
POLITECNICO DI TORINO

Master’s Degree in Computer engineering

Master’s Degree Thesis

Cloudifying Desktop Applications:
Your Laptop is your Data Center

Supervisors

Prof. Fulvio RISSO

Dott. Alex PALESANDRO

Candidate

Lorenzo CAMICIOLA

Academic year 2020-2021

To each one of the
Liqoers, who showed
me an open world of
knowledge, hopes and
possibilities and never
left a friend behind
during the hardest time
of his life.
To Ugo, for everything
else.

Summary

In the last decades the ICT world has undergone profound transformations, influ-
encing and being influenced by the socioeconomic paradigm shift from a owner-
ship-centered model to a sharing-oriented one, where the property of product is no
longer important and what matters is the access to the service it provides.

What proved to be a real game changer was the transition from physical to
virtual servers with the affirmation of virtualization at first and then with the
introduction of containerization and container orchestrators, among which the
Kubernetes project is becoming a standard platform for developers and operators.
Released by Google in 2015, this open-source system provides a robust platform to
automate the deployment and scaling of containerized applications in a clustered
environment.

Nowadays, therefore, it is a common practice to embrace the cloud computing
model: on-demand consuming digital services offloaded somewhere, aiming to
achieve the maximum flexibility and a significant cost reduction with respect of a
proprietary data center.

The progress made in this field, however, have always had a focus on professional
users and enterprises, while affecting just indirectly the target of common desktop
users where the lack of technical backgrounds and a limited need of virtualization
usually led them to a Software-as-a-Service (SaaS) solution, by consuming out-of-
the-box digital services which provide simple and friendly interfaces.

In the last years, the success of the IoT world, the massive spread of smart
devices and a bigger pervasiveness of IT in everyday life have opened a different
scenario, where everyone is surrounded by lots of digital devices, often small and
always on, each one just performing few tasks. This moved the project in which
this thesis is involved to explore the potential of Liquid computing, a distributed
computing paradigm which aims to provide to the final user a unified virtual
environment across devices where applications and data flow seamlessly.

This work proposes a desktop application which helps even non professional
users to easily leverage computational power and storage provided by their own
devices or offered by an organization (e.g. corporate, university) to run even heavy
applications, thus becoming the managers of their own “data center”.

iii

iv

Table of Contents

1 Introduction 1
1.1 From the mainframe mountain to the cloud... and back: the «water

cycle» of computing . 1
1.1.1 The computing fragmentation 1
1.1.2 Up to the Cloud: The virtualization era and development of

cloud computing . 2
1.2 Liquid computing . 3

1.2.1 Goal of the thesis . 4

2 Kubernetes 6
2.1 Kubernetes: a bit of history . 6
2.2 Applications deployment evolution 7
2.3 Container orchestrators . 8
2.4 Kubernetes architecture . 9

2.4.1 Control plane components 10
2.4.2 Node components . 12

2.5 Kubernetes objects . 13
2.5.1 Label & Selector . 14
2.5.2 Namespace . 14
2.5.3 Pod . 15
2.5.4 ReplicaSet . 15
2.5.5 Deployment . 15
2.5.6 Service . 16

2.6 Virtual-Kubelet . 17
2.7 Kubebuilder . 18

3 Resource sharing across Kubernetes clusters: the Liqo project 20
3.1 Features . 20
3.2 General Architecture . 23

3.2.1 Cluster representation . 23
3.2.2 Discovery . 24

vi

3.2.3 Peering . 25

4 Liqo Agent: application design and general architecture 28
4.1 Use cases . 28
4.2 Application design and user experience 29
4.3 General architecture . 31

4.3.1 GUI Provider . 32
4.3.2 Indicator . 33
4.3.3 Agent Controller . 34

4.4 Available Features and Execution Workflow 34
4.4.1 LiqoDash integration . 35
4.4.2 Available Peers . 35
4.4.3 Peerings . 36
4.4.4 Secondary options . 37

5 Liqo Agent: implementation 38
5.1 Efficiency improvements . 38

5.1.1 The Go language . 39
5.2 App-Indicator library . 39

5.2.1 GuiProvider . 40
5.2.2 Indicator . 43
5.2.3 MenuNode . 48
5.2.4 Status . 51

5.3 Client library . 53
5.3.1 AgentController . 53

5.4 Logic library . 56
5.5 Icon library . 57
5.6 Installation on Linux distributions 57

6 Experimental evaluation 58
6.1 Test Environment and Procedures 58
6.2 Liqo Agent Initialization . 59
6.3 Peers Discovery . 64

7 Conclusion and future work 70

Bibliography 72

vii

Chapter 1

Introduction

The search for more power and more powerful tools has always been intrinsically
coupled with the industrial and technological progress. This is especially true in the
ICT world, where in a few decades we observed a quantum leap even in the meaning
itself of "owning an electronic device" in terms of availability, spreading, dimensions,
capabilities and role in everyday life. Among with the internet development and
the growth of available bandwidth, this process also brought to a paradigm shift
about how and where the digital services are provided.

1.1 From the mainframe mountain to the cloud...
and back: the «water cycle» of computing

1.1.1 The computing fragmentation
If the early adoption of electronic computational resources by an enterprise consisted
in few huge expensive mainframes, the last decades of 20th century saw a trend
of democratization in the access and availability of IT devices, mostly due to
the virtuous cycle of constant engineering innovation, cheaper products and high
demand. It was in 1965 when Gordon Moore made those first predictions on the
exceptional growth of integrated circuits capabilities that would soon become known
as his eponymous "law"[1]. This brought to a scenario amid the 90’s where lots of
servers and PCs spread across workplaces. The phenomenon was emphasized by
the application of the «One application per server» rule, i.e. the good practice of
running each service or application on a single underused machine, trying to prevent
security and compatibility issues. This brought to a far by optimal configuration
with waste of space and money, both directly by purchasing hardware and indirectly
by running idle machines. It is worth remembering, in fact, that CPU utilization
has only a minor impact on the global power consumption of a machine (as shown

1

Introduction

in figure 1.1) which is itself usually around 30% of the total amount.

Figure 1.1: Power consumption on different CPU loads [2].
In the Linux case, moving the CPU from idle to full load only causes a change in
power consumption of around 35%.

1.1.2 Up to the Cloud: The virtualization era and devel-
opment of cloud computing

The 2000’s represent the real change in the computing model with the widespread
adoption of virtualization, on the push of several factors [3]:

• the urge to rationalize hardware resources and its management with the
realization of data centers and IT departments, with the aim to overcome the
One application per server rule.

• a new trend in the production process increasing the number of available cores
per CPU, thus making possible to actually parallelize the execution of different
virtual instances.

• the desire to obtain always more flexibility.

The transition from physical to virtual servers proved to be a real game changer,
allowing to rethink data centers as a common resources pool to be shaped and scaled
according to the needs of the moment, «one massive warehouse-scale computer»
[4]. This concept evolved along the years to what is generically called “Cloud
Computing”: consuming on-demand a digital service offloaded somewhere, with
the maximum flexibility. The definition nowadays covers a large number of flavors
in terms of ownership, kind of provided service (e.g. the X -as-a-Service models [5])
and virtualization type (from the heavyweight virtualization of virtual machines to
the lightweight one of containerization).

2

Introduction

Figure 1.2: Evolution of IT computing models [6]

1.2 Liquid computing
With the introduction and rapid affirmation of the Kubernetes project [7], an
orchestrator by Google aiming to automate and efficiently manage the deployment
and scaling of containerized applications, there is substantially a new standard
overlay stack for developing and deploying, with an automatic resource aggregation
in the logic abstraction of a "cluster". It should be noted that the above description
of computing models evolution has always been focused on the enterprise side, for
the innovative drive, economic traction, features and market share.
The desktop market, on the contrary, has always got indirect benefit from the
progress made for professional users, e.g. with free and limited versions of enterprise
software. This was mainly due to the lack of a significant market share (both
supply and demand sides):

• Common users are not supposed to have any kind of technical background
and are often inclined to consume out-of-the-box digital services with the most
simple and friendly interfaces.

• There is only a small fraction of desktop users who actually needs virtualization
and its use is mostly related to take advantage of a parallel execution of different

3

Introduction

OS.

• The average scenario of a home or small office environment usually involves
just a few devices with limited capabilities with respect to a real data center
in the enterprise field.

In the last decade, however, the explosion of the IoT world, the massive spread
of smart devices and a bigger pervasiveness of IT in everyday life (and maybe even
a bit more of awareness in this field) have brought to a different scenario, where
everyone is surrounded by a large number of digital devices, often small and almost
always on, each one just performing those few tasks it is designed for.

The project in which this thesis is involved aims to explore the potential of
Liquid computing, by leveraging the Kubernetes environment and related tools
to shape a unified, virtual environment where applications can be deployed and
run seamlessly across federated clusters sharing storage and resources.

1.2.1 Goal of the thesis
The goal of this thesis is to make this federation mechanism available also to the
desktop market, allowing even users who are not technical experts to finally benefit
from the agility and elasticity of containers orchestration, becoming themselves
managers of their own "data center" with several interesting (and even profitable)
use cases:

• Take advantage of the underused and maybe outdated devices at home,
thus optimizing costs and possibly avoiding to buy services from third party
providers (which could also raise security concerns in some cases [8] [9]).

• Break the physical constraints of desktop solutions (e.g. PC, laptop), thus
allowing to run even resource-consuming applications.

• Small organizations and universities could easily provide to employees and
students controlled access even to licensed applications, with a new mechanism
that could save significant money.

The analysis of this scenario brought to the development of a desktop appli-
cation called "Liqo Agent" aiming to help even non professional users to manage
the architecture of the cluster federation and to easily understand basic related
information. The app has been designed to interact with the user with a clear,
simple interface. The choice of a tray menu, in combination with desktop notifica-
tions tries to reduce the learning curve by emulating the usage of other common
managers, like for wi-fi, antivirus or cloud storage providers. Originally developed
for GNU-Linux distributions but with a cross-platform design, the application

4

Introduction

provides the cluster federation process (called "peering") by leveraging the Liqo
project, an open-source framework developed inside the Computer Networks Group
at Politecnico di Torino which runs on Kubernetes vanilla and has the complete
support for K3s [10], a light Kubernetes distribution designed to work on IoT
devices and in resource-constrained locations.

5

Chapter 2

Kubernetes

In this chapter we analyse Kubernetes architecture, showing also its history and
evolution through time, in order to lay the foundations for all the work which will
be exposed later on.1 Kubernetes (often shortened as K8s) is a huge framework
and a deep examination of it would require much more time and discussion, hence
we only provide here a description of its main concepts and components. Further
details can be found in the official documentation [12].

The chapter continues with an introduction to other technologies and tools used
to develop the solution, in particular Virtual-Kubelet [13], a project which allows
to create virtual nodes with a particular behaviour, and Kubebuilder [14], a tool
to build custom resources.

2.1 Kubernetes: a bit of history
Around 2004, Google created the Borg [15] system, a small project with less than
5 people initially working on it. The project was developed as a collaboration
with a new version of Google’s search engine. Borg was a large-scale internal
cluster management system, which “ran hundreds of thousands of jobs, from many
thousands of different applications, across many clusters, each with up to tens of
thousands of machines” [15].

In 2013 Google announced Omega [16], a flexible and scalable scheduler for
large compute clusters. Omega provided a “parallel scheduler architecture built
around shared state, using lock-free optimistic concurrency control, in order to
achieve both implementation extensibility and performance scalability”.

1This chapter is freely adapted from a similar one contained in the master thesis of another
member of this project team [11]

6

Kubernetes

In the middle of 2014, Google presented Kubernetes as on open-source version
of Borg. Kubernetes was created by Joe Beda, Brendan Burns, and Craig McLuckie,
and other engineers at Google. Its development and design were heavily influenced
by Borg and many of its initial contributors previously used to work on it. The
original Borg project was written in C++, whereas for Kubernetes the Go language
was chosen.

In 2015 Kubernetes v1.0 was released. Along with the release, Google set up a
partnership with the Linux Foundation to form the Cloud Native Computing
Foundation (CNCF) [17]. Since then, Kubernetes has significantly grown, achiev-
ing the CNCF graduated status and being adopted by nearly every big company.
Nowadays it has become the de-facto standard for container orchestration [18, 19].

2.2 Applications deployment evolution
Kubernetes is a portable, extensible, open-source platform for running and coordi-
nating containerized applications across a cluster of machines. It is designed to
completely manage the life cycle of applications and services using methods that
provide consistency, scalability, and high availability.

What does “containerized applications” means? In the last decades, the deploy-
ment of applications has seen significant changes, which are illustrated in figure
2.1.

Figure 2.1: Evolution in applications deployment.

Traditionally, organizations used to run their applications on physical servers.
One of the problems of this approach was that resource boundaries between
applications could not be applied in a physical server, leading to resource allocation
issues. For example, if multiple applications run on a physical server, one of them
could take up most of the resources, and as a result, the other applications would
starve. A possibility to solve this problem would be to run each application on

7

Kubernetes

a different physical server, but clearly it is not feasible: the solution could not
scale, would lead to resources under-utilization and would be very expensive for
organizations to maintain many physical servers.

The first real solution has been virtualization. Virtualization allows to run
multiple Virtual Machines on a single physical server. It grants isolation of the
applications between VMs providing a high level of security, as the information of
one application cannot be freely accessed by another application. Virtualization
enables better utilization of resources in a physical server, improves scalability,
because an application can be added or updated very easily, reduces hardware
costs, and much more. With virtualization it is possible to group together a set
of physical resources and expose it as a cluster of disposable virtual machines.
Isolation certainly brings many advantages, but it requires a quite ‘heavy’ overhead:
each VM is a full machine running all the components, including its own operating
system, on top of the virtualized hardware.

A second solution which has been proposed recently is containerization. Con-
tainers are similar to VMs, but they share the operating system with the host
machine, relaxing isolation properties. Therefore, containers are considered a
lightweight form of virtualization. Similarly to a VM, a container has its own
filesystem, CPU, memory, process space etc. One of the key features of containers
is that they are portable: as they are decoupled from the underlying infrastructure,
they are totally portable across clouds and OS distributions. This property is
particularly relevant nowadays with cloud computing: a container can be easily
moved across different machines. Moreover, being “lightweight”, containers are
much faster than virtual machines: they can be booted, started, run and stopped
with little effort and in a short time.

2.3 Container orchestrators
When hundreds or thousands of containers are created, the need of a way to manage
them becomes essential; container orchestrators serve this purpose. A container
orchestrator is a system designed to easily manage complex containerization de-
ployments across multiple machines from one central location. As depicted in
figure 2.2, Kubernetes is by far the most used container orchestrator. We provide
a description of such system in the following.

Kubernetes provides many services, including:
• Service discovery and load balancing A container can be exposed using

the DNS name or using its own IP address. If traffic to a container is high, a
load balancer able to distribute the network traffic is provided.

• Storage orchestration A storage system can be automatically mounted,
such as local storages, public cloud providers, and more.

8

Kubernetes

Figure 2.2: Container orchestrators use [20].

• Automated rollouts and rollbacks The desired state for the deployed
containers can be described, and the actual state can be changed to the
desired state at a controlled rate. For example, it is possible to automate the
creation of new containers of a deployment, remove existing containers and
adopt all their resources to the new container.

• Automatic bin packing Kubernetes is provided with a cluster of nodes that
can be used to run containerized tasks. It is possible to set how much CPU
and memory (RAM) each container needs, and automatically the containers
are sized to fit in the nodes to make the best use of the resources.

• Secret and configuration management It is possible to store and man-
age sensitive information in Kubernetes, such as passwords, OAuth tokens,
and SSH keys. It is possible to deploy and update secrets and application
configuration without rebuilding the container images, and without exposing
secrets in the stack configuration.

2.4 Kubernetes architecture
When Kubernetes is deployed, a cluster is created. A Kubernetes cluster consists of
a set of machines, called nodes, that run containerized applications. At least one
of the nodes hosts the control plane and is called master. Its role is to manage the
cluster and expose an interface to the user. The worker node(s) host the pods
that are the components of the application. The master manages the worker nodes
and the pods in the cluster. In production environments, the control plane usually

9

Kubernetes

runs across multiple machines and a cluster runs on multiple nodes, providing
fault-tolerance and high availability.

Figure 2.3 shows the diagram of a Kubernetes cluster with all the components
linked together.

Figure 2.3: Kubernetes architecture

2.4.1 Control plane components

The control plane’s components make global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example,
starting up a new pod). Although they can be run on any machine in the cluster,
for simplicity, they are typically executed all together on the same machine, which
does not run user containers.

API server

The API server is the component of the Kubernetes control plane that exposes the
Kubernetes REST API, and constitites the front end for the Kubernetes control
plane. Its function is to intercept REST request, validate and process them. The
main implementation of a Kubernetes API server is kube-apiserver. It is designed
to scale horizontally, which means it scales by deploying more instances. Moreover,
it can be easily redounded to run several instances of it and balance traffic among
them.

10

Kubernetes

etcd

etcd is a distributed, consistent and highly-available key value store used as
Kubernetes’ backing store for all cluster data. It is based on the Raft consensus
algorithm [21], which allows different machines to work as a coherent group and
survive to the breakdown of one of its members. etcd can be stacked in the master
node or external, installed on dedicated host. Only the API server can communicate
with it.

Scheduler

The scheduler is the control plane component responsible of assigning the pods to
the nodes. The one provided by Kubernetes is called kube-scheduler, but it can
be customized by adding new schedulers and indicating in the pods to use them.
kube-scheduler watches for newly created pods not assigned to a node yet, and
selects one for them to run on. To make its decisions, it considers singular and
collective resource requirements, hardware/software/policy constraints, affinity and
anti-affinity specifications, data locality, inter-workload interference and deadlines.

kube-controller-manager

Component that runs controller processes. It continuously compares the desired
state of the cluster (given by the objects specifications) with the current one
(read from etcd). Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single process.
These controllers include:

• Node Controller: responsible for noticing and reacting when nodes go down.

• Replication Controller: in charge of maintaining the correct number of pods
for every replica object in the system.

• Endpoints Controller: populates the Endpoint objects (which links Services
and Pods).

• Service Account & Token Controllers: create default accounts and API access
tokens for new namespaces.

cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager.

11

Kubernetes

cloud-controller-manager allows the cloud vendor’s code and the Kubernetes
code to evolve independently of each other. In prior releases, the core Kubernetes
code was dependent upon cloud-provider-specific code for functionality. In future
releases, code specific to cloud vendors should be maintained by the cloud vendor
themselves, and linked to cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

• Route Controller: responsible for setting up network routes in the cloud
infrastructure.

• Service Controller: for creating, updating and deleting cloud provider load
balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

2.4.2 Node components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

Container Runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface).

kubelet

An agent that runs on each node in the cluster, making sure that containers are
running in a pod. The kubelet receives from the API server the specifications of
the Pods and interacts with the container runtime to run them, monitoring their
state and assuring that the containers are running and healthy. The connection with
the container runtime is established through the Container Runtime Interface
and is based on gRPC.

kube-proxy

kube-proxy is a network agent that runs on each node in your cluster, implementing
part of the Kubernetes Service concept. It maintains network rules on nodes, which

12

Kubernetes

allow network communication to your Pods from inside or outside of the cluster.
If the operating system is providing a packet filtering layer, kube-proxy uses it,
otherwise it forwards the traffic itself.

Addons

Features and functionalities not yet available natively in Kubernetes, but imple-
mented by third parties pods. Some examples are DNS, dashboard (a web gui),
monitoring and logging.

Figure 2.4: Kubernetes master and worker nodes [12].

2.5 Kubernetes objects
Kubernetes defines several types of objects, which constitutes its building blocks.
Usually, a K8s resource object contains the following fields [22]:

• apiVersion: the versioned schema of this representation of the object;

• kind: a string value representing the REST resource this object represents;

• ObjectMeta: metadata about the object, such as its name, annotations, labels
etc.;

• ResourceSpec: defined by the user, it describes the desired state of the object;

• ResourceStatus: filled in by the server, it reports the current state of the
resource.

The allowed operations on these resources are the typical CRUD actions:

13

Kubernetes

• Create: create the resource in the storage backend; once a resource is created,
the system applies the desired state.

• Read: comes with 3 variants

– Get: retrieve a specific resource object by name;
– List: retrieve all resource objects of a specific type within a namespace,
and the results can be restricted to resources matching a selector query;

– Watch: stream results for an object(s) as it is updated.

• Update: comes with 2 forms

– Replace: replace the existing spec with the provided one;
– Patch: apply a change to a specific field.

• Delete: delete a resource; depending on the specific resource, child objects
may or may not be garbage collected by the server.

In the following we illustrate the main objects needed in the next chapters.

2.5.1 Label & Selector
Labels are key-value pairs attached to a K8s object and used to organize and mark
a subset of objects. Selectors are the grouping primitives which allow to select a
set of objects with the same label.

2.5.2 Namespace
Namespaces are virtual partitions of the cluster. By default, Kubernetes creates 4
Namespaces:

• kube-system: it contains objects created by K8s system, mainly control-plane
agents;

• default: it contains objects and resources created by users and it is the one
used by default;

• kube-public: readable by everyone (even not authenticated users), it is used
for special purposes like exposing cluster public information;

• kube-node-lease: it maintains objects for heartbeat data from nodes.

It is a good practice to split the cluster into many Namespaces in order to better
virtualize the cluster.

14

Kubernetes

2.5.3 Pod
Pods are the basic processing units in Kubernetes. A pod is a logic collection of one
or more containers which share the same network and storage, and are scheduled
together on the same pod. Pods are ephemeral and have no auto-repair capacities:
for this reason they are usually managed by a controller which handles replication,
fault-tolerance, self-healing etc.

Figure 2.5: Kubernetes pods [12].

2.5.4 ReplicaSet
ReplicaSets control a set of pods allowing to scale the number of pods currently in
execution. If a pod in the set is deleted, the ReplicaSet notices that the current
number of replicas (read from the Status) is different from the desired one (specified
in the Spec) and creates a new pod. Usually ReplicaSets are not used directly: a
higher-level concept is provided by Kubernetes, called Deployment.

2.5.5 Deployment
Deployments manage the creation, update and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of pods.
For this reason an application is typically executed within a Deployment and not
in a single pod. The listing 2.1 is an example of deployment.

Listing 2.1: Basic example of Kubernetes Deployment [12].
1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : nginx−deployment
5 l a b e l s :
6 app : nginx
7 spec :

15

Kubernetes

8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app : nginx
12 template :
13 metadata :
14 l a b e l s :
15 app : nginx
16 spec :
17 con ta i n e r s :
18 − name : nginx
19 image : nginx : 1 . 7 . 9
20 por t s :
21 − conta ine rPort : 80

The code above allows to create a Deployment with name nginx-deployment and
a label app, with value nginx. It creates three replicated pods and, as defined in
the selector field, manages all the pods labelled as app:nginx. The template
field shows the information of the created pods: they are labelled app:nginx and
launch one container which runs the nginx DockerHub image at version 1.7.9 on
port 80.

2.5.6 Service
A Service is an abstract way to expose an application running on a set of Pods as a
network service. It can have different access scopes depending on its ServiceType:

• ClusterIP: Service accessible only from within the cluster, it is the default
type;

• NodePort: exposes the Service on a static port of each Node’s IP; the
NodePort Service can be accessed, from outside the cluster, by contacting
<NodeIP>:<NodePort>;

• LoadBalancer: exposes the Service externally using a cloud provider’s load
balancer;

• ExternalName: maps the Service to an external one so that local apps can
access it.

The following Service is named my-service and redirects requests coming from
TCP port 80 to port 9376 of any Pod with the app=MyApp label.

Listing 2.2: Basic example of Kubernetes Service [12].
1 ap iVers ion : v1
2 kind : S e rv i c e

16

Kubernetes

Pod

Node

Figure 2.6: Kubernetes Services [12].

3 metadata :
4 name : my−s e r v i c e
5 spec :
6 s e l e c t o r :
7 app : myApp
8 por t s :
9 − pro to co l : TCP

10 port : 80
11 ta rge tPor t : 9376

2.6 Virtual-Kubelet
Two Kubernetes-based tools which have been used during the development of this
project are Virtual-Kubelet and Kubebuilder. Virtual Kubelet is an open source
Kubernetes kubelet implementation that masquerades a cluster as a kubelet for
the purposes of connecting Kubernetes to other APIs [13]. Virtual Kubelet is a
Cloud Native Computing Foundation sandbox project.

The project offers a provider interface that developers need to implement in
order to use it. The official documentation [13] says that “providers must provide
the following functionality to be considered a supported integration with Virtual
Kubelet:

17

Kubernetes

1. Provides the back-end plumbing necessary to support the lifecycle management
of pods, containers and supporting resources in the context of Kubernetes.

2. Conforms to the current API provided by Virtual Kubelet.

3. Does not have access to the Kubernetes API Server and has a well-defined
callback mechanism for getting data like secrets or configmaps”.

Figure 2.7: Virtual-Kubelet concept [13].

2.7 Kubebuilder
Kubebuilder is a framework for building Kubernetes APIs using Custom Resource
Definitions (CRDs) [14].

CustomResourceDefinition is an API resource offered by Kubernetes which
allows to define Custom Resources (CRs) with a name and schema specified by
the user. When a new CustomResourceDefinition is created, the Kubernetes API
server creates a new RESTful resource path; the CRD can be either namespaced or
cluster-scoped. The name of a CRD object must be a valid DNS subdomain name.

A Custom Resource is an endpoint in the Kubernetes API that is not available
in a default Kubernetes installation and which frees users from writing their own
API server to handle them [12]. On their own, custom resources simply let you
store and retrieve structured data. In order to have a more powerful management,

18

Kubernetes

you also need to provide a custom controller which executes a control loop over the
custom resource it watches: this behaviour is called Operator pattern [23].

Kubebuilder helps a developer in defining his Custom Resource, taking auto-
matically basic decisions and writing a lot of boilerplate code. These are the main
actions operated by Kubebuilder [14]:

1. Create a new project directory.

2. Create one or more resource APIs as CRDs and then add fields to the resources.

3. Implement reconcile loops in controllers and watch additional resources.

4. Test by running against a cluster (self-installs CRDs and starts controllers
automatically).

5. Update bootstrapped integration tests to test new fields and business logic.

6. Build and publish a container from the provided Dockerfile.

19

Chapter 3

Resource sharing across
Kubernetes clusters: the
Liqo project

The main goal of the developed desktop application is to bring to common users an
easy orchestration mechanism to aggregate and share resources between different
Kubernetes clusters.

The Kubernetes Cluster Federeation (Kubefed) project [14] of the Kuber-
netes Special Interest Groups partially addresses this problem, but is still in a
limited alpha version.

The choice fell to the Liqo1 project [24], an open-source framework developed
inside the Computer Networks Group at Politecnico di Torino which runs on
Kubernetes vanilla and has the complete support for K3s [10], a light Kuber-
netes distribution designed to work on IoT devices and in resource-constrained
environments.

3.1 Features
The key point of Liqo is to provide a powerful, dynamic resource sharing tool
which, although, hides most of the complexity of clusters federation, by leveraging
Kubernetes standard operations, both internally (automatic scheduling) and on
the user side where a joined cluster is simply seen as a node.

Here are its most important features:

1The information contained in this chapter is mainly retrieved and revised from the documen-
tation present on the Liqo repository [24] and the Liqo official website [25].

20

Resource sharing across Kubernetes clusters: the Liqo project

Peer-to-peer protocol

Each Liqo instance running on a cluster is seen as an equal peer which can request
or receive peerings with others. A decentralized network is an important aspect
for the project. This allows users, in fact, to be in full control of their choices,
without requiring a central management unit which might also be offered as a paid
service. Moreover, A distributed paradigm proves really helpful in all those context
where there is no or limited internet connectivity but it is still possible to connects
clusters under the same local network.

Multiple cluster discovery modes

The peering operation requires the involved clusters to be known to each other.
Liqo provides several discovery methods:

• Automatic LAN discovery: all Liqo clusters present inside the same local
network are automatically discovered via multicast DNS (mDNS). This is
useful in those scenarios where a user needs to aggregate resources of their own
home devices or lend a quota in a monitored environment, like a university
laboratory.

• Automatic discovery on geographic networks: it is also possible to
discover clusters present on geographic networks by associating them to a
specific DNS domain. In this case, the process is simply based on DNS queries,
with a 3-steps protocol similar to the one used for the discovery of SIP servers.
This method could be preferred in large organizations, where a DNS-based
mechanism provides an excellent unique point of management for several
clusters.

• Manual discovery: for every other case, there is also the possibility to
activate a manual discovery procedure, by explicitly creating a Kubernetes
Custom Resource (ForeignCluster) and passing to it the hostname or the URL
of the peer’s authentication server.

Transparent offloading

The core of the Liqo framework is the easy join procedure (peering) between
Kubernetes clusters. Each peer can send peering requests or handle received ones
just by controlling a couple values of a ForeignCluster resource, which is the star
point of all the collected data for each remote peer.

After a successful peering, the offloading of scheduled pods on remote clusters is
handled completely automatically, unless explicit scheduling policies are enforced.
In fact, one peer’s remote resources are mapped on a virtual node (by means of a

21

Resource sharing across Kubernetes clusters: the Liqo project

customized virtual kubelet [13]) of the home cluster (which allows the Kubernetes
scheduler to take care of the scheduling).

Pod resilience

All the pods offloaded to a remote cluster can be controlled by simply performing
operations on their shadow replicas (remote replicaset) running on the virtual
kubelet in the home cluster. Thanks to a Liqo component called CRDReplicator,
all state changes of the running pods are projected back on their virtual copy inside
the home cluster, while all actions taken on them are also applied on the original
resources on the remote cluster.

Secure inter-cluster networking

The connection between clusters is based on a reliable, encrypted tunnel by Wire-
guard [26], a general purpose, cross-platform VPN designed to be extremely fast
and secure. Moreover, thanks to the Liqo networking module, between two peered
clusters it is possible to achieve the same interconnection as inside a single cluster.
All the pods in one cluster, in fact, can seamlessly communicate both with all pods
and nodes of another one, with the module taking care of eventual pod and service
CIDRs conflicts by means of a NAT.

Protection policies

The interconnection of clusters - especially when under different administrative
domains - poses an important security issue. In order to address this aspect, Liqo
leverages a wide set of security policies and features:

• Liqo networking module only exposes the CIDR subnet of the offloaded pods
on the remote cluster, without affecting the entire network;

• all available Kubernetes features regarding security and accounting are en-
forced, such as Role-Based Access Control (to minimize the control of the
external cluster admin), Pod Security Policies and hardened Container Run-
time Interfaces.

CNI independence

Liqo supports a wide range of Cloud Network Interfaces (CNI) [27], e.g. the network
plugins in charge of configuring connectivity for Linux containers and that are
built upon the standard libraries and specifications of the Cloud Native Computing
Foundation. Liqo clusters can also mount different CNIs.

22

Resource sharing across Kubernetes clusters: the Liqo project

3.2 General Architecture
3.2.1 Cluster representation
Each Liqo cluster is identified by a unique identifier (ClusterID and is characterized
by several attributes and properties. On the local side it is represented by the
ClusterConfig CRD (listing 3.1), which contains all configuration data and allows
the customization of several aspects:

• Acceptance policies for incoming peering requests: users can automat-
ically accept all incoming requests (useful for IoT devices) or decide manually
on each one;

• Outgoing peerings policies, like the shared resources quota for each peering
and automatic requests dispatch towards different clusters kind (e.g. only
when they can be considered trusted);

• Discovery management: the home cluster can go silent or interrupt the
discovery process of other clusters.

• Cluster attributes, like the mnemonic name used in combination with the
clusterID.

Listing 3.1: Helm template of Liqo ClusterConfig CRD (version 0.2)
1 ap iVers ion : c on f i g . l i q o . i o / v1alpha1
2 kind : C lus te rConf ig
3 metadata :
4 name : {{ inc lude " l i q o . prefixedName " $ con f i g }}
5 l a b e l s :
6 {{− i n c lude " l i q o . l a b e l s " $ con f i g | nindent 4 }}
7 spec :
8 advert i sementConf ig :
9 i ngo ingConf ig :

10 acceptPo l i cy : AutoAcceptMax
11 maxAcceptableAdvertisement : 1000000
12 keepa l iveThresho ld : 3
13 keepal iveRetryTime : 20
14 outgo ingConf ig :
15 {{− . Values . advert i sement . c on f i g | toYaml | nindent 6 }}
16 d i s cove ryCon f i g :
17 {{− . Values . d i s cove ry . c on f i g | toYaml | nindent 4 }}
18 domain : l o c a l .
19 name : MyLiqo
20 port : 6443
21 s e r v i c e : _liqo_api . _tcp
22 authConfig :

23

Resource sharing across Kubernetes clusters: the Liqo project

23 {{− . Values . auth . c on f i g | toYaml | nindent 4 }}
24 l i q one tCon f i g :
25 {{− . Values . networkManager . c on f i g | toYaml | nindent 4 }}
26 d i spatche rCon f i g :
27 r e source sToRep l i ca t e :
28 − group : net . l i q o . i o
29 ve r s i on : v1alpha1
30 r e s ou r c e : networkcon f ig s
31 agentConf ig :
32 dashboardConfig :
33 namespace : {{ . Re lease . Namespace }}
34 appLabel : " l i qo−dashboard "

3.2.2 Discovery
On the other side, a Liqo cluster is represented by a Liqo ForeignCluster CRD
which is the star point of all data related to a specific peer.

A ForeignCluster instance represents a discovered peer and contains information:

• on the cluster itself, like identification attributes (e.g. ClusterID, Cluster-
Name or DiscoveryType) and parameters constraints to perform authentication
on that cluster first and then a complete peering towards it, e.g. if it is recog-
nized as trusted (listing 3.2);

• on the active peerings towards it, both incoming and outgoing: while
in the spec section it is possible to trigger the peering process, in the status
one the user can monitor all active peerings in the correspondent outgoing or
incoming part and also get indirect access to all related Custom Resources, e.g.
the PeeringRequest CR associated to an active incoming connection.

Listing 3.2: Extract of the spec field of Liqo ForeignCluster CRD (version 0.2)
1 group : d i s cove ry . l i q o . i o
2 names :
3 kind : Fore ignClus te r
4 spec :
5 d e s c r i p t i o n : Fore ignClusterSpec d e f i n e s the de s i r ed s t a t e

o f Fore ignClus te r
6 p r op e r t i e s :
7 authUrl :
8 d e s c r i p t i o n : URL where to contact f o r e i g n Auth

s e r v i c e
9 type : s t r i n g

10 c l u s t e r I d e n t i t y :
11 d e s c r i p t i o n : Fore ign Clus te r I d en t i t y
12 p r op e r t i e s :

24

Resource sharing across Kubernetes clusters: the Liqo project

13 c l u s t e r ID :
14 d e s c r i p t i o n : Fore ign Clus te r ID , t h i s i s a unique

i d e n t i f i e r o f
15 that c l u s t e r
16 type : s t r i n g
17 clusterName :
18 d e s c r i p t i o n : Fore ign Clus te r Name to be shown in

GUIs
19 type : s t r i n g
20 r equ i r ed :
21 − c l u s t e r ID
22 type : ob j e c t
23 discoveryType :
24 de f au l t : Manual
25 d e s c r i p t i o n : How th i s Fore ignClus te r has been

d i s cove r ed
26 enum :
27 − LAN
28 − WAN
29 − Manual
30 − IncomingPeering
31 type : s t r i n g
32 j o i n :
33 de f au l t : f a l s e
34 d e s c r i p t i o n : Enable j o i n p roce s s to f o r e i g n c l u s t e r
35 type : boolean
36 namespace :
37 d e s c r i p t i o n : Namespace where Liqo i s deployed
38 type : s t r i n g
39 trustMode :
40 de f au l t : Unknown
41 d e s c r i p t i o n : I nd i c a t e s i f t h i s remote c l u s t e r i s

t ru s t ed or not
42 enum :
43 − Unknown
44 − Trusted
45 − Untrusted
46 type : s t r i n g

3.2.3 Peering
The peering process is the keystone of the Liqo framework.

(1) A user starts the peering request towards a peer by updating the correspondent
ForeignCluster resource.

(2) If the authorization process on the foreign cluster has previously succeeded,
the CRDReplicator component creates in there a new PeeringRequest CRD. On

25

Resource sharing across Kubernetes clusters: the Liqo project

the receiving peer’s side, this Custom Resource is the star point of all the
related components handling the sharing process. Its creation triggers the
PeeringRequest operator to generate the related Broadcaster, which is the
component in charge of keeping the active connection with the home cluster.

(3) According to the information contained in the ClusterConfig, the Broadcaster
sends back to the home cluster an Advertisement CRD. This resource has two
main scopes. On one hand, in fact, it contains the offer of the shared resources
for the home cluster, among with their prices (listing 3.3). On the other hand,
instead, it represents the core of a keep-alive mechanism implemented by the
Broadcaster which periodically refreshes the Advertisements, similarly to what
happens between network devices. The status section of the PeeringRequest con-
tains both the references to the Broadcaster component and the Advertisement
resource (listing 3.4). It is also possible to monitor its acceptance status.

(4) If the home cluster accepts the Advertisement, then on its side a virtual kubelet
(see [13]) is created in the cluster in the form of a virtual node, having an
amount of available resources equal to the accepted shared quota. Now it
is up to the standard Kubernetes scheduler to deploy user resources on the
available nodes.

Listing 3.3: Offer of shared resources quota in the spec field of Liqo Advertise-
ment CRD (version 0.2)

1 group : shar ing . l i q o . i o
2 names :
3 kind : Advertisement
4 spec :
5 p r i c e s :
6 add i t i o n a lP r op e r t i e s :
7 anyOf :
8 − type : i n t e g e r
9 − type : s t r i n g

10 pattern : ^(\+|−) ?(([0 −9]+(\ . [0 −9]∗) ?) | (\ . [0 −9]+))
(([KMGTPE] i) | [numkMGTPE] | ([eE](\+|−) ?(([0 −9]+(\ . [0 −9]∗) ?)
| (\ . [0 −9]+)))) ?$

11 x−kubernetes−int−or−s t r i n g : t rue
12 d e s c r i p t i o n : Pr i c e s conta in s the p o s s i b l e p r i c e s f o r

every kind o f
13 r e s ou r c e (cpu , memory , image) .
14 type : ob j e c t
15 p r op e r t i e s :
16 add i t i o n a lP r op e r t i e s :
17 type : s t r i n g
18 d e s c r i p t i o n : P rope r t i e s can conta in any add i t i ona l

in fo rmat ion about

26

Resource sharing across Kubernetes clusters: the Liqo project

19 the c l u s t e r .
20 type : ob j e c t
21 resourceQuota :
22 d e s c r i p t i o n : ResourceQuota conta in s the quant i ty o f

r e s ou r c e s made
23 av a i l a b l e by the c l u s t e r .
24 p r op e r t i e s :
25 hard :
26 add i t i o n a lP r op e r t i e s :
27 anyOf :
28 − type : i n t e g e r
29 − type : s t r i n g
30 pattern : ^(\+|−) ?(([0 −9]+(\ . [0 −9]∗) ?)

| (\ . [0 −9]+)) (([KMGTPE] i) | [numkMGTPE] | ([eE](\+|−)
?(([0 −9]+(\ . [0 −9]∗) ?) | (\ . [0 −9]+)))) ?$

31 x−kubernetes−int−or−s t r i n g : t rue
32 d e s c r i p t i o n : ' hard i s the s e t o f d e s i r ed hard

l im i t s f o r each
33 named re sou r c e . More i n f o : https : // kubernetes .

i o / docs / concepts / po l i c y / resource−quotas / '
34 type : ob j e c t

Listing 3.4: Extract of status section of Liqo Advertisement CRD (version 0.2)
1 group : shar ing . l i q o . i o
2 names :
3 kind : Advertisement
4 s t a tu s :
5 d e s c r i p t i o n : Advert isementStatus d e f i n e s the observed

s t a t e o f Advertisement
6 p r op e r t i e s :
7 advert i s ementStatus :
8 d e s c r i p t i o n : Advert isementStatus i s the s t a tu s o f

t h i s Advertisement .
9 When the adv i s c r ea ted i t i s checked by the

operator , which s e t s
10 t h i s f i e l d to " Accepted " or " Refused " on tha base

o f c l u s t e r c on f i g u r a t i on .
11 I f the Advertisement i s accepted a v i r t ua l −kube l e t

f o r the f o r e i g n
12 c l u s t e r w i l l be c rea ted .
13 enum :
14 − " "
15 − Accepted
16 − Refused
17 type : s t r i n g

27

Chapter 4

Liqo Agent: application
design and general
architecture

This thesis aims to design and develop a desktop application that could respond to
two main goals:

1. to provide a single entry point that allows users to act as managers of their
own “data center”, by aggregating their own computational resources spread
across devices or joining the ones offered by different entities, like a colleague
or an organization;

2. to target common desktop users - with little or no knowledge at all of the
underlying technology - by offering a clear graphic user interface (GUI) and few
simple interaction mechanisms, thus trying to achieve the best user experience.

Design choices led to the development of a tray bar application that, by means of
a tray menu and desktop notifications, allows to perform simple peering operations
between devices, by leveraging the Liqo framework running on a Kubernetes cluster.

4.1 Use cases
By exploring and extending the potential of the Liquid Computing paradigm,
this application, in combination with the Liqo framework running underneath,
envisions a further evolution in the fruition of web services.

We live in a world, in fact, where everything is becoming “a service” you can
only consume but, on the other hand, almost everyone nowadays manages several

28

Liqo Agent: application design and general architecture

aspects of their life with just a few taps on their own phone. There is a schism
that could be healed by combining the technical benefits of the new distributed
cloud-based web, with the democratization wave that brought “the computer” from
large corporate rooms to the homes of common people, as shown in fig 4.1.

As a consequence of this increasing trend, computational resources could become
a shareable commodity not only in professional context - where already is somehow
like this, with the Infrastructure-as-a-Service model - but in everyday life, with the
ability to run almost every kind of application (in terms of size, resource constraints
and so on) everywhere, deciding a bit more whose is the cloud we are flying on.

In the design of this first version of the application, called Liqo Agent, the
focus has been on making available to users features that could address some core
use cases:

• when connected to their local network, a user can easily view all their devices
(e.g. old PCs, IoT devices) running a Liqo instance and perform a peering
towards them, creating their own resource pool to run several application and
thus avoiding to buy third party services;

• a student or employee can peer to the Liqo cluster of the organization they
belong to (e.g. university department, corporate), possibly with an authen-
tication mechanism, and consume their quota of shared resources, running
in the remote cluster application that could be heavy or with environmental
requirements (e.g. license policies);

• skilled users can enjoy an easy entry point to manage their Liqo instances
and to control even advanced configurations, with a direct access link to the
LiqoDash, a general purpose dashboard developed inside the Liqo team that
also acts as a web based UI for Liqo [28];

• a user can receive a peering request from another peer (e.g. a friend) and
decide to share or not its resources.

4.2 Application design and user experience
The application is mainly intended for desktop users with low technical skills and
thus moved us to put special efforts in order to provide the best user experience
which includes all the aspects influencing the human interaction with a program
interface and that have been categorized after recent studies [29] under three main
factors: (1) user’s state and previous experience (2) system properties (3) usage
context. This motivation led to some design choices for the user interface:

29

Liqo Agent: application design and general architecture

Figure 4.1: Adoption curve in the evolution of IT infrastructure models [6].
Technological innovations made possible to a larger number of people to take
competitive advantage first and then provide high value professional services (“client-
server”), until market reached the maturity to provide large scale consumable
services. With the new Liquid computing paradigm, the 3.0 web could become the
basis of a new escalating trend of early adopters starting to decentralize even more
the cloud computing model.

• the application starts silently at boot in the form of a tray bar agent (hence its
name) to emulate the look and feel of other common desktop managers which
users should be used to, like the ones for WiFi, antivirus or cloud storage
providers. The learning curve should thus be reduced;

• Liqo Agent’s tray icon remains always visible during the device activity and by
means of some changes in its appearance, it lets users have immediate overview
of their Liqo Cluster conditions, e.g. it there is an active connection, the
presence of active peerings or special errors occurred needing their attention;

• with a simple click on the tray icon, users can access a tray menu presenting
a set of useful shortcuts, a control panel with basic information about the
program state and a list with all the peers discovered automatically by the
Liqo framework, so that they can manage each single peering operation with
them similarly to the well known “available networks” workflow (see 4.2);

• Liqo Agent can send desktop notifications to clearly inform users about
important events.

30

Liqo Agent: application design and general architecture

Figure 4.2: Liqo Agent menu preview: while the icon and its associated text box
shows that some peerings are active, a user can click on a specific peer’s label and
control information regarding it.

4.3 General architecture
Liqo Agent is a desktop application installed on the local file system and has three
interconnection points:

• with a Kubernetes cluster where a Liqo application is running (hereinafter
called Liqo Cluster). The app uses a configuration file (kubeconfig) retrieved
from the file system to open a set of clients towards the cluster. By using these
connections, the Agent is able to retrieve information from the Liqo framework,
watch events regarding main aspects of the foreign clusters discovery and
peering procedure and perform operations like requesting an outgoing peering
or accepting an incoming one.

• with the Operating System Display server, whose primary task is to coordi-
nate communications between its clients and I/O devices (via kernel). Liqo
Agent connects to the server to show the tray menu and tray icon and send
desktop notifications, while listening to the events of mouse clicks on menu
choices.

• as little as possible with the file system, primarily for accessing the kubeconfig

31

Liqo Agent: application design and general architecture

file and the Agent configuration file, containing persistent data of its settings.
Desktop notifications are designed to also contain small symbols that are read
from the disk when needed, but this behavior can be avoided transparently to
limit expensive calls to the file system, especially on old devices.

The application has been designed following theModel-View-Viewmodel (MVVM)
pattern, a variation of the original Model-View-Controller which aims to facilitate
the separation between internal logic and user interface implementation, thus
simplifying cross-platform support.

The core of the application is represented by the Indicator which manages
the tray menu and contains internal representation of peers and peerings data.
It connects to the Liqo Cluster through an instance of the AgentController
component that handles all the connections towards the Kubernetes API server.
All user interactions are delegated instead to the GUIProvider, which exports a
set of standard graphic primitives towards the Indicator and connects internally
with the display server.

Figure 4.3: Liqo Agent architecture design.

4.3.1 GUI Provider
The GUIProvider is the component that provides the application user interface, hid-
ing the complexity of different internal implementations according to the Operating
System where the Liqo Agent is installed on.

By connecting to the OS display server by means of the right communication
protocol, it manages both I/O operations and the look and feel of graphical items:

32

Liqo Agent: application design and general architecture

• the set of tray icons, used to inform users of the current status of the applica-
tion;

• the desktop banner notifications warning about important events;

• input boxes that simplify application usage avoiding users the need to access
command line tools, e.g. kubectl;

• the tray menu items, both in the content update and in the creation of the
event listeners for each entry, triggered by click events.

4.3.2 Indicator
The indicator is the main component of Liqo Agent, representing the star point
between the GUIProvider and the AgentController. It is a stateful data structure
containing the internal representation of both graphical components (tray menu
and icons) and abstract entities related to Kubernetes objects and Liqo abstract
entities, like discovered foreign clusters (peers) and active connections (peerings)
towards them. All communications flows between user and Kubernetes cluster
are filtered and interpreted by the Indicator, mainly by means of event handler
associated globally either to the entire component, called Listeners, or to single
menu items, in the form of connected callbacks.

From an architectural point of view, it may be seen as a composite object,
aggregating several sub components hereafter described.

Status

The Status component acts as the internal Liqo Agent database, storing and
managing information about the running Liqo instance (associated to the so called
Home cluster) and statistics on Liqo objects:

• Home Liqo cluster details, like (1) common (i.e. human-readable) name
(2) ClusterID, a unique cluster identifier (3) operating state and working mode;

• Discovered peers details about (1) their identifier (2) state of the authen-
tication process to the correspondent foreign cluster (3) active peerings state,
including the amount of the shared resources quota;

Tray Menu

The Indicator contains the entire tray menu hierarchy implementation. Each menu
item is either used as information panel or as active button with an associated
callback which the Indicator uses as the main input flow from the users.

33

Liqo Agent: application design and general architecture

Listeners

The Indicator instantiates a set of event handlers called Listeners, containing all the
logic for the data flow from the Liqo Cluster towards the user. each one triggered
by signals sent by the AgentController when specific conditions in the Liqo cluster
are met. According to internal implementation, they also send notifications out.

Timers

If requested, the Indicator can also activate custom Listeners, called Timers, whose
activation depends on a repeatable countdown instead of generic events.

4.3.3 Agent Controller
The AgentController is the Liqo Agent component that interfaces with the Liqo
cluster. It handles all Kubernetes related operations, hiding the complexity that is
usually left to the operators via command line tools like kubectl. Its main task is to
manage data and control flows between the cluster and the Indicator:

• from user input to Liqo cluster : by clicking on tray menu items, users can
perform simple Kubernetes operations (e.g. connect to different clusters) or
request abstract Liqo operations internally mapped to multiple CRUD calls,
like the discover new peers or establishing new peerings. The result of these
operations are then displayed as information on the tray menu or notified via
desktop banner;

• from Liqo cluster to users: the AgentController watches internally several
events inside the cluster, combining single conditions on different resources
into logical Liqo events.

4.4 Available Features and Execution Workflow
After the operating system start up, Liqo Agent loads the Indicator and the
associated tray menu within, then allocates the proper GUIProvider instance
according to the local environment, thus displaying the tray icon and enabling
some choices in the tray menu.

The application then seeks a kubeconfig file that could be even requested to the
user if no valid hints for a valid file path are provided. If found, the Indicator then
creates an AgentController instance based on that file and opens all the required
connections towards the API server of the Liqo cluster specified in that.

If the connection results successful, the Indicator enables also the tray menu
choices related to Liqo operations, e.g. the peers list, and starts its Listeners,

34

Liqo Agent: application design and general architecture

waiting for signals sent by the AgentController. The complete list of available
features are described below.

4.4.1 LiqoDash integration
LiqoDash [28] is a general purpose web based dashboard, developed inside the
same Liqotech [30] team, that provides an advanced tool for professional users to
deeply analyse a Kubernetes cluster and fully customize vanilla or custom resources
running inside it. Among its useful features, it offers:

• a fully dynamic CRD (Kubernetes Custom Resource Definition) form gener-
ator that allows to create new resources or updating the existing ones without
any knowledge of the YAML language;

• a powerful custom View editor that can be used to create custom views to
access and monitor just the needed components, even with graphical tools like
graphs and charts.

In particular, LiqoDash provides a built-in view for the Liqo application, show-
ing detailed information on each Liqo component and a dedicated graph of the
discovered peers and the active peerings between them. This tool, mainly meant
for skilled users, needs an authorized access, usually through an OIDC provider, by
means of the OAuth framework. In order to provide a simplified method to use the
LiqoDash, Liqo Agent offers an extremely simplified two steps procedure, triggered
by clicking on the correspondent tray menu button:

1. If the LiqoDash has been deployed (hopefully by using the simplified procedure
inside the Liqo installer), Liqo Agent takes care of building the correct URL,
according to information retrieved inside the Liqo cluster. It then automatically
opens that address inside the default browser;

2. to simplify the authentication and authorization procedure, it uses a secondary
token based process, by retrieving a secret token generated inside the cluster.
Since the token length is significantly larger with respect of a common password,
the application loads it into the clipboard buffer, so that users can easily paste
it inside the input form on the LiqoDash web page.

4.4.2 Available Peers
The tray menu provides the “Peers” panel, resembling the look and feel of the
available networks manager. By internally leveraging the discovery procedure of the
Liqo framework, Liqo Agent can show a dynamic list of the Liqo clusters currently
known by the home cluster, including just the most important details for the
common user.

35

Liqo Agent: application design and general architecture

Discovery type

By means of a label, Liqo Agent allows to distinguish between clusters inside the
Home cluster local network, with respect to the ones discovered on geographical
networks by means of a DNS-based methods.

Trusted clusters

Discovered clusters are classified according on the certification of their data. In the
details panel of each peer, Liqo Agent shows a TRUSTED orUNTRUSTED tag
to identify whether the certificate exchanged by the correspondent foreign cluster
has been signed by a trusted Certification Authority, with respect, for example, to
a self-signed one. This allows users to perform an additional security check before
requesting or accepting a new peering.

Liqo cluster Authentication

After the discovery of a new peer, the Liqo framework starts the authentication
process towards the correspondent foreign cluster, in order to receive special rights
to communicate with its API server. The successful completion of this procedure is
required in order to perform subsequent peering request and it may be accomplished
by means of two different methods:

• Empty Token: if the foreign cluster allows this procedure, it automatically
provides the home cluster a valid temporary token, so no actual authentication
is required;

• OOB Token: the home cluster must authenticate by sending to the foreign
cluster a valid authN token previously obtained Out Of Band.

In the details panel of each peer, Liqo Agent shows the current state of the
authentication process by means of the tags PENDING, ACCEPTED, RE-
FUSED. In presence of a REFUSED state, the tray menu enables the tray menu
choices to manually insert a new valid token, by directly pasting it in an input box,
in order to perform a new authentication.

4.4.3 Peerings
Inside each peer’s view, users can control the state of both outgoing and incoming
peerings between that foreign cluster and theirs. If the authentication process
resulted successful (ACCEPTED), it is possible to request an outgoing peering
with just one click and the entire procedure is internally handled by the Liqo
Agent. When a connection (of both types) is successfully established, users receive

36

Liqo Agent: application design and general architecture

a desktop notification with general information about it, while the correspondent
panel in the peer’s view shows the amount of the shared resources quota. In order
to tear down the peering, one has to just click on the correspondent “Stop Peering”
button.

4.4.4 Secondary options
In addition to the core features above described, the Liqo Agent interface allows
the user to perform some minor operations, like (1) a direct link to Liqo and Liqo
Agent documentation (2) a notification settings panel, where it is possible to disable
the desktop notifications and even the tray icon indicators.

37

Chapter 5

Liqo Agent: implementation

Since the application is intended to be used also on resource-constrained devices,
efforts have been made also in the implementation phase to keep it light and fast.

The Go language played a role thanks to its key features about resource con-
sumption, run-time efficiency and support to concurrent programming based on its
custom lightweight processes: the goroutines. This has made it possible to develop
even the entire GUI by using Go and to make the application binary cross-platform
with minor adjustments.

The software is composed of 4 main libraries: (1) Client, providing to the
Indicator the connectivity to the Kubernetes clusters and the implementation of
the AgentController component (2) Indicator, containing the implementations of
the Indicator and the GuiProvider and controlling the user interaction. (3) Logic
which orchestrates the entire execution flow, containing the implementations of
almost all the callbacks, e.g. the main routine (event loop), the actions associated
with each tray menu entry and the goroutines listening to messages sent by the
AgentController. (4) Icon which contains the set of tray icons used by the Agent
to notify status changes.

The entire Liqo Agent code can be found on its public GitHub repository [31].

5.1 Efficiency improvements

The key of the Liqo Agent project is to allow users to acquire computational
resources even on low powered and outdated devices. This led to pay more
attention both on the choice of the programming language (and frameworks) and
in the implementation of each component (which will be discussed later).

38

Liqo Agent: implementation

5.1.1 The Go language
Since it was publicly released by Google in 2009, the Go language has been growing
interest around it, with a pretty interesting adoption curve, thanks also to big
companies starting to use it to create new projects and migrate old and even famous
ones. This was mainly due to its unique features about clarity, resource usage and
efficient concurrency management. In fact, if on one hand it is a statically typed,
compiled language developed based on C, on the other hand it was given powerful
tools like garbage collection, interfaces, a simplified object-oriented programming
style. This led, moreover, to most of the cloud native projects being written in Go,
including Kubernetes.

With respect to the Liqo Agent development, the main factors that led to choose
Go as programming language are the following:

• Google created Go starting from C style and main principles, making it feasible
also to build software for operating systems, thanks also to the possibility
to easily integrate C code in Go programs and vice versa. Go aims, in fact,
especially to solve scalability issues, almost due to hardware constraints.

• Since it is a high level language supporting a large number of system archi-
tectures, there is an increasing trend among developers into making Go a
“Swiss Army Knife”, by creating wrapper libraries [32] that contain (1) useful
widespread frameworks originally implemented in other languages (2) creating
cross-platform frameworks that hide several platform-dependent implementa-
tions of the same feature, thus providing great code reuse and compatibility.
This was very useful in the realization of the desktop notifications system.

• Even if it is mainly intended for back-end solutions, there is an incoming
trend of developing graphical libraries, either web based (HTML/CSS/JS) or
connected to the OS display server, as shown in sec5.2.1.

• Go provides native support to concurrent programming by means of its
lightweight processes structures, the goroutines. Differently from other lan-
guages solutions, they are extremely versatile and with minimum costs for
their creation and deletion.

• Google wrote the entire Kubernetes project in Go, providing powerful up-to-
date clients towards clusters.

5.2 App-Indicator library
The App-Indicator is the core package of the application, containing:

39

Liqo Agent: implementation

• the implementation of the Indicator and all related data;

• the GuiProvider interface and its current implementation.

5.2.1 GuiProvider
GuiProvider is the component in charge of the app interaction with the OS Display
server, hiding all the complexity of different platform-dependent implementations.

Listing 5.1: app-indicator GuiProviderInterface
1 // Gu iProv ide r In t e r f a ce wraps the methods to i n t e r a c t with the OS

d i sp l ay s e r v e r and manage a tray icon with i t s menu .
2 type Gu iProv ide r In t e r f a ce i n t e r f a c e {
3 //Run i n i t i a l i z e s the GUI and s t a r t s the event loop , then invokes

the onReady ca l l ba ck . I t b locks u n t i l
4 //Quit () i s c a l l e d . After Quit () c a l l , i t runs onExit () be f o r e

e x i t i n g . I t should be c a l l e d be f o r e
5 //any other method o f the i n t e r f a c e .
6 Run(onReady func () , onExit func ())
7 //Quit e x i t s the GUI runtime execut ion a f t e r Run() has been

c a l l e d .
8 Quit ()
9 //AddSeparator adds a s epara to r bar to the tray menu .

10 AddSeparator ()
11 // SetIcon s e t s the tray icon .
12 SetIcon (iconBytes [] byte)
13 // Se tT i t l e s e t s the content o f the l a b e l next to the tray icon .
14 Se tT i t l e (t i t l e s t r i n g)
15 /∗
16 AddMenuItem c r e a t e s and re tu rn s an Item , e . g . an entry o f the

tray menu . The menu works as a s tack with only 'push '
17 opera t ion a v a i l a b l e . Use Item methods (e . g . Item . Hide ()) to

emulate 'pop ' behavior .
18

19 withCheckbox = true has to be used on Linux bu i l d s to
f o r c e the c r e a t i on o f an Item with an ac tua l checkbox .

20 Otherwise the g raph i c a l behavior o f Item . Check () i s
demanded to i n t e r n a l implementation .

21 ∗/
22 AddMenuItem(withCheckbox bool) Item
23 /∗
24 AddSubMenuItem c r e a t e s and re tu rn s a ch i l d Item f o r a parent

Item so that i t can be d i sp layed as
25 a submenu element in the tray menu . Each Item submenu works

as a s tack with only 'push '
26 method av a i l a b l e . Use Item methods (e . g . Item . Hide ()) to

emulate 'pop ' behavior .
27

40

Liqo Agent: implementation

28 withCheckbox = true has to be used on Linux bu i l d s to
f o r c e the c r e a t i on o f an Item with an ac tua l checkbox .

29 Otherwise the g raph i c a l behavior o f Item . Check () i s
demanded to i n t e r n a l implementation .

30 ∗/
31 AddSubMenuItem(parent Item , withCheckbox bool) Item
32 //Mocked re tu rn s whether the i n t e r a c t i o n with the OS d i sp l ay

s e r v e r i s mocked .
33 Mocked () bool
34 //NewEventTester r e s e t s and return the EventTester . You can then

c a l l EventTester . Test () to s t a r t the t e s t i n g
35 //mechanism f o r the events handled by the cur rent Ind i c a t o r

i n s t anc e . Read more on EventTester documentation .
36 NewEventTester () ∗EventTester
37 //GetEventTester r e tu rn s cur rent GuiProvider EventTester i n s t anc e

. Read more on EventTester documentation .
38 //
39 // I f t e s t i n g==true , the EventTester i s cu r r en t l y r e g i s t e r i n g the

events handled by the Ind i c a t o r i n s t ance in t e s t mode .
40 GetEventTester () (eventTester ∗EventTester , t e s t i n g bool)
41 }

As shown in listing 5.1, the GuiProvider takes charge of the following key points:

• starting and exiting the main routine (event loop) of the tray menu, actually
managing its execution;

• managing the output flows from the application, i.e. (1) the tray icon (2) the
tray title (small text near the icon);

• handling the test mode for the application workflow, e.g. with the NewEventTester
method;

• allocating the right types of elements on the tray menu (separators and
items). The interface methods related to this aspect were shaped around the
characteristics of the systray package which was chosen as the keystone of
the component implementation. More details about this can be found below.

The Systray package: features and limitations

The systray [33] Go package is the most complete cross-platform library providing
a simple API to manage an icon and a menu in the tray bar. Thanks to the
internal use of C snippets to interact with each operating system libraries, it greatly
simplified the Liqo Agent development, acting as a single entry point to perform
all graphical operations but the desktop notifications.

41

Liqo Agent: implementation

The most important advantage brought by systray is in a menu items man-
agement that does not require any direct interaction with widget toolkits for the
correspondent display server, like GNU GTK for X11 windowing systems:

(1) It is possible to change all the aspects of each menu item (e.g. visibility, text
content), as can be seen in listing 5.2. During real application executions, the
Item interface leverages internally the systray.MenuItem type, exposed by the
systray package.

Listing 5.2: app-indicator Item interface
1 // Item i s an i n t e r f a c e r ep r e s en t i ng the ac tua l item that ge t s

pushed (and d i sp layed) in the s tack o f the tray menu .
2 type Item i n t e r f a c e {
3 //Check checks the Item .
4 Check ()
5 //Uncheck unchecks the Item .
6 Uncheck ()
7 //Checked r e tu rn s whether the Item i s checked .
8 Checked () bool
9 //Enable enab l e s the Item , making i t c l i c k a b l e .

10 Enable ()
11 // Disab le d i s a b l e s the Item , prevent ing i t to be c l i c k a b l e .
12 Disab le ()
13 //Disabled r e tu rn s whether the Item i s d i sab led , i . e . not

c l i c k a b l e .
14 Disabled () bool
15 //Show makes the Item v i s i b l e in the menu .
16 Show ()
17 //Hide h ides the Item from the menu .
18 Hide ()
19 // Se tT i t l e s e t s the content o f the Item that w i l l be

d i sp layed in the menu .
20 Se tT i t l e (t i t l e s t r i n g)
21 // SetToo l t ip s e t s a t o o l t i p f o r the Item d i sp layed a f t e r a '

mouse hover ' event .
22 //Currently , t h i s i s i n e f f e c t i v e on Linux bu i l d s .
23 SetToo l t ip (t o o l t i p s t r i n g)
24 }

(2) It is extremely simple to intercept “item clicked” events thanks to the ex-
posed systray.MenuItem.ClickedChan field, a Go chan signalling each click on the
correspondent menu item.

Listing 5.3: systray MenuItem type
1 type MenuItem s t r u c t {
2 // ClickedCh i s the channel which w i l l be n o t i f i e d when the

menu item i s c l i c k e d

42

Liqo Agent: implementation

3 ClickedCh chan s t r u c t {}
4 // conta in s f i l t e r e d or unexported f i e l d s
5 }

There are, nevertheless, a few limitations put by the systray internal implemen-
tations, mainly involving the allocation of new Items that have been addressed in
the design of the MenuNode (see 5.2.2):

• the MenuNode type does not provide getters for all kinds of properties, e.g.
its visibility (check listing 5.2), requiring an external storing of set values;

• as shown in listing 5.1, systray (and so the GuiProviderInterface) does not
provide a DELETE operation for an Item created and registered in the tray
menu. This is due to systray internal memory management. The tray menu is,
in fact, handled as a LIFO data structure (i.e. a stack), where elements can
be inserted into but no removed. Not only introduces this some difficulties
in the orchestration of the menu views, but may represent a critical problem,
since it may bring to memory leaks as the up-time goes on. This brought to
the creation of type LIST MenuNodes whose allocated memory can be easily
recycled (see 5.2.3).

5.2.2 Indicator
The Indicator is the Liqo Agent main component, acting as star point between the
GuiProvider and the AgentController. All three components are implemented as
singleton, since there has to be always only one instance of each of them. Given
its role of model and entry point, it contains the references of the GuiProvider
and AgentController that are initialized during Indicator creation by calling the
app−indicator.GetGuiProvider() and agent/client .GetGuiProvider() functions.

Listing 5.4: app-indicator Indicator type
1 // Ind i c a t o r s i n g l e t o n
2 var root ∗ I nd i c a t o r
3

4 // Ind i c a t o r i s a s t a t e f u l data s t r u c tu r e that c on t r o l s the app
i nd i c a t o r and i t s r e l a t e d menu . I t can be obta ined

5 //and i n i t i a l i z e d c a l l i n g Get Ind icator ()
6 type Ind i c a t o r s t r u c t {
7 // root node o f the menu h i e ra r chy .
8 menu ∗MenuNode
9 // i nd i c a t o r l a b e l showed in the tray bar along the tray icon

10 l a b e l s t r i n g
11 // i nd i c a t o r icon−id
12 i con Icon

43

Liqo Agent: implementation

13 //TITLE MenuNode used by the i nd i c a t o r to show the menu header
14 menuTitleNode ∗MenuNode
15 // t i t l e t ex t cu r r en t l y in use
16 menuTitleText s t r i n g
17 //STATUS MenuNode used to d i sp l ay s t a tu s in fo rmat ion .
18 menuStatusNode ∗MenuNode
19 //map that s t o r e s QUICK MenuNodes , a s s o c i a t i n g them with t h e i r

tag
20 quickMap map [s t r i n g]∗MenuNode
21 // r e f e r e n c e to the node o f the ACTION cur r en t l y s e l e c t e d . I f none

, i t d e f a u l t s to the ROOT node
22 activeNode ∗MenuNode
23 //data s t r u c t conta in ing i nd i c a t o r c on f i g
24 c on f i g ∗ c on f i g
25 // gu iProv ider to i n t e r a c t with the graph ic s e r v e r
26 gProvider Gu iProv ide r In t e r f a ce
27 //data s t r u c t conta in ing Liqo Status , used to con t r o l the

menuStatusNode
28 s t a tu s S t a t u s I n t e r f a c e
29 // c o n t r o l l e r o f a l l the app l i c a t i o n go rou t in e s
30 quitChan chan s t r u c t {}
31 // i f true , quitChan i s c l o s ed and Ind i c a t o r can g r a c e f u l l y e x i t
32 qu i tClosed bool
33 //data s t r u c t that c on t r o l s Agent i n t e r a c t i o n with the c l u s t e r
34 agentCtr l ∗ c l i e n t . AgentContro l l e r
35 //map o f a l l the i n s t a n t i a t e d L i s t e n e r s
36 l i s t e n e r s map [c l i e n t . Noti fyChannel]∗ L i s t en e r
37 //map o f a l l the i n s t a n t i a t e d Timers
38 t imers map [s t r i n g]∗ Timer
39 // graphicResource i s the map conta in ing the mutex to pro t e c t

a c c e s s to the graph ic r e s ou r c e s handled by the Ind i c a t o r
40 //(e . g . t ray icon , t ray l a b e l and desktop n o t i f i c a t i o n s) .
41 graphicResource map [graphicResource]∗ sync .RWMutex
42 }

Below is the description of Indicator main tasks, based on its internal data
structure fields.

Graphical resources orchestration

The Indicator manage the access to the three graphical resources (listing 5.5) of
the Liqo Agent: (1) the tray icon (icon field) (2) the text box next to the icon (label
field) (3) desktop notifications, by means of the Notify() function (listing 5.6).

In order to avoid race condition, each resource access is protected by a corre-
sponding mutex stored in the graphicResource field.

Listing 5.5: app-indicator graphicResource type, enumerating the three re-
sources handled by the Indicator.

44

Liqo Agent: implementation

1 // graphicResource d e f i n e s a graphic i n t e r a c t i o n handled by the
Ind i c a t o r .

2 type graphicResource i n t
3

4 // graphicResource cu r r en t l y handled by the Ind i c a t o r .
5 const (
6 r e s ou r c e I con graphicResource = i o t a
7 r e sourceLabe l
8 resourceDesktop
9)

Listing 5.6: app-indicator Notify function to send desktop notifications and
optionally change the tray icon.

1 // Not i fy manages Ind i c a t o r n o t i f i c a t i o n l o g i c . Depending on the
cur rent Not i fyLeve l o f the Ind i ca to r ,

2 // i t changes the Ind i c a t o r tray icon and d i s p l a y s a desktop banner ,
having t i t l e ' t i t l e ' and 'message ' as body .

3 // I f pre sent in c l i e n t . EnvLiqoPath , a l s o ' not i f y I con ' i s shown i n s i d e
the banner .

4 //
5 //The " n i l " va lue s can be used f o r both ' not i f y I con ' and '

i nd i c a to r I con ' :
6 //
7 // Not i f y I conNi l : don ' t show a n o t i f i c a t i o n icon
8 //
9 // IconLiqoNi l : don ' t change cur rent Ind i c a t o r i con

10 func (i ∗ I nd i c a t o r) Not i fy (t i t l e s t r i ng , message s t r i ng , no t i f y I c on
Not i fyIcon , i nd i c a t o r I c on Icon) {

11 gr := i . graphicResource [resourceDesktop]
12 gr . Lock ()
13 de f e r gr . Unlock ()
14
15
16 i f ! i . gProvider . Mocked () {
17 /∗The golang gu i d e l i n e s sugge s t s e r r o r messages should

not s t a r t with a c a p i t a l i z e d l e t t e r .
18 Therefore , s i n c e Not i fy sometimes r e c e i v e s an e r r o r as '

message ' , the Cap i t a l i z e () func t i on
19 overcomes t h i s problem , c o r r e c t l y d i s p l ay i ng the s t r i n g

to the user .∗/
20 _ = bip . Not i fy (t i t l e , s t r i n gU t i l s . Cap i t a l i z e (message) ,

f i l e p a t h . Join (i . c on f i g . not i fyIconPath , icoName))
21 }
22 de f au l t :
23 re turn
24 }
25 }

45

Liqo Agent: implementation

Tray menu orchestration

The Indicator contains the internal implementation of the try menu, following a
hiearchical structure, whose root is represented by the Indicator .menu field.

All menu items (MenuNodes) are provided a tag to allow direct access in
further searches. In particular, the first level ones - i.e. always visible in the menu
frontpage - that are associated with specific callbacks are called QUICKS and its
references are mapped with their tags inside the Indicator .quickMap (more on this
on section 5.2.3). The addition of a QUICK MenuNode on the menu is possible by
calling the Indicator .AddQuick() method.

Listing 5.7: app-indicator Indicator.AddQuick() method to add first level
items to the tray menu, binding them with callbacks.

1 //AddQuick adds a QUICK to the i nd i c a t o r menu . I t i s v i s i b l e by
d e f au l t .

2 //
3 // t i t l e : l a b e l d i sp layed in the menu
4 //
5 // tag : unique tag f o r the QUICK
6 //
7 // ca l l b a ck : c a l l b a ck func t i on to be executed at each ' c l i c k ed '

event . I f c a l l b a ck == n i l , the func t i on can be s e t
8 // a f t e rwards us ing (∗MenuNode) . Connect () .
9 func (i ∗ I nd i c a t o r) AddQuick (t i t l e s t r i ng , tag s t r i ng , c a l l b a ck func (

args . . . i n t e r f a c e {}) , args . . . i n t e r f a c e {}) ∗MenuNode {
10 q := newMenuNode(NodeTypeQuick , f a l s e , n i l)
11 q . parent = q
12 q . S e tT i t l e (t i t l e)
13 q . SetTag (tag)
14 i f c a l l b a ck != n i l {
15 q . Connect (f a l s e , ca l lback , args . . .)
16 }
17 q . S e t I sV i s i b l e (t rue)
18 i . quickMap [tag] = q
19 re turn q
20 }

Listeners and Timers

The Indicator registers Listeners and Timers, objects that triggers the execution
of an associated callback at a specific event or time. Each listener, in particular,
has the task to listen on a certain client .NotifyChannelGeneric to signals coming from
the AgentController and trigger the execution of its associated callback.

Listing 5.8: app-indicator Listener type.

46

Liqo Agent: implementation

1 // L i s t en e r i s an event l i s t e n e r that can r ea c t c a l l i n g a s p e c i f i c
c a l l b a ck .

2 type L i s t en e r s t r u c t {
3 //Tag s p e c i f i e s the type o f n o t i f i c a t i o n channel on which i t

l i s t e n s to
4 Tag c l i e n t . Noti fyChannel
5 //StopChan l e t s c on t r o l the L i s t en e r event loop
6 StopChan chan s t r u c t {}
7 //NotifyChan i s the c l i e n t . Noti fyChannel on which i t l i s t e n s to
8 NotifyChan chan c l i e n t . Noti fyDataGener ic
9 }

10

11 // L i s t en s t a r t s a L i s t en e r f o r a s p e c i f i c channel , execut ing ca l l ba ck
when a n o t i f i c a t i o n a r r i v e s .

12 func (i ∗ I nd i c a t o r) L i s t en (tag c l i e n t . NotifyChannel , c a l l b a ck func (
data c l i e n t . Noti fyDataGeneric , a rgs . . . i n t e r f a c e {}) , args . . .
i n t e r f a c e {}) {

13 l := newListener (tag)
14 i . l i s t e n e r s [tag] = l
15 go func () {
16 f o r {
17 s e l e c t {
18 // exec handler
19 case data , open := <− l . NotifyChan :
20 /∗While the Agent i s OFF, the ca l l b a ck i s not

executed , in order not to update in fo rmat ion
21 on s t a tu s and tray menu or t r i g g e r n o t i f i c a t i o n s .∗/
22 i f open && i . Status () . Running () == StatRunOn {
23 ca l l b a ck (data , args . . .)
24 // s i g n a l c a l l b a ck execut ion in t e s t mode
25 i f et , t e s t i n g := GetGuiProvider () . GetEventTester

() ; t e s t i n g {
26 et . Done ()
27 }
28 }
29 // c l o s i n g app l i c a t i o n
30 case <− i . quitChan :
31 re turn
32 // c l o s i n g s i n g l e l i s t e n e r . Channel c on t r o l l e d by

Ind i c a t o r
33 case <− l . StopChan :
34 de l e t e (i . l i s t e n e r s , tag)
35 re turn
36 }
37 }
38 }()
39 }

All handlers are executed in their own goroutine and in any case terminated at

47

Liqo Agent: implementation

the program exit, as a result of the implicit call of the Indicator .Quit() method.

5.2.3 MenuNode
As described in section 5.2.1, the systray.MenuItem type has some limitations, both
in the access of this properties (no getters) and in the lack of a delete operation to
dealloc unsed elements.

This moved to the creation of the MenuNode type which wraps a MenuItem object
and provides an enhanced interface with additional features. It is the building
block of the tray menu and has some sub types that differ their behavior according
to their scope, as in listing 5.9.

Listing 5.9: app-indicator MenuNode type.
1 /∗NodeType d e f i n e s the kind o f a MenuNode , each one with s p e c i f i c

f e a t u r e s .
2

3 NodeType d i s t i n g u i s h e s d i f f e r e n t kinds o f MenuNodes :
4

5 ROOT: root o f the Menu Tree .
6

7 QUICK: s imple shor t cut to perform quick act ions , e . g .
nav igat ion commands . I t i s always v i s i b l e .

8

9 ACTION: launch an app l i c a t i o n command . I t can open command
submenu (i f p re sent) .

10

11 OPTION: submenu cho i c e .
12

13 LIST : p l a c eho ld e r item used to dynamical ly d i sp l ay
app l i c a t i o n output .

14

15 TITLE : node with s p e c i a l t ex t formatt ing used to d i sp l ay
menu header .

16

17 STATUS: non c l i c k a b l e node that d i s p l a y s s t a tu s in fo rmat ion .
18 ∗/
19 type NodeType i n t
20 // MenuNode i s a s t a t e f u l wrapper type that prov ide s a be t t e r

management o f the
21 // Item type and add i t i o na l f e a tu r e s , such as submenus .
22 type MenuNode s t r u c t {
23 // the Item ac tua l l y a l l o c a t e d and d i sp layed on the menu stack .

I t a l s o conta in s
24 // the i n t e r n a l ClickedChan channel that r e a c t s to the ' item

c l i ck ed ' event .
25 item Item
26 // the type o f the MenuNode

48

Liqo Agent: implementation

27 nodeType NodeType
28 // unique tag o f the MenuNode that can be used as a key to get

a c c e s s to i t , e . g . us ing (∗ I nd i c a t o r)
29 tag s t r i n g
30 // the k i l l switch to d i s connec t any event handler connected to

the node .
31 stopChan chan s t r u c t {}
32 // f l a g that i n d i c a t e s whether a Disconnect () operat i on has been

c a l l e d on the MenuNode
33 stopped bool
34 // parent MenuNode in the menu t r e e h i e ra r chy
35 parent ∗MenuNode
36 // nodeList s t o r e s the MenuNode ch i l d r en o f type LIST . The node

uses them to dynamical ly d i sp l ay to the user
37 // the output o f app l i c a t i o n func t i on s . Use these kind o f

MenuNodes by c a l l i n g UseListChi ld , FreeL i s tCh i ld
38 // and FreeL i s tCh i ld r en methods :
39 //
40 // ch i l d1 := node . UseListChi ld (ch i l dT i t l e , chi ldTag)
41 //
42 // node . FreeL i s tCh i ld (chi ldTag)
43 //
44 // node . FreeL i s tCh i ld ren ()
45 nodeList ∗ nodeList
46 //map that s t o r e s ACTION MenuNodes , a s s o c i a t i n g them with t h e i r

tag . This map i s a c t ua l l y used only by the ROOT node .
47 actionMap map [s t r i n g]∗MenuNode
48 //map that s t o r e s OPTION MenuNodes , a s s o c i a t i n g them with t h e i r

tag . These nodes are used to c r e a t e submenu cho i c e s
49 optionMap map [s t r i n g]∗MenuNode
50 // i f i s V i s i b l e==true , the MenuItem o f the node i s shown in the

menu to the user
51 i s V i s i b l e bool
52 // i f i s I n v a l i d==true , the content o f the LIST MenuNode i s no more

up to date and has to be r e f r e s h ed by app l i c a t i o n
53 // l o g i c
54 i s I n v a l i d bool
55 //hasCheckbox determines whether the i n t e r n a l item has an

embedded graphic checkbox that can be d i r e c t l y managed
56 //by the i n t e r n a l Item . I f not , (un) check ope ra t i on s are

performed by us ing MenuNode own implementat ions .
57 hasCheckbox bool
58 // text p r e f i x that i s prepended to the MenuNode t i t l e when i t i s

shown in the menu
59 i con s t r i n g
60 // text content o f the menu item . This redundancy o f in fo rmat ion

i s due to the f a c t Item does not prov ide g e t t e r s
61 // f o r the data .
62 t i t l e s t r i n g

49

Liqo Agent: implementation

63 // p ro t e c t i on f o r concurrent a c c e s s to MenuNode a t t r i b u t e s .
64 sync .RWMutex
65 }

With respect to the MenuItem, the MenuNode offers three important improvements:

(1) An expanded interface of getters and setters to manage all Item properties.

(2) A simple mechanism to associate event handlers to a MenuNode. Thanks
to the MenuNode.Connect() and MenuNode.Disconnect() methods, with just one
function call it is possible to register to a MenuNode a callback that will be
automatically executed when the correspondent tray menu element is clicked.
The listening loop is performed on a different goroutine which is closed after a
Disconnect() call or in any case at the program exit.

Listing 5.10: app-indicator MenuNode.Connect() method to associate a callback
to the click of a tray menu item.

1 //Connect i n s t a n t i a t e s a l i s t e n e r f o r the ' c l i c k ed ' event o f the
node .

2 // I f once == true , the event handler i s at most executed once .
3 func (n ∗MenuNode) Connect (once bool , c a l l b a ck func (args . . .

i n t e r f a c e {}) , args . . . i n t e r f a c e {}) {
4 n . Lock ()
5 i f n . stopped {
6 n . stopChan = make(chan s t r u c t {})
7 n . stopped = f a l s e
8 }
9 n . Unlock ()

10 var c l i ckCh chan s t r u c t {}
11 switch n . item . (type) {
12 case ∗ sy s t ray .MenuItem :
13 c l i ckCh = n . item . (∗ sy s t ray .MenuItem) . ClickedCh
14 case ∗mockItem :
15 c l i ckCh = n . item . (∗ mockItem) . ClickedCh ()
16 de f au l t :
17 c l i ckCh = make(chan s t r u c t {} , 2)
18 }
19 go func () {
20 f o r {
21 s e l e c t {
22 case <−c l i ckCh :
23 ca l l b a ck (args . . .)
24 i f et , t e s t i n g := GetGuiProvider () . GetEventTester

() ; t e s t i n g {
25 et . Done ()
26 }
27 i f once {
28 re turn

50

Liqo Agent: implementation

29 }
30 case <−n . stopChan :
31 re turn
32 case <−root . quitChan :
33 re turn
34 }
35 }
36 }()
37 }

(3) A reallocation mechanism to overcome the systray memory allocation prob-
lem (see section 5.2.1). Since it is not possible to free the memory of an
unused MenuNode, the LIST MenuNode sub-type provides two methods,
UseListChild() and FreeListChild, that, by emulating the realloc mechanism of
several languages, acquire and release MenuNode elements from an internal
FIFO queue, allocating new memory only when this structure is empty. This
proves to be very useful in the creation of dynamic lists (e.g. the one of
discovered peers), where a to be removed item is (a) cleared in all its internal
attributes (b) hidden to the user and then the same procedure is applied to
all its children (i.e. nested LIST MenuNodes).

5.2.4 Status
The Status is an Indicator sub-component that acts as an internal database for
Liqo Agent and Liqo runtime information, protecting the access from concurrent
operations (since the huge number of goroutines used).

By calling the Status.GoString() method, it also produces a textual digest of
the current state which is then displayed in the tray menu inside the STATUS
MenuNode.

Listing 5.11: app-indicator Status interface
1 // S t a tu s I n t e r f a c e wraps the methods to manage the Ind i c a t o r s t a tu s .
2 type S t a t u s I n t e r f a c e i n t e r f a c e {
3 //User r e tu rn s the Liqo Name o f the home c l u s t e r connected to the

Agent .
4 User () s t r i n g
5 // SetUser s e t s the Liqo Name o f the home c l u s t e r connected to the

Agent .
6 SetUser (user s t r i n g)
7 //Running r e tu rn s the running s t a tu s o f Liqo .
8 Running () StatRun
9 //SetRunning changes the running s t a tu s o f Liqo . Trans i t i on to

StatRunOff
10 // imp l i e s the end o f a l l a c t i v e pee r i ng s .
11 SetRunning (running StatRun)

51

Liqo Agent: implementation

12 //Mode r e tu rn s the cur rent working mode o f Liqo .
13 Mode() StatMode
14 //SetMode s e t s the working mode f o r Liqo .
15 // I f the opera t i on i s not a l lowed f o r cur rent con f i gu ra t i on , i t

r e tu rn s an e r r o r .
16 SetMode (mode StatMode) e r r o r
17 /∗ IsTetheredCompliant checks i f the TETHERED mode i s e l i g i b l e
18 acco rd ing ly to cur rent s t a tu s . The r e s u l t can be used to d i sp l ay

in fo rmat ion .
19

20 This method i s not to be intended as a pre l im inary t e s t
21 f o r an ac tua l mode change . In t h i s case you must use SetMode ()

which e x p l o i t s a
22 "Compare&Change " p ro t e c t i on .
23 ∗/
24 IsTetheredCompliant () bool
25 // Peer ings r e tu rn s the number o f a c t i v e pee r i ng s o f type

PeeringType .
26 Peer ings (pee r ing PeeringType) i n t
27 // Act ivePeer ings r e tu rn s the amount o f a c t i v e pe e r i ng s .
28 Act ivePeer ings () i n t
29 //Peers r e tu rn s the number o f Liqo peer s d i s cove r ed by the home

c l u s t e r and cu r r en t l y a v a i l a b l e .
30 Peers () i n t
31 //Peer r e tu rn s data r e l a t e d to a c l u s t e r i f i t i s cu r r en t l y

d i s cove r ed by the home c l u s t e r .
32 Peer (c l u s t e r I d s t r i n g) (peer ∗PeerInfo , p re sent bool)
33 //AddOrUpdatePeer updates the i n t e r n a l in fo rmat ion on an e x i s t i n g

or newly d i s cove r ed peer .
34 // In case no i n f o about the peer ' s common name i s provided , a

p l a c eho ld e r "unknown i d e n t i f i e r "
35 // i s a s s i gned to a l low the user to v i s u a l l y d i s t i n g u i s h between

d i f f e r e n t unknown peer s .
36 //When the number o f unknown peer s i s decremented to 0 , the

i d e n t i f i e r number i s r e s e t .
37 AddOrUpdatePeer (data ∗ c l i e n t . Not i fyDataFore ignCluster) ∗Peer In fo
38 //RemovePeer removes a peer from the cu r r en t l y r e g i s t e r e d ones .
39 RemovePeer (data ∗ c l i e n t . Not i fyDataFore ignCluster) ∗Peer In fo
40 //SetClusterName s e t s the common name o f the c l u s t e r LiqoAgent i s

cu r r en t l y connected to .
41 SetClusterName (clusterName s t r i n g)
42 //GoString produces a t ex tua l d i g e s t on the main s t a tu s data

managed by
43 //a Status in s t anc e .
44 GoString () s t r i n g
45 }

52

Liqo Agent: implementation

5.3 Client library
The client library allows to manage all the interactions between the main routine
of the Liqo Agent on the local device and the Kubernetes clusters involved.

The Indicator leverages the library for two main tasks:

• retrieve the correct kubeconfig file from the file system by calling the acquireKubeconfig
function, potentially updating its config file accordingly;

• interact with Liqo clusters by means of the AgentController.

5.3.1 AgentController
The key component is the AgentController, which runs as a singleton instance bound
to the Home Liqo cluster which the application is connected to.

Listing 5.12: client AgentController type
1 //AgentContro l l e r i s the data s t r u c tu r e that manages Tray Agent

i n t e r a c t i o n with the c l u s t e r .
2 type AgentContro l l e r s t r u c t {
3 // not i fyChanne l s i s a s e t o f channe l s used by the cache l o g i c to

no t i f y a watched event .
4 not i fyChanne l s map [Noti fyChannel] chan Noti fyDataGeneric
5 // kubeCl ient i s a standard kubernetes c l i e n t .
6 kubeCl ient kubernetes . I n t e r f a c e
7 // agentConf conta in s Liqo Agent c on f i gu r a t i on parameters acqu i red

from the c l u s t e r .
8 agentConf ∗ agentConf igurat ion
9 //crdManager manages CRD opera t i on s .

10 ∗crdManager
11 // va l i d s p e c i f i e s whether the provided kubeconf ig a c t ua l l y

d e s c r i b e s a c o r r e c t c on f i gu r a t i on .
12 va l i d bool
13 // connected s p e c i f i e s whether a l l AgentContro l l e r components are

c o r r e c t l y up and running .
14 connected bool
15 mocked bool
16 }

When the Indicator is initialized via the app−indicator.GetIndicator function, it
creates and stores internally a reference to the AgentController by calling client
.GetAgentController. If the connection to the designated cluster is successful, the
Agent creates all the required resources and sub components to orchestrate a
bi-directional data and control flow between application logic and the Liqo cluster.

53

Liqo Agent: implementation

CRDController

Almost all Liqo Agent operations towards a Kubernetes cluster involves the CRDs
(Custom Resource Definition) of the Liqo framework. The AgentController registers
all the required CRDs into its internal structures as CustomResource type variables
and each of them is then managed by the crdManager (listing 5.13) by means of the
correspondent CRDController.

Listing 5.13: client crdManager and CustomResource types
1 //CustomResource d e f i n e s the CRD managed by Liqo Agent .
2 type CustomResource s t r i n g
3

4 const (
5 //CRClusterConfig i s the r e sou r c e id f o r the Clus te rConf ig CRD.
6 CRClusterConfig CustomResource = " c l u s t e r c o n f i g s "
7 //CRAdvertisement i s the r e sou r c e id f o r the Advertisement CRD.
8 CRAdvertisement CustomResource = " advert i s ements "
9 //CRForeignCluster i s the r e sou r c e id f o r the Fore ignClus te r CRD.

10 CRForeignCluster CustomResource = " f o r e i g n c l u s t e r s "
11)
12

13 //crdManager s t o r e s the r e s ou r c e s nece s sa ry to manage the CRDs.
14 type crdManager s t r u c t {
15 // cl ientMap conta in s the Con t r o l l e r s f o r the CRDs managed by the

Agent .
16 cl ientMap map [CustomResource]∗ CRDController
17 }

Each CRDController (listing 5.14) is an enhanced custom client for a specific
CustomResource, internally based on a CRDClient, the component provided by the
Liqo framework which actually establishes the connections. Its main tasks are:

• to execute CRUD operations on Custom Resources of CRDController.resource
type, as consequence of user choices;

• to listen to specific events (watch) regarding Custom Resources of CRDController
.resource type and send back data to the Indicator using the NotifyChannel
(more on this in the following section). The addFunc, updateFunc and deleteFunc
contain the callbacks for the event handlers. It is worth noticing that, in
order to monitor events and retrieve data, the CRDClient internally leverages a
Kubernetes cache to significantly reduce the interactions with the
API server of the cluster.

Listing 5.14: client CRDController type.
1 //CRDController handles the Agent i n t e r a c t i o n with the c l u s t e r f o r a

s p e c i f i c CRD.

54

Liqo Agent: implementation

2 type CRDController s t r u c t {
3 //CRDClient to perform CRUD opera t i on s on the CRD.
4 ∗ c rdC l i en t . CRDClient
5 // r e s ou r c e i s the CRD l i t e r a l i d e n t i f i e r .
6 r e s ou r c e s t r i n g
7 // running s p e c i f i e s whether the CRD cache i s running .
8 running bool
9 //addFunc i s the handler f o r the ' r e s ou r c e added ' event .

10 addFunc func (obj i n t e r f a c e {})
11 //updateFunc i s the handler f o r the ' r e s ou r c e updated ' event .
12 updateFunc func (oldObj i n t e r f a c e {} , newObj i n t e r f a c e {})
13 // deleteFunc i s the handler f o r the ' r e s ou r c e de le ted ' event .
14 deleteFunc func (obj i n t e r f a c e {})
15 }

NotifyChannel

When a CRDController detects the realization of one of the watched events, it sends
data back to an Indicator Listener through a specific Go chan, identified by its
NotifyChannel type (listing 5.15).

The channels are designed to accept all possible kinds of data, thanks to
the NotifyDataGeneric interface (listing 5.16) and its up to each CRDController logic
to define and use custom sub types that will be correctly interpreted by the
correspondent Listener.

Listing 5.15: client NotifyChannel type.
1 //Noti fyChannel i d e n t i f i e s a n o t i f i c a t i o n channel f o r a s p e c i f i c

event .
2 type Noti fyChannel i n t
3

4 //Noti fyChannel i d e n t i f i e r s .
5 const (
6 // No t i f i c a t i o n channel id f o r an update o f an av a i l a b l e peer .
7 ChanPeerAddedOrUpdated Noti fyChannel = i o t a
8 // No t i f i c a t i o n channel id f o r the removal o f an a v a i l a b l e peer .
9 ChanPeerDeleted

10 //ChanClusterName os the NotifyChannel used to transmit the
cur rent ClusterName o f the Liqo c l u s t e r the Agent i s

11 // connected to .
12 ChanClusterName
13)

Listing 5.16: client NotifyDataGeneric interface.
1 //NotifyChan i s the wrapper type f o r g ene r i c data sent over a

Noti fyChannel . After r e c e i v i n g such element from a

55

Liqo Agent: implementation

2 //chan , i t i s then p o s s i b l e to t ry i t s conver s i on in to a s p e c i f i c
type .

3 type Noti fyDataGener ic i n t e r f a c e {}

5.4 Logic library
Logic package contains the code to actual orchestrate Liqo Agent execution. It
contains the callbacks actually implementing all the looping goroutines:

• callbacks connected to tray menu MenuNode, like the QUICKs (first level)
elements;

• event handlers for Indicator Listeners;

• the orchestration of the main (OnReady) and finalizer (OnExit) routines directly
handled by the systray.Run function. OnReady, in particular is responsible for
setting up the environment for the Liqo Agent, by creating the tray menu
MenuNodes and starting all the goroutines.

Listing 5.17: logic OnReady() and OnExit routines: they define the operatoins
performed before and after the main loop.

1 //OnReady i s the rou t in e o r ch e s t r a t i n g Liqo Agent execut ion .
2 func OnReady () {
3 // Ind i c a t o r c on f i gu r a t i on
4 i := app . Get Ind icator ()
5 i . Re f re shStatus ()
6 s t a r tL i s t e n e rC lu s t e rCon f i g (i)
7 s t a r t L i s t e n e rP e e r sL i s t (i)
8 startQuickOnOff (i)
9 startQuickChangeMode (i)

10 startQuickDashboard (i)
11 startQuickShowPeers (i)
12 i . AddSeparator ()
13 s t a r tQu i c kS e tNo t i f i c a t i o n s (i)
14 startQuickLiqoWebsite (i)
15 startQuickQuit (i)
16 // try to s t a r t Liqo and main ACTION
17 quickTurnOnOff (i)
18 }
19

20 //OnExit i s the rou t ine conta in ing clean−up ope ra t i on s to be
performed at Liqo Agent e x i t .

21 func OnExit () {
22 app . Get Ind icator () . Disconnect ()
23 }

56

Liqo Agent: implementation

5.5 Icon library
The Icon library contains the available Indicator iconset for the tray icon. The systray
package offers a great opportunity to enhance the performance of the application.
The icons, in fact, are not retrieved from the file system in their original image
format (e.g. png). They are, instead, exported into Go variables as binary data
(i.e. byte []) by means of an external tool1. This way they are directly loaded into
memory, thus bypassing expensive accesses (in terms of time) to the file system.

5.6 Installation on Linux distributions
Although the Liqo Agent codebase is already compatible with all major platforms,
at the time this document is written the complete application is available only
for GNU Linux distributions, released as a desktop application according the
freedesktop.org standard, which provides compatibility guidelines for X -based
(X11) and Wayland desktop environments, such as GNOME, KDE and Xfce.

This solution, despite being simple, provides no packaging system and requires
the application resources (e.g. binaries, icons, manifests) to be moved to their
appropriate "well known" folders. The Liqo Agent repository [31] provides a one
line installer (via bash script) to simplify this process.

1Since Go 1.16, the built-in embed package allows to perform this conversion automatically by
using code directives.

57

Chapter 6

Experimental evaluation

Liqo Agent has been developed as a desktop application which should comply with
significant constraints:

• limited CPU and memory consumption, given that the application:

– is designed to run even on heavy resource constrained devices, since it
aims to provide an easy connections to other clusters;

– is in the form of a tray agent, running in background most of the time
and it should not consume resources destined to user tasks;

• limited time overhead of the application with respect to Liqo: the
Agent provides an easy user interface to interact with the Liqo framework. Its
use remains effective as long as it manages to keep a low delay between users
and I/O operations directly performed on a terminal.

6.1 Test Environment and Procedures
In order to assess its performances, the application has been tested over a series of
runs for:
(1) CPU percentage usage;

(2) memory usage, focusing on the RSS (Resident Set Size), i.e. the amount of
memory actually held in main memory in a precise moment;

(3) duration of critical routines in the application workflow.
Tests have been performed by running a tailored version of Liqo Agent on

a Linux Ubuntu 20.04 LTS distribution, by means of builtin Go packages (e.g.
runtime/metrics or time) and third party libraries.

The analysis focused on two main scopes:

58

Experimental evaluation

(1) the start-up phase, i.e. the initialization phase when the applications boots up,
allocating resources and establishing connections towards the home Kubernetes
cluster;

(2) the steady state behavior, when the application waits for user inputs or
Kubernetes events; in this case the evaluation related to the progressive
discovery of Liqo peers (foreign clusters) and the consequential response by
the Liqo Agent in order to make the new resource available to the user, e.g.
by updating the tray menu.

6.2 Liqo Agent Initialization
The first test related on the start-up phase of the application, when all main
resources of the application are allocated. At the end of this transient period, the
application goes stand by, waiting for user input and Kubernetes events.

This task is performed by the OnReady function (listing 6.1), which is mainly
composed of the GetIndicator and GetAgentController, which respectively
initialize the tray menu and the connections towards the Kubernetes cluster.

Listing 6.1: OnReady routine
1 //OnReady i s the rou t in e o r ch e s t r a t i n g Liqo Agent execut ion .
2 func OnReady () {
3 // Ind i c a t o r c on f i gu r a t i on
4 i := app . Get Ind icator ()
5 i . Re f re shStatus ()
6 s t a r tL i s t e n e rC lu s t e rCon f i g (i)
7 s t a r t L i s t e n e rP e e r sL i s t (i)
8 startQuickOnOff (i)
9 startQuickChangeMode (i)

10 startQuickDashboard (i)
11 startQuickShowPeers (i)
12 i . AddSeparator ()
13 s t a r tQu i c kS e tNo t i f i c a t i o n s (i)
14 startQuickLiqoWebsite (i)
15 startQuickQuit (i)
16 // try to s t a r t Liqo and main ACTION
17 quickTurnOnOff (i)
18 }

Routine duration

The duration of the OnReady routine and its two main subroutines have been
measured over a series of iterations. Here are the results:

59

Experimental evaluation

Duration of initialization routines (ms)
Iteration OnReady GetIndicator GetAgentController

1 47,43 0,17 47,05
2 85,53 0,272 75,28
3 42,39 0,266 41,18
4 66,75 0,173 64,87
5 55,08 0,145 54,66
6 82,84 0,10 82,51
7 55,39 0,163 53,35
8 39,25 0,221 38,43
9 46,06 0,247 45,50
10 52,77 0,207 46,93

AVG 57,15 0,196 54,98
S.D. 15,74 0,056 14,73

Table 6.1: Duration of OnReady initialization routine and its main components.

(a) OnReady, GetAgentController (b) GetIndicator

Figure 6.1: Duration boxplots for the OnReady routine and its two main compo-
nents.

Table 6.1 clearly shows how OnReady duration is mostly influenced by the
GetAgentController sub routine (called by GetIndicator), showing on one hand the
lower impact of the Model-View component - since all graphic operations are
performed inside the GetIndicator routine - and on the other hand where future

60

Experimental evaluation

optimization efforts should be spent.
Since it is a one time operation, the overall duration of the initialization step

seems to be pretty acceptable, with an average of ≈ 57 ms.

Figure 6.2: Average duration of OnReady initialization routine.

Resources usage

The initialization phase, carried on by the OnReady routine, involves three main
actions, resulting in CPU consumption and new memory allocation:

(1) The initialization of the Indicator component, which builds the tray menu up,
along with the basic structure of immutable entries. This operation mostly
involves memory allocation for the Indicator’s MenuNodes (see 5.2.2).

(2) The initialization of the AgentController component which performs the connec-
tions towards the Kubernetes cluster and loads all the CRDControllers with the
associated watch routines to monitor Kubernetes events (see 5.3.1).

(3) The instantiation of the Indicator’s Listeners and Timers (see 5.2.2) and the
initialization of both graphical and internal sides of the tray menu choices,
according to the current status.

The test sampled the CPU and memory usage during this routine over several
iterations in order to analyse the impact of the application during the process and

61

Experimental evaluation

at the end of the transient period when it reaches its steady state. The results can
be seen in table 6.2 and figures 6.3 and 6.4.

CPU and memory usage during OnReady initialization routine

Iteration Measure Sample
1 2 3 4 5 6

1 CPU usage (%) 1,264 2,353 1 0 0,498 0
Memory usage (MB) 71,121 73,089 73,218 73,471 73,624 73,908

2 CPU usage (%) 1,638 1,2 0,49 0 0 0
Memory usage (MB) 72,521 73,411 73,299 73,509 73,693 73,948

3 CPU usage (%) 2,917 2,142 0,995 0 0,877 0,407
Memory usage (MB) 70,178 73,761 74,133 74,54 74,54 74,54

4 CPU usage (%) 0,32 1 1,485 0 0,498 0
Memory usage (MB) 70,02 73,202 73,361 73,315 73,479 73,684

5 CPU usage (%) 2,322 2,454 0 0 0,498 0
Memory usage (MB) 70,35 74,158 73,146 73,203 74,312 74,315

6 CPU usage (%) 1,714 1,803 0 0,498 0 0
Memory usage (MB) 71,17 73,277 73,30 73,748 74,116 74,27

7 CPU usage (%) 2,357 1,78 0 1 0 0
Memory usage (MB) 72,534 73,221 73,625 73,426 73,727 73,842

8 CPU usage (%) 1,217 2,5 0,995 0,5 1,424 0
Memory usage (MB) 71,014 73,33 73,412 73,535 73,834 73,802

9 CPU usage (%) 2,778 3,124 1,493 0 0 0,5
Memory usage (MB) 71,74 71,93 73,643 73,43 73,76 73,69

10 CPU usage (%) 2,89 2,1 0,98 0,5 1,594 0
Memory usage (MB) 72,30 73,358 73,217 73,36 73,38 73,38

AVG CPU usage (%) 1,942 2,046 0,744 0,250 0,539 0.091
Memory usage (MB) 71,30 73,30 73,40 73,60 73,80 73,90

S.D. CPU usage (%) 0,858 0,631 0,585 0,353 0,192 0,594
Memory usage (MB) 1,0 0,6 0,3 0,4 0,3 0,4

Table 6.2: CPU and Memory usage during OnReady initialization routine.

Figure 6.5 well indicates the consumption trends for these two resources:

• After an initial peak of ≈ 2%, mostly due to the GetAgentController execution,
the CPU usage drops down to zero. This is consistent with the Liqo Agent
workflow which blocks after the OnReady execution, waiting for user inputs or
Kubernetes events.

• The OnReady routine allocates approximately ≈ 3MB%, reaching an average

62

Experimental evaluation

Figure 6.3: Boxplots of all CPU % usage samples taken during OnReady
execution.

Figure 6.4: Boxplots of all Memory (Resident Set Size) usage samples taken
during OnReady execution.

RSS of 74MB, which is acceptable for a tray agent application.

63

Experimental evaluation

Figure 6.5: Trend lines of CPU usage % and memory (Resident Set Size) usage
during OnReady execution.

6.3 Peers Discovery
After reaching the steady state, Liqo Agent waits for events coming either from
user inputs or the Kubernetes cluster, by means of several goroutines.

The second phase of the test aimed to analyse the application response following
a series of events regarding the discovery by the Liqo framework of new Liqo peers,
i.e. new Kubernetes clusters that can be later joined. The focus was put on this
kind of events since it is the most critical in terms of time and memory allocation,
with respect, for example, to the establishment (or acceptance) of a new peering.

Table 6.3 and figures 6.6, 6.7 and 6.8 show the results.

Duration

Figure 6.9 shows the average duration of the response, which is essentially made
up of the CRDController, watching for ForeignClusters events, and the correspondent
Indicator Listener.

Since values reside in a range of around 348÷ 350µs, results seem promising,
given that the average duration of a new peer discovery by the Liqo framework is
600µs, resulting in a time overhead by Liqo Agent of ≈ 0,058%.

64

Experimental evaluation

Figure 6.6: Boxplots of Liqo Agent response duration for each newly discovered
peer.

Figure 6.7: Boxplots of Liqo Agent average CPU % consumption during the
response for each newly discovered peer.

CPU usage

Figure 6.10 shows the average CPU percentage usage during the Liqo Agent response.
The consumption stands stably under the 1%, around ≈ 0,57%. This results in

65

Experimental evaluation

Figure 6.8: Boxplots of Liqo Agent memory RSS (Resident Set Size) following
the response for each newly discovered peer.

Figure 6.9: Average duration of Liqo Agent response following each discovery of
a new peer.

two positive aspects, both in the stability and in the value itself.

66

Experimental evaluation

Figure 6.10: Average CPU % consumption during the Liqo Agent response
following each newly discovered peer event.

Memory usage

Figure 6.11 shows the average memory allocation (for the RSS) after each Liqo
Agent response to a newly discovered peer. The chart indicates the linear growth,
mostly due to the addition of a new entry in the tray menu, which is itself made
up of several MenuNodes. The trend seem pretty stable, with an average increment
of ≈ 50MB for each peer. This low value, combined with a common use case of a
reduced set of available peers, guarantees a good stability and a sustainable use of
the application even on resource constrained devices.

67

Experimental evaluation

Figure 6.11: Memory RSS (Resident Set Size) trend after the Liqo Agent response
for each newly discovered peer.

68

Experimental evaluation

CPU & Memory usage and Duration of Liqo Agent response
following a new Peer discovery

Iteration Measure available Peers
1 2 3 4

1
Duration (µ) 485 346 261 324

CPU usage (%) 0,495 0,498 0,469 0,5
Memory usage (MB) 78,445 78,991 79,27 79,87

2
Duration (µ) 395 442 187 450

CPU usage (%) 0,468 0,5 0,448 0,498
Memory usage (MB) 77,642 78,264 78,665 79,127

3
Duration (µ) 464 376 352 315

CPU usage (%) 0,5 0,78 0,772 0,67
Memory usage (MB) 77,665 77,79 78,318 78,89

4
Duration (µ) 183 448 318 297

CPU usage (%) 0,769 0,498 0,78 0,498
Memory usage (MB) 77,275 77,805 78,325 78,853

5
Duration (µ) 277 323 392 368

CPU usage (%) 0,498 0,469 0,5 0,65
Memory usage (MB) 77,754 78,277 78,81 79,101

6
Duration (µ) 361 323 443 441

CPU usage (%) 0,73 0,5 0,68 0,897
Memory usage (MB) 77,904 78,159 78,44 78,89

7
Duration (µ) 318 216 475 450

CPU usage (%) 0,569 0,457 0,498 0,5
Memory usage (MB) 77,348 77,874 78,416 79,11

8
Duration (µ) 331 156 279 250

CPU usage (%) 0,5 0,78 0,498 0,465
Memory usage (MB) 77,597 78,218 78,871 79,168

9
Duration (µ) 399 452 482 314

CPU usage (%) 0,637 0,734 0,665 0,5
Memory usage (MB) 77,707 78,562 79,673 80,02

10
Duration (µ) 277 430 304 275

CPU usage (%) 0,5 0,498 0,494 0,498
Memory usage (MB) 77,375 77,797 78,356 78,97

AVG Duration (µ) 349,00 351,20 349,30 348,40
CPU usage (%) 0,57 0,57 0,58 0,57

Memory usage (MB) 77,67 78,17 78,71 79,20

S.D. Duration (µ) 91,71 101,43 97,83 74,69
CPU usage (%) 0,11 0,13 0,13 0,14

Memory usage (MB) 0,34 0,39 0,46 0,41

Table 6.3: CPU % and memory usage and duration of Liqo Agent response
following each event of new peer discovery notified by the AgentController.

69

Chapter 7

Conclusion and future work

The work led to the realization of a lightweight desktop application with a simple
interface that aims to bring to common PC users some of the advantages of enter-
prise world orchestrators in terms of power consumption optimization, scalability,
elasticity.

Not only could this evolution have an economic impact - especially on final users
and small organizations - but also on privacy, giving users an additional choice of
where their applications can run.

The long term transition to the sharing economy has been changing the ICT
sector for years, both on demand and supply side, with new development patterns,
platforms and architecture. Projects like the application developed during this
thesis could partially help to reconcile the dilemma of the black clouds of constant
loss of control with the silver linings of having always more powerful applications
available everywhere.

In the current release, the work has been focused on the development of the
application architecture and its main features, like

• handling and monitoring main aspects of the peering/unpeering process, both
outgoing and incoming, without any need to access the terminal

• a mixed system of notifications, icons and status bar so that the user is always
aware of important events

• providing a quick access to the LiqoDash dashboard for advanced operations

• notification settings to let the user suppress desktop notifications.
The conducted tests showed that the application has no or very reduced CPU

usage during the entire life cycle and, on the other hand, an incremental memory
consumption of just ≈ 0,5MB for each known peer. These results give Liqo Agent
a good scalability and make it suitable for executions on devices with reduced
resources.

70

Conclusion and future work

Future work

Future works will focus both on features improvement and in the release mechanism.
Here are the main goals:

• to repackage the Linux version into the AppImage format which is extremely
suitable for distributing portable software on all Linux distros. Not only allows
it to wrap up all program resources in one file, but it needs no installation
process.

• to release the application also on Windows and MacOs environments.

• to expand the list of available settings to allow some useful customizations, e.g.
the autojoin option, Liqo cluster name customization and manual discovery of
foreign clusters.

71

Bibliography

[1] Moore’s Law. url: http://www.mooreslaw.org/ (cit. on p. 1).
[2] Truong Duy, Yukinori Sato, and Y. Inoguchi. «Performance evaluation of

a Green Scheduling Algorithm for energy savings in Cloud computing». In:
May 2010, pp. 1–8. doi: 10.1109/IPDPSW.2010.5470908 (cit. on p. 2).

[3] JimWright. Buy servers only if you really need them. July 2004. url: https://
www.computerweekly.com/opinion/Buy-servers-only-if-you-really-
need-them/ (cit. on p. 2).

[4] Luiz André Barroso and Urs Hölzle. «The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines». In: Synthesis
Lectures on Computer Architecture 4.1 (2009), pp. 1–108. doi: 10.2200/
S00193ED1V01Y200905CAC006. eprint: https://doi.org/10.2200/S00193E
D1V01Y200905CAC006. url: https://doi.org/10.2200/S00193ED1V01Y20
0905CAC006 (cit. on p. 2).

[5] Michael Ogbole, Engr Ogbole, and Ayomide Olagesin. «Cloud Systems and
Applications : A Review». In: International Journal of Scientific Research
in Computer Science, Engineering and Information Technology (Feb. 2021),
pp. 142–149. doi: 10.32628/CSEIT217131 (cit. on p. 2).

[6] Randy Bias. Elasticity is NOT #Cloud Computing ... Just Ask Google. Nov.
2010. url: http://cloudscaling.com/blog/cloud-computing/elastici
ty-is-not-cloud-computing-just-ask-google/ (cit. on pp. 3, 30).

[7] Kubernetes project. url: https://kubernetes.io/ (cit. on p. 3).
[8] Andrew Joint, Edwin Baker, and Edward Eccles. «Hey, you, get off of that

cloud?» In: Computer Law & Security Review 25 (Dec. 2009), pp. 270–274.
doi: 10.1016/j.clsr.2009.03.001 (cit. on p. 4).

[9] Kashim Kyari Mohammed, Aisha Abdulrahman Abba, and Aisha Muhammad.
«Cloud Security». PhD thesis. Jan. 2021. doi: 10.13140/RG.2.2.13876.
58242 (cit. on p. 4).

[10] K3s project. url: https://k3s.io/ (cit. on pp. 5, 20).

72

http://www.mooreslaw.org/
https://doi.org/10.1109/IPDPSW.2010.5470908
https://www.computerweekly.com/opinion/Buy-servers-only-if-you-really-need-them/
https://www.computerweekly.com/opinion/Buy-servers-only-if-you-really-need-them/
https://www.computerweekly.com/opinion/Buy-servers-only-if-you-really-need-them/
https://doi.org/10.2200/S00193ED1V01Y200905CAC006
https://doi.org/10.2200/S00193ED1V01Y200905CAC006
https://doi.org/10.2200/S00193ED1V01Y200905CAC006
https://doi.org/10.2200/S00193ED1V01Y200905CAC006
https://doi.org/10.2200/S00193ED1V01Y200905CAC006
https://doi.org/10.2200/S00193ED1V01Y200905CAC006
https://doi.org/10.32628/CSEIT217131
http://cloudscaling.com/blog/cloud-computing/elasticity-is-not-cloud-computing-just-ask-google/
http://cloudscaling.com/blog/cloud-computing/elasticity-is-not-cloud-computing-just-ask-google/
https://kubernetes.io/
https://doi.org/10.1016/j.clsr.2009.03.001
https://doi.org/10.13140/RG.2.2.13876.58242
https://doi.org/10.13140/RG.2.2.13876.58242
https://k3s.io/

BIBLIOGRAPHY

[11] Mattia Lavacca. «Scheduling Jobs on Federation of Kubernetes Clusters».
master. Politecnico di Torino, 2020. Chap. 2 (cit. on p. 6).

[12] Kubernetes official documentation. url: https://kubernetes.io/docs/
home/ (cit. on pp. 6, 13, 15–18).

[13] Virtual-Kubelet project. url: https://github.com/virtual- kubelet/
virtual-kubelet (cit. on pp. 6, 17, 18, 22, 26).

[14] Kubebuilder git repository. url: https://github.com/kubernetes-sigs/
kubebuilder (cit. on pp. 6, 18–20).

[15] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. «Large-scale cluster management at Google with
Borg». In: Proceedings of the European Conference on Computer Systems
(EuroSys). Bordeaux, France, 2015 (cit. on p. 6).

[16] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
«Omega: flexible, scalable schedulers for large compute clusters». In: SIGOPS
European Conference on Computer Systems (EuroSys). Prague, Czech Re-
public, 2013, pp. 351–364. url: http://eurosys2013.tudos.org/wp-
content/uploads/2013/paper/Schwarzkopf.pdf (cit. on p. 6).

[17] Ferenc Hámori. The History of Kubernetes on a Timeline. June 2018. url:
https://blog.risingstack.com/the-history-of-kubernetes/ (cit. on
p. 7).

[18] Steven J. Vaughan-Nichols. The five reasons Kubernetes won the container
orchestration wars. Jan. 2019. url: https : / / blogs . dxc . technology /
2019 / 01 / 28 / the - five - reasons - kubernetes - won - the - container -
orchestration-wars/ (cit. on p. 7).

[19] Kalyan Ramanathan. 5 business reasons why every CIO should consider
Kubernetes. Oct. 2019. url: https://www.sumologic.com/blog/why-use-
kubernetes/ (cit. on p. 7).

[20] Eric Carter. Sysdig 2019 Container Usage Report: New Kubernetes and se-
curity insights. Oct. 2019. url: https://sysdig.com/blog/sysdig-2019-
container-usage-report/ (cit. on p. 9).

[21] Diego Ongaro and John Ousterhout. «In search of an understandable consen-
sus algorithm». In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC}
14). 2014, pp. 305–319 (cit. on p. 11).

[22] Kubernetes API official documentation. url: https://kubernetes.io/
docs/reference/generated/kubernetes-api/v1.17/ (cit. on p. 13).

[23] Kubernetes Operator pattern. url: https://kubernetes.io/docs/concept
s/extend-kubernetes/operator/ (cit. on p. 19).

73

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://blog.risingstack.com/the-history-of-kubernetes/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://www.sumologic.com/blog/why-use-kubernetes/
https://www.sumologic.com/blog/why-use-kubernetes/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

BIBLIOGRAPHY

[24] Liqo project repository. url: https://github.com/LiqoTech/liqo (cit. on
p. 20).

[25] Liqo project website. url: https://liqo.io/ (cit. on p. 20).
[26] Wireguard website. url: https://www.wireguard.com/ (cit. on p. 22).
[27] CNI project. url: https://www.cni.dev/ (cit. on p. 22).
[28] LiqoDash project. url: https://github.com/liqotech/dashboard (cit. on

pp. 29, 35).
[29] Marc Hassenzahl and Noam Tractinsky. «User experience - a research agenda».

In: Behaviour & Information Technology 25.2 (2006), pp. 91–97. doi: 10.
1080/01449290500330331. eprint: https://doi.org/10.1080/014492905
00330331. url: https://doi.org/10.1080/01449290500330331 (cit. on
p. 29).

[30] Liqotech organization on Github. url: https://github.com/liqotech (cit.
on p. 35).

[31] LiqoAgent project. url: https://github.com/liqotech/liqo-agent (cit.
on pp. 38, 57).

[32] Awesome-Go repository. url: https://github.com/avelino/awesome-go
(cit. on p. 39).

[33] Systray repository. url: https://github.com/getlantern/systray (cit. on
p. 41).

74

https://github.com/LiqoTech/liqo
https://liqo.io/
https://www.wireguard.com/
https://www.cni.dev/
https://github.com/liqotech/dashboard
https://doi.org/10.1080/01449290500330331
https://doi.org/10.1080/01449290500330331
https://doi.org/10.1080/01449290500330331
https://doi.org/10.1080/01449290500330331
https://doi.org/10.1080/01449290500330331
https://github.com/liqotech
https://github.com/liqotech/liqo-agent
https://github.com/avelino/awesome-go
https://github.com/getlantern/systray

	Introduction
	From the mainframe mountain to the cloud... and back: the "water cycle" of computing
	The computing fragmentation
	Up to the Cloud: The virtualization era and development of cloud computing

	Liquid computing
	Goal of the thesis

	Kubernetes
	Kubernetes: a bit of history
	Applications deployment evolution
	Container orchestrators
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Label & Selector
	Namespace
	Pod
	ReplicaSet
	Deployment
	Service

	Virtual-Kubelet
	Kubebuilder

	Resource sharing across Kubernetes clusters: the Liqo project
	Features
	General Architecture
	Cluster representation
	Discovery
	Peering

	Liqo Agent: application design and general architecture
	Use cases
	Application design and user experience
	General architecture
	GUI Provider
	Indicator
	Agent Controller

	Available Features and Execution Workflow
	LiqoDash integration
	Available Peers
	Peerings
	Secondary options

	Liqo Agent: implementation
	Efficiency improvements
	The Go language

	App-Indicator library
	GuiProvider
	Indicator
	MenuNode
	Status

	Client library
	AgentController

	Logic library
	Icon library
	Installation on Linux distributions

	Experimental evaluation
	Test Environment and Procedures
	Liqo Agent Initialization
	Peers Discovery

	Conclusion and future work
	Bibliography

