
POLITECNICO DI TORINO

Master’s Degree in Computer Science Engineering

Master’s Degree Thesis

AUTOMATIC RECONSTRUCTION OF

INDOOR ENVIRONMENTS FOR

SHARING AR AND VR SPACES

Supervisor:

Prof. ANDREA SANNA

Candidate:

FABRIZIO RONZINO

March 2021

Contents

1 Introduction 4

1.1 How the world view is changing 4

1.2 The Project Idea . 6

2 Deep Learning and Computer Graphics 9

2.1 Machine Learning 9

2.2 Neural Networks 13

2.3 Computer Graphics 24

2.3.1 Virtual Reality 26

2.3.2 Augmented Reality 28

2.4 Computer Vision 30

3 State of the Art 32

3.1 The Scene Reconstruction Problem 32

3.2 Representations of 3D Objects 34

3.3 Traditional Approaches 36

1

3.3.1 Kinect Fusion 37

3.3.2 AliceVision 39

3.4 Learning-Based Methods 42

3.5 State-of-The-Art Systems 45

3.5.1 Convolutional Occupancy Network 45

3.5.2 PIFuHD . 48

3.5.3 BSP-Net 52

4 Reconstruction System 56

4.1 Preliminary Work 58

4.2 System Architecture 61

4.3 Data Acquisition 62

4.4 Reconstruction . 64

5 Acquisition and Placement Side 67

5.1 Organization and Composition 67

5.2 The Lyfecycle . 68

5.2.1 The Photo Mode 68

5.2.2 The Reconstruction Mode 71

5.2.3 The Gallery 74

5.3 Client Connection 75

2

6 Reconstruction Side 77

6.0.1 Server Connection 77

6.1 Reconstruction Pipeline 79

6.1.1 Semantic Segmentation 81

6.1.2 Mask Extraction 85

6.1.3 Object Reconstruction 87

6.1.4 Remeshing 94

6.1.5 Rendering Generation 96

6.1.6 Rotation Estimation 98

6.1.7 Object Rotation 101

7 Testing and Results 102

8 Conclusion and Future Works 121

3

1 Introduction

1.1 How the world view is changing

When we have to consider how much the digital technology is present

in our lives, we cannot deny that we rely on it for every kind of ac-

tivity. Online purchases, organizing a trip, searching for the closest

restaurant, every moment of our day is influenced by technology in a

way that would be unbelievable 20 years ago, and sometimes we are

so used to it that we underestimate its importance.

Everyday we take a step forward building something that could

help someone, in a faster and better way; the impact of the progress,

which is only possible thanks to the continuous research in academia

and industry, often motivated by the love for new discoveries, is the

power which motivates people to go beyond their limits.

What has been tried to realize during this thesis experience is to

add a little brick, a little knowledge in order to make a little step for-

ward.

4

What really motivated in the choice of the topic was the direc-

tion that the world is taking these years: everything is automated and

does not need human operators; some machines are even able to per-

form complex tasks, for instance generating a picture from a textual

description, that until a few years ago only the most evolved living

beings could perform. These machines exploit the so called Artificial

Intelligence (AI). This could scare someone, but we have to consider

two things: the first one is that this new technology allows us to solve

problems that could not be solved in the past, achieving results close

or sometimes even better than what humans can do; the second as-

pect is that this approach has been built observing how we humans

learn from experience. Exploiting the way humans learn and think,

we can build sophisticated systems and apply this main concept to a

high number of different areas.

What it was intended to realize is to gather what is innovative

and with large possibility of development, such as Machine Learning

(ML), which is a subset of AI, that can be used to solve non triv-

ial problems by means of a computer, to something really interesting

such as Computer Graphics and Computer Vision; the way these dis-

ciplines can work together is really challenging.

5

Figure 1.1: Examples of different Computer Vision applications. Im-
ages taken from [30].

1.2 The Project Idea

Considering two main branches of Computer Graphics such as Aug-

mented Reality (AR) and Virtual Reality (VR) as the main objective

of this thesis, it has been decided to design and develop a system

capable of reconstructing, as 3D models, the objects of an indoor en-

vironment; the system is composed by an Android smartphone, which

can be used by users in order to take photos of the objects that they

want to reconstruct, and by a server that processes the acquired pic-

6

tures as the input of the reconstruction pipeline that will be described

in chapter 6.

This is an attempt to give to the users a tool to digitalize the en-

vironment and manipulate it, eliminating the constraints to use pre-

built models. The system is capable of producing a watertight mesh

representing an object from a single colored photo, which undergoes

multiple steps of segmentation, background removal, cropping and

conversion to grayscale; the system is even able to estimate the pose

of the object. When the server finishes the reconstruction process, it

sends the mesh to the client, where the object will be displayed in the

AR environment.

Figure 1.2: A Virtual Reality application (on the left) and an Aug-
mented Reality application (on the right). Images taken from [17]
and [12].

7

The first chapter consists in a brief introduction, followed by a

general description of the system and its purpose in the context of

the thesis. The second chapter investigates the theoretical concepts of

Machine Learning, Neural Networks, Computer Graphics and Com-

puter Vision, in order to guarantee a better comprehension of the

mechanism developed in the thesis. The third chapter is a discus-

sion of the state of the art, where different works, previously tested,

are described. The fourth chapter presents the general idea of the

application and its functioning, splitting the description between the

application and the server side. The fifth chapter discusses in details

the mechanisms of the client side and its implementation. The sixth

chapter discusses the tasks performed by the server in order to achieve

a successful reconstruction of a model, relying only on the image of

the object. The seventh chapter discusses the results obtained in the

final implementation of the server and client and the overall accuracy

obtained, as well as the time employed to perform a complete cycle,

from the start of the application to the final visualization of the model

in a AR environment. The eighth chapter contains a discussion re-

garding the obtained achievements, the possible improvements and

the field of application that the app can have.

8

2 Deep Learning and Computer Graph-

ics

2.1 Machine Learning

If we consider Artificial Intelligence as the macro area of research

in which a machine tries to emulate human behaviour according to

predefined patterns in a smart way, the Machine Learning is a subset

of this branch based on adaptability and learning in an autonomous

way. Machine Learning is the science of teaching to a machine how

to perform some specific tasks using existing knowledge that takes

the form of collection of data; e.g., we can think about the problem

of classifying a picture which contains a cat or a dog, or the problem

of generating a picture from a text description of its subject. We usu-

ally call the process of learning from data training, whereas collection

of data are called datasets. Similarly to how we process and under-

stand reality, a machine can learn to extract meaningful features and

9

patterns from past observations, and store this knowledge for a later

use.

One of the most interesting aspects of Machine Learning are Neu-

ral Networks (NNs), which consist in the baseline of the Deep Learn-

ing, a very popular approach which tries to imitate and reproduce

the way that a human learns and thinks, reproducing a real artificial

neuron-based architecture, which emulates the cognitive process of

decision and recognition.

Machine Learning algorithms have different approaches depend-

ing on the kind of problems they have to solve, but they follow a gen-

eral approach divided into 3 phases: training, validation and testing.

The training phase is the most important one because it will define

the behaviour of the software: during this phase a large dataset (e.g.,

a common dataset for image classification can contain thousands of

images) is used to feed the machine in order to let it understand which

features are very important for the task it has to solve (e.g., to distin-

guish between men and women, the machine can learn to recognize

long hairs, as these are more common in women rather than in men),

then it will store those features and (usually) the label that identifies

them and will be able to recognize them in a second moment. This

10

phase is usually expensive in terms of time and resources. Similarly

to the problem of fitting a curve given a set of noisy points, there is

the risk that the machine will memorize the specific dataset and it will

not be able to generalize to new observations; when this occurs it is

called overfitting, which means that there are too many parameters in

the model (i.e., the model is too complex) or too few data, leading to

poor performance. The opposite problem is the so called underfitting,

where there are too few parameters with respect to the complexity of

the task that it is intended to solve.

Once the machine has learnt everything, it is able to validate its

knowledge on a different dataset, usually constructed by dividing the

initial dataset into two separate datasets, one big dataset for train-

ing and one smaller dataset for validation (usually, the ratio between

validation and training datasets is 20% / 80%). It is important that

validation is not performed using the same dataset used for training.

For example, in a classification task the machine should be able to

predict, for every new input, which is the correct label to assign to it

(e.g., to label a dog as a dog and not as a person). One of the most

important criteria to evaluate how good a machine is in performing

a classification task is the accuracy, i.e., how many times the label

11

has been correctly assigned. The highest the accuracy, the better the

classification.

Finally, the software can be tested by anyone on his own data and

check whether the accuracy is good enough, which means that it can

correctly detect what it sees.

In order to achieve better results in Machine Learning also the so

called Transfer Learning approach can be applied, which consists in

exploiting the previously acquired (through machine learning) knowl-

edge to accelerate the learning phase of a new network. This method

drastically reduces the training time (weights are already provided)

and lead to better results (the final accuracy is usually higher since

the weights have been already tested many times).

Another interesting technique in ML is Data Augmentation, which

is used to solve the problem of finding a lot of samples to populate

the dataset. Data Augmentation can generate new samples alongside

the original ones by means of cropping, filtering, rotating the original

samples, preserving the image-label association and leading to better

final results since the dataset will be bigger and more varied.

12

Figure 2.1: Venn Diagram of the relation between the Artificial In-
telligence and the Computer Vision.

2.2 Neural Networks

An important step to take into account in order to understand the base

of this application is the explanation of what a Neural Network is

and how it works. A Neural Network can be defined as a complex

configuration inspired by the biological network of the animals and

is designed to simulate its way of learning using a non-linear con-

figuration. The system improves its performance and continuously

evolves its structure, adapting according to what we feed. Every NN

is composed by a variable amount of processing units or “neurons”,

each one belonging to a specific layer and connected to other neurons

13

of other layers through an input/output chain system. Every neuron

contains an internal state, called activation function, that is used to

construct the signal to send to the next ones and defines how the in-

formation will be transferred; the knowledge is stored according to

a specific weight associated to it. Considering a generic neuron X0

with a weight w0, which has as inputs other two neurons X1 and X2

with weights of respectively w1 and w2, it will have an input xin equal

to yin = w1x1 + w2x2, then its output will be given by his activation

function as function of his input and its weight as:

yout = f(xin, w0) = w0(w1x1 + w2x2) (2.1)

Hence the neurons are arranged by layers and are connected to the

other layer’s neurons in a sequential mode. The NN deals with mul-

tiple layers interconnected to a single input and output, or with layers

fully connected (i.e., each neuron is directly linked to each other neu-

ron of the next layer), or we can crop some interconnections with ad

hoc techniques (e.g., drop out, normalization) in order to speed up

the computation and to improve the learning process. Every process-

ing unit makes decisions based on a weighted system that is used to

14

produce an output for the next neuron in the successive layer or to

the final output. These weights used to take decisions are not static,

in fact the aspect of the NN similar to the units is the capability of

adjusting the weights of the neurons that are multiplied with inputs,

i.e., it is learning. The Network is structured into three main lev-

els: the input level, where all the information from external sources

are fed into the system and passed to the successive layers; the hid-

den layer, which contains every stack of neurons that computes the

inputs and forward the elaborated output to the next layer (e.g., the

Multi-Layer-Perceptron) or directly to the output (e.g., the Single-

Layer-Perceptron). Finally, all the elaborated features are passed to

the output layer which produces a final outcome.

The overall system can improve its performance using a system

called back-propagation on the neurons. It consists in a reverse mech-

anism based on mathematical derivatives which adjusts the weights

according to what has been learnt so far.

Having defined the general points of a Neural Network, we can

discern different types of these. In fact, based on the workload asso-

ciated to it, the NN can change the structure or the modus operandi

which defines it.

15

Figure 2.2: The connections in a generic structure of a Neural Net-
work on a 3D view. The example regards the numbers recognition.
Image taken from [8].

In the vast domain of the NN we can consider some specific cate-

gories:

1. Feedforward Neural Networks

2. Recurrent Neural Networks

3. Convolutional Neural Networks

4. Deep Neural Networks

5. Generative Adversarial Network

16

Feedforward Neural Networks

This the most basic type of NN where there are no cycles between

neurons. The information given to the input always navigates forward

with respect to the input-output logic, without storing the information.

We can distinguish two variants of this structure: the Single-Layer

Perceptron (SLP) and the Multi-Layer Perceptron (MLP).

The SLP consists in a single layer of output nodes. The data elab-

oration is provided by the single layer and does not contain any other

hidden layer. This type of system is not used, since his computational

capability is limited due to his non-existance capability of data com-

bination.

Figure 2.3: The scheme of a Single Layer Perceptron. Image taken
from [3].

The MLP can be defined as the evolution of the SLP idea and it

17

basically means that between the input and output are defined a vari-

able number of layers, each one with a variable number of neurons.

The system increases in complexity and it is more suitable to perform

more difficult tasks and predictions. The adoption of these system

revolutionized the approach of all the tasks that a machine was capa-

ble of doing.

Figure 2.4: The scheme of a Multi Layer Perceptron. Image taken
from [9].

Recurrent Neural Networks - RNN

Recurrent Neural Networks (RNNs) are a class of NN derived from

the feedforward ones and differs for the layout of its network which

18

defines a graph connection between nodes, forming a sort of temporal

sequence, allowing the dynamic modelling of the network. In addi-

tion, it exploits a particular type of neurons which are connected with

themselves, forming a loop. This type of Networks can be inserted

in a various amount of applications that led to the birth of several

structures:

1. Fully recurrent RNN

2. Hopfield Network

3. Recursive RNN

4. Long short-term memory (LSTM)

We can briefly refer to the recursive neural networks, which are

networks where a static set of weights is applied recursively to a struc-

tured input, with the goal of producing a structured prediction. Those

has been used to learn the logical terms and the distributed represen-

tations.

19

Figure 2.5: The scheme of a generic Recurrent Neural Network. Im-
age taken from [13].

Convolutional Neural Network - CNN

The CNN is a revolutionary class of NN that is designed to learn

features and spatial association in a adaptive and automatic manner

using backpropagation. In this way it is possible to transfer vectors

of weights and biases, which can be also shared with other neurons,

and adjust them, meaning that little pre-processing is used. A typ-

ical CNN can be defined by multiple blocks such as convolutional,

pooling, ReLU and fully connected layers and takes a tensor as input.

The Convolutional layers have the main scope to convolve the data

20

Figure 2.6: The scheme of a Recursive Neural Network. Image taken
from [4].

and the final result will be a feature map, i.e., an abstraction of the

inputs. The neurons of a layer process data only for its receptive field.

The Pooling Layer has the main goal to reduce the amount of data

passed as input, combining the inputs of multiple neurons, and can be

of two types: Max Pooling where only the max value of the outputs

received by the cluster of neuron is passed, or the Average Pooling,

where the passed value is the result of the average between all the

inputs given to the neuron.

The fully Connected Layer is a regularized and structured version

21

of a MLP where every neuron in a layer is connected to all the neurons

in the successive layer; this leads to slower but more accurate final

outcome.

This part of the CNN is the one responsible for classification

Figure 2.7: The scheme of a Convolutional Neural Network.

22

Generative Adversarial Networks

This framework, defined also as GAN, was designed by Ian Goodfel-

low and consists in two neural networks that compete each other in a

contest where the gain of one of the two is a loss for the other (a form

of zero-sum game). This method is developed under a single training

set given to the two networks, where the goal is to generate new data

with the same features with respect to the known set. The idea is that

the created data should be as original as possible and appearing real-

istic to a human eye. To perform such action each system needs to

“fool” the discriminator, which is at the same time updated dynam-

ically in order to think that the image is real and not generated by

the Network. This methods indirectly achieve a sort of “unsupervised

learning” for the two networks, that constantly uses backpropagation

to update its nodes and thus improve its work.

23

Figure 2.8: Faces reproduced by a GAN, given certain photos as in-
put. Image taken from [11].

2.3 Computer Graphics

Computer Graphics is one of the most interesting IT branch because

gathers technical aspects and creative contents. It is based on the cre-

ation and edit of images, video and videogames, the manipulation of

3D models, the emulation of a natural environment and its physics

into a digitalized context. When we consider digital images, we usu-

ally refer to them in terms of pixels forming a matrix with a certain

resolution, or via vectorial representation as a set of geometrical prim-

itives. For what concerns 3D representation, we can reproduce them

24

as a solid model which owns all the physical aspects of a real object,

such as mass and volume, or simply by a polygonal surface, e.g. a

polygonal mesh, which consists of a perimetrical view of the object

but empty inside.

Virtual Reality (VR) and Augmented Reality (AR) are two ways

to simulate the real world into an artificial context by means of a

digital device. We can think about the Oculus Rift or the Microsoft

HoloLens as two devices which grant a VR or AR experience. Appli-

cations of these new technologies is not limited to games; AR and VR

are very active research topics and recent advancements are creating

new possibilities, for instance a surgical operation can be faithfully

simulated in a safe and virtual context before the operation on the real

patient, where the surgeon can train and practice in a safe and realis-

tic environment. The benefits from VR and AR are huge and various,

the quality of the simulations is constantly enriched with details and

sophisticated techniques, the digital innovation is in continuous evo-

lution. Before starting, it is important to distinguish between VR and

AR.

25

2.3.1 Virtual Reality

Virtual Reality is based on a complete immersion into the simulation:

the user is totally surrounded by 3D models and artificial surfaces and

usually he can interact with most of the objects inside the scene; the

floor, the walls and the ceiling are also reproduced as meshes and the

user experience reaches the highest quality.

As mentioned before, The Virtual Reality give the possibility to

the user to interact in a virtual three-dimensional space and interact

with it using headset, which are specific devices that replace the in-

formation that the user receive from its senses with virtual ones, allow

to reconstruct a complete experience, as it if were there.

The VR evolved during the years and led to the possibility to ex-

pand thanks to the massive advancements in the computer vision and

the improvement of the available computational tools. The princi-

pal apply in these years were in the videogame industry, to allow the

player to have a complete experience of the game.

A different purpose is in medical context, where the students can

practice on interventions in a safe and controlled environment, where

they can develop practice skills without any impact in case of fail-

26

ure(fig. 2.9).

Another interesting application is in the Psychotherapy field, where

the VR is used to cure the PSTD (post-traumatic stress disorder) of the

patient.

Figure 2.9: A medical student performs a treatment simulation on a
virtual patient. Image taken from [25].

Despite huge development in modern times, the VR constitutes a

not completely accessible technology, due to different factor.

The main one is the computational load that have on the comput-

ers, caused by the high stream of data to process in real time, which

reflects an ever higher demands in terms of performance required to

be utilized. These demands are not inaccessible, but require an high

level hardware in order to work at its best capability and costs, as well

as the cost of the headset which is quite expensive too. The stream of

27

data to be computed is a crucial problem caused by the fact that affects

the responsivity of the environment to the user, lacking the capability

of a full immersion.

2.3.2 Augmented Reality

Augmented Reality instead mixes 3D models with real environment,

“augments” the reality including only certain digital objects with which

the user can usually interact. The purpose is different: we want that

the user recognizes where he is since the context is important in this

case, and the fruibility of the application is based on the interaction

between the two worlds which are mixed into one.

It is the enrichment of sensory perception using information not

achievable using the human senses. It is obtained using a smartphone

camera or a computer with an adequate webcam and differs from the

Virtual Reality since the user does not lose the perception of the sur-

rounding world, but instead he or she acquires additional information

from it and extends the possibility to visualize object which are not

present.

The Virtual Reality offer different fields of application where it

28

improves the user experience showing the content of a box (as in fig.

2.10), or the staff training, or still the automatic detection and visual-

ization of imperfections in products in a factory and so on.

Figure 2.10: The Augmented Reality Lego kiosk, where customers
can visualize the final content of the product by placing the box in
front of a camera. Image taken from [16].

The AR, similarly to the VR, requires a computational capabil-

ity that exponentially increases with the application complexity and

sometimes can be prohibitive to run on smartphones.

If on one hand VR requires its specific headset to work, the AR

can run on a device with camera, despite some requirements must be

fulfilled in order to be able to effectively run, as far as it requires an

29

efficient gyroscope to preform spacial operations and tracking, as well

as the capability to create depth maps to perform mapping operation

and object placement in the scene.

2.4 Computer Vision

Computer Vision (CV) is the science of using computers to acquire,

analyze and understand images and videos. Common tasks that CV

tries to solve are image classification, image restoration, object pose

estimation and object tracking. In the last decade most of the CV re-

search has been dominated by Neural Networks, in order to recreate

the human vision and its process during interpretation of images or

videos in an autonomous way, extracting features from it using deep

neural networks with the integration of cam and software for the ac-

quisition and elaboration of images, and producing a digital electric

signal as an output to be elaborated. The computer vision applica-

tion we want to focus on is the one concerning the 3D reconstruction

methods that can be categorized based on their output representation

as:

1. Voxel

30

2. Point Clouds

3. Meshes

4. Implicit representation

The voxels (Volumetric picture element), can be described as the

equivalent of pixels in three dimensional space, where each value is

associated to a regular grid. Each voxel does not have an associated

position, but is based on the position relative to other voxels near it.

The Point Clouds are an aggregation of points placed on a 3D space

characterized by associating their position and other values such as

luminosity, color and depth. Those are broadly used in the represen-

tation of large three dimensional structures when scanner or sensor 3d

are used in order to minimize the storage usage. A polygonal mesh is

a grid that defines an object in the space and is composed by vertices,

faces and edges. The geometric form used to define a mesh are usu-

ally quadrilaterals and triangles. The Implicit representation differs

from the previous ones by being a continuous (not discretized) rep-

resentation (number of vertices, voxels or points). This leverages on

the use of a Neural Network to create an occupancy probability of an

object in the space.

31

3 State of the Art

3.1 The Scene Reconstruction Problem

The Reconstruction problem in Computer Vision refers to the process

of understanding the shape of a specific object of the real world and

reproducing it as a digitalized 3D model. Reconstructing a model im-

plies that all its coordinates in space must be known to be able to de-

fine its profile, using various range of methods that are distinguished

in two categories: the active and passive methods.

The Active Methods The Active methods directly interfere with the

object with sensors as rangefinders or lasers, capable of measuring

the reflected part emitting radiance towards the object and thus re-

constructing its depth maps, which represent the distance from the

camera to each part of the object, dividing it in various range of col-

ors depending on the detected distance. An example of Active method

is given by the TOF (Time-Of-Flight) lasers, LiDAR (Light Detection

32

and Ranging) as in Fig.3.1 and 3D ultrasonic sensors.

The Passive Methods The Passive methods do not interfere directly

with the object but measure the radiance emitted or reflected by a

surface and try to infer its structure by image understanding. This

methods do not require an object, but only its photos or videos, thus,

they can be used in a larger range of different cases with respect to the

active ones. This category includes the highest number of machine

learning applications.

Figure 3.1: Example of Room Scanning using the Iphone 12 Pro
LiDAR. Image taken from [2].

33

3.2 Representations of 3D Objects

In the field of Computer Graphics (CG) we have different ways to

represent three-dimensional objects:

1. Voxels

2. Point clouds

3. Polygonal meshes

4. Implicit representations

Figure 3.2: The different representation of a generic object using
Point clouds (a), Voxels (b), Meshes (c) and Implicit Representations
(d). Image taken from [14].

Voxels The term Voxel means Volumetric picture element. It can be

described as the 3D equivalent of 2D image pixels, where each value

34

is associated to a regular grid in three dimensional space. A voxel

does not have an associated position, but this is defined relying on

the position relative to other voxels in its neighborhood. Interesting

works on reconstructions based on voxels can be found in [21] and

[28].

Point clouds Point clouds are an aggregation of points placed on a

3D space characterized by having associated their position and other

values such as luminosity, color and depth. Those are broadly used in

the representation of large three dimensional structures when scanner

or 3D sensor are used in order to minimize the storage usage.

Polygonal meshes A polygonal mesh, or simply mesh, is a grid

that defines an object in the space and it is composed by vertices,

edges and faces. Faces are usually triangles or quads (polygons with

4 vertices), and sometimes particular faces with more than 4 vertices,

called N-gons, are employed. The complexity and the smoothness of

a mesh can be increased by dividing the mesh in more faces, at the

expense of higher memory requirements. This representation was the

subject of investigation in different articles such as [29], [10] and [18].

35

Implicit representations The Implicit representation differs from

the previous type of rendering by being a continuous representation,

thus not discretized in a finite quantity (number of vertices, voxels or

points). This representation leverages on the use of a Neural Network

to create an occupancy probability of an object in the space.

3.3 Traditional Approaches

In Computer Vision the methods which does not use the Machine

Learning and Neural Networks to reconstruct the object are defined

as Passive Methods. Those can also be defined as traditional since

exploit the information derived directly from the object and often re-

quire the use of specific tools. Those were the first steps towards

the automatic reconstruction of objects and environment whose major

backlash was the necessity to be able to interact with object, meaning

that were limited to the surrounding area where they were set. We can

now define some of these traditional approaches.

36

3.3.1 Kinect Fusion

An interesting research is presented by KinectFusion: Real-Time Dense

Surface Mapping and Tracking [20] that shows a system which accu-

rately maps objects and indoor scenes in real-time. The entire system

is performed using a Kinect sensor with and ICP (Iterative Closest

Point) algorithm. A Kinect sensor is a device released by Microsoft

in 2010 for playful purpose, composed by an RGB camera, a infrared

camera, a 3D scanner that maps depth using structured light or time-

of-flight calculation, a microphone array and a base with a motorized

pivot.

Figure 3.3: The Structure of Kinect. Image taken from [7].

The system described in the paper is structured to overcome a SLAM

37

(Simultaneous Localization and Mapping) problem and is composed

by four modules.

The first module is the Surface Measurement, that can be defined

as a pre-processing stage, where the initial transformation matrix of

the camera is defined and computes the raw measurements from the

Kinect device, producing a normal pyramid map and a dense vertex

map.

The second module is the Sensor Pose Estimation that basically uses

a multi-scale ICP to define the alignment between the current sensor

measurement and the predicted surface.

The Third module is the Surface Reconstruction Update, where the

depth data obtained in the first module are used in order to reconstruct

a scene model that is integrated and maintained as representation of a

volumetric TSDF (Truncated Signed Distance Function).

The Last module, defined as Surface Prediction, provides the informa-

tion from the previous models to define a dense surface prediction and

reconstruction aligned to the depth map given from the Kinect sen-

sors. The system contains a feedback loop, where the reconstructed

surface is passed again to the Sensor Pose Estimation module in order

to verify the actual correspondence between the reconstruction and

38

the given measurement.

Figure 3.4: The results produced by the Kinect Fusion system.

3.3.2 AliceVision

AliceVision is a photogrammetric framework which provides a 3D

reconstruction using camera tracking algorithms ([19] and [15]). It

can be defined as something between the Active and Passive meth-

ods, given the fact that its reconstruction does not need the physi-

cal object to infer its reconstruction, and is not based on any of the

learning-based approaches. AliceVision is based on the Photogram-

metry, that is the field of science that aims to obtain reliable envi-

ronment and physical object information by means of interpreting,

recording and measuring images and the phenomena in it. The sys-

tem is programmable as a chain of different blocks whose input is the

output of the previous block and takes as input a massive quantity of

39

images of a single object from different points of view. The system

first extracts a group of pixels from the images, which are invariant

to changing camera viewpoints, using a SIFT (Scale-Invariant Fea-

ture Transform) algorithm, extracting natural features, then it uses a

image matching in order to find images pointing to the same area in

the scene, defining the distance from the object of interest along with

the camera position. After comparing all the images, an operation of

feature matching is performed with the purpose to define all features

possessed by the object in order to prepare a dense scene using the

information from the feature matching and a depth maps estimation,

obtaining a dense pointcloud scene of the object.

Figure 3.5: A scene reconstructed using pointclouds in AliceVision.
Image taken from [1].

The system then tries to build a mesh from the pointclouds position

joining all depth maps in a global octree, merging the compatible

40

depth values and performing a 3D Delunay tetrahedralization, pro-

ducing a dense geometric surface representation. Finally, the system

computes UV maps and textures of the scene and applies those results

to the object. The entire process spends from thirty to forty minutes

for the reconstruction of a medium dimension object and its accuracy

depends from the number of photos fed to it and the gap between an

orientation of a photo with respect to its previous and successive one.

Normally an optimal number of photos to successfully reconstruct the

system is from thirty to sixty with a gap between the photos which is

not larger that ten degrees.

Figure 3.6: The results produced by the AliceVision system. Image
taken from [23].

41

3.4 Learning-Based Methods

A method is defined learning-based when it exploits specific struc-

tures to define specific patterns from a great amount of data and is

capable of predicting an outcome given specific inputs. The advan-

tages in these methods is to be able to define autonomously a specific

pattern for a given set of inputs, thus being able to have more flexi-

bility, better accuracy and not being limited to a specific type of data.

These methods have seen an enormous amount of applications.

The neural networks implemented to perform such hard tasks as

classification and recognition are the result of an intensive research

and advancement in the field of Machine Learning.

The Machine Learning is a branch of Artificial Intelligence which

studies algorithms which allow the machine to accomplish different

tasks in an autonomous manner, recognizing patterns of data. The

Artificial Intelligence evolution skyrocketed when the first Artificial

Neural Network (ANN or NN) began to be employed, defining a new

type of learning, called deep learning, with the goal to imitate and re-

produce the way a human learns and produces results based on think-

ing.

42

The process which allows the machine to learn how to perform

a task is called training. What the training does is essentially tun-

ing the parameters of a model in order to maximize the performance

in executing the desired task. The collection of data used for train-

ing is usually called dataset. The training can be considered in three

different types and is influenced by the type of data contained in the

dataset:

1. Supervised learning

2. Unsupervised learning

3. Reinforced learning

Supervised learning Supervised learning is the most common one,

and is distinguished by the use of two datasets, which differ in dimen-

sion and purpose.

The small one is a database consisting in images which were pre-

viously labeled by human and contains the right association between

inputs and outputs. This aims to let the program to establish a re-

lationship between the images. The algorithm starts to associate the

label and the image through the adjustment of the weights. At the

43

end of the training, a refinement step is done in order to increase the

accuracy of the NN by using the bigger database where it needs to

associate the labels without knowing a priori the right output.

Unsupervised learning Unsupervised learning is more versatile than

the supervised one. The versatility is given by the fact that the images

given to the algorithm are not machine readable, that basically means

that no labels are associated to them. This brings to a lack of informa-

tion, forcing the algorithm to create hidden structures where the data

points are perceived in abstract manners and defining connections be-

tween them.

Reinforcement learning Reinforcement learning is a peculiar algo-

rithm whose central idea is based on the human behaviour. It consists

in the implementation of a system with reward/penalty concept based

on the output of the algorithm. In particular if the output is right it “re-

wards” the algorithm, otherwise it forces it to reiterate the procedure

until a better result is provided. This method con be also defined as a

trial-and-error method based on the decision of an interpreter which

decides how accurate the output of the algorithm is.

44

In the context of machine learning, the capability of acquisition

and understanding of data is performed using a singular type of al-

gorithm with a composite structure defined as Artificial Neural Net-

works. Those were firstly theorized in 1943 and developed further

in the years until today, where a different variation was created and

implemented to perform higher grade tasks.

3.5 State-of-The-Art Systems

3.5.1 Convolutional Occupancy Network

Regarding Convolutional Occupancy Network [22], it presents an ap-

proach where the general idea consists in the reconstruction of an

entire scene using the implicit representation. The system can take

point clouds or voxels as input and feed them to the system, where

are encoded in a feature grid, which can be 2D or 3D. This features

are passed to a convolutional network which processed them and pro-

duces an occupancy probability in the space.

The system is composed by an Encoder, a Convolutional Network

and a Decoder.

45

The Encoder The encoder is where the external inputs are first pro-

cessed and varies its use depending on the type of representation fed to

it. As mentioned before, the inputs can be voxels, which in this case

will require the use of a 3D CNN with one layer, or Point Clouds,

which will require a PointNet [24]. The encoder extracts features and

maps them, constructing a planar or volumetric representation to en-

capsulate local information from neighborhood.

Figure 3.7: Representation of different types of encoder in the sys-
tem.

The Decoder The features extracted from the Encoder are then pro-

cessed through the Decoder, whose function is to process the infor-

mation of feature planes and feature volumes received with the aid

46

of a 2D and 3D convolutional Hourglass Network (U-NET [26], [6]).

The system produces feature maps in output and therefore, given the

convolutional operation equivariant in translation, is possible to pre-

serve global information to allow the reconstruction of the model from

sparse inputs.

Occupancy Prediction

The feature maps give access to the estimation of the occupancy of

any point p in space. The method of extraction varies accordingly

to the type of decoder used that can be single-plane or multi-plane,

where the first projects each point p ortographically onto the ground

plane, and extracts the feature values using a bilinear interpolation.

The multi-plane decoder makes a sum of all of the 3 planes features,

aggregating the information from them. Then the occupancy of a

point p is predicted, given a vector for input x as:

fθ(p, φ(p, x))→ [0, 1] (3.1)

The final results of the reconstruction can be seen in (3.8)

47

Figure 3.8: The comparison of results between different reconstruc-
tion approaches.

3.5.2 PIFuHD

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution

3D Human Digitization [27] were tested for its astonishing perfor-

mance that focuses his works on Human reconstruction, producing

detailed 3D models of a person, starting from a 2D image. This goal is

achieved using a specific function called Pixel-Aligned Implicit Func-

tion to estimate the occupancy of a 3D dense volume. The system

structure is composed by two modules, called Coarse Pixel-Aligned

Implicit Function or Coarse PIFu and the Fine PIFu. An additional

operation is performed at the start of the framework to predict the

48

front and back normal maps of the photo. In particular, the back map

which is not directly observed is inferred using an MLP network that,

due to the uncertainty, tends to produce smooth and featureless recon-

structions. Finally, the system was abandoned due to the fact that the

conversion of the system from human to object reconstruction was

complex and the training time for the NN needed to acquire an ac-

ceptable result was long-lasting and required a high computational

capability.

Figure 3.9: Scheme of the framework implemented in the PIFuHD
system.

Pixel Aligned Implicit Function This function is the baseline for

all the works described in the paper and its goal is to define a function

capable of estimating the binary occupancy for any 3D position in a

49

camera space, X = (Xx, Xy, Xz) ∈ R3, given an RGB image I:

f(X, I) =

1, if Xis inside mesh surface

0, otherwise
(3.2)

This function is modeled using a NN architecture and an end-to-end

training. The final result of the function is thus expressed as:

f(X, I) = g(Φ(x, I), Z), (3.3)

where x is the orthogonal projection expressed as : x = (Xx, Xy),Φ(x, I)

is the image feature extracted from the 2D point location and Z = Xz

is defined as the depth of the ray in the 2D projection of x. As well

as all the points along a ray can have different image features, a MLP

is used for the 2D feature of the g function to vary the input depth Z,

and a CNN is used for the 2D feature of the function Φ

Coarse PIFu The Coarse PIFu has the function to extract the global

features from the image and also to produce the backbone features in

a resolution of 128x128. The input of the module takes a 0.5x down-

sample of the image, resulting in a 512x512 resolution. This module

50

differs from the standard PIFu as far as it uses also the predicted fron-

t/back normal maps. Given IL as the low-resolution input, FL and BL

as predicted normal maps, the function is thus defined as:

fL(X) = gL(Φl(xL, IL, FL, BL,), Z) (3.4)

Fine PIFu This module has the task of producing the details of the

model, extracting them from the image. It takes as input the high

resolution image (1024x1024) and also the predicted back and front

normal maps. It also takes into account the 3D embedding features

which are extracted from the coarse level. The function, as variation

of the standard PIFu, is defined as:

fH(X) = gH(ΦH(xH , IH , FH , BH ,),Ω(X)), (3.5)

where IH , FH , BH represent the input image, the front normal map

and the back normal map and Ω(X) represents the feature extracted

from the coarse PIFu module in an intermediate level of gL.

51

Figure 3.10: Results obtained trying different designs of the system.

3.5.3 BSP-Net

The foundation of this entire project is presented in the article BSP-

Net: Generating Compact Meshes via Binary Space Partitioning [5]

where the system defines an implicit field to indicate if a detected

point is inside or outside the shape and thus reconstructing a compact

polygonal mesh from a single view of a photo. The algorithm is com-

posed by three main modules or layers that correspond to different

feature vectors extracted by an encoder and reproduce the object as a

model.

Hyperplane extraction module The first module has the goal to ex-

tract hyperplanes from the input data. The hyperplanes are subspace

52

Figure 3.11: The organization of BSP-Net.

of an environment space, whose dimension is given by the space co-

ordinates of that environment minus one (i.e. a Three-dimensional

space will produce a hyperplane with two-dimensional planes), and

are used to create learning models for classification and regression.

The hyperplanes are generated by an MLP in order to obtain a vector

of signed distance to each plane, exploiting the plane parameters ex-

tracted. This signed function will have negative distance if a generic

point with three-dimensional coordinates is inside the plane, and pos-

53

itive if it is outside, considering it with respect to the normal plane.

Hyperplane grouping module This layer has the goal to create

parts grouping hyperplanes in the half-spaces form. This procedure

is obtained by employing a binary matrix with max pooling to form a

set of convex primitives by the aggregation of input planes primitives.

We can express this function as:

C∗j (x) = max
i

(Di, Tij)

< 0, inside

> 0, outside
(3.6)

The Shape Assembly module

This block is designed, as the name suggests, to assemble the parts

together and rebuild the object. This goal is achieved by using a min

pooling in order to obtain a non-convex shape to group convexes in

output, using:

S∗(x) = min
i

(C+
i (x))

= 0, inside

> 0, outside
(3.7)

54

Figure 3.12: The results obtained by BSP-Net, compared to other
object reconstruction networks and the ground truth.

55

4 Reconstruction System

The system was firstly designed to have specific requirements. The

concept idea was to have a real-time application to perform a recon-

struction of the object in an indoor room by taking a photo, and then

visualize the 3D reconstruction in Augmented Reality in that same

room. It was needed to split the entire project in two parts, as the

computational capability of a smartphone was not enough to run the

reconstruction program and the user application as well the possibility

to make them work simultaneously, thus it was decided to divide the

entire process in the “Acquisition and Placement Side” on the smart-

phone which acts as a client, and the “Reconstruction Side” on a PC

which acts as a server, connecting each other through a TCP (Transfer

Control Protocol) connection in order to have a reliable communica-

tion between them during the data exchange. Concerning the client

side, it was important to have a reliable structure that was capable to

take images and send them to the server side, as well as the possibil-

ity to reconstruct the entire object from a file or string. The real time

56

mesh reconstruction of an object was not to be underestimated, con-

sidering how a not complex object could store more that ten thousand

lines of vertexes and faces and could be divided into different pieces,

therefore there was needed a reconstruction hosting a single complete

mesh of the object without material or texture to lower the complex-

ity of reading and reconstructing. For what regards the server side,

hosting the entire reconstruction program, it requires to be able to es-

tablish a connection with the application, to retrieve the image sent

and to reconstruct the corresponding model. The model then should

be encapsulated and returned to the application. The critical point of

this system is the necessity to spend as little time as possible for im-

age processing and object reconstruction. The best possible option

is to have a system capable to perform those action in around one

minute. The starting step towards the realization of the project is to

agree about a suitable reconstruction system which is able to adapt to

the necessity of the requirements.

57

4.1 Preliminary Work

Among the different works done in this field, in order to obtain the ob-

jective prefixed in the thesis, different approaches were implemented

and tested, comparing the obtained results and choosing the one that

was the best compromise in terms of quality and time spent on the

rebuilding process. More over is also interesting to highlight and ex-

plain the procedure for deciding which process was the best to be

implemented. The tested systems were:

1. Convolutional Occupancy Network

2. PIFuHd

3. BSP-Net

4. AliceVision Meshroom

The implementation and testing were implemented on each of those

systems on different class of objects. Starting from Convolutional

Neural Network, this system was extremely similar to BSP-Net but it

has substantial differences in the used algorithm and the required in-

put from the system. Convolutional Neural Network required as input

58

a pointcloud file of the object which was extremely demanding, con-

sidering the idea of an application which was only capable to take a

photo of the object and thus required an additional system capable to

reconstruct the 3D pointcloud from a single-view image. The imple-

mentation of a system composed by two modules, one for converting

image from pointcloud and one to convert pointcloud to meshes, was

deemed wasteful compared to BSP-Net where the system already con-

tains an algorithm to convert a single view image into meshes, with-

out the necessity of an intermediate step. In terms of quality of the

reconstructed mesh, it was possible to notice how the result of Con-

volutional Neural Networks were not on the level of BSP-Net, so the

system was abandoned. The second system taken into account was

PIFuHD, whose results had a quality of meshes extremely good and it

was relatively fast in the computation, even more than BSP-Net. The

main problem of this algorithm is that it was designed for the recon-

struction of people and not objects, therefore, to match the require-

ments of our system, it was needed to change the neural network from

people to objects and undergo to intensive training to perform again

the operation of weighting of every neurons of the Network. This

operation of training and testing was extremely heavy from a compu-

59

tational point of view and was normally performed with a computer

with high quality components. Then, the time required to re-apply

the weight undergoing training and the testing of the network on a

normal computer, was extremely long. For those reason, the system

was discarded. The third system to be tested was the Meshroom soft-

ware of Alicevision. As mentioned before, it needed only photos of

the object as input to works, and the provided results were extremely

fine. Different types of objects were tested in order to examine the be-

haviour of the system but different problems have arisen. The system

worked well only when a large amount of photos were fed in and the

time required to apply the reconstruction was exponentially related to

the number of photos and dimension of the object to reconstruct; be-

sides, reducing the amount of photos fed in the system, the time and

complexity reduced significantly, given a results which was extremely

poor, incomplete and in the most cases also wrong. In the end, having

as a requirement a system in real time for an application, was pro-

hibitive to force the user to take thirty photos and wait for more or

less one hour just for a single reconstruction, so, also this system was

discarded. Finally the BSP-Net was tested: its results were accept-

able and the time required for the entire reconstruction was less than

60

a minute, which was suitable for the application. The input required

by the system was a single photo, which was the best possible option

as a requirement. Hence it resulted as the best between them and it

was decided to implement it in the project.

4.2 System Architecture

The Project has the final goal to produce an user friendly environment

on the smartphone to allow the reconstruction of 3D model of real

objects that the user can perceive in the environment in which it is

in. The Application has the purpose to allow the user to take pho-

tos of different objects and visualize them in the application, with the

possibility of manipulating them. We can split the overall system in

2 parts: the “Acquisition and Placement Side” which is substantially

the application on the smartphone and acts as a client, and the “Re-

construction Side”, where the reconstruction program resides and acts

as a server.

61

Figure 4.1: The general pipeline of the system.

4.3 Data Acquisition

Regarding the application, it is composed by three main windows,

each one with a specific task. The first of them, defined as the main

window or the photo window, has the intent to allow the user to take

photos of the object of interest in the environment and place some

indicators to designate its approximate position and also track the ob-

ject already photographed, which is necessary when the number of

objects to reconstruct is high. The second window, defined as the re-

construction or visualization window, is where the user can effectively

62

visualize and manipulate the 3D models reconstructed by the server.

In this window it is possible to manipulate the virtual object in terms

of scaling, rotation and translation, in order to match the real object

pose as close as possible. The last window is defined as the Gallery

and, as its name suggests, it allows the user to visualize and the photos

they have captured.

Figure 4.2: The scheme of the Client.

63

4.4 Reconstruction

The reconstruction of the model to be visualized in the application is

built on a server to whom the client connects to. The server is com-

posed by different parts connected in a chain, where the sequentiality

is mandatory in order to accomplish its task. In fact, every block uses

the input coming from the output of the block before in order to pro-

vide the proper output to the next block. The Server is constantly

connected with the client and waits for information from it.

When those are received, first it decapsulates them in a legible way

and then gives those to the first block of the pipeline. The blocks

start by segmenting the photo in classes of objects, labelling them

for better comprehension of them and painting them with a specific

color. The color association is crucial for the successive part, The

Mask Extraction, where only the object of interested is kept in the im-

age and the remaining part of the scene is turned into white, resulting

in a white background with the object in the foreground. After the

mask extraction, the photo is then passed to the object reconstructor,

where the program reconstructs the only object present in the photo

in a 3D model, deducing its volume with the aid of a Binary Space

64

Partitioning. In this section of the pipeline, the mesh may have sev-

eral imperfections, therefore the model undergo through an operation

of remeshing to adjust and improve the overall quality of its shape.

Finally, the model is ready to be sent to the server but, before the ac-

tual forwarding of the data, another step needs to be performed. The

object, when is photographed, has a specific orientation in the space

with respect to the camera, hence to instantiate the object with a cor-

rect orientation, two steps, called Rendering Generation and Rotation

Estimation, are performed. The Rendering Generation consists in ren-

dering multiple frames of the object with a slight angle of difference

from each other. Those frames are stored and are used for the final

step; the Rotation Estimation module searches the frame whose ori-

entation is similar to the one in the photo and defines the angle of

difference between the camera and the object. Finally, the last mod-

ule called Object Rotation provides an alignment between the server

coordinates and the client ones. As this step is completed, all the in-

formation can be encapsulated and sent through a socket to the client.

65

Figure 4.3: The scheme of the Server.

66

5 Acquisition and Placement Side

5.1 Organization and Composition

The main purpose of the client is to provide an accessible environment

for the user to reconstruct and visualize a 3D environment where the

3D models in it are the result of a reconstruction from the photos that

were taken during the session. The Application was developed using

Google ARCore functionalites and the Unity environment. Google

Arcore is a software development kit provided by Google for the cre-

ation of Agumented and Virtual reality applications. It is based on

the usage of the track of the position of the telephone with respect to

the world using six degrees of freedom; it is also capable to take over

the dimension and position of flat objects like floor or tables and to

estimate the light condition of a particular environment, adapting to

it. Unity is a multi-platform graphic engine with the goal to allow the

development of videogames and interactive contents such as appli-

cations or animations. The Program is based on C# language, using

67

an object-oriented approach and embedding some specific functions

for the manipulation of objects and events inside the Unity environ-

ment. The project is mainly composed of a single script which defines

the entire workflow of the application, and is supported by two other

scripts: one for the connection, the TCPHandler, and one for the ma-

nipulation of the objects, the ObjectHandler.

5.2 The Lyfecycle

We can divide the lifecycle of the application in the workflow of each

window.

5.2.1 The Photo Mode

The Main Window, or Photo Mode, is the window displayed when the

application starts and has the main target to allow the user to take the

photo of an object in the room in which it is situated, to visualize the

gallery or switch to the reconstruction mode. A simple flowchart re-

garding the main operation of the Main window can be seen in fig.5.1

When the user starts, it is important as first step to allow the ap-

68

Figure 5.1: Flowchart of the Main window.

plication to recognize the floor or a flat surface, otherwise he or she

would not be able to place the indicators or the object in the scene.

When a photo is taken, the program shows a preview of it and if it is

not in line with the standard of the user, it will remove the photo and

return to the photo mode in order to take an other picture. If the photo

is good enough according to the user, the program will automatically

disable all the User Interface (UI) and the user will place an indica-

tor in the scene in correspondence to the photographed object. In this

way an anchor will spawn as placeholder and it will be stored to track

69

where the corresponding reconstructed model will be placed. After

that, the program will encapsulate the index of the photo (which cor-

responds to the index of the anchor placed) and the photo itself and

will send them to the server; finally it will return to the photo mode.

70

Figure 5.2: Showcase of the Main Window on the left and the pre-
view of the taken photo on the right.

5.2.2 The Reconstruction Mode

The Reconstruction mode is where the user can visualize the 3D model

reconstructed by the server and manipulate it by the switch from the

71

photo mode. The flowchart of the cycle of the reconstruction mode

can be seen in fig.5.3

Figure 5.3: Flowchart of the reconstruction window.

When the user enters in reconstruction mode, it is assumed that

he has already taken pictures of different objects in the room. If it

has not, the reconstruction mode will show nothing and he can return

to the photo mode or to the gallery (that, in this case, will be empty

too). If the user had already taken some pictures and the server has

elaborated them and returned the models, those will be shown in the

scene in the exact place where the indicator was previously placed. At

72

this point he can tap on the object to pop-up the object handler panel.

This panel allows to rotate, scale or move the object.

Figure 5.4: Placeholder placement on the Photo mode on the left
and correspondent substitution with 3D model in the Reconstruction
window on the right.

73

5.2.3 The Gallery

The Gallery has a simpler workflow than the other two, and its main

purpose it to visualize the images taken to visualize all the objects that

were already photographed. This window consists of three buttons,

two to navigate the gallery, i.e., the back and forward button, and one

to return to the main window.

Figure 5.5: Showcase of the Gallery (on the left) and flowchart of the
gallery (on the right).

74

5.3 Client Connection

The exchange of data between Client and Server is an important part

of the application and is performed by sockets. The Client programmed

in Unity is constrained to handle data in C#. The connection, the

reception and all the operations performed in order to encapsulate

and decapsulate data are handled by a script called TCPConnection,

whose function is to establish a connection to the server, knowing

a priori its IP and port number to create a socket for communica-

tion. The connection is established automatically when the applica-

tion starts and remains in background until the user decides to close

the program. The “send client” method has the task to provide two

types of information to the server, which consists in the bytes of the

photo and the index of it. Those information are stored and prepared

asynchronously when the user, after taking a photo, decides that it

can be used by agreeing in the “preview” panel. Then the algorithm

will pass the information to the TCPHandler script, in order to encap-

sulate them in a JSON (Javascript Object Notation) string, which is

a standard format for the data exchange between applications which

need the support of a server. The data are stored in an static structure

75

to allow the correct read and then converted into a string; eventually

a stream is opened and the data are actually sent. After the server

receives the data and processes them, it returns another JSON string

which contains various data type. Those data are decapsulated and

decrypted by the client who knows a priori their structure and orga-

nization. The data are stored in another structure that is passed to the

main script to perform the operation of object construction and in-

stantiation of the model in the scene. The received data is composed

by three types of information: the first one is the GameObject model

which is basically the model destructured in its basic components, an

index that defines the position in the space in which will have to be

instantiated and a rotation value that represents the difference of the

degree of the object with respect to the camera when the photo was

taken. The purpose of this value is to instantiate the model with the

same rotation as the real object in the scene.

76

6 Reconstruction Side

The reconstruction side is based on a server which runs on a Windows

PC and manages the reconstruction of the object. It is a Python server

which establishes a connection with the smartphone which acts as the

client.

The server receives from the client a JSON string containing the

color picture of the object that is intended to reconstruct, then it saves

it in the proper folder. A second process performs the actual recon-

struction task, which can last for about 50 seconds (usually less than

1 minute) when running on a Nvidia GeForce RTX 2070 GPU, and it

returns a 3D model which will be placed in the physical space.

6.0.1 Server Connection

The server is a standard Python server which establishes a local con-

nection over a specified port with the client, which is an Android ap-

plication created in the Unity Engine and written in the C# program-

77

ming language.

The entire process starts when it accepts the connection request

from the client, which starts a local loop where first it controls if the

connection is still valid, waits for a reconnection if not available, or

starts listening for incoming data otherwise.

As the connection is defined by a TCP socket, the messages re-

ceived by the client are retrieved as a single stream of multiple pack-

ets, thus, at every packet, an operation of ASCII decoding is per-

formed and the contents are concatenated in a string.

At every cycle a function has the task to read the string in order

to control if the message is fully received. Considering known a pri-

ori the structure of the entire message and knowing that the JSON

message is bounded by special characters “{ }”, we can check them

in order to understand if the message is completely received, without

any further check since it is all based on local connection.

The information contained in the JSON string are extracted and

stored separately: the index of the image is locally stored to be sent

back with the model and the image is decoded from Base64 and stored

in the folder “0 Input Photo”, which corresponds to the starting point

of the reconstruction pipeline.

78

The server then performs a polling operation every 100 millisec-

onds checking if the model exists in the last folder of the pipeline

that corresponds to “7 Object Rotation” containing the final model. If

the object is found, the server represents it as a string and, separately,

retrieves the azimuth value from the folder “6 Rotation Estimation”.

Finally the server defines a JSON message containing the object

file, the name and index of the object and the azimuth value; this

message is then encoded in ASCII, sent to the application and finally

the connection can be closed, ready to start a new loop iteration.

6.1 Reconstruction Pipeline

In order to solve this complex problem it has been decided to de-

compose this main task into many subtasks, each one of them im-

plemented as an independent module. All modules can work and be

tested independently from one another and they compose a pipeline

where the output of the one module will be used as the input of an-

other module. Each intermediate output is saved in a specific folder

on the server storage memory disk, thus it is possible to easily check

intermediate results for all the steps of the pipeline.

79

According to the complexity of each subtask, it has been decided

to perform a balanced subdivision into 7 main modules:

1. Semantic Segmentation

2. Mask Extraction

3. Object Reconstruction

4. Remeshing

5. Rendering Generation (for rotation estimation)

6. Rotation Estimation

7. Object Rotation

The basic functioning of the system can be seen in the fig.6.1

Figure 6.1: The flowchart of the pipeline of the server.

80

6.1.1 Semantic Segmentation

“Mseg” is one of the best software for semantic segmentation which

provides great results if applied on videos or simply on images (as

in our case). It is substantially a model which works on a composite

dataset, which means that merges many datasets from different do-

mains. The strength of Mseg is that it can take benefits from each

of the main different semantic databases solving the incompatibility

issues and providing robustness through multiple domains.

The work was based on flatting the inconsistencies and re-lable all

the annotations that were incompatible with a process of large-scale

annotation, leading the final outcome to really high accuracy. The

unified taxonomy has been reached through the alternation of splitting

and merging of the classes according to the possible clashes.

Moreover the training has been made really robust thanks to the

adoption of “zero-shot cross-dataset transfer”: in this way the perfor-

mance that we can expect for a model in the real world is very high

even in a new environment and without having target domain’s data

during the training phase. The condensed taxonomy resulted in 194

classes organized in a flat manner in order to maximize the compati-

81

Figure 6.2: Visual representation of the segmentation results of MSeg
with respect to other segmentation models.

bility with all the trainings which represent the standard method.

For what concerns its application inside the server side, the se-

mantic segmentation is the first module of the pipeline; it is based

on Mseg code from GitHub. It has been adapted in order to work

on Windows Systems, since original repository was intended to work

with Linux-based systems only.

It receives a picture as input, in our case the photograph of the

82

object that we intend to reconstruct, such as a chair or a table, in PNG

format. The features of the picture are extrapolated and computed

through a series of convolutional layers of the neural network and with

the exploitation of trained weights the network is able to understand

which objects appear in the frame and assign a label to each one of

them.

In this way the neural network detects chairs, tables, monitors,

floor, walls and so on, and for each class of object it assigns a different

color, building up a colored mask which fits with the pixels of the

specific object.

According to the original version of Mseg, each different object

was identified with a different rgb-scale color with a transparent level

that permits to recognize the real background object; also a label was

assigned to each one of the object, floor and ceiling of the room, since

it tries to semantically recognize each character inside the scene.

As far as it has to be adapted to what was needed for this specific

application, the output has been modified in order to remove those

labels, since the mask extraction (i.e., the next module of the pipeline)

is based only on the centered object of the scene and ignores all the

other characters; according to this principle there is no need to classify

83

Figure 6.3: The original photo (left) and its grayscale segmentation
produced by the modified MSeg (right).

the objects of the scene and therefore the classification is redundant

and has been removed.

Also it has been assigned a gray-scale color to each one of the

object and the transparent level has been removed since all the crops

operations will be demanded to next pipeline modules.

So, in order to ease the following steps of the pipeline, the Mseg

84

output has been modified to produce a gray-scale image where each

different object is colored with a different shade of gray.

6.1.2 Mask Extraction

Now that the objects inside the picture have been detected and that a

corresponding color has been assigned to each of them, the one which

is centered in the frame can be extracted. With a sampling mechanism

the centered point and its neighborhood can be easily found.

The first step is detecting the half-width half-height point, from

which the gray-scale value of the pixel can be extracted; the color

range will be in a [0-255] scale where 0 stands for black and 255

stands for white. This will be considered as a subset of pixels belong-

ing to the current object that we want to reconstruct. Then a flood-fill

algorithm is applied: starting from the selected centered point the al-

gorithm stores it in a new file called “Binary Mask” and marks it as

“read”; then it visits recursively the pixel’s neighborhood and checks

which ones have the same gray value of the first one.

For each pixel which shares the same color of the first one, the

algorithm saves it on the “Binary Mask” file and marks them as read;

85

then the algorithm is applied recursively the the marked pixels which

repeat the process without taking into account the already marked pix-

els.

At the end of the process we obtain a brand new file which con-

tains a set of gray pixels on white background and which consists in

the binary mask of the object that we want to extract.

At this point the object can be easily retrieved by multiplying the

original image with the binary mask through a “bitwise-and” oper-

ation which preserves only the main objects and deletes the back-

ground. What is obtained is an inverted-color image that has to be

“bitwise-not” processed in order to retrieve a clear view of the ex-

tracted object.

Now another pre-process operation has to be performed in order

to feed the Object Reconstruction module with the proper input in an

optimal shape: in fact it has been tested that the object reconstruction

leads to better results if the raw input is served as a squared image.

To do so the image containing the extracted object has been cropped

in order to delete white useless borders and keeping only what is re-

ally useful, i.e. the gray pixels of the object; then according the the

largest size among width and height the picture has been enlarged in

86

order to obtain a squared shape. At the end of this module what is

obtained is the extracted object placed in a white background picture.

Figure 6.4: The binary mask of a chair (left) and the result obtained
by applying the mask to the original photo (right).

6.1.3 Object Reconstruction

The current step is the most important for the goal of the project. In

fact the state-of-the-art papers have been studied in order to select the

best approach for 3D object reconstruction starting from a snapshot.

After many tests the BSP Network (Binary Space Partitioning)

87

resulted as the best one in terms of computational time and quality of

the mesh produced.

One interesting aspect is that despite the model learns how to rep-

resent 3D shape decomposition, still BSP-Net is unsupervised since

it does not need any convex shape decompositions during training

phase.

Despite object reconstruction is based on convex shape decompo-

sition, this operation is not needed during the training phase, therefore

BSP-Net can be considered as unsupervised regarding during decom-

position step.

In facts it can autonomously retrieve convexes from a structure of

planes on which it builds a BSP-tree.

The strength of BSP-Net is that it generates compact meshes which

are “watertight” and are easy to parameterize without having to per-

form iso-surfacing which is usually quite expensive; this is a perfect

way to represent all kinds of geometries which are composed by a

sharp configuration. When we talk about watertight meshes we are

referring to the fact that the model consists in a closed surface with-

out holes and it is well defined inside of it.

Moreover thanks to the recursive approach based on the space

88

subdivision it uses very few primitives and this allows to BSP-Net

to achieve competitive results. This approach leads to a better manip-

ulation and control over meshes achieving a compact and really high

visual quality. The generative neural network has been developed in

order to predict multiple planes which could replicate the surfaces of

the 3D model associating each facet to a binary space partitioning,

which gives the name to the whole module; the shape is finally ob-

tained by combining all the partitions.

The baseline of the algorithm is, giving as input a shape feature

vector and n point coordinates, to exploit an implicit function to de-

cide if these points are outside or inside the shape.

This is achieved through 3 steps: the first one is based on the

collection of a certain amount of planes represented by an equation

which produces respectively a binary division of the space; then these

partitions are gathered in order to build many convex shape primi-

tives; as final step the output object is obtained by merging all these

collections.

This leads to a speed up per mesh during inference and without

having to build iso-surfacing which is typically expensive. Moreover

the generated meshes are compact and watertight also with sharp fea-

89

tures.

For what concerns the training of the network, no convex shape

decomposition is needed since it is self-supervised and exploits the

set of convexes constructed in the second layer of the network. As

said, the network is divided in 3 main modules which work on an

encoder which extracts feature vectors according to the input data.

The first module extracts hyperplanes from the row data; the second

layer groups these hyperplanes in order to re-create convexes parts,

and the last one builds these parts together in order to reconstruct the

final shape of the object.

The training is based on classical optimization problems where

integer problems are handled by relaxations; in fact it is divided into

2 steps in order to better approximate the loss: the first one works

on weights represented as continuous units, then in the second phase

the networks works with discretization and quantizes the previous

weights creating a union which generates accurate results through

fine-tuning. In this way the model is able to reconstruct much finer

objects.

In order to understand how to manage input data and properly feed

the network, it was important to look at the dataset that has been used

90

to train the model. It is a synthetic 2D dataset of images with a lot of

different categories (e.g., chairs, tables, plains, cars, ...) where each

image is a 128x128 pixels picture with a small object in the middle in

a white background. The images of the dataset are in low resolution

and probably this choice has been taken due to the expensive costs in

terms of computational time needed to properly train the network.

Hence these features has been taken into account when manag-

ing raw data to feed the network: in fact in the previous step of the

pipeline the image extracted from the “mask extraction” module has

been cropped and converted into a square shape picture. With this

simple trick the quality of the output 3D model has been drastically

increased.

The input picture used to feed the BSP-Net model has certain con-

straints that have to be considered in order to retrieve an acceptable

result.

What it needs is a picture with high quality and taken close to

the object; it is also preferable if the object is set in the middle of

the photograph, since in this way the algorithm can compute a higher

number of features achieving better results.

The model used in this work has been trained by the authors of

91

Figure 6.5: The reconstructed object using BSP-net.

the original paper. The training of BSP-Net has been performed by

setting 1,000 epochs with batch size 64 and using an Nvidia GeForce

RTX 2080 Ti GPU, for about 5 days of training. The dataset used for

training was a synthetic dataset where the images fed to the neural

network were generated by rendering the CAD models from a subset

of ShapeNet.

What it has to be considered during BSP-Net reconstruction is

that it is based on a single view reconstruction approach. This means

that it needs only one snapshot of the object that we are interested in

92

reconstructing and without further information the algorithm itself is

able to extracts all the features and details that it needs in order to

provide a fine reconstruction. The single view approach permits to

lighten the computational cost of the algorithm since only one pic-

ture is processed by the neural network, therefore BSP-Net returns an

appreciable output in reasonable time.

Despite the actual reconstruction step represents the bottleneck in

the server pipeline, it has to be considered that time needed to recon-

struct the object is always way less than 1 minute and still can be

improved with more powerful hardware resources.

BSP-Net provides one of the best reconstruction quality with a

high-level segmentation accuracy; it is also the first deep generative

network that outputs watertight and compact polygonal meshes in one

shot without be based on predefined structure and topology. Both

shape correspondence and object segmentation can be inferred by the

built BSP-tree which guarantees flexibility. Moreover, it is the first

algorithm which reconstructs a segmented 3D shape starting from a

single unstructured image achieving fine results. It can also recover

and reconstruct the features which are presented as a sharp geometric

shape.

93

Despite in some cases the output mesh is messy due to the fact

that the input image is too complex, in most cases the output mesh is

acceptable and the object is successfully reconstructed.

The output mesh is entirely represented by an array containing

faces and an array containing vertices and is saved as a PLY format,

then properly converted in OBJ format for simpler management in the

next module.

6.1.4 Remeshing

Now that the 3D object is retrieved it is clear that it is still a raw model

with some imperfections. Hence it is important to fix some voids or

intersections among some planes of the mesh.

In order to deal with a finer mesh the best solution is to apply some

remeshing algorithm over the 3D model inside a Blender 2.83 envi-

ronment, which is a simple and efficient way to obtain better results.

This task has been reached by working with Python Blender com-

mand line in order to build BLEND format scripts that can refine the

meshes through automatic operations.

The approach is basically based on selecting all the MESH objects

94

Figure 6.6: The difference between an object before (on the left) and
after (on the right) the remeshing operation.

inside the scene (just one in this case) and applying a modifier prop-

erty from the modifier tools provided by Blender environment to the

current object.

This is a simple way to access to all the edit properties that permit

to achieve good results through voxel manipulation.

In details, a “smooth” operation is applied over vertices and a

remesh algorithm is performed over the faces of the object, directly in

Blender environment.

As far as these parameters depend on the computational power

of the resource on which the server is running on, they could be in-

creased in order to lead to better defined meshes with a better quality

95

in terms of surfaces and edges, with a little drawback regarding com-

putational cost.

6.1.5 Rendering Generation

The final step is to reflect the original position and rotation of the

object in the physical space.

To do this it has been decided to use a Pose From Shape algo-

rithm, which has been opportunely splitted into 2 different modules

in order to guarantee a simple management of intermediate results and

an appropriate flexibility during the testing for the search of the best

parameters to set in this part.

As baseline the approach tries to understand how the model is ori-

ented with respect to the camera taking into account a set of samples

which consists in a collection of images provided by this “Rendering

Generation” module, and performing a spatial and features compare

once per time; this is carried on through deep learning algorithm.

The first block consists in the generation of an appropriate number

of renders of the 3D model. The model is uploaded in Blender and

set in a space surrounded by a fixed source of light and a camera

96

Figure 6.7: Rendering generation obtained with Python Blender
script executed by command line.

which rotates around the object in the middle and takes a snapshot at

every step of the iteration. At the end of this first phase the camera

fully rotated around the vertical axes and parallel to the ground of

the Blender world. Then a fully rotation around the model has been

repeated but the snap is taken with a slight slope of the camera, in

order to render images from a different point of view.

According to many performed tests it has been decided how to set

the iteration step and the degree of the slope of the camera in order

to optimize the render generation, since this procedure is expensive in

terms of computational time and could lead to a bottleneck.

After the rendering of 12 images from different points of view

they are stored into a folder and then passed to the next module which

compare them with the current 3D object in order to estimate the rota-

97

tion of the model with respect to the camera, through a deep learning

approach.

6.1.6 Rotation Estimation

The Rotation Estimation module is based on “Pose From Shape” code

that can be found on Github; this version has been adapted according

to the goal of the project to work with the server pipeline by changing

the number of pictures that were needed as input in order to estimate

the correct rotation of the 3D object with respect to the 2D image.

It takes the folder with the renders of the previous step and the

original photograph as input.

The idea behind Pose From Shape algorithm is to guess which

was the original rotation of the 3D model according to what can be

detected by the picture.

It tries with combinations of the obtained renders and select the

one which best fits; it also returns 3 parameters: azimuth, elevation

and rol which are useful to build the analytic formula that will be

applied over the 3D model in order to relocate it in the desired position

with the appropriate rotation and orientation.

98

The advantage coming from PoseFromShape is that the network

does not need to be trained over specific categories with a predefined

pose as most of the pose estimation method do, but it is based on a

“generic deep pose estimation approach”. In this way the module can

effectively deal with new objects and always provide accurate results.

The module is based on a Convolutional Neural Network which is

fed with a 3D object and an image, and returns the relative pose of the

model, achieving great results for supervised categories with respect

to the state of the art.

Moreover, the network which is trained over “everyday man-made

objects from ShapeNet” is able to generalize with new kind of 3D

models without needing further training. In fact, a great feature of

PoseFromShape is its great results for novel objects which can be

totally different from the ones used to train the network, overcoming

category-specific models.

Hence, it is approximable to a category-agnostic approach, but

with respect to instance-specific methods since it considers as input

the 3D object of interest, stressing out the attention for a single 3D

instance which provides better defined details rather than the entire

object categories.

99

The use of a 3D model also provides information to the network

that also increase the performances over known categories, even if it

is only approximate.

With respect to previous models, PoseFromShape introduces a

brand new “category-free viewpoint estimation” which can predict

object pose only taking into account its 3D model, even if completely

different from the ones used for training phase; the pose supervision

is simplified; the performance are boosted if the pose is applied to

object of known categories.

At the base of PoseFromShape there are two encoders which ex-

tract features from the RGB input picture and the 3D object, then

exploit a “classification-and-regression approach” in order to under-

stand the orientation, according to a certain probability, and producing

3 values as output: azimuth, elevation and rotation.

In this case, it has been combined information from both shape

and image, achieving great results in terms of accuracy independently

from the training data and object category, and without any issues with

respect to differences between real and synthetic images used for the

testing phase, confirming a completely generic approach.

100

6.1.7 Object Rotation

As final steps the remeshed object is rotated by 90 degrees in order to

map the axis coordinates from the Blender environment to the Unity

one. This is in important step since it will provide the appropriate

presentation of the model to the user.

Now that the object world has been aligned and the rotation has

been perform the 3D model it can be sent from the “Reconstruction

Side” to the “Acquisition and Placement Side” which finally accom-

plish to the task to place it in the physical environment and move

towards the next object that the users intends to reconstruct, starting

the pipeline in an iterative way until the whole scene is reconstructed.

Figure 6.8: The model before (left) and after (right) the rotation of
90 degrees on its x axis.

101

7 Testing and Results

Having completed and implemented all the necessary steps of the

project, it was necessary to run several tests. As stated in the BSP-Net

description, the network was mainly trained on five object categories,

which are Chairs, Tables, Lamps, Cars and Planes. Since the system

was designed to work with indoor environments, the last two cate-

gories were left out from the tests. The entire reconstruction process

is completed in less than a minute, and the overall procedure from the

reception of the image, to the acquisition of the complete structure

containing the object takes around one minute and twenty seconds.

This period is an average value between the different measurements

and depends on the complexity of the object to reconstruct, varying

from a simple square table, to a modern chair with multiple parts.

102

Figure 7.1: The reconstruction of different models belonging to the
three categories mentioned above.

The entire reconstruction system was investigated in each passage

in order to define the characteristics that could alter the structure of

an object during its modelization.

103

Having the pipeline composed by seven well-defined steps, it was pos-

sible to circumscribe the three steps that could be responsible for the

quality of the outcomes: the semantic segmentation, the mask extrac-

tion and the BSP-Net. However we can avoid to consider the mask

extraction problem as a point of failure of the pipeline since the only

possible error related to it occurs when the object to be reconstructed

is not centered inside the picture, i.e., leading to bad behaviour of the

algorithm (e.g., it could consider a wall or the floor as centered point)

as in Fig.7.3.

These problems lead to the creation of a wrong 3D model; there-

fore it is interesting to point out the results produced by the different

errors that can affect the pipeline in order to understand how to fix

and avoid them.

104

Figure 7.2: Other reconstructions of different models. The objects
are organized in two columns, each one containing the original photo,
the mask of the object and its model after the remeshing operation.

105

Figure 7.3: Extraction errors due to the fact that the object was not
perfectly centered inside the picture.

The first step to be taken into account is the semantic segmenta-

tion, which is the starting point of the process and partitions the entire

photo, defining its components with a specific level of gray. This pas-

106

sage is crucial since the reconstruction relies entirely on the object

shape defined in this step. The initial limit of this network is deter-

mined by the dimensions of the input image, since it is constrained

by the GPU installed on the PC. The test showed how, using a GPU

NVIDIA RTX 2070, MSeg was capable of handling photos with a

maximum size of 1080x1920, and any larger size resulted in the sat-

uration of the memory. There are several possible errors caused by

the segmentation step which are carried through the pipeline and can

cause a wrong reconstruction, e.g., the missed detection of a hole be-

tween the different parts of the object, or when the segmented photo

presents holes which are not present in the real object. Another pos-

sible mistake is the aggregation of different objects within the main

one, entirely transforming the structure of the model. The example of

those errors are shown in Fig.7.4

107

Figure 7.4: Different types of Mseg errors related to erroneous recog-
nition of the holes or caused by wrong definition of the outlines of the
object.

The other errors that can possibly arise during the reconstruction

phase are caused by the core of the pipeline, which is BSP-Net. This

part was tested using a great amount of different objects and orien-

tations, taking also into account the perfect distance that allows an

108

acceptable reconstruction. The network was trained using pictures of

synthetic models (i.e., rendering of digitalized 3D models, not real ob-

jects) with low resolution (128x128), probably due to the fact that the

training phase was quite expensive in terms of computational time and

small images can lead to comparable results saving a huge amount of

time. It was decided to resize the image to have a square photo adding

a little bit of padding (white space around the element) around the ob-

ject in order to match the condition in which the network has been

trained.

Figure 7.5: Differences in reconstruction quality when the image has
raw dimensions (left) and when it is resized, properly padded and
cropped to 128x128 (right).

109

As a matter of fact, BSP-NET builds the model starting from a two-

axis point of view and tries to extract the third dimension from it, thus

the capability of infering the missing dimension is greatly affected by

the orientation of the object in the photo. After a couple of tests was

clear that the best reconstructions occurred when the photographed

object was rotated of an angle varying from 30◦to 45◦respect its y-

axis, as shown in Fig.7.6.

Figure 7.6: Reconstructions of the same object starting from different
photo angulations.

Another aspect of the network is the fact that, having been trained us-

110

ing “perfect models”, the differences in luminosity given by the lights

and shadows of the real environment can alter the object and its re-

construction, producing models which are less accurate with respect

to the synthetic one. This problem causes the disruption of the mesh,

sometimes adding pieces which are not present in the photo or with a

slightly different structure.

Figure 7.7: Comparison between two similar objects reconstructed
using photos of synthetic and real objects. We can notice that some
details are missing, incomplete or defined in a wrong manner.

The next issue detected concerning this network is caused by the

wrong perception of the object dimension, since the actual dimen-

111

sion of the object is not fully deductible in the photo and sometimes

not respected. This phenomenon misleads the network which modi-

fies the object reconstruction by lowering or increasing its dimension

or even changing the actual type of the object, relying on the synthetic

shapes used for its training.

112

Figure 7.8: On the top: reconstruction error caused by wrong percep-
tion that changes the type of the object perceived by the server system
(from chair to armchair). On the bottom: reconstruction error caused
by erroneous perception of the object dimension (the back of the chair
is perceived as stretched and scaled by the server system).

As completion of the overview we also present cases in which the

BSP-Net is not able to reconstruct the model from the snapshot due

to the lack of information or because of the higher complexity of the

object shape. This can be considered as a drawback for the network

which is based on the information stored during the training phase,

showing that the system is slightly biased and sometimes constrained

113

to the models on which it has been trained on, without being able to

generalize.

Figure 7.9: Cases when the object is wrongly reconstructed.

Another interesting step of the pipeline that has been taken into ac-

count is the remeshing, which consists in an operation of smoothing

applied to the original mesh in order to produce clearer results. Al-

though this procedure is not capable of altering considerably the origi-

nal mesh or clean it from superfluous part, it can happen that the mesh

114

is slightly different, neglecting inconsistent parts. The operation could

also lead to the formation of holes not present in the original one, re-

sulting in a degradation of the overall outcome, although in almost all

of the cases the final outcome is an appreciable improvement.

Figure 7.10: Comparison between the original mesh of the model (on
the left) and the object mesh after the remeshing (on the right).

115

Finally, it was taken into account how the application works and

responds considering the possible causes of failure. The overall flow

of the application is fluid, at the start the connection is established

almost immediately and it does not affect the camera frame rate that

is fixed to 60 fps. Google ARCore has the task to manage the cam-

era and at the same time performs the detection of the floor without

any fail. The first problem arises when the application is active for

several minutes, considering that, during this time, the floor detection

is constantly active and continues to search for a plane; this can lead

to an overpopulation of vertical and horizontal planes that sometimes

does not exist. The large number of floors constitutes an impediment

to the utilization of the app because, considering that the indicator of

the object must be placed on these AR floors, it is possible to place it

in a wrong spot that is directly above or below the point of interest,

or also preventing the model to be moved due to the collision of the

planes around him.

116

Figure 7.11: Multiple planes intersections created by the AR Core
session.

For what regards the model reconstruction in the scene, it freezes the

application for less that a second only the first time that an object is

retrieved, meaning that the other times the building and the instanti-

ation does not block the application flow and the entire process from

the reception to the placement of the object lasts around two or fewer

seconds. For what regards the placement it can happen that the model

has its scale a bit different with respect to the size of the real object,

due to the fact that the 3D model size is defined using an average value

between the different dimensions of the tested object.

117

Figure 7.12: The real object compared to the model with an erro-
neous scaling applied.

As the application has been tested under continuous condition, it

manages to successfully reconstruct more than ten objects of a single

room, stressing its flow rate in a time span from ten to thirty minutes

without any major issue. In the following photos are shown examples

of scene reconstruction using different objects, positions and config-

urations.

118

Figure 7.13: Scene reconstructed using two different objects (on the
left) and five different objects (on the right). The top left and the
bottom right photos show the position of the placeholders in the envi-
ronment.

119

Figure 7.14: Scene reconstructed using multiple instances of the
same object.

120

8 Conclusion and Future Works

As conclusion of the project, it is possible to make several consider-

ations regarding the application, the BSP-Net system and the overall

reconstruction pipeline in order to sum up the possible implementa-

tions that could further improve the entire system described in this

thesis as a future reference. Starting with BSP-net, the overall recon-

struction was fairly acceptable on determinate situations, since the

original dataset used for the training is balanced towards categories

such as chairs, tables, lamps, planes and cars, highlighting that the

application performs quite well when it faces one of these objects.

According to the goal task of the project it is suggested, in order to

achieve better results, to re-train the network with all the indoor cate-

gories which the user is interested in and creating a new dataset based

on real images and not on synthetic ones, in order to align the training

phase to what will be tested later on. These steps were not possible to

perform, considering that during the realization of this project it was

not possible to access to required resources in terms of hardware and

121

computational capability. In fact to successfully achieve an improved

training, the requested components should be quite powerful, since it

affects the computational cost in terms of time which exponentially

grows using older hardware; for instance, using an NVIDIA geForce

RTX 2080 Ti GPU to train the model it will require more than 5 days

to complete the entire training task.

Another improvement that is possible to perform is on the input

images fed to the system, which are small-scale and with low quality

(128x128), probably to reduce the training time and to compare the

results with previous standard benchmarks. Therefore, with a high

quality hardware and a considerable amount of time for training, it

should be interesting trying to augment the dimension of the tensors

of the network in order to enhance the resolution of the input images

at least to 1080x1920 to further improve the quality of the results.

As mentioned before, BSP-Net is based on a Single View Recon-

struction approach, meaning that there could be a margin of improve-

ment for multi-shots images, taking multiple views of the same ob-

ject in order to collect more information as possible and merge them

together in order to obtain a high level of accuracy during the recon-

struction of the details of the single model.

122

Another interesting aspect regarding BSP-Net is the production of

compact mesh, i.e., low-poly meshes, which would lead to the pos-

sibility to represent the output shapes through a “difference” opera-

tions rather than a “union” of different parts, in order to achieve a

wider generalization approach that can express complex and concave

or convex details. For what concerns the reconstruction side, several

improvements should be done to retrieve a high quality result. The

first step that could be improved is the semantic segmentation, as it

has been evinced by the results that the principal cause of a low qual-

ity reconstruction is caused by a wrong segmentation of the object.

Sometimes the network is not able to recognize empty spaces between

object or even the form that they have. In order to overcome this gap,

with the same assumptions of BSP-Net it should be performed an in-

tense session of training with a larger dataset to let to the network to

segment more complex objects.

Another improvement can be performed on the remeshing mod-

ule, whose algorithm could be upgraded to detect and fill the empty

gaps that sometimes are present in some models due to an error of

reconstruction (e.g., a chair with a hole in the back) and eliminating

unnecessary parts which are not connected to the main mesh.

123

It could be also interesting to upgrade the system switching from

a normal RGB camera to an RGBD one, in order to acquire the depth

map along the standard image. This could allow the system to access

more information such as the actual difference in depth between the

object and the other parts of the environment, achieving a better result

in terms of segmentation.

Finally, it is possible to debate about the Android Application, which

is the interaction device between the user and the reconstruction pipeline.

As mentioned, it is possible to take photos with the smartphone cam-

era and its resolution is set to 1080x1920, then the frame will be suc-

cessfully resized and cropped by the server. If the BSP-Net enhance-

ment quality mentioned before could be applied, it could be also pos-

sible to increase the photo quality of the actual camera of most of the

phones, which can reach 4K resolution, providing a larger number of

details that can help for a realistic reconstruction of the model.

Another problem of the actual application is given by the scaling size

of the instantiated model, which is defined as an average value be-

tween the different sizes of the object which is tested and deployed

in the scene, therefore could be helpful to develop a function to auto-

matically create a bounding box around the object whose in order to

124

be able to adjust the scale of the model which will overlap to it.

For what regards the model instantiated in the scene, there are little

improvements that can be applied in order to increase the experience

of the user in the application. One of these could consists in the in-

troduction of a menu to change the appearance of a specific model

from a set of available textures, since now the only texture automati-

cally applied is a default white material, which is a Unity standard for

models without any specific material. Concerning the manipulation

of the object which allows a user to move, rotate and scale a selected

object, occurs that in the circumstance in which different number of

reconstructed objects are present, could be difficult to recognize the

actual object subjected to the manipulation. Hence, could be inter-

esting to introduce an indicator or marker, which univocally points or

highlights the manipulated object.

Another improvement concerns the Gallery, which does not provide

anything other than the image visualization of the photo taken by the

app; it would be interesting providing additional functionalities by

adding the possibility to delete a specific photo, also eliminating the

indicator and the respective model along with it, exploiting its index;

also a function to save the images in the internal storage of the smart-

125

phone could be useful.

Finally, what could be interesting is a complete redefinition of the

archetype of the application, which now is based on taking snapshots

of the single object and reconstructing it, moving towards a new sys-

tem where the user records a video of the indoor scene and sends it

to the Reconstruction Side, which autonomously identifies all the ob-

jects contained in the video of the scene, decomposes each one seg-

menting them from the background, reconstructs each one of them

independently and sends them back to the client.

It could also be possible to implement a system which exports the

entire visualized scene in Augmented Reality, transferring the posi-

tion, dimension and rotation of all the objects contained into it in a

different environment as a PC for instance, in order to visualize and

modify it under a completely new level of freedom.

126

List of Figures

1.1 Examples of different Computer Vision applications.

Images taken from [30]. 6

1.2 A Virtual Reality application (on the left) and an Aug-

mented Reality application (on the right). Images taken

from [17] and [12]. 7

2.1 Venn Diagram of the relation between the Artificial

Intelligence and the Computer Vision. 13

2.2 The connections in a generic structure of a Neural

Network on a 3D view. The example regards the num-

bers recognition. Image taken from [8]. 16

2.3 The scheme of a Single Layer Perceptron. Image

taken from [3]. 17

2.4 The scheme of a Multi Layer Perceptron. Image taken

from [9]. 18

127

2.5 The scheme of a generic Recurrent Neural Network.

Image taken from [13]. 20

2.6 The scheme of a Recursive Neural Network. Image

taken from [4]. 21

2.7 The scheme of a Convolutional Neural Network. . . 22

2.8 Faces reproduced by a GAN, given certain photos as

input. Image taken from [11]. 24

2.9 A medical student performs a treatment simulation on

a virtual patient. Image taken from [25]. 27

2.10 The Augmented Reality Lego kiosk, where customers

can visualize the final content of the product by plac-

ing the box in front of a camera. Image taken from

[16]. 29

3.1 Example of Room Scanning using the Iphone 12 Pro

LiDAR. Image taken from [2]. 33

3.2 The different representation of a generic object using

Point clouds (a), Voxels (b), Meshes (c) and Implicit

Representations (d). Image taken from [14]. 34

3.3 The Structure of Kinect. Image taken from [7]. . . . 37

128

3.4 The results produced by the Kinect Fusion system. . 39

3.5 A scene reconstructed using pointclouds in AliceVi-

sion. Image taken from [1]. 40

3.6 The results produced by the AliceVision system. Im-

age taken from [23]. 41

3.7 Representation of different types of encoder in the

system. 46

3.8 The comparison of results between different recon-

struction approaches. 48

3.9 Scheme of the framework implemented in the PIFuHD

system. 49

3.10 Results obtained trying different designs of the system. 52

3.11 The organization of BSP-Net. 53

3.12 The results obtained by BSP-Net, compared to other

object reconstruction networks and the ground truth. 55

4.1 The general pipeline of the system. 62

4.2 The scheme of the Client. 63

4.3 The scheme of the Server. 66

5.1 Flowchart of the Main window. 69

129

5.2 Showcase of the Main Window on the left and the

preview of the taken photo on the right. 71

5.3 Flowchart of the reconstruction window. 72

5.4 Placeholder placement on the Photo mode on the left

and correspondent substitution with 3D model in the

Reconstruction window on the right. 73

5.5 Showcase of the Gallery (on the left) and flowchart of

the gallery (on the right). 74

6.1 The flowchart of the pipeline of the server. 80

6.2 Visual representation of the segmentation results of

MSeg with respect to other segmentation models. . . 82

6.3 The original photo (left) and its grayscale segmenta-

tion produced by the modified MSeg (right). 84

6.4 The binary mask of a chair (left) and the result ob-

tained by applying the mask to the original photo (right).

. 87

6.5 The reconstructed object using BSP-net. 92

6.6 The difference between an object before (on the left)

and after (on the right) the remeshing operation. . . 95

130

6.7 Rendering generation obtained with Python Blender

script executed by command line. 97

6.8 The model before (left) and after (right) the rotation

of 90 degrees on its x axis. 101

7.1 The reconstruction of different models belonging to

the three categories mentioned above. 103

7.2 Other reconstructions of different models. The ob-

jects are organized in two columns, each one contain-

ing the original photo, the mask of the object and its

model after the remeshing operation. 105

7.3 Extraction errors due to the fact that the object was

not perfectly centered inside the picture. 106

7.4 Different types of Mseg errors related to erroneous

recognition of the holes or caused by wrong definition

of the outlines of the object. 108

7.5 Differences in reconstruction quality when the image

has raw dimensions (left) and when it is resized, prop-

erly padded and cropped to 128x128 (right). 109

131

7.6 Reconstructions of the same object starting from dif-

ferent photo angulations. 110

7.7 Comparison between two similar objects reconstructed

using photos of synthetic and real objects. We can no-

tice that some details are missing, incomplete or de-

fined in a wrong manner. 111

7.8 On the top: reconstruction error caused by wrong per-

ception that changes the type of the object perceived

by the server system (from chair to armchair). On the

bottom: reconstruction error caused by erroneous per-

ception of the object dimension (the back of the chair

is perceived as stretched and scaled by the server sys-

tem). 113

7.9 Cases when the object is wrongly reconstructed. . . . 114

7.10 Comparison between the original mesh of the model

(on the left) and the object mesh after the remeshing

(on the right). 115

7.11 Multiple planes intersections created by the AR Core

session. 117

132

7.12 The real object compared to the model with an erro-

neous scaling applied. 118

7.13 Scene reconstructed using two different objects (on

the left) and five different objects (on the right). The

top left and the bottom right photos show the position

of the placeholders in the environment. 119

7.14 Scene reconstructed using multiple instances of the

same object. 120

133

Bibliography

[1] ALICEVISION: Photogrammetric Computer Vision Framework.

URL: https://alicevision.org/.

[2] Apple wants to make Lidar a great deal on iPhone 12 Pro and

above. What is it and why is it important. URL: https://

www.haveeru.com.mv/apple-wants-to-make-

lidar-a-great-deal-on-iphone-12-pro-and-

above-what-is-it-and-why-is-it-important/.

[3] Basics of Multilayer Perceptron – A Simple Explanation of Mul-

tilayer Perceptron. URL: https://kindsonthegenius.

com/blog/basics-of-multilayer-perceptron-

a-simple-explanation-of-multilayer-perceptron/.

[4] Chainer Tutorial: Sentiment Analysis with Recursive Neural

Network. URL: https://medium.com/@keisukeumezawa/

chainer-tutorial-sentiment-analysis-with-

recursive-neural-network-180ddde892a2.

134

https://alicevision.org/
https://www.haveeru.com.mv/apple-wants-to-make-lidar-a-great-deal-on-iphone-12-pro-and-above-what-is-it-and-why-is-it-important/
https://www.haveeru.com.mv/apple-wants-to-make-lidar-a-great-deal-on-iphone-12-pro-and-above-what-is-it-and-why-is-it-important/
https://www.haveeru.com.mv/apple-wants-to-make-lidar-a-great-deal-on-iphone-12-pro-and-above-what-is-it-and-why-is-it-important/
https://www.haveeru.com.mv/apple-wants-to-make-lidar-a-great-deal-on-iphone-12-pro-and-above-what-is-it-and-why-is-it-important/
https://kindsonthegenius.com/blog/basics-of-multilayer-perceptron-a-simple-explanation-of-multilayer-perceptron/
https://kindsonthegenius.com/blog/basics-of-multilayer-perceptron-a-simple-explanation-of-multilayer-perceptron/
https://kindsonthegenius.com/blog/basics-of-multilayer-perceptron-a-simple-explanation-of-multilayer-perceptron/
https://medium.com/@keisukeumezawa/chainer-tutorial-sentiment-analysis-with-recursive-neural-network-180ddde892a2
https://medium.com/@keisukeumezawa/chainer-tutorial-sentiment-analysis-with-recursive-neural-network-180ddde892a2
https://medium.com/@keisukeumezawa/chainer-tutorial-sentiment-analysis-with-recursive-neural-network-180ddde892a2

[5] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. “BSP-Net:

Generating Compact Meshes via Binary Space Partitioning”.

In: CoRR abs/1911.06971 (2019). arXiv: 1911.06971. URL:

http://arxiv.org/abs/1911.06971.

[6] Özgün Çiçek et al. “3D U-Net: Learning Dense Volumetric

Segmentation from Sparse Annotation”. In: CoRR abs/1606.06650

(2016). arXiv: 1606.06650. URL: http://arxiv.org/

abs/1606.06650.

[7] Components of Kinect for Windows. URL: https://subscription.

packtpub.com/book/game_development/9781849692380/

1/ch01lvl1sec08/components-of-kinect-for-

windows.

[8] ConvNet Architectures for beginners Part I. URL: https://

medium.com/srm-mic/convnet-architectures-

for-beginners-part-i-233aa9d1761b.

[9] Depth of the neural network for computer vision processing it.

URL: https://programmersought.com/article/

93883332619/.

135

https://arxiv.org/abs/1911.06971
http://arxiv.org/abs/1911.06971
https://arxiv.org/abs/1606.06650
http://arxiv.org/abs/1606.06650
http://arxiv.org/abs/1606.06650
https://subscription.packtpub.com/book/game_development/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://subscription.packtpub.com/book/game_development/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://subscription.packtpub.com/book/game_development/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://subscription.packtpub.com/book/game_development/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://medium.com/srm-mic/convnet-architectures-for-beginners-part-i-233aa9d1761b
https://medium.com/srm-mic/convnet-architectures-for-beginners-part-i-233aa9d1761b
https://medium.com/srm-mic/convnet-architectures-for-beginners-part-i-233aa9d1761b
https://programmersought.com/article/93883332619/
https://programmersought.com/article/93883332619/

[10] Wei Dong et al. “An Efficient Volumetric Mesh Representa-

tion for Real-time Scene Reconstruction using Spatial Hash-

ing”. In: CoRR abs/1803.03949 (2018). arXiv: 1803.03949.

URL: http://arxiv.org/abs/1803.03949.

[11] Generative adversarial networks: What GANs are and how they’ve

evolved. URL: https://venturebeat.com/2019/

12/26/gan-generative-adversarial-network-

explainer-ai-machine-learning/.

[12] How did technology transform the retail industry? URL: https:

//www.quora.com/How-did-technology-transform-

the-retail-industry.

[13] How Recurrent Neural Network (RNN) Works. URL: https:

//openbootcamps.com/how-recurrent-neural-

network-rnn-works/.

[14] Introduction To 3D Deep Learning. URL: https://medium.

com/@nabil.madali/introduction-to-3d-deep-

learning-740c199b100c.

[15] Michal Jancosek and Tomas Pajdla. “Multi-view reconstruc-

tion preserving weakly-supported surfaces”. In: CVPR 2011.

136

https://arxiv.org/abs/1803.03949
http://arxiv.org/abs/1803.03949
https://venturebeat.com/2019/12/26/gan-generative-adversarial-network-explainer-ai-machine-learning/
https://venturebeat.com/2019/12/26/gan-generative-adversarial-network-explainer-ai-machine-learning/
https://venturebeat.com/2019/12/26/gan-generative-adversarial-network-explainer-ai-machine-learning/
https://www.quora.com/How-did-technology-transform-the-retail-industry
https://www.quora.com/How-did-technology-transform-the-retail-industry
https://www.quora.com/How-did-technology-transform-the-retail-industry
https://openbootcamps.com/how-recurrent-neural-network-rnn-works/
https://openbootcamps.com/how-recurrent-neural-network-rnn-works/
https://openbootcamps.com/how-recurrent-neural-network-rnn-works/
https://medium.com/@nabil.madali/introduction-to-3d-deep-learning-740c199b100c
https://medium.com/@nabil.madali/introduction-to-3d-deep-learning-740c199b100c
https://medium.com/@nabil.madali/introduction-to-3d-deep-learning-740c199b100c

IEEE, June 2011. DOI: 10.1109/cvpr.2011.5995693.

URL: https://doi.org/10.1109/cvpr.2011.

5995693.

[16] LEGO Digital Box brings Augmented Reality to LEGO Stores

Worldwide. URL: https://www.mobilevenue.com/

lego-digital-box-brings-augmented-reality-

lego-stores-worldwide-04190305/.

[17] Manufacturing with VR Becoming a (Virtual) Reality. URL:

https://www.qad.com/blog/2018/09/manufacturing-

vr-becoming-virtual-reality.

[18] Ben Mildenhall et al. NeRF: Representing Scenes as Neural

Radiance Fields for View Synthesis. 2020. arXiv: 2003.08934

[cs.CV].

[19] Pierre Moulon, Pascal Monasse, and Renaud Marlet. “Adaptive

Structure from Motion with a Contrario Model Estimation”. In:

Proceedings of the Asian Computer Vision Conference (ACCV

2012). Springer Berlin Heidelberg, 2012, pp. 257–270. DOI:

10.1007/978-3-642-37447-0_20.

137

https://doi.org/10.1109/cvpr.2011.5995693
https://doi.org/10.1109/cvpr.2011.5995693
https://doi.org/10.1109/cvpr.2011.5995693
https://www.mobilevenue.com/lego-digital-box-brings-augmented-reality-lego-stores-worldwide-04190305/
https://www.mobilevenue.com/lego-digital-box-brings-augmented-reality-lego-stores-worldwide-04190305/
https://www.mobilevenue.com/lego-digital-box-brings-augmented-reality-lego-stores-worldwide-04190305/
https://www.qad.com/blog/2018/09/manufacturing-vr-becoming-virtual-reality
https://www.qad.com/blog/2018/09/manufacturing-vr-becoming-virtual-reality
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://doi.org/10.1007/978-3-642-37447-0_20

[20] R. A. Newcombe et al. “KinectFusion: Real-time dense surface

mapping and tracking”. In: 2011 10th IEEE International Sym-

posium on Mixed and Augmented Reality. 2011, pp. 127–136.

DOI: 10.1109/ISMAR.2011.6092378.

[21] Matthias Nießner et al. “Real-Time 3D Reconstruction at Scale

Using Voxel Hashing”. In: ACM Trans. Graph. 32.6 (Nov. 2013).

ISSN: 0730-0301. DOI: 10 . 1145 / 2508363 . 2508374.

URL: https://doi.org/10.1145/2508363.2508374.

[22] Songyou Peng et al. Convolutional Occupancy Networks. 2020.

arXiv: 2003.04618 [cs.CV].

[23] Photogrammery testing 14: AliceVision Meshroom. URL: https:

//peterfalkingham.com/2018/08/11/photogrammery-

testing-14-alicevision-meshroom/.

[24] Charles Ruizhongtai Qi et al. “PointNet: Deep Learning on

Point Sets for 3D Classification and Segmentation”. In: CoRR

abs/1612.00593 (2016). arXiv: 1612.00593. URL: http:

//arxiv.org/abs/1612.00593.

138

https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1145/2508363.2508374
https://doi.org/10.1145/2508363.2508374
https://arxiv.org/abs/2003.04618
https://peterfalkingham.com/2018/08/11/photogrammery-testing-14-alicevision-meshroom/
https://peterfalkingham.com/2018/08/11/photogrammery-testing-14-alicevision-meshroom/
https://peterfalkingham.com/2018/08/11/photogrammery-testing-14-alicevision-meshroom/
https://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593

[25] Residenti aperti per la struttura di formazione VR. URL: https:

//www.excite.co.jp/news/article/MoguraVR_

vr-medical-training/.

[26] O. Ronneberger, P.Fischer, and T. Brox. “U-Net: Convolutional

Networks for Biomedical Image Segmentation”. In: Medical

Image Computing and Computer-Assisted Intervention (MIC-

CAI). Vol. 9351. LNCS. (available on arXiv:1505.04597 [cs.CV]).

Springer, 2015, pp. 234–241. URL: http://lmb.informatik.

uni-freiburg.de/Publications/2015/RFB15a.

[27] Shunsuke Saito et al. PIFuHD: Multi-Level Pixel-Aligned Im-

plicit Function for High-Resolution 3D Human Digitization.

2020. arXiv: 2004.00452 [cs.CV].

[28] Steven M. Seitz and Charles R. Dyer. “Photorealistic Scene Re-

construction by Voxel Coloring”. In: Proceedings of the 1997

Conference on Computer Vision and Pattern Recognition (CVPR

’97). CVPR ’97. USA: IEEE Computer Society, 1997, p. 1067.

ISBN: 0818678224.

[29] Daeyun Shin et al. “Multi-layer Depth and Epipolar Feature

Transformers for 3D Scene Reconstruction”. In: CoRR abs/1902.06729

139

https://www.excite.co.jp/news/article/MoguraVR_vr-medical-training/
https://www.excite.co.jp/news/article/MoguraVR_vr-medical-training/
https://www.excite.co.jp/news/article/MoguraVR_vr-medical-training/
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
https://arxiv.org/abs/2004.00452

(2019). arXiv: 1902.06729. URL: http://arxiv.org/

abs/1902.06729.

[30] Sim4CV: A Photo-Realistic Simulator for Computer Vision Ap-

plications. URL: https://www.semanticscholar.

org/paper/Sim4CV.

140

https://arxiv.org/abs/1902.06729
http://arxiv.org/abs/1902.06729
http://arxiv.org/abs/1902.06729
https://www.semanticscholar.org/paper/Sim4CV
https://www.semanticscholar.org/paper/Sim4CV

	Introduction
	How the world view is changing
	The Project Idea

	Deep Learning and Computer Graphics
	Machine Learning
	Neural Networks
	Computer Graphics
	Virtual Reality
	Augmented Reality

	Computer Vision

	State of the Art
	The Scene Reconstruction Problem
	Representations of 3D Objects
	Traditional Approaches
	Kinect Fusion
	AliceVision

	Learning-Based Methods
	State-of-The-Art Systems
	Convolutional Occupancy Network
	PIFuHD
	BSP-Net

	Reconstruction System
	Preliminary Work
	System Architecture
	Data Acquisition
	Reconstruction

	Acquisition and Placement Side
	Organization and Composition
	The Lyfecycle
	The Photo Mode
	The Reconstruction Mode
	The Gallery

	Client Connection

	Reconstruction Side
	Server Connection
	Reconstruction Pipeline
	Semantic Segmentation
	Mask Extraction
	Object Reconstruction
	Remeshing
	Rendering Generation
	Rotation Estimation
	Object Rotation

	Testing and Results
	Conclusion and Future Works

