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Summary

In the last few years, the great potentiality of deep learning has been proven by
cutting-edge artificial intelligence applications. Ranging from well-defined tasks like
object recognition or speech translation to the more generic autonomous driving,
deep learning has been proven to be an extremely powerful tool. One fundamental
concept on which deep learning is implicitly built upon is representation learning:
how we represent data matters in how we understand the world. In this work,
we first study the concept of representation learning, the methods to perform it
and its various applications. With the goal of contextualizing this framework to
deep generative models, we study the most popular generative methods and make
a qualitative comparison between them. In the last section, we will focus our at-
tention on the InfoGAN approach, which imposes explicit conditions on the input
representation and is based on the very-well performing Generative Adversarial
Network model. Experiments are carried out with InfoGAN on increasingly com-
plex datasets to assess its performance and limitations. We finally discuss how to
use GANs in the rising popular field of AI explainability.
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Chapter 1

Introduction

Intelligence is arguably the most advanced capability that human beings have com-
pared to animals and other living beings. For thousands of years, we have studied
our brain and tried to explain how it can perceive, understand, make plans about
the future, remember things, and feel emotions. The field of artificial intelligence
(AI), goes even further by studying how to build intelligent entities at the service of
humanity. Since the invention of digital computers in the 40s, the idea of building
intelligent machines come back in fashion, but it was still far away. One of the
first scientists to mention computer intelligence was Alan Turing, during a public
lecture in London in 1947, saying, “What we want is a machine that can learn from
experience” and invented the famous Turing test, to define the intelligent machine.
Turing also proposed a goal for computers: being able to win in a chess game, a
problem that if tackled as a search problem has a huge search space. About 50
years later, in 1997, the IBM computer Deep Blue, defeated the world chess cham-
pion, Garry Kasparov, in a six-game match. Even if this moment became historical,
his success was almost entirely due to the progress of electronics, that allowed the
computer to examine 200 million possible moves per second.

Artificial intelligence was still far away; many years of research with new al-
gorithms and vast hardware improvements lead to where we are today. In 2016,
Google AlphaGo defeated one of the strongest players of Go, Lee Sedol, using pow-
erful hardware, deep neural networks and reinforcement learning. The game of Go
is many order of magnitudes more complex than chess: the estimated number of
possible board configuration in chess is 10120, while is around 10174 for Go. Today,
commercial products that use text, image, and speech recognition are of common
use. Systems like automated customer support, personalized shopping experience,
and drones are all based on AI. The fields of healthcare and finance are also ben-
efiting from the technology, and self-driving cars are on their way. Furthermore,
the research in AI is incredibly active with a number of publications that grow
exponentially since the 2000s [1]. Yet, the concept of general artificial intelligence,
like a robot that can think, perceive, and plan like a human is not a reality.

While in the early days, the field of AI was dominated by trying to solve
formally-describable problems, like playing chess, more recently the focus has been
to imitate tasks that are intuitive for humans, like recognizing faces, but almost
impossible to describe formally. The solution found was to build machines that can
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Introduction

learn from experience, by extracting patterns from data, hence the field of machine
learning (ML). The latest branch of ML is called deep learning, and it is based
on the idea of learning complex abstract concepts by building them out of simpler
ones. While in classical ML algorithms, the performance of the algorithms is highly
dependent on the data representation given, deep learning algorithms can learn to
extract a good representation and build understanding on top of it. This idea is
so present in machine learning that is studied as a separate field, called represen-
tation learning. Nowadays, deep learning algorithms are able to reach human-level
performance in some well-defined tasks like speech recognition, object recognition,
semantic segmentation, but a broader and more general intelligence is not here yet.
Another exciting challenge is being able to learn more from unlabeled data, which
are readily available, leveraging what is called unsupervised learning.

1.1 Thesis Structure

The following work is articulated around three main related topics: representation
learning, deep generative models and AI explainability. The experimental part is di-
vided into three parts, regarding InfoGAN and possible applications to explainable
AI. The structure of thesis is as follows:

• Chapter 1 is an introduction to the work.

• Chapter 2 discusses representation learning, the field of machine learning
based on the concept that the performance of a model is heavily dependent
on the representation used for data. We also discuss what makes a represen-
tation better than another one and why explicitly caring about the quality of
this representation is important. The most popular representation learning
approaches are presented.

• Chapter 3: with the goal of contextualizing the representation learning
framework to deep generative models, we study the most popular generative
methods and make a qualitative comparison between them. We distinguish
between GANs, which work with an implicit density function, Variational Au-
toencoders that approximates an explicit density, and autoregressive models.

• Chapter 4 present the experimental study. We start by describing InfoGAN,
the main model we use for our experiments. In the first part of the study, we
perform a benchmark of InfoGAN on increasingly complex datasets, evaluat-
ing image quality and variety both visually and objectively. We also evaluate
the quality of the extracted representation in terms of interpretability. In ad-
dition, we investigate the usage of Dropout on training stability. In the second
part, we employ the results of the previous part to create an explainability
system that we call InfoGAN Explainability Grids. In the third experiment,
we finish by employing InfoVAE to create Decision Maps that highlight the
most important regions of an image for the classifier’s decision.

• Chapter 5 contains the conclusions and possible future developments.
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Chapter 2

Representation Learning

The notion of data representation is pervasive in all the fields of computer science:
there is always a way to represent data that is more convenient for the operations
that we want to perform. As humans, we represent information in our brain in a
way that is likely very different from the way we store them in computers. Moreover,
even between humans, we represent the same concepts in different ways according
to what is more convenient for us at the time. For example, we express temperature
in Celsius degrees if we care about how we should dress that day, but we express it
in Kelvin if we are working at a physics experiment at very low temperatures. We
express distances in millimeters if we are talking about the size of a wrist-watch
while using kilometers for road distances. In signal processing, we represent an
audio signal as an ordered list of multi-dimensional vectors. We divide the input
signal in chunks using sliding time windows, and to each chunk apply some filters,
each outputting a number that we put together in a vector. The number of filters
controls the dimensionality of the output space. Such a representation will be useful
for many signal processing tasks.

For machine learning, more specifically, a good representation (or features) is
one that eases the learning task at the end of the pipeline. Let us say we are trying
to use a simple linear regression model; this will likely not be able to work directly
on images represented as raw pixel values. If we apply a series of transformations to
the images in order to represent it as high-level features, the same model might be
able to obtain useful results. To make an elementary example, say we have a dataset
of pictures of semaphores, and we want to create a classifier that discriminates the
three different colors (red, yellow or green). We can now transform raw images (a
very high dimensional object) into vectors in a 3-dimensional space, corresponding
to the RGB color percentage in each image. With this new representation, even
a simple linear classifier might be able to identify the color of the semaphore. In
this example, we have a very efficient representation, but that is also extremely
task-specific. As we will see, we usually strive to obtain a representation that is
good for a multitude of tasks.

The starting hypothesis in representation learning is that the performance of
machine learning methods is heavily dependent on the choice of data representa-
tion [2]. A good feature space might be crafted manually by using domain-specific
expertise (feature engineering), or might be learned automatically by an algorithm.
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A representation can be learned explicitly if we are using an algorithm with this
exclusive purpose, or implicitly if we are using a deep learning algorithm with a
specific task (like classification or regression) and feeding it raw data. Feature en-
gineering was more common in the past for methods like Support Vector Machines
(SVM) and decision trees. It is an activity that exposes the weakness of the learn-
ing algorithms in extracting such meaningful and discriminative features. Being
the process based on the specific application domain is really time-consuming and
requires expertise, and for some complex and high-dimensional datasets, it can be
very challenging.

With the development of deep learning methods, the process of extracting in-
teresting features and performing a learning task is usually integrated into a single
model. If we talk about neural networks, we can see them as applying a series of
parameterized non-linear transformations in order to produce a higher-level repre-
sentation. The last layer of a neural network is usually a linear classifier (e.g. a
softmax regressor) while the rest of the model learns to provide a useful represen-
tation to this classifier. In this case, since we are using a supervised training, the
network is producing features that are explicitly crafted to benefit the task at the
end. At every layer of the network, we have a different representation, that gets
semantically more complex moving towards the last layers. This concept has been
clearly observed in convolutional neural networks (CNN) for images, where the first
layers are sensible to simple concepts like edges while the last layers might be able
to recognize more complex shapes and even objects [3].

A significant distinction in all machine learning is made between supervised
and unsupervised learning. In the supervised setting, we use prior knowledge of
the output value that the algorithm should produce (labels), and we try to make
the computed output close to the correct one. An example of this is a classifica-
tion algorithm like linear regression. In the unsupervised setting, instead, we only
leverage the data, and we try to learn interesting features about them without any
specific control signal. An example of this approach is density estimation, like k-
means clustering. While supervised training of a neural network does not involve
explicitly imposing constraints on the representation at each layer, other kinds of
representation learning algorithms are designed to shape the representation in some
particular way. For example, a constraint that is usually imposed is the disentan-
glement of features, as will be analyzed later. Furthermore, representation learning
provides an interesting way of applying semi-supervised learning: we can leverage
the enormous amount of unlabeled data available to learn a good representation
and then specialize the model in one task using a few labeled examples. An addi-
tional benefit of this approach is that it offers the chance to solve the overfitting
problem by also learning from the unlabeled data [4, Chap. 15].

Summarizing, a challenge in machine learning is “learning representations of the
data that make it easier to extract useful information when building classifiers or
other predictors” [2]. A good representation makes learning easier since it brings out
the actual degrees of freedom in the data; it captures relevant structure at multiple
scales and filters out noisy and irrelevant structures. The process of a ML pipeline
with explicit representation learning can be summarized in three simple steps (fig.
2.1): getting the raw data of interest, convert them into a better representation
and performing the learning task.
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Figure 2.1. The three logical steps of a machine learning pipeline with explicit
representation conversion. The better representation can be obtained with feature
engineering or through representation learning algorithms.

Applications of representation learning are the most disparate since all the mod-
ern deep learning approaches are based on this concept. Speech recognition, natu-
ral language processing (NLP), object recognition and image segmentation are all
examples of tasks that display great accuracy with today’s state-of-the-art meth-
ods. As a matter of fact, products based on the above-mentioned technologies
are massively available in the consumer and industrial markets. More technical
applications are in the related fields of transfer learning, domain adaptation and
multi-task learning. As defined by [2], “transfer learning is the ability of a learn-
ing algorithm to exploit commonalities between different learning tasks in order to
share statistical strength, and transfer knowledge across tasks”. By learning a rep-
resentation that is not task-specific, one can share it between different tasks with
similar data, or similar tasks with the same kind of data. If we create a hierarchical
representation, the lower layers might be shared between multiple tasks, while the
upper ones might be learned in a supervised way for a specific purpose. In this
way, multiple tasks can be learned together (multi-task learning). The concept is
that, regardless of how representation was obtained, it should be possible to use it
for a different task.

In most machine learning methods used today, feature learning is a theoretical
concept embedded in the model, so it is easy to forget about it. That being said,
caring explicitly about this aspect can bring noticeable advancements to state of
the art, as deep-learning recent signs of progress have proven.

12
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2.1 Obtaining a good representation

Since there is technically an infinite number of representations for any particular
kind of data, how do we choose and build a good set of features? All the available
methods deal with a trade-off between preserving as much information about the
input as possible and having nice properties in the representation. One thing that
can help is embedding some priors (or hints) in the learning algorithm; this is
a way to help the learner discover the underlying causal factors of variations of
the data. Representations can be crafted in order to express some general priors
about the nature of the data space. General priors embed concepts that are useful
for a variety of different tasks and distributions. Supervised learning labels are
a solid clue about a particular feature of the data, but we also want to leverage
unlabeled data by expressing some more subtle and generic clues. In order to make
a learning algorithm generalize well, we use regularization, which is basically a way
of expressing a constraint on the complexity of the model, to avoid overfitting. The
following priors, introduced in [2] and extended in [4, Chap. 15], can also be seen
as regularization strategies.

• Smoothness: assumes the function to be learned f() is s.t. x ≈ y generally
implies f(x) ≈ f(y). This assumption allows the generalization of results
from training examples to nearby points in the input space; this is a basic
prior upon which are based most machine learning models. The problem it
has is the curse of dimensionality: generalization is achieved by doing a local
interpolation between close training examples, but the abrupt variations in the
target functions may grow exponentially with the number of input dimensions.
Kernels machines and linear models are based on this assumption.

• Linearity: assumes a linear relationship between variables in the data. This
is a strong assumption that allows making inference even in the space very far
from most of the training points. Most simple machine learning algorithms
make this assumption, that does not imply smoothness.

• Multiple explanatory factors: assumes that data distribution is generated
by different underlying explanatory factors and that most tasks can be solved
easily by retrieving at least some of those factors. As described before, this
view justifies the semi-supervised learning approach. The features that are
useful for learning p(x) are also useful to learn p(y|x) because they both refer
to the same underlying explanatory factors. This idea is also behind the
concept of distributed representations.

• Causal factors: assumes that the factors of variations in the learned rep-
resentation are the causes of the training data x, but not vice-versa. This is
useful for methods like transfer learning and domain adaptation, where the
distribution over the underlying causes changes or we use the model for a new
task.

• Hierarchical organization of explanatory factors: the idea is that it
is possible to express high-level concepts in terms of simple concepts and do
this multiple times to build a hierarchy. This is exactly what happens in
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deep feed-forward neural networks, where the number of layers determines
the depth of this hierarchy and each layer work on the output of the previous
one. This idea is at the core of the incredible deep learning progress.

• Shared factors across tasks: assumes that many different tasks are related
in terms of the low-level explanatory factors. This is the hypothesis behind
multi-task learning. The sharing of the internal representation corresponds to
a sharing of statistical strength between different tasks. More formally, if we
have input x, outputs yi for the different tasks and a common set of factors
h, we can learn each P (yi|x) via a shared intermediate representation P (h|x).

• Manifolds: assumes that probability mass concentrates near regions that
have a much smaller dimensionality than the original space of the input data.
These regions are locally connected and occupy a tiny volume. Many machine
learning algorithms model very well only in those regions. Autoencoders are
explicitly based on this hypothesis since they compress a lot the dimension-
ality of the original representation.

• Natural clustering: assumes that the input space is made of many different
manifolds and data that belong to each manifold have common characteris-
tics so that it is possible to assign them a common label. Manifolds might
be disconnected, but the label remains constant within each one of these.
The manifold tangent classifier and adversarial training are based on this
assumption.

• Temporal and spatial coherence: temporally consecutive or spatially
nearby observations tend to be associated with the same value of categor-
ical concepts, or they result in a small move on the surface of a high-density
manifold. This prior can be enforced by penalizing fast changes in values over
time or space.

• Sparsity: assumes that for any given input point x, only a small fraction
of the possible factors are relevant. In terms of representation, this means
having features that are often zero (sparse features). For example, a classifier
trained on various kind of images might set most feature to zero when trying
to classify images of a specific subcategory (like animals). It is, therefore,
reasonable to enforce that any feature that can be interpreted as present or
absent should be absent most of the time.

• Simplicity of factor dependencies: assumes that in good high-level rep-
resentations, all the factors should be related to each other through simple
relationships. Some examples are linear relationship, marginal independence
or those captured by shallow autoencoders.

An important concept in evaluating representations is expressiveness: which
is the ratio between the number of possible configurations and the size of the rep-
resentation. Ideally, we want a small number of features to capture a vast amount
of different abstract concepts. We can also define expressiveness as the number
of parameters required, compared to the number of regions distinguishable in the
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input space. Algorithms that learns one-hot representations like traditional clus-
tering, Gaussian mixtures, nearest neighbor, decision trees, or Gaussian SVM all
require O(N) parameters (and/or O(N) examples) to distinguish O(N) input re-
gions. However, algorithms that learns sparse or distributed representations like
Restricted Boltzmann Machines (RBM), sparse coding, auto-encoders or multi-
layer neural networks can all represent up to O(2k) input regions using only O(N)
parameters (with k the number of non-zero elements in a sparse representation,
and k = N in non-sparse RBMs and other dense representations) [2].

Nowadays, the most powerful machine learning methods are based on deep
network architectures, whether they are standard neural networks, CNNs, re-
current neural networks (RNN) or sequence models. For deep networks, we intend
with a large number of layers, in contrast to shallow networks. These kinds of
models have the advantages of promoting feature re-usage and naturally leading to
more abstract features as we go deeper. The re-usage of features allows building
the powerful property of the hierarchy of concepts. On the other side, these mod-
els are hard to train, requiring many different techniques to obtain convergence in
a reasonable time. The theoretical advantage of deeper models can be explained
with the learning theory’s concept of VC-dimension, whose definition is reported
below. The VC-dimension of a hypothesis class gives the correct characterization
of its learnability. To explain it, we first need to define the concept of Shattering
[5, Chap. 6].

Definition 1. Shattering: Given H[S] equal to the set of splittings of dataset S
using concepts from H, we will say that H shatters S if |H[S]| = 2|S|.

In other words, a set of points S is shattered by H if there are hypotheses in H
that split S in all of the 2S possible ways. This also means that all possible ways
of classifying points in S are achievable using concepts in H.

Definition 2. Vapnik-Chervonenkis dimension: The VC-dimension of a hypothesis
space H is the cardinality of the largest set S that can be shattered by H. If H
can shatter sets of arbitrarily large size we say that H has infinite VC-dimension.

Under the definition of VC-dimension, in order to prove that VC (H) is at least
d, we need to show only that there is at least one set of size d that H can shatter.
As an example, consider H to be the set of all linear classifiers in 2 dimensions
(fig. 2.2). In this case, V C(H) = 3 since there is at least a set of 3 points that an
hypothesis from H can classify in all possible ways. On the contrary, there is no
set of 4 points that any hypothesis from H can classify in all possible ways.

Computing the VC-dimension for a neural network is a lot more complex, but
the following result holds true:

Theorem 1. The class of functions computed by multi-layer neural networks with
binary as well as linear activations and ρ weights has VC dimension O(ρ2) [6].

So the VC dimension of a neural network depends on the number of parame-
ters. According to learning theory, if a family of functions can be represented with
a smaller VC-dimension than it can be learned with fewer examples. A smaller VC-
dimension means a model with less capacity, that can cover the desired functions
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Figure 2.2. Two set of points of two classes (red and blue) in two dimensions.
On the left set it is also illustrated a possible linear classifier, and different linear
classifiers can classify these 3 points in all possible ways. On the right set there is
a configuration of 4 points that is not possible to model for any linear classifier.

with less risk of overfitting. There are also advantages related to improvements
in computational and statistical efficiency and the re-use of parameters over many
different kinds of inputs [2]. Deep architectures have a massive number of parame-
ters, but thanks to some theoretical results, we know that for the same number of
parameters, a deep architecture is exponentially more efficient than a shallow one
[7]. This is due to the fact that deep architectures can exploit the powerful concept
of hierarchical representations.

Another interesting concept that was used more in the past when describing
a good representation for pattern recognition, speech recognition and computer
vision is the idea of invariance. Having invariant features means that we are
interested in features that are sensitive to the aspects of the data we care about
and insensitive to the others. With the hierarchy of concepts of deep networks, we
have that the more abstract concepts are generally invariant to most local changes
of the input. In contrast, the opposite is exact for low-level features. The one
above is a powerful idea, but it is not enough for unsupervised learning, where we
do not know in advance the applicative task, so we would like to keep all the crucial
factors.

The alternative to this approach, disentanglement, means learning to dis-
entangle the causal factors of variations in the input data, which can intuitively
provide a high-level understanding of them with “a few” separate features. If we
think, for example, about the image in fig. 2.3, we can describe it in its entirety
with words like “Abbey Road album cover” or “the Beatles crossing the street”,
and this description would be enough for another human that knows this image to
have it in his mind. What an efficient representation! Nevertheless, if the other
person does not know the picture, we might describe it as “four men crossing a
street on the crosswalks, in the ’60”. We can also go even lower level and describe
all the objects in the picture, and even how each of this object is made in terms of
shape and color.

In the above example, we are going from a more abstract high-level representa-
tion to a lower-level one. The other thing is that all of these descriptions contain
disentangled ideas. However, how can we disentangle the concept of cars, from the
concept of men or lighting in the scene? In the recent and powerful approaches
of deep learning, the idea is to leverage the data itself, by using vast quantities of
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Figure 2.3. The Beatles: Abbey Road. An image like this can be described at
many level of abstraction. (source: Reuters).

unlabeled data. This is the most effective way of learning to separate the various ex-
planatory factors in a robust and flexible representation. Nowadays using features
learned in an unsupervised way to initialize a neural network has become common
practice (unsupervised pre-training). Seeing machine learning in the optic of mod-
eling dependencies between variables, disentanglement makes these dependencies
much simpler because the data is projected into an abstract space of high-level
concepts. In such a space, even the curse of dimensionality is hugely alleviated.
The central difference between invariance and disentanglement is the preservation
of information: while invariant features discard some information by definition,
with disentangled features, we try to keep as much information as possible [2]. Re-
garding the above-mentioned priors, we can view many of them as ways to help the
learner to discover and disentangle the underlying causal factor of input data.

All the ideas we have discussed so far have no practical utility if they cannot
be translated into a training objective, like a cost function for an optimization
problem. Defining a criterion to keep some properties in the representation is not
as easy as defining it for a specific task, like classification or regression. Often we
want a unique model that performs a specific task while learning a good set of
features, so two objectives must be combined. This problem has been investigated
extensively in recent research. The first thing that one can do is provide some
form of measurement of disentanglement between features and try to maximize
this quantity.

In [8], Glorot et al. used stacked denoising autoencoders to extract high-level
features from the unlabeled text of product reviews. They later trained a classifier
to perform sentiment analysis and successfully performed domain adaptation on a
large-scale dataset of 22 different domains. By evaluating a deep architecture on
sentiment analysis, they have been able to evaluate disentanglement. If the model
is able to somewhat disentangle the underlying factors, it will improve cross-domain
transfer since there exist generic concepts that characterize product reviews across
many domains. Besides, because some of these factors about the source dataset
were known, they could measure how the same factors are disentangled in the
learned representation.
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An interesting visual analysis is reported in fig. 2.4 where the number of features
used for two families of tasks is plotted as a color map, varying the task. The same
plot is reported using raw input data, and data with features transformed with
the proposed method (SDAsh). Comparing the two graphs, we can appreciate
how relevant features for domain recognition and sentiment analysis are far less
overlapping in the case of SDAsh. This means that the features extracted are a lot
more disentangled since their re-usage is more distinctly distributed between the
two families of tasks. Other approaches will be analyzed more extensively in the
rest of this thesis.

Figure 2.4. Number of tasks of domain recognition (x-axis) vs sentiment analysis
(y-axis). The color level at coordinate (n;m) indicates the number of features that
have been re-used for n sentiment analysis tasks and for m domain recognition
tasks. Each feature is re-used by classifiers trained on raw features (left) or features
transformed by SDAsh (right) [8].

Another critical point is being able to evaluate the quality of a represen-
tation. Since the goal of the representation is usually to improve performances of
a following task, the most logic evaluation can indeed be done on the accuracy of a
task, like classification. This is enough if we only care about using the representa-
tion on a specific task. However, it is a non-practical method to evaluate features
that should be used in a variety of tasks, since for every change in the representa-
tion we should train and evaluate a large number of models. Furthermore, this is
always an incomplete evaluation of the features since it is task-dependent.

The better alternative is to evaluate unsupervised performances. Autoencoders
and its variants are one of the most popular ways of feature learning. Intuitively the
representation created by the encoder is good if the decoder is able to accurately
reproduce the original data. A way to evaluate this is to measure the test set
reconstruction error, which can easily be computed. This evaluation, though, is
dependent on model capacity, since a more capable model will likely have a lower
reconstruction error. One can also use denoising reconstruction error in denoising
autoencoders, that by definition is immune to this problem. For methods based
on undirected graphical models (like Boltzmann machines), the evaluation is more
complex [2]. More recently, a lot of metrics for evaluating disentanglement were
invented. The idea is that a change in a single underlying factor of variation zi
should lead to a change in a single factor in the learned representation r(x). For
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variational autoencoders (VAE) some of the metrics available are: the BetaVAE, the
FactorVAE, the Mutual Information Gap, the Modularity, the DIC Disentanglement
and the SAP Score [9]. Some of these metrics will be analyzed later in the work.

In [10], Kolesnikov et al. studied the performance of self-supervised representa-
tion learning techniques applied to visual tasks, such as image recognition. They
used four different self-supervision models to learn high-quality features and then
evaluated them by measuring their performance in some supervised tasks. The re-
sults in terms of downstream task accuracy are reported in fig. 2.5. Four different
self-supervision training techniques are used. One interesting thing they proved
is that “increasing the number of filters in a CNN model and, consequently, the
size of the representation significantly and consistently increases the quality of the
learned visual representations” [10].

Figure 2.5. Downstream task accuracy on ImageNet and Places205, for four dif-
ferent semi-supervision techniques. In general, increasing the size of the features
improves the visual representation quality [10].
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2.2 Representation learning methods

2.2.1 Principal Component Analysis

One simple example of an unsupervised representation learning algorithm is princi-
pal component analysis (PCA), which is a form of manifold learning that supposes
a linear manifold. Given a dataset of points in an d dimensional space, PCA finds a
representation of the points in terms of m linearly uncorrelated variables called prin-
cipal components. Other than finding the components, the method orders them in
terms of descending variance. Since PCA is usually used for dimensionality reduc-
tion, this information allows us to pick the percentage of cumulative variance that
we want the new components to retain. The algorithm can keep the components
with the greatest variance under the constraint that each component is orthogonal
to the other ones. An example of a PCA transformation on a 2-dimensional dataset
is shown in fig. 2.6.

Figure 2.6. In the image above, the dataset was originally expressed in terms of
x1 and x2. After PCA, which can be seen as a rigid rotation, the new space is
identified by z1 and z2. The maximum variance of the data is across z1, therefore
removing z2 would not make us lose much information [4].

One way of obtaining PCA is trough eigen-decomposition of the covariance ma-
trix. This matrix can be obtained by computing: S = XXT , where X is a d
by n design matrix where each row represents a feature and each column repre-
sents a sample. Each eigenvector will represent a component in the new space, and
its eigenvalue will be a quantity proportional to its variance. We can obtain the
transformation matrix (B) as the matrix where each column is an eigenvector of
the components that we want to keep. By applying transformation B to a data
vector (x) we will obtain its projection in the subspace spanned by the columns
of B, known as the code (c). By applying the inverse transformation to the code,
we will obtain the reconstruction of the original vector in the original space (x̄).
Since B is an orthogonal matrix (the inverse is equal to the transpose) we can write:

x̄ = BBTx = Bx where x, x̄ ∈ IRdc ∈ IRm

In this case, we suppose to keep m components (with m < d), so the code will be
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m-dimensional. The accuracy of this approximation depends on how many com-
ponents we choose to keep. If m = d than the reconstruction vector will be equal
to the original data vector. PCA is a useful tool used in compression, denoising,
data visualization and feature engineering. Furthermore, the new representation
can be obtained with a closed form solution. On the other hand, its limit is the
sensibility to only linear dependencies, which makes it hard to disentangle more
complex relationships.

2.2.2 Word embedding

In the field of natural language processing (NLP), many models dealing with words
use a representation called word embedding, which is a way of representing words
as vectors in an N-dimensional space. While the simplest representation for words
is probably one-hot encoding, this is extremely inefficient since it forces to work in
a huge dimensional space (the size of the vocabulary) where points are very sparse.
One can instead design a lower-dimensional space where to map the words and
try to position them by looking at their semantic and syntactic meaning. This is
the space created by a word embedding algorithm and usually goes from 100 to
1000 dimensions. An example of words placed according to semantic and syntactic
meaning is shown in fig. 2.7. Word embeddings are usually obtained with unsu-
pervised methods, where the network is trained on identifying neighbor words in
sentences. If we would use a supervised training, as the classification of positive
vs negative reviews, we will get a representation that is biased towards separating
the words associated with the two different classes. A very popular algorithm for
obtaining word embedding is called Word2vec [11].

Figure 2.7. A visual example of word embedding. The position of word vectors
in the embedding space encodes semantic information.

2.2.3 Autoencoders

The most typical example of a representation learning algorithm is the autoencoder,
whose idea has been around since the 80s. Autoencoders were traditionally used
for dimensionality reduction or feature learning, while nowadays they are also be-
ing employed for generative modeling. An autoencoder can be seen as a particular
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case of feed-forward network composed of a combination of an encoder function
that converts input data into a new representation, and a decoder function that
converts the latent representation back into the original form. We will denote the
encoder function as fθ() and say that it is parameterized in a closed form by pa-
rameters in vector θ. The learned representation or features extracted or code will
be denoted as vector h = fθ(x) for each input vector x. The decoder function can
than be defined as gθ(h) and, given the code, it produces a reconstruction of the
original input vector: r = gθ(h). Autoencoders are trained to preserve as much
information as possible, more formally to minimize the reconstruction error L(x, r)
which is a measure of the discrepancy between the two inputs (like L2 distance).
Furthermore, if the network generalizes well, we want this error to be low on test
data while having higher values for other inputs. This means that we do not want
an autoencoder that learns to set gθ(fθ(x)) everywhere (identity function), since
that would be useless. For this reason, autoencoders are designed to be unable to
copy perfectly, by forcing a restriction on the intermediate representation h. The
most basic constraint is that the dimensionality of h must be lower than that of x.
This way, the network is forced to throw away some information, while still trying
to keep L() low; therefore, it learns to extract the most important features. Other
than learning to preserve as much information as possible, autoencoders are trained
to make the latent representation have specific properties. For this reason, there
are various kinds of autoencoders, each trying to obtain different properties. The
cost function minimized when trained an autoencoder can be defined as:

J(θ) =
∑
t

L(x(t), gθ(fθ(x
(t)))) + γR()

where the sum goes for all x(t) training examples. R() is an optional regular-
ization function that can be used to express further conditions and γ ∈ IR is an
hyper-parameter to control the regularization strength. The architecture of an au-
toencoder network where h has a smaller dimension than x is shown in fig. 2.8.
This configuration is sometimes called under-complete autoencoder.

An under-complete autoencoder, where the decoder is a linear operator and the
loss function is the mean squared error, corresponds to learning the same subspace
as PCA. When both the encoder and the decoder functions are non-linear, the
result is a much more robust feature learning algorithm, even if this higher capacity
must deal with the overfitting problem. To deal with this obstacle, we use an
appropriate regularizer function (R()) that encourages properties such as sparsity of
the representation, smallness of the derivative of the representation, and robustness
to noise or missing inputs [4, Chap. 14]. For many applications, autoencoders are
made with only one encoder and one decoder layers, but deeper architectures offer
many advantages. The universal approximator theorem ensures that “with at least
one hidden layer a feed-forward network can represent an approximation of any
function to an arbitrary degree of accuracy, provided that it has enough hidden
units” [4, Chap. 14]. A deeper autoencoder can also reduce the computational cost
of learning some complex functions and the amount of training data needed.

As we already mentioned, the hypothesis of the manifold in machine learning
assumes that data are concentrated near regions that have a much smaller dimen-
sionality than the full data space. Furthermore, the points in this region have
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Figure 2.8. The architecture of an under-complete autoencoder. The code h has
a smaller dimensionality than the input vector x, therefore the model will try to
keep the “most important” information in the learned representation.

nice abstract properties. Autoencoders also use this idea and even try to learn
the structure of the manifold. The training procedure tries to balance between
the goal of decreasing reconstruction error and the goal of satisfying the constraint
of regularization. The result obtained by applying this remarkable recipe is that
“autoencoders can afford to represent only the variations that are needed to recon-
struct training example” [4, Chap. 14]. This simple sentence summarizes the idea
behind regularized autoencoders completely. Now, if the manifold hypothesis holds
true on the data distribution we are interested in, according to the considerations
above, the learned representation will implicitly capture a local coordinate system
for the manifold. This is because only the variations that make the input value x
remain in the manifold need to cause variations to the code h. The autoencoder
needs to reconstruct well only points belonging to the data-generating distribution.
The concept of learning a representation that allows moving in the local coordinates
of the manifold is illustrated in fig. 2.9.

Figure 2.9. In the data space the manifold of the data might have a very complex
shape, like a “spaghetti”. With an autoencoder it is possible to flatten and disen-
tangle the data manifold, like in this example where in the learned representation
space the manifold takes a much simpler shape.

From another point of view, we can imagine having the manifold occupying a
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very complex shape in the original data shape. The equations to move inside the
manifold here would be very complex and comprehend many variables. On the
other hand, the encoder can make inference by interpreting the data at an abstract
level, where the manifold can be described in a much lower dimensionality. In the
learned representation, the manifold gets flatten out and disentangled. What many
algorithms learn is a representation of the data points on (or near) the manifold,
sometimes also called embedding. Instead than learning the embedding directly for
each point, an autoencoder learns to do the mapping between the two spaces.

One possible benefit of this is the ability to perform operations with a high-level
concept of the data in a straightforward way. Indeed it is possible to generate points
in the manifold, by generating them on the learned representation and projecting
them back with the decoder. The hope in doing so is that some of the dimensions in
the latent-space representation correspond to meaningful attributes. For example,
for images of faces, those might be gender or age, like in the example in fig. 2.10.
Since the space has been “flattened” the distribution in the high-level representation
is occupying a convex set. If we take two points in a convex set and interpolate
between them, those new points are still part of the set. This nice property can be
used to generate samples with specific properties by performing trivial operations
in the abstract space. It is also possible that points belonging to two different
classes are more easily separable in this new representation.

Figure 2.10. An example of image interpolation on the data manifold pro-
jected into the learned high-level space. With faces, different directions might
correspond to attributes like age or gender. Interpolation is possible since the
representation is occupying a convex set.

Autoencoders are arguably the most powerful tool in representation learning,
and they have also been extended to the generation of samples, with variational
autoencoders, that will be discussed later in this thesis.
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2.2.4 Sharing knowledge

The ability to share knowledge between different settings is a crucial skill for an
intelligent machine. Imagine if a child that learns how to draw with pencils would
need to learn everything from scratch when drawing with markers. Intelligence
means also understanding how to solve a problem reusing the experience we already
have on similar problems. As humans, we do this by building analogies between
concepts and eventually correcting our knowledge basing on a trial and error process
that provides us feedback. As a matter of fact deep learning models reach human-
level performances, but they always need a significant amount of data. The idea of
sharing knowledge aims at reducing this weakness. The concept has been formalized
into three different problems: transfer learning, domain adaptation, and multi-task
learning. In both transfer learning and domain adaptation, the goal is to exploit
what has been learned in one setting to improve generalization in another setting.
More formally if we learn to describe a data distribution P1 or we are able to
perform inference on it, we want to be able to use that knowledge to tackle also
the same problems on distribution P2.

While in a typical scenario, train and test data should come from the same
distribution, with transfer learning, they come from different distributions. The
goal is to reduce the amount of annotated data needed for a new task. What we
want is to have a representation of the data that can be shared between tasks
and eventually fine-tuned for each one. If we consider image classification, for
example, many visual categories share low-level concepts like edges, corners, shapes
and shadows. It is, therefore, reasonable to start with a representation learned
in the task of recognizing cats to recognize other kinds of animals. In practice,
for deep learning, the simplest way to do transfer learning is to use pre-training:
the parameters of a model trained on task A are reused as a starting point to
learn task B, on data that looks similar. Pre-training is a standard procedure in
computer vision today. Pre-training can be supervised or unsupervised. In the
former case, the representation will be more biased towards a specific task, while
in the second one, it will have more generic properties. Sometimes after choosing
the initial weights pre-training, the first layers of the network are frozen, and the
optimization focuses only on the last layers. This is because the first layers discover
features that are more generic and valid for many datasets. Another possibility is
to use both source and target samples to train the model but to weight them
differently. In terms of features, we can also find a common space where source and
target distributions are close, and project the data in this new space.

More complex approaches to transfer learning have also been proposed, like
the multi-modal knowledge transfer by Tommasi et al. [12]. The authors propose
a method to transfer the knowledge learned previously in source categories, to
newly target object with only a few examples available. The algorithm provides
guarantees on the learning performance by selecting the best source distribution
from where to transfer and how much. The choice is based on solving a convex
optimization problem which ensures minimal error on the available training set. In
practice, part of the knowledge needed to discriminate a new and rare (for which
a few training examples are available) object is transferred from the one acquired
with many similar objects.
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In the related task of domain adaptation (DA), we try to learn a predictive
model in the presence of a shift between training and test distributions. So the task
remains the same, but the input distribution is slightly different. As an example,
say we have a labeled dataset of animal pictures (source domain) and an unlabeled
dataset of drawings of animals (target domain). We want to be able to train a
classifier on the source dataset and make it perform well also on the target dataset.
Many DA methods try to build a mapping between the source domain, used at
training time, and the target domain, used at test time. This mapping is then
exploited when learning to extract the features for classification. This mapping can
also be learned if the target domain data are fully unlabeled (unsupervised DA),
or if there are a few labeled examples (semi-supervised DA).

The popular DA method proposed by Ganin and Lempitsky [13] (known as
DANN or RevGrad) tries to embed domain adaptation into the feature learning
process by using adversarial training. In the end, these features will be both dis-
criminative and invariant to the change of domains. To implement this, the method
uses a deep neural network (CNN for images), where the first layers are used to
extract generic features. This output is fed into two branches on the network; the
first is trained as a label predictor and the second one as a domain classifier. The
parameters of the label predictor are optimized in order to minimize training set
error. Instead, the parameters of the feature extractor are optimized to minimize
the loss of the label classifier and maximize the one of the domain classifier. The
first part of the optimization is necessary to learn discriminative features while the
second part makes them domain-invariant. The architecture of DANN is shown in
figure 2.11. The maximization of the domain classifier loss in the feature extractor
is achieved by using a gradient reversal layer, that inverts the sign of the gradient
of the loss with respect to the parameters. During the forward pass this layer is
transparent.

Figure 2.11. The architecture of the RevGrad domain adaptation
method. With this scheme the learned representation will be both
discriminative and feature invariant [13].

The third scenario that involves sharing knowledge between tasks is multi-task
learning. The goal is to have a single model that tries to solve multiple related tasks
at the same time. An example where this is used is in self-driving cars; in this case,
we need a system that based on images is able to recognize pedestrians, other cars,
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road signs and maybe perform segmentation. While we can try to address all those
tasks with different models, it is clear that some low-level features might be shared,
since they are common to all tasks. Given a certain amount of data for each task,
the low-level features will benefit from having more data, and will also experience
a regularization effect. It has been proven that overfitting is significantly reduced
with multi-task learning; in particular, the risk of overfitting is O(N) where N is
the number of tasks, while the task-specific parameters experience a greater risk
[14].

In practice, for deep learning, two possible network architectures that exploit
multi-task learning are shown in figure 2.12. The first option, called hard parameter
sharing, is to have the lower layers of the network shared between all the tasks. For
each task that there will be a following branch of the network that generates more
specialized and high-level features. The second option, soft parameter sharing, is to
have one separate network for each task and to try to have the parameters of lower
layers take on similar values. This can be done by minimizing a distance metric
between the parameters, which will be an additional regularization constraint. In
the end, multi-task learning encourages the model to prefer a representation that
also benefits other tasks, which can also be seen as a continuous bi-directional
transfer learning.

Figure 2.12. Two possible multi-task learning network architectures: hard pa-
rameters sharing (left) and soft parameter sharing (right) [15].

To summarize, the methods that allow the sharing of knowledge are all based
on representation learning. They suppose that there exist features and underlying
factors that are present in more than one learning problem and try to extract them.
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2.2.5 New approaches

Some more recent approaches related to representation learning are here illustrated.
In the method named MINE [16] by Belghazi et al. the authors argue that “the
estimation of mutual information between high dimensional continuous random
variables can be achieved by gradient descent over neural networks”. Mutual in-
formation is a way to quantify the dependence between two random variables, and
instead of capturing only linear dependencies like correlation, this is a true measure
of the overall dependence. More formally, given random variables X and Z it can
be defined as:

I(X,Z) = EPX,Z

[
log

(
p(x, z)

p(x)p(z)

)]
The authors found an estimator for mutual information that is trainable via back-
propagation and proved that it is linearly scalable in dimensionality as well as in
sample size. This estimation can be used both to minimize or to maximize mutual
information. In terms of applications, they have been able to reduce the mode-
dropping problem in generative adversarial networks (GAN) (fig. 2.13) and im-
proved inference and reconstructions in other adversarially-learned inference meth-
ods. Being able to quantify mutual information in deep learning models can allow
building regularizers based on this value, which can lead to more disentangled rep-
resentations.

Figure 2.13. The phenomenon of mode dropping in GANs: blue points
indicate the distribution of the original dataset, the orange ones the gen-
erated points. Usually (left) the generated data tend to cover only a small
portion of the dataset, while this phenomenon is greatly alleviated adding
the MINE regularizer (right) [16].

In the Deep InfoMax method proposed by [17], the authors (Hjelm et al.) inves-
tigate unsupervised representation learning by estimating and maximizing mutual
information. The maximization of mutual information is intended between the in-
puts and the outputs of a deep encoder network, and its estimation is based on the
previously described method. The important finding is that MI estimation is often
insufficient for learning useful features, depending on the task. The new idea is to
leverage the local structure of data points to create an objective that can improve
the value of the representation. This objective is based on maximizing the average
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MI between the extracted features and local regions of the input (like patches of
an image). Globally, MI maximization performs better for reconstruction tasks,
while local maximization is more suited for discriminative tasks. Furthermore, to
include characteristics like independence, the matching of a prior representation is
introduced. Two new measures of representation quality are also presented. Exper-
imental results show that Deep InfoMax outperforms many unsupervised learning
methods and performs comparably to some standard fully-supervised classifiers.
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Chapter 3

Generative Approaches

3.1 Generative and discriminative approaches

A decision problem can be solved in various ways; more specifically, we will high-
light two strategies. The first involves solving an inference problem, where training
data is used to learn a model for the posteriors p(Ck|x), where Ck is one of the pos-
sible classes and x is a vector in the input space. The following decision phase will
use the learned posteriors to give an optimal result, based on a manually crafted
decision function. A second possibility would be to solve both problems together,
by learning directly a function that maps an input x to a class Ck. Within the
first strategy, two ways are possible. The first is to model the class-conditional
densities p(x|Ck) for each class Ck and the prior class probabilities p(Ck). In the
end, assuming to know the data densities p(x) it is straightforward to obtain the
posteriors p(Ck|x) using Bayes’ theorem:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
(2.0)

where p(x) =
∑

k p(x|Ck)p(Ck) (2.1).

Approaches that model the distribution of inputs as well as outputs are known
as generative models. Having learned such a model, it is possible to sample from
them to obtain synthetic data points in the input space. Generative models are
very onerous since they involve finding the joint distribution over both x and Ck.
When training data has high dimensionality, we would need an extensive training
set to be able to determine the class-conditional densities with a good accuracy. An
advantage of this approach is that it also allows to quickly compute the marginal
density of data p(x) with (2.1). This can be useful to detect new data points
that have low probability under the model, for which the prediction may be of low
accuracy (outlier detection) [18, chap 1].

On the other hand, it is possible first to solve the inference problem of deter-
mining the posterior class probabilities p(Ck|x) and then use decision theory to
assign a new data point to one of the classes. Approaches based on this paradigm
are known as discriminative models since they model the posterior probabilities
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directly. This is the most straightforward way when we only care to make classi-
fication decisions, even though recent studies highlighted ulterior benefits in using
generative or hybrid approaches.

As a guideline, generative models fit very well when handling cases of missing
variables, and they offer better diagnostic on the results. By choosing the prior
distribution, it is also easy to add prior knowledge about the data and therefore
ease the task of learning when not enough labeled data are available. In this case,
though, one should be confident in the prior distribution that is using, because it
can also introduce errors. On the other hand, discriminative models offer great
performances when the underlying distribution of data is really complicated (e.g.
texts, images, graphs).

In their 2002 work [19] Ng and Jordan make an extensive comparison between
discriminative and generative classifiers, both in a theoretical and in an empirical
way, comparing the performance of logistic regression and naive Bayes classifica-
tion algorithms. The authors challenged the common belief that discriminative
classifiers are almost always to be preferred. Several reasons push the usage of dis-
criminative models, like the argument by V. Vapnik saying that “one should solve
the problem directly and never solve a more general problem as an intermediate
step”, referred to directly modeling the conditional p(Ck|x). From this point of
view, the benefits of generative models seem to be related only to computational
issues or handling missing data.

The authors considered the naive Bayes model (for both discrete and contin-
uous inputs) and what can be considered its discriminative counterpart: logistic
regression for linear classification. The study proved that the generative model
does have a higher asymptotic error (as the number of training examples becomes
large) than the discriminative one. The exciting finding is that a generative model
may approach its asymptotic error much faster than the discriminative counterpart,
possibly with a number of training examples that is only logarithmic, rather than
linear, in the number of parameters. This behavior is showed in the experiments
in figure 3.1.

Figure 3.1. Results from three experiments from different datasets from the UCI
Machine Learning repository. The plots show classification error vs the number of
training samples (m) for naive Bayes (solid line) and logistic regression (dash line).
Results are averaged over 1000 random train/test splits. The faster convergence
of the naive Bayes to is clearly depicted here [19].

In [20] Bishop and Lasserre also discuss the differences between these two ap-
proaches and how to get the best of both worlds. The authors first underlay the
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advantage of using generative methods, since they can also exploit unlabelled data,
which are much more readily available. While it is possible to improve general-
ization performance of generative models by training them discriminatively, they
would no longer be able to leverage unlabelled data. In an attempt to gain benefits
from both approaches, the authors propose a heuristic procedure which interpo-
lates between these two extremes. The interpolation is done by taking a convex
combination of the generative and discriminative objective functions.

In the work, it is argued that generative and discriminative models correspond
to specific choices for the prior over parameters and that “a discriminatively trained
generative model is fundamentally a new model”. The proposed approach is a new
and generic way of interpolating between generative and discriminative extremes
through alternative choices of prior. This new framework is shown using both syn-
thetic data and a practical example in the domain of multi-class object recognition.
Finally, the authors propose a method to automatically find the best trade-off be-
tween the two approaches. The reported experiments confirm that when labeled
training data are limited, the maximum performance is reached with a balance
between the purely generative and the purely discriminative models.
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3.2 Generative models

Other than classification, generative models can be used directly for the task of
generating new samples from the same distribution of some given training data.
More formally, given a training data distribution pdata(x), the goal is to learn a
distribution pmodel(x) as similar as possible to the first distribution. The task is
a particular case of density estimation, which is a core problem in unsupervised
learning. There are mainly two ways of solving these problems. It is possible to do
explicit density estimation, where we explicitly define and solve for pmodel(x), or one
can do implicit density estimation where the goal would be to learn a model that
can sample from pmodel(x), without explicitly defining it. Generally speaking, the
training of a generative model would optimize a score that measures the difference
between the generated distribution and the true data distribution. For example,
the KL-Divergence can be used to measure the dissimilarity of two probability
distributions. The applications of generative models also include tasks like super-
resolution, where the goal is to artificially enlarge the size of an image or colorization
of black and white images. If applied to time series, generative models can be used
for simulation and planning of the future.

Various kind of generative models are available, all based on the principles
explained above. The three most popular approaches are:

• Generative Adversarial Network (GAN) [21]: composed of two neural
networks which are trained with adversarially against one another. A gener-
ative network tries to generate data similar to the input data distribution. In
this way, it will try to fool the discriminative network, whose job is to distin-
guish between original and generated data. As training goes on, hopefully,
both networks will improve, with the result of having a generator that exactly
reproduces the true data distribution. For images, GANs currently generates
the best quality samples, but they are difficult to optimize, due to problems
of training instability.

• Variational Autoencoder (VAE): is a neural network model based on
an autoencoder with sampling in the latent space, which explicitly models
the probability distribution we are trying to obtain. It can be considered a
probabilistic graphical model with the goal of maximizing a lower bound on
the log likelihood of the data. When working with images, generated samples
tend to be blurry.

• Autoregressive models: they use a neural network that models the condi-
tional distribution in terms of a spatial relationship between sub-portions of
an input data point. These approaches model explicitly a distribution gov-
erned by a prior imposed by the model structure. An example of this category
is the PixelRNN [22] algorithm, which works with images and models the con-
ditional distribution of every individual pixel given nearby pixels. PixelRNN
have a very stable training process and provides good quality data, however
the sampling process can be inefficient.
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A map that tries to classify the various generative models available today is
shown in fig. 3.2. Between those models, VAE and the ones that explicitly model
a parametric representation of a probability distribution function are the ones the
were developed first. These models can be trained by simply maximizing the log
likelihood of the distribution. Since complex data distributions of real data have
intractable likelihood functions they require various approximations. As will be
illustrated later, VAE treats an approximate density through the optimization of a
lower bound. Another very successful algorithm in this category is Deep Boltzmann
Machine [23]. These difficulties motivated the development of generative models
whose goal is directly the one of generating samples from a certain distribution,
without explicitly representing the likelihood. The most famous in this category are
GANs and Markov Chain based models like Generative Stochastic Networks (GSN)
[24]. Those models can be trained with standard backpropagation and without
making approximations. GANs extend the GSN idea but remove the Markov chains
used there.

Figure 3.2. Deep generative models map [25]. These approaches can be differen-
tiated in how they model the likelihood: on the left branch the ones that explicitly
express it and try to maximize it and on the right the ones who interact with
it indirectly. For example, for GANs, the training algorithm considers only the
quality of the generated samples. Between the explicit ones, it is possible to dis-
tinguish the one that work with a tractable density, and the ones that work with
an intractable one and therefore have to approximate it.
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3.2.1 Boltzmann machines

Boltzmann machines have been introduced to learn generic probability distribution
functions over vectors. They are tailored to work with binary vectors, in which each
component can take only a value between two discrete ones. Training a Boltzmann
machine involves adjusting its parameters such that the represented probability
distribution fits the training data as well as possible. It is usually considered a
generative model, so it allows sampling from the learned distribution, more specif-
ically to a marginal distribution of interest. For example, one can fix the units
corresponding to a partial observation and sample the remaining ones to complete
the input piece. That being said, the model can also be used to classify new sam-
ples by training it to learn the joint probability distribution of the inputs and the
corresponding labels, fed together in the input units.

Given a training set of n-dimensional points, the joint probability distribution
over the observed variables is modeled as follow:

P (x)
exp(−E(x))

Z
=
exp(xTUx+ bTx)

Z

Where x ∈ {0,1}d, Z is a normalization function that ensures that
∑

x P (x) = 1
and E(x) is known as an energy function. The trainable model parameters are
spread between the weight matrix U and the bias vector b. With the energy func-
tion written above, the Boltzmann machine can express a probability density as a
linear relationship of the input vectors. By adding some latent variables, the model
becomes similar to a multi-layer neural network and will be able to approximate any
probability mass functions over discrete variables. This joint probability is known
in Physics as the Boltzmann distribution and it is used in quantum mechanics to
compute the likelihood that a particle can be observed in the state with energy E.
From this it derives the name of the model.

Maximum likelihood estimation is usually employed to train Boltzmann ma-
chines, but since they have an intractable partition function (Z), the gradients
must be approximated. A more common variant of this model is the Restricted
Boltzmann Machine (RBM), invented by P. Smolensky in 1986, which is an undi-
rected model containing a single layer of latent variables. No connections between
units of the same layer are permitted. Usually, each unit of the input layer is con-
nected to every unit of the hidden layers, but it is also possible to have a sparse
structure. If there is more than one hidden layer, it is called a Deep Boltzmann
Machine (DBM). RBMs are almost straightforward to train, compared to other
deep models, since it is possible to compute P (h|v) in closed form exactly. Train-
ing DBM instead is much more difficult since both the partition function and the
inference are intractable.

While this model is not frequently used today, in 2007, Salakhutdinov et al.
[26] scored a state-of-the-art performance on the Netflix collaborative filtering prize
using a two-layer RBM. Given a training set of per-user movie reviews, the goal is
to predict a new movie’s rating that a specific user has not yet rated. For example,
considering movies, one can think that each movie can be explained in terms of some
latent factors, that can ideally be associated with the genre, the actors who play in

35



Generative Approaches

Figure 3.3. A deep Boltzmann machine, an undirected graphical model with
two hidden layers (h(1), h(2)). The connections are only between units of dif-
ferent layers, in this case each unit is connected to every units of the following
layer. The structure of a this model looks like a feed-forward neural network,
but the output layer has a different function, since predictions are made in a
different way [4, Chap. 20].

it, or the year it was released in. In the same way, users might be identified by the
movies they prefer or watch more frequently. One can then craft a model that tries
to associate users to movies based on these underlying factors. A model like this
can be trained using data about user’s movie preferences and the corresponding
collaborative movie tastes of all users. Since RMBs are designed for binary inputs,
one can input user preferences as simply like/dislike. Passing this data to the input
layer, the model can discover latent factors in the data that can explain the movie
choices. In particular, each hidden layer will represent a latent factor. In [26], the
authors trained the model with over 100 million user/movie ratings. The results
outperformed the best-tuned Singular Value Decomposition (SVD) models, and
when combined, the two models achieved a record error rate for the time.
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3.2.2 Pixel Recurrent Neural Networks

Among the generative models applied to images that explicitly deal with a proba-
bility density function, we find the Pixel Recurrent Neural Networks or PixelRNN,
introduced by van den Oord et al. [22] from Google DeepMind in 2016. When
dealing with natural images, we have the advantage of having a practically endless
amount of data, which can be leverage as-is by unsupervised models. On the other
hand, images are a very high-dimensional and structured kind of data, therefore
building a good estimator for their distribution is a very challenging task.

While approaches like VAE work with an intractable density function and must
make approximations, the idea behind autoregressive models like PixelRNN is to
factorize the objective distribution into a product of conditional distributions. In
the case of images, we are talking about obtaining the joint distributions of the
pixels by casting it as a product of the conditional distribution of each pixel, given
all the previous ones. In this way, the problem is converted into a sequence problem
that can be solved with a sequence model like the famous Recurrent Neural Network
(RNN) architecture. RNNs offer a compact and shared parametrization for a series
of conditional distributions, as a sequence of image pixels. Both the PixelRNN and
the related PixelCNN do not introduce independence assumptions like in latent
variable models. They instead capture the dependencies between pixels and RGB
colors within each pixel.

Compared to VAE and GAN, autoregressive models have the advantage of hav-
ing a very simple and stable training process, while for example, GANs are usually
challenging to optimize due to unstable training dynamics since they are trying
to find a Nash equilibrium with a trial and error approach. They also currently
give the best log likelihood between the three, and offer a tractable likelihood that
can also be used for additional tasks, like such as compression and probabilistic
planning and exploration. On the other hand, they are relatively inefficient during
sampling, for reasons that will be clarified later. In terms of image quality though,
GANs have the best perceived quality. Another note is on the type of data that
can be used: autoregressive models are more flexible, while it would be difficult
to generate discrete data with a GAN. Efforts are being made to incorporate both
classes’ advantages in a single model, but it is still an open research area.

The PixelRNN model is based a two-dimensional RNN, composed of up to twelve
Long Short-Term Memory (LSTM) layers. With PixelRNN the image is treated
as a sequence of pixels going row by row, or according to other patterns described
later. Each pixel is dependent on the previously generated pixels, as expressed by
the following equation:

p(x) =
n2∏
i=1

p(xi|x1, ..., xi−1)

where p(x) is the probability of the pixel values of an image x represented as
an n by n vector (row by row for example).

The principle behind an RNN is that each unit should depend not only on the
current input but also on previous input values. This is implemented by introducing
a loop on the network that propagates forward a signal from previous time steps.
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This design allows modeling ordered sequences of data, where the result would
depend on the trend of the entire sequence. Such a network structure is ideal for
treating things like stock prices, speech, and text, and it has been widely used in
tasks like speech recognition, language modeling, translation, and image captioning.
An illustration of a basic RNN architecture is shown in figure 3.4. The simplest
training algorithm for an RNN is called backpropagation through time (BPTT),
and it includes a further step compared to normal backpropagation used to train
feed-forward neural networks. The error signal obtained from the loss computed in
the output for each pass must also be propagated backwards to each time step unit.
This is because the parameters are shared between time steps, and the gradient at
each output also depends on the previous steps. The loss function is computed by
accumulating the losses of each time step. This algorithm also has its weaknesses,
like the vanishing gradient problem, for which variations have been proposed.

Figure 3.4. This scheme represents the architecture of a Recurrent Neural
Network. The loop inside the network allows information to persist (left image).
On the right, the same network with the loop unrolled. The node (A) can be a
neural network neuron or an entire layer. Input xt is the data point at time t and
ht denotes the corresponding output. At each time step, the input is dependent
on the current input point and on the state computed at the previous time
step. Therefore, the output sequence is computed sequentially and cannot be
parallelized.

LSTM networks are a special kind of recurrent neural network which have
achieved most of the exciting results in the sequence modeling field. It can be
considered an improved version of RNN since it performs better almost every time.
When modeling sequence of data it might be useful to pick both short term and long
term dependencies, like a long sentence where the final word’s meaning is related
to the entire phrase. Unfortunately, RNNs have problems picking up long-term de-
pendencies, even if theoretically they are allowed to. This problem has been studied
and explained by Hochreiter [27] in 1991 and Bengio et al. [28] 1994. In the latter,
the authors affirm that the gradient descent training method “becomes increasingly
inefficient when the temporal span of the dependencies increase”. The LSTM ar-
chitecture has been proposed exactly to address this limitation by Hochreiter and
Schmidhuber in 1997 [29]. An LSTM cell takes the place of the RNN cell inside
the network, but inside it has a different structure: there are four layers connected
in a specific way. This structure is illustrated in details in figure 3.5.

Going back to PixelRNN, it uses LSTM units and convolution to compute at
once all of the states along one spatial dimension of the image. More specifically, the
Row LSTM layer applies the convolution row by row, while the Diagonal BiLSTM
applies the convolution along the diagonals of the image. Some residual connections
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Figure 3.5. A comparison between a simple RNN cell and the classic LSTM cell.
While the first can contain only a simple tanh() unit, four layers are used inside
an LSTM cell. Furthermore the LSTM cell has two loop signals instead of one.

are also employed since they benefit the training procedure of the relatively deep
architecture (12 layers). Residual connections are a mechanism to improve the
training of very deep architectures developed by He et al. [30], within the so-called
Residual Networks (ResNet in short). The authors also developed a simplified
architecture called PixelCNN, which is a 15-layers network. CNNs are used as a
sequence model with a fixed dependency range by applying masked convolutions.
This model preserves the resolution of the input mage going throughout the layers
and outputs a conditional distribution at each location [22]. Finally, a multi-scale
version of PixelRNN has been proposed, composed by a regular-size and a few
smaller versions of the model. The smaller versions should capture global features
better, and the regular one captures more local features. Feature vectors are added
together in the first part of the network and then fed to the remaining pipeline. In all
architectures, pixels are modeled as discrete values using a multinomial distribution,
which has shown better performances.

Figure 3.6 shows the sequential process of image generation with the PixelRNN
model, which happens row-by-row in the left figure. In this case, each pixel is
conditioned on all the previously generated pixels above and to the left of it. Both
long and short term dependencies are carried out thanks to LSTM cells. In the
middle figure, the multi-scale context pixel dependencies are depicted. Each pixel
can also depend on the other subsampled pixels in all directions. On the right, the
dependencies between colour channels are shown. On the first layer, for example,
the green channel of one pixel is dependent both on the previous channel (red here)
and to the context of all previous pixels. In subsequent layers, channels are also
connected to their corresponding channel on the previous layer.
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Figure 3.6. Diagrams of PixelRNN intra-pixel dependencies. On the left, the
row-by-row case is shown, where each pixel depends only on the previously gen-
erated ones. In the center, the multiscale case is shown: each pixel depends both
on pixels of the current image and on the subsampled version. On the right, the
connections between color channels are shown [22].

PixelRNN has been extensively tested on benchmark datasets like MNIST,
CIFAR-10 and the more complex ImageNet, which contains a huge variety of natu-
ral images. Excellent results have been obtained in terms of negative log-likelihood
and visual quality. The model has also been tested on the task of image completion
(fig. 3.7) achieving results that demonstrate its ability to model both spatially local
and long-range dependencies.

Figure 3.7. Example results of PixelRNN on the task of image
completion on ImageNet [22].
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3.2.3 Variational Autoencoders

We have already introduced the concept of autoencoder; an unsupervised approach
for learning a lower-dimensional feature representation of a given data distribution.
In an under-complete autoencoder, the hidden layer act as a bottleneck promoting
the learning of a compressed representation. The reconstruction loss forces the
latent representation to capture the most relevant information about the data as
possible.

Once an autoencoder has been trained, the expanding part of the network can
theoretically be used to generate new samples belonging to the distribution. In
practice, this is very difficult since the latent space extracted is not regular in the
sense that it depends a lot on its dimension and the encoder architecture. Without
an additional mechanism, it is difficult to ensure that the latent space is compatible
with a working generative process. By randomly sampling points on the latent
space, the decoder will likely generate meaningless output samples. This behavior
has to be expected since the model has been designed solely to encode and decode
samples with as few loss as possible, no matter how the latent space is organized.

A variational autoencoder [31] can be defined as being an autoencoder whose
training is regularized to avoid overfitting and ensure that the latent space has good
properties that enable generative process. The model uses a learned approximate
inference and can also be trained with standard gradient-based methods. The new
model is now probabilistic, allowing to generate new samples that belong to the
training distribution, and eventually control some meaningful features.

Figure 3.8. Schemes of the classic autoencoder network (above) and the corre-
sponding variational autoencoder (bottom). In both cases an input, like an image
of a handwritten digit, is fed into the encoder and the decoder reconstructs a sam-
ple that belongs to the same distribution. In the case of VAE the network learns
the parameters of a latent distribution that allows the encoder to sample from it.
(Source: MIT course 6.S191 Introduction to Deep Learning.)
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The deterministic inner layer (z) is here replaced with a stochastic sampling
operation. Instead of learning the latent variables directly, for each variable we
learn a mean (µ) and a standard deviation (σ), associated to a reasonable prior
distribution (fig. 3.8). What the encoder network computes is now the probability
distribution pφ(z|x), while the decoder computes qθ(x|z), both parameterized by
learnable parameters. The loss L(φ), reported below, includes a term that measures
the difference between the generated output and the original one and a regularizer
that tries to keep the distributions of the latent variable close to a prior p(z). A
common choice for this prior is a normal Gaussian. The encoder is therefore en-
couraged to center the latent variables evenly in their space. If this was not the
case, the network could “cheat” by memorizing training data, which corresponds
to clustering points in specific regions of the latent space.

L(φ,θ,x) = ||x− x̂||+D(pφ(z|x) || p(z))

The regularization term D is usually defined as the KL-divergence between two
distributions.

An issue that arises with this architecture is the impossibility to back-propagate
gradients through the sampling layers, since they are now a stochastic layers. As
a matter of fact, the backpropagation algorithm requires to compute gradients at
each layer and apply the derivative’s chain rule. The key idea to solve this issue
has been named “reparametrization trick” and consists in re-parametrizing the
sampling layer such that the network can be trained with backpropagation end-to-
end. More specifically we can consider the sampled latent vector z as a sum of
a fixed mean vector (µ) and a standard deviation vector (σ). Both will than be
scaled by a random constant drawn from the prior distribution (ε) [32]. So, instead
of having z ∼ N (µ,σ) we will have z = µ + σ � ε, where ε ∼ N (0, 1). The
computational graph of the sampling layer is shown in figure 3.9.

Figure 3.9. Computational graph of the sampling layer in a variational au-
toencoder. In particular the reparameterized form allows computing gra-
dients and train the network with backpropagation. (Source: MIT course
6.S191 Introduction to Deep Learning).
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From a theoretical point of view, the VAE loss presented here is an approxima-
tion of the quantity that we want to maximize, which is the log likelihood of the
original data pθ(x). This likelihood can be expressed as:

log pθ(x) = Ez∼q(z|x)[log pθ(x)] =

= Ez

[
log

pθ(x|z)pθ(z)

pθ(z|x)

]
= Ez

[
log

pθ(x|z)pθ(z)

pθ(z|x)

qφ(z|x)

qφ(z|x)

]
=

= Ez[log pθ(x|z)]− Ez

[
log

qφ(z|x)

pθ(z)

]
+ Ez

[
log

qφ(z|x)

pθ(z|x)

]
=

= Ez[log pθ(x|z)]−DKL(qθ(z|x)||pθ(z))) +DKL(qθ(z|x)||pθ(z|x))

On the expression above the last term is intractable, since it is not possible to
compute pθ(z|x) for all values of z. On the other hand, since it is a distance we
know it is always greater or equal to zero. With this observation in mind, we decide
to optimize the following variational lower bound instead, which is differentiable:

L(φ, θ, x) = Ez[log pθ(x|z)]−DKL(qθ(z|x)||pθ(z)))

where L(φ, θ, x) ≤ log pθ(x)

therefore the gradient-based training algorithm will find the optimal parameters
by solving:

θ∗, φ∗ = argmaxθ,φ

N∑
i=1

L(φ, θ, x(i)).

The variational autoencoder applied on images produces excellent results in
terms of image quality and it also is a powerful manifold learning tool. The archi-
tecture of VAE, having both an encoder and a generator trained together naturally
promotes to learn a predictable coordinate system. Results of a linear interpolation
in a two coordinate system can be seen in figure 3.10. Even if the VAE model is
somewhat elegant and between the state of the art solutions in terms of results, it
suffers from a problem: the produced output images look a bit blurry. The pre-
cise cause of this issue remains unknown, but it has also been observed in other
generative models that optimize a log-likelihood or the KL-Divergence between the
model distribution and the training data one. Furthermore, VAEs tend to use only
a small portion of the latent space dimensionality [4, Chap. 20].
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Figure 3.10. Visualization of the learned manifold, by interpolating two latent
codes linearly and mapping the produced images on a 2D plane. On the left the
Frey Face dataset, in which the model have learned to encode head rotation and
face expression. On the right the MNIST digits dataset [31].

VAEs have many applications in the field of representation learning and are a
great tool to build a meaningful latent space. One great example is the 2018 work
by Gómez-Bombarelli et al. [33] where they used a VAE to model some chemical
compounds. In particular, the network is trained on thousands of molecules of
existing drugs and a continuous representation in the latent space is obtained. In
the new continuous representation, it is possible to perform exploration near known
molecules, interpolation between two of them or efficient searching using gradient-
based optimization (fig. 3.11).

A popular variant of the presented model is the so-called Beta Variational
Autoencoder (β-VAE) introduced by Higgins et al. [34], which focuses on the
independence of the latent factor. The model tries to extract a disentangled repre-
sentation, where a change in a single latent variable corresponds to a single change
in the generative factors. As a matter of fact, the goal is to decompose the genera-
tive process into independent factors. This yields to a more interpretable and useful
representation, which can also benefit downstream tasks. In practice the difference
with respect to the original VAE is the introduction of a multiplier β > 1 in the
KL-Divergence term of the loss function:

L(φ, θ, x) = Ez[log pθ(x|z)]− β ·DKL(qθ(z|x)||pθ(z)))

This factor penalizes the KL-divergence in the optimization, favoring the prior
and encouraging the model to learn the most efficient representation of the data.
Assuming that the real data has some conditionally independent underlying fac-
tors, a higher value of β encourages learning such representation. A too high value
of the hyperparameter, on the contrary, will lead to a lower reconstruction fidelity.

44



Generative Approaches

Figure 3.11. Applying VAE to chemical molecules. The original discrete space
in which molecules are represented (SMILES notation) can be converted to and
from a continuous space with a VAE. From the latent space representation an
additional network tries to predict properties (fig. a). In the continuous space it
is also possible to model a certain property and find new molecules with a specific
characteristic thanks to gradient based methods (fig. b) [33].
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3.2.4 Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a deep generative model proposed in
2014 by Goodfellow et al. [21]. The method is based on two CNN networks trained
together with an adversarial procedure; a generative model captures the data distri-
bution, and a discriminative model estimates the probability that a sample comes
from the real data distribution. During training, the generator and the discrimi-
nator roles are equal and opposite, in what is called a zero-sum game. GANs do
not explicitly model the probability density of the training distribution; instead,
they use a trainable model to directly evaluate the quality of the generated sam-
ples. The intuition behind GANs is that the two models can improve together by
sharing feedback; this is also the reason why training needs to be balanced between
these two parts, as we will discuss later. The training procedure will ideally stop
when generated samples are indistinguishable from the real ones. In the proposed
framework, the two multilayer perceptrons working together are called adversarial
networks.

Compared to VAEs, they also pair a differentiable generator network with a sec-
ond neural network. But differently from GANs that use a discriminative network,
VAEs network perform approximate inference. Furthermore, since GANs requires
differentiation through visible units, they cannot model discrete data. In contrast,
VAEs requires differentiation in the hidden units, so it cannot have discrete latent
variables.

Let us denote the generated samples as x = g(z,θ(g)), where g is the generator
network transformation, parameterized by the matrix θ(g). This network takes as
input a random noise vector (z), usually sampled from a normal or uniform distribu-
tion. This input gives the desired stochastic characteristic to the produced outputs.
The discriminator produces a probability value p = d(x,θ(d)) corresponding to x
being drawn from the training examples, which belong the real distribution.

During training each network tries to maximize its own payoff function: v(θ(g),θ(d))
for the discriminator and −v(θ(g),θ(d)) for the generator. At convergence the opti-
mal generator would be:

g∗ = argming maxd v(g, d)

The payoff function is usually defined as:

v(θ(g),θ(d))) = Ex∼pdata log d(x) + Ex∼pmodel
log(1− d(x))

At convergence, the generated samples should look like they have been drawn from
the training distribution, and the discriminator outputs 1/2 everywhere. The dis-
criminator can be discarded if the purpose is just generation. The GAN paper
authors also theoretically proved that the above training criterion for adversarial
networks allows recovering the data generating distribution given enough capacity.
When implementing the training, it is necessary to use an iterative, numerical ap-
proach which will alternate k steps of optimizing the discriminator and one step of
optimizing the generator (usually k=1).

This algorithm is stable as long as the two networks learn at a similar rate;
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otherwise, no useful feedback is produced and learning stops. This problem has
been investigated first by Goodfellow [35] and is due to the non-convex nature of
v(g, d) when d and g are represented by neural networks. This issue may prevent
the reaching of convergence which results in underfitting, a general problem of
simultaneous gradient descent on two actors. The equilibrium point, in this case,
is represented by a point that is simultaneously a local minimum for both player’s
cost functions. The author also introduced a new formulation of the GAN payoff
function which performs better in terms of convergence. In this formulation, the
generator tries to maximize the log probability that the discriminator makes a
mistake. This is motivated by the heuristic that the derivative of the cost function
remains large even when the discriminator outputs a strong negative signal. Today,
training stabilization in GANs remains a critical point, but various techniques have
been introduced to ease it.

The training algorithm of the original GAN (from [21]) is reported below. G and
D indicate respectively the generator and discriminator network transformations.
This algorithm allows to find the optimal generator g∗.
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The scheme of the GAN architecture is shown in figure 3.12. Real images are
taken from the unlabelled training dataset. The binary switch before the discrim-
inator input shows how the network is trained with both real and fake data in
different steps.

Figure 3.12. Scheme of the original GAN architecture. The generator and dis-
criminator blocks are multi-layer perceptrons. The random noise vector z is drawn
from a normal or uniform distribution. The two cost function to minimize during
backpropagation are specified for both the generator and the discriminator.

In 2016 Radford et al. [36] introduced an improved version of GAN specifically
tailored for images, called DCGAN. The authors proposed a set of improvements
to the architecture to make training more stable. In addition, the quality of the
features learned by the model also gets assessed.

The first improvement is to use strided convolutions on the discriminator and
fractional-strided ones on the generator. These should be used instead of the usual
deterministic spatial pooling functions that do not allow the model to learn its own
spatial downsampling or upsampling. The second improvement regards removing
fully-connected layers in deeper architectures, which provides improved training
stability. The third suggestion is to use Batch Normalization layers [37], as in most
of the modern CNN architectures, which also stabilizes learning by normalizing the
input of each unit to zero mean and unit variance. This technique mitigates poor
initialization of weights and helps the gradient flow through deep networks. Batch
Normalization applied to every layer can cause instabilities, so the generator output
layer and the discriminator input layer do not have it in DCGAN. In addition,
DCGAN uses bounded activation functions like ReLU (Rectified Linear Unit) in
the generator (except for the output layer which uses Tanh) and LeakyReLU in the
discriminator. Such family of functions allows the model to learn more quickly to
saturate and cover the entire color space of the training distribution.

To asses the semantic quality of the features extracted by the generator, the
images corresponding to an interpolation of the input vector have been analyzed.
Some of these are shown figure 3.13, where all images look plausible and there is a
smooth transition between them.

A problem that can happen during generation with GANs is the so-called mode
collapsing. A mode in a distribution is roughly speaking an area with a high
concentration of samples - for example, a normal distribution as a single-mode
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Figure 3.13. Images generated by the DCGAN model with a linear interpolation
of the input noise vector, from left to right. In the third row the concept of ”size
of a window” seems to be expressed [36].

corresponding to its mean value. In a hyperspace defined by meaningful features of
the data generating distribution, data will likely be clustered around dense areas.
For example, consider the handwritten digits in a feature space defined by two
features that correspond to the two coordinates of the points belonging to each digit.
The numbers will be clustered around areas corresponding to digits with similar
features, and we will likely have a 10-mode distribution. Mode collapse happens
when the generator learns to “fool” the discriminator by producing examples from
a single class or mode from the whole training dataset. This is unfortunate because,
while we want the generator to produce samples that look as real as possible, we
also care about covering all the possible modes in the original distributions.

In the original formulation of GANs, the Binary Cross-Entropy (BCE) loss is
used. In the Wasserstein GAN paper [38] (WGAN) the authors found that this
loss is prone to mode collapsing and vanishing gradient problems. This is due to
the BCE loss outputting values between 0 and 1 and, as the discriminator learns,
it will by pushing the values towards those limits. The authors of WGAN propose
to use the Earth Mover’s distance, which measures the difference between two
distributions. The latter is not limited, so the cost will continue to grow regardless
of how far the two distributions are. As a result, the gradient of the cost function
will not approach zero, making the GAN less prone to vanishing gradient problems
and mode collapse.

With the Wasserstein Loss (or W-loss) that approximates the Earth Mover’s
distance, training is defined as follows:

ming maxc E c(x)− E c(g(x))

where c indicates the discriminator network function, here called critic since it
no longer outputs values between 0 and 1. Since it is not bounded the critic is
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allowed to improve without degrading its feedback to the the generator. In addi-
tion, for the W-loss to work well the critic network should respect the 1-Lipschitz
continuity condition. A function meet this condition if the norm of the gradient is
at most one in every point. This means that its slope cannot be too steep at any
point, because the function cannot grow more than linearly. 1-Lipschitz continuity
ensures that the W-loss is not only continuous and differentiable, but also that it
does not grow too much and maintain some stability during training.

Two common ways of ensuring 1-Lipschitz continuity are weight clipping and
gradient penalty. With the first technique, the weights of the critic network are
forced to take values between a fixed interval. The clipping is done after updating
the weights during gradient descent. The downside of weight clipping is that it
could limit the critic’s ability to learn, therefore slowing down learning or even
avoiding it to find the optimal point. Furthermore, the clipping range corresponds
to two more hyper-parameters to tune.

The gradient penalty method, instead, is based on a soft constraint that is
implemented by adding a regularization term to the loss function. This term is
crafted in a way that penalizes the critic when its gradient norm is higher than
one. There is one hyper-parameter involved to control how much this constraint
weight on the total loss. In practice gradient penalty has proven to work better
than gradient clipping in most cases.

Classical GAN’s generator produces a completely random sample every time,
according to the random noise vector fed as input. Mirza and Osindero proposed
an approach named Conditional GAN (or CGAN) [39] with the goal of allowing
some kind of control on the generated images. In particular, the conditioning is
done over a class label, therefore introducing supervision (or semi-supervision) of
the training set. This provides a new degree of flexibility for GANs since they can
be used to generate specific instances of a certain kind, an ability that is necessary
in certain applications. The results of CGAN on the simple MNIST digits dataset
are shown in figure 3.14.

In the CGAN architecture, the generator network receives as input a random
noise vector and the class label as a one-hot encoded vector. The random noise
is still necessary to allow some variance in the produced output. The discrimina-
tor network also needs to receive the class label since it will be able to perform
better knowing this information. To the discriminator, which receives as input a
matrix containing the image, the label is concatenated as one-hot encoded matrix.
This matrix has the width and height of the input images and a number of lay-
ers equal to the number of classes. The full architecture is shown in figure 3.15.
Other approaches for controllable generation are available, but they all deal with
the problem of disentanglement of the internal features. The InfoGAN approach
discussed in the next chapter is specifically crafted to deal with this issue.
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Figure 3.14. The output produced by CGAN trained on the supervised
MNIST digits dataset. Each row is generated using a different labels, and
the results are exactly as expected [39].

Figure 3.15. The CGAN model architecture. Both the discriminator and the
generator receive an additional input volume that encodes the label with one-hot
encoding (green block) [39].
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Chapter 4

Experimental Study

4.1 InfoGAN

In a classic GAN the input to the generator is a random noise vector, of which
each dimension does not correspond to a specific factor in particular. This does not
offer any controllability to the produced output. The InfoGAN approach, proposed
by Chen et al. in 2016 [40], tries to address this problem by promoting disentan-
glement in the generator’s input representation. As discussed many times before,
this conceptually corresponds to disentangling the data generating factors, there-
fore changing one dimension in the input vector would change a single perceived
variation in the produced output.

The idea behind InfoGAN is to split the generator’s input vector into two parts:
a normal random part and a new latent code part. While the first portion is made
to give the produced output a level of randomness, the second part is made to
contain codes that should have a specific meaning. To make the codes meaning-
ful, the concept of mutual information is exploited. Mutual Information (MI) is a
measure of the mutual dependence between two random variables. More specifi-
cally, it quantifies the “amount of information” obtained about one random variable
through observing the other one. The quantity, measured in shannons, is defined
using the Kullback-Leibler divergence as follows:

I(X;Y ) = DKL(P(X,Y )||PX ⊗ PY )

where (X, Y ) is a pair of random variables, P(X,Y ) is their joint distribution and
PX is a marginal distribution. The MI is equal to zero when the joint distribution
coincides with the product of the marginal, i.e. the two variables are independent.
Equivalently, it can also be expressed in terms of entropy:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

which intuitively means that I(X;Y ) is the reduction of uncertainty in X when Y
is observed. The code portion of the input vector (c), is made meaningful by max-
imizing the MI between each code and the generator output. This corresponds to
an additional term on the GAN objective function that can be seen as a regularizer:
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ming maxd[V (g, d)− λI(c, g(z, c))]

where λ is a hyperparameter that controls the contribution of the regularization,
but is usually set to 1.

Computing the mutual information term I(c, g(z, c) is difficult since, by defini-
tion it requires computing the posterior P (c|x). Therefore the authors of InfoGAN
propose to optimize a lower bound, obtained by defining an auxiliary distribution:

I(c, g(z, c) = H(c)−H(c|g(z, c)) =

= Ex∼g(z,c)[Ec′∼P (c|x)[logP (c′|x)]] +H(c) =

= Ex∼g(z,c)[DKL(P (·|x)||Q(·|x)) + Ec′∼P (c|x)[logQ(c′|x)]] +H(c)

≥ Ex∼g(z,c)[Ec′∼P (c|x)[logQ(c′|x)]] +H(c)

where Q(c|x) is the auxiliary distribution that approximates P (c|x). The latter
relationship is due to the fact that the KL-Divergence is always ≥ 0. The entropy
of the code can also be optimized, but in InfoGAN is treated as a constant term.
Thanks to this lower bound is not necessary to compute the posterior P (c|x) ex-
plicitly, but we still need a way to sample from Q(c′|x). Thanks to a lemma, under
certain regularity conditions, it is possible to equivalently express the lower bound
as:

L1(G,Q) = Ec∼P (c),x∼g(z,c)[logQ(c|x)] +H(c)

A reparametrization trick is used to allow sampling from a user-specified prior
P (c) (i.e., uniform distribution) instead of the unknown posterior. The auxiliary
distribution will be modeled directly by a neural network. This definition of the
lower bound allows to optimize it directly by adding it to the GAN objective with-
out changing the GAN training procedure, that for InfoGAN becomes:

ming,q maxd V1(g, d, q) = V (g, d)− λL1(G,Q).

The InfoGAN architecture, shown in fig. 4.1, therefore includes the latent code
as a second input to the generator. The neural network which models the auxiliary
distribution Q() is just a fully-connected layer that is trying to predict what the
code is. This part will be used only during the iterations that feed fake inputs to
the discriminator, since the code is not known for real images. For this reason, the
added computational cost is negligible, and in practice, InfoGAN usually converges
faster than the original GAN.
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Figure 4.1. The InfoGAN architecture. Differently from GAN, it has a
new input vector c, concatenated to the noise vector z. Another fully
connected layer, the Q neural networks estimates the code statistic needed
to compute the regularization term.

The improvements proposed in DCGAN, illustrated in the previous chapter,
have also been included in InfoGAN to improve training stabilization. With the
experiments, the author’s goals were to prove that mutual information can be max-
imized efficiently and to check whether the learned representation presents char-
acteristics of disentanglement and interpretability. To asses the latter, one latent
factor at a time is varied to check if this corresponds to a single type of semantic
variation in the produced image.

Experiments show how the lower bound allows to efficiently maximize mutual
information and that in a regular GAN it is not guaranteed that the generator
uses all latent codes. In terms of disentanglement, the authors qualitatively proved
great performances on various image datasets. For the latent code vector c it is
possible to constraint a single coordinate to take on continuous or discrete values
and the range of those values. In particular, with discrete codes is possible to
capture discontinuous factors, like classes in a dataset.

For example, in the MNIST hand-written digit datasets (fig. 4.2) a single dis-
crete code with 10 values modeled the 10 possible digits. In practice, it learned
to classify the digits with no supervision, with a 5% error rate. With continuous
codes instead, it learned to represent the rotation and the width of the digits. These
features are high-level concepts that prove the power of the model. By varying one
code only a single one of those aspects changes, which means factors have been
learned in a disentangled way. It should be noticed that the learned representation
is generalizable since if it has been trained with codes varying in a certain range,
during generation it is possible to expand the range of values with coherent results.

InfoGAN has also been tested on some 3D-image datasets, like chairs and faces.
On chairs (fig. 4.3) it learned a continuous codes that represent the rotation and the
width of the furniture. On the faces of the CelebA dataset (fig. 4.4), which contains
colored images, InfoGAN recovered head azimuth, presence of glasses, hairstyle and
facial expressions.
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Figure 4.2. InfoGAN on the MNIST handwritten digits. A discrete code learned
to distinguish between digits. Two discrete codes learned rotation and with of the
digit. Such a behavior has not been observed in original GAN [40].

Figure 4.3. InfoGAN on a dataset of 3D CAD images of chairs. The
model learned to represent factor like rotation and with of the furniture
in a disentangled way [40].

Figure 4.4. On the celebrity faces of the CelebA dataset, InfoGAN learned
to extrapolate complex high-level concepts like hair style and emotion in a
completely unsupervised way [40].
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4.2 AI Explainability

The field of Explainable AI has been gaining popularity in the latest years due to
the excellent results obtained by more complex machine learning models and their
diffusion in a large variety of settings. Classical ML algorithms, like linear regres-
sion, SVM, K-Nearest Neighbors, clustering and decision trees are by construction
more interpretable than deep learning methods. Neural networks are very powerful
and are basically the only option to tackle more complex problems, but differently
from the previous methods, they are not easily interpretable. These are often called
black-box models since they perform great, but looking at the thousands of param-
eters of the network does not provide any insight into their functioning. The lack
of interpretability causes a problem of trust towards these methods that can slow
down or inhibit their adoption in critical fields like finance, medical and military.
Besides, getting more information on the model’s functioning can help find their
shortcomings, like negative biases, avoiding negative consequences. To tackle this
issue, researchers have proposed a variety of approaches for the different learning
algorithms. We will report here some of the methods related to our experimental
study.

The 2018 paper by Fong and Vedaldi [41] explains how controlled perturbations
can be used to explain computer vision classifiers. While a lot of previous methods
that produce image saliency maps that indicate where a neural network focuses
its attention are effective, they are limited by their architectural constraints. The
authors of this paper propose a method that is model-agnostic, or that works with
any image classification model. The algorithm consists of producing explicit and
interpretable image perturbations, feeding the modified images to a model and
observing its response.

In the 2019 work by Uzunova et al. [42] the authors use a generative model
(VAE) to improve the meaningful perturbation generation process. In particular,
they worked with medical image classifiers that are trained to differentiate between
different types of pathologies and healthy tissues. They pursued the idea of image
deletion to remove some areas of the image and observe the classifier response.
They defined the process of deletion for medical images as substituting a part of
the picture with a healthy equivalent produced with a VAE.

The 2021 paper by Schutte et al. [43] proposes to use a state-of-the-art GAN
architecture (StyleGAN) to generate meaningful image perturbations. The method
is applied to histology and radiology images. In addition, they propose a technique
to find the generative code associated with a new image by training a separate
encoder model. More specifically, the method finds the optimal perturbation di-
rection in the latent space to create a change in the model prediction. Synthetic
images with changed predictions can be produced and analyzed. The last part
of our experimental study borrows the idea of searching the direction of greatest
output change in an input representation space.
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4.3 Experimental setup

The following experimental part has been developed to test the capabilities of the
InfoGAN model and to what extent they generalize the results reported on the
original paper. After this, we decided to focus our attention on AI explainability
and how an unsupervised controllable generation method like InfoGAN could help
with that. The goal here is to get more insight into a well-functioning image
classification model. Therefore the experimental study has been divided into three
parts. The first part focus is the evaluation of the capabilities of InfoGAN and
to what extent they generalize. The second part is concerned with the usage of
InfoGAN output images to build an explainability system on a good-performing
classifier. Finally, the third part is focused on extending this explainability system
with the usage of InfoVAE.

The goals of the first part of the analysis are:

1. Evaluating InfoGAN’s image quality and diversity both visually and with an
objective metric.

2. Evaluating the model’s performance on more complex datasets, in terms of
interpretability and disentanglement of the produced representation.

3. Evaluating the effect of the Dropout technique [44] on InfoGAN training
stability.

Image quality evaluation is done both visually in a subjective way and through
the FID score [45], a well-known metric for GAN evaluation. The important point
to consider is that GANs do not provide an objective function to compare the
performance of different models. In short, the Frechet Inception Distance (FID)
score measures the distance between feature vectors of real and generated images.
Since the goal is to evaluate the performance of the model as a whole, this measure
considers the statistic of a group of images and not a single specific one. The
distance is measured on a latent space of extracted feature with a particular model,
the Inception v3. A lower score indicates that the group of images are more similar,
so it is desirable.

The FID score is an improved version of the previous Inception score, proposed
by Salimans et al. in 2016 [45]. The authors proposed it as an automatic method
to evaluate samples and compared it to human evaluation, using a crowd-source
platform (Turing test). The idea is to use a pre-trained classifier network to classify
the generated images. In particular, the authors propose to use the highly successful
Inception v3 architecture (Szegedy et al. [46]), from which the name derives. A
batch of generated images from the GAN generator is fed to the Inception classifier,
and the probabilities of each image belonging to each class are computed. These
are then summarized into a single score that considers the two fundamental aspects
of generative models:

• Image quality: the resemblance of generated images to real images.

• Image diversity: how wide is the spectrum of images that can be produced.
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The Inception score ranges from 1.0 to the number of classes on which the
classifier has been trained on, 1,000 in the case of the ILSVRC 2012 dataset used
in the Inception v3 model. For is nature, the technique involves using a labeled
dataset to perform the evaluation. In more specific terms, by applying a pre-trained
model on the generated data, we obtain the conditional distribution of the label
p(y|x). For the produced images that are meaningful, the conditional should have
a low entropy, which means they clearly belong to a given class. At the same time,
given that we want varied images, we desire the marginal

∫
p(y|x = G(z))dz to

have high entropy. By combining these two conditions, we obtain the Inception
score formulation:

I(x, y) = exp[ExDKL(p(y|x)||p(y))].

Since the score also measures diversity, the authors suggest computing it on a
large number of samples (∼ 50k).

Another interesting aspect discussed in [45] is the idea of feature matching,
later exploited in the FID score. The authors used it as a way to improve GAN
convergence; instead of maximizing the output of the discriminator, the distance in
feature space, measured in an intermediate layer of the discriminator, is minimized.
The role of this branch of the network, therefore, becomes to shape the latent
space in such a way that it extracts features we are interested in. This technique
has helped to reduce over-training of the discriminator, which slows down or stops
convergence to the Nash equilibrium.

The authors also discuss the usage of human evaluation for GAN performance.
The simplest idea, which is the one we also used in our experiments, is to ask people
to distinguish between real and fake images, which is essentially the Turing test.
This can be done, for example, by using a website with a specific purpose user
interface. The downside of human evaluation lies in the fact that it is subjective
and therefore affected by factors like the setup used and the motivation of the
person. For example, telling people about their mistakes in evaluation makes them
smarter. On the other hand, even a good score is useless if humans can easily
spot the mistakes, so we believe the two evaluation techniques should be used in
conjunction.

The Inception score has mainly three drawbacks: first, it can easily be fooled in
the evaluation of diversity if a few (or even one) images of each class are produced.
Second, it only looks at the generated images and does not compare them to the
real image dataset. This might create a statistic that is a bit off and idealistic
because it depends on the classifier’s abilities. Lastly, since it is computed with a
network pre-trained on a benchmark dataset (usually ImageNet [47]) it can miss
useful features of the dataset it is evaluating. This last point is also a weakness of
the FID score.

These shortcomings motivated the invention of the improved FID score [45],
where the Inception network is used to extract features from an intermediate layer.
The distribution for these features is modeled through a multivariate Gaussian
distribution of mean µ and covariance Σ. The score is then measured between
generated (g) and real images (x) of the same distribution as follows:
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FID(x, g) = ||µx − µg||2 + Tr(Σx + Σg − 2(ΣxΣg)
1
2 ).

As shown in figure 4.5, the FID score is consistent with the human judgment
of image quality since it increases by applying various disturbances to them. The
score shows that it is sensible to various image degradation effects and captures the
disturbance level very well. On the negative side, since it is based solely on feature
extraction, like Inception, it might not consider the spatial relationship between
objects as much as their presence or absence.

Figure 4.5. Visual evaluation of FID score performance. The score is sensible to
various kind of modifications on images which lower perceived quality. In partic-
ular, going clockwise, Gaussian blur, implanted black rectangles, salt and pepper
noise and a contamination of dataset [45].
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It should be underlined that the FID score suffers from a relatively high bias
problem. The variance instead is pretty low. By computing the score between
different batches of the same dataset, a zero value should ideally be produced;
instead, values like the following appears:

Figure 4.6. Bias and variance of the FID score applied on various datasets [48].

That being said, the FID score still remains one of the most accepted ways of
evaluating a GAN objectively, and that is also why we decided to use it in our
experiments.

Overfitting is often a serious problem with big neural networks with high capac-
ity, and GANs are no exception. Dropout is a simple technique for neural network
regularization introduced by Srivastava et al. [44]. The idea is to randomly drop
some units and their connections at training time. The equivalent architecture is
shown in fig. 4.7. In this way, it is like in each layer there are fewer units which
has a regularization effect. This prevents units from co-adapting too much. The
intuition is that a neuron cannot rely too much on one input feature, so each neuron
is encouraged to provide a useful output.

More specifically to each layer is assigned a probability of dropping a neuron
in a training iteration. This technique has the effect of shrinking the norm of
the weights, similar to what L2-regularization does. At test time Dropout has
to be disabled. This method has been proved to reduce overfitting and performs
better than other regularization methods. Dropout improves deep neural networks
performance and is used as a standard tool in many applications. Therefore we
decided to investigate its usage to improve the challenging convergence of InfoGAN.

Figure 4.7. The architecture of a neural network without and with Dropout [44].
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In the second part of our experiments, we tried to exploit the unsuper-
vised controllable generation of InfoGAN to generate classification maps, that we
called InfoGAN Explainability Maps. We decided to work with the FashionMNIST
dataset since it is the one where we obtained the best results in terms of code
interpretability and disentanglement. We started by creating a classifier for the
dataset and training it until it had good performances (accuracy > 90%). For this
purpose, we used a simple CNN architecture, whose code is reported in figure 4.8.
The FashionMNIST contains 70 000 images, of which 60k were used for training
and the remaining ones for testing the accuracy of the classifier. The dataset is
labeled with 10 classes.

With the goal of having more insights on how this classifier works and makes
its decisions, we decided to feed it some generated input images by interpolating
on meaningful codes and seeing how the model reacted to these changes. This ap-
proach is inspired by the previously discussed works on meaningful perturbations
for explainability [41] [42]. For each image, we recorded the classifier’s predicted
class and the maximum Softmax output as a metric of decision confidence. By
varying the input according to some high-level concepts of an image, we expect to
get additional insights into the classifier and possibly discover some of its short-
comings. This method, intended as a tool for explainability has the advantage of
being model-agnostic. If proven useful, these grids might be attached to a model
when it is given for production.

Figure 4.8. Simple CNN model to classify FashionMNIST images at 28x28
resolution. The goal of the second experimental part was to explain the
decisions of this classifier.

Inspired by the interesting results produced by InfoGAN, in the third part of
our experiments, we decided to investigate more precisely what kind of factors
influence a model’s decision. The question we asked our self was: what is the
minimum perturbation of an image necessary to change a model prediction? To
achieve this, we needed a way to map an input image in a latent space where we
can apply perturbations. Unfortunately, this is a shortcoming of GANs since they
do not allow mapping between the data space and the input space. Therefore,
we decided to use the Variational Autoencoder model, in particular the InfoVAE
architecture [49], which focuses on image quality and the usage of all latent features
by the decoder. The procedure we used, was inspired by the work of Schutte et al.
[43], previously described, and can be summarized by the following steps:

1. Compute latent representation of the image to explain using the encoder
network.

2. Pass the latent representation to the decoder network and obtain a generated
image.
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3. Pass the generated image to the classifier and compute the predicted class.

4. Compute a vector α in the latent space indicating the direction producing
the greatest classifier output variation.

5. Search for the minimum variation to the latent space in the α direction that
changes the classifier predicted class.

6. Compute the saliency map by subtracting the original image from the one
obtained by passing the newly computed latent vector.

With these steps we obtain a color-coded map, that we call InfoVAE Decision
Map, which should highlight the areas of the image that influence the decision.
The implementation of the three experimental parts is described in the following
section.
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4.4 Implementation

The experimental setup implementation is made using PyTorch, a popular machine
learning library written in Python. The project implementation is composed of five
parts: the InfoGAN code, the FID score code, a Python notebook [50] to run
and manage the benchmark on InfoGAN, a second notebook that implements the
FashionMNIST classifier and a third one to compute the InfoVAE Decision Maps.
The InfoGAN Wxplainability Grids are obtained by combining the saved output
of InfoGAN and the output of the FashionMNIST classifier. The InfoGAN code
is based on an open-source implementation [51], which has been extended with
the support of additional datasets and a slightly modified architecture, like adding
optional Dropout layers. The FID score evaluation is also based on code available
on an open-source repository [52]. The experiments are controlled by a Python
script that can run on Google Colab computational resources or any other Linux
machine, like the remote AWS one we employed.

The InfoGAN implementation is a Python project structured in many source-
code files, reported in figure 4.9.

Figure 4.9. InfoGAN source code project structure.

The train.py script contains the code that implements the network training loop
according to stochastic gradient descent, more specifically the Adam algorithm.
Training iterations are alternated between generator and discriminator in the ad-
versarial manner already described for GANs. In terms of training criteria, three
different losses are used. For the discriminator output, a Binary Cross-Entropy loss
is used. The output of the QHead module employs a Cross-Entropy loss for discrete
codes and a Normal Negative-Log Likelihood loss for continuous codes.

The script also allows creating a checkpoint to resume training at a later time or
to perform model selection. The checkpoint also saves, every x epochs, a generated
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image at that point to allow a visual quality check. PyTorch provides components
optimized to run on GPUs, hardware accelerators specifically designed to perform
operations with multiple data in parallel. Extensive logging of the training progress
is also printed in the console and saved on file for future inspection. In addition,
at the end of the training, a chart of the loss function trend is also produced.

The configuration file config.py allows setting parameters that affect training, of
which the names are already explanatory. It is possible to set the learning rate for
the generator and discriminator separately and use or not the Dropout layers. Since
the Adam optimizer is used, it is possible to control the Momentum and RMSprop
terms’ coefficients. The file utils.py contains utility functions for things like weight
initialization, normalization and getting noise samples from a distribution. The
number and shape of InfoGAN input noise and codes can be configured inside the
training script, in the section shown in figure 4.10.

Figure 4.10. InfoGAN input vector configuration. It is possible to set the size of
the random vector z, the number of discrete codes, the conditionality of those and
the number of continuous codes.

In terms of input datasets, the model has been trained with five of them: MNIST
handwritten digits (B&W) [53], FashionMNIST (fashion items from Zalando, B&W
[54]), ChestXRay (thoracic X-Rays, B&W [55]), Furniture (from Kaggle, B&W
[56]) and Aloi (Amsterdam Library of Object Images, varying viewing direction,
B&W [57]). The last three datasets must be downloaded in the data folder before
running training, while the formers can be downloaded automatically with PyTorch.
In additional the original model supports also SVHN (Google’s Street View House
Numbers [58]) and CelebA [59], both in RGB colors. A data-loader component,
defined in dataloader.py, provides batches of shuffled data to the training process,
according to a specified batch size in the configuration file (config.py). In addition,
the data loader performs some pre-processing on the data, like resizing, cropping
and applying normalization.

The mytorchsummary.py script contains code to print a human-readable de-
scription of the network architecture and parameters in use. In particular, it com-
putes for each layer the input and output dimensions, which is useful for inspection
and debugging.
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The various dataset generate.py scripts import a saved checkpoint of the gen-
erator weights and produce images by interpolating two input codes at a time. In
this way, the produced image is a matrix containing multiple images (by default
10 by 10), where moving from left to right is varying one code, and top to bottom
another one. The random noise vector and the other codes are kept static. In this
way, it is possible to see if a code corresponds to some high-level feature, as it is
desired. The produced images are saved under the results folder.

The dataset model.py scripts contain the model definition for the various datasets.
The distinctions are mainly justified by the different sizes and depth of these
datasets, which determine the network layers’ shape. The models for MNIST (also
used for FashionMNIST), SVHN and CelebA are defined according to the original
InfoGAN paper description. We have designed the ChestXRay and Aloi architec-
tures to fit the dataset’s unique characteristics. For the Furniture dataset we used
the ChestXRay model. Optionally this last model can use Dropout layers in the
first half of training epochs, which has been observed to improve convergence.

In each model implementation’s file, four different components are defined: the
discriminator (fig. 4.11), the generator (fig. 4.13), DHead and QHead. DHead
contains a convolutional layer, whose result is passed to a sigmoid function. The
output of the discriminator, still a vector, is passed to this last layer which trans-
forms it into a probability (fig. 4.12). QHead contains a two-layer network with
three different outputs: the first layer is common, and the last one is different for
each output. These layers are crafted to compute the estimation of the c codes in
terms of logits for the discrete codes and mean and variances for the continuous
ones (fig. 4.14).

The Chest X-Ray dataset contains over 5,000 black and white images divided
into two categories “normal” and “pneumonia”. We did not use the labels in our
experiments, and the images are first resized to 256 by 256 pixels. The Chest X-
Ray model generator comprises seven transpose-convolutional layers that gradually
increase the output size in terms of width and height while reducing the depth up
to 1. Each of the first four layers is also followed by a batch normalization layer
similar to what is done in the CelebA model. The activation functions used in each
layer are ReLUs, except for the last one where a tanh is used. The QHead module
contains one standard convolutional layer, followed by a batch normalization and
a Leaky ReLU activation. Then the discrete logits and the mean for continuous
codes are obtained by going through another convolutional layer. The variance for
continuous codes is obtained by going through two additional convolutional layers
and an exponential function.

The discriminator is composed of six convolutional layers, and to each one,
with the exception of the first, is applied batch normalization. According to the
configuration, the first four layers can be followed by a Dropout layer, with a
probability of an input being zeroed equal to 0.25. If the parameter use dropout
is equal to true, the Dropout layers will be active for the first half of the training
epochs (num epochs). The activation function used here is the Leaky ReLU. The
DHead module simply contains a convolutional layer whose output is fed into a
sigmoid function.

The first Python notebook [50] made for the Google Colab platform contains
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the essential code for executing the experiments of the first part (see previous
section). The notebook is composed of cells containing code; each one can be
executed independently. At the beginning of the “InfoGAN” section, the GitHub
repo of InfoGAN is cloned, which means downloading the latest version of the
code-base on the machine. Supposing to work on the Google platform, the datasets
can be imported from Google Drive, a cloud storage service. The outputs of the
training can also be saved in the same place for persistence. This is necessary
since the Linux-machine instance that Colab provides is a clean one every time you
log in. Therefore, the following lines are to copy and extract the various datasets
supported, most of which cannot be download directly using PyTorch.

Next, there is the cell that starts training simply by executing train.py. It is
possible to pass an option to reset training by removing the previous output (-ro)
and to resume training using the -load path option with the path of a checkpoint.
The following cell allows to generate an image with perturbations interpolating the
codes, according to the used script. For example, for the ChestXRay dataset, it
is defined into chestxray generate.py. The -load path option allows specifying the
checkpoint to use for generation. After generation, is it possible to execute the next
cell to save the output on Google Drive.

The second section of the notebook, titled “FID Score” starts by using one of
the generate.py scripts with the -s option to generate and save 1000 images from
computing the FID score. The following cell load and extract the original dataset
to compute the score. There is also a small script to sample a number of images
from a folder randomly. This is done in case we use a labeled dataset divided into
separate folders. In this case, we must pick images from each of the classes in
order to represent the entire distribution. In the end, in the last cell, by calling
fid score.py with the generated and the original data, the score is finally computed
and printed.
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Figure 4.11. InfoGAN discriminator architecture code, for the Aloi dataset.

Figure 4.12. InfoGAN architecture code of the DHead module, for the Aloi dataset.
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Figure 4.13. InfoGAN generator architecture code, for the Aloi dataset.

Figure 4.14. InfoGAN architecture code of the QHead module, for the Aloi dataset.
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To implement the second part of the experimental study, regarding the composi-
tion of Explainability Grids, we simply used the image grids produced by InfoGAN.
In particular, since we trained the model for FashionMNIST with the same archi-
tecture as MNIST, we used the mnist generate.py script to produce the images.
We added a launch option to the said script (-ss), that other than producing the
grids with 100 images, it saves those singularly in a folder, numbered from 0 to
99. In this way, we are able to feed them to the FashionMNIST classifier that we
previously trained in order to get the desired output. In particular, we printed the
predicted class and the corresponding Softmax score as an index of confidence. We
then added those pieces of information on the bottom of each image to compose
the explainability grids.

To implement the third and last part, regarding the InfoVAE Decision Maps,
we used an open-source implementation of the said model and trained it on the
FashionMNIST dataset at 28 by 28 pixels. In particular, we used size of 4 for the
latent space. The code that implements the steps described in the previous section,
for finding the class-changing perturbation, is reported in figures 4.15 and 4.16.

Figure 4.15. InfoVAE decision maps code. Here the direction in the latent space
that causes maximum variation of the classifier output is computed (vector alpha).

Figure 4.16. InfoVAE decision maps code. Here shown the search of the point
when the predicted class changes, in the direction of the vector alpha.

69



Experimental Study

4.5 Results

The first part of the experimental study focuses on the performance of InfoGAN. We
will first report the experiments and results relative to this part. We have executed
about 50 experiments in total between the five different datasets. Other than the
data, in each run, we changed the values of some hyper-parameters or tweaked
the network architecture. Between the hyper-parameters, we tuned we have the
batch size, the learning rate for both generator and discriminator, the size of the z
input vector and the number and shape of the continuous and discrete codes. Also,
when we experienced training collapse, we tried to restart the experiment with the
Dropout layers activated on the discriminator. When used, Dropout was active for
the first half of the training epochs.

For each experiment, we recorded the FID score, the lower bound of the mutual
information for both discrete and continuous codes, the final value of the loss and
its trend for both the generator and the discriminator. Additionally, we evaluated
subjectively the visual quality, visual domain coverage and interpretability of the
codes. FID score was computed only for MNIST and FashionMNIST instances,
and as said in the previous chapter, it is a slightly different version than the theo-
retical score. Still, it is a useful metric to compare our experiments. Some of most
interesting results with the FashionMNIST dataset are reported in tables 4.1 and
4.2.

ID z size c codes epochs batch size L.R. Dropout
111 62 1 disc(10)+2 cont 50 128 2E-4 No
112 62 1 disc(10)+2 cont 50 256 2E-4 No
113 62 1 disc(10)+2 cont 100 128 2E-4 No
114 62 1 disc(10)+2 cont 100 128 2E-4 No
115 100 1 disc(10)+2 cont 100 128 2E-4 No
116 30 1 disc(10)+2 cont 100 128 2E-4 No
117 30 1 disc(10)+2 cont 200 128 2E-4 No
118 0 1 disc(10)+2 cont 100 128 2E-4 No
119 62 1 disc(10)+3 cont 100 128 2E-4 No
120 62 0 disc + 2 cont 100 256 2E-4 No

Table 4.1. Experimental setting for 10 different experiments on the FashionM-
NIST dataset. Each experiment is identified by the ID number. For the c codes
1 disc(10)+2 cont means there is 1 discrete code with 10 possible values and 2
continuous ones. L.R. stands for learning rate, which is the same for both the
generator and the discriminator networks.

Results of these experiments show that InfoGAN is actually able to reproduce
an excellent image quality on simpler datasets like the FashionMNIST. To a human
eye images are indistinguishable from the training set and they cover pretty well
the entire distribution. This visual evaluation is also confirmed by the FID score,
which follows a pattern that is coherent to the human evaluation. We did not need
to use Dropout with the simpler MNIST and FashionMNIST datasets since it is
rare that training collapses with those.
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ID
FID
score

Visual
Quality
[1-5]

Interpretability
of Cs [1-5]

M.I.
lower
bound
(disc)

M.I.
lower
bound
(cont)

111 68.23 4 4 0.0358 -0.0615
112 74.44 4 4 0.0313 -0.0826
113 68.62 4 4 0.0175 -0.0626
114 66.86 4 5 0.0035 -0.0497
115 64.82 5 5 0.0484 -0.0325
116 70.89 5 5 0.0077 -0.1019
117 73.69 4 5 0.0014 -0.1027
118 121.45 3 4 0.0016 -0.0937
119 70.13 5 5 0.0400 -0.1530
120 76.22 4 5 0.0000 -0.1481

Table 4.2. Measured parameters for the 10 different experiments on the Fash-
ionMNIST dataset reported in the previous table. A lower FID score actually
corresponds to a better perceived visual quality.

Dropout layers on the discriminator were instead beneficial with the three more
complex datasets we tried. Frequently training did not manage to improve at all
in the first epochs because of an unbalance between discriminator and generator
capabilities. The problem of stuck training was more frequent in the first epochs of
training. By using Dropout, we managed to overcome this obstacle in all datasets.
An example of this situation is reported in figure 4.17.

With the ChestXRay dataset, after some tuning, we also managed to obtain
great results in terms of visual quality. In our best instance, at epochs 50, images
were already sharp, and at epoch 150 they were indistinguishable from the original
ones (fig. 4.18). It should be noted that we worked with this dataset at a high
resolution (256 by 256 pixels) because we wanted to pick up details in the X-
ray. This is necessary if images need to be used in a medical setting for diagnosis.
Increasing the resolution of the images required a bigger model with more trainable
parameters. This higher capacity might be one of the reasons for the difficulties we
found in obtaining meaningful input codes for this dataset.

In terms of visual quality also the Aloi 3D object datasets distribution was
reproduced with great results (fig. 4.23). Instead, on the Furniture images, we
obtained a good quality and sharpness, but the objects are often not realistic in
terms of shape (fig. 4.24). The Furniture dataset is the most visually complex of
our setup, and it is where the model starts to shake.

Interpretability of the input codes is the main goal of InfoGAN but, while it does
that better than GANs, we have seen that it struggles on more complex datasets.
On the MNIST digits we basically obtained the same results of the original work
by finding digit thickness, inclination and categories. On FashionMNIST, which
is already more articulated, we manage to recover a continuous factor that seems
to express brightness (fig. 4.19). A second continuous factor might encompass the
length of sleeves in T-shirts, but is not as distinct (fig. 4.20). Probably the most
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interesting result is the ability to classify almost perfectly the various categories of
articles with a discrete code, shown in figure 4.20. This is particularly remarkable
if we consider that the model has been trained completely unsupervised.

Figure 4.17. InfoVAE: the effect of dropout on the first 20 epochs. Here
the ChestXRay dataset is used. Results on multiple experiments show that
Dropout avoids training collapse.

Figure 4.18. InfoGAN generated images trained on the ChestXRay dataset.
On the left, the images produced at epoch 50: they look good but are not
very detailed. On the centre, results at epoch 150 where images are almost
indistinguishable from the training set (right).
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Moving on to increasingly complex datasets, with the ChestXRay we performed
more than 15 experiments, but we only observed one interpretable continuous code
related to brightness (fig. 4.22). In the original dataset, we observed that some
images are blurrier than others or that the rib cage’s width varies, but none of those
factors has been recovered by the model. On the Aloi distribution (fig. 4.23), we did
hope to recover the rotation of objects since the data contains the same object at
different angles, but we did not manage to do it. Instead, it looks like we recovered
the usual brightness factor on a continuous code and the discrete code seems to
recover some objects that have similar shapes, which is related to the class. On the
Furniture data (fig. 4.24) we did not observe explainable factors, except maybe for
a stronger presence of some items in some of the rows, are that generated with the
same value of a discrete code. ’ Even though InfoGAN struggles with more complex
datasets, it remains a valuable approach for certain domains where it is able to learn
an interpretable and disentangle representation. Training is not straightforward and
requires the tuning of the input codes, therefore modifying the input layer of the
architecture, in addition to the usual hyper-parameters. Techniques proposed for
improving GAN convergence, like the usage of Dropout, can help, but the power
of the model remains in the fact that it does not need supervision. Perhaps an
interesting topic could be the usage of a similar approach in a semi-supervised
setting, where one has already an idea of the features he would like to extract.
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Figure 4.19. InfoGAN generated images on the FashionMNIST dataset; the
noise vector z is fixed while a continuous code varies on the horizontal axis
and a discrete one on the vertical axis. This representation seems to capture
the object’s brightness.

Figure 4.20. InfoGAN - FashionMNIST; continuous code variation on the hori-
zontal axis and discrete on the vertical axis. The continuous code seems to capture
the length of sleeves on shirts.

74



Experimental Study

Figure 4.21. InfoGAN - FashionMNIST; continuous code interpolation on the
horizontal axis and discrete one on the vertical axis. The discrete code classify
almost perfectly the fashion items. This shows the power of this representation,
since it can understand such high-level differences without supervision.

Figure 4.22. InfoGAN generated images on the ChestXray dataset. The
only interpretable code we obtained is the continuous brightness variation
on the horizontal axis.
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Figure 4.23. InfoGAN generated images on the Aloi dataset. A variation of
brightness is present in the horizontal direction of the continuous code. Two
different classes of objects seem to appear varying the discrete code.

Figure 4.24. InfoGAN generated images on the Furniture dataset. Some of the
produced images does not realistic. The variation of the discrete code vertically
shows the stronger presence of some objects in some lines.
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4.5.1 InfoGAN Explainability Grids

With InfoGAN on FashionMNIST we managed to obtain a representation that
distinguishes classes with a discrete code and is able to interpolate high-level factors
within each class with a continuous code. We, therefore, were able to use the
generated image grids to create what we called InfoGAN Explainability Grids.
Starting from a well-performing classifier on the dataset, we fed it the artificial
images in order and noted the predicted class and the Softmax probability. The
result is a grid like the one in figure 4.25, which can be used to get more insight on
the classification model.

Figure 4.25. Example of a possible InfoGAN explainability grid. The C1 discrete
code discriminates well between classes, while the continuous C2 produces inter-
esting variations. Under each image, the predicted class and the Softmax score
from the classifier object of study.

Some interesting results in terms of explainability have been reported here in-
dividually. The interpolation in figure 4.26 shows what looks like a dress, with a
smooth interpolation in its width. This factor of variation can be assimilated to the
size of the dress. Therefore we can analyze how the classifier changes its response
when this factor varies. In this particular example, the classifier is responding well
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since it predicts a Dress in any case, but on average, its confidence seems to be
lower in the left part of the grid. Perhaps more training images with items of large
size could fix the issue.

A second line we reported (fig. 4.27) shows the variation between some long
long-sleeve coat and a short-sleeve dress. It is possible to see how this variation
affects the predicted class and where the turning point between and dress and
a coat is. In the last example (fig. 4.28) an interpolation between sneakers and
sandals highlight the decision turning point. In this case, it seems that the model is
deciding based on the open tip, which appears to be a reasonable decision criterion.

Figure 4.26. A line with a fixed value of the discrete code and an interpolation of
a continuous code horizontally. The continuous code seems to capture variation of
dress size. Here the response of the classifier is correct but not evenly confident.

Figure 4.27. A continuous code seems to capture the length of the dress
and sleeves. The turning point between Coat and Dress classes of this
model can be observed.

Figure 4.28. The decision turning point between a sneaker and a sandal. The
only difference between the two closest images seems to be the open tip (circled
in red), which seems to be a reasonable decision criterion.
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4.5.2 InfoVAE Decision Maps

Intending to go even further with the explanation of the classifier’s decisions, we
built heatmaps that show the areas of the image that mostly define the output
class. These have been obtained using InfoVAE, as described in section 4.3, by
searching the perturbations of the latent space that causes the biggest variation
in the classifier’s output. The decision maps of some different shoes are shown in
figure 4.29. Top decision importance areas correspond to distinctive features of the
item, like the tip of the heel-sandal, already reported by InfoGAN Explainability
grids. Lastly, figure 4.30 shows some other common fashion items. It is interesting
how the last part of the long-sleeve shirt is signaled as an area of interest. The
area is, as a matter of fact, important since the dataset’s labels distinguish between
long and short-sleeve shirts. Illustrations like these can give more insight into how
a well-performing model is making its choices.

Figure 4.29. InfoVAE decision maps that highlight the areas of the image pri-
marily affecting the classifier’s decision. On the left an open sandal with a high
heel, where the method highlights the area of the tip and the base of the hell as
most important. Similar behavior is shown in the sandal at the center. For the
sneaker (left) the most important points seem to be the one on the top border.

Figure 4.30. InfoVAE decision maps. On the left a long-sleeve coat, where the
terminal areas of the sleeve and the shoulders are highlighted. On the center a
t-shirt with a highlight on the neck. On the right, trousers where the terminal
part of the legs are highlighted.
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Conclusions

In this work we started by examining the powerful concept of representation learn-
ing, contextualizing it into generative models and focusing our attention on the
InfoGAN approach. We performed experiments with this method and applied the
acquired knowledge to contribute to the AI Explainability field.

Our contribution from the first experimental part shows that training InfoGAN
is not trivial, as with basic GANs, but the Dropout technique can solve training
collapses, that are more frequent during the first epochs. When learning is suc-
cessful, image quality is very high both in terms of fidelity and diversity. What
InfoGAN struggles most with is obtaining meaningful codes, that correspond to a
disentangled representation, in more articulated datasets.

With the second experimental part, we managed to produce useful Expandabil-
ity Grids that show the classifier response, in terms of predicted class and Softmax
score, at the variation of meaningful codes. For the FashionMNIST classifier used
in our examples, we noticed how it has lower confidence with big-size dresses or how
it determines if a shoe is a sandal or a sneaker. Finally, in the third part, by using
InfoVAE capabilities and a search algorithm, we managed to produce interesting
decision maps that highlight the areas of an image on which the classifier bases its
decisions most, like the final part of the shirt’s sleeves. Both of these explainabil-
ity techniques are model-agnostic and do not require additional supervision. We
believe that the insights these artifacts provide can be a valuable addition to the
validation of a machine learning algorithm.

Future works can explore the possibilities of finding a reliable method for Info-
GAN to map a generic image to an input code, such that it would be possible to
extend the method we presented using VAE. We expect to see better explainability
results with GANs since they produce a better image quality than VAEs. Finally,
it would be interesting to improve these methods with semi-supervised learning to
obtain some specific output variations, which can be employed to generate more
specific explainability grids.
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