

76



Formation Control

0 2 4 6 8 10 12

Time [s] 10
6

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

D
is

ta
n

c
e

 [
m

]

10
5 Satellite-to-Satellite Distance

Figure 4.29: NMPC Configuration 3: Satellite-to-Satellite Distance

the plot of the drag-free residual acceleration should exhibit a behaviour that follows the
shape of the control signal reaching a maximum level much smaller than before.
Figure 4.30 is the one related to the drag-free residual acceleration that, as expected, shows
a clear improvement if compared to the previous cases. As a matter of fact, its amplitude
oscillates between a minimum and a maximum value following the shape of the command
input that goes always in saturation due to the small lower and upper bounds. The im-
provement is evident from the fact that the maximum value is reduced of an order of
magnitude with respect than before (6× 10−6m/s2).
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Figure 4.30: NMPC Configuration 3: Satellite 1 Body Residual Acceleration

Now, let’s recall that in the simulations discussed so far a 2nd order gravity model was
adopted for the nonlinear plant. J2 is certainly one of the most popular gravity models
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since it allows to consider the flattening of the Earth, differently from the spherical one.
Nonetheless, even if it is widely adopted for a lot of space applications, we need to consider
that this gravity model could result too approximated for the ambitious goal of our study,
that is the measurement of the temporal variations of the Earth gravity field. Consequently,
a more accurate gravity model needs to be adopted for the problem under study. At this
purpose, the aim of the fourth and final configuration, whose parameters have been re-
ported in Table 4.5, is to implement an NMPC framework able to guarantee the formation
stability using a nonlinear model that exploits the 30th order of spherical harmonics for
the derivation of the gravity potential.

Parameter NMPC Configuration 4
Ts 10 s
Tp 4000 s
Q diag([1, 1, 1])
P diag([1, 1, 1])
R diag([0.5, 0.5, 0.5, 0.5])
Lb [-αe-5, -αe-5, -5e-5, -5e-5]
Ub [ αe-5, αe-5, 5e-5, 5e-5]
Gravity Order 30

Table 4.5: NMPC Configuration 4

Obviously, increasing the order of the gravity model, the gap between the IFC model used
for the internal prediction of the control algorithm and the nonlinear model used to simulate
the plant, significantly increases. Indeed, because of this modification, it became necessary
both to relax again the input constraints, restoring those of the second configuration, and
to maintain the sampling time small as the one used in the third configuration.
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Figure 4.31: NMPC Configuration 4: Behaviour of the State Variables (Ideal Plant)
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The simulations performed with this last NMPC framework have shown that the behaviour
of the state variables in the ideal case (plant = prediction model), depicted in figure 4.31,
is similar to the one obtained with the second configuration as the parameters adopted in
the two cases are exactly the same apart from the sampling time Ts. In particular, with this
configuration, it is possible to observe a slightly faster convergence of the state variables
precisely because of the smaller value of the sampling time.
After the simulation with the ideal plant, we introduced the 30th order gravity term inside
the nonlinear model and we performed the simulation in realistic conditions, whose results
have been reported in Figures 4.32, 4.33 and 4.34 with their required bounds.
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Figure 4.32: NMPC Configuration 4: Formation Lateral Variation
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Figure 4.33: NMPC Configuration 4: Formation Radial Variation
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Figure 4.34: NMPC Configuration 4: Formation Distance Variation

As we can notice, this configuration brings some worsening in the states ρx and ρz that are
now affected by greater fluctuations of the amplitude value, but hopefully these worsening
do not impinge the NMPC capability of stabilizing the triangular virtual structure since it
is still capable of ensuring that the perturbations affecting the formation altitude and the
satellite-to-satellite distance remain bounded during the entire simulation time. Further,
the plot on the formation distance in Figure 4.35 clearly shows that the the command
action is able to avoid the natural divergence of this quantity, by forcing it to stay close to
its nominal value dnom = 100 km.
Finally, even for this configuration we checked the capability of the implemented orbit and
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Figure 4.35: NMPC Configuration 4: Satellite-to-Satellite Distance
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formation control to cancel the drag-free residual acceleration. In keeping with the con-
siderations previously explained about the relation between the command input and the
residual acceleration, the plot of this quantity in Figure 4.36 shows a maximum value of
3.5×10−5m/s2, equal to the one obtained with the second configuration. The reason of this
similarity consists in the fact that the two configurations adopt the same input constraints.
However, the shape of this signal is not exactly equal to that in Figure 4.24 because of the
use of a different weight matrix R, which in this case is composed by very small diagonal
elements that let the command to saturate.
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Figure 4.36: NMPC Configuration 4: Satellite 1 Body Residual Acceleration
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Chapter 5

Formation Control with Orbit
Propagators

This chapter is aimed at introducing the main modelling concepts regarding the develop-
ment of a low-fidelity orbit propagator to be included inside the non-linear model of our
system described in the previous chapters. The reason behind the realization of an orbit
propagator consists in the need to take into account the difficulty that exists in the trans-
mission of measurement data between one satellite and its companion due to the absence
of a radio-frequency inter-satellite link that makes it necessary assuming long sampling
times of measurements (e.g, one orbit).
Consequently, in order to make the simulator even more realistic, low-fidelity orbit propa-
gators have been implemented with the objective of computing on board of each spacecraft
the information about the position and velocity of the companion satellite during the time
intervals in which no real-time information is available. Indeed, the term propagation con-
cerns the determination of the motion of a body (e.g., a spacecraft) over time. According to
the Newton’s laws, the motion of a body depends on its initial state (i.e., its position and
orientation at some known instant) and the forces acting upon it during its time evolution.
The novelty of the propagators implemented in the following consists in their ability to
compute accurately the companion satellite orbit, despite having been designed with a
computational complexity as low as possible, as it is suggested by the term "low-fidelity"
with which we have classified them. Indeed, these propagators do not include all the models
of the disturbing forces acting on the satellite, but attempt to approximate the effects of
some forces while completely disregarding others. Thanks to their simplicity, low-fidelity
propagators are generally the fastest to use and the most appropriate for the proposed
design scenario.
Technically, the nominal orbit of a spacecraft is influenced by all the atmospheric and
gravitational effects described in Section 2.3, nevertheless for the modelling of these propa-
gators, only the perturbation due to the gravity force has be taken into account, completely
neglecting the other atmospheric disturbances. Moreover, to reduce the computational com-
plexity, the gravity model adopted inside the orbit propagator only accounts for the secular
variations of the orbital elements due to Earth’s oblateness. At this purpose, the model
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developed in the following adopts the 4th zonal coefficient of the Earth’s gravitational po-
tential (J4), as it is sufficient to obtain the calculation accuracy required for our purpose.
Indeed, it is worth to underline that for the proposed design scenario accuracy is not a
premium, since the main objective is to design a propagator able to integrate satellite ve-
locity and position with the aim to compute the spacecraft orbit without impinging the
capability of the control system to stabilize the formation virtual structure.
In the following, three types of orbit propagators will be implemented. Starting from the
simplest one, presented in Section 5.1, we will proceed by trying to improve the way in
which the satellite acceleration is derived in order to reduce the approximations and con-
sequently realize a more reliable propagator despite maintaining low the computational
complexity.

5.1 Basic Orbit Propagator
The approach adopted for the realization of the orbit propagator presented in the following
consists in a cascade of two integrators through which to derive the satellite’s propagated
velocity and position starting from an approximated value of the satellite acceleration.
For simplicity, in the following we will consider only the orbit propagator of Satellite 2,
which is present on board of Satellite 1, but obviously all the considerations that will
be made hold also for the orbit propagator of Satellite 1 which is embedded on board of
Satellite 2.
According to what has been previously said, due to the absence of a radio-frequency inter-
satellite link, we need to assume a sampling time of measurement of at least one orbit;
this means that the information about Satellite 2 position and velocity provided by GPS
measurements becomes available on Satellite 1 once every orbital period. During the time
intervals in which no real-time information is available, Satellite 2 position and velocity
need to be computed by means of the orbit propagator. Consequently, the Satellite 2 orbit
propagator is embedded inside the Satellite 1 block scheme and receives its input from
the sensor measurements of Satellite 2, as it is shown in Figure 5.1. The outputs of the
orbit propagator are the propagated Satellite 2 velocity and position which will be used
to derive the Formation Variables on board of Satellite 1. In the same way, on Satellite 2
will be present the orbit propagator of Satellite 1, whose outputs will be used to derive the
Formation Variables on board of Satellite 2. Since each spacecraft is able to see the real
information about its own motion and the propagated information about its companion
motion, the formation variables computed on board of each spacecraft are slightly different.
As a consequence, it is necessary to embark on board of each satellite a block containing
the developed NMPC-based orbit and formation control system which takes as input the
formation variables, or more precisely the IFC state variables, computed by the spacecraft
on which it is mounted. As it is depicted in Figure 5.1, the Formation Control block
provides as output not only the acceleration command needed by the spacecraft on which
it is embedded but also the acceleration command related to the other satellite. The orbit
propagator presented in this section is the simplest one, thus the information about the
acceleration command related to the companion satellite will be not used here, nevertheless
it will be exploited for the improved versions presented later.

83



Formation Control with Orbit Propagators

Figure 5.1: Satellite Block Scheme with Basic Orbit Propagator

As already mentioned, the proposed orbit propagators have been developed with the aim of
reducing as much as possible the computational load. Consequently, only the perturbation
caused by the gravity force has been taken into account neglecting all the other atmospheric
disturbances. In this way, in the determination of the approximated value of the satellite
acceleration, that is needed to compute the satellite velocity and position, only the term
related to the gravitational field is considered while all the non-gravitational forces that
actually influence the satellite dynamics are not taken into account. Inside the block of the
orbit propagator, reported in Figure 5.2, it is present only the gravity model which takes
as input the information provided every sampling time by the GPS measurements and
gives as output the value of the gravity acceleration obtained using a 4th order of spherical
harmonics. Indeed, this gravity model, being able to provide a quite good approximation of
the actual gravitational field, has turned out to be the best trade-off between accuracy and
computational complexity. In the Simulink scheme of our simulator, in order to account
for the long sampling time of measurement data, two rate transition blocks are used. The
sample time of these blocks is decided by a parameter called "propagatorRT" which is set
according to the sampling time of the measurement data (e.g, one orbit or more).

84



Formation Control with Orbit Propagators

Figure 5.2: Basic Orbit Propagator

In the real satellite dynamics, detailed described in Section 2.2, a lot of contributions
are involved. In particular, the satellite acceleration aCoM is given by the sum of the
negative gravity acceleration g and all the non-gravitational accelerations which include the
atmospheric disturbances (e.g, drag force fdrag and solar pressure fsun) and the command
actions of drag-free control udrag and formation control uform:

aCoM = −g + fdrag

m
+ fsun

m
+ udrag

m
+ uform

m
(5.1)

Assuming that the drag-free control system is able to fulfill its task, the non-gravitational
accelerations due to the atmospheric disturbances are zeroed by the drag-free command
action, thus Eq. 5.1 becomes:

aCoM Ä −g + uform

m
(5.2)

Inside the propagator, in order to reduce the complexity, the satellite acceleration has
been approximated only to the negative gravity term. However, it is worth noticing that
the gravity model used inside the propagator is slightly different from the one adopted to
simulate the real satellite orbital dynamics. Indeed, in the satellite nonlinear model the
30th order of spherical harmonics was used for the gravity force, while inside the orbit
propagator a much more approximated gravity model has been considered. Consequently,
the acceleration of the satellite CoM, inside the propagator is computed as:

aCoMp = −g4 (5.3)

where g4 is used to indicate the gravity acceleration derived by means the 4th order term
of spherical harmonics.
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Figure 5.3: Basic Orbit Propagator - Orbit Dynamics

As depicted in Figure 5.3, the two integrators used to propagate the satellite velocity and
position are driven by means of a pulse generator whose frequency is decided by the pa-
rameter called "PropagatorRT". This parameter is also used to decide when the integrators
initial conditions need to be updated during the simulation according to the frequency with
which the measurement data of the companion satellite become available on board of each
spacecraft.
In the following are reported the plots obtained by the difference between real and propa-
gated velocity and position of Satellite 2 with the intent to draw attention on the effective-
ness of the proposed model in the computation of the satellite orbit. For the sake of brevity,
Figures 5.4 and 5.5 are both referred only to Satellite 2 but the same considerations hold
also for the real and propagated quantities of Satellite 1.
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The simulations performed to obtain the above figures assumed a sampling time of mea-
surements of an orbital period, namely P = 5487 s. Indeed, as we can notice from the
zoomed sections, at the end of each orbit the three components of both plots reset to zero
as a new data coming from the GPS measurement becomes available to be provided as
new initial condition for the two integrators.
Further, the plots here reported, obtained by means of simulation lasting for 100 orbits,
show that the developed orbit propagator is able to approximate the real satellite position
and velocity maintaining the error quite low. Nevertheless some refinements may be needed
due to the fact that each orbital period the error is subject to an increase that in the long
run could impinge the control system capability to stabilize the satellite formation.

5.2 Orbit Propagator with Command Action
In order to improve the orbit propagator designed in the previous section, the idea is to
compute the satellite acceleration used for the propagation, namely aCoMp, in such a way as
to reduce to the extent possible the difference with respect to the real satellite acceleration
aCoM , that is composed by all the quantities specified in Eq. 5.1.
Continuing to assume that the drag-free control is able to perfectly perform the task for
which it has been designed, that is the cancellation of the atmospheric disturbances, it
is possible to make aCoMp closer to the value in Eq. 5.2 by introducing as input of the
orbit propagator the command acceleration coming from the formation control, as shown
in Figure 5.6. In this new version of the orbit propagator, the approximated value of the
satellite CoM acceleration aCoMp is computed as:

aCoMp = −g4 + uform

m
. (5.4)

As we can notice, this quantity is very similar to the one in Eq. 5.2 with the only difference
consisting in the model adopted for the computation of the gravity acceleration that, as
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we recall, adopts the 4th order of spherical harmonics instead of the 30th order used for
the satellite nonlinear model. In this way it is possible to exploit the information about
the acceleration command related to the companion satellite that is provided on board of
each spacecraft by the Formation Control block.

Figure 5.6: Orbit propagator with Command Action

Inside the Orbit Dynamics block of the propagator we find again the two integrators used
to compute the satellite propagated velocity and position; the only difference with respect
to the previous case consists in the way in which aCoMp is obtained, as it is evident from
Figure 5.7, where Eq. 5.4 has been implemented for the derivation of this quantity.

Figure 5.7: Orbit propagator with Command Action - Orbit Dynamics
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Figure 5.8: Difference between Real and Propagated Position of Satellite 2

After having refined the previous model by introducing the modifications described so far,
here the simulated plots of the difference between real and propagated satellite velocity
and position are reported with the intent to prove that the new version of orbit propagator
is effectively able to bring an upgrade to the previous simulated results.
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Figure 5.9: Difference between Real and Propagated Velocity of Satellite 2

Figures 5.8 and 5.9 refers both to Satellite 2 and have been obtained by means of a simu-
lation lasting for 100 orbits. Comparing these plots with those reported in Figures 5.4 and
5.5, it is evident how the error committed by the propagator in the computation of the
satellite orbit in this last case is much lower than before.
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5.3 Orbit Propagator with Error Correction
The previous modification made on the model initially developed has displayed an im-
provement on the propagator capability of computing the satellite velocity and position.
Such improvement has been made evident from the fact that, after the modification, the
plots of the difference between real and propagated quantities have showed lower absolute
values than before, indicating a better approximation of the satellite’s orbit. This section
is aimed at further refining the model described so far by exploiting the possibility to em-
bark on board of each spacecraft two orbit propagators, one to compute the orbit of the
companion spacecraft and the other one to provide the propagated velocity and position of
the spacecraft on which the orbit propagator is mounted, as depicted in Figure 5.10. Let’s
look for example at the model of Satellite 1 in the figure, to which the orbit propagators of
both Satellite 1 and its companion have been added. The idea of this further modification
consists in exploiting the error ares that exists between the real and propagated quantities
of Satellite 1 to correct the orbit propagation of both satellites. This error, given by the
difference between the real and the propagated satellite CoM accelerations, is introduced
in both propagators as an additional input, as shown in Figure 5.11. From Eqs. 5.1 and
5.2 the following relation holds:

ares = aCoM − aCoMp

= −g + fdrag

m
+ fsun

m
+ udrag

m
+ uform

m
+ g4 −

uform

m
Ä −g + g4.

(5.5)

Figure 5.10: Satellite Block Scheme + Orbit Propagators with Error Correction
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Figure 5.11: Orbit propagator with Error Correction

Thus, since we want the acceleration used inside the propagator to be as similar as possible
to the real CoM acceleration aCoM , the idea here exploited is to correct aCoMp by adding it
the error ares computed at the previous time instant, recalling that from Eq. 5.5 it results:

aCoM = ares + aCoMp. (5.6)

What has been said so far is implemented in Figure 5.12, where this time the acceleration
used as input of the first integrator has been computed as

aÍ
CoMp = ares − g4 + uform

m
(5.7)

Figure 5.12: Orbit propagator with Error Correction - Orbit Dynamics
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It is worth noticing that Figures 5.11 and 5.12 are referred to the orbit propagator of Satel-
lite 2 which is embarked on board of Satellite 1, thus this orbit propagator exploits the
same ares computed for the Satellite 1 correction. In doing this operation we are therefore
implicitly assuming that the errors committed by the two propagators are almost equiv-
alent. It is for this reason in fact that it is possible to use the error made by the orbit
propagator of Satellite 1 to correct also the propagation of motion of Satellite 2.
What has been said so far obviously applies in the same way to the model of Satellite 2,
where will be present again the orbit propagators of both satellites. Here, the error existing
between the real and propagated quantities of Satellite 2 is computed and then used to
correct the propagated motion of Satellite 1.
As previously done for the other two versions, even in this case some simulated results are
presented to make sure that the developed model is actually capable of accomplishing its
task. At this purpose, Figures 5.13 and 5.14 report the plots of the difference between real
and propagated velocity and position of Satellite 2. Making a comparison between these
plots and those in Figures 5.8 and 5.9, it is possible to highlight the clear improvement
introduced by the last modification. The following plots show a maximum absolute value
of the error that is about an order of magnitude smaller than before, which implies a con-
siderable upgrade in the computation of the satellite motion.
Further, looking at the figures, it is also possible to notice that, differently from the pre-
vious cases, in the long run the difference between real and propagated quantities begins
to progressively decrease both in position and velocity. The simulations used to obtain
the following figures were performed considering a simulation time of 100 orbits as for the
previous cases.
Since this third variant of orbit propagators resulted to be the best in terms of performance,
a new long-run simulation campaign was carried out with the aim to verify that the intro-
duction of this last orbit propagator does not compromise the control system capability to
fulfill its tasks.
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Figure 5.13: Difference between Real and Propagated Position of Satellite 2

92



Formation Control with Orbit Propagators

0 1 2 3 4 5 6

Time [s] 10
5

-0.04

-0.02

0

0.02

V
e
lo

c
it
y
 [
m

/s
]

Satellite 2: Difference between real and propagated velocity (1st component)

0 1 2 3 4 5 6

Time [s] 10
5

-0.01

0

0.01

0.02

V
e
lo

c
it
y
 [
m

/s
]

Satellite 2: Difference between real and propagated velocity (2nd component)

0 1 2 3 4 5 6

Time [s] 10
5

-0.02

0

0.02

0.04

V
e
lo

c
it
y
 [
m

/s
]

Satellite 2: Difference between real and propagated velocity (3rd component)

Figure 5.14: Difference between Real and Propagated Velocity of Satellite 2

5.4 Simulated Results
This section has the intent to collect and present the simulated results obtained from the
long-run simulation campaign performed after the introduction of the third variant of orbit
propagator described in Section 5.3. The configuration reported in Table 4.5 was taken into
account for setting the parameters of the NMPC, since it places the simulation environ-
ment in the most realistic conditions possible by exploiting a gravity model composed by
the 30th order of spherical harmonics.
For this new simulation campaign, the parameter to be changed among the different simula-
tions is "PropagatorRT", which, as already mentioned, is the one related with the sampling
time of measurements; it indicates the frequency with which the measurement data of the
companion satellite becomes available on board of each spacecraft and consequently it is
the parameter used to drive the update of the integrators initial conditions inside the orbit
propagator. In order to account for the long sampling times of measurements needed be-
cause of the absence of a radio-frequency inter-satellite link, it was necessary to consider a
value of "PropagatorRT" at least equal to one orbit. Consequently, the first simulation here
reported makes use of a sampling time of measurement data equal to one orbital period,
which implies PropagatorRT= 5487 s. All the tests were performed with a simulation time
lasting for 2000 orbits.
In the following (Figures 5.15, 5.16 and 5.17), the behaviour of the first three state vari-
ables ρx, ρz and ∆d of the IFC model, is presented with the aim to check the requirements
on the formation lateral, radial and distance variations specified in Table 4.1 in terms of
percentage with respect to the reference values of distance and altitude. In the same way
as for the plots reported in the previous chapter, all the bounds imposed by the formation
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requirements have been highlighted with green horizontal lines; in this way it is possible
to make a comparison between these results and those obtained without orbit propagators
(previously presented in Figures 4.32, 4.33 and 4.34).
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Figure 5.15: NMPC Configuration 4: Formation Lateral Variation with Orbit Propagators
(PropagatorRT=1 orbit)

0 2 4 6 8 10 12

Time [s] 10
6

-6000

-4000

-2000

0

2000

4000

6000

Formation Radial Variation

Figure 5.16: NMPC Configuration 4: Formation Radial Variation with Orbit Propagators
(PropagatorRT=1 orbit)

By comparing the new plots with the ones reported in the previous chapter, it is possible
to notice that the introduction of the orbit propagators inside the high-fidelity nonlinear
model does not affect in any way the performance of the control system that remains able
to fulfill its task despite the fact that it now receives input values that are partly supplied
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Figure 5.17: NMPC Configuration 4: Formation Distance Variation with Orbit Propagators
(PropagatorRT=1 orbit)

by the propagator. This also prove once again that the developed model of orbit propaga-
tor well approximates the real satellite orbit, generating an error so small that it does not
influence the behavior of the states in the least.
Moreover, the NGGM Satellite-to-Satellite distance shows the behaviour depicted in Fig-
ure 5.18 that, as it is evident, is very similar to the one obtained before the introduction
of the orbit propagators.
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Figure 5.18: Satellite-to-Satellite Distance with Orbit Propagators (PropagatorRT=1 orbit)

After having verified that everything works well by using sampling times of measurements
equal to one orbit, we can try to progressively increase the value of "PropagatorRT" until
observing an evident performance degradation.
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The plots shown below refer to a simulation carried out assuming a sampling time equal to
3 orbital periods, that implies PropagatorRT=3× 5487 s. Again, in Figures 5.19, 5.20 and
5.21, the formation requirements on the first three perturbed states have been checked,
showing the capability of the developed NMPC of still guaranteeing the orbit and forma-
tion long-term stability by maintaining limited the ‘natural’ fluctuations of these variables
despite the increment of the sampling time of measurements.
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Figure 5.19: NMPC Configuration 4: Formation Lateral Variation with Orbit Propagators
(PropagatorRT=3 orbit)
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Figure 5.20: NMPC Configuration 4: Formation Radial Variation with Orbit Propagators
(PropagatorRT=3 orbit)

96



Formation Control with Orbit Propagators

0 2 4 6 8 10 12

Time [s] 10
6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

10
4 Formation Distance Variation

Figure 5.21: NMPC Configuration 4: Formation Distance Variation with Orbit Propagators
(PropagatorRT=3 orbit)

Lastly, also in this case, we report below (Figure 5.22), the plot of the Satellite-to-Satellite
Distance which is a further demonstration of the control system capability to maintain the
formation stability despite the lack of measurement data for a longer time.
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Figure 5.22: Satellite-to-Satellite Distance with Orbit Propagators (PropagatorRT=3 orbit)

During the simulation campaign an attempt was made to further increase the value of
"PropagatorRT" by setting it equal to 5 orbits. For the sake of simplicity, we do not report
here the obtained results which, however, continued to show the fulfillment of formation
and stability requirements despite a bigger deterioration in performance.
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Chapter 6

Conclusions and Future Work

To conclude this thesis work, let us now retrace what has been said in the previous chapters
in order to draw some results. As mentioned at the beginning, the main objective of this
research was to design, implement, and simulate an alternative orbit and formation con-
trol for a new type of gravimetric mission proposed by the European Space Agency after
the successful studies conducted by GOCE and GRACE. The mission under assessment,
namely the Next Generation Gravity Mission (NGGM), exploits two drag-free satellites
flying in loose formation on a low-Earth orbit to accomplish its main task, that is the mea-
sure of the temporal variations of the Earth gravity field over a long time span. Within this
background, a fully autonomous Nonlinear Model Predictive Control (NMPC) framework
for orbit and formation control has been presented as alternative solution to the currently
used Embedded Model Control, with the aim to explore the possibility of making improve-
ments to the results obtained from the previous control strategy. In particular, for the
development of the new NMPC-based control framework, the first thing to do was to look
for the most suitable model to be used within the control algorithm for prediction purposes.
Indeed, let’s recall that the NMPC is an efficient and robust technique for model-based de-
sign which exploits an LTI model of the system to predict the future behaviour of the state
variables and compute an optimal control action. In this context, such issue was addressed
by comparing two possible LTI models, one based on the standard Hill-Clohessy-Wiltshire
equations and the other one based on the Integrated Formation Control model. The first
represents a model frequently used to analyse the relative motion of two spacecrafts in
Earth-bound orbits while the second, specifically developed for the previous EMC-based
orbit and formation control, involves a novel set of hill-type equations which allow the
simultaneous description of both formation altitude and distance. From the comparison
between the behaviour of the non-linear model, used to simulate the real plant, and that of
the two LTI models mentioned so far, it emerged that the most suitable one for predictive
purposes was the IFC model since it was able to guarantee a better approximation of the
system dynamics. On the contrary, because of the too simplified assumptions made for
development of the HCW equations, this model showed a very fast divergence of the space-
craft position from the nominal orbit, implying its inadequacy in describing the NGGM
satellite formation system.
After having identified the IFC model as the most suitable one for the NMPC internal
prediction, the control architecture has been designed with the aim to generate a control
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input able to guarantee the stability of the satellite formation while meeting the demand-
ing mission requirements defined by the NGGM science mode. Indeed, besides the con-
straints imposed on the formation variables, also the thruster saturation had to be taken
into account. Thus, different NMPC configurations have been tested during the long-run
simulation campaign with the aim to find the best trade-off between close-loop stability
properties and capability of reducing the drag-free residual acceleration. As a matter of
fact, it is worth to point out that a second important task of orbit and formation control
consists in zeroing as much as possible the bias and drift of the drag-free residual acceler-
ations. From the simulated results it emerged that the drag-free residual acceleration was
directly proportional to the command action. As a consequence, in order to reduce as much
as possible this quantity, it was necessary to use a very low thruster authority by imposing
very stringent input constraints. Such stringent constraints, however, have made necessary
to significantly reduce the sampling time which initially was set at a higher value in order
to avoid interference with the wide-band drag-free control.
For each configuration, the presented simulated results have proven the capability of the
designed NMPC control framework of ensuring the expected performances and the ful-
filment of the main research objectives. In particular, the NMPC parameters written in
Table 4.5, resulted to be the best trade-off for satisfying all the NGGM requirements in
presence of a non-linear model that exploits the 30th order of spherical harmonics for the
computation of the gravity potential.
The simulations carried out with this configuration have shown the effectiveness of the
control strategy in guaranteeing the stability of NGGM formation, nevertheless some limi-
tations and critical issues were still present. Specifically, the proposed NMPC configuration
was able to reduce the drag-free acceleration till 35× 10−6 m/s2. This value is quite close
to zero but since the purpose of this mission consists in the measure the Earth’s grav-
ity field, all non-gravitational contributions needs to be even more reduced. Moreover, it
would be more appropriate to have a bigger sampling time in order to actuate the drag-free
control and the orbit/formation control at different bands. As a result, future work should
deal with the introduction of some improvements in the internal prediction model or in
the parameterization of the command input in order to solve the still present criticalities
which affect the developed control design. For example, it may be convenient to add to
the model a filter chain after the state variables computation in order to clean the peri-
odic orbital components from the differential navigation measurements and consequently
avoid an extra-thrust authority. Moreover, other adjustments may concern the type of in-
put parameterization used inside the NMPC control algorithm. For the proposed strategy
a piece-wise constant input parametrization has been leveraged but one might think of
developing a control with a polynomial parametrization.
The last part of this thesis was focused on the implementation of low-fidelity orbit propa-
gators to be included inside the non-linear model with the aim to make the simulator even
more realistic. The term "low-fidelity" refers to the fact that the novelty of these propaga-
tors consists in the ability to compute accurately the satellite orbit, despite being designed
considering a low order gravity field and completely neglecting the other atmospheric dis-
turbances. The need to include these devices on board of each spacecraft is due to the lack
of information caused by the absence of a radio-frequency inter-satellite link and the long
sampling time of the measurements data. The obtained results have proven the effectiveness
of the orbit propagators mounted on board of each satellite of computing the position and
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velocity information of the companion spacecraft. After having introduced these models
inside the nonlinear simulator, another long-run simulation campaign has been performed
showing the NMPC capability of guaranteeing long-term stability, although the lack of
companion satellite information.
In conclusion, we have seen that the main advantage of using an NMPC control strategy
consists in its ability to find an optimal control law managing at the same time state and
input constraints and providing a real-time adaptation of the command input to the pos-
sible variations of process conditions. Nevertheless, although this research has shown the
effectiveness of the proposed NMPC control strategy in achieving the NGGM formation
objectives, it also emerged that this alternative strategy does not bring substantial im-
provements to the results obtained with the previous EMC-based one; on the contrary, the
results obtained are quite similar proving that we are probably close to the maximum that
can be achieved. In any case, the objective of making a contribution to the scientific phase
of this mission by proposing a valid alternative strategy for the NGGM orbit and formation
control has been reached. Indeed, the development of different possible alternatives is one
of the main and necessary stages of the research phase of a real space mission.
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