
POLITECNICO DI TORINO
Master's Degree in Software Engineering

Master’s Thesis

A comparison of Different Machine Learning Techniques to Develop the AI of a

Virtual Racing Game

Supervisor Candidate

Prof. Andrea Bottino Alessandro Picardi

Dott. Francesco Strada

Academic Year 2020/2021

2

3

Acknowledgements
First of all, I would like to express my sincere gratitude to Politecnico di Torino and

partner organizations, for letting me be part of this incredible and stimulating

University. Further, I would like to thank my supervisors Prof. Andrea Bottino and

Dott. Francesco Strada for the thoughtful comments and recommendations on this

dissertation. I am also thankful to my family that always support me without asking

me anything. A special thanks go to Jana, sometimes far in the distances, never far

to the heart. To conclude, I cannot forget to thank my 8 friends for all the love and

laugh they gave me in these intense academic years.

4

Abstract
Nowadays machine learning (ML) is a field of study that is applied in numerous fields

of application: Image classification, Identity fraud detection, Market forecasting,

Customer segmentation and others. Another interesting field of study for ML is

Video Game. In a virtual environment we can train an Artificial Intelligence (AI) and

not script it with thousands of lines of code. A ML-AI could be a Non Player

Character that interact with a human player in a friendly or hostile way. It could be

an agent that learn how to perform a task in a single player game. The idea of this

dissertation is to create a virtual environment with three different AIs trained with a

different approach: Reinforcement Learning, Imitation Learning and Curriculum

Learning. These agents are trained to compete against a human player in a racing

game.

5

Contents
Acknowledgements ... 3

Abstract ... 4

List of figures ... 7

1 Intro .. 8

1.1 Purpose of the research .. 8

1.2 What is Machine Learning ... 9

1.3 The reasons of Machine Learning ... 10

1.4 How Machine Learning Uses Data ... 10

1.5 Types of Machine Learning .. 11

2 Theoretical Background .. 12

2.1 Reinforcement Learning .. 12

2.1.1 Sparse Reward .. 13

2.1.2 Dense Reward ... 13

2.2 Imitation Learning ... 14

2.3 Curriculum Learning .. 19

3 Methodology .. 22

3.1 Software and Libraries Used .. 22

3.2 The Game Scenario: Machicar (Machine Learning Car) .. 23

3.2.1 Level Design .. 24

3.2.2 Obstacles .. 29

3.2.3 Player Control ... 30

3.2.4 Neural Network For AI .. 30

3.2.5 The Policy Update, Policy Gradient Method And PPO ... 33

3.2.6 The Agent Training and Implementation ... 36

3.3 The Learning Methods ... 46

3.3.1 Reinforcement Learning Implemented .. 47

3.3.2 Imitation Learning Implemented .. 48

3.3.3 Curriculum Learning implemented ... 53

4 Tests .. 57

4.1 Metric 1: Lap time ... 59

4.2 Metric 2: percentage of lap at full throttle, medium throttle and low throttle .. 59

4.3 Metric 3: number of crashes ... 60

5 Conclusions ... 76

6 Bibliography .. 78

6

7

List of figures
FIGURE 1: MACHINE LEARNING .. 9
FIGURE 2: THREE TYPES OF ML WITH SUBSECTION .. 11
FIGURE 3: THE REINFORCEMENT LEARNING CYCLE .. 12
FIGURE 4: MACHINE LEARNING SOCCER .. 17
FIGURE 5: MACHICAR ... 18
FIGURE 6: TRACK 1 .. 24
FIGURE 7: TRACK 2 .. 24
FIGURE 8: TRACK 3 .. 25
FIGURE 9: THE TRACK PARTS .. 25
FIGURE 10: SEVEN RANDOM GENERATED TRACKS .. 26
FIGURE 11: VORONOI DIAGRAM .. 26
FIGURE 12: THE GENERATED SPLINE .. 27
FIGURE 13: VERTICES AT THE SIDE .. 27
FIGURE 14: UV COORDINATES GENERATED ... 29
FIGURE 15: 4 DIFFERENT OBSTACLES ... 29
FIGURE 16: CAR'S NEURAL NETWORK .. 30
FIGURE 17: THE RAYCASTS AROUND THE CAR ... 31
FIGURE 18: DECISION REQUESTER .. 36
FIGURE 19: CAR MOVEMENT SCRIPT .. 41
FIGURE 20: CAR AGENT SCRIPT... 42
FIGURE 21: CAR NEURAL NETWORK SCRIPT ... 43
FIGURE 22: COMMAND PROMPT TRAINING COMMAND ... 46
FIGURE 23: RL CAR .. 47
FIGURE 24: RL TRAINING GRAPHS .. 47
FIGURE 25: IL CAR ... 48
FIGURE 26: GAIL DISCRIMINATOR SCHEME .. 50
FIGURE 27: DEMONSTRATION RECORDER ... 50
FIGURE 28: IL TRAINING GRAPHS ... 52
FIGURE 29: CL CAR .. 53
FIGURE 30: CL TRAINING GRAPHS .. 56
FIGURE 31: SCENARIO 1 .. 58
FIGURE 32: SCENARIO 2 .. 58
FIGURE 33: SCENARIO 3 .. 58
FIGURE 34: TRACK1 ... 61
FIGURE 35: TRACK2 ... 66
FIGURE 36: TRACK3 ... 71

file:///C:/Users/dignu/Desktop/NEW%20-%20Thesis%20-%20A%20comparison%20of%20Different%20Machine%20Learning%20Techniques%20to%20Develop%20the%20AI%20of%20a%20Virtual%20Racing%20Game.docx%23_Toc63336006
file:///C:/Users/dignu/Desktop/NEW%20-%20Thesis%20-%20A%20comparison%20of%20Different%20Machine%20Learning%20Techniques%20to%20Develop%20the%20AI%20of%20a%20Virtual%20Racing%20Game.docx%23_Toc63336015
file:///C:/Users/dignu/Desktop/NEW%20-%20Thesis%20-%20A%20comparison%20of%20Different%20Machine%20Learning%20Techniques%20to%20Develop%20the%20AI%20of%20a%20Virtual%20Racing%20Game.docx%23_Toc63336017

8

1 Intro

1.1 Purpose of the research
The goal of this project was to develop virtual environment where 3 different AIs

compete with a player to win a car race. The AIs were trained with a particular ML

technique: Reinforcement Learning (RL), Curriculum Learning(CL) and Imitation

Learning(IL). The three elements were later compared to choose the best learning

technique for this task. Previous work has been made on this subject.

Amira Youseef et al used IL and RL combined to create a shooting game where AI

agent has more human-like behavior[1] . Kun Shao et al used a particular version of

Curriculum Transfer Learning (a different version of CL) to train multiple units in

StarCraft micro-management[2]. ShuQin Li et al train a reinforcement learning agent

to play Surakarta, a particular chess-like board game[3]. My idea was not to combine

or develop a single learning technique but create an environment with 3 different

ML agents and a player where they race all against each other. The purpose was to

master the learning approaches and show how Machine Learning can create

interesting challenge for a human player in the field of gaming. Moreover I wanted

to bring some innovations and hints for future development of the library unity ml

agents. This is one of the tools I used in the creation of this project, it is an

interesting library in continuous and fast development.

9

1.2 What is Machine Learning

Figure 1: Machine Learning

Machine Learning (ML) is a very popular technique of future prediction or

information classification. It can help a lot of people in the process of decision

making. The algorithm of ML are trained over batches of examples. With this the

build their own experience database and data history. The agent of ML are trained

again and again over the examples and in this way they can identify patterns in data

and they can make predictions for the future.

With the help of ML, humans can create intelligent systems that are able of taking

decisions autonomously.

Machine Learning is a combine different science field: mathematics, statistics and

computer science. Math helps us for developing machine learning models; statistics

draws inferences from data and computer science deals with the implementation of

algorithms.

Building a model and implementing is not enough, we must tune the model in a

proper way to have accurate results. To reach an optimum we tune something

called hyperparameters.

10

1.3 The reasons of Machine Learning

The world today is evolving and changing fast and so are the needs of people.

Moreover, we are living a fourth industrial revolution of data. In order to get

meaningful information from data and learn how people interface with them we

need algorithms that can select them and give us a result that benefit us. Machine

Learning has changed dramatically several industries like medicine, healthcare,

manufacturing, banking and so on. It has become an indispensable part of modern

industry.

The computation power, in this scenario Machine Learning has added a new

dimension in our perception of information. Machine Learning is around us every

day: apps, phones, IoT devices we use on a daily basis are enhanced by Machine

Learning.

For example, Google can autocomplete your research while you are writing on the

keyboard, this feature is based on your browsing habits. Spotify operates in a similar

way: it is capable perform predictions based on your listen history and

recommending the music and the podcast that you would want to listen. In this way

you can easily discover music and website close to your interest but it will be hard to

find a brand new artist or website far from your bubble.

Moreover, Machine Learning is taking over monotonous iterative tasks. This is

possible thanks to the great amount of data that we generate everyday.

1.4 How Machine Learning Uses Data

With a massive increase in data, there is a need of a strong system to handle this

load of information. Deep Learning for example can generate predictions with a

massive amount of data.

11

Machine Learning algorithms find patterns in data to perform classification and

future predictions. When a new input arrives in the model ML uses the pattern

found before and try to perform a future prediction. We can optimize our models

using various techniques like gradient descent or exhaustive search. In this way the

model learns to adapt to new example and give us better results.

1.5 Types of Machine Learning
ML algorithms can be classified into 3 main types:

-Supervised Learning

-Unsupervised Learning

-Reinforcement Learning

Figure 2: Three types of ML with subsection

12

2 Theoretical Background

2.1 Reinforcement Learning
In this kind of learning an agent gather observation of the world, it interacts with

these performing actions and it receives rewards (or reinforcements) that tell him

how well (or bad) it is behaving. For example, in the game of chess rewards can be 0

for losing, 1 for winning and 0.5 for draw. The goal of reinforcement learning (RL) is

maximizing the sum of rewards. The reward function may be unknown to the agent.

You can try to picture yourself playing a game where nobody explain you the rules.

You continue to make moves and at a certain point the referee yells that you have

won (or lost). This is reinforcement learning.

Figure 3: The reinforcement learning cycle

When you design an AI, a good start is formalizing a reward function. This function is

often short and easy to formalize. Take a racing game as example, we do not need

some crazy and long code to make the agent understand if it has won, lost or crash.

Another example could be the game of chess, it is not hard to define that if you do

checkmate you win and if you receive it you lose. These two cases are example of

Sparse Reward and an agent will have more difficulties learning process. A simpler

scenario is Dense Reward.

13

2.1.1 Sparse Reward
For the majority of the training process a sparse reward function rests 0, only in a

few state/action transitions it has a positive or negative value. In the game of chess

for example, it could be +1 for a winning game and -1 for a losing game. An RL agent

in a sparse reward environment will receive almost no feedback, it will be hard to

tell for him about the goodness of his actions.

2.1.2 Dense Reward
This kind of reward function gives a nonzero value to most of state/action transition,

in this way, at every time step (almost) the agent gets feedback. If you think of chess

again, a dense reward function could be +1 for every piece captured by the agent

and -1 for every piece captured by the opponent.

Learning in environments with dense rewards turns is less challenging than with

sparse rewards. The reason of that is that the agent will often visit state/action

transition that do not give any reward. Indeed, the most possible trajectories will

have a zero reward. In this way the agent is obliged to explore a very large set of

trajectories before learning a policy.

An example of sparse reward experiment is the “Leveraging Demonstrations for

Deep Reinforcement Learning on Robotics Problems with Sparse Rewards” of Mel

Vecerik et al. Here we see one of the biggest companies of Machine Learning trying

to solve a sparse reward problem: the insertion tasks, a mechanical arm has to

insert a plug in a socket

The researcher at Deepmind created an ad hoc sparse reward function which

returned +10 if the plug was within a little distance to the goal. The reward r is

defined like this:

14

𝑟 =

{

 0, ∑ 𝑊𝑔||𝑔𝑖 − 𝑥𝑖||2

𝑖 ∈𝑠𝑖𝑡𝑒𝑠

> 𝜖

10, ∑ 𝑊𝑔||𝑔𝑖 − 𝑥𝑖||2
𝑖 ∈𝑠𝑖𝑡𝑒𝑠

< 𝜖

where 𝑥𝑖 is the position 𝑖𝑡ℎ tip site on the plug

𝑔𝑖 is the 𝑖𝑡ℎ goal site on the socket

𝑊𝑔 contains weighting coefficients for the goal site error vector

𝜖 is a proximity threshold

If the robot put the plug in a position that is inside the threshold, the reward of +10 is

given and the episode is terminated [5]

2.2 Imitation Learning

There are domains that are too complex to find the right definition of a reward

function. If we think of a racing car in a circuit, how can we define the right behavior

of this agent? It should arrive first defeating the other opponents, but it should also

drive safe and not crash. It should not waste energy/fuel in moment where it is not

requested. It should not make the passengers bouncing like a ball (if there is a

passenger on board), but it must make an emergency brake if there is a dangerous

situation ahead. The process of weighting the factors could be tricky. There is also

an essential factor we have forgotten to mention: consider other opponents in the

race. If we forgot a factor, the behavior will select a high weight for the omitted

factor. This will happen because the behavior is trying to render the remaining

factors at their max.

15

If we want to eliminate this issue, one technique is to do protracted testing in

simulation, find what are the bad behaviors and adjust the reward function so that

these are eliminated. Another way is to build a reward function based on other

sources of data. One source is the agent itself, the other can be real human racers.

The field of imitation learning has a focused: learn the right behavior observing an

expert. We give to the agent a batch of expert examples and then we let it learn

from them. The problem of imitation learning has two approaches.

The first is Imitation Learning (IL) in his natural form. The agent takes state-action

pairs and use supervised learning on them. The goal of this process is learning a

policy π(s). There was some success in robotic with this approach, but some issues

arose. Imitation learning has a superior limit: the teacher. It will never pass the

teacher and his optimal policy 𝜋∗(s). When humans learn with imitation, we

consider them apes to describe their behavior. In a similar way we can consider an

ape agent because it use imitation learning. It does not understand the meaning of

his actions. Furthermore if the training set has a small deviation this will bring a time

increasing error. This could lead to major failure.

A second and smarter approach is Inverse Reinforcement Learning (IRL). How it

works? The agent observes the expert’s actions and try to understand and formulize

an approximation of the reward function of the expert . After a reward function is

obtained the agent will derive a policy. In this way we do not need thousands (or

even millions) of examples from the expert behavior, the agent will obtain a robust

policy also with a few examples. Moreover, if the learner understand that an expert

could have a suboptimal behavior it could achieve better results than the expert

because it is optimizing a reward function and not copying a behavior.

16

The main goal now is to find a reward function from the expert rewards. Our point

of start could be a rational behavior of the expert.

Here we have the first issue: a lot of rewards functions are like that. One simple

example is 𝑅∗(𝑠, 𝑎, 𝑠′) = 0. Another issue is the hypothesis itself: taking an expert as

rational is quite unrealistic. Let’s think about a robot that is learning chess. If it

observes Magnus Carlsen making a losing move he would assume that Magnus

wants to rationally lose.

To overcome the problem of a reward function equal to zero we have to change our

approach. Bayes would come in handy. Let D be the observed data, and 𝐻𝑅 be the

hypothesis that R is the right reward function. The Bayes rules is something like

𝑃(𝐻𝑅|𝐷) = 𝑃(𝐷|𝐻𝑅)𝑃(𝐻𝑅)

𝑅 = 0 is a very good hypothesis if we consider the prior probability 𝑃(𝐻𝑅)

simplicity-based (0 is simple).

𝑃(𝐷|𝐻𝑅) is infinitesimal if 𝑅 = 0, because it does not explain the choose of the

expert: why that particular behavior out of many?

𝑃(𝐷|𝐻𝑅) will be much larger if R has one only 𝜋∗(s).

We have not to consider the expert as perfect, he could make some sporadic faults.

In this sense we allow 𝑃(𝐷|𝐻𝑅) ≠ 0 whatever is the value of D (Optimal, Suboptimal

or Not-Optimal in reference to R).

So we made the assumption that an agent chooses with a stochastic policy and not

with a deterministic policy. This is not done because it represent in a better way

human data, but because it allows us to use simpler mathematical methods.

We can find numerous IRL algorithms like Feature Matching, Feature Matching with

FLANN or Maximum Entropy IRL.

17

If an agent understand the expert’s actions it can use IRL to learn an optimal or

suboptimal policy. Moreover if we have a multiagent environment agents can learn

an good policy watching the other policies. This could happen in a cooperative or

competitive environment.

A competitive example could be the soccer machine learning: we want to teach to

agents how to play soccer. We can give them a set of expert demonstrations, real

humans playing the game, then we let them play against each other and they will

learn from the expert actions and from the opponent.

Figure 4: Machine Learning Soccer

A cooperative example could be a car that has to learn to drive in a circuit. We give

the agent a set of expert actions, real human racing, and then we let a number N>1

of car running over the circuit. They will try to get an optimal policy from the

expert’s action and they will help each other to choose the best policy out of the N

car racing.

18

Figure 5: Machicar

The core point in inverse reinforcement learning is that the expert behaves in an

optimal or sub-optimal way. This is feasible if the expert does not know that he is

been watched. The agent should observe the expert in live action from a hidden

camera. This is not a rational situation if the expert knows that a learning agent is

watching him.

As an example, think about a robot in driving school that learns from a real human

racer how to drive in traffic. The robot is using IRL algorithm and it assume that the

teacher is behaving in an optimal way unaware of the agent. But that is not happen:

the human racer wants the robot to learn driving methods and tricks in quick way

and well enough, so he the human will modify his behavior noticeably. He might

stress out the errors to avoid, like accelerating in curves or braking too much

without changing gears. He might explain what to do in case of an emergency like a

19

crash with an obstacle, a fire or a car to car accident. He might drive too carefully or

too fast.

These behaviors are not useful and not right when driving alone so inverse RL

algorithms will not be able to understand the right reward function. Meanwhile, we

need the human to be unaware and the agent to make the right supposition about

the expert, it is a cooperative game between machines and humans.

2.3 Curriculum Learning
Animals and humans can learn better and faster if the learning process is composed

on examples with a crescent order of difficulties. This process is much better than

examples presented at random. These training strategies can be transferred to

neural networks and we can call them “curriculum learning”.

In our western society we can say that functional member of the society needs 20

years of training. The learning process is based on a well organized education

system: there will be something like a curriculum with different notions at different

times, exploiting previously learned notions to facilitate the process of solving new

tasks. If we decide the examples and their order we can guide training and

accelerate it exceptionally.

Elman in 1993 propose the idea of a curriculum to train a machine in learning

grammar. The key point is starting small, learn with simple task or subtasks, and

then gently increase the level of difficulty. Elman was using a recurrent network.

With his experimental results, Elman showed that innate knowledge of grammar or

a massive knowledge of rules is not the most important point in the process of

learning correct grammar structures, indeed he presented a better approach: to

start with a simpler architecture, restrained in complexity, and then enlarge it as the

knowledge enlarges[6].

20

At an abstract level, a curriculum is a sequence of different lessons. Each lesson of

training is associate with a particular set of weights and training examples. In the

beginning the weights favor simpler examples. The next lesson is associated will

have different weights and examples with an increase of difficulty. In the end of the

training the examples will be reweighted uniformly, in this way the last train can be

performed on the target training set (or distribution).

Formally, let ξ be a random variable, the learner will use ξ as an example.

Let P(ξ) be the target training distribution, the learner should learn a function of

interest from this distribution.

Let 0 ≤ 𝑊𝛿(𝜉) ≤ 1 be the set of weights applied to ξ at step 𝛿 in the curriculum

progression, with 0 ≤ 𝛿 ≤ 1 and 𝑊1(𝜉) = 1. The corresponding training distribution

at step 𝛿 is

𝑄𝛿(𝜉) ∝ 𝑊𝛿(𝜉)𝑃(𝜉) ∀𝜉

Such that ∫𝑄𝛿(𝑧)𝑑𝑧 = 1 Then we have

𝑄1(𝜉) = 𝑃(𝜉)

Now let 𝛿 increases as a monotonically sequence from 0 to 1

We call the sequence of distribution 𝑄𝛿 a curriculum if we have an increase of the

entropy.

𝐻(𝑄𝛿) < 𝐻(𝑄𝛿+𝜖) ∀𝜖 > 0

And 𝑊𝛿(𝑧) is monotonically increasing in 𝛿, that is

𝑊𝛿+𝜖(𝜉) > 𝑊𝛿(𝜉) ∀𝜖, 𝜉 > 0

To explain better this definition we can consider a simple setting where 𝑄𝛿 is

focused on a limited set of examples and increasing 𝛿 implies including new

examples into the set. The reinforce of 𝑄𝛿 increases with 𝛿 and the progression of

21

training distributions corresponds to a sequence of embedded training sets. It all

starts with a little set (simpler example) and we continue until the end where we

have the target of training set. We desire to see an increase of entropy with the

increase of diversity of training examples. And we want the weights of particular

examples to increase as they get included in the training set[7].

A previous research on the effectiveness of Curriculum Learning was made by

Zhipeng Ren et al. They compare three different algorithms to play 12 different Atari

2600 games. The algorithm considered are Deep Q Network(DQN), Prioritized

Experience Replay(PER) and Deep Curriculum Reinforcement Learning (DCRL). The

research shows that DCRL outperform the other two algorithms[8]

22

3 Methodology

3.1 Software and Libraries Used
My goal was to implement in practice three different learning algorithm:

Reinforcement, Imitation and Curriculum. In order to achieve this, I created a 3D

racing game. In this game all the AI will have a different Neural Network trained with

a different learning technique. The player will compete against this AI in a race. To

implement and develop the game I used Unity Engine.

Unity is a very powerful engine to develop videogame in 2D or 3D. It has a primary

scripting API in C#. For 2D it allows the importation of sprites and an advanced 2D

world renderer. For 3D games Unity can have texture compression, mipmaps and

resolution settings for each platform that the game engine supports. It also provides

supports for bump mapping, reflection mapping, parallax mapping, screen space

ambient occlusion and shadow maps. Unity is used to develop almost 50 percent of

the mobile games on the market and 60 percent of the augmented and virtual

reality content. It can be used also in the development of movie, automotive,

architecture, engineering and construction.

To develop a machine learning game I had to use a machine learning library. Unity

fitted my needs with its Unity ML-Agents

Unity ML-agents is an open source library that enables games and simulations to

serve as environment to training machine learning agents. The agent can be trained

using reinforcement learning, imitation learning, curriculum learning or other ML

methods through a Python API.

The toolkit is composed of 5 different elements: A training Environment, a Python

Low-Level API, the External Communicator, the Python trainer and the Gym

Wrapper. The training environment is the scene where we built our own game. Here

the agents observe and take actions. The Python Low-Level API is an external tool

23

that manipulates the machine learning brain during training. The external

Communicator communicates with the Python API and the learning environment.

The python trainer lives in the Python API and runs all the algorithms involved in

training.

To plot all the graphs about the performance of my Neural Net I used TensorFlow, an

open source software library for dataflow and differentiable programming. It is a

symbolic math library, and it can be used for machine learning application such as

neural networks

The combination of Unity, the unity ml agents library and the TensorFlow library is

the toolkit I used to develop my game

To test my AI and plot the metrics I used MATLAB software

3.2 The Game Scenario: Machicar (Machine Learning Car)
As mention before, the player will compete against different AI all trained with a

machine learning approach. The objective of the game is to complete 3, 5 or 7 laps

(decided by user) and to be the first between all the cars. The game has 3 tracks

created by a human and 10 tracks randomly generated by an algorithm. Every track

has walls on both sides of the street. In every track we have a few obstacles. If the

car (player or AI) hit a wall or an obstacle a crash happens.

Every track has a number of checkpoints alongside the road. Whenever the AI or the

player crash they will restart from the last checkpoint passed.

In the beginning of the track we have a Start Line. When the player or the AI passed

the Start Line for the first time a timer starts. When the player or the AI passed the

Start Line for the second time the timer is stopped and recorded, this will be the first

24

lap time of the car. In the end the timer is restarted, and it will record the second lap

time.

3.2.1 Level Design
- The first track (designed by a human) is elliptical composed of four 90 degree

turns. It has 11 checkpoints

Figure 6: Track 1

- The second track (designed by human) has more turns, and it is longer: six 90

degrees turns, and a long 180 degree turns. It has 17 checkpoints

Figure 7: Track 2

25

The third track (designed by human) is the most complicated, composed of ten 90

degrees turn, one long 180 degree turn and two shorts 180 degree turn

Figure 8: Track 3

These first three tracks were assembled using 4 prefabs from the unity karting

microgame free asset

Figure 9: The track parts

26

-The other 7 tracks are generated using an algorithm developed by Ian Hudson[9]

modified by me

Figure 10: Seven random generated tracks

The algorithm that randomly generate the track is composed by three steps.

1) Create a Voronoi Diagram. It is a partitioning of a plane with n points into convex

polygons such that each polygon contains exactly one generating point and every

point in a given polygon is closer to its generating point than to any other

Figure 11: Voronoi diagram

27

2) Create the spline that will be track. To do this the tool selects a random cell from

the Voronoi diagram, then selects one of its edges. From the edge we select the cell

that contains the edge. This process continues until a certain number of cells are

chosen. After all the cells are chosen the tool gets the outer edge of all the selected

cells. This gives us a spline. The tool applies a smooth to the spline. This will be the

curve to build the track from.

Figure 12: The generated spline

3) The final step is to build the actual mesh of the track. This is achieved by adding

vertices to both part of the spline.

Figure 13: Vertices at the side

28

Here I changed the code of Ian Hudson. I got the oPoints (oriented points) of the

spline. The oPoints are the one in the middle between the two red dots in the image

above. They are oriented with the z axis tangent to the spline, the x axis

perpendicular to the spline and the y axis perpendicular and pointing up. The z axis

of the oPoint give us the track direction (clockwise). In the code I cycled through all

the oPoints, at both side of each oPoints I instanciated a wall prefab. Every fifty

oPoints I instaciated a checkpoint in the middle. At the first oPoint I instaciated the

Starline.

Below we can see a snippet of the code I insert in the SplineCreator.cs file

//...
//cycle through all the oPoints
for (int i = 0; i < oPoints.Length; i++)
{
 //at the first oPoints I instantiate the startLine
 if (i == 0)
 {
 GameObject sl = Instantiate(_startLine, oPoints[i].Position, oPoints[i].Rotation);
 sl.transform.Rotate(0, 90, 0);
 }

 //every 150 oPoints I instatiate a checkPoint
 if((i % 150) == 0) {
 if(i!= 0) {
 GameObject checki = Instantiate(_checkPoint, oPoints[i].Position,
oPoints[i].Rotation);
 checki.transform.Rotate(0, 90, 0);
 }
 }

 //I cycle through the two points at the side of the oPoint
 for (int j = 0; j<pTwoDShape.Vertices.Count; j++)
 {
 Vector3 fwd = oPoints[i].Rotation * Vector3.forward;
 Vector3 pos = oPoints[i].Position + (pTwoDShape.Vertices[j].x * fwd);
 //in this way I got the exact position of the points at the side of the oPoints
 pos.y = oPoints[i].Position.y + pTwoDShape.Vertices[j].y;
 //pos is the position of one of these points
 Instantiate(_wally, pos, oPoints[i].Rotation); //I instatiate the wall
 //...
 }
}
//...

29

In this way the tracks are generated with a beginning (the Start Line) a series of

waypoints (checkpoints) and borders on the side.

In the end the code Ian defined each vertex has an UV coordinate. In this way the

mesh can have a texture applied to it. After all the vertices have been defined, the

tool creates triangles and so the mesh is ready.

Figure 14: UV coordinates generated

3.2.2 Obstacles
Around every track are randomly placed 4 kind of obstacles

 Figure 15: 4 different obstacles

30

3.2.3 Player Control
The player controls the car with 4 buttons:

“W” increases the throttle value and move forward

“S” decreases the throttle value and move backward

“A” decreases the turn value and move left

“D” increases the turn value and move right

3.2.4 Neural Network For AI
The cars’ AI are neither hard scripted nor have a Finite State Machine system. They

have been trained with ML technique and with the same brain they can drive

alongside all the tracks. How do I achieve this goal? How the same AI can be

implemented to work on different tracks with a good performance? Neural

Networks (NN) is the answer. Train a neural network with a good training process

can give you a brain (AI) that has a good performance on different tracks and it can

be challenging to play against the player.

A neural network is composed of an input layer, one or more hidden layers and an

output layer. Each car in the game has the same NN composed by a layer of 16 unit

in input 2 hidden layers of 128 unit and one unit in the output layer.

Figure 16: Car's neural network

31

Intuitive explanation

What are these numbers? The 16 inputs unit are the distances calculated by the

raycasts. A raycast is a ray casted from an origin, going towards a direction with a

fixed length. In my case the rays start from the car and go in 16 different direction

with a certain angle around the y axis (0, 10, 20, 45, 90, 135, 160, 170, 180, -10, -20,

-45, -90, -135, -160, -170 degrees). Their length is 20 meters (or unity’s unit). The

raycasts go all around the car in order to perceive all the obstacles around it. If the

raycast hits a car, a wall or an obstacle the neural network receives the distance

from this object. If ray does not hit an object the neural net receives the value 20

(maximum distance) from that ray

Figure 17: The raycasts around the car

The hidden layers make all the calculation to give us an output that maximize the

reward. The output layer consist of two nodes: the throttle value, varying from -1

(full brake) to +1(full throttle); the turn value, varying from -1 (45 degrees turn on

the left on the steering wheel) to +1 (45 degrees turn on the right on the steering

wheel).

The reward function gives positive value if the car has a positive throttle value. It

gives negative value if the car hit a wall or an obstacle or a car.

32

During the process of training we will form a policy 𝜋 that maps from state s to the

best action a. The policy is the strategy that the agent employs to determine the

next action based on the current state.

Formally

The action space A defined as follow

𝐴 = (𝑎1, 𝑎2) 𝑤𝑖𝑡ℎ (𝑎1, 𝑎2) ∈ ℝ ∩ [−1,+1]

(𝑎1 is the throttle value and 𝑎2 is the turn value)

The state space S is defined as follow

𝑆 = (𝑠1, … , 𝑠16) 𝑤𝑖𝑡ℎ (𝑠1, … , 𝑠16) ∈ ℝ ∩ [0,+20]

These are the raycasts shoot at a maximum 20 units of distance

The reward function R is

−0.5 𝑖𝑓(𝑠1, … , 𝑠16) < 1.3 (the car is too close to a wall, an obstacle or a car)

+ 𝑎1 ∗ 0.005 𝑖𝑓 𝑎1 > 0 (the car has a positive throttle value)

+0.1 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑎𝑟 𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡

+1 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑎𝑟 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑠 𝑎 𝑙𝑎𝑝

33

3.2.5 The Policy Update, Policy Gradient Method And PPO
To update the policy 𝜋 in my project I use a policy gradient method called PPO,

Proximal Policy Optimization. We have to define what is a policy gradient method

first.

Policy Gradient Methods are a subclass of Policy-Based methods that evaluate an

optimal policy’s weights using the gradient ascent algorithm. This algorithm starts

with guessing the value of the weights that maximize the expected return. Then it

evaluates the gradient at that point that indicates the direction of the steepest

increase of the function of expected return, and so it makes a small step towards

that direction. The algorithm loop through this process until it reaches the maximum

expected returns.

The family of Policy Gradient Method are wide, in literature we can find several

examples of those: Trust Region Policy Optimization (TRPO), Advantage Actor Critic

(A2C), Cross-Entropy Method (CEM), Vanilla PG (VPG).

A new Policy Gradient Method was presented in 2017: Proximal Policy Optimization

(PPO).

PPO tries to find the best improvement step on a policy using the data available,

without stepping so far and cause a performance collapse. PPO is a family of first

order methods that use some workaround to keep the new policies not far from the

old one. The variant I use was PPO-Clip. This one relies on a particular clipping in the

objective function and it removes stimuli for the new policy to get far from the old

one. Here I explain the algorithm as it was presented by openAI.

“PPO-clip updates policies with the parameter 𝜃

𝜃𝑘+1 = 𝑎𝑟𝑔max
𝜃
𝐸 [𝐿𝐶𝐿𝐼𝑃(𝜃)]

Where 𝐿𝐶𝐿𝐼𝑃 is the surrogate clipped objective function and it can be defined as

34

𝐿𝐶𝐿𝐼𝑃(𝜃) = min (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
𝐴𝑡 , 𝑐𝑙𝑖𝑝 (

𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)

, 1 − 𝜖, 1 + 𝜖) 𝐴𝑡) (23)

Where 𝜖 is a small hyperparameter that indicates how much the new policy is

getting far from the old one. 𝐴𝑡 is an estimator of the advantage of the new policy at

timestep t. 𝜋𝜃(𝑎𝑡|𝑠𝑡) is the new stochastic policy at timestep t. 𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡) is the

old stochastic policy at timestep t.

(23) can be rewrite in a simplified version like that

𝐿𝐶𝐿𝐼𝑃(𝜃) = min (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
𝐴𝑡 , 𝑔(𝜖, 𝐴𝑡))

where

𝑔(𝜖, 𝐴) = {
(1 + 𝜖)𝐴 𝑖𝑓 𝐴 ≥ 0

 (1 − 𝜖)𝐴 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Now we take the two separate cases: A ≥ 0, we have a positive advantage with the

new policy; A < 0 we have a negative advantage

𝑖𝑓 𝐴 ≥ 0 The objective function reduces to

𝐿𝐶𝐿𝐼𝑃(𝜃) = min (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
, 1 + 𝜖)𝐴𝑡

Because the advantage is positive the objective function will increase if 𝜋𝜃(𝑎𝑡|𝑠𝑡)

increases. The min in this function puts a limit on how much the objective will

increase. If 𝜋𝜃(𝑎𝑡|𝑠𝑡) > (1 + 𝜖)𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡) the min takes action and this term hits

the ceiling of (1 + 𝜖)𝐴𝑡. In this way the new policy will not benefit by going too far

from the old one.

𝑖𝑓 𝐴 < 0 The objective function reduces to

35

𝐿𝐶𝐿𝐼𝑃(𝜃) = max (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
, 1 − 𝜖)𝐴𝑡

Because the advantage is negative the objective function will increase if 𝜋𝜃(𝑎𝑡|𝑠𝑡)

decreases. The max in this function puts a limit on how much the objective will

increase. If 𝜋𝜃(𝑎𝑡|𝑠𝑡) < (1 − 𝜖)𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡) the max takes action and this term hits

the ceiling of (1 − 𝜖)𝐴𝑡. Again the new policy will not benefit by going too far from

the old one.

That is why this algorithm is called Proximal Policy Optimization, because we are

moving from an old policy to a proximal new policy. PPO achieves this

disadvantaging new policy from going too far from the old one.

PPO-Clip Pseudocode

1. Input: initial policy parameters 𝜃0, initial value function parameters 𝛺0

2. for i = 0,1,2, … do

3. Collect set of trajectories 𝐷𝑖 = {𝜏𝑘} by running policy 𝜋𝑖 in the environment

4. Compute rewards 𝑅𝑡

5. Compute advantage estimator 𝐴𝑡 based on the current value function 𝑉𝛺𝑖

6. Update the policy by maximizing the PPO objective

 𝜃𝑖+1 = 𝑎𝑟𝑔𝑚𝑎𝑥
1

|𝐷𝑖|𝑇
∑ ∑ min (

𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑

(𝑎𝑡|𝑠𝑡)
𝐴𝑡, 𝑔(𝜖, 𝐴𝑡))

𝑇
𝑡=0𝜏∈𝐷𝑖

 via stochastic gradient ascent

7. Fit value function by regression on mean squared error:

 𝛺𝑖+1 = 𝑎𝑟𝑔min
𝛺

1

|𝐷𝑖|𝑇
∑ ∑ 𝑚𝑖𝑛(𝑉𝛺(𝑠𝑡 − 𝑅𝑡)

2𝑇
𝑡=0𝜏∈𝐷𝑖

 via some gradient descent algorithm

8. endfor”[10][11]

36

3.2.6 The Agent Training and Implementation
The unity ml-agents library offers you a powerful tool for developing machine

learning application. We have to follow a workflow in order to make everything

work. We are skipping the detail of the setup that you can find here

https://github.com/Unity-Technologies/ml-

agents/blob/release_9_docs/docs/Installation.md

In unity ml we have a few crucial components on the timeline:

The episodes are composed by multiple steps. At each step the agent collects

observations, send these to the policy and receives a vector of actions in response,

in the end we have the calculation of the reward.

The “Decision Requester” let you decide the decision period, or rather how long

each tuple observation-action-reward must be in term of steps. It also let you decide

if your agent can take actions in between steps. In my case I have

Figure 18: Decision Requester

So every 5 steps we have a full cycle observation-action-reward, and the agent can

take actions in between.

My episodes do not have a fixed step length, meanwhile they end when certain

conditions happen. I have set a maximum number of steps in the training process,

when the agent reaches the max step number the training stops.

The workflow I follow to develop my agents is the following:

1 Implement the Agent in c#

2 Set the unity environment and the parameter of unity’s hierarchy

https://github.com/Unity-Technologies/ml-agents/blob/release_9_docs/docs/Installation.md
https://github.com/Unity-Technologies/ml-agents/blob/release_9_docs/docs/Installation.md

37

3 Set the hyperparameter in an external .yaml file

4 Launch the training from a command prompt

1) First I scripted “MyAgent” derived from the superclass Agent (this is one of the

main class of the library).

public class MyAgent : Agent

Then I override inside the class the four main functions for an Agent:

public override void OnEpisodeBegin(){...}

public override void CollectObservation(VectorSensor sensor){...}

public override void OnActionReceived(float[] vectorAction){...}

public override void Heuristic(float[] actionsOut){...}

The first method OnEpisodeBegin() set up the Agent instance at the beginning of an

episode. In my case I restart some variables that belong to the car: the velocity, the

angular velocity, the throttle value, the steer value is all set to zero. If the car has

finished a full lap, the episode is ended and the car restart from the initial position.

The position of the car is reset to the initial position if it has not passed even a

checkpoint, it is reset to the position of the last checkpoint passed otherwise.

38

public override void OnEpisodeBegin()
{
 if (hasFinishedLap)
 {
 this.transform.localPosition = startpos;
 this.transform.rotation = startrot;
 hasFinishedLap = false;
 StartLineFlag = false;
 }
 if ((hasCollided || lapOverTime > overTime))
 {
 hasFinishedLap = false;
 StartLineFlag = false;
 GetComponent<Rigidbody>().velocity = Vector3.zero;
 GetComponent<Rigidbody>().angularVelocity = Vector3.zero;
 action_throttle = 0;
 action_steer = 0;
 hasCollided = false;

 if (lastCheckpointPassed != null)
 {
 this.transform.localPosition = lastCheckpointPassed.position;
 this.transform.rotation = lastCheckpointPassed.rotation;
 }
 else
 {
 this.transform.localPosition = startpos;
 this.transform.rotation = startrot;
 }
 }
}

The second method CollectObservation(VectorSensor sensor){...} takes a

VectorSensor as argument, these are the data structure that unity ml uses to take

observation from the environment. We can take observation as float, int, Vector3

and other datatypes. In my case I use float observations. At every step, the function

cycle through an array of raycasts. Every ray is shot in a different direction (around

the car) and if one of these hit something that belongs to the wallObstacleCarLayers

(if it hit a wall, an obstacle or a car) at raycastDistance (20 units) the distance is

registered as a float and sent to the neural network with the function

addOservation(float observation). If the distance is less than 1.3f a collision is

registered (hasCollided = true).

39

public override void CollectObservations(VectorSensor sensor)
{
 for(int i = 0; i < raycasts.Length; i++)
 {
 RaycastHit hitInfo = new RaycastHit();
 var hit = Physics.Raycast(raycasts[i].position, raycasts[i].forward,
out hitInfo, raycastDistance, wallObstacleCarRaycastLayers.value,
QueryTriggerInteraction.Ignore);
 var distance = hitInfo.distance;
 float distancef = distance;
 if (!hit) distance = raycastDistance;
 var obs = distance / raycastDistance;
 float obsf = obs;
 sensor.AddObservation(obsf);
 if (distance < 1.3f)
 {
 hasCollided = true;
 }
}

The third method OnActionReceived(float[] vectorAction) takes a vector of float as

argument. This is the response of the neural network after the policy received the

observations. As told before the float values are two: the throttle value and the

steering value that belong to the continuous interval [-1, +1]. This two float values

tare assigned to the variables action_steer and action_throttle. These two variables

are read by an external script (PM) that is responsible of the car movement. In

OnActionReceived I also set the rewards. If a collision happened (hasCollided ==

true) the EndEpisode function is called and a negative reward is assigned. If the

throttle value is positive a little positive reward is assigned. If a checkpoint is passed

a positive reward is assigned. If the lap has finished a positive reward is assigned and

the EndEpisode() function is called.

40

public override void OnActionReceived(float[] vectorAction)
{
 action_steer = Mathf.Clamp(vectorAction[0], -1f, 1f);
 action_throttle = Mathf.Clamp(vectorAction[1], -1f, 1f);

 if (hasCollided)
 {
 AddReward(-0.5f);
 EndEpisode();
 }

 if (action_throttle > 0)
 {
 AddReward(action_throttle * (0.005f));
 }

 if (hasPassedOneCheckpoint)
 {
 AddReward(0.1f);
 hasPassedOneCheckpoint = false;
 }

 if (hasFinishedLap)
 {
 AddReward(+1);
 EndEpisode();
 }
}

The last method Heuristic(float[] actionsOut) takes as argument a vector of float,

this vector is the actions registered by the function itself. The heuristic provides

custom decision making logic or manual control of an agent using keyboard, mouse,

or game controller input. We can say that the Heuristic is the human control logic. In

unity hierarchy we can set the Behavior Type to be Heuristic, in this way our agent

will follow the command that we implement in the Heuristic() function. This is

mandatory to implement and it can help the developers in debugging and before

training to see if the agent can perform the action that we want to teach him.

 In my case the heuristic is a WASD style control: W/S to increment/decrement the

throttle value, A/D to increment/decrement the steering value.

41

public override void Heuristic(float[] actionsOut)
{
 actionsOut[0] = Input.GetAxis("Horizontal");
 actionsOut[1] = Input.GetAxis("Vertical");
}

2) We have to set now our environment in Unity. This will be the gym where our

agent will be trained. In my case I put the agent behind the Start Line of the track.

The first track where I trained the agent is RandomTrack1

Every Neural Network will have a MyAgent_PM script (Player Movement). This is the

script responsible for the car movement. It will read the Throttle and Steer value

from the Agent script and will make move the car with the max Speed of 10 and the

max Turn Speed of 100 {change script “MyAgentPM”}

Figure 19: Car movement script

We have then the MyAgent Script. Here we have to set the raycast layer. Every

GameObject that the raycasts can perceive must belong to this layer. In our case

these are the Wall, Car and Obstacles. In the end we have the raycast array. This

must be set to 16 because 16 are the raycasts that we assign from the hierarchy to

the inspector.

42

Figure 20: Car Agent script

In the end we have the Behavior Parameters script. Here we set the name of the

Behavior we are going to train (MyAgentBehavior). Then we set the Space Size of

the vector Observation: 16 like the number of the raycasts. The Vector Action

section is about the Actions that the policy will send to the agent after observations

are collected. Our space size is 2 (throttle value and steer value) and the space type

is continuous because the values are float between -1 and +1. When we perform a

training the Behavior Type must be set to default and the Model must be empty. We

have to train each brain from scratch. This is a big limitation of unity ml agents that

is work in progress and maybe it will see the light in a future update

43

Figure 21: Car Neural Network script

3) After the scripting and the unity parametrization part are done we can focus on

the setting of the hyperparameters in the yaml file. This part will be different for the

three kind of neural network. Now we give a generalize explanation of the file. In

the Unity-ml agents folder we have a config folder. Here we can find or create all the

yaml files that will contain the hyperparameter of the NN. In my case I add a section

“MyAgentBehavior” in the trainer_config.yaml file. The name of the behavior must

be the same exact name of the one we put in the Behavior Parameters script before.

MyAgentBehavior:
 trainer: ppo
 batch_size: 1024
 beta: 1e-3
 buffer_size: 10240
 epsilon: 0.2
 hidden_units: 128
 lambd: 0.95
 learning_rate: 3.0e-4
 learning_rate_schedule: linear
 max_steps: 15.0e5
 memory_size: 128
 normalize: true
 num_epoch: 3
 num_layers: 2
 time_horizon: 64
 sequence_length: 64
 summary_freq: 10000
 reward_signals:
 extrinsic:
 strength: 1.0
 gamma: 0.99

44

The batch_size is the number of experiences in each iteration of gradient descent.

The beta is the strength of the entropy regularization, which makes the policy "more

random”.

The buffer_size for the PPO is the number of experiences to collect before updating

the policy model. It can be explained as how many experiences should be collected

before we do any learning or updating of the model.

The epsilon influences how rapidly the policy can evolve during training. It is the

threshold of divergence between the old and the new policies during gradient

descent updating.

The hidden units are the number of units in the hidden layers of the NN.

The lambd is the regularization parameter 𝛾 used when calculating the Generalized

Advantage Estimate. It can be explained as how much the agent relies on its current

value estimate when calculating an updated value estimate

The learning_rate is the inizialization rate for gradient descent. It is the strength of

each gradient descent update step.

The learning_rate_schedule indicates how much the learning rate will change over

time

The memory_size is the size of the memory that an agent must keep. This coincides

to the size of the array of floating point numbers used to store the hidden state of

the recurrent neural network of the policy.

The normalize is a bool value that if set to true will give the agent the command to

normalize the vector observation input.

The num_epoch is the number of passes to make through the experience buffer

when performing gradient descent optimization

45

The num_layers is the number of hidden layers in the NN

The time_horizon indicates how many steps of experience to collect per-agent

before adding it to the experience buffer. When this limit is reached before the end

of an episode, a value estimation is used to predict the total expected reward from

the agent's current state.

The sequence_length defines how long the sequences of experiences must be while

training

The summary_freq is the number of experiences that needs to be collected before

generating and displaying training statistics.

The reward signal section can be extrinsic, curiosity or GAIL (in my case I used only

extrinsic and GAIL). This will determine which kind of reward signal are you using. In

every case the reward signal must have a strength and gamma section.

The strength indicates the factor by which to multiply the reward given by the

environment

The gamma is the discount factor for future rewards coming from the environment.

This can be imagined as how far into the future the agent should care about possible

rewards.

4) After all this setup has been made we can launch the training. We must open a

command prompt, navigate into the unity-ml agents folder, activate the virtual

environment, and launch the training process with an id. Below we can see the list

of commands in the cmd.

46

Figure 22: Command prompt training command

After pressing Enter If everything has done properly the unity logo should appears in

the command prompt and a message should say “Press Play in Unity”. Now we press

play in unity and we let the agent train for a max_step amount of time.

In my case the max_step was 1.5 million. Every 0.5 million I stop the process with

CTRL-C in the command prompt. I change the track in the unity scene, and I resume

the training from the command prompt with the –resume command. In this way I

could train each NN in 3 different tracks (RandomTrack1, RandomTrack2 and

RandomTrack3).

When a number max_step of steps is completed the Unity Environment should be

stopped and a .NN file should be exported. This is our Neural Network. We take this

file, and we drag it to the Model section of the Behavior Parameters script in unity.

Now we can press play and see how our Neural Network perform in our

environment.

3.3 The Learning Methods
We introduced the car’s neutral network, the algorithm behind their policy, the

training process workflow. These are all common features for all the three Neural

Networks. We are going now to explain the learning methods in all his differences

47

3.3.1 Reinforcement Learning Implemented

Figure 23: RL car

CARL (Car Agent Reinforcement Learning) is the first neural network I train.

For this neural network I followed the exact same process explained in chapter

3.2.6. 3 random tracks, 0.5 million step each. I change the trainer_config.yaml file.

Here I create a CARL section where I set up the hyperparameters (the same as the

one in chapter 3.2.6).

In the end I launch the training. The result of TensorFlow are shown below.

 Figure 24: RL training graphs

48

We can notice from the graph that the “Cumulative Rewards” (the mean cumulative

episode reward) grows until a certain threshold and then it becomes stable. The

same behavior regards “Episode Length” (the mean length of each episodes,

measured in step). That is because the car has learnt how to drive a full lap. Every

500k steps there is a gap and then the graphs become stable again. That is the track

has changed.

The Entropy shows how random the decisions of the model are. It should slowly

decrease during a successful training process and it indeed decreases. The Extrinsic

Reward corresponds to the mean cumulative reward received from the environment

per-episode. It increases in the exact same way of the cumulative rewards, that is

because this agent is based only on extrinsic reward. The mean value estimate for all

states visited by the agent. It should increase during a successful training session

and it indeed increases.

3.3.2 Imitation Learning Implemented

Figure 25: IL car

CAIL (Car Agent Imitation Learning) is the second neural network that came in my

mind. Unity ML propose this kind of learning techniques from the version 0.3. Here

it is called behavioral cloning and it is based on a simple paradigm: register yourself

49

as human to perform a task and than the agent will learn from you. The problem of

unity’s behavioral cloning is that the agent will only learn from human

demonstration. If the human demonstrations came from a trackX the neural

network will copy the trajectories and it will learn to drive in the trackX as the

human. Two problems arose from this: the human demonstrations could not be

optimal and if they were, the agent will learn perfectly to drive in trackX, but it will

drive badly in other tracks having overfitting. From the Unity ML v0.9 another

imitation learning technique was introduced: GAIL (Generative Adversarial Imitation

Learning). GAIL solved both of the previous issue because the agent now learns from

the human and from the environment itself.

During training, the agent is allowed to act in the environment as usual, gathering

observations on its own. At high level, GAIL trains the discriminator (a second neural

network) to distinguish if a particular action-observation couple came from the

agent itself or from the human’s demonstrations. Then the agent is rewarded by

how close its observation-actions are close to the human’s demonstrations. The goal

of the agent is to maximize this reward. The discriminator is updated with the

agent’s new observations and increases its discriminator ability. GAIL proceeds in an

iteratively way: the discriminator gets tougher and the agent gets better in tricking

the discriminator by mimicking the demonstrations.

GAIL will give a part of the reward to the agent. The other part comes from the

reward function R explained in chapter 3.2.4. In this way we can combine GAIL with

Reinforcement Learning. The GAIL reward will have a different (minor) weight from

the RL reward[11].

50

The process is divided like that: first you have to play several times through the

game, in my case I recorded myself racing through the first random generated track

for 7 laps. In this moment we are saving human’s observations and actions. In order

to do that I use a demonstration recorder and I save a .demo file.

Figure 27: Demonstration Recorder

Later I edit the GAIL.yaml file to create a section for my CAIL neural network. Here I

link the .demo file.

 Figure 26: GAIL discriminator scheme

51

CAIL:
 trainer: ppo
 batch_size: 1024
 beta: 5.0e-3
 buffer_size: 10240
 epsilon: 0.2
 hidden_units: 128
 lambd: 0.95
 learning_rate: 3.0e-4
 max_steps: 15.0e5
 memory_size: 256
 normalize: false
 num_epoch: 3
 num_layers: 2
 time_horizon: 64
 sequence_length: 64
 summary_freq: 10000
 use_recurrent: false
 reward_signals:
 extrinsic:
 strength: 1
 gamma: 0.99
 gail:
 strength: 0.2
 gamma: 0.99
 encoding_size: 128
 demo_path: Project/Assets/ML-
Agents/Examples/MyDemo/demo1_adma_cail/admacail1.demo

As you can see the yaml file is exactly like the one in chapter 3.2.6 with the

difference that in the reward signals there is a GAIL section. The strength is 0.2, gail

reward will be multiplied by this value. In this way GAIL rewards will have a minor

impact on the reward overall so that the trained agent will focus on receiving

extrinsic rewards instead of exactly copying the demonstrations. The encoding_size

is the size of the hidden layer used by the discriminator (that is a NN itself).

In the end I launch the training process. The tensorflow results are shown below

52

Figure 28: IL training graphs

These graphs are similar to the Reinforcement Learning one. There are some

additions: GAIL expert estimate, that indicates the discriminator's estimate for

states and actions drawn from my demonstrations; Gail policy estimate that show us

the discriminator estimate for state and actions generated by the policy; GAIL

reward, here we have the mean cumulative reward generated per episode by the

discriminator (and it correctly increases); GAIL value estimate indicates the agent's

value estimate for the GAIL reward (and it correctly increases); learning rate

determines how large a step the training algorithm takes as it searches for the

optimal policy, it should decrease over time and it decreases indeed.

53

3.3.3 Curriculum Learning implemented

Figure 29: CL car

CACHCUL (Car Agent Checkpoint Curriculum Learning) was the third, the last and the

most interesting neural network I train. It is based on the concept of progressive

teaching: the agent will learn to solve simple task first and then complex task in a

progressive way. In unity environment we use the term ‘lesson’. The agent will start

from lesson1 where it will learn how to perform a task. When certain conditions

have been reached the agent will pass to lesson2 where it will learn how to solve a

different (and usually more complex) task.

To define a curriculum the first step is to decide which parameters will change

during the process. In my case the ‘config-number’ is changing with the crescent

value of 0, 1 and 2. The config number will change the raycast and the collision

matrix of the agent:

Config Number = 0 -> the agent will have raycasts that perceive only walls; the agent

will ignore the collision with cars and obstacles

Config Number = 1 -> The agent will have raycasts that perceive walls and obstacles;

the agent will ignore the collision with cars

Config Number = 2 -> The agent will have a raycasts that perceive walls, obstacles

and cars; the agent will not ignore collisions.

54

private void FixedUpdate()
{
 //Car and car dont collide; Car and obstacle dont collide
 if (config_number == 0)
 {
 Physics.IgnoreLayerCollision(11, 13, true);
 Physics.IgnoreLayerCollision(11, 11, true);
 }
 //Car and car dont collide; Car and obstacle collide
 else if (config_number == 1)
 {
 Physics.IgnoreLayerCollision(11, 13, false);
 Physics.IgnoreLayerCollision(11, 11, true);
 }

 //Car and car collide; Car and obstacle collide
 else
 {
 Physics.IgnoreLayerCollision(11, 13, false);
 Physics.IgnoreLayerCollision(11, 11, false);
 }
}
...
public override void CollectObservations(VectorSensor sensor)
{
 if (config_number == 0)
 {
 //the same as the on in chapter 3.2.6 but with a raycastLayer that is only
 //wall
 }
 else if (config_number == 1){
 //the same as the on in chapter 3.2.6 but with a raycastLayer that is only
 //wall and obstacle
 }
 else{
 //the same as the on in chapter 3.2.6 but with a raycastLayer that is wall
 //obstacle and car
 }
...

We will define config_number as a reset parameter for the Academy.

...
public override void Initialize()
{
 m_ResetParams = Academy.Instance.EnvironmentParameters;
}
...
public override void OnEpisodeBegin()
{
 config_number = m_ResetParams.GetWithDefault("config_num", 2);
}
...

55

In the end we will create a section for CACHCUL in the trainer_config.yaml (same as

CARL but with a different behavior name) and we will create a new yaml file in the

folder config\curricula that will be our actual curriculum

CACHCUL:
 measure: progress
 thresholds: [0.33, 0.66]
 min_lesson_length: 100
 signal_smoothing: true
 parameters:
 config_num: [0.0, 1.0, 2.0]

Here we define the threshold that the agent has to passed in order to change from a

lesson to another. I use the measure progress, that is the ration of steps/maxsteps.

This means that at 33% and at 66% of the training we will have a have a lesson

change.

The min_lesson_length is the minimum number of episodes that should be

completed before the lesson can change.

The signal_smoothing is a bool that if set to true weight the current progress

measure by previous values.

In the parameters section we put the variable that we want to change during the

training process when the threshold is reached. In my case the variable is

config_num, that change from 0 to 1 at 33% of the training and from 1 to 2 at 66%

of the training.

The results of the training are shown below

56

Figure 30: CL training graphs

The graphs follow the same behavior as the one of CARL. The only difference is the

Lesson graph. This graph shows us that every 500k there is a change of lesson.

57

4 Tests
To test evaluate the performance of my cars I used three different metrics. I found

this metrics in the book “Analysis Techniques for Racecar Data Acquisition”. In this

way I got an objective and quantitative way to compare the three different neural

networks. I test my metrics in a multi agent environment.

I gather the data of 5CL, 5RL, 5IL and 1 real player running for 7 laps on 3 different

scenarios on 2 kind of tracks: SEEN and UNSEEN.

UNSEEN is a track that where the agents and the humans never performed a

training. The agents were trained on other tracks (with the same process explained

in chapter 3.2.6), the same for humans, I explained them the control of the game, I

let them train on a few tracks and then I pose them in front of a brand new track.

SEEN is the same track, this time agents and humans had a pre training. For agents I

train them like in the process explained in chapter 3.2.6 (one of the three tracks

where they performed the training is the SEEN). For humans I let them take

confidence with the track and then I gather data on their personal best

performance.

In this way I got data of 5 CLs, 5 RLs, 5 ILs and 5players over 7 laps, over 3 scenarios

for the SEEN track. The same for the UNSEEN track.

Then I made an average of each agent (and human) measure over 7 laps, an average

of this over 5 different agents, an average of this over 3 different scenarios for the

two kind of tracks.

58

Figure 31: Scenario 1

Figure 32: Scenario 2

Figure 33: Scenario 3

59

4.1 Metric 1: Lap time
When the car passed for the first time the Start Line a timer is started. When the car

passed for the second time the Start Line the timer is stopped, and the value is

saved. The value saved is the lap time of the first lap. We make the car run for 7

different laps and we saved 7 different lap time. If at the lap n the lap time of car x is

less than the lap time of car y means that the car x is performing better than the car

y in the lap n. To have metric over the full race we do the average of the 7 different

value. Minor the value better is the performance.

4.2 Metric 2: percentage of lap at full throttle, medium throttle and low

throttle
When the Start Line is passed three timers start:

-0.9-1.0 timer, this will be incremented every frame if the 0.9 < throttle value <=1

-0.5-0.9 timer this will be incremented every frame if the 0.5 < throttle value <=0.9

-0.0-0.5 timer this will be incremented every frame if the 0.1 < throttle value <=0.5

We plot these values on a 3D graph. On the x axis we have the number of the lap,

on the y axis we have the three different timers, on the z axis we have the amount

of second of a single throttle value over a single lap. If a car has a 0.9-1 timer greater

than the other two timer means that the car will be faster and better in term of

performance. To have metric over the full race we do the average over the 7

different laps. In this way we will have the average of time a car passed at full

throttle, the average of time a car passed at average throttle and the average of

time a car passed at low throttle. Greater the full throttle value better is the

performance.

60

4.3 Metric 3: number of crashes
In the beginning of the first lap we set the value crashNum at zero. Any time the car

hits a wall or an obstacle a crash is registered and the value crashNum is

incremented by one. At the end of the first lap we save the value of crashNum and

we reset this variable to zero. The saved value is the number of crashes over the

first lap. Let us say hypothetically that at lap n the car x registered K crashes and the

car y registered L crashes. If K < L the car x is performing better and safer than the

car y at lap n. To have a metric over the full race we do the average of the 7

different values. Minor the value better is the performance.

61

TRACK 1

Figure 34: Track1

62

TRACK1 SEEN

Metric1 Lap time

If SD is Standard Deviation and CV is Coefficient of Variation we have

For all data gathered we have 1.10 < SD < 1.48; 1.4*10-3 < CV < 1.8*10-3

Metric2 Percentage

For all data gathered we have 0.08 < SD < 1.57; 7.3*10-3 < CV < 515.4*10-3

63

Metric3 Number of crashes

For all data gathered we have 0.11 < SD < 0.5; 0.8*10-3 < CV < 2.27*10-3

We can see how all SD are < 1.57 this means that data are clustered around the

mean. CV are < 0.23% for metric 1 and 3, this means that there is no variability

around this data. Meanwhile CV in metric 2 is much higher, CV are < 51.5%, this

means that we have more variability in this dataset.

64

TRACK1 UNSEEN

Metric1 Lap time

For all data gathered we have 0.54 < SD < 1.11; 1.1*10-3 < CV < 1.5*10-3

Metric2 Percentage

For all data gathered we have 0.63 < SD < 1.23; 8.8*10-3 < CV < 482.8*10-3

65

Metric3 Number of crashes

For all data gathered we have 0.26 < SD < 0.7; 0.48*10-3 < CV < 1.11*10-3

We can see how all SD are < 1.23 this means that data are clustered around the

mean. CV are < 0.15% for metric 1 and 3, this means that there is no variability

around this data. Meanwhile CV in metric 2 is much higher, CV are < 48.2%, this

means that we have more variability in this dataset.

66

TRACK 2

Figure 35: Track2

67

TRACK2 SEEN

Metric1 Lap time

For all data gathered we have 1.21 < SD < 1.38; 1.35*10-3 < CV < 1.7*10-3

Metric2 Percentage

For all data gathered we have 0.02 < SD < 1.59; 7.9*10-3 < CV < 502.4*10-3

68

Metric3 Number of crashes

For all data gathered we have 0.23 < SD < 0.61; 0.7*10-3 < CV < 2.02*10-3

We can see how all SD are < 1.21 this means that data are clustered around the

mean. CV are < 0.20% for metric 1 and 3, this means that there is no variability

around this data. Meanwhile CV in metric 2 is much higher, CV are < 50.2%, this

means that we have more variability in this dataset.

69

TRACK2 UNSEEN

Metric1 Lap time

For all data gathered we have 1.19 < SD < 1.32; 1.31*10-3 < CV < 1.59*10-3

Metric2 Percentage

For all data gathered we have 0.021 < SD < 1.67; 7.2*10-3 < CV < 501.2*10-3

70

Metric3 Number of crashes

For all data gathered we have 0.13 < SD < 0.41; 0.62*10-3 < CV < 1.92*10-3

We can see how all SD are < 1.67 this means that data are clustered around the

mean. CV are < 0.19% for metric 1 and 3, this means that there is no variability

around this data. Meanwhile CV in metric 2 is much higher, CV are < 50.1%, this

means that we have more variability in this dataset.

71

TRACK 3

Figure 36: Track3

72

TRACK3 SEEN

Metric1 Lap time

For all data gathered we have 1.19 < SD < 1.27; 1.39*10-3 < CV < 1.68*10-3

Metric2 Percentage

For all data gathered we have 0.03 < SD < 1.28; 6.91*10-3 < CV < 501.3*10-3

73

Metric3 Number of crashes

For all data gathered we have 0.19 < SD < 0.62; 0.68*10-3 < CV < 2.22*10-3

We can see how all SD are < 1.27 this means that data are clustered around the

mean. CV are < 0.22% for metric 1 and 3, this means that there is no variability

around this data. Meanwhile CV in metric 2 is much higher, CV are < 50.1%, this

means that we have more variability in this dataset.

74

TRACK3 UNSEEN

Metric1 Lap time

For all data gathered we have 1.21 < SD < 1.39; 1.36*10-3 < CV < 1.72*10-3

Metric2 Percentage

For all data gathered we have 0.01 < SD < 1.71; 7.01*10-3 < CV < 503.2*10-3

75

Metric3 Number of crashes

For all data gathered we have 0.22 < SD < 0.5; 0.55*10-3 < CV < 1.87*10-3

We can see how all SD are < 1.39 this means that data are clustered around the

mean. CV are < 0.18% for metric 1 and 3, this means that there is no variability

around this data. Meanwhile CV in metric 2 is much higher, CV are < 50.3%, this

means that we have more variability in this dataset.

76

5 Conclusions
In this thesis, it has been studied in deep the incredible and new world of Machine

Learning focusing on videogames. We have seen a focus on three techniques:

Reinforcement, Imitation and Curriculum. I successfully applied these techniques

onto self driving cars in a Virtual Environment of a racing game. This Virtual

Environment is a great benchmark that could be used in future to test other

machine learning cars.

In the end the ML cars have been tested with 3 different objective metrics. The

results have shown how Curriculum is the best approach for this kind of task.

CL has the smallest Lap Time on average. The time passed at full Throttle for CL is

the highest. So it has better performance. We see how CL has less crashes and so it

is the safest driving car.

Real Players will pass more time at full throttle, but they have a bigger lap time. That

is because they have a bigger number of crashes. So we can say that players try to

complete the track going at max-speed, but they will crash more than CL having a

worst performance.

To conclude I can say that Machine Learning could be a powerful tool for game

developer but with some limitations: The first limitation of ML is computational

power. Once the Reward function and the NN are well implemented, a train of 90

hours on a super-cluster-computer could be launched. This training will give us an AI

with better performance than one trained on a 500$ laptop. This creates a gap in

development where big corporation will probably have the best performing agents.

Indie game could suffer from this fact.

Moreover if there is no cap in the learning process, the agent will become smarter

and smarter and hard (if not impossible) to defeat. In my project this was solved by

77

restarting the reward at the end of the lap. In this way the reward is not a function

that tends to infinity.

If we do not use take the right precautions we end up having an over powerful AI

that can not be beaten. That is frustrating and not challenging (or fun) for players. In

my project we can see how on average players perform worst than CL, but the AI is

beatable.

The future of ML in videogame is flourishing and promising. The machine will learn

to solve more and more tasks. The problem is that sometimes we see AI like an

enemy to beat. AlphaGo in 2016 won against Lee Sedol in the game of GO, after

some years Lee retired with this statement “Even if I become the number one, there

is an entity that cannot be defeated”. Of course it cannot be beaten, the AI was

trained for years with a super-computer studying the best players’ technique in the

world. How can you compete against such an entity? Imagine closing a real person

in a room and train him all his life to play a specific game. Imagine that his trainer

will be the best player in the world. It is very probable that this person will become

the best player in the world, but it is also probable that he will have suicidal tenders.

Let the computers be computers and humans be humans.

We should change our point of view on AI. It is not an entity to be beaten but a tool

to be used. AI could analyze our gameplay to give us hints to improve are moves. AI

could be a fair competitor to play against. It is not an undefeatable totem.

78

6 Bibliography
[1] Amira E. Youssef, Sohaila El Missiry, Islam Nabil El-gaafary, Jailan S. ElMosalami,

Khaled M. Awad, Khaled Yasser. Building your kingdom Imitation Learning for a

Custom Gameplay Using Unity ML-agents

10.1109/IEMCON.2019.8936134

[2] Kun Shao, Yuanheng Zhu, Dongbin Zhao. StarCraft Micromanagement with

Reinforcement Learning and Curriculum Transfer Learning

10.1109/TETCI.2018.2823329

[3] ShuQin Li, YiZhong Qi, JianBo Bo, Yao Fu. Design and Implementation of

Surakarta Game System Based on Reinforcement Learning

10.1109/CCDC.2019.8832340

[4] Stuart Russel, Peter Norvig. Artificial Intelligence: A modern approach 4th edition.

Prentice Hall.

[5] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang Olivier Pietquin, Bilal

Piot, Nicolas Heess Thomas Rothörl, Thomas Lampe, Martin Riedmiller. Leveraging

Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse

Rewards

https://arxiv.org/pdf/1707.08817.pdf

[6] Jeffrey Elman. Learning and Development in Neural Networks: The Importance of

Starting Small

DOI: 10.1016/0010-0277(93)90058-4

[7] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, Jason Weston. Curriculum

Learning

https://ronan.collobert.com/pub/matos/2009_curriculum_icml.pdf

10.1109/IEMCON.2019.8936134
10.1109/TETCI.2018.2823329
https://doi.org/10.1109/CCDC.2019.8832340
https://arxiv.org/pdf/1707.08817.pdf
10.1016/0010-0277(93)90058-4
https://ronan.collobert.com/pub/matos/2009_curriculum_icml.pdf

79

[8] Zhipeng Ren, Daoyi Dong, Huaxiong Li, Chunlin Chen. Self-Paced Prioritized

Curriculum Learning with Coverage Penalty in Deep Reinforcement Learning

DOI: 10.1109/TNNLS.2018.2790981

[9] Ian Hudson. Racetrack Generator

https://i-hudson.github.io/projects/2019-02-02-Race-track-Generator/

[10] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov.

Proximal Policy Optimization Algorithms

https://arxiv.org/abs/1707.06347

[11] OpenAI Spinning Up. Proximal Policy Optimization

https://spinningup.openai.com/en/latest/algorithms/ppo.html

[12] Jonathan Ho, Stefano Ermon. Generative Adversarial Imitation Learning

https://arxiv.org/abs/1606.03476

https://doi-org.ezproxy.biblio.polito.it/10.1109/TNNLS.2018.2790981
https://i-hudson.github.io/projects/2019-02-02-Race-track-Generator/
https://arxiv.org/abs/1707.06347
https://spinningup.openai.com/en/latest/algorithms/ppo.html#id3
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://arxiv.org/search/cs?searchtype=author&query=Ho,+J
https://arxiv.org/search/cs?searchtype=author&query=Ermon,+S
https://arxiv.org/abs/1606.03476

