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Abstract

Optimal robust sun-pointing control for the Eutelsat 172B, a large geostationary electrical pro-
pelled satellite, is addressed in this thesis. For spacecraft which propulsion module is based
exclusively on high-power electric engines, it is crucial to guarantee the optimal power produc-
tion during the whole mission. Moreover, for telecommunication satellites is fundamental to
maintain the desired pointing to fulfill mission and operational requirements, despite external
perturbations that could affect their orientation. To optimize the power generation, guarantee-
ing proper solar-array sun-tracking, while tracking the desired Earth-pointing orientation of
the satellite and its payloads, a first-order Sliding Mode Controller and a Tube-based Robust
Model Predictive Control strategy have been implemented, combined with a controller for ar-
rays sun tracking. The first part of this thesis work is devoted to the development of the Eutelsat
172B simulator, focusing on the environmental disturbances, the multibody dynamics model
of the satellite and the electrical power production system. The second part is devoted to the
design of the attitude and solar arrays drive controllers. Both attitude controllers proved to be
able to reject the environmental disturbance torques and themodelling uncertainties due to the
inertia modification caused by solar panels re-orientation. Moreover, we demonstrate how the
proper control of solar array orientation can improve the solar power production. This aspect
could allow, during the design phase, to reduce the solar array area and the satellite weight
mass, thus further reducing launch and mission costs.
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Chapter 1

Introduction

Geosynchronous GEO satellites are a class of satellites characterized by an orbit time
equal to the Earth rotation time, allowing to maintain a constant position with respect
to the Earth. These satellites are employed for several applications, most notably for
communication, weather forecasting, navigation and military purposes [6]. The idea
of the geosynchronous satellite dates to the early ’30, but due to the unavailable tech-
nology of those years the idea did become feasible only during the ’60, when Harold
Rosen designed the first geosynchronous satellite, the Syncom. The Syncom satellite,
launched by National Aeronautics and Space Administration (NASA), become oper-
ational in 1963 [7]. The geostationary orbit is located at an altitude of approximately
35.786 km from the equator of the Earth and it has a radius of 42.164 km. Although the
orbit length is quite big, it does not allow for an unlimited number of satellites. The
reason for this limitation is that, while occupying a slot in space, a satellite requires
a specific radio frequency in the electromagnetic spectrum. These radio frequencies
must be different and the satellites must be approximately eighteen kilometers apart
so that there is no interference between the different transmissions. Theoretically, the
total number of satellites capable of remaining in geostationary orbit is approximately
two thousand [8]. Hence, the advancement in GEO satellite design are focused in in-
creasing the platform size to accommodate larger payloads in each satellite. This of
course introduces higher launch cost due to the satellite size and requires innovation
in all satellite systems. The trend in GEO satellites design has consolidated into: a con-
siderable increment of on board electrical power generation, an increase in platform
size, bigger solar arrays and longer satellite operational time.
According to the NASA Technology Roadmap [9] the field of satellite propulsion and
electrical power production systems are the enabler for new advancements in the GEO
satellite design. Satellite propulsion systems are responsible for all the functions of pri-
mary propulsion, reaction control, station keeping, precision pointing and orbital ma-
neuvering. The reaction control and orbital maneuvering systems provide the propul-
sive force for orbit maintenance, position control, station keeping, and spacecraft at-
titude control. One of the most promising advancement is represented by Hall Effect
Thruster (HET) which is a high specific impulse - low thrust electrical thruster. The
HET accelerate reaction mass (e.g., Xenon propellant) electromagnetically to generate
thrust. The use of electrical power thrusters enhances the propulsive system perfor-
mances compared with conventional chemical thrusters system. Unlike chemical sys-
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tems, electric propulsion requires very little mass to accelerate a spacecraft. The pro-
pellant is ejected up to twenty times faster than a classical chemical thruster. Therefore
the overall system turns out to be more mass efficient, thus enabling the extension of
the mission lifetime duration [10].
Of course, all these benefits come at a price; the increase in electrical power demand.
The EPS is responsible for the production of power and its distribution to the loads.
The power generation inGEO satellite is a task demanded to the Solar Arrays (SA). The
SA technology advancements lead to solar cell with 29 percent maximum conversion
efficiency, anyway the design of high power systems generally results in increasing the
SA size. One viable solution is to make the orientation of the SA independent from
the payload orientation. This feature can be added by installing mechanism that allow
the rotation of the SA. The addition of this feature for Earth-pointing GEO satellites
increase the power production and its continuity since the produced power is almost
constant along the orbit.
Another peculiar characteristic of GEO satellite are the pointing capabilities. For exam-
ple Eutelsat 172B, which is the satellite analyzed in this thesis, can guarantee a pointing
accuracy of±0.05 degrees [11]. Hence, the propulsion system has to guarantee proper
pointing performances. Historically the type of actuators employed in GEO satellites
were chemical thrusters. While the HET are currently used for station keeping pur-
poses [12], the implementation of electric thrusters for attitude control is becoming
feasible thanks to the advancements in the µN level thrusters [12]. A viable solution
is then represented by coldgas, resistojet and mini-HET thrusters which, by exploiting
the same Xenon bus of the orbit maneuvering system, allows to reduce complexity and
cost of commercial platforms [13]
To satisfy the pointing requirements an attitude controller shall be implemented. Atti-
tude control is a subsystem of the Attitude and Orbital Control Systems (AOCS). The
attitude control objective is to drive the system towards the attitude trajectoryminimiz-
ing the pointing error. Attitude control is not a new research topic, it has been deeply
investigated during the years. Due to the recent introduction of electric thrusters in the
satellite design some attitude control techniques using electric thrusters for GEO satel-
lites have been proposed. Some of them are: [14] where a Model Predictive Control
(MPC) scheme considering the on/off actuator and the number of firings has been ap-
plied; [15] where a MPC scheme that considers a complete AOCS employing reaction
wheel and HET accounting for wheel saturation.
The aforementioned methods did not consider both the pointing constraints and the
disturbance rejection together. In fact in GEO scenario several persistent, but bounded,
disturbances act on the satellite and when external noise is included in the system dy-
namics, classical MPC schemes cannot ensure the robustness required to deal with the
disturbances and to satisfy the mission and system constraints, whereas it can provide
only a certain level of inherent robustness as a feedback control scheme [16]. Recently, a
TRMPC approach has been developed and successfully applied to control attitude and
trajectory of spacecraft during rendezvous and proximity operation. The TRMPC con-
trol strategy compared to the other Robust Model Predictive Control (RMPC) schemes
benefits of a low computational load at the cost of constraint tightening [17]. In this
thesis a TRMPC attitude control strategy is proposed for a geostationary satellite, the
Eultelsat 172B, equipped with a full-electric propulsion system.
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LargeGEO satellite usually allow the rotation of the solar arrays around one or two axes
[18, 19], thus a Solar Array Drive Actuator (SADA) system is mounted to perform the
rotation of the solar arrays for sun tracking purposes. The main problem related with
SADA control found in the literature is the suppression of the solar arrays induced
vibrations as described in [20, 21]. In this thesis the panels are assumed to be rigid
and the actuator dynamics is considered fast enough to produce the desired torque
output directly, thus the vibration related problems are neglected. The proposed SADA
controller is a saturated LQR controller.
The coupling of the attitude control and the SADA had required the development of
a new model for the attitude dynamics of the satellite. In fact, models based on the
single rigid body equations, e.g. Euler equations, do not include this feature. Thus, to
solve this problem a multibody model of the satellite has been derived in this thesis.

The goal of this thesis is to provide a system level design, simulation and analysis of a
GEO satellite focusing on the attitude propulsion subsystem and the electrical power
subsystem. Another aims of this thesis is to preliminary assess the advantages and the
drawbacks of a configuration implementing rotating SA in the Eutelsat 172B mission.

The design phase focuses on the development of an attitude dynamics model and its
controllers. The controlled implemented in this thesis are TRMPC and a Sliding Mode
Controller (SMC). The first one is a the controller proposed in this thesis, whereas the
second one in standard attitude control technique that will be used as a benchmark
for the TRMPC. The simulation phase is devoted to the simulation of the satellite sys-
tems focusing on the propulsion subsystem and electrical power subsystem in different
scenarios. Finally, a comparison analysis of the simulation results of the different sce-
narios is presented. Due to the complexity of the topic, some simplifying assumptions
throughout the modeling phase have been made. For instance, the strongest assump-
tions made are: the decoupling between the orbital control system and the attitude
control system, the HET attitude actuator system is modeled as a adjustable thrust
chemical thruster and the solar arrays mechanical model is considered rigid.

The thesis is organized as follows: Chapter 2 describes the satellite mission and the
main satellite subsystem involved; Chapter 3 describes the the reference frames in space
and the space environment; Chapter 4 describes the model used for the satellite sim-
ulator; Chapter 5 presents the controllers employed in this thesis; Chapter 6 shown
the obtained results and their comparison; finally in Chapter 7 the conclusions and the
further improvements are presented.
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Chapter 2

EUTELSAT 172B

2.1 Satellite description

Figure 2.1: Rendering of Eutelsat 172B in orbit [Credit AIRBUS]

Eultelsat 172B is a GEO telecommunications with a high throughput payload and all
electric orbital raising. This satellite was built by Airbus Defence and Space and is
based on the Eurostar E3000 platform. The Eurostar E3000 satellite platform allow
the rotation of the solar arrays enhancing the electrical power production [22]. This
version uses only electric propulsion, based on a Fakel SPT140D propulsion unit, for
initial orbit raising and all on-orbit manoeuvres. The initial orbit raising maneuvers ,
which brought the satellite to reach its final GEO orbit from the release one, lasted four
months [23].
As the name of the satellite suggests, it stations at the 172omeridian, in the east transpa-
cific neighborhood. The coverage area of the satellite is depicted in figure 2.2 [1].
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Figure 2.2: Eutelsat coverage [Credit Eutelsat [1]]

The GEO orbit has circular shape and it is contained in the plane generated by the
equator. The nominal radius of the orbit is 42164 km which corresponds to an average
distance above the Earth of 35786 km . The orbital trajectory of the Eutelsat 172 is shown
in figure 2.3.
The Eutelsat 172B, rendered in figure 2.1, is composed by a main body and two fixed
solar array, respectively the blue body the twopurple parallelepipeds shown in 2.4. The
payload is attached to the main body and the telecommunication devices are pointed
towards the negative direction of x-axis. Hence, since the Eutelsat is a telecommunica-
tion satellite the negative direction of the x-axis shall be aligned to the nadir pointing
vector.
The physical properties of the main body are described in table 2.1, while the physical
properties of each solar array are described in table 2.2 [11].

dimension measure unit
lSCx 5.7 m

lSCy 3.0 m

lSCz 3.7 m

md 3400 kg

mf 0-151 kg

mw 3400-3551 kg

Table 2.1: Main body physical properties

The Center of Mass (CoM) of the main body coincides with the origin of the body
reference frame and it is fixed, i.e. it does not vary during the mission horizon. The
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Figure 2.3: Eutelsat GEO orbit [Credit ESA [2]]

dimension measure unit
lxSA 3.7 m

lySA 18 m

lzSA 0.15 m

mSA 67.13 kg

A 67.37 m2

Table 2.2: Solar array physical properties

position of the left and right CoM solar array with respect to the body reference frame
are described respectively in table 2.3 and 2.4[11]

2.2 Electrical Power Subsystem (EPS)
The Electrical Power Subsystem (EPS) provides, stores, distributes and controls satel-
lite electrical power as described in Figure 2.5. The EPS is sized in order to provide the
necessary power from the Begin of Life (BoL) to the End of Life (EoL). For sizing the
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Figure 2.4: EUTELSAT scheme

dimension measure unit
xLgSA 0 m

yLgSA −ly/2− lySA/2 m

zLgSA 0 m

Table 2.3: Left solar array CoM

dimension measure unit
xRgSA 0 m

yRgSA ly/2 + lySA/2 m

zRgSA 0 m

Table 2.4: Right solar array CoM

EPS, in addtion to BoL and EoL requirements other parameters shall be taken into ac-
count such as the mission type, mission lifetime, spacecraft configuration and payload
definition [24].

2.2.1 EPS architecture
The typical EPS architecture is shown in Figure 2.6. The components function are re-
ported in [24] and listed hereafter:
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Figure 2.5: EPS functional diagram

• Solar arrays: producing of electrical power by converting solar energy

• Batteries: storing energy to be distributed when eclipse occurs or when the solar
array power production is not sufficient to power the required loads

• Shunts: regulating the bus voltage by dissipating the exceeding power produced
by the solar array

• Power Charge Regulator and Power Dis-charge Regulator (PCPPDR): controlling
the charge and discharge of the batteries

• Power Distribution Unit (PDU): managing the load activation state andmanages
the fault detection and recovery

• Mode controller: deciding the active power sources and regulating the power
flow to the PDU

Shunts
PCR PCU

PRU

Battery

Vref

PDU Loads

Mode
ControllerSolar Arrays

Figure 2.6: EPS architecture

2.2.2 Solar arrays and SADA
The solar cells of the EUTELSAT 172B are SpectroLab Ultra Triple Junction (UTJ) Ga-
As solar cells. These type of cells are specific made for space environment and they
feature a maximum efficiency of 28.3% at BoL and 24.3% at EoL [25].
The solar arrays, as the definition suggests, are an combination of multiple solar cells
connected in parallel and series. There are 319 strings connected in parallel of 66 cells

21



connected in series, resulting in 21054 cells mounted on each surface. The solar cells
are mounted on both sides the two panels. The maximum active solar surface during
the mission is equivalent to 134.74 m2.

The Solar ArrayDrive Actuator (SADA) system is responsible for the rotation of the so-
lar arrays and the power transfer from the solar cells to the EPS subsystem. The SADA
system main components are: a Permanent Magnet Synchronous Motor (PMSM) for
the motion and a series of slip rings for the power transfer. The power consumption
of this system is generally low. For example the Ruag SEPTA 24, shown in figure 2.7,
that is designed to fit in satellites similar in size with Eutelsat 172B, has a peak power
consumption of 60W [26].

Figure 2.7: Ruag Septa 24 [credit Ruag Space]

2.3 Propulsion system
The propulsion subsystem is responsible for all the satellite maneuvers needed from
the orbit raising phase to the operational phase [24]. The orbital control system is
assumed to be decoupled from attitude control in this thesis. Hence, the propulsion
subsystem is divided in two subsystems, one for the orbital control and the other for
the attitude control.
The peculiarity of the Eutelsat 172B is that it is designed to mount Hall Effect Thruster
(HET). This type of electrostatic thruster utilizes a cross-field discharge described by
the Hall effect to generate the plasma. An electric field established perpendicular to
an applied magnetic field electrostatically accelerates ions to high exhaust velocities,
while the transverse magnetic field inhibits electron motion that would tend to short
out the electric field. HET efficiency and specific impulse is somewhat less than that
achievable in ion thrusters, but the thrust at a given power is higher and the device is
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much simpler and requires fewer power supplies to operate [27]. The propellant fluid
used to supply the HETs is Xenon and it is stored in a tank inside the main body.

2.3.1 Orbital propulsion
Orbital propulsion, as the name suggest, is the propulsion subsystem devoted for the
orbital maneuvers. The Eutelsat 172Bmounts four Fakel SPT140D, each one connected
to the main body by a two axes gimbal system called Thruster Pointing Mechanism
(TPM) [11]. An image of the Fakel unit in action is shown in figure 2.8. This thruster
is a mid-sized HET which characteristics are reported in table 2.5.

Figure 2.8: Fakel SPT140 Hall effect thruster [credit SSL]

parameter value unit
thrust range 170-290 mN

Isp 900-1900 s

power 3-5 kW

Table 2.5: SPT140 characteristics [28]

This thruster is employed for the orbit raising maneuvers from Low Earth Orbit (LEO)
to GEO and for the station keeping maneuvers [23]. Electric thrusters for station keep-
ing create a low level of disturbance with respect to the chemical rocket thrusters, due
to the lower levels of produced force, the lower speed of the manouvers and the pos-
sibility to modify the orientation of the station keeping thrusters, thanks to the TPM
[22].

2.3.2 Attitude propulsion
The original design of the Eutelsat 172B employed four reaction wheels for the attitude
control of the satellite [11]. The attitude control actuator system proposed in this thesis
is the attitude propulsion subsystem, which is composed by mini-HETs. Typically the
HET thruster is commanded as on/off actuator with constraints on firing time, shut-
down time and switching frequency [14]. By employing this attitude propulsion sys-
tem instead of the standard reaction wheel we eliminate the typical problems related

23

https://www.spaceflightinsider.com/space-centers/glenn-research-center/nasa-glenn-tests-solar-electric-propulsion-thruster-journey-metal-world/


parameter value unit
dynamic thrust range 10-390 µN

Isp 1500-6000 s

power 5-40 W

Table 2.6: Enpulsion NANO R3 characteristics [30]

to reaction wheel, i.e. wheel momentum saturation [15]. In this thesis work the mini-
HET operational use is simplified. The thrust range for each actuator is considered
between zero and it maximum thrust value and time related constraints are neglected.
The thruster arrangement is based on the general guidelines of the chemical thrusters
[29]. The thrusters are located such that the ion beams generated avoid collisions with
the solar arrays and the antennas. The position and direction of the thrusters is shown
in figure 2.9.

12
3 4
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6

x

z

y

7
8

Figure 2.9: Satellite thrusters scheme

The selected thruster is the Enpulsion Nano 3R, shown in figure 2.10, which features
the specifications reported in table 2.6.
There are 8 thruster positions, as shown in figure 2.9, each including 4 thrusters. The
thrust range produced by this thruster configuration is compatiblewith thrust required
by the control as it will be described in section 4.9.
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Figure 2.10: Enpulsion NANO R3 [credit Enpulsion GmbH]
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Chapter 3

Space Environment Modeling

This chapter is devoted to the space environment description. The sun relevant infor-
mation, the reference frames and the main sources of disturbances are presented. The
reference book for this chapter is [3].

3.1 Space reference frames

The satellite motion can be described exploiting different reference frames. In general,
a reference frame is specified by the location of its origin and the orientation of its
coordinate axes. Hereafter, the reference frames used in the follows are presented.

3.1.1 Rotations

Define two reference frames: the fixed reference frame whose axes are {e1, e2, e3} and
the mobile reference frame whose axes are {ϵ1, ϵ2, ϵ3}.

The rotation operator R applied to a vector u represented in the fixed reference frame
returns the representation of the vector u in the mobile reference frame.

vϵ = Rve (3.1)

The inverse of rotation matrix is called the transformation matrix and performs the op-
posite operation, ie returns the representation of a vector u, represented in the mobile
reference frame, into the fixed reference frame

ve = Tvϵ (3.2)

The columns of the transformation matrix T are the axis of the mobile frame with
respect to the fixed frame. The matrix T is also known as the Direct Cosine Matrix
(DCM).
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3.1.2 Earth Centered Intertial reference frame
The Earth Centered Intertial (ECI) reference frame is an approximated inertial frame
that has its origin at the center of mass of the Earth. This frame has a linear acceleration
due to the Earth orbit around the Sun. The axes are fixed with respect to the stars.

• x-axis: points towards the inertial reference direction (fixed stars)
• z-axis: points towards the north pole
• y-axis: completes the right hand triad

The axes are depicted in Figure 3.1 and are denoted as {i1, i2, i3}. This reference frame
is the basis for the attitude dynamics equations.

Figure 3.1: Definition of reference frames ECEF εi, ECI ii (Figure 2.3 [3])

3.1.3 Earth Centered Earth Fixed reference frame
The Earth Centered Earth Fixed (ECEF) reference frame has the z-axis in commonwith
the ECI reference frame. The x-axis and y-axis solidly rotates with the Earth. The x-
axis points in the direction of the Earth’s prime meridian and the y-axis completes the
right handed triad. The rotation angle is known as the Greenwich Mean Sideral Time
(GMST) angle and it is denoted as θGMST . The axes are denoted as {ε1, ε2, ε3} and are
depicted in Figure 3.1.
The transformation of a position vector rI from its ECI representation to its ECEF rep-
resentation rE is given by
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rI = TIErE =

⎡⎢⎣cos(θGMST ) − sin(θGMST ) 0

sin(θGMST ) cos(θGMST ) 0

0 0 1

⎤⎥⎦ rE (3.3)

To determine the GMST angle the Julian Date (JD) is required, which is defined by
equation 3.13. The equation to compute the angle θGMST can be find [3] section 2.6.3.

3.1.4 Local Vertical Local Horizontal reference frame
For nadir pointing satellites, as the one considered in this work, it is important to define
a reference frame referenced to the satellite orbit. The most common frame is the Local
Vertical Local Horizontal (LVLH) orbit frame, shown in Figure 3.2, centered in the
satellite CoM. The z-axis o3 vector is pointing along the nadir vector, directly toward
the center of the Earth from the satellite. The y-axis o2 is pointing along the negative
orbit normal, in the direction opposite to the satellite orbital angular velocity. The x-
axis o1 completes the right-handed triad. The representations of these vectors in an
inertial frame ECI are

o3 = − rECI
∥rECI∥

o2 = − (rECI × vECI)

∥rECI × vECI∥
(3.4)

o1 = o2 × o3 =
(rECI × vECI)× rECI
∥rECI∥∥rECI × vECI∥

(3.5)

where rECI and vECI are the spacecraft position and velocity in the ECI frame. The
transformation matrix from the LVLH frame to the ECI frame can be expressed as

TLI =
[︂
o1 o2 o3

]︂
(3.6)

Figure 3.2: Definition of reference frames LVLH (Figure 2.5 [3])
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3.1.5 Perifocal Reference Frame
The PQW is a Cartesian coordinate system fixed in space and centered at the focus
of the orbit. For circular orbit, such as GEO orbit, the focus coincides with the orbit
center. Its xy plane coincides with the orbit plane, and its x-axis is directed from the
focus through the periapsis, as illustrated in figure 3.3. The unit vector along the x-axis
(the apse line) is denoted p. The z-axis, with unit vectorw, is normal to the plane of the
orbit in the direction of the angular momentum vector h. The y-axis, with unit vector
q, completes the right hand triad. The true anomaly ν is the angle between the x-axis
and the current position of the body as in Figure 3.4. In the PQW frame, the position
vector r is written as

r = xp+ yq (3.7)
where the scalar components are defined as

x = ∥r∥cos(ν) y = ∥r∥sin(ν) (3.8)
The velocity can be computed by taking the time derivative of r

v = ṙ = ẋp+ ẏq (3.9)
Thus the scalar components are defined by{︄

ẋ = ṙ cos(θ)− rθ̇ sin(θ)

ẏ = ṙ sin(θ) + rθ̇ cos(θ)
(3.10)

Figure 3.3: Definition of reference frames PQW (Figure 2.29 [4])

3.1.6 Body and Solar array reference frame
The satellite under analysis can rotate its solar arrays around its body y-axis, thus two
different frame have been defined. The first reference frame is the one attached to the
satellite body and its direction are defined as shown in Figure 3.5.
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• x-axis : is parallel to the payload normal vector in opposite direction
• y-axis : points along solar array rotations axis
• z-axis : completes the right handed triad
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Figure 3.5: Satellite multibody scheme

For the solar arrays, as mentioned before, the rotation angle is γ. The reference frame
of the solar arrays origin coincides with the body reference frame origin. When the
angle γ = 0 the solar array reference frame coincides with the body reference frame.
The normal vector of the solar array nSA in the solar array frame is

nSA =

⎡⎢⎣00
1

⎤⎥⎦ (3.11)
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The transformation matrix that relates the two reference frames is

rB = TBSArSA =

⎡⎢⎣ cos(γ) 0 sin(γ)

0 1 0

− sin(γ) 0 cos(γ)

⎤⎥⎦ rSA (3.12)

3.2 Sun relevant information

3.2.1 Sun position
The relative position of the Sun with respect to Earth is necessary to determine all the
quantities related to the Sun interaction with the Earth and the satellite.
The position of the Sun with respect to the Earth can be determined using the DE405
Ephemeris model computed by the Jet Propulsion Laboratory (JPL) [31]. The model
consists of numeric representations of positions, velocities and accelerations of main
Solar System bodies, tabulated at equally spaced intervals of time, covering a specified
span of years. Specifically the DE405 covers a period of time that range from year 1660
to year 2200. The input required to access the data of DE405 is the JD. The JD at time
t = [Y,M,G, h,m, s] is given by

(3.13)
JD(Y,M,D, h,m, s) = 1721013, 5 + 367Y − INT

{︃
7

4

[︃
Y + INT

(︃
M + 9

12

)︃]︃}︃
+ INT

(︃
275M

9

)︃
+D +

3600h+ 60m+ s

86400

3.2.2 Satellite solar eclipse
The satellite solar eclipse occurs when the satellite is shadowed by the Earth, which
fully blocks sunlight. This occurs when the Sun, Earth and satellite are in a particu-
lar alignment condition. Given the position vector of the spacecraft and the Sun with
respect to Earth, the eclipse condition can now be determined. The method assume
that the shadow created by the Earth is a cylindrical projection of the Earth’s diameter
along the direction of the Sun to the Earth as can be seen in Figure 3.6.
In the cylindrical approximation the spacecraft is shadowed if and only if

r = ∥rECI∥, e =
sECI

∥sECI∥
, rECI · e < −

√︂
r2 −R2⨁︁ (3.14)

where e is the unit vector direction from the Earth to the Sun, rECI is the spacecraft
position vector with respect to Earth, r is the spacecraft distance from the Earth’s center
and R⨁︁ is the equatorial radius of the Earth.
Based on data of the orbit of the Earth around the Sun and the orbit of the satellite,
eclipse status and duration can be computed. Figure 3.7 shows the result of the eclipse
occurrences and duration for the Eutelsat 172B. The computation of these quantities is
carried out using the tool provided in [32].
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3.2.3 Solar radiation
Solar radiation is the main source for the energy production, but it is also a source
of disturbance as it will be described later in subsection 3.3.2. This quantity strictly
depends on the distance between the object and the Sun. The solar radiation received
by an object distant rsat from the sun is given by

P⊙ =
F⊙

cr2sat
(3.15)

whereF⊙ is the solar constant, which is the sun irradiance at 1 Astronomical Unit (AU)
and c is the speed of light.

3.3 Spacecraft disturbances
The spacecraft environment generate disturbance torques acting on the satellite. The
main sources of disturbance torque are presented in this section.

3.3.1 Aerodynamic drag torque
Aerodynamic disturbances are caused by non-conservative forces produced by the
satellite relative motion with respect to a surrounding fluid. Aerodynamic drag torque
is computed by modeling the spacecraft as a collection of N plates of area Si and out-
ward normal unit vector ni

B expressed in the spacecraft body-fixed frame. The torque
depends on the velocity of the spacecraft relative to the atmosphere. Assuming that
the atmosphere corotates with the Earth, the relative velocity in ECI frame is defined
as

vr = vECI + ωE × rECI (3.16)
where vECI is the satellite velocity in ECI, rECI is the position of the satellite in ECI and
ωE is the Earth angular velocity. The inclination of the i-th plate with respect to the
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Figure 3.7: Eclipse occurrences and duration

relative velocity is given by

cos θi =
niB · vr
∥vr∥

(3.17)

The aerodynamic force acting on the i-th plate can be computed as

Fi
aero = −1

2
ρCD∥vr∥vrSimax(cos θi, 0) (3.18)

where ρ is the atmospheric density and CD is the drag coefficient. The coefficient CD is
determined empirically. The employed atmospheric density model is the exponential
atmospheric model described in section D.2 of [3]. Given the force acting on the panels
and the panel center positions the aerodynamic torque acting on the i-th panel is given
by

Ti
aero = ri × Fi

aero (3.19)

where ri is the position of the center of the i-th plate with respect to the body reference
frame.
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3.3.2 Solar Radiation Pressure
Solar Radiation Pressure (SRP) is another non-conservative force acting on spacecraft
caused by the Sun radiation. It generally outweigh drag perturbation in higher altitude
orbits (more than 800 km). The mechanism by which SRP affects the orbit of a space-
craft is through momentum exchange between the spacecraft and photons incident on
the spacecraft. Because of this, SRP only contributes as timeswhen the spacecraft is not
shadowed by the Earth or other bodies [3]. As for aerodynamic disturbances, the satel-
lite is modeled as a set of N flat plates of area Si and normal direction niB. There are
some material depending parameters entering the model: the specular reflection coef-
ficient Ri

spec, the diffuse reflection coefficient Ri
diff and the absorption coefficient Ri

abs.
The spacecraft to sun unit vector in the body reference frame is defined as s. Given
vector s and the normal plate direction niB, the angle between the sun vector and the
normal to the i-th plate is given by

cos θiSRP = niB · s (3.20)
then, the force on the i-th plate can be computed as

Fi
SRP = −P⊙Si

[︄
2

(︄
Ri
diff

3
+Ri

spec cos θ
i
SRP

)︄
niB + (1−Ri

spec)s

]︄
max(cos θiSRP , 0)

(3.21)
where P⊙ is defined in Equation 3.15. The SRP torque on i-th plate of the satellite is
then

LiSRP =
∑︂
i

ri × Fi
SRP (3.22)

where ri is the position of the center of the i-th plate with respect to the body reference
frame.

3.3.3 Magnetic dipole
The liquid iron core of the Earth works like a large dynamo creating a magnetic field
around the planet. The field is large enough to be relevant for space flight. Any inter-
action with a satellite Residual Magnetic Dipole Moment (RDM) generates a torque
that has an influence on the attitude. Satellites have a typical RDM range of 0.1 - 20
Am2. The satellite’s RDM value can be in the higher range especially in high power
satellites, such as Eutelsat 172B [33, 34]. The torque generated by a magnetic dipolem
in a magnetic field B is given by

Lmag = m×BB (3.23)
The most basic source of a magnetic dipole is a current loop. A current of I amperes
flowing in a planar loop of area A produces a dipole of magnitude m = AI in the
direction normal to the plane of the loop and satisfying the right hand rule. The value
of m can not determined easily due to the complexity of the EPS arrangement. The
value ofm also varies during time since it depends on the currents flowing into the EPS
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thus depending on instantaneous satellite power requirements. Another important
quantity to be determined to compute the magnetic torque is the magnetic field vector.
The model used to compute the magnetic field is Internationl Geomagnetic Reference
Field (IGRF). The outcome of the IGRF is given in the ECEF reference frame; since the
magnetic field BE shall be referenced to the body frame the quantity is converted to
the body reference frame by using

BB = TBEBE (3.24)

3.3.4 Gravity gradient
An object orbiting around a planet experiences different gravitational attraction in dis-
tinct parts of it depending on their distance from the center of the planet. This force
is relatively weak but it helps stabilizing the satellite in body vertical orientation rela-
tive to the nadir orientation. Hence, this phenomenon can help the attitude control of
nadir pointing satellites like Eutelsat 172B. The gravity gradient torque is computed by
summing the contribution of the gravitational forces on the various point masses con-
stituting the rigid body. The gravitational force acting on the i−th particle is assuming
first order variation in the gravitational field

Fi = mig(r
c
i + r0c) = mi[g(r

0
c) +G(r0c)r

c
i ] (3.25)

where the term G(r0c) is the gravity gradient tensor evaluated at the center of mass of
the satellite,mi is the discrete mass in position rci relative to the satellite center of mass
and g(ri) is the gravitational field in position ri relative to the ECI reference system.
The resulting torque generated by these forces is

Mgg =
∑︂
i

mir
ic × [G(r0c)r

c
i ] (3.26)

In the case of spherical gravity field the gravity gradient tensor can be modeled as

G(r) =
µ

r3

(︃
I3 − 3

rrT

r2

)︃
(3.27)

When nadir vector is available, some simplification can be made. Let r0c = −rnnad, the
resulting torque is

Mgg =
3µ

r3
nnad ×

n∑︂
i=1

mi[∥rci∥2I− (rci)(r
c
i)
T ]nnad =

3µ

r3
nnad × (Jnnad) (3.28)

where I is the identity matrix and J is the tensor of inertia of the satellite.
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Chapter 4

Satellite modeling

This chapter is focused on themodeling of the satellite. Hereafter the dynamical model
of the satellite, the satellite actuators and the analysis of the trajectory and the distur-
bances will be presented.

The satellite can rotate the solar panels and this feature cannot be effectively model by
means of single rigid body model, thus a more complex model including this feature
is derived. The satellite is modeled as an ensemble of three parallelepipeds, the main
body and two SA. The spacecraft main body is modeled as a rigid body whose mass
varies with the fuel consumptionwhereas the SA aremodeled as fixedmass rigid body.
The two SA are rigidly connected by a massless rod passing through the central body
which length is equal to the satellite length along y-direction. The rotational joint po-
sition that connects the body to the solar arrays is placed at the CoM of the body and
coincides with the CoM of the SA.

4.1 Satellite Inertia Tensor
We are interested in the tensors of inertia of themain body and the two sSA. The inertia
tensor of a homogeneous parallelepiped is given by

I =
1

12
m

⎡⎢⎣l
2
y + l2z 0 0

0 l2x + l2z 0

0 0 l2x + l2y

⎤⎥⎦ (4.1)

where lx, ly and lz are the parallelepiped edges length along the principal axes and m
is the mass of the parallelepiped [35]. The inertia tensor of the main body with respect
to its geometrical center is

I1 =
1

12
(md +mf (t))

⎡⎢⎣l
2
ySC + l2zSC 0 0

0 l2xSC + l2zSC 0

0 0 l2xSC + l2ySC

⎤⎥⎦ (4.2)

The inertia tensor of the generic SA with respect to its geometrical center is

37



ISA =
1

12
mSA

⎡⎢⎣l
2
ySA + l2zSA 0 0

0 l2xSA + l2zSA 0

0 0 l2xSA + l2ySA

⎤⎥⎦ (4.3)

By using the Parallel Axis theorem [35] the inertia tensor of both SA with respect to
the body reference frame is given by

S = 2ISA + 2mSA

(︃
ly + lSA

2

)︃2

e2 (4.4)

which is a diagonal matrix and e2 = [ 0 1 0 ]. The SA can rotate around the y-axis by the
angle γ thus the inertia tensor considering the rotation of the SA is given by

I2 = T(γ)STT (γ) (4.5)
where T is the rotation matrix

T(γ) =

⎡⎢⎣ cγ 0 sγ

0 1 0

−sγ 0 cγ

⎤⎥⎦ (4.6)

Thus the inertia I2 of the second body is defined as

I2(γ) =

⎡⎢⎣ S11c
2
γ + S33s

2
γ 0 −S11cγsγ + S33sγcγ

0 S22 0

−S11cγsγ + S33sγcγ 0 S11s
2
γ + S33c

2
γ

⎤⎥⎦ (4.7)

In the multibody model in section 4.4, some derivatives of the inertia tensors are re-
quired in equation 4.39. These quantities, which are the partial derivative of I2 with
respect to γ and the derivative with respect to time of I1, are reported below

∂I2
∂γ

= (S33 − S11)

⎡⎢⎣s2θ 0 c2θ

0 0 0

c2θ 0 s2θ

⎤⎥⎦ (4.8)

İ1 =
1

12
ṁp

⎡⎢⎣l
2
ySC + l2zSC 0 0

0 l2xSC + l2zSC 0

0 0 l2xSC + l2ySC

⎤⎥⎦ (4.9)

4.2 Spacecraft attitude representation

4.2.1 Euler angles
The Euler angles are a set of orientation parameters that describe a 3D rotation ma-
trix. There are several Euler angles sets that differ from each other by the sequence of
rotation axes. In this work a 313 Euler angles (ϕ, θ, ψ) set is employed. Let’s define
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with XY Z the fixed reference frame and with xyz a mobile one, as in [35]. Then, the
sequence of rotation is

• First rotation: rotate the XY Z system to the x′y′z′ system through a rotation ϕ
about Z ⎡⎢⎣x

′

y′

z′

⎤⎥⎦ =

⎡⎢⎣ cϕ sϕ 0

−sϕ cϕ 0

0 0 1

⎤⎥⎦
⎡⎢⎣XY
Z

⎤⎥⎦ = R1(ϕ)

⎡⎢⎣XY
Z

⎤⎥⎦ (4.10)

• Second rotation: rotate the x′y′z′ system to the x′′y′′z′′ system through a rotation
θ about x′ ⎡⎢⎣x

′′

y′′

z′′

⎤⎥⎦ =

⎡⎢⎣1 0 0

0 cϕ sϕ

0 −sϕ cϕ

⎤⎥⎦
⎡⎢⎣x

′

y′

z′

⎤⎥⎦ = R2(θ)

⎡⎢⎣x
′

y′

z′

⎤⎥⎦ (4.11)

• Third rotation: rotate the x′′y′′z′′ system to the xyz system through a rotation ψ
about z′′ ⎡⎢⎣xy

z

⎤⎥⎦ =

⎡⎢⎣ cψ sψ 0

−sψ cψ 0

0 0 1

⎤⎥⎦
⎡⎢⎣x

′′

y′′

z′′

⎤⎥⎦ = R3(ψ)

⎡⎢⎣x
′′

y′′

z′′

⎤⎥⎦ (4.12)

The sequence of rotations is sketched in Figure 4.1. The resulting rotation matrix from
the system XY Z to the system xyz is then

vxyz = R3(ψ)R2(θ)R1(ϕ)vXY Z = R313(ϕ, θ, ψ)vXY Z (4.13)
The corresponding Direct Cosine Matrix (DCM) of the rotation matrixR313 is

vXY Z = T313(ϕ, θ, ψ)vxyz (4.14)
where T313(ϕ, θ, ψ) is

T313(ϕ, θ, ψ) =

⎡⎢⎣cϕcψ − sϕcθsψ −cϕsψ − sϕcθcψ sϕsθ

sϕcψ + cϕcθsψ −sϕsψ + cϕcθcψ −cϕsθ
sθsψ sθcψ cθ

⎤⎥⎦ (4.15)

4.2.2 Quaternion
Quaternion are an alternative method to represent 3D rotations. The main differences
with respect to the Euler Angles is that the quaternion does not present singularity
points and it use four parameters instead of three used in Euler angles. A rotation in
the 3D space is completely described by a rotation axis u and a rotation angle θ by Euler
theorem [35]. The quaternion is defined from the tuple (u, θ) as
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ϕ

ψ

θ

X

Y

Z

x” = x’

x

y

z = z”

Figure 4.1: Euler angles

q =

[︄
q0

q

]︄
=

⎡⎢⎢⎢⎢⎣
q0

q1

q2

q3

⎤⎥⎥⎥⎥⎦ =

[︄
cos(θ)

u sin(θ)

]︄
=

⎡⎢⎢⎢⎢⎣
cos(θ)

u1 sin(θ)

u2 sin(θ)

u3 sin(θ)

⎤⎥⎥⎥⎥⎦ (4.16)

The DCMmatrix of a quaternion representation is defined as in [3]

T(q) =

⎡⎢⎣q
2
0 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

⎤⎥⎦ (4.17)

4.2.3 Euler 313 and Quaternion conversions
In the previous Section, the relationship among Euler angles, quaternion andDCMhas
been described. The inverse relationship, i.e. DCM to Euler angles and quaternion is
now described [3]. The first conversion is given by

ϕ = atan2(T13,−T23) θ = atan

(︃√
1− T33
T33

)︃
ψ = atan2(T31, T32) (4.18)

The second conversion is given by

q0 = 0.5
√︁
T11 + T22 + T33 + 1 q1 =

1

4q0

√︁
T32 − T23 (4.19)

q2 =
1

4q0

√︁
T13 − T31 q3 =

1

4q0

√︁
T21 − T12 (4.20)
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The transformation between Euler angles and quaternion are performed converting
the Euler angles representation to the DCM and then from the DCM the quaternion
are obtained. The same process applies for the quaternion to Euler angles conversion.

4.3 Spacecraft attitude kinematics
The spacecraft kinematics equations provide a relationship between the velocities and
the position. The satellite pose, which is the set of parameters that uniquely define its
position in R3, is defined using two set of coordinates presented before, i.e. the Euler
angles and the quaternions.

The kinematic equations for Euler 313 angles are [35]⎡⎢⎣ϕ̇θ̇
ψ̇

⎤⎥⎦ =
1

sθ

⎡⎢⎣ sψ cψ 0

sθcψ −sθsψ 0

−cθsψ −cθcψ sθ

⎤⎥⎦
⎡⎢⎣ω1

ω2

ω3

⎤⎥⎦ (4.21)

⎡⎢⎣ω1

ω2

ω3

⎤⎥⎦ =

⎡⎢⎣sθsψ cψ 0

sθcψ −sψ 0

cθ 0 1

⎤⎥⎦
⎡⎢⎣ϕ̇θ̇
ψ̇

⎤⎥⎦ (4.22)

The kinematic equations for quaternions are [36]

q =
1

2
Qω where Q =

⎡⎢⎢⎢⎢⎣
−q1 −q2 −q3
q0 −q3 q2

q3 q0 −q1
q2 q1 q0

⎤⎥⎥⎥⎥⎦ (4.23)

Two equivalent kinematics model are presented. The kinematic model based on Euler
313 angles is employed in the attitude dynamics model and in the TRMPC controller,
whereas the kinematic model based on quaternion is used in the SMC.

4.4 Spacecraft attitude dynamics
The spacecraft attitude dynamics is usually modeled as rigid body dynamics by the
canonical equation

Iω̇ + ω × Iω = τ (4.24)
where I is the satellite inertia tensor computedwith respect to the body frame centered
at the COM and ω is the angular velocity with respect to the body frame. This model
works when the satellite has small articulated components that do not vary the inertia
significantly or do not produce significant disturbances. The equation (4.24) is used
to simulate the satellite in fixed SA configuration. The SA rotation feature requires a
multibody model which is derived in this Section using the Lagrange approach. The

41



angle γ is the angle of rotation of the SA with respect to the main body. The angular
velocity of the main body is ω, whereas the angular velocity of the SA is the angular
velocity of the main body plus the angular velocity of the SA with respect to the main
body which is γ̇e2.
The kinetic energy for the attitude dynamics is the sum of the kinetic energy of the
main body and the kinetic energy of the solar arrays since they share the same COM
and it can be defined as

T =
1

2
ωT I1ω +

1

2
(ω + γ̇e2)

T I2(ω + γ̇e2) (4.25)

T =
1

2
ωT (I1 + I2)ω + ωT I2γ̇e2 +

1

2
eT2 I2e2γ̇

2 (4.26)

Defining the total inertia as IT = I1+ I2, the total kinetic energy of the system becomes

T =
1

2
ωT ITω + ωT I2γ̇e2 +

1

2
eT2 I2e2γ̇

2 (4.27)

The generalized coordinated are the Euler angles a =
[︂
ϕ θ ψ

]︂T
and the SA rotation

angle γ. The Jacobian matrix J relates ω = J(a)ȧ. All the Jacobian matrix derivatives
needed for the equations are listed below [3].

J(a) =

⎡⎢⎣sθsψ cψ 0

sθcψ −sψ 0

cθ 0 1

⎤⎥⎦ J̇(a, ȧ) =

⎡⎢⎣θ̇cθsψ + ψ̇sθcψ −ψ̇sψ 0

θ̇cθcψ − ψ̇sθsψ −ψ̇cψ 0

−θ̇sθ 0 0

⎤⎥⎦ (4.28)

∂J

∂θ
=

⎡⎢⎣cθsψ 0 0

cθcψ 0 0

−sθ 0 0

⎤⎥⎦ ∂J

∂ψ
=

⎡⎢⎣ sθcψ −sψ 0

−sθsψ −cψ 0

0 0 0

⎤⎥⎦ ∂J

∂ϕ
=

⎡⎢⎣0 0 0

0 0 0

0 0 0

⎤⎥⎦ (4.29)

Using Lagrange approach the derivatives with respect to the generalized coordinates
and velocities are computed as follows

∂T

∂ai
= ȧTJT IT

∂J

∂ai
ȧ+ eT2 I2

∂J

∂ai
ȧγ̇ (4.30)

∂T

∂γ
=

1

2
ωT ∂I2

∂γ
ω + ωT ∂I2

∂γ
e2 (4.31)

∂T

∂ȧi
= (J)Ti ITJȧ+ (J)Ti I2e2γ̇ (4.32)

∂T

∂γ̇
= I222 γ̇ + eT2 I2ω + eT2

∂I2
∂γ

ωγ̇2 (4.33)

and the derivatives with respect to the time are computed as

(4.34)d

dt

(︃
∂T

∂ȧi

)︃
= (J̇)Ti ITω+(J)Ti I1̇ω+(J)Ti

∂I2
∂γ

ωγ̇+(J)Ti IT ω̇+(J̇)Ti I2e2γ̇+(J)Ti I2e2γ̈
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d

dt

(︃
∂T

∂γ̇

)︃
= I222 γ̈ + eT2 I2ω̇ (4.35)

The generalized torque is derived starting from virtual power as

δW = τ T δω + Tmδγ̇

= τ TJδȧ+ Tmδγ̇

=
[︂
JTτ Tm

]︂ [︄δȧ
δγ̇

]︄ (4.36)

Finally, the total torque is given as

Q =

⎡⎢⎢⎢⎢⎣
Q1

Q2

Q3

Q4

⎤⎥⎥⎥⎥⎦ =

[︄
JTτ

Tm

]︄
(4.37)

Lagrange equations are defined as

d

dt

(︃
∂T

∂q̇i

)︃
− ∂T

∂qi
= Qi (4.38)

which lead to the final reformulation reported below

(4.39)
(J̇)Ti ITω + (J)Ti I1̇ω + (J)Ti

∂I2
∂γ

ωγ̇ + (J)Ti IT ω̇ + (J̇)Ti I2e2γ̇

+ (J)Ti I2e2γ̈ − ȧTJT IT
∂J

∂ai
ȧ− eT2 I2

∂J

∂ai
ȧγ̇ = [JTτ ]i

I222 γ̈ + cγ γ̇ + eT2 I2ω̇ − 1

2
ωT ∂I2

∂γ
ω = Tm (4.40)

Defining the state vector as x =
[︂
ω γ̇

]︂T
and the SADA damping as cγ , the final cou-

pled multibody equation model is given by

M(a)ẋ+C(a)x+H = T (4.41)
where the matrices M, C and H are computed starting from equations (4.39)-(4.40)
and are defined below

M(a) =

[︄
JT IT JT I2e2

eT2 I2 I222

]︄
(4.42)

C(a) =

[︄
J̇
T
IT + (J)Ti İ1 J̇

T
I2e2

01×3 cγ

]︄
(4.43)

43



H =

⎡⎢⎢⎢⎢⎢⎢⎣
−ȧT

(︂
∂J
∂ϕ

)︂T
(ITω + I2e2γ̇) + (J)T1

∂I2
∂γ

ωγ̇

−ȧT
(︁
∂J
∂θ

)︁T
(ITω + I2e2γ̇) + (J)T2

∂I2
∂γ

ωγ̇

−ȧT
(︂
∂J
∂ψ

)︂T
(ITω + I2e2γ̇) + (J)T3

∂I2
∂γ

ωγ̇

−1
2
ωT ∂I2

∂γ
ω

⎤⎥⎥⎥⎥⎥⎥⎦ (4.44)

T =

[︄
JTτ

Tm

]︄
(4.45)

4.5 Inertia Matrix inversion
The solution of the dynamics equation of the multibody satellite requires the inversion
of the matrixM(x) of Equation 4.41. In order to reduce the computational burden, i.e.
avoid the use of standard inversion algorithms, a close form solution for the computa-
tion of the inverse is presented here. Let us define the matrix

M =

[︄
A B

C D

]︄
(4.46)

where the terms are given by

A = JT (I1 + I2) B = JT I2e2 C = eT2 I2 D = I222 (4.47)
The matrix inversion formula presented in [37], can be defined as

M−1 =

[︄
A−1 +A−1BHCA−1 −A−1BH

−HCA−1 H

]︄
where H = (D−CA−1B)−1 (4.48)

The inverse can be computed if and only if (D − CA−1B) is invertible. During the
simulation, this matrix has proved to be always invertible, anyhow in case the matrix
(D − CA−1B) results to be non-invertible an alternative inversion algorithm is called
as recovery mode. Notice that D is a scalar, so the only matrix which needs the com-
putation of the inverse isA, i.e.

A−1 = (JT (I1 + I2))
−1 = (I1 + I2)

−1(JT )−1 (4.49)
The objective is to find a closed analytic form of equation 4.49. The inverse of the trans-
pose Jacobian matrix is given by

(JT )−1 =
1

sθ

⎡⎢⎣sψ cψsθ −cθsψ
cψ −sψsθ −cθcψ
0 sθ

⎤⎥⎦ (4.50)

The sum of the inertia matrices I1 and I2 is IT . Given the structure of I1 and I2, respec-
tively defined in 4.2 and 4.7, matrix IT can be written as
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IT = M =

⎡⎢⎣M11 0 M13

0 M22 0

M13 0 M33

⎤⎥⎦ (4.51)

The inversion of matrix M can be computed exploiting the Shermann-Morrison for-
mula reported in [38]

(E+ uvT )−1 = E−1 +
E−1uvTA−1

1 + vTA−1u
(4.52)

The objective is to define a diagonalmatrixE and amatrix uvT such that J = (E+uvT ).
The advantage is that the inversion of matrixE needs only three divisions and then the
computation of the matrix J just needs few simple operations. A possible set up is the
following

E =

⎡⎢⎣M11 −M13 0 0

0 M22 0

0 0 M33 −M13

⎤⎥⎦ (4.53)

E−1 =

⎡⎢⎣
1

M11−M13
0 0

0 1
M22

0

0 0 1
M33−M13

⎤⎥⎦ (4.54)

u = sign(M13)

⎡⎢⎣
√︁
|M13|
0√︁
|M13|

⎤⎥⎦ (4.55)

v =

⎡⎢⎣
√︁

|M13|
0√︁
|M13|

⎤⎥⎦ (4.56)

The simplified expression for the computation of the inverse of the generic inertia ma-
trixM is given by

I−1 =

⎡⎢⎣γ1 0 0

0 γ2 0

0 0 γ3

⎤⎥⎦+
1

M13(γ1γ3)

⎡⎢⎣ γ21M13 0 γ1γ3M13

0 0 0

γ1γ3M13 0 γ23M13

⎤⎥⎦ (4.57)

where the terms γi are defined as

γ1 =
1

M11 −M13

γ2 =
1

M22

γ3 =
1

M33 −M13

(4.58)

The application of this technique instead of the standard inversion make the computa-
tions 50 times faster 1, providing the exact inversion.

1Comparison of the time needed to perform 10000 inversions using the aforementionedmethod and
the standard MATLAB command
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4.6 Attitude trajectory
The attitude trajectory generation is a key process to make the mission successful. All
the pointing requirements, e.g. the payload pointing, are translated into a sequence of
poses that the satellite shall assume driven by the attitude controller. The sequence of
poses is the attitude trajectory. The goal of the Eutelsat 172B is to maintain the pay-
load pointed towards the Earth, while maximizing the energy produced with the solar
arrays. The satellite orbit around the Earth is defined in the Eutelsat 172B specifica-
tions [11] and the sun position in the ECI reference frame can be obtained by using
the model presented in subsection 3.2.1. The orbit of the Earth around the Sun and the
satellite orbit around the Earth are depicted in Figure 4.2.

Satellite orbit around the Earth

Earth orbit around the Sun

Figure 4.2: Sun and Satellite orbits in ECI (Earth and satellite dimensions are magnified)

The easiest way to define an attitude trajectory to fulfill the tasks is to exploit the LVLH
reference frame. The Earth pointing payload requirement can be fulfilled by impos-
ing that the payload points toward the LVLH z-axis direction. By imposing the Earth
pointing constraints, 2 Degrees of Freedom (DoF) are now blocked. The remaining
DoF are the rotation of the satellite around the LVLH z-axis and the rotation of the
solar arrays around the body reference frame y-axis. The orbit periods of the Earth
around the Sun and the Satellite around the Earth are different and, in first approxi-
mation, can be considered respectively equal to one year and one day. The trajectory
planning is conceived considering the Sun fixed and the satellite orbiting around the
Earth, considering a one day time horizon. By using this idea, the natural choice is to
point the solar array rotational axis along the satellite orbit normal vector to make the
solar arrays be impacted by the sunlight at almost 90 o. This idea can be visualized in
Figure 4.3. Figure 4.4 visually summarizes the geometry of the Earth and Satellite or-
bital trajectories, the ECI and the LVLH reference systems and the satellite orientation.

The reference attitude matrix is then computed as
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Sunrays direction

Solar Arrays

Earth

Figure 4.3: Earth and Satellite orbits (satellite orbit normal view)

Earth Orbit

z

x y

y

z
x

x

z

y

LVLH

ECI

Satellite body

Satellite Orbit

Payload

Solar Arrays

Figure 4.4: Earth and Satellite orbits

Tref = TLITRL TRL =

⎡⎢⎣ 0 0 1

0 1 0

−1 0 0

⎤⎥⎦ (4.59)
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where TRL is the transformation matrix that position the satellite as described in the
last paragraph, i.e. the payload that points along the LVLH z-axis and the SA rotation
axis is parallel to the LVLH y-axis. The controller requires a Euler 313 reference signal,
thus a conversion from attitude matrix Tref to Euler 313 shall be implemented. We
consider the satellite position and velocity at time t as rECI = [ r cos(ω⊕t) r sin(ω⊕t) 0 ]

T

and vECI = [−r sin(ω⊕t) r cos(ω⊕t) 0 ]
T . Hence, the evolution in time of the matrixTLI ,

given the definitions in subsection 3.1.4, is

TLI =

⎡⎢⎣− sin(ω⊕t) 0 − cos(ω⊕t)

cos(ω⊕t) 0 − sin(ω⊕t)

0 −1 0

⎤⎥⎦ (4.60)

where r is themagnitude of the orbit radius andω⊕ is the Earth angular velocitymagni-
tude in ECI. The matrixTref can be computed using Equation (4.59). Finally, by using
the conversion equations described in Equations (4.18), the attitude trajectory in Euler
313 given by

x̄r =

⎡⎢⎣ϕθ
ψ

⎤⎥⎦ =

⎡⎢⎣ω⊕t− π

π/2

π

⎤⎥⎦ (4.61)

Given the above definition of Euler 313 trajectory, by taking its derivative with respect
to time considering the kinematic equation 4.22, we obtain reference trajectory for the
angular velocity, which is constant in time and is given by

ωr =

⎡⎢⎣ 0

−ω⊕

0

⎤⎥⎦ (4.62)

4.7 Linearized Attitude Dynamics equations
Attitude controlmethods based on linear controllers, such asMPC, need a linearmodel
of the plant to be designed. Attitude dynamics and kinematics equations linearization
for attitude control is a standard practice when the satellite states stay in a neighbor-
hood of the linearization point [29]. The attitude dynamics equation for a rigid body is
given by equation (4.24) and the kinematic equation is given by equation (4.22). Here
we suppose that the inertiamatrix of the spacecraft is constant and diagonal. The offdi-
agonal terms are neglected because are smaller with respect to the diagonal elements.
Hence, the inertia matrix used for the linearized model is

Ĩ =

⎡⎢⎣IT (1, 1) 0 0

0 IT (2, 2) 0

0 0 IT (3, 3)

⎤⎥⎦ (4.63)
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where the entries of the Ĩ matrix are the diagonal terms of the matrix IT , defined in
section 4.1, considering angle γ = 0. The linearized model is derived in this section
and includes both dynamics and kinematics.
The linearization procedure around the linearization point is described in [39] and
hereafter is briefly recalled. The dynamic differential equation is in the form ẋ = f(x,u)
where x is the state vector and u is the input vector. The Taylor expansion at state x̄
and input ū stopped at first order is

f(x,u) ≈ f(x̄, ū) +
∂f

∂x

⃓⃓⃓⃓
x̄,ū

(x− x̄) +
∂f

∂u

⃓⃓⃓⃓
x̄,ū

(u− ū)

≈ ẋ̄x+Ax̃+Bũ

(4.64)

where the tilde quantities are x̃ = x− x̄ and ũ = u− ū. Subtracting ẋ̄x from both sides
of the equation 4.64 returns

ẋ̃x = Ax̃+Bũ (4.65)
The equation is linear in terms of x̃ and ũ. The equation (4.65) is a linear equation for
the deviations of the state and the control from their nominal values. The integration
procedure for the linearized model is summarized in Figure 4.5.

u

ū
ẋ̃x = Ax̃+Bũ

1
s

x̄

x

Figure 4.5: Integration of linearized model

The reference frame for the attitude equation is ECI, thus there is no single linearization
point. The attitude equation is linearized along the trajectory, possibly resulting in
different matrix A and B. The reference trajectory is defined in subsection 4.6. The
linearization point is

x̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ

θ

ψ

ω1

ω2

ω3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω⊕t− π

π/2

π

0

−ω⊕

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.66)

and the input linearization point is set to

ū =

⎡⎢⎣τxτy
τz

⎤⎥⎦ =

⎡⎢⎣00
0

⎤⎥⎦ (4.67)
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The equation 4.24 is the general form when the inertia matrix is non-diagonal. In the
case when the inertia matrix is diagonal, equation 4.24 reduces to

ω̇1 = ω2ω3
Ĩ33 − Ĩ22

Ĩ11
+

τ1

Ĩ11
(4.68)

ω̇2 = ω1ω3
Ĩ11 − Ĩ33

Ĩ22
+

τ2

Ĩ22
(4.69)

ω̇3 = ω1ω2
Ĩ22 − Ĩ11

Ĩ33
+

τ3

Ĩ33
(4.70)

The system of equations for attitude dynamics and kinematics for the Euler angles 313
is given by

f(x,u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̇ =
sψ
sθ
ω1 +

cψ
sθ
ω2

θ̇ = cψω1 − sψω2

ψ̇ =
cθsψ
sθ
ω1 − cθcψ

sθ
ω2 + ω3

ω̇1 = ω2ω3
I
˜
33−I

˜
22

I
˜
11

+ τ1

I
˜
11

ω̇2 = ω1ω3
I
˜
11−I

˜
33

I
˜
22

+ τ2

I
˜
22

ω̇3 = ω1ω2
I
˜
22−I

˜
11

I
˜
33

+ τ3

I
˜
33

(4.71)

The state matrixA of the linearized attitude equation is given by

A =
∂f

∂x

⃓⃓⃓⃓
x̄,ū

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 0

0 0 −ω⊕ −1 0 0

0 ω⊕ 0 0 0 1

0 0 0 0 0 ω⊕
I
˜
22−I

˜
33

I
˜
11

0 0 0 0 0 0

0 0 0 ω⊕
I
˜
11−I

˜
22

I
˜
33

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.72)

The input matrix B of the linearized attitude equation is given by

B =
∂f

∂u

⃓⃓⃓⃓
x̄,ū

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0
1

I
˜
11

0 0

0 1

I
˜
22

0

0 0 1

I
˜
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.73)

Notice that the the first component of the linearization point in 4.66 is time varying, but
the time variable does not enters in matrixA. Both matricesA andB are composed by
constant terms, thus the attitude dynamics deviation equation is given by
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̇̃ϕ

θ̃̇θ

ψ̇̃ψ

ω1̃ω̇1

ω2̃ω̇2

ω3̃ω̇3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 0

0 0 −ω⊕ −1 0 0

0 ω⊕ 0 0 0 1

0 0 0 0 0 ω⊕
I
˜
22−I

˜
33

I
˜
11

0 0 0 0 0 0

0 0 0 ω⊕
I
˜
11−I

˜
22

I
˜
33

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̃

θ̃

ψ̃

ω1̃

ω2̃

ω3̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0
1

I
˜
11

0 0

0 1

I
˜
22

0

0 0 1

I
˜
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣τ1τ2
τ3

⎤⎥⎦

(4.74)

4.8 Attitude disturbance analysis
The disturbance analysis is based on a simulation of the disturbance torques acting on
the satellite during one year. In Figure 4.6, the disturbances evolution over a year is
represented and the related minimum and maximum bounds, which are reported in
table 4.1, have been used to defined the convex disturbance set Ξ.
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Figure 4.6: Torque disturbance acting on the satellite

The convex disturbance set is a polytope defined as follows
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lower bound [mNm] upper bound [mNm]
-0.8 0.8
-0.5 0.5
-0.8 0.8

Table 4.1: Torque disturbances bounds

Ξ =
{︁
w ∈ R3 : VΞw ≤ 1

}︁ (4.75)

where the matrixVΞ is defined as

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1250 0 0

0 −2000 0

0 0 −1250

1250 0 0

0 2000 0

0 0 1250

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.76)

This convex disturbance set will be used as the additive disturbance set for the design
of the TRMPC controller in section 5.5.2. The set is plotted in Figure 4.7
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Figure 4.7: Torque disturbance set
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4.9 Attitude actuators

The actuator position and orientation design has been assumed following the guide-
lines of [29]. The actuators are positioned in the most distant points of the main body
with respect with the CoM to maximize the produced torque and their orientation has
been chosen to avoid ion jet collision with payload components and SA. The thrusters
are arranged in clusters. Each of the np = 8 cluster is represented in Figure 4.8, where
the origin of the arrow indicates the position ri of the i-th cluster and the direction ui
of the arrow indicates the cluster thrusters orientation. Each cluster features nt = 4
Enpulsion NANO R3 thrusters.

12
3 4
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6

x

z

y

7

8

Figure 4.8: Satellite thrusters scheme

The cluster position are located at

r1 =

⎡⎢⎣2.851.5

0.8

⎤⎥⎦ r2 =

⎡⎢⎣2.85−1.5

0.8

⎤⎥⎦ r3 =

⎡⎢⎣2.85−1.5

−0.8

⎤⎥⎦ r3 =

⎡⎢⎣2.851.5

−0.8

⎤⎥⎦ (4.77)
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r5 =

⎡⎢⎣ 2.85

−1.5

−1.85

⎤⎥⎦ r6 =

⎡⎢⎣ 2.85

1.5

−1.85

⎤⎥⎦ r7 =

⎡⎢⎣−2.85

−1.5

−1.85

⎤⎥⎦ r8 =

⎡⎢⎣−2.85

1.5

−1.85

⎤⎥⎦ (4.78)

The direction of the gas output with respect to the main body reference frame are

u1 =

⎡⎢⎣10
0

⎤⎥⎦ u2 =

⎡⎢⎣10
0

⎤⎥⎦ u3 =

⎡⎢⎣10
0

⎤⎥⎦ u4 =

⎡⎢⎣10
0

⎤⎥⎦ (4.79)

u5 =

⎡⎢⎣ 0

0

−1

⎤⎥⎦ u6 =

⎡⎢⎣ 0

0

−1

⎤⎥⎦ u7 =

⎡⎢⎣ 0

0

−1

⎤⎥⎦ u8 =

⎡⎢⎣ 0

0

−1

⎤⎥⎦ (4.80)

Each thruster is modeled using the classical rocket equation [27]

Fi(ṁi) = ṁiIspg0 (4.81)
where Fi and mi are respectively the produced thrust and the mass flow of thruster i,
Isp is the specific impulse of the thrusters and g0 is the acceleration by gravity. The total
torque produced by the thrusters is given by

T =
∑︂
i

ri × Fiui =
∑︂
i

FiS(ri)ui

=Ispg0

[︂
S(r1)u1 . . . S(rn)un

]︂
⏞ ⏟⏟ ⏞

C

m

= Ispg0C⏞ ⏟⏟ ⏞
D

m = Dm

(4.82)

where ri is the distance of thruster i from the CoM, S(·) is the cross product operator
and m = [m1 . . . mn ]

T is the vector of the thrusters mass-flow. The mass-flow of each
thruster must be grater than zero and lower than themaximum value of thrust allowed
(i.e. 350 mN) [30]. The input force set F is the set of allowed thrust produced by each
thruster and it is defined as

0 ≤ mi ≤
ntFi
Ispg0

, i = 1, . . . , np (4.83)

The input torque setG is computed performing an affine transformation of the set F by
the matrixD, i.e.

G =
{︁
u ∈ R3 : VGu ≤ 1

}︁ (4.84)
where the matrixVG is
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G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−185.9100 97.8474 −52.1853

185.9100 97.8474 −52.1853

0 0 −238.0952

−238.0952 0 0

−185.9100 −97.8474 −52.1853

−185.9100 97.8474 52.1853

185.9100 97.8474 52.1853

238.0952 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.85)
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Figure 4.9: Input constraints set

In Figure 4.9 the input torque constraint set is depicted. The controllers that will be
presented in Chapter 5 produce a control input torque value. On the other end, our
AOCS is thruster based. Hence, we need to derive the real actuator signal to be set to
the thrusters according to the control torque defined by the controller. Thus, we have
to select which cluster shall be activated to produce the desired torque and a proper
problem shall be set up. The problem variables are the np values of thrust produced
by each cluster of thrusters. The problem constraints are the maximummass-flow that
each cluster can eject, i.e. m ∈ F, and the Equation (4.82) which relates the torque and
the thrust produced by the thrusters. The number of variables in this problem is higher
than the number of constraints, thus there is an infinite number of solution. These kind
of problems, where the constraints are linear and the number of solutions are not finite,
can be cast into Linear Programming (LP)2 [41]. Having defined the constraints of the
problem, the last element to be designed is the LP cost function. One objective of the
satellite mission is to consume the minimum amount of fuel, thus the cost function is
designed as the sum of the mass-flows of the clusters. The resulting LP problem is

2The solver employed to solve P.1 is OSQP [40].
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m∗ = argmin
m

1Tm

subject to m ∈ F
Dm = T

(P.1)

wherem∗ is the optimal mass flow of the clusters, the variableD is the matrix defined
in Equation 4.82, F is the set defined in Equation (4.83) and T is the control torque
input given by the controller. The total fuel consumptionM at time t can be computed
as in [14].

M(t) =M0 −
∫︂ t

0

∥m∥1 dt (4.86)

whereM0 is the initial fuel loaded for the mission.

56



Chapter 5

Satellite control

This chapter is devoted to the control systems. In the first part the generalities of the
SMCand the TRMPC controller are introduced and their application in attitude control
is subsequently described. In the last part the SADA optimal trajectory generation and
its relative LQR controller are described.

5.1 Sliding Mode Controller
Sliding mode control (SMC) is a well-established control technique for non-linear sys-
tems, characterized for his inheritance robustness properties in the presence of plant
uncertainties.
The SMC approach can be summarized as described in [36]

• A sliding surface s, which is a subset of the state space, is defined.

• The sliding surface s encloses the trajectory in which the plant is desired to lie.

• A feedback law is designed to bring the plant trajectory towards the sliding sur-
face, and once there, to stay close to s.

The surface s splits the state space in two subspaces: one where s > 0 and the other
where s < 0. When the state trajectory is in one of the two subspaces the control tries to
drive the system to the other subspace. When the control lawbrings the system towards
the the subspace, the process restarts. Figure 5.1 shows the SMC working principle.
The SMC action can be divided into two phases: the reaching and the sliding phase.
The two phase are sketched in figure 5.2. The first phase that takes place is the reach-
ing one; the initial state is forced towards the desired trajectory on the sliding surface.
During the second phase, the sliding one, the trajectory starts in a neighborhood of the
sliding surface and it "slides around" the sliding surface. During the sliding phase, the
chattering, that is a typical SMC unwanted oscillating phenomenon, can occur.
The reaching phase behavior makes the SMC attractive and the sliding phase behavior
makes the SMC invariant.
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Figure 5.1: SMC principle

5.2 Attitude Sliding Mode Controller
The SMC presented in this section is a classical approach in nonlinear attitude control
thanks to its simplicity and performances [36]. The controller shall perform the track-
ing of the reference attitude, which is described in Section 4.6, in order to accomplish
the goal of the mission. The reference attitude trajectory for the SMC controller is ex-
pressed by the quaternion reference qr and the angular velocity reference ωr. While
the angular velocity reference is already defined in 4.62, the quaternion reference is
computed from the Euler reference trajectory, defined in Equation 4.61, using the con-
version equations described in section 4.2.
The system to control is defined by the kinematic equation defined in Equation 4.23
and the Euler dynamics Equation (4.24){︄

q̇ = 1
2
Qω

ω̇ = −J−1ω × Jω + J−1u
(5.1)

where J is the inertia tensor of the satellite equal to the inertia matrix Ĩ defined in
Equation (4.63) and Q is the kinematics matrix of quaternion defined in 4.23. The
quaternion q, which is defined in 4.16, is the output to be controlled, the system is
Multiple Input Multiple Output (MIMO), it is a generalized normal form and it has
relative degree σ = 2. The sliding surface function is defined as

s(q,ω, t) = ω̃ + k2q̃ (5.2)
where ω̃ = ω − ωr and q̃ are the last three elements of vector q̃ defined as

q̃ =

[︄
q̃0

q̃

]︄
= q∗ ⊗ qr (5.3)
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Figure 5.2: SMC typical behavior

where the operator ⊗ is the quaternion product operator. The derivative of the sliding
surface s is defined as

ṡ = ω̇r − ω̇ + k2q̇̃q

= ω̇r + J−1ω × Jω − J−1u+
k2
2
(q̃0ω̃ + q̃× (ωr + ω))

(5.4)

When ṡ = 0, the sliding surface is invariant. Imposing ṡ = 0 and inverting with respect
to u the above expression, we obtain

us = J

(︃
ω̇r +

k2
2
(q̃0ω̃ + q̃× (ωr + ω))

)︃
+ ω × Jω (5.5)

The SMC control input us at this stage guarantee only the invariance property. In order
to make the surface attractive, as described in the previous section, the additional term

ua = k1J tanh(ηs) (5.6)
is added to the control input. This term steer the trajectory towards the sliding surface
thanks to the dependence on the sign of the sliding surface and it is active only when
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s ̸= 0. In the sliding control theory several attractive terms has been proposed [36]. The
choice of this term is a trade off between the convergence speed and the chattering. The
proposed function tanh proved to be more robust to chattering with respect to other
functions, i.e. the sign function. Finally, the complete control law is

u = us + ua (5.7)

5.3 Optimal solar array rotation angle

The Eutelsat 172B SA can rotate around the y-axis of the spacecraft main body. In
order tomaximize the solar energy converted into electrical energy, the optimal rotation
angle shall be found. The Sun direction with respect to the satellite r̂s and the normal
direction of the SA surface with respect to to the satellite n̂SA are given. The objective
is to find the optimal rotation angle that minimize the angle ϕSA, which is a 3D angle,
between r̂s and n̂SA. A graphical representation of these vectors and angles is provided
in Figure 5.3.

r̂s

n̂SA

γϕSA

x

z

y

Figure 5.3: Angle ϕSA and γ representation in body reference frame

The versor r̂s can be rotated around the y-axis by the solar array angle γ in the body
reference frame, thus the dependency can be written as
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n̂RSA =

⎡⎢⎣ cos(γ) 0 sin(γ)

0 1 0

− sin(γ) 0 cos(γ)

⎤⎥⎦ n̂SA (5.8)

where n̂RSA represents the vector n̂SA rotated around the body y-axis by an angle γSA.
Recalling the scalar product formula that relates the angle between the two vectors, we
have

r̂s · n̂SA = |n̂SA||r̂s|cos(ϕSA) (5.9)
Since the two vector are versors, the formula simplifies into

r̂s · n̂SA = cos(ϕSA) (5.10)
The SA are double faced, this means that there are the same number of solar cells on
each face. In mathematical terms this translates into the addition of the absolute value
in both sides of equation 5.10 resulting in

|r̂s · n̂SA|= cos(ϕSA) (5.11)
The objective is now to find the angle θSA that maximize the left hand side of equation
5.11. Let us define the vector components of r̂s and n̂SA as

r̂s =

⎡⎢⎣r
x
s

rys

rzs

⎤⎥⎦ n̂SA =

⎡⎢⎣10
0

⎤⎥⎦ (5.12)

The quantity H to be maximized can be expressed as

H(γSA) = |rzs cos(γ)− rxs sin(γ)| (5.13)
The optimization problem becomes

θSA = argmax
γ∈[−π/2,−π/2]

H(γ) (P.2)

The problem in P.2 is a nonlinear optimization problem 1. Problem P.2 is solved contin-
uously during the simulation generating the optimal trajectory for the SADA rotation
angle γ. The possibility to rotate the SA can increase significantly the production of
energy, nearly doubling it as can be seen in figure 5.4.

1The function used to solve the problem is ❢♠✐♥❝♦♥, which is a nonlinear multivariable constrained
problem solver.
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Figure 5.4: Comparison of the efficiency obtained using the rotating solar panel with respect
to the static configuration

5.4 Linear Quadratic Regulator (LQR)
Optimal control theory is related to operate a system at a some specifiedminimum cost
[5]. The linear quadratic problem embrace all the system where the plant dynamics is
linear and the cost function is quadratic. Linear Quadratic Regulator (LQR) control is a
classical feed back control method in the field of optimal control. The Linear Quadratic
Regulator (LQR) algorithm is essentially an automatedway of finding a state-feedback
controller given the cost functionweights. There are different types of LQR controllers,
the one used in this thesis is the discrete time infinite horizon version. Hereafter the
basic theory of the controller is reported.
The plant of the system to be controlled is described by the state space difference equa-
tion

xk+1 = Axk +Buk (5.14)

where xk and uk are respectively the state and the input at time instant k, matrix A
is the state matrix and B is the input matrix. The cost function of the LQR control is
defined by

V =
∞∑︂
k=0

(︁
∥xk∥2Q+∥uk∥2R

)︁ (5.15)
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whereQ is the weight matrix for the state andR is the weight matrix for the input. The
optimal control sequence minimizing the cost function is given by

uk = −Kx (5.16)
where the gain matrixK is computed from

K = (R+BTWB)−1BTWA (5.17)
where the matrix W is the unique positive definite solution of the discrete time alge-
braic Riccati equation

W = ATWA+Q−ATWB(R+BTWB)−1BTWA (5.18)
By introducing the Equation (5.16) in Equation (5.15) the cost function can be equiva-
lently rewritten as

V = ∥x0∥2P (5.19)
where the matrixW is the solution of the Equation (5.18).

5.4.1 SADA LQR control
The SADA controller is a saturated LQR. This controller performs the rotation of the
solar panels following the trajectory defined in P.2. The dynamic equation of the SADA
from the multibody model is 4.40. If we consider the system in a neighborhood of the
trajectory, the last two terms of the left hand side of Equation 4.40 can be neglected
making the SADA model linear in γ, thus the simplified equation becomes

I222 γ̈ + cγ γ̇ = Tm (5.20)
In any case when the the satellite is out of the attitude trajectory the SADA actuator
can be locked in position, thus making the system behave like a rigid body for the
recovery procedures. The torque input is saturated since it can inject additional torque
disturbance and cause a failure of the attitude trajetory tracking which is of primarily
importance. The state space model of Equation (5.20) is given by[︄

γ̇

γ̈

]︄
=

⎡⎣0 1

0
I222
cγ

⎤⎦[︄γ
γ̇

]︄
+

⎡⎣ 0
1

I222

⎤⎦Tm (5.21)

5.5 Tube Robust Model Predictive Control (TRMPC)
RMPC is a control technique that ensures robust constraint satisfaction, system stabil-
ity and optimized performance in the presence of uncertainty. Generally, in the RMPC
schemes, robustness properties are guaranteed with the drawback of increased com-
putational complexity. In the last decade a major research output in RMPC has re-
sulted in algorithms that guarantee constraint satisfaction despite the presence of un-
certainty, but also to reduce the computational burden. One of the algorithms that
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presents a good trade-off between robustness and computational complexity when the
disturbance are bounded is the Tube Robust Model Predictive Control (TRMPC). The
key feature of the TRMPC is the offline constraint tightening, that ensures the robust
satisfaction of the constraints while keeping the computational load comparable to the
classical MPC [17]. In the following, the main concepts of the TRMPC are presented,
for further information refer to [5, 42]

5.5.1 Model Predictive Control (MPC)
The MPC is a natural evolution of the LQR. The MPC philosophy can be summarized
briefly as follows. Predict future behavior using a system model, given measurements
or estimates of the current state of the system and a hypothetical future input trajectory
or feedback control policy [42]. The fundamentals are similar, they both deal with the
control of linear systems to be driven by the solution of an quadratic optimization prob-
lem. The innovation of the MPC is that the state and input constraints are included in
the problem. The disadvantage in the MPC approach with respect to the LQR meth-
ods is the a quadratic optimization problem shall be continuously solved online, but
thanks to the advancements in computational processing power of inexpensive micro-
processors the problem is becoming less important. The outcome of the MPC is a time
varying feedback control law with respect to the LQR which implements a static feed-
back gain. The MPC is now briefly discussed [42]. Let us define the linear difference
system to be controlled defined as

xk+1 = Axk +Buk (5.22)
where x ∈ Rn is the system state vector, n is the number of states, u ∈ Rm is the system
input vector,m is the number of inputs,A is the state matrix andB is the input matrix.
The state x and the input u are constrained to

x ∈ X, u ∈ U (5.23)
where X is the state constraint set and U is the input constraint set. The regulation
problem is concerned with the design of a controller that drives the system state to
some desired reference point using an acceptable amount of control effort. In the case
where desired reference point is the origin, the controller performance is quantified by
a quadratic cost function defined as

V =
∞∑︂
k=0

(︁
∥xk∥2Q+∥uk∥2R

)︁ (5.24)

whereQ andR are weighting matrices that specify the importance of particular states
and inputs in the cost function. The prediction horizon employed in Equation (5.24)
is infinite. Thus, if every element of the infinite sequence of predicted inputs is treated
as free variable, then the constrained minimization of the function in Equation (5.24)
would be an infinite-dimensional optimization problem, which is in principle unfea-
sible. To tackle this problem the dual-mode paradigm is applied. The dual-mode
prediction paradigm splits the prediction horizon into two intervals. The first mode
considers the predicted control inputs over the first N prediction time steps for some
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finite horizon N , whereas the second mode refers to the control law over the subse-
quent infinite interval. The second mode predicted inputs are specified by a fixed
feedback law, which is typically designed considering the LQR solution of the cost
function, thus without accounting for the constraints. This technique make reduces
the number of optimization variable for the problem from infinite toN . Unfortunately
by applying an unconstrained control to the second mode prediction nothing can be
said about the constraint satisfaction after the firstN steps. The constraints satisfaction
condition for the MPC problem are enforced by constraining the state prediction xN to
lie in a Controlled positive invariant set (CPI) for the system and the constraints. A
set D is said CPI under the dynamics 5.22 and constraints 5.23, if there exist an input
u ∈ U such that the predicted state xk+1 is in D. Thus this set is a subset of the origi-
nal constraints set X. The cost function 5.24 shall be modified to apply the dual-mode
paradigm, i.e. set as optimization variables only the first N terms of the control input
sequenceU = [u0 . . . uN−1]

T . This can be accomplish by splitting the cost function into
two terms. The first term is the summation of the first N entries of the cost function V
which include all the optimization variables. This term is defined as

V1 =
N−1∑︂
k=0

(︁
∥xk∥2Q+∥uk∥2R

)︁ (5.25)

where Q is the weight matrix for the state and R is the weight matrix for the input.
The second term account for all the other cost indexes from N → ∞, thus by using the
Equation (5.19) the second term is defined as

V2 = ∥xN∥2W (5.26)
whereW is the solution of the discrete time Riccati Equation (5.18). Thus the complete
cost function can be written as

V =
N−1∑︂
k=0

(︁
∥xk∥2Q+∥uk∥2R

)︁
+ ∥xN∥2W (5.27)

Summarizing theMPCproblem described before can be cast in the following optimiza-
tion problem

argmin
U

N−1∑︂
k=0

(︁
∥xk∥2Q+∥uk∥2R

)︁
+ ∥xN∥2W

subject to xi+1 = Axi +Bui, ∀i = 0, . . . , N − 1

xi ∈ X, ∀i = 0, . . . , N

ui ∈ U, ∀i = 0, . . . , N − 1

xN ∈ D

(P.3)

5.5.2 TRMPC of linear system with additive disturbance
Let us consider the linear system
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xk+1 = Axk +Buk +wk (5.28)
where x ∈ Rn is the system state vector, n is the number of states, u ∈ Rm is the system
input vector,m is the number of inputs. The vectorw = Dξ is the additive disturbance
where ξ lies in a compact convex polyhedral setΞ that contains the origin. Hence due to
the affine transformation alsow lies in a compact convex polyhedral setW that contains
the origin and the system couple (A,D) is considered controllable. Both the state and
the input are constrained in polyhedral set, x ∈ X and u ∈ U respectively. These two
set can be describe in inequality form as mixed constrains defined as

Fxk +Guk ≤ 1 (5.29)
where F ∈ Rs×m and G ∈ Rs×n are matrices derived from the definitions of X and
U, s is the number of rows of F and G. The term 1 = [ 1 . . . 1 ]T is a column vector
with elements equal to unity, the dimension of which is context dependent, i.e. in this
specific case the dimension is s
Thanks to the linearity of the Equation (5.28), the component of the predicted state
that is generated by the disturbance input evolves independently of the optimization
variables. Since the constraints (5.29) are also linear, the worst-case disturbances with
respect to these constraints do not depend on the optimization variables and can there-
fore be determined offline. This leads to a computationally convenient method of han-
dling constraints for open-loop optimization strategies. In fact the resulting constraints
on predicted states and inputs are of the same form as those of the classical, i.e without
uncertainty, MPC problem, and are simply tightened to account for the uncertainty in
predictions [42]. The dynamics of the system (5.28) can thus be splitted into two dif-
ferent dynamics: the nominal dynamics and the error dynamics. The predicted is thus
decomposed into nominal and uncertain components, denoted as z and e, respectively.
Let the nominal and the error system be described by

zk+1 = Azk +Buk (5.30)

ek+1 = Aek +wk (5.31)
where the deviation of the actual state from the nominal state is ek = xk − zk. The set
S(i) is defined by

S(i) =
i−1⨁︂
j=0

AjW (5.32)

where ⊕ is the Minkowski sum operator. If matrixA is stable, then, the set S(∞) exist
and it is positive invariant for ek+1 = Aek + wk i.e. ek ∈ S(∞) implies Aek + wk ∈
S(∞),∀wk ∈ W, also S(i) → S(∞) as i → ∞ [43]. The feedback time varying control
law implement is

uk = vk +K(xk − zk) (5.33)
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where xk is the actual state, zk is the nominal state and vk is the nominal input and K
is the control gain matrix defined such that the error dynamics eigenvalues are stable.
By applying this control strategy the system equation for xk is

xk+1 = Axk +Bvk +BKek +wk (5.34)
the nominal system corresponding to the state system 5.34 is

zk+1 = Azk +Bvk (5.35)
The deviation e now satisfies the difference equation

ek+1 = Akek +wk, Ak = A+BK (5.36)
As mentioned before, the gain matrix K is chosen such that Ak is stable, then the new
uncertainty set Sk(i) is defined by

SK(i) =
i−1⨁︂
j=0

Aj
kW (5.37)

Considering that the error dynamics is uncoupled from the nominal dynamics and that
the error setW is bounded, the tube that contains all the possible realization of the error,
given that the error initial condition e0 lies in it, is SK(i). This set is difficult to compute
in closed form, thus an outer approximation procedure, described in subsection 5.5.4,
is used to compute it. The outer-bounding approximation of SK(∞) is called S. The
tube S features a constant cross section and it will be the tube used for the design of
the TRMPC. The goal of TRMPC is to ensure that zi → 0 as i → 0, so that the state xi,
which lies in the tube Xi = {zi} ⊕ S, tends to S as i → ∞. This idea can be visualized
in Figure 5.5.
The fact that the state and control trajectories of the uncertain system lie in known
neighborhoods of the state and control trajectories, zi and vi respectively, is the basis
for TRMPC described subsequently. It follows from this fact that if zi and vi are chosen
to satisfy zi ⊕ Sk(∞) ⊂ X and zi ⊕KSk(∞) for all i ∈ I≥0, then xi ∈ X and ui ∈ U for
all i ∈ I≥0. The vectors zi and vi should be chosen to satisfy the tighter constraints [5]

zi ∈ Z = X⊖ S (5.38)

vi ∈ V = X⊖KS (5.39)
for all i ∈ I≥0, where ⊖ is the Pontryagin difference operator. We suppose that S ⊂ X
and KS ⊂ U. This assumption is needed because if W is too large, there is no pos-
sibility of satisfying the constraints for all realizations of the disturbance sequence w.
Summarizing, the state and control constraints, xk ∈ X and uk ∈ U, are satisfied at each
time i if the control law (5.33) is employed, and the nominal system (5.35) satisfies the
tighter constraints (5.38-5.39), in addition

x0 ∈ z0 ⊕ S, e0 ∈ S (5.40)
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Figure 5.5: TRMPC trajectories evolution [ credit [5] ]

in which S is Robust Positive Invariant (RPI) for e+ = Ake+w,w ∈ W. Satisfaction of
constraint after time N , is enforced by constraining the state zN to lie in a terminal set
Zf , which is CPI for the dynamics and the constraints, following the same procedure
described in subsection 5.5.1

zN ∈ Zf , Zf ⊂ Z (5.41)

The cost function selection process is equal to the one presented in subsection 5.5.1,
where the state x is substituted by the nominal state z and the control input u is sub-
stituted by the nominal control input v. Thus, the TRMPC cost function is defined
as

V =
N−1∑︂
k=0

(︁
∥zk∥2Q+∥vk∥2R

)︁
+ ∥zN∥2W (5.42)

whereQ is the weight matrix for the state,R is the weight matrix for the input andW
is the solution of the Riccati Equation 5.18.
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The final TRMPC algorithm is described by Algorithm 1.
Algorithm 1: Tube-based model predictive controller.
Initialization: At time i = 0, set x = z = x(0) in which x(0) is the current state.
Step 1 Compute control: At time i and current state (xi, zi), solve the nominal
optimal control problem PN(zi) to obtain the nominal control action vi and
the control action ui = vi +K(xi − zi).
Step 2 Check: If PN(zi) is unfeasible, adopt safety/recovery procedure.
Step 3 Apply control: Apply the control ui to the system being controlled.
Step 4 Update: Measure the successor state xi+1 of the system being controlled
and compute the successor
Step 5: Set (xi, zi) = (xi+1, zi+1), set i = i+ 1, and go to Step 1.

The TRMPC related optimization problem structure is

argmin
V

N−1∑︂
k=0

(︁
∥zk∥2Q+∥vk∥2R

)︁
+ ∥zN∥2W

subject to zi+1 = Azi +Bvi, ∀i = 0, . . . , N − 1

zi ∈ Z, ∀i = 0, . . . , N

vi ∈ V, ∀i = 0, . . . , N − 1

zN ∈ Zf
x0 − z0 ∈ S

(P.3)

where V = [v0 . . . vN−1]
T is the input control sequence.

5.5.3 Terminal set Zf computation
Let us introduce some definitions [42]:

• The matrix Φ is defined as A + BK, where K is the gain matrix chosen for the
design of the terminal set.

• A setB is a Positive Invariant set (PI) under the dynamics and constraints defined
in 5.28 with the control law u = Kx if and only if u ∈ U andΦx ∈ B for all x ∈ B.

• The Maximal Positive Invariant set (MPI) is the set under the dynamics of 5.28
which is the union of all PI set under these dynamics and constraints.

The set Zf is the terminal constraint set for the TRMPC. The reference set that satisfy
all the requirements to design this set is the MPI for the system 5.28. The terminal
constraint set Zf is defined as

Zf = {x : (F+GK)Φix ≤ 1, i = 0, . . . , ν} (5.43)
where ν is the smallest positive integer such that (F+GK)Φν+1, for all (F+GK)Φi, i =
0, . . . , ν. The resulting terminal set can be expressed as
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Zf = {x : VZfx ≤ 1} (5.44)
where the matrix Zf is defined as

Zf =

⎡⎢⎢⎢⎢⎣
(F+GK)

(F+GK)Φ
...

(F+GK)Φν

⎤⎥⎥⎥⎥⎦ (5.45)

5.5.4 Tube S computation
The computation of set Sk(∞) in closed form is computationally unfeasible, thus an
approximation S of this set is computed. The condition that ensures that the error is
always contained into the error tube is given by

AkS ⊕DW ⊆ S (5.46)
The set S is RPI for 5.36, it is also assumed that S is compact, convex, and polytopic
and is can be thus be described by linear inequalities

S = {e : VSe ≤ 1} (5.47)
Under these circumstances and the conditions in Equation 5.40 the predicted error tra-
jectory lies in a tube of fixed cross section S. The set Sk(∞) of Equation 5.37 can be
approximated by [42]

S =
1

1− ρ

r−1⨁︂
j=0

Aj
kW (5.48)

where the parameters r and ρ ∈ [0, 1) satisfy

Ar
kDΞ ⊂ ρDΞ (5.49)

The matrix Ak is defined in Equation 5.36 and the other quantities are defined in the
first part of subsection 5.5.2. The condition in Equation 5.49 can be verified by solving
the LP

max
ξ∈Ξ

VΞD
†Ar

kDξ ≤ ρ1 (5.50)

where the D† is the Moore-Penroose inverse of matrix D and matrix VΞ corresponds
to the matrix V defined in Equation 4.75. The grade of approximation metric is the
parameter ρ. The closer to 0 the value of ρ, the better the set S approximates Sk(∞).
The closer to 0 the value of ρ the more complex the structure of S is [42].
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Chapter 6

Controllers setup and simulation
results

6.1 Controllers setup
In this section the setup of the controllers is presented. The choice of the parameter has
been conducted by a trial and error procedure, looking for the parameter combination
that returns the best tracking error performances.

6.1.1 TRMPC attitude controller
The weight matricesQ, R and controller gain matrixK are

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1000 0 0 0 0 0

0 1000 0 0 0 0

0 0 1000 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
R =

⎡⎢⎣1 0 0

0 1 0

0 0 1

⎤⎥⎦ (6.1)

K =

⎡⎢⎣−6.5 552.5 13.6 −6103.9 25.6 59.5

306.3 −3.6 −13.6 14.1 −3352.5 −58.1

43.4 −24.8 −649.2 105.6 −187 −7314.5

⎤⎥⎦ (6.2)

and matrix A and B are defined in section 4.7. The set X is the constraints set for the
states. It has been defined allowing a maximum Euler angles error of 10−3 rad and
maximum angular velocity error of 10−2 rad s−1. The set X is defined as

X = {v : VXv ≤ 1} (6.3)

where the resulting matrixVX is
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VX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1000 0 0 0 0 0

0 1000 0 0 0 0

0 0 1000 0 0 0

−1000 0 0 0 0 0

0 −1000 0 0 0 0

0 0 −1000 0 0 0

0 0 0 100 0 0

0 0 0 0 100 0

0 0 0 0 0 100

0 0 0 −100 0 0

0 0 0 0 −100 0

0 0 0 0 0 −100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.4)

The set V is a polyhedron set obtained from Equation (5.38). The resulting set is com-
puted by exploiting the MPT toolbox [44] and is defined by a set of linear inequalities
as

V = {v : VVv ≤ bV} (6.5)
whereG is the set defined in Equation (4.84), matrixK is defined in Equation (6.2) and
S is the outer approximation of the error dynamics tube computed following the pro-
cedure described in subsection 5.5.4. The set S is a polyhedron set and it is described
by

S = {e : VSe ≤ bS} (6.6)
The set Z is a polyhedron set obtained from Equation (5.39). The resulting set is com-
puted by exploiting the MPT toolbox [44] and is defined by a set of linear inequalities
as

Z = {z : VZz ≤ bZ} (6.7)
Finally the set Zf which is a polyhedron is computed by using the gain matrix defined
in Equation (6.2) following the procedure described in subsection 5.5.3. The set Zf is
defined by Equation (5.44) and is described by

Zf = {z : VZfz ≤ bZf} (6.8)
The problem P.3 is recast into the following optimization problem readily solvable by
a general Quadratic Programming (QP) solver

argmin
c

cTPc

subject to Aic ≤ bi

Aec = be

(P.4)
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c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z0
...
zN

v0

...
vN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q 0 . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . .

...
... . . . Q

. . . . . . . . .
...

... ... . . . W
. . . . . .

...
... ... ... . . . R

. . . ...
... ... ... ... . . . . . . 0

0 . . . . . . . . . . . . 0 R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.9)

Ae =

⎡⎢⎢⎢⎢⎣
A −I 0 0 . . . B 0 0 . . .

0 A −I 0 . . . 0 B 0 . . .
... ... . . . . . . ... ... ... . . . ...
0 . . . . . . A −I 0 . . . . . . B

⎤⎥⎥⎥⎥⎦ be =

⎡⎢⎢⎣
0
...
0

⎤⎥⎥⎦ (6.10)

Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−VS 0 . . . . . . . . . . . . 0

VZ 0 . . . . . . . . . . . .
...

0
. . . . . . . . . . . . . . .

...
... . . . VZ

. . . . . . . . .
...

... ... . . . VZf
. . . . . .

...
... ... ... . . . VV

. . . ...
... ... ... ... . . . . . . 0

0 . . . . . . . . . . . . 0 VV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bS −VSx0

bZ

bZf...
bZ

bV
...
bV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.11)

6.1.2 SMC attitude controller
The SMC parameter to be tuned are k1, k2 and η. The best combination found is rep-
resented by the values collected in table 6.2. All the other parameters of the controller
are related with model properties described in the previous sections.

parameter value
k1 2
k2 0.05
η 0.01

Table 6.1: SMC control parameters

The controller output is saturated due to limits of the actuators presented in section
4.9. The set of admissible control inputs is defined by set defined in Equation (4.84).
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6.1.3 SADA LQR controller

The weight matrices chosen are

Q =

[︄
100 0

0 100

]︄
R = 10000 (6.12)

The resulting gain matrix for the LQR control is

K =
[︂
0.0982 5.4456

]︂
(6.13)

This controller is saturated, the maximum and minimum value are defined in table

parameter value [Nm]
max torque 10−4

min torque −10−4

Table 6.2: SADA control parameters

6.2 Simulation results
The software used to implement and perform the simulations is MATLAB Simulink.
The simulations have been runusingfixed step solverwith 1 s integration time, whereas
the attitude controller is run every 5 s. The simulation time is considerably long, thus
the simulation parameters has been chosen considering a trade-off between simulation
data quality and simulation time.
The main outcomes of the simulation are the attitude orientation error, the produced
power and the fuel consumption. For each simulation scenario these quantities will be
presented. The simulation time for each scenario is 1 year. The only components that
will be changed in the different simulation scenarios are the controller and the satellite
attitude dynamics model, all the other components are common in each scenario. The
simulation scenarios are

1. Multibody configuration satellite with rotation solar arrays controlled using the
TRMPC

2. Multibody configuration satellite with rotation solar arrays controlled using the
SMC

3. Rigid configuration satellite with fixed solar arrays controlled using the TRMPC

4. Rigid configuration satellite with fixed solar arrays controlled using the SMC
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6.3 Scenario 1. TRMPCmultibody satellite with rotation
SA

In the first scenario we obtained the best results, the Euler angles tracking error is the
smallest, while the amount of consumed fuel is comparable with the consumption of
the second scenario. The production of electric power is almost double with respect
to scenarios three and four, wheres is comparable with the electric power generated in
the second scenario. One drawback of the TRMPC with respect with the SMC imple-
mented in the second scenario are the small oscillation generated by the controller as
can be seen in Figure 6.6. The reference plots of scenario one are: Euler angles tracking
error in Figures 6.1 and 6.2, disturbance torques in Figures 6.3 and 6.4, input torque in
Figures 6.5 and 6.6, thrust produced by the thrusters in Figures 6.7 and 6.8, the elec-
trical power produced in Figure 6.9 and finally the Xenon fuel consumption in Figure
6.10.
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Figure 6.1: Euler tracking error in one year period [TRMPC-multibody]
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Figure 6.2: Euler tracking error, first day focus [TRMPC-multibody]
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Figure 6.3: Disturbance torque in one year period [TRMPC-multibody]
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Figure 6.4: Disturbance torque, first day focus [TRMPC-multibody]
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Figure 6.5: Torque in one year period [TRMPC-multibody]
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Figure 6.6: Torque, first day focus [TRMPC-multibody]
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Figure 6.7: Thruster Force in one year period [TRMPC-multibody]
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Figure 6.8: Thruster Force, first day focus [TRMPC-multibody]
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Figure 6.9: Electrical energy power production in one year [TRMPC-multibody]
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Figure 6.10: Xenon fuel consumption in one year [TRMPC-multibody]

6.4 Scenario 2. SMCmultibody satellitewith rotation SA

In the second scenario the Euler angles tracking error is the almost double compared to
the first scenario. The amount of consumed fuel is comparable with the consumption
of the first scenario. The production of electric power is almost double with respect
to scenarios three and four, wheres is comparable with the electric power generated in
the first scenario. The benefit of the SMCwith respect to the TRMPC is the smoothness
of the control input generated as can be seen by comparing the plots 6.15 and 6.5. The
reference plots of scenario two are: Euler angles tracking error in Figures 6.11 and
6.12, disturbance torques in Figures 6.13 and 6.14, input torque in Figures 6.15 and
6.16, thrust produced by the thrusters in Figures 6.17 and 6.18, the electrical power
produced in Figure 6.19 and finally the Xenon fuel consumption in Figure 6.20.
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Figure 6.11: Euler tracking error in one year period [SMC-multibody]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−40

−20

0

20

40

60

❚✐♠❡ [d]

❆
♥
❣
❧
❡
[➭
ra
d
]

❊✉❧❡r ❚r❛❝❦✐♥❣ ❊rr♦r

δφ
δθ
δψ

Figure 6.12: Euler tracking error, first day focus [SMC-multibody]
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Figure 6.13: Disturbance torque in one year period [SMC-multibody]
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Figure 6.14: Disturbance torque, first day focus [SMC-multibody]
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Figure 6.15: Torque in one year period [SMC-multibody]
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Figure 6.16: Torque, first day focus [SMC-multibody]
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Figure 6.17: Thruster Force in one year period [SMC-multibody]
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Figure 6.18: Thruster Force, first day focus [SMC-multibody]
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Figure 6.19: Electrical energy power production in one year [SMC-multibody]
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Figure 6.20: Xenon fuel consumption in one year [SMC-multibody]
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6.5 Scenario 3. TRMPC fixed SA

In the third scenario we analyze the first fixed SA configuration. The Euler tracking
performances are comparable with the results obtained in the first scenario. The dis-
turbance torque magnitude is comparable with all the other scenarios. The electric
power production is half with respect to the configuration with the rotating SA. The
amount of consumed fuel is lower with respect to the configurations with the rotating
SA. The same oscillatory behavior reported in scenario one, where also the TRMPC is
implemented, is still present. The reference plots of scenario three are: Euler angles
tracking error in Figures 6.21 and 6.22, disturbance torques in Figures 6.23 and 6.24,
input torque in Figures 6.25 and 6.26, thrust produced by the thrusters in Figures 6.27
and 6.28, the electrical power produced in Figure 6.29 and finally the Xenon fuel con-
sumption in Figure 6.30.
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Figure 6.21: Euler tracking error in one year period [TRMPC-fixed]
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Figure 6.22: Euler tracking error, first day focus [TRMPC-fixed]
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Figure 6.23: Disturbance torque in one year period [TRMPC-fixed]
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Figure 6.24: Disturbance torque, first day focus [TRMPC-fixed]
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Figure 6.25: Torque in one year period [TRMPC-fixed]
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Figure 6.26: Torque, first day focus [TRMPC-fixed]
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Figure 6.27: Thruster Force in one year period [TRMPC-fixed]
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Figure 6.28: Thruster Force, first day focus [TRMPC-fixed]

0 50 100 150 200 250 300 350

0

10

20

30

40

50

❚✐♠❡ [d]

P
♦
✇
❡
r
[k
W

]

Pr♦❞✉❝❡❞ ❊❧❡❝tr✐❝❛❧ P♦✇❡r

♣♦✇❡r

Figure 6.29: Electrical energy power production in one year [TRMPC-fixed]
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Figure 6.30: Xenon fuel consumption in one year [TRMPC-fixed]

6.6 Scenario 4. SMC fixed SA

In the fourth scenario the Euler angles tracking error is theworst obtained. The amount
of consumed fuel and production of electric power is comparable with scenario three.
The SMC control input smoothness with respect to the TRMPC is still present. The
reference plots of scenario four are: Euler angles tracking error in Figures 6.31 and
6.32, disturbance torques in Figures 6.33 and 6.34, input torque in Figures 6.35 and
6.36, thrust produced by the thrusters in Figures 6.37 and 6.38, the electrical power
produced in Figure 6.39 and finally the Xenon fuel consumption in Figure 6.40.
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Figure 6.31: Euler tracking error in one year period [SMC-fixed]
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Figure 6.32: Euler tracking error, first day focus [SMC-fixed]
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Figure 6.33: Disturbance torque in one year period [SMC-fixed]
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Figure 6.34: Disturbance torque, first day focus [SMC-fixed]
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Figure 6.35: Torque in one year period [SMC-fixed]
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Figure 6.36: Torque, first day focus [SMC-fixed]
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Figure 6.37: Thruster Force in one year period [SMC-fixed]
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Figure 6.38: Thruster Force, first day focus [SMC-fixed]
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Figure 6.39: Electrical energy power production in one year [SMC-fixed]
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Figure 6.40: Xenon fuel consumption in one year [SMC-fixed]
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Chapter 7

Conclusions and Future Works

In this thesis project a system analysis of the propulsion system and the electrical power
subsystem of the GEO satellite Eutelsat 172B has been carried out. After the modeling
phase, several simulations in different scenarios have been performed. The goal of the
thesis is to verify the effectiveness of the introduction of the SADA and its interaction
with the propulsion subsystem and the electrical power subsystem. The analysis is
focused on the production of energy, the attitude tracking performances and the fuel
consumption.

The key results obtained are:
• the feature of rotating solar arrays effectively increase and stabilize the produc-

tion of electrical energy not influencing significantly the attitude tracking error
performances

• the proposed TRMPC controller allows to achieve better tracking performances
against the classical SMC approach, whereas the SMC provides smoother control
input signals

• the fuel consumption for the configuration with the rotating SA is almost 50 per-
cent higher with respect to the fixed SA configuration. Anyway this is a minor
drawback since in absolute values the benefit obtained in the power production
is higher.

This studywas an effort to pave the path for futureworks inGEO satellite design. There
is plenty of room for improvements, due to the hypothesis that we have made in the
modeling phase. Some of the most important feature to can be added are

• The coupling of the orbital control and the introduction of the orbital dynamics
disturbance can give more realistic results on the consumption of fuel and the
tracking performances.

• The SA dynamic model and thus this add the disturbance created by the SA
• A more sophisticated modeling for the thrusters shall be implemented to create

a more realistic simulator
By introducing these feature simulation outcomes will be more realistic and the con-
clusion based on the simulator results will be definitely more accurate and significant.
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