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Abstract

The increasing pervasiveness of embedded and IoT devices and the consequent growth
in the amount of data to be processed and exchanged mandates a systematic use of
cryptography to ensure confidentiality, authenticity and integrity of communications.
Over time, cryptographic techniques have improved considerably, so that cryptanalytic
attacks have been made not feasible in reasonable times. On the other hand, this pervasive
diffusion of devices has put the attacker in the position of being more likely in physical
proximity, or in some cases, in possession of the components. This has enabled for a
plethora of attacks aimed more at the weaknesses in the physical implementations of
devices, rather than those of mathematical algorithms, in a way that simply could have
not been accounted by cryptographers.

Researchers have demonstrated that secrets processed inside chips can be retrieved
with a novel class of attacks, called side-channel analysis. These are carried out by
observing physical parameters emitted by a hardware component such as the time taken
for a cryptographic operation, the power consumption required, or the electromagnetic
and acoustic emissions. By combining such physical “clues”, an attacker can possibly
retrieve the secret without recurring to cryptanalytic exploits or brute-force attacks.

Since such physical quantities cannot be completely masked to the surrounding
environment, obfuscation approaches can make attack attempts harder enough to make
them not convenient. Along with existing physical-layer countermeasures adopted by
chip designers, cryptographers devised new variants of the best-known cryptographic
algorithms, such as AES, trying to reduce side-channel emissions from the logical level.

Specifically for AES, the main target for improvements is the S-Box structure, the
core non-linear component of the cipher, which already provides the necessary entropy
against cryptanalysis (following Shannon’s Confusion and Diffusion principle). Recent
studies combine the existing properties of S-Boxes with the resilience against side-channel
attacks, demonstrating the effectiveness of such novel structures from a mathematical
point of view. Still, an in-field empirical proof of such enhancements is not clearly present
in the state of the art.

This work aims to explore these latest improvements to the AES algorithm, studying
novel S-Box implementations and finally empirically demonstrating their theoretical
claims and effectiveness against power side-channel attacks. To fulfill this aim, a dedicated
platform has been employed: the ChipWhisperer™ Lite board. ChipWhisperer™ has been
designed to perform side-channel attacks with respect to the device power consumption
and it is widely used by both researchers and actual hardware hackers due to its extreme
flexibility, overall capabilities and extremely low-cost properties.

The experiments were conducted on a pre-existing software implementation of the
AES-128 algorithm, where the original S-Box was replaced with the new structures. The
new variants of the algorithm were then run on an Atmel 8-bit microcontroller, using the
ChipWhisperer™ board to collect the power traces related to the various executions. The
obtained results were finally compared to those produced by the standard version of AES.
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Chapter 1

Introduction

The widely known Spectre [8] and Meltdown [9] attacks demonstrated that side-channel
analysis can be exploited, in conjunction with other techniques, to target consumer-
grade Personal Computers, up to large scale mainframes. Recent Proof of Concepts [10]
demonstrated the feasibility of these attacks using Web technologies like JavaScript,
proving the pervasiveness this class of attacks can leverage in real world scenarios. The
hardware layer of any modern device plays a primary role in Information System security:
it represents, by construction, the last line of defense against intrusions [11]. Hardware is
directly or indirectly the base all the other layers rely on. Therefore, a hardware-targeting
attack may render useless all the defences implemented in the upper layers (like the ones
related to system and application software) [12].

Given the nature of these attacks, it stands to reason that having the broadest possible
knowledge of side-channel analysis, including possible countermeasures, is of extreme
importance for digital designers, application engineers, and hardware security experts.
Indeed, one the main authors in the field of side-channel analysis, Kocher, insists on the
importance of having a systematic approach to security at each implementation level: the
intercommunication between the various development groups (cipher designers, hardware
designer and software engineers) is essential as security faults often involve unanticipated
interactions between components designed by different people [13].

Over the last decade, academic research confirmed several times the effectiveness and
the consequent dangerousness of attacks targeting cryptographic implementations on
physical devices. Nowadays, side-channel attacks are considered to be part of cryptanalysis
techniques in the same way as linear and differential analysis. Moreover, the convenience
that characterizes this type of attacks poses significant risks in the use of IoT devices and
embedded systems, especially given the pervasiveness that these have in everyday life. For
instance, while linear or differential cryptanalysis needs terabytes of plaintext-ciphertext
pairs to break a block cipher, differential power analysis can leverage as just as 2000 bytes
of such pairs to break the related physical implementation [14]. In general, for a malicious
actor, the choice of which attack to use is often dictated by how practical the attack is:
in the case of an embedded device this unquestionably falls on side-channel attacks.

In recent years, several countermeasures against this class of attacks have been
proposed. However, the performance impact that these solutions have on real embedded
devices has been proved to be significant and difficult to circumvent. The need for lighter
countermeasures has shifted the interest from the implementation/physical level to the
logical and mathematical one, the same in which encryption algorithms are specified. The
main motivation behind this choice considers resistance to side-channel attacks in the
same way as resistance to classical cryptanalysis, treating it as a key parameter to be
taken into account for the successful development of old and new block cipher algorithms.
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Many of the recent proposals are directly targeting S-Box designs. Since these
structures already provide many properties against classical cryptanalysis, it is therefore
reasonable to integrate in their design possible countermeasures against side-channel
attacks. Various publications observed that metrics representing the capability of an
S-Box structure to prevent classical cryptanalysis attacks are in opposition with theoretical
metrics used to denote the resistance against side-channel analysis.

These observations carried to a slow abandonment of cryptographic design method-
ologies like algebraic ones, which are able to produce S-Box structures with excellent
properties against cryptanalysis but unable to achieve trade offs towards side-channel
resistance properties. Therefore, new methodologies with the goal of building novel S-Box
structures arose, like the ones based on chaotic maps and heuristic methods. From this
point on a myriad of new S-Box proposals were made, claiming of having found a good
trade-off among these metrics.

However, we observed that many of these proposal never left the theoretical en-
vironment and computer simulations, de facto rarely proving their theoretical claims
with everyday embedded implementations. The work carried out in this thesis therefore
consists in empirically verifying the resilience to side-channel attacks of some of the latest
proposals of S-Box structures. The objective is to test the structures examined in the
context of a real attack scenario carried out by means of specialized but low cost and
affordable equipment, like the ChipWhisperer™ board.

This thesis is organized in five different chapters.
Chapter 2 provides an overview on the AES algorithm and classical cryptanalysis

methodologies. Chapter 3 gives the necessary basis on side-channel analysis, targeting
three of the most powerful and known power attack methodologies. Chapter 4 provides
an overview on the latest cryptographic proposals targeting S-Box structures, defin-
ing the criteria and methodologies used to harden their designs against side-channel
attacks. Chapter 5 and 6 finally present the analysis conducted for this thesis work,
providing interesting observations on the results obtained and suggesting possible future
improvements.
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Chapter 2

Advanced Encryption Standard
(AES)

2.1 Introduction

The Advanced Encryption Standard (AES) is a specification for data encryption drafted
by the NIST (National Institute of Standards and Technology) which finds its actual
implementation in the Rijndael algorithm. Rijndael is an iterated block cipher1 designed
by Vincent Rijmen and Joan Daemen, two belgian cryptographers that issued it to an
open selection process proposed in 1997 and finally concluded in the year 2000. This
process had the goal to find an algorithm that could supersede the standard in use at
that time: DES (Data Encryption Standard).

DES was initially designed by Horst Feistel (to which we owe the concept of Feistel’s
Networks) and then enhanced by the NSA. After being standardized in 1977, it was
no longer considered secure starting from the late ’90s following repeated brute-force
demonstrations of its cryptographic weakness. It was in that years (January 1997) that
the National Institute of Standards and Technology (NIST) initiated the search for a
replacement for DES [15]. The requirements for the new standard were the following:

• a 128-bit block cipher with three possible key sizes: 128, 192 and 256 bits;

• a public and flexible design, in contrast to the DES algorithm, which captured the
suspects of the cryptographic community due to the presence of classified elements
and the alleged presence of backdoors inserted by the NSA;

• at least as secure as two-key triple-DES, which was the latest DES iteration in use at
that time to be considered still secure;

• available royalty-free worldwide;

Rijndael, competing against four other finalist algorithms (MARS, RC6, Serpent, and
Twofish), was eventually chosen as the winner of the selection process and became a U.S.
federal standard in 2001.

In order to meet the requirements proposed by NIST, some additional features of
Rijndael were discarded. For example, the initial specification drafted by Rijmen and
Deamen called for different block sizes of 128, 192 and 256 bits: the latter two block sizes
were discarded in favor of a constant block size of 128 bits (consequently, the difference
on the variants of AES simply relates on the size of the encryption key, not the block size).

1A block cipher is a deterministic algorithm that operates on a fixed-length block of information and
produces, using the cipher key, a different block of the same size.
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2.2 The Algorithm

AES is based on a Substitution-Permutation Network (SP-Network), requiring 10, 12 or 14
encryption rounds, depending on the length of the key (128, 192 and 256 bits, respectively).
This number of rounds has been determined by looking at the maximum number of
rounds for which shortcut attacks have been found 2, finally adding a considerable security
margin [16]. For instance, in the case of AES-128, 4 of the total 10 rounds have been
added as a security margin 3.

All the various steps of the algorithm operate on an internal data structure, called State.
The Initial State corresponds to the plaintext (ciphertext) to be encrypted (decrypted),
the Final State corresponds to the encrypted (decrypted) message and the Intermediate
State refers to the intermediate cipher result. In all variants of AES, both the State and the
cipher key can be visually represented as a matrix of Bytes with 4 rows and 4 columns 4.

Differently from DES, each AES round does not follow a Feistel’s Structure, but is
composed of three distinct invertible uniform transformations, called layers [16] [17]:

1. Linear Mixing Layer: guarantees high diffusion over multiple rounds and consists
of two sublayers, both of which perform linear operations:

(a) ShiftRows Layer: permutes the Bytes of each row of the State matrix;

(b) MixColumn Layer: combines the columns of the State matrix, mixing them
as arrays of 4 Bytes.

2. Non-Linear Layer: each Byte of the State is nonlinearly transformed using lookup
tables (S-Boxes) with special mathematical properties. This introduces confusion
in the data processed;

3. Key Addition Layer: XOR operation between the Round Key5 and the State.

In general, as for all block ciphers based on SP-Networks, the substitution layer(s)
operate by mapping small chunks of data, introducing local confusion into the cipher
thanks to their highly nonlinear properties. On the other hand, the permutation layer(s)
operate on the entire block with simple linear transformations, diffusing the effects of the
mappings enforced by the substitution layer(s) [18].

2.2.1 Algorithm Steps - Encryption

Each round of the algorithm is composed of 4 main operations: SubBytes, ShiftRows,
MixColumns and AddRoundKey. However, the rounds are not repeated equally 10, 12 or
14 times: each variant of AES firstly performs a AddRoundKey operation (also known as
Key Whitening) and only then it executes R-1 rounds (where R is the total number of
rounds). Finally, the last round completes 3 operations out of the 4 available, skipping
the MixColumns one. The round distribution of an entire execution of the AES algorithm
is summarized in Figure 2.5.

2A shortcut attack is an attack more efficient than exhaustive key search. [16]
3For the AES variants with 192 and 256 bits keys the number of rounds is increased to prevent shortcut

attacks, which, conversely to exhaustive attacks, can afford to be less efficient in case of longer keys [16]
4The original specification of Rijndael specified a variable number of columns, depending on the block

size. As mentioned in 2.1,the standardization process that lead to AES imposed a block length of 128 bit,
therefore fixing the number of columns of the State to 4

5A Round Key is an intermediate key derived by the Key Schedule algorithm from the main cipher
key. See 2.2.2
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SubBytes

This operation performs a substitution of every Byte present in the State matrix, following
a precise Substitution Table (called S-Box) that acts as a LUT (Look-Up Table). The
S-Box is the only nonlinear element of AES: it implements a bijective mapping, meaning
that each of the 28 = 256 possible input values is one-to-one mapped to one output Byte.
This last property implies the possibility to uniquely reverse the S-Box, therefore allowing
decryption. AES S-Boxes have a strong algebraic structure, based on two main operations:
a Galois field inversion (in the field GF (28)) and an affine mapping [17]. Moreover, unlike
DES, where 8 different S-Boxes are applied, AES leverages a unique S-Box for the entire
cryptographic operation. The resulting lower memory footprint allows for much lighter
software implementations, making encryption possible even for small embedded systems
and IoT devices. The SubBytes operation is pictured in Figure 2.1.

Figure 2.1: The SubBytes operation [1].

ShiftRows

This operations provides the diffusion properties of AES by rotating the Bytes over each
row of the State matrix. The first row is not rotated, the second one rotates over 1 Byte,
the third one rotates over 2 Bytes and the third one rotates over 3 Bytes (see Figure 2.2).

Figure 2.2: The ShiftRows operation [2].

MixColumns

Like the ShiftRows step, the MixColumns operation provide the necessary diffusion to
the algorithm. In this case, every column of the State matrix is treated as a vector
and multiplied by a fixed 4×4 matrix containing constant entries. The result is a linear
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transformation of the State. The multiplication and addition of the coefficients is done in
GF (28): both operations can be implemented quite efficiently, as the addition consists of
a XOR operation and the multiplication can be realized using bitwise shifting and modular
reduction, or by simply leveraging additional memory to store precomputed LUTs (see
Figure 2.3).

Figure 2.3: The MixColumns operation [3].

AddRoudKeys

In this step every single Byte of the State is XORed with the corresponding Bytes that
compose the Round Key (see Figure 2.4).

Figure 2.4: The AddRoundKeys operation [4].

2.2.2 Key Schedule Operation

The Key Schedule is an internal algorithm used by AES to derive multiple Round Keys
from the original input key of the cipher, to be used in the AddRoundKeys steps. The
number of round keys to be derived is equal to the number of rounds plus one (since the
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Figure 2.5: Round organization in a complete execution of an AES encryption.
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initial Key Whitening operation must be considered, so as the R− 1 “complete” rounds
and the final round). As an example, for a key length of 128 bits, the total number of
rounds is R = 10, giving 11 round keys, each of 128 bits [17].

The algorithm slightly changes depending on the AES variant in use. For instance,
AES-128 has the first 128-bit round key which is exactly equal to the main cipher key:
this is not true for the other two AES variants (the first round key of AES-196 is equal to
the main key only for the first 128 bits).6

Two different implementations exists for the Key Schedule algorithm:

1. Precomputation: All round keys are computed before the actual encryption
(decryption) operation and stored in memory, each to be retrieved later when
needed. This approach is often taken in PC and server implementations of AES,
where large pieces of data are encrypted under one key. Such an implementation is
not desirable on a device with limited memory resources, such as a smart card;

2. On-The-Fly: Every round key is derived only when required during the encryption
(decryption) process. This reduces the memory footprint of the key schedule
algorithm but introduces computational overhead.

2.2.3 Algorithm Steps - Decryption

Since AES is not based on a Feistel’s Network, the decryption operation cannot be
performed by simply re-run the same algorithm: an inverse implementation of every round
is needed. The structure of Rijndael is such that the sequence of transformations of its
inverse is equal to that of the cipher itself, with the transformations replaced by their
inverses and a change in the Key Schedule [16]. Therefore, the 4 main steps that compose
each round, once inverted, are now called InvSubBytes, InvShiftRows, InvMixColumns
and AddRoundKey. This last transformation doesn’t need further modifications as the
internal XOR operation is intrinsically invertible by reapplying the function itself.

The inverse structure of a generic round is composed as such:

1. AddRoundKey;

2. InvMixColumns;

3. InvShiftRows;

4. InvSubBytes.

Since the last encryption round does not perform the MixColumns operation, the first
decryption round also does not contain the corresponding inverse layer (InvMixColumns).
Finally, an additional AddRoundKey step is performed as last operation for the decrypting
algorithm, as opposed to the encrypting algorithm, where this operation (Key Whitening)
is performed first.

2.3 Cryptanalysis

Cryptanalysis is a set of techniques used:

• to test the robustness of an encryption scheme and its secret key by attacking it
with various attack models;

6This peculiarity of AES-128 is one the main reasons why this variant has been adopted for the
purposes of this thesis. More details will be given in the following chapters.
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• to break an encryption scheme revealing the plaintext and/or the secret used to
encrypt it.

It is therefore an essential stage in the development of secure algorithms: in order
to design a strong cipher, the cryptographer has to understand where the potential
weaknesses are [18].

In general, cryptanalysis leverages mathematical techniques to analyse encryption
schemes from their logical specification. Additionally, cryptanalysis also includes side-
channel attacks in order to target the weaknesses at the implementation level (see Chap. 3).
From a point of view of the bare logic specification, a cipher should be secure even if
the attacker knows every detail of the algorithm, following Kerckhoffs’ Principle. This
principle actually discourages the use of the security by obscurity technique, which has
been demonstrated to be a weak design principle: an algorithm which security relies only
on the obfuscation of its specification can be completely broken as soon as it is secret
design gets reversed-engineered or leaked through other means [17]. This is why modern
cryptographic schemes (like AES) are completely open source and available for analysis
from the cryptographic community.

2.3.1 Methodology Overview

In the case of block ciphers like AES, the goal of cryptanalysis is to break the cipher by
recovering the plaintext partially or in its entirety. An even ambitious goal would be to
retrieve the cipher key: in this scenario an attacker can leverage the retrieved secret to
encrypt/decrypt all the messages from the moment the key was revealed onward, harming
the confidentiality and authenticity of the user’s communications.

Cryptanalysis can be carried on following various attack models [18] [7], including:

• Ciphertext-only attack: The attacker can only observe ciphertexts produced as
output by the encryption algorithm. Since this scenario is indistinguishable from
the normal behavior of the algorithm, block ciphers succumbing this model of attack
are considered to be very weak;

• Known-plaintext attack: The attacker has access to (parts of) the plaintext
related to the captured ciphertext. On the other hand, the attacker does not have
any control of the plaintext to be encrypted;

• Chosen-plaintext attack: The attacker has control over the plaintexts generated,
which are then feeded to the encrypting algorithm. The resulting ciphertexts are
then observed;

• Chosen-ciphertext attack: Similarly to the previous model, the attacker can
carefully craft a ciphertext, submit it to the block cipher for its decryption and
observe the plaintext produced as output;

• Adaptively chosen-plaintext attack: The attacker has the possibility to choose
and send multiple plaintexts, possibly creating each plaintext according to the
results obtained from the observations of the previously obtained ciphertexts;

• Adaptively chosen-ciphertext attack: Similarly to the previous model, the
attacker submits multiple ciphertexts to the decrypting algorithm, adapting its
decisions following the observations retrieved during the entire attack procedure;

• Related-Key attack: Similar to a chosen-plaintext attack, in this model the
attacker can compare and analyze two different ciphertexts (plaintexts) obtained
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using two different secret keys, having only the information about their relationship
(for instance, the two keys may differ only by a single bit).

It is worth to point out that an attacker cannot compute the correspondence between
a plaintext and a random ciphertext if the key value is unknown. The only way to keep
track of which plaintext (or ciphertext) has produced which ciphertext (or plaintext) is to
query the cipher sequentially, storing the plaintext-ciphertext pairs obtained. A system
that replies to these queries is called an oracle (respectively, an encryption oracle and a
decryption oracle). This query-based attack will be the one in use for this thesis work, as
it is widely used to carry on side-channel attacks.

2.3.2 Generic Attacks

Given the limited key and block lengths that characterize real (i.e., implementable) block
ciphers, brute-force and dictionary attacks are considered to be the most generic class
of attacks a malicious actor can pursue against an encryption scheme. Indeed, such
methodologies can break a block cipher simply by treating it as a black box, without
considering the actual details of the internal algorithmic implementation.

A brute-force attack, also called exhaustive key search, simply iterates an encryption
(decryption) process on a given plaintext (ciphertext) trying all possible key combinations,
comparing each time the obtained ciphertext (plaintext) with the “golden” one (i.e., the
one obtained with the secret key). This attack is made ineffective 7 by simply increasing
the number of bits of the cipher key: nowadays an 80-bit key is considered to be the
bare minimum to prevent exhaustive search. For instance, the “weakest” variant of AES
(AES-128) leverages a 128-bit key. All the optimizations for this methodology aim to
reduce the number of necessary iterations, reducing the computational workload and
possibly leveraging the time-memory tradeoff, as proposed by Hellman in [19].

In a dictionary attack, an attacker can submit multiple plaintexts (ciphertexts) to
the block cipher obtaining back the related ciphertexts (plaintexts), building a table of
plaintext-ciphertext mappings (a dictionary) for that specific key. If a malicious actor is
able to submit all the possible plaintexts (the cardinality of the entire plaintext space
follows the relation 2b, whereas b corresponds to the block length in bits) then the
consequent dictionary can be used to decrypt any future message encrypted with the same
secret key. In reality, it is not even necessary to complete the dictionary by submitting all
possible plaintexts: whenever a block cipher outputs the same ciphertext block twice, it
leaks information about the plaintexts. This kind of repetitions in a random set of b-bit
blocks starts to occur frequently when the number of blocks exceeds 2b/2 (a consequence
of the birthday paradox 8). It is therefore not advisable for any user to encrypt more than
2b/2 blocks with the same secret key [7]. Similarly to a brute-force attack, the dictionary
attack is made ineffective by simply increasing the number of bits of the block length.

A comparison between these two methodologies can highlight the tradeoffs they
provide: with a brute-force attack the attacker needs a single memory location, storing
the single captured plaintext-ciphertext pair: the memory requirements are thus very low.
On the other hand, each iteration (out of the 2k possible one, being k the key length
expressed in bits) requires time to complete and, overall, lots of computational power.
Conversely, a dictionary attack, assuming the dictionary already built and available for
use, requires multiple memory locations (one for each plaintext-ciphertext pair, for a total

7i.e., not feasible in reasonable time due to the high computational complexity
8In cryptography, the same principle is exploited when evaluating the probability of collisions for a

given hash function
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memory amount of 2b2b bits) but a negligible time complexity given the single access
needed to look-up for one of the two values that compose a pair.

As a remark, both brute-force and dictionary attacks are theoretically impossible to
prevent due to the intrinsic properties of block cipher algorithms. However, nowadays
ciphers are built with a large number of key and block bits, making this class of attacks
unfeasible with the current computational resources.

2.3.3 Shortcut Attacks

As opposed to Generic Attacks, Shortcut Attacks leverage the understandings of the
internal algorithm implementation to reduce the computational complexity. For a block
cipher, the feasibility of a shortcut attack is usually considered to be a significant
vulnerability. Since both brute-force and dictionary attacks set an upper bound on both
time and memory requirements, an attack that has an overall reduced complexity is
considered to be a shortcut attack.

In general, this class of attacks is conducted in two main steps. The first step tries to
find and leverage properties that allows the attacker to overcome the ability of the block
cipher to make every ciphertext produced completely random. If such a property is found
to be also reproducible, the attacker can now formalize a methodology that generalize
an attack for a reduced variant of the encryption scheme, omitting a certain number of
rounds for simplicity. The goal of this second phase of the attack is to retrieve, partially
or completely, a round key. If found, the attacker can continue with the same procedure
on another round of the algorithm or can now leverage an exhaustive search, supported
by the lower computational complexity provided by reduced exploration space.

Differential Cryptanalysis

Differential Cryptanalysis was firstly introduced by Biham and Shamir to attack DES in
1992 [20]. It is a chosen-plaintext attack, meaning that the attacker is able to submit
specially crafted plaintexts and to examine the ciphertexts produced as outputs in an
attempt to derive the key.

Attack rationale This method focuses on finding datapaths in the block cipher struc-
ture that are more likely to occur with certain selected sets of plaintexts. The attack
is called “differential” because the plaintexts are selected in pairs in order to satisfy a
certain differential relation among their values.

For instance, suppose that x and x′ are two messages processed by the same function
F : the results obtained are, respectively, F (x) and F (x′). Knowing that the difference
between two generic input values x and x′ is called ∆x and corresponds to the XOR
operation between the two 9,

∆x = x⊕ x′ (2.1)

It is possible to compute the difference between the two results obtained with the two
computations:

∆y = F (x)⊕ F (x′) (2.2)

The fact that an input difference ∆x is reflected as an output difference ∆y after a
transformation F is said to be a propagation and the [∆x,∆y] pair is called differential [21].
Differential cryptanalysis bases its rationale on the observations of these pairs, relying on
the fact that a given propagation pattern only occurs for certain values of inputs. The

9The difference can also be expressed in other ways: the XOR difference is however the most common
one.
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reason is that, in many computations widely adopted in current block cipher algorithms,
deterministic differential propagations can be constructed even without knowing the key
value [7]. In an ideally randomizing cipher, the probability of a differential propagation
to occur is 1/2z, where z is the number of bits of the input value x. The attack seeks
to exploit a scenario where a particular propagation occurs with a very high probability
(much greater than 1/2n) [21].

To easily describe the main idea behind the attack, let us imagine a scenario involving
the AES AddRoundKey operation (but the example can be adapted to many other block
ciphers). Let us also assume the attacker has a single plaintext P available and does
not know the value of the key K used. By feeding P to the AddRoundKey operation, the
plaintext itself is XORed with the key K, obtaining as a result the State S:

S = P ⊕K (2.3)

Since the key K is unknown, the result S is also unknown: every information that was in
the attacker possession is now lost.

Let us now assume a similar scenario as the previous one, in which the attacker is
now in possession of two different plaintexts P and P ′. By issuing them sequentially to
the AddRoundKey operation, the attacker obtains:

S = P ⊕K (2.4)

and
S′ = P ′ ⊕K (2.5)

Now, the attacker can compute the difference between the two plaintexts P and P ′

(both known) and the two results S and S′ (unknown), following the definitions given
in 2.2 and 2.1:

∆P = P ⊕ P ′ (2.6)

∆S = S ⊕ S′ = (P ⊕K)⊕ (P ′ ⊕K) = (P ⊕ P ′)⊕ (K ⊕K) = P ⊕ P ′ = ∆P (2.7)

The above equation demonstrates that:

• the output difference between S and S′ can be computed even without knowing the
values of S and S′ and is equal to the input difference ∆P , because...

• the difference between the two plaintexts is propagated to the outputs through the
AddRoundKey transformation;

• the secret key is completely removed: the attacker can observe the effects of the
encryption operation without taking into account the actual value of the key;

This is possible thanks to the linear nature of the AddRoundKey step, as it simply
consists of a XOR operation.

Since a linear function L satisfies the following property:

L(a)⊕ L(b) = L(a⊕ b) (2.8)

the difference of two values a and b after a linear computation L can be computed by
taking their difference as input to L. This specific case is known as a Deterministic
Differential Propagation in Linear Computation.
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As a consequence of 2.8, given any linear operation, a constant key K and a pair of
plaintexts P and P ′, the input difference ∆x is propagated to the output difference ∆y
with a probability of 1 (i.e., deterministically). It is also true, given the same conditions,
that obtaining ∆y 6= ∆x is impossible (i.e., the probability is 0). This is true also for a
composition of multiple linear operations, since the result of the composition itself is also
linear 10.

In general, not every operation of a block cipher is linear (for instance, the AES
S-Box): in this case, no efficient method is known to derive a high probability differential
propagation. The logical consequence for an attacker is to compute the probability of a
given [∆x, ∆y] pair by feeding all the possible input values to the nonlinear operation
under attack and to list all the resulting output values. This operations aims at building
a Differential Distribution Table or DDT. Each row of the table refers to a specific input
difference, while each column refers to a specific output difference. Each entry of the table
represents how many of the possible values the input x can assume satisfy the relation:

F (x)⊕ F (x⊕∆xexpected) = ∆yexpected (2.9)

The probability of the differential propagation is obtained by dividing the number in each
entry with the number of possible values x can assume (given by 2z).
In general, this probability can also be defined as follows [7]:

P [∆x
F−→ ∆y] ,

#{x|F (x)⊕ F (x⊕∆x) = ∆y}
2z

(2.10)

where:

• F is a function that is either known or unknown to the attacker;

• z is the bit-length of the input value to the function F .

To better illustrate the scenario with a nonlinear operation see example 2.3.3, firstly
given in [7] and summarized in Fig. 2.6.

The above definition can be exploited only if the computation size is small, that is,
the value of z is small. Namely, 2.10 can be applied for small 4-bit to 4-bit mappings
(like example 2.3.3) and even to the AES S-Box operation, but it cannot be evaluated for
a 128-bit to 128-bit mapping of the entire AES cipher. When evaluating a multi-round
cipher, the attacker is forced to apply the analysis one round at a time, assuming that the
probability of the differential propagation can be evaluated independently for each round:
evaluating the conditional probability, especially for many rounds, is computationally
infeasible.

In a broader view, singularly evaluating the linear and nonlinear operations that
make up the structure of the block cipher allows the attacker to find a global differential
[∆x,∆y] that propagates from the inputs of the cipher to the inputs of its last round. To
build this differential it is necessary to examine highly likely differential characteristics:
sequences of input and output differences to the rounds so that the output difference
from one round corresponds to the input difference for the next round [21]. An highly
likely differential characteristic gives the attacker the opportunity to exploit information
coming into the last round of the cipher to derive bits from the last layers of subkeys,
eventually helping in the procedure of reconstructing the main cipher key (leveraging the
knowledge of the key schedule algorithm).

10In general, the goal of an attacker exploiting Differential Cryptanalysis is to obtain propagations
with the highest possible probability (possibly deterministic): this allows to determine the differences
between pairs without knowing their respective values, as seen in 2.7. This approach is useful for the
analysis because the plaintext values become unknown quickly owing to the key.
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 0 F A 2 B 9 5 8 3 D 7 1 E 6 4

Table 2.1: TWINE’s S-Box Mapping in the Hexadecimal Notation

Example: Computing the probability of a given propagation First, it is required
to define a cipher operation under attack, keeping in mind that this could be any operation
of any block cipher of our interest. In this example the S-Box structure defined in the
lightweight block cipher TWINE is exploited [22]. The knowledge of the implementation
details is not explicitly required: the attacker can observe directly the outputs of the
S-Box table, without leveraging the knowledge of the applied mapping to infer their
values.

Let us assume the goal is to assess the probability of the propagation between the
following (given) input difference and output difference:

∆x = x⊕ x′ = 5 ∆y = y ⊕ y′ = S-Box[x]⊕ S-Box[x′] = A (2.11)

P [∆x
S-Box−−−→ ∆y] = P [5 S-Box−−−→ A] (2.12)

The probability must be computed repeating the procedure for all the possible input
values x ∈ {0, 1, . . . , F}, enforcing the given input difference ∆x and obtaining the second
input by simply inverting its relation x′ = ∆x⊕x. The values y and y′ are then computed
applying the mapping provided by the S-Box function:

y = S-Box[x], y′ = S-Box[x′] (2.13)

It is now possible to compute the output difference 2.2 and check if it matches the
expected one (∆y = A):

∆yobtained = C⊕ B 6= ∆yexpected = A (2.14)

By iterating on all the 16 possible values the input x can assume, one can compute
the overall probability of the given propagation, which is simply the number of times (out
of 16) the input difference ∆x = 5 produces the output difference ∆y = A. Given the
S-Box structure of the TWINE cipher (see Table 2.1), the probability of the propagation
of this example is:

P [∆x
S-Box−−−→ ∆y] = P [5 S-Box−−−→ A] = 2/16 = 2−3 (2.15)

This example is summarized in Fig 2.6.
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S-Box[ ... ]
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S-Box[ ... ]
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x∈ {0, 1, . . . , F}

x' = ∆x ⊕ x

∆x = x ⊕ x' ∆y = y ⊕ y'

∆x = x ⊕ x' = 5
∆y = y ⊕ y' = A

P [∆x → S-Box → ∆y] =
P [5   → S-Box →  A]
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Compute output difference ∆y_obtained

6 If ∆y_obtained matches
∆y_expected then the probability of

the given propagation increases

iterate until  all possible x values
are evaluated

Figure 2.6: Example 2.3.3: computing the probability of a specific differential propagation.

Impossible Differential Cryptanalysis

Following similar principles of the more generic Differential Cryptanalysis, this attack
exploits differential propagations that are never satisfied.

An impossible differential propagation is defined as follows:

P [∆x
F−→ ∆y] = 0 (2.16)

where ∆x and ∆y represent the input and output difference, respectively, on both ends of
function F . Equation 2.16 indicates that such differential propagation is impossible, since
its probability is zero. As an example, an impossible propagation is the one involving an
input difference ∆x = 0 (meaning that the two inputs of function F are equal) and an
output difference ∆y 6= 0 (meaning that the two outputs of F have different values). A
similar example can be obtained considering a bijective function F (such as the S-Box
of the AES block cipher): it is impossible to have a propagation that involves an input
difference ∆x 6= 0 and results in an output difference ∆y = 0.

An attack based on an impossible differential characteristic can be built as follows. Let
us imagine to have a plaintext pair [P, P ′ = P ⊕∆x] to which corresponds the ciphertext
pair [C,C ′]. Let us also assume to have a function F for which the definition of impossible
differential propagation holds 2.16. To recover the key, the attacker exhaustively guesses
the last round key values and partially decrypts both C and C ′: the values resulting from
this two sequential decryption operations correspond to the outputs values of function F .
If the difference between these two values is equal to ∆y then the attacker has found a
key value that produces the given impossible differential propagation: the key guess is
wrong and it can be removed from the set of round keys candidates. Trivially, the attack
recovers the right key guess by simply eliminating all the wrong ones.

While the generic variant of differential cryptanalysis tries to find highly probable
differential propagations to directly guess the correct value of the round key, the impossible
variant, on the contrary, tries to discard all those keys related to impossible differential
propagations, finding the correct key guess by exclusion [7].
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Linear Cryptanalysis

Introduced in 1993 by Matsui [23] as a theoretical attack on DES (and empirically
used shortly after [24]), Linear Cryptanalysis is nowadays, together with Differential
Cryptanalysis, one of the most widely used attacks on block ciphers. Given its importance,
it is considered by the cryptographic community as a mandatory step in evaluating the
strength of new cipher proposals.

Linear cryptanalysis is a known-plaintext attack, meaning that the attacker has
knowledge on a set of plaintexts and the corresponding ciphertexts, without having the
chance (or the need) to control which plaintexts (and related ciphertexts) are available.
This is an important advantage over differential cryptanalysis as no restrictions are
imposed on the plaintexts.

The main rationale behind the attack is to approximate the nonlinear operations of a
block cipher with linear functions (like XOR, or any other modulo-2 bitwise operation).

Such a linear function has the following form:

P [i1, i2, .., ia]⊕ C[j1, j2, .., jb] = K[k1, k2, .., kc] (2.17)

where P represents the input plaintext on a bits, C represents the output ciphertext on
b bits and K represents the secret key on k bits. The goal is to find linear approximations
like 2.17 that have a high or low probability of occurrence for randomly given plaintexts
P and the corresponding ciphertexts C [23]. In fact, in an ideal cipher, any linear
equation relating plaintext, ciphertext and key bits would hold with probability p = 1/2,
proving ideal randomization capabilities. The attack exploits the deviation (or bias) from
this ideal probability: the further away that a linear expression is from holding with a
probability of 1/2, the better the cryptanalyst is able to apply linear cryptanalysis. If an
expression like 2.17 holds with a probability p, the linear probability bias can be defined
as ε = p− 1/2: the higher its magnitude |ε = p− 1/2|, the better the applicability of the
attack, with a reduced amount of known plaintexts required [21].

Note that both extremes of the probability p = 1 and p = 0 implies that the related
linear expression is a perfect representation of the cipher behavior, hence the cipher has a
catastrophic weakness [21].

The attacker concentrates its efforts only on cipher’s nonlinear components such as
S-Boxes: finding linear relations on cipher’s linear operations is trivial. Similarly to what
happens with differential cryptanalysis, the procedure to attack a nonlinear operation
is to enumerate every possible linear equation relating the S-Box’s input and output
bits. During this process, a Linear Approximation Table is built, allowing the attacker
to compute the biases of every linear approximation and to select the best performing
ones. The next step of the attack is to build a chain of approximations, called linear
characteristic. Such a chain can be used to recover the bits of the last round key if it is long
enough to cover R− 1 rounds (for a R-rounds cipher) and has a suitably large probability
bias. To build this Linear Characteristic, Matsui proposes the so called Piling-up Lemma,
which main principle is summarized in the paragraph 2.3.3.

The recover bits of the last round key (also called target partial subkey [21]), it is
necessary to XOR the corresponding ciphertext bits with all the possible values the target
partial subkey can assume. The result of the operation is then back propagated to the
S-Box corresponding to the last round we are operating in. This is done for all known
plaintext/ciphertext samples and a count is kept considering each value assumed by the
target partial subkey. The count is incremented whenever the linear expression holds true
for the bits into the last round’s S-Box (which are determined by the XOR operation) and
the known plaintext bits. Finally, the subkey guess whose count has the greatest absolute
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difference from half the number of plaintext-ciphertext pairs represents the most likely
set of values for those key bits [21].

Piling-up Lemma [23] [21] Let us consider two random binary variables X1 and X2

and their linear and affine relationships: X1 ⊕ X2 = 0 (which leads to X1 = X2) and
X1⊕X2 = 1 (which leads to X1 6= X2), respectively. Let us now assume their probability
distributions are given by:

P (X1 = i) =

{
p1, i = 0

1− p1, i = 1
(2.18)

and

P (X2 = i) =

{
p2, i = 0

1− p2, i = 1
(2.19)

Assuming the two random variables are independent, then

P (X1 = i,X2 = j) =


p1p2, i = 0, j = 0

p1(1− p2), i = 0, j = 1
(1− p1)p2, i = 1, j = 0

(1− p1)(1− p2), i = 1, j = 1

(2.20)

The probability of the linear relation between the two variables is:

P (X1 ⊕X2 = 0) = P (X1 = X2)

= P (X1 = 0, X2 = 0) + P (X1 = 1, X2 = 1)

= p1p2 + (1− p1)(1− p2)

Now, let us assume the presence of a linear probability bias : it is possible to rewrite both
probabilities equations as p1 = 1/2 + ε1 and p2 = 1/2 + ε2. Therefore, it follows that:

P (X1 ⊕X2 = 0) = p1p2 + (1− p1)(1− p2)
= 1/2 + 2ε1ε2

= 1/2 + ε1,2

The Piling-up Lemma generalizes the above result to multiple random binary variables,
from X1 to Xn, with the respective probabilities going from p1 = 1/2+ε1 to pn = 1/2+εn.
The lemma also assumes that all n random binary variables are independent 11:

P (X1 ⊕ · · · ⊕Xn = 0) = 1/2 + 2n−1
n∏

i=1

εi (2.21)

or, equivalently,

ε1,2,...,n = 2n−1
n∏

i=1

εi (2.22)

11In reality linear approximations of nonlinear structures like S-Boxes are not independent between each
other and this can have a significant impact on the computation of the linear characteristic probability.
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When developing a linear cryptanalysis attack on a cipher, the Xi values actually
represent linear approximations of nonlinear operations (like AES S-Box). These approxi-
mations can be combined together to form new linear expressions and eventually build
an entire chain of linear approximations (linear characteristic). The Piling-up Lemma
is therefore crucial to compute the overall composition of the single biases εi, finally
determining the overall bias of the entire chain.

It is interesting to note that if pi = 0 (or 1) for all i, then P (Xi ⊕ · · · ⊕ Xn = 0)
(or 1). Namely, a linear characteristic composed by n linear approximations perfectly
approximate all the block cipher operations if and only if all the single linear expressions
that compose the chain perfectly approximate their respective cipher’s operations.

Conversely, even a single linear approximation with a probability pi = 1/2 can “destroy”
the entire linear characteristic, bringing the entire chain probability to P (X1⊕· · ·⊕Xn =
0) = 1/2, thereby nullifying the bias contributions of all the other approximations.

As demonstrated, the overall bias of a linear characteristic is consequence of all the
linear approximations of the S-Boxes involved (as they are the main nonlinear component
of a block cipher’s operations). The cryptographic community is constantly trying to
improve the resistance against linear cryptanalysis. To do so, the focus is on optimized
S-Box designs that minimize the biases by keeping their mappings as ideally random as
possible. Another technique is to implement round structures that maximize the number
of active S-Boxes (so to say, the number of S-Boxes involved in linear approximations).
The design principles of Rijndael are an excellent example of such an approach.

2.3.4 AES Security and Countermeasures Against Cryptanalysis

The cryptographic strengths of the AES algorithm strongly depends on the choice of
the S-Box structure. Rijndael’s S-Box has been designed taking into account the most
recent cryptanalysis attacks known at that time, like linear/differential cryptanalysis and
algebraic manipulations (for example, interpolations attacks).
The main design criteria took into account by Daemen and Rijmen were the following [16]:

1. Invertibility;

2. Minimisation of the largest non-trivial correlation between linear combinations of
input bits and linear combination of output bits;

3. Minimisation of the largest non-trivial value in the EXOR table;

4. Complexity of its algebraic expression in GF (28);

5. Simplicity of description.

The final structure allows to obtain a maximum differential propagation probability of
4/256 (or 2−6), even if most entries achieve even lower ratios: either 0/256 or 2/256 [16].

The three main criteria are satisfied by the main mapping x⇒ x−1 in GF (28), that
is however susceptible to algebraic attacks (like interpolation ones) due to its very simple
algebraic expression. An additional invertible affine transformation has bee therefore
applied on top of it: this allows the S-Box to satisfy the fourth criterion too without
affecting the first three.

Both Rijndael’s cryptographers proposed that the standard S-Box they designed could
be swapped with similar structures that could satisfy the above criteria, for example, in
case of suspicion of a trapdoor present in the block cipher. They both went as far as
suggesting that a new S-Box structure could not necessarily optimise both linear and
differential cryptanalysis criteria (second and third criteria) given the great confidence
residing on the overall cipher structure and the conservatively high number of rounds [16].
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Chapter 3

Power Analysis

3.1 Introduction to Side-Channel Analysis

As briefly mentioned in the previous chapter, cryptanalysis includes an additional class
of attacks whose approach significantly differs from linear, differential and algebraic
analysis. This class, called side-channel analysis, sets the focus on studying the physical
platforms that hosts software or hardware implementations of cryptographic schemes.
Such platforms, in the most common scenarios, can be identified as IoT and small
embedded devices: in reality, any analog or digital electronic circuit can be attacked. In
summary, while classic cryptanalysis exploits the vulnerabilities of the algorithm itself,
on a logical level, side-channel analysis studies the vulnerabilities of their implementation,
on a physical level.

The main methodology is based on the observation of the physical emissions of an
operating device, like electromagnetic, heat and sound emissions. Additional parameters
can be observed, although being not properly “emitted”, such as the device power con-
sumption or the time taken to execute a specific operation. The observation and retrieval
of side-channel information allows the attacker to gather data that, if manipulated with
proper methodologies, can eventually lead to the disclosure of the secret key used within
the cipher (see Fig. 3.1). This scenario, in which the attacker does not interfere with
the observed object, is typical of so-called passive attacks. Conversely, active attacks
expect the attacker to intentionally disturb the computations during the device execution,
inserting faults or specially crafted values in the intermediate data treated by the cipher
during an encryption/decryption operation (also called fault attacks) [7].

Side-channel analysis groups multiple attack implementations, depending on the
targeted emission, the most known being Power Attacks, Timing Attacks, EM Attacks
and Optical Attacks [12]. The observation of the emissions of a device can be seen as
a non-invasive technique to gather side-channel information. The disassembly, in this
case, is not required and the attack, generally, does not leave any trace on the chip
package. For instance, when acquiring power-related information, probes may be attached
externally to the device, generally on its external pins or on the nearby PCB traces. In
other cases, such as electromagnetic observations, probes simply need to be placed in
the proximity of the package without the need of physical contact, leaving absolutely no
trace on the chip nor on the device enclosure. This goes in opposition to what happens
with invasive physical attacks, such as microprobing and hardware reverse engineering, in
which the chip’s die is extracted from its package (decapped) before being analyzed with
very expensive instrumentation like scanning electron microscopes (SEMs).

In general, no real circuit is immune to passive side-channel analysis: physical emissions
are beyond any processor architecture or higher level specifications. They can be reduced
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and masked as much as to make an attack pointless, leading an attacker in spending
more than it can retrieve from the attack itself. However, they cannot be prevented from
happening, as they are intrinsically tied to the normal usage of a circuit.

Encryption Algorithm

Cipher Key
K

Plaintext
P

Ciphertext
C

Ideal Isolated
Environment

Physical Leaky
Implementation

GND

Vdd

Power
Consumption

EM
Radiation

Thermal
Radiation

Time
Consumed . . .

Attacker

Figure 3.1: Logical representation of the side-channel attack principles.

3.2 Power Analysis

This thesis concentrates on passive side-channel analysis, specifically targeting power
attacks. This methodology was firstly exposed in 1998 by Paul Kocher, Joshua Jaffe and
Benjamin Jun with their widely known publication “Differential Power Analysis” [13]. This
work laid the foundation for power-related side-channel attacks on computing systems,
highlighting the importance of hardware as the backbone of computer system security
and opening up a new chapter of exploration for cryptanalysis. Although Kocher’s paper
demonstrate the ability of power side-channel attacks to overcome the DES implementation,
the overall methodology and its general effectiveness have been proven multiple times
against a multitude of different deployments and ciphers.

Power analysis leverages the fact that the power consumed by a circuit varies according
to the activity of its individual transistors and other components. Such transistors (mainly
MOSFETs; FinFETs in more recent technologies) act as voltage-controlled switches,
relying on the accumulation of electric charges across their terminals. The continuous
toggling activity to which a device is subjected implies a continuous charge and discharge
of these intrinsic capacitances present in the MOSes structures. This motion of electric
charge (current) translates itself in power consumption and electromagnetic emissions,
two parameters that, if properly observed, can disclose important “clues” on the data
treated internally by a microprocessor.

It is important to highlight that different operations lead to different energy con-
sumption profiles: an idle device consumes much less energy than a device performing
a cryptographic operation (such operations are, in general, quite demanding in terms
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of computational resources, and thus require non-negligible energy needs). In summary,
the power consumption of an integrated circuit or a larger device reflects the aggregate
activity of its individual elements [5]. Similarly, on a much finer grain, the toggling
activity of transistors depends on the data processed by the circuit in a certain moment
in time. To better indicate what is the main goal of the power observations carried by an
attacker, we can logically distinguish among operation-dependent and data-dependent
power consumption observations. The first relates to coarse grain observations: the
attacker is interested in finding what is the operation computed by the processor in a
certain interval of time, not how the operation is specifically manipulating the data. On
the other hand, data-dependent observations operate on a much finer grain: the attacker is
interested in finding, in the specific, how the power trace relates with the data handled
by the processor 1. Clearly, the first approach will be the one used by the attacker in the
very first phases of the analysis: the goal is to gather as much information as possible
about the executing conditions of the device. For instance, the attacker has to find, by
simply observing the captured power trace(s), what is the time interval in which the
processor is executing the main cryptographic operation, discarding other non-targeted
computations. Once the main operation has been localized, the attacker switches to
a data-dependent observation of the power consumption: the goal now is to carefully
observe a specific time interval (where the cryptographic operation is supposed to happen)
and relate the power consumption to the data handled by the device. This last step is
what will allow the attacker to retrieve the internal information treated by the cipher,
such as the round keys used. It is evident that the second observation model is way more
complex that the first one. While an operation-dependent observation tries to relate
a certain computation to a time interval in the captured trace (hence, trying to find a
reference on the x axis), a data-dependent observation tries to relate each voltage sample
to a specific data bus transaction (thus, primarily observing what happens on the y axis).

As showed in the next sections, operation-dependent observations are carried on mostly
in the case of Simple Power Analysis (or SPA), whereas data-dependent observations are
reserved to the case of Differential and Correlation Power Analysis (or DPA and CPA,
respectively). It is extremely important to highlight the fact that, while an operation-
dependent observation can be done even with a single power trace, a data-dependent
analysis is not possible if not by capturing a multitude of traces to be examined at a later
time using statistical methods (as no manual observation is feasible in this case).

On a more physical level, it is important to highlight that the total amount of power
consumed by a digital circuit is divided into two major components, depending on
the nature of the consumption itself: static power and dynamic power 3.1. Static
power indicates the amount of energy consumed whenever the circuit is powered on,
independently on the toggling activity and on the operating frequency: a device running
idle or at its full performance consumes roughly the same amount of static power. On
the other hand, dynamic power indicates the amount of energy consumed due to the
switching activity of the transistors: in this case, the power consumption varies depending
on the frequency at which the transistors switch their state. Dynamic power can be
further divided into two components 3.2: the short-circuit power and the switching
power. The first component corresponds to the power consumed during the switching
transient in a CMOS circuit: it is considered negligible in most of the cases due to its
reduced impact with respect to the switching power. The second component depends

1With the term “trace” we indicate a collection of sample points captured during the entire (or
partial) activity related to a certain operation performed by the device under attack. In particular, a
“power trace” can be represented as an interpolated curve composed of many sample points, each of
which corresponds to a specific quantized voltage value.
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on the circuit capacitance C, on the clock frequency fclk, on the supply voltage Vdd and
finally on the switching activity Esw, which represents the probability of a transistor to
toggle its state.

Ptot = Pleak︸ ︷︷ ︸
Pstatic

+Psc + Psw︸ ︷︷ ︸
Pdynamic

(3.1)

Pstatic = IleakVdd, Pdynamic = Psc + Psw ≈ Psw =
1

2
EswfclkCV

2
dd (3.2)

Every power attack leverages the observation of the dynamic power component of
a circuit total power consumption: the static power, given its constant nature, does
not reflect any toggling activity, therefore does not relates to the actual information
propagation happening within the circuit. On the other hand, by observing the dynamic
power the attacker is able to correlate, both qualitatively and quantitatively, the power
consumption to the stream of information processed by the microprocessor.

In a real scenario, the attacker that inserts the instrumentation probes on the power
supply pins of the chip will observe the total power consumption, namely the sum of
both static and dynamic components. However, this poses no problem regarding the
ultimate goal of the attacker: as with every variable signal, it is sufficient to remove the
constant component (the static power) from the signal to obtain only the variable one
(the dynamic power).

3.2.1 Attack Instrumentation and Circuit Configuration

To carry out a power attack full access to the device to be attacked is required. For the
purposes of a cryptanalyst or penetration tester, the device can be provided directly by the
company that has an interest in the results of the attack, in order to assess the security of
the product or to find criticalities in its implementation. In the case of a malicious actor,
the access to the device can be obtained by simple purchase (the information extracted
could be worth much more than the cost of the product) or directly by stealing it. The
access to the device due to temporary inattention of the respective owner is unlikely given
the time and resources required to build some prior knowledge of the device under attack
(e.g., to locate the main cryptographic chip and its power pins in the PCB). It should also
be noted that although the required instrumentation is not overly expensive, it cannot
be considered easily transportable. In fact, the attacker needs two mandatory tools to
first capture the side-channel information and, at a later stage, to process the captured
data. These two correspond in most (if not all) cases, to an oscilloscope and a personal
computer. In addition, some low-cost off-the-shelf electronics are also needed, as well as
an entry-level electronic knowledge. Finally, in some cases, additional tools such as a
soldering station may be needed to be able to remove any unwanted components from the
device’s PCB. In section 3.7 new powerful instruments are presented, already available
for purchase and capable of partially easing the problems listed above.

The power consumption of the device can be expressed as:

Pdevice = VddIdevice (3.3)

Since the supply voltage Vdd is constant, the variations of the device’s power con-
sumption can only be appreciated by observing the current absorbed Idevice. However, no
oscilloscope is able to relate a current variation to the time domain: any trace represented
by the instrument corresponds to a time-voltage relation. Therefore, it is mandatory to
include the device under attack within an adapting circuit able to “translate” the variable
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current consumption into a variable voltage, to be observed with the oscilloscope probe.
Such circuit, called current sensing circuit, is extremely simple as it consists of a single
shunt resistor, leveraging the basics of Ohm’s law 2. A shunt resistor is a resistor of very
low but accurately known value. It is placed in series to the device, so that virtually all
of the current to be measured flows through it. The low value of the resistance allows to
measure the resulting voltage drop without significantly interfering with the rest of the
circuit (meaning that the device still receives roughly the same supply voltage as before
and that the current component due to the shunt resistor is negligible). The shunt resistor
can be placed in a high-side or low-side configuration with respect to the device: the
position does not significantly impact the voltage measures. In this thesis, an high-side
placement of the shunt resistor is considered, as pictured in Fig. 3.2.

Before

VddVs

Rs

VμP

After

Vdd

Figure 3.2: Implementation of a current sensing circuit with a high-side shunt resistor.

To implement the overall circuit the attacker has to firstly locate the chip under attack
and find its main power supply pins (possibly using the related datasheet, assuming it is
publicly available). Once the pins located, the attacker has to find a way to insert the
shunt resistor. Some manipulation of the PCB is required, such as desoldering the Vdd
pin and soldering the shunt in place. If the resistor cannot be inserted (e.g., if a device
uses an internal battery), the device’s internal resistance is often sufficient [5]. Once the
circuit completed, the attacker simply needs to connect the oscilloscope probe to the shunt
resistor terminals. The corresponding voltage drop is measured: each time the current
absorption increases due to heavier computational requirements the voltage drop across
the shunt resistor increases in turn. Therefore, positive spikes on the traces captured
correspond to spikes in the current consumption. Conversely, negative spikes are related
to a sudden decrease in the power consumption (the current in the sensing circuit lowers
so as the measured voltage drop). The probe must be AC-coupled: this allows to cut-off
the entire DC component of the signal, keeping only the voltage variations around the
rejected mean value.

In general, as recalled by Kocher itself, measurements taken closer to the cryptographic
component will generally be of better quality. In the case the chip has multiple power
supply pins, the attacker should measure the voltage on the one that directly powers the
targeted internal circuitry. The removal of decoupling capacitors is beneficial as well, as
they tend to eliminate rapid voltage variations, working against the measurements goals.
In addition, it is recommended to use quality probes and interconnects, possibly shielded to
avoid the influence of noise from the surrounding environment. Finally, following the same
noise-reducing principle, the attacker should use an external bench-grade power supply to
power the device under attack with the cleanest possible supply voltage: the measured

2Ohm’s law points out that the voltage drop across a resistor is linearly proportional to the current
that flows through it: VR = RI.
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voltage variations shall come from the device, not from the external environment.
As a consequence of these arrangements, the attacker can reduce the total number of

traces to be collected. A reduced number of traces is especially useful when considering
the heavy statistical computations required for both DPA and CPA: less traces means
less computational effort which leads to a faster attack and, potentially, to a better final
result (see 3.4 and 3.5).

3.3 Simple Power Analysis (SPA)

Simple Power Analysis is the first technique an attacker can leverage to have some
initial understandings of the device operations, basically corresponding to what previously
referred as operation-related observations. As defined by Kocher, Jaffe and Jun, SPA is
“a technique that involves directly interpreting power consumption measurements collected
during cryptographic operations. SPA can yield information about a device’s operation as
well as key material.” [13]. The analysis exploits qualitative observations of the power
consumption, often done visually by the attacker itself. The goal is to leverage relevant
power fluctuations and macro-characteristics to identify the microprocessor activity.
By investigating the overall shape of a single power trace (nothing prevents observing
multiple traces), the attacker can recognize the presence of a certain algorithm, possibly
distinguishing its individual internal operations (see example 3.3.1). In some cases, an
in-depth analysis can go to the extent of discerning each single clock cycle of the device
under attack, allowing the attacker to recognize and identify the assembly operations
performed by the microcontroller, as demonstrated in example 3.3.1.

Given the nature of the observations made with SPA, it is possible to exploit the
information obtained from multiple power traces as additional clues for a reverse engi-
neering attack. When stimulated with different inputs, the power leaks emitted by the
device can report different paths in the the code flow, highlighting the presence of possible
conditional branches. Again, an example of this scenario is reported in 3.3.1.

With SPA, however, it is very unlikely for the attacker to retrieve the data related
to a cipher key: data-related observations, in the case of block cipher implementations,
are almost unfeasible without relying on statistical computations. In any case, the basic
information gathered is of extremely importance for the next steps of the analysis, as it
allows the cryptanalyst to understand the device behavior and the overall environment.
In summary, SPA provides a very effective and efficient way to obtain the information
necessary to solve for the secret keys, therefore, it should not be an overlooked step [5].

3.3.1 SPA: Attack Demonstrations

Used as a tool to identify macro-characteristics of the device power consumption, a
carefully crafted SPA attack can also be leveraged to infer even smaller clues about the
operations performed by a device.

This section demonstrates what an attacker can deduce by simply observing a power
trace captured using a synchronous sampling technique. The capture tool used is a
ChipWhisperer™ Lite board, connected to the target device via a coaxial SMA probe,
whose terminal is connected between the chip itself and the shunt resistor. In our case,
the chip is an ATXMEGA128D4 8-bit RISC microcontroller, produced by Atmel. Additional
information about the setup used for this thesis work will be given in 3.7.
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Example 1 - Annotating a simple C program The example below demonstrates
to what extent it is possible to correlate a certain operation with its power trace. Let us
assume being in possession of a given C program, executed by the XMEGA target. Let us
also assume the knowledge of the related assembly code.
The C code is the following:

1 int main(void)
2 {
3 volatile long int A = 0x2BAA;
4 while(1)
5 {
6 A *= 2;
7 __asm__("nop");
8 __asm__("nop");
9 }

10 }

The related AVR assembly code is the following:

1 A *= 2;
2 79c: 89 81 ldd r24, Y+1 ; 0x01
3 79e: 9a 81 ldd r25, Y+2 ; 0x02
4 7a0: ab 81 ldd r26, Y+3 ; 0x03
5 7a2: bc 81 ldd r27, Y+4 ; 0x04
6 7a4: 88 0f add r24, r24
7 7a6: 99 1f adc r25, r25
8 7a8: aa 1f adc r26, r26
9 7aa: bb 1f adc r27, r27

10 7ac: 89 83 std Y+1, r24 ; 0x01
11 7ae: 9a 83 std Y+2, r25 ; 0x02
12 7b0: ab 83 std Y+3, r26 ; 0x03
13 7b2: bc 83 std Y+4, r27 ; 0x04
14 __asm__("nop");
15 7b4: 00 00 nop
16 __asm__("nop");
17 7b6: 00 00 nop
18 while (1)
19 7b8: 91 cf rjmp .-222 ; 0x6dc <main+0x60>

As it is possible to see by comparing the two listings, the AVR compiler translates the C
code into 15 assembly operations: 12 for the main computation, 2 for the two NOPs and 1
for the while(1) instruction. By referring to the datasheet related to the XMEGA family
of microcontrollers [25] we obtain that:

• the ldd instructions take 3 clock cycles each;

• the add and adc instructions take 1 clock cycle each;

• the std instructions take 2 clock cycles each;

• the rjmp instruction takes 2 clock cycles.
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Fig. 3.3 shows two annotated graphs for two different captured power traces. Both
graphs represent the end result of an SPA attack: the observed power leakage was enough
to obtain important information about the computations done by the device. Namely,
the bottom graph refers the specific case just mentioned (identifiable by the presence
of two NOPs instructions). The image proves that it is possible to locate each assembly
instruction by observing its related spike/power sample in the trace graph. In detail, each
major spike in the image represents the very first sample among the four collected for
each clock cycle of the target (see Fig. 3.16). To prove the correctness of the analysis
let us remove one of the two NOPs and compare the new trace with the previous one: if
the new trace obtained shows one spike less then our annotations are correct. The graph
corresponding to this test is the top one in the same image 3.3. The only major difference
in the collected samples consists in the lacking of the peak related to the NOP instruction
we just removed, hence confirming our annotations.

Figure 3.3: Visual analysis of two slightly different power traces: the second one includes
an additional NOP instruction, denoted by an additional spike in the trace. For both
traces, the attacker is able to group the various peaks into the corresponding sequences
of assembly instructions.
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Example 2 - Annotating AES-128 Fig. 3.4 reports the observations and consequent
annotations done on a power trace referring the execution of AES-128. A simple qualitative
observation is sufficient for an experienced attacker to infer the operations executed: the
various colored groups refer, in fact, to the different operations that compose the AES-128
algorithm, such as the ShiftRows and MixColumns operation. The case of the ShiftRows
step is striking: the presence of 3 main spikes clearly indicates the 3 rotations done on the
State matrix (the first row of the State is kept as is). Additionally, a closer look to the the
main peaks present in both the AddRoundKey and SubBytes sets can give a further clue
for the attacker: the fact that each group contains exactly 16 main spikes, each related to
a different byte of the State, confirms the presence of a 128-bit block cipher.

Figure 3.4: Annotations of the key Whitening operation followed by the very first round
of AES-128.
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Example 3 - Highlighting Code Flow Differences Superimposing and observing
multiple traces can highlight differences in the flow of the code executed by the device.
Each trace captured is related to a different execution of the target device: similarly to a
chosen plaintext attack, the attacker can submit a different set of inputs per execution.
In this example, the C code executed by the device completes a password check by
sequentially checking each submitted character: if the character is different from the
expected one then the loop that iterates on all the characters stops iterating, jumping on
the code section in charge of emitting an error code.
The C code of the example is the following:

1 // Hardcode expected password
2 char passwd[32];
3 char correct_passwd[] = "h0px3";
4 //Get user password
5 my_puts("Please enter password to continue: ");
6 my_read(passwd, 32);
7 uint8_t passbad = 0;
8 trigger_high(); // Trigger for trace capture
9

10 // sizeof(correct_passwd) == 6
11 for (uint8_t i = 0; i < sizeof(correct_passwd); i++) {
12 if (correct_passwd[i] != passwd[i]) {
13 passbad = 1;
14 break;
15 }
16 }
17 if (passbad) {
18 my_puts("PASSWORD FAIL\n");
19 led_error(1);
20 }
21 else {
22 my_puts("Access granted, Welcome!\n");
23 led_ok(1);
24 }

Figure 3.5 shows the alignment and superposition of 36 different power traces, each
corresponding to a different possible input character (assuming the password cannot
contain characters out of this set). The superposition highlights the presence of different
paths in the code flow: in this case, character “h” leads to a unique power consumption
profile, proving the presence of a conditional branch. Since all possible character have
been tested, the attacker evinces that “h” must be a character of the password. The
attacker can now iterate the same attack for each of the remaining characters: eventually,
the entire password will be revealed and the password check cracked.
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Figure 3.5: SPA used to highlight the presence of conditional branches in the code flow.
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3.4 Differential Power Analysis (DPA)

Differential Power Analysis (or DPA) is the first of the two main statistics-based methods
regarding the class of power side-channel attacks. DPA allows the attacker to conduct
data-related observations, correlating the power consumption measured in a certain instant
in time to the data handled by the microprocessor under attack. In contrast with SPA,
statistical analysis like DPA normally require a large amount of power traces to achieve a
key recovery. In some cases, the collected traces may need an additional conditioning step
before the main statistical computations. For instance, the attacker may want to remove
unwanted samples (which may refer to operations preceding or following the targeted one)
and to remove possible alignment errors. The temporal alignment of the collected traces
can in fact significantly improve the efficiency of the attack and the quality of the results
obtained. Trace alignment becomes a mandatory step in all those real-world scenarios
where the trace capture is launched in slightly different time instants. The misalignment
can also be caused by the presence of jitter between the sampling clock and the device
clock: the use (if possible) of synchronous sampling solves this problem (see Fig. 3.8).

DPA bases its observations on the existence of an intermediate value within the block
cipher data that, if considered in the ensemble of the implementation environment, can be
physically correlated to a specific contribute to the power consumption. This intermediate
value must also be the result of an operation involving the plaintext (ciphertext) and
(part of) the key.

These two “rules” are based on the (correct) assumption that every single bit transferred
on the data bus causes a certain amount of power consumption. The interconnects that
form the parallel data bus between the register file and the processor core can be (roughly)
seen as load capacitances that are charged/discharged at each data transfer. As shown in
Fig. 3.7, different bit transfers imply different spikes on the chip power rail: it follows that
if more bus lines have to be charged, more current will be needed to charge the related
parasitic capacitances. Differential power analysis exploits the correlation between the
value assumed by a single transferred target bit and the consequent presence of a spike in
the microcontroller power rail. If the bit is 1, we assume the presence of a spike in the
captured power trace, while if the bit is 0, we assume its absence. In most of the cases
the bit under observation makes up the result of the XOR operation between the plaintext
and the cipher key, so to satisfy the rules previously mentioned. As a tacit convention,
generally this bit coincides with the LSB: in reality every bit position can be considered.

This assumption is what defines the most common policy of a DPA prediction function.
This function defines the criterion to be applied when correlating the power consumption
to the data processed internally by the block cipher implementation. Several policies
may be defined: some may lead to better results than others, depending on the physical
environment in which the attack is applied. Moreover, several prediction functions can be
used in the same attack: the different results obtained can be compared with each other
to find trade-offs between the quality of the results and the computational complexity
required to obtain them.

The following step of the attack involves the so called selection function. Its goal
is to apply the policy dictated by the prediction function to the collected power traces.
Assuming the most common policy just mentioned, the selection function evaluates and
separates the traces into two distinct sets: the first is associated to the target bit having
value 1, while the second relates to the target bit having value 0. To partition the
various traces, the selection function must leverage some partial information coming
from the block cipher: the intermediate value. However, considering the nature of the
attacker’s target operating environment, no encrypted data is directly observable apart
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from side-channel emissions. In any case, if the attacker were able to extract intermediate
data directly from the device, it would make no sense to attempt a side-channel attack in
the first place.

To find this intermediate value, a reduced replica of the block cipher under attack
is built. This is possible thanks to the open source nature and public availability of the
specifications of modern block ciphers, which all follow Kerckhoffs’ Principle.

In many real-world scenarios involving AES-128, for instance, the model built by
the attacker replicates a very small portion of the block cipher algorithm, formed by
combining the Key Whitening operation (AddRoundKey) and the subsequent SubBytes
step (the one related to the first round). The result obtained with this ideal replica is then
masked in order to isolate the targeted bit. The selection function will then assign each
trace to one set or the other according to the bit’s value. The choice of the AddRoundKey
and SubBytes operations for the model is not accidental: as mentioned in 2.2.2, only
the 128-bit variant of AES uses the entire main secret as round key for the very first
AddRoundKey operation. Therefore, by targeting the Key Whitening step, the attacker
can expect to retrieve the main secret immediately, without having to analyse multiple
rounds or to resort to the key schedule algorithm.

Once the partitioning phase has evaluated the entire trace collection, two representative
average traces are computed for both of the two sets. Finally, the difference among these
traces is determined. If the choice of which trace is assigned to each set is uncorrelated
to the measurements contained in the traces, the difference in the sets’ averages will
approach zero as the number of traces increases. Otherwise, if the partitioning into subsets
is correlated to the trace measurements, the averages will approach a non-zero value [5].
Given enough traces, extremely tiny correlations can be isolated no matter how much
noise is present in the measurements. The presence of non-zero values in the differential
trace indicates that the partitioning phase (and the policy applied) correctly assumed
the correlation between the power samples and the value of the observed intermediate
bit. Better policies better highlight the differences between the two sets: having a “good”
prediction means that the attacker is able to correctly assume the correlation between the
device power consumption and the data handled by it. Consequently, a good prediction
function provides better results in lower computational time.

In Fig. 3.6, provided by Kocher in [5], the authors show two probability distribution
functions of measurements obtained at a certain offset in a set of collected traces. The
two Gaussian curves have been obtained by partitioning the entire trace collection in
two main sets following the exact same selection function presented above. The distance
between the two curves is due to the partitioning applied: a good prediction policy better
distances the two curves, as the partitioning better separates the traces collected. As a
consequence, a higher distance between the two Gaussians indicates the applied prediction
function leads to better quality of the final results, meaning the attacker can retrieve a
larger portion of the key in less time. As highlighted by the authors, the left-hand side
curve (LSB @ “1”) presents a power consumption with a lower mean with respect to the
curve on the right-hand side (LSB @ “0”). This counterintuitive scenario is due to the
placement of inverters by logic synthesis tools and other design details, de facto making it
possible for either value to consume more power. In any case, what matters is that these
two distributions are significantly different, demonstrating that the power consumption is
statistically correlated to the LSB of the S-Box output [5].

3.4.1 DPA: Attacking an AES-128 software implementation

This example illustrates the main operations that characterize a DPA attack against
AES-128: for the sake of brevity, let us assume the attacker has already collected a number
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Figure 3.6: Visual representation of the effects due to partitioning: the higher the
distance between the two curves the better the prediction function [5].
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assuming a microcontroller with precharge logic.
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Figure 3.8: Traces affected by high clock frequency jitter before and after trace align-
ment [6].

N of different [plaintext - trace] pairs ([Pi, Ti]). Each power trace is composed by S
sample points: each point corresponds to a quantized voltage measure.

In a real scenario, a complete DPA attack involves a multitude of iterations, primarily
due to:

• The number of [plaintext - trace] pairs collected;

• The number of samples that make up each power trace;

• The number of bytes of the key (out of 16) the attacker wants to retrieve;

• The number of iterations necessary to recover each byte of the key (28 = 256
iterations needed per byte).

A complete DPA attack is carried on using an iterative Divide et Impera approach,
meaning that all the 16 bytes that compose an AES-128 key are addressed one at a time.
This allows to break the attack in 16 different and sequential iterations: once the b-th key
byte has been retrieved, the attack proceeds by cracking the following (b+ 1)-th. This
approach allows the attacker to try every possible value a key byte can assume (from 0x00
to 0xFF), de facto implementing a small (and feasible) exhaustive search on n = 28 = 256
values.

Each of the 256 key candidates Kn is fed into the model built by the attacker (see
equation 3.4) to derive the value of Ii,n, evaluating each [Pi, Ti] pair. Thereafter, the
selection function selects the targeted bit from the intermediate State: Let us assume, for
this example, the targeted bit corresponds to the LSB of Ii,n. Each trace is assigned to
one of two subsets, depending on whether the selection function result is “0” or “1” [5].
The difference of the subsets’ averages is then examined (also called Difference of Means
or DoM ). If the value of the S-Box output bit predicted by the selection function has
even a tiny correlation to the power traces, the DPA test will show spikes indicating that
the key guess Kn is correct. For each wrong candidate Kn, the predicted values of Ii,n
will be (largely) unrelated to any data being processed by the target device, and the DPA
test will not be (or will be much less) statistically significant.

Ii,n = S-Box[Pi,n ⊕Kn] (3.4)
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byte #0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

0x2B 0x7E 0x15 0x16 0x28 0xAE 0xD2 0xA6 0xAB 0xF7 0x15 0x88 0x09 0xCF 0x4F 0x3C

Table 3.1: The secret key to used for this thesis work.

In most real-case scenarios, the differential traces computed for the wrong key guesses
may still show some nonzero peaks of correlation. Their presence is mainly due to two
reasons: the contribute due to measurement noise and the lack of an ideal independence
among the target intermediate value produced by the correct key and the target interme-
diate value produced by the wrong key candidates. As a consequence, the attack may
not succeed for each of the 16 iterations to be completed: when analyzing a specific byte
some of the 256 guesses may return better correlations although not being the correct
ones due to the above noise contributions. In any case, the attacker can easily build a list
of all the key candidates that returned a higher correlation than the others, ranking all of
them based on the differential score they are associated to. This score can have multiple
definitions: in the most common case it corresponds to the value recorded by the highest
peak in the absolute differential trace |∆T |, indicating the highest correlation registered
for the current key guess.

The above problem is solved by increasing the number of processed power traces:
both noise contributions become less significant while the correlations for the correct
guess become more prominent. Adding more traces to be processed leads to an additional
computational load and to longer attacks. Hence, it is advisable to start with a reduced
number of traces and follow an incremental approach until the correct key is discovered.
A proper attack stops as soon as the result obtained is satisfactory, avoiding calculations
that are not strictly necessary.

In Fig. 3.9 shows the correlation traces produced by a full attack on the 16 bytes
of the secret key in 3.1. The graph is constructed by overlaying the entire collection of
power traces (it is possible to recognize the same pattern that characterizes the profile of
AES-128, see Fig. 3.4). On top of these traces, 16 different absolute differential traces are
superimposed, each of which is associated with the key guess having the same value as
the corresponding byte of the secret key. As can be seen from the spikes registered on
each differential trace, correlation peaks at exactly the position where each S-Box lookup
is performed. For example, the first trace, corresponding to the key byte 0x2B, peaks
just after the completion of the AddRoundKey step, on the first SubBytes lookup. This
effectively confirms the correctness of the applied policy, which assumes the presence of
a correlation between the LSB of the S-Box output result and the energy consumption.
Even higher correlation peaks can be observed when the MixColumns step is executed:
due to the nature of AES, these correlations are generally rendered undetectable after 2
rounds.
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AddRoundKey SubBytes
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Figure 3.9: Superposition between the captured power traces and the (magnified)
absolute differential traces |∆T | (one differential trace for each byte of the key).

3.5 Correlation Power Analysis (CPA)

Correlation Power Analysis (or CPA) is the second statistical technique able to retrieve
the entire content of a secret key by leveraging the collection of multiple power traces. It
is based on similar principles as DPA, to the point of being, in some cases, considered
as a subclass attack of it. However, correlation power analysis takes a step further in
the attempt to correlate the data internally treated by the physical implementation with
the resulting power consumption. For the purposes of a differential power attack, it is
sufficient to prove the presence of a power consumption contribution whenever certain
conditions on an intermediate State are verified device side, without being interested
neither in its relative nor absolute value. The assumption is made a priori and later
statistically verified provided that a sufficient number of power traces has been collected.

In the case of CPA, the main assumption relies on the fact that each single bit that
makes up the intermediate value brings a specific and relative contribute to the overall
power consumption. Therefore, the focus of the attack is on the cumulative contribution
caused by the toggling bits. To better understand this rationale, let us refer again
to Fig. 3.7. In the specific, CPA relies on the fact that each single bus line and the
corresponding parasitic capacitance require a certain amount of charge whenever its state
toggles. This translates in a specific current absorption and in a corresponding power
spike on the power supply rails of the microprocessor under attack.

3.5.1 The Leakage Model

CPA defines the so called leakage model : a representation of the device leakage that
depends on the value of (or a function of) one or more intermediates in the cryptographic
calculation. [5]. In summary, CPA and the leakage model extend the concept applied by
the DPA’s selection function from a single-bit policy to a multi-bit one. CPA is most
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effective in white-box analysis where the device leakage model is known by the attacker:
if the attack leads to poor results the cause generally relates either to a low-leaky device
implementation or to a poor assumption of the leakage model [5]. Similarly to the selection
function in the case of DPA, the attacker can test multiple leakage models to assess which
one leads to better results, trading off the additional flexibility to the time required to
end the attack.

The Hamming weight (HW) Model In many applications, the leakage model is
defined as the Hamming weight of a multi-bit value Ii,b in a register (or on a bus), meaning
that HW (Ii,b) is assumed to roughly estimate the power consumption 3. For instance,
assuming an 8-bit microcontroller having an 8-bit wide data bus, the byte 0x05 shall
consume less power than the byte 0xFF, since the latter has a larger Hamming weight
HW (0xFF = 8) than the former HW (0x05 = 2).

It is also important to highlight that, in the generic case, if cipher’s intermediate
value Ii,b contains m independent and uniformly distributed bits, the whole word has an
average Hamming weight µH = m/2 and a variance σ2H = m/4 [26].

The Hamming Distance (HD) Model The Hamming Distance model, as proposed
by [26], can be seen as a generalization of the previous one. While the HW model focuses
on the intermediate value assumed by the state Ii,b at a specific timing, the HD one
focuses on the power consumption related to the number of bits switching their state
when transitioning from a value to the successive one. For instance, the transition of
the Ii,b value from 0x13 to 0x37 denotes an Hamming Distance HD(0x13 → 0x37) =
HD(0x13⊕ 0x37) = 2, since only 2 bits flip during the transition.

The authors in [26] assume the presence of a reference word R considered as the
starting state, while calling Ii,b the arrival state, therefore defining the generic Hamming
Distance as:

HD(R⊕ Ii,n) (3.5)

Like in the previous model, if Ii,b is a uniform random variable, so is R ⊕ Ii,b, and
HD(R⊕ Ii,b) has the the same mean µH = m/2 and a variance σ2H = m/4.

The definition given in 3.5 encloses the Hamming weight model, which is obtainable
by simply considering R = 0. Sometimes the reference state R is systematically 0 due to
the presence of pre-charge logic, that clears the bus between each transferred value 3.7.

In general, the presence of a linear relationship between the current consumption and
the Hamming models is also assumed. This can be seen as a limitation but, as highlighted
by the authors, the linear model fits reality quite well if we consider a chip as a large set of
elementary electrical components [26]. Indeed, Fig. 3.11 shows the presence of such linear
relationship in our XMEGA target board, computed once again using ChipWhisperer™.

Both models are not too unrealistic since the bus lines are usually considered as the
most consuming elements within a microprocessor/microcontroller. However, power leaks
in real worlds scenarios can be complicated. In some devices, transitions from 0 to 1 leak
differently than transitions from 1 to 0. Hamming weight and Hamming distance models
treat bits independently but, in real devices, the amplitude of leaks varies significantly
for different bits, and may be further modulated by multi-bit effects. For instance, some
devices have word-oriented leaks which may be correlated to flag bits such as sign, zero,
overflow, or carry [5]. This means that not every device is to be expected of leaking

3Remember that i ∈ {0, . . . , N} where N indicates the number of traces captured, and b ∈ 0, . . . , 15
indicates the byte position in the plaintext Pi, key K and intermediate state Ii
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linearly in the number of bits, as pictured in Fig. 3.10. In this image, taken from [7],
the entire collection of traces has been partitioned into 9 sets, each corresponding to
a different value of the Hamming weight assumed by a certain intermediate value in a
specific time instant. The graph shows 9 different mean traces, each one computed from
all the traces of the corresponding set. As it is possible to see, the vertical distance
between the traces having HW = 7 and HW = 8 is way higher than the distance between
the trace associated to HW = 0 and the one related to HW = 1, proving the non linearity
of the power consumption contributions.

Figure 3.10: Graphical representation of the distance among 9 different mean traces,
each representative of the Hamming weight related to its origin set. The relation is not
linear. [7]

Figure 3.11: Presence of a linear relationship between the current consumption and the
Hamming weight of the intermediate values, in the case of the XMEGA target device.
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3.5.2 Computing the estimated leakage

Assuming the attacker has already formed a collection of power traces, the goal is now to
build an estimation of the leakage produced by each intermediate state Ii,b leveraging the
selected leakage model. This is achieved by building a reduced replica of the block cipher,
as done in the case of DPA. The intermediate result returned by the replica corresponds
to the same data expected to be internally elaborated by the device implementation. The
output of the replica is then fed to the selected leakage model which, assuming the use of
the Hamming weight criterion, returns an estimate of the energy consumption hi,b.

hi,b = HW [Ii,b] = HW [S-Box[Pi,b ⊕Kb]] (3.6)

Equation 3.6 is applied following the same Divide and Conquer approach leveraged
for DPA: each of the 16 b key bytes to be evaluated carry an additional evaluation on
n = 28 = 256 possible key candidates.

3.5.3 Correlating the estimated leakage to the real power consumption

The HW model assumes that there is a linear dependency between the Hamming weight
of the intermediate value and the power consumption, i.e. a correlation. To extract
and prove the correlation between the rough estimation of power consumption and the
real power traces, a so called evaluation function is needed. In most of the cases, this
function corresponds to Pearson’s correlation coefficient ρ [7]. In statistics, the Pearson’s
correlation coefficient (PCC) is a measure of linear correlation between two sets of data. It
is essentially a normalised measurement of the covariance, such that the result always has
a value between −1 and 1. As with covariance itself, the measure can only reflect a linear
correlation of variables, and ignores many other types of relationship or correlation [27].
Given a pair of random variables (X,Y ), the Pearson coefficient ρ can be written as
follows:

ρX,Y =
cov(X,Y )

σxσy
=

E[(X − µx)(Y − µy)]√
E[(X − µx)2]E[(Y − µy)2]

(3.7)

where E is the expectation, µx is the mean of X, µy is the mean of Y and σx, σy are
the standard deviations of X and Y , respectively.

As mentioned, the value of ρX,Y will always be in the range [−1, 1], describing how
close the two variables X and Y are related:

• If Y always increases when X increases, it will be 1;

• If Y always decreases when X increases, it will be −1;

• If Y is totally independent of X, it will be 0.

Let us assume the following:

• the attacker has collected N [plaintext - trace] pairs, denoted as [Pi, Ti];

• each trace Ti (i ∈ 0, . . . , N) is formed by S sample points, indexed by the variable
j ∈ {0, . . . , S};

• n indicates the n-th key guess, among all the n = 28 = 256 possible values a key
byte can assume;

• hi,n indicates the power estimate in trace i for key candidate n, as computed in 3.6.
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Let us write the PCC in case of a CPA attack as:

rn,j =

∑N
i=1[(hi,n − hi)(Ti,n − Ti)]√∑N
i=1[(hi,n − hi)2(Ti,n − Ti)2]

(3.8)

The following is an alternative form of the equation that can be used for online calculations,
as it allows the attacker to add one trace at a time without re-computing all of the past
data [28]:

rn,j =
N
∑N

i=1(hi,nTi,j)−
∑N

i=1 hi,n
∑N

i=1 Ti,j√
[(
∑N

i=1 hi,n)2 −N
∑N

i=1 h
2
i,n]− [(

∑N
i=1 Ti,j)

2 −N
∑N

i=1 T
2
i,j ]

(3.9)

By iterating the previous computations on all the possible key guesses, for all the captured
traces and for all the samples in a trace, the attacker builds a ranking of the best
performing key candidates for the given key byte position b where b ∈ {0, . . . , 15}, sorting
them by highest correlation score. To retrieve the entire key, this entire process is iterated
16 times.

Similarly to DPA, the more the traces computed the better the correct key guess will
be highlighted with respect to the wrong ones. With a high enough number of traces the
correct candidate will “float” up to the top of the ranking: generally, due to the higher
efficiency of CPA over DPA, a way lower number of traces is sufficient. An example of the
results obtained by attacking AES-128 can be seen in Fig. 3.12. In Fig. 3.13 and 3.14 we
report the superposition of all the 16 correlation traces related to the correct key guesses.
The first graph has been obtained with just 50 traces, the second one with 800 traces 4.
The comparison between the two shows how the uncorrelated samples are quickly nullified
as the number of traces increases.

3.6 Countermeasures

Side-channel power analysis, as mentioned in the introduction, cannot be entirely prevented
due to the power consuming nature that characterize any operating VLSI device: “[...] to
introduce direction into a transition between states, energy must be lost irreversibly. A
system that conserves energy cannot make a transition to a definite state and thus cannot
make a decision (compute)” as stated by [29] and recalled by [30].

Although not completely removable, leakage from a microprocessor can be reduced
and side-channel analysis can be made so complex as to make it economically unattractive,
leading the attacker to spend more resources than he/she can gain from a successful
attack.

In the case of SPA, for instance, implementations shall make use of constant time
execution paths, avoiding the use of conditional branches when treating secret data. If
possible, hardware and software engineers shall cherry-pick primitive instructions known
to leak less information to implement security-critical code sections [5].

4To achieve similar results with DPA 2500+ traces are needed.
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Figure 3.12: The results obtained with a CPA attack on AES-128, done with just 50
traces collected with ChipWhisperer™ against the target XMEGA microcontroller: 15/16
bytes were correctly recovered.

Figure 3.13: The correlation traces related to the same attack depicted in Fig. 3.12
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Figure 3.14: The correlation traces related to another CPA attack on AES, this time
completed with 800 traces.

Preventing DPA and CPA (and in general all the variants based on statistical obser-
vations) requires more effort than SPA, since the effects of noise and uncorrelated device
activity decrease by simply increasing the number of traces captured. In general, the
countermeasures against this class of analysis adhere to two main principles:

1. reduce as much as possible the information leaked;

2. mask and “scramble” the remaining portion of the leakage, so as to make unfeasible
a statistical analysis.

3.6.1 Reducing the leakage

The first point can be achieved by decreasing the signal-to-noise ratio: this will result in
the need for a higher number of traces to obtain a successful attack. In the extreme case,
this number can be made so high so that the attacker cannot afford to spend the time
required for the related computations.

Balancing Balancing the power consumption reduces the observed amplitude of data
dependent variations. Several solutions have been proposed such as the use of dual-rail
pre-charge logic or the use of multi-bit data representations and balanced transitions [5].

Noise introduction Noise can be introduced on both the temporal and amplitude
domain. The former can be introduced by using variable clocks and the insertion of
random wait state and/or random branching. The latter can be achieved by leveraging the
presence of circuitry able to perform computations in parallel to the main cryptographic
core, adding their spikes contribution to the shared power rail. In general, if “noise” is
positively correlated to the intermediate data, the attack gets easier. Conversely, if noise
is negatively correlated to intermediates, the result is a balancing countermeasure. A
reduction factor of k in the signal-to-noise ratio achieved by the addition of amplitude
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noise increases the number of traces required by a factor of k2. Temporal noise is instead
less effective as the number of traces required increases linearly in k: this is because each
individual trace provides O(k) more locations to perform the attack.

In any case, the effectiveness of both noise components can be mitigated by advanced
trace alignment and filtering techniques [5].

3.6.2 Blinding and masking

The goal of blinding and masking is to ensure that information leakage is not directly
related to the secret data. This kind of countermeasure is able to resist DPA and CPA
by periodically changing the random representation of secret parameters. This allows to
obtain a limited amount of collected traces with the same secret representation, de facto
limiting the applicability of statistical computations. The effects caused on the attack are
important: the attacker has now to target the relationship between masks and masked
data, relying on the so called high-order DPA, which requires a way higher number of
traces with respect to classical DPA [5].

3.6.3 Protocol level countermeasures

Different countermeasures can also be adopted outside the implementation level, like
on the cryptographic one or even closer to the application level. As stated by Kocher
et al. “The most effective and least difficult way to address side channel attacks is to
design cryptographic protocols to survive leakage” [5]. The general approach is to limit
the number of cryptographic operations performed with a single key: even in the case of
a successful side-channel attack, the effect of subsequent attacks can be limited by simply
periodically changing the key. In a similar way, a cryptanalyst can assess how many bits
per transaction the implementation is leaking. Knowing the desired security level for the
application (expressed in bits), it can define the key cryptoperiod in transaction terms,
enforcing an automatic key change whenever the number of transactions reaches a certain
critical threshold.

50



3.7 Tools: The ChipWhisperer™ Kit

The growing popularity of side-channel analysis in recent years has driven the research for
powerful, compact and low-priced tools that could compete against lab-grade instruments.
The latest advances in specialized hardware are enabling the ability to perform both
passive and active attacks even in the educational environment and to novices in the field,
effectively further democratizing this class of attack.

One of the most interesting (and probably the most known) tool in the market is
NewAE’s ChipWhisperer™. ChipWhisperer™ is an entire ecosystem composed by many
tools (both hardware and software) proposed for embedded hardware security research
targeting, in the specific, side-channel analysis and fault injection. A single ChipWhis-
perer™ board can be considered as a viable substitute for digital oscilloscopes: the extreme
flexibility and small physical size allow the attacker/cryptanalyst to easily reproduce
attack setups without relying on external tools.

3.7.1 ChipWhisperer™ Hardware

ChipWhisperer™ delivers a capture technique that commercial oscilloscopes usually do
not provide: synchronous sampling. In opposition to these instruments, where both
the clock of the capturing device and the clock of the device under attack run freely,
ChipWhisperer™ is able to derive the former from the latter in order to always measure
a consistent point in time. In other cases, ChipWhisperer™ is also able to generate a
single clock signal which is used by both the device under attack and ChipWhisperer™’s
own sampling circuitry. Synchronous sampling allows to keep always the same phase
relation among the two clocks: this relaxes the sample rate requirements with respect
to asynchronous sampling. For instance, in [31], the authors present an attack against a
SASEBO-GII board claiming that synchronously sampling at 96 MS/s produces similar
results obtained by an asynchronous sampling done at 2 GS/s. The lower frequencies
needed are mainly due to the absence of jitter and phase variations among the two clocks,
something that is simply not possible to achieve if the two clocks run freely and are
therefore completely independent.

Additionally, ChipWhisperer™ provides the necessary hardware to perform fault
analysis and glitch-attacks, de facto merging a good majority of the instruments used by
an hardware attacker (Fault attacks and glitching are topics not covered for the purposes
of this thesis).

3.7.2 ChipWhisperer™ Lite Characteristics

ChipWhisperer™ capture board can leverage both asynchronous and synchronous sampling
up to a frequency of 105MS/s. Being the frequency quite low (with respect to a lab-grade
oscilloscope), the synchronous sampling technique is preferred. The capture circuitry
leverages an AC-coupled probe, a low-noise amplifier with adjustable gain and a 10-bit
ADC. The sample buffer can contain up to 24573 samples. However, x4 and x10 decimation
factors are possible, allowing to cover even larger temporal ranges. ChipWhisperer™
leverages an FPGA to manage the entire capture and glitching phase, while counting
on an Atmel microcontroller for configuration and interface with the attacker’s personal
computer. The board also provides built-in serial ports and programmers to communicate
with daughter boards, if present.

Finally, the entire design, both hardware and software, is completely open-source,
allowing the attacker to modify all the aspects of the product and to possibly contribute
to its development.
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ChipWhisperer™ XMEGA Target Board

NewAE also produces kits providing an additional evaluation board to be attacked by
the main ChipWhisperer™ capture device. The kit used for this thesis work provides,
as target board, an ATXMEGA128D4 8-bit microcontroller by Atmel. In Fig. 3.15 it is
possible to appreciate the main ChipWhisperer™ attacker device (on the left) and the
target detachable XMEGA board on the right.

Figure 3.15: NewAE’s ChipWhisperer™ Lite board, on the left, and the target detachable
XMEGA board, on the right.

The two boards share the same clock signal, therefore allowing for synchronous
sampling. The XMEGA microcontroller receives an “untouched” version of the clock, running
at 7MHz, while the capture board multiplies by four the main frequency, bringing the
sampling clock to 28MHz. This allows to achieve what visible in image 3.16: each clock
cycle happening in the device is sampled in four different instants. Both the capture
probe and glitching interconnection can be achieved, once the two boards detached, using
two shielded SMA cables.

Device
Clock

Sampling
Clock

Figure 3.16: ChipWhisperer™’s default synchronous sampling clock vs. XMEGA’s (attacked
device) default operating clock.
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3.7.3 ChipWhisperer™ Sofware

The ChipWhisperer™ main capture board can completely substitute an oscilloscope: the
samples collected during the acquisition are automatically sent to the attacker’s personal
computer. The software interface between the board and the PC is achieved thanks to a
set of Python API’s. The exposed commands allow to deeply configure all the capture
parameters of the board, such as the decimation factors, the adjustable gain, the sampling
clock and many others. Once the board correclty configured, the attacker can launch an
acquisition phase using a Python script and continue with the offline statistical analysis
within the same script. The entire client-side API architecture, being completely based
on Python, enables the attacker the use for the extremely large library of additional
modules provided by the language, such as numpy, pandas and matplotlib. The extreme
portability of the device and the flexibility provided by Python allows for fast, scriptable
and highly reproducible setups, allowing to ease the work of the generic cryptanalyst
and enabling a low-cost approach to hardware security in academic and educational
environments.
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Chapter 4

S-Box Variants: State of the Art

The development of countermeasures against side-channel attacks is a continuously
evolving field of the academic research. Their importance is becoming crucial, especially
given the extreme efficiency these attacks can reach with respect to classical cryptanalysis.
For instance, while differential power analysis can leverage as just as 2000 bytes of
plaintext-ciphertext pairs, linear or differential cryptanalysis needs terabytes of such pairs
to achieve the same result [14]. In general, for a malicious actor, the choice of which
attack to use is often dictated by how practical the attack is: in the case of an embedded
device this unquestionably falls on side-channel attacks.

The problem of finding proper countermeasures presents a multitude of approaches
and trade-offs to be evaluated. Since each different implementation addresses different
security needs, it is therefore important for both the researcher and the hardware/software
engineer to have adequate knowledge of the possible solutions that can be implemented.

In general, the following scenario can be observed: the greater the security provided
by a particular solution, the greater its impact on the device performance. As an example,
we can cite the two following solutions:

• Temporal Noise Addition: provides a lightweight solution able to increase the
overall complexity of a side-channel attack with relatively small overhead on the
algorithm complexity. However, the random delays inserted can be easily recognized
and circumvented thanks to the use of inference techniques such as the one proposed
in [32];

• Masking Schemes: provides a strong security against SCA (side-channel analysis)
but induces a high performance overhead, making its implementation not practicable
in small embedded devices [33] [34].

While some implementations may accept a significant performance impact to achieve
a higher level of security, others, however, must necessarily settle for a lower level of
security in order to keep performance (or power consumption) within certain parameters.
For instance, in the case of smartcards, even lighter solutions can significantly impact
the entire project design. In general, the use of countermeasures at the implementation
level has been claimed to impact both performance and code size roughly by a factor of
two, directly damaging the entire area of embedded cryptography where the computation
power and the memory capacity are limited [35].

In recent years the focus has therefore shifted to solutions that could abandon the
implementation level and move towards the same logical and mathematical level of
algorithmic specifications, as briefly proposed by Kocher in [5]. The main motivation
behind this choice considers resistance to side-channel attacks in the same way as resistance
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to classical cryptanalysis, treating it as a key parameter to be taken into account for the
successful development of old and new block cipher algorithms. As stated by Prouff in [35]
“the design of DPA-resistant algorithms would make the addition of countermeasures
unnecessary. Such a design could be done by selecting pertinent S-boxes.”

4.1 Introduction on Novel S-Box Implementations

Many of the recent proposals are directly targeting S-Box designs. Since these structures
already provide many properties against classical cryptanalysis, it is therefore reasonable
to integrate in their design possible countermeasures against side-channel attacks [36].

Recent research has already proven the importance of S-Boxes against SCA. Boey et
al. observed a significant correlation among their use in multiple block ciphers and the
feasibility of a side-channel attack against their hardware implementations. For instance,
the authors noticed a higher resistance against CPA in DES algorithm than in AES, proven
by the higher number of traces needed to recover the round key. The observations have
been related to the fact that DES leverages the presence of multiple unique S-Boxes with
a lower signal-to-noise ratio in comparison to other algorithms. A further reason is due
to the fact that DES S-Boxes implement a non-bijective 6-to-4 bits mapping, de facto
shrinking the Hamming weight distribution at their output.

4.1.1 Theoretical metrics against classical cryptanalysis

To define the properties and qualities of an S-Box design many parameters have been
defined over time. With respect to classical cryptanalysis, five basic properties are used
in literature [37]:

• Bijection: An S-Box S(n,m) is said to be bijective if it maps each input x ∈ Bn to
a distinct output y = S(x) ∈ Bm and all possible 2m outputs are present. An S-Box
S(n,m) can be bijective only when n = m. A bijective S-Box S(n, n) represents a
permutation of its 2n inputs, since each input is mapped to a distinct output and
all possible 2n outputs are present. In this way, S(n, n) will be reversible, that is,
there is a mapping from each distinct output to its corresponding input;

• Nonlinearity: To test this property the S-Box is firstly expressed in terms of linear
equations and then evaluated using Walsh spectrum. The nonlinearity value of AES
S-Box is 112;

• Strict Avalanche Criterion - SAC: A Boolean function is said to satisfy the
Strict Avalanche Criterion if each of the output bits change with a probability
p = 1

2 whenever a single bit is complemented at the input [38]. As a consequence,
a slight change in the input leads to a large change in the output (an avalanche
effect), effectively making it difficult for an attacker to infer the input value from
the output. The optimum value for the SAC criterion is 0.5 [37];

• Bit Independence Criterion - BIC: This property states that two output bits
j and k should change independently when any single input bit i is complemented,
for all i, j and k;

• Input/Output XOR Distribution: As mentioned in 2.3.3, differential crypt-
analysis is based on the use of the imbalances in the Differential Distribution Table
(DDT). If an S-Box has an equiprobable input/output XOR distribution, the S-Box
is immune to a differential attack. In the case of AES, the maximum value of
differential propagation probability is of 4/256 (or 2−6).
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4.1.2 Theoretical metrics against side-channel analysis

Fairly recent publications also proved an opposition among properties associated to
classical cryptanalysis and the feasibility of side-channel attacks. For instance, Guilley
et al. proved that the more an S-Box is protected against linear cryptanalysis, the more
vulnerable it is to side-channel attacks such as DPA [39]. Similarly, Prouff in [35] points
out that a trade-off between the classical cryptographic criteria and resistance to DPA
attacks has to be found, since their respective properties are in opposition.

As for classical cryptanalysis, new properties have been defined over the years to
address and formally define the resistance of S-Boxes against side-channel analysis:

• Transparency Order: Formally defined by Prouff in [35], the Transparency Order
(TO) can quantify the resistance of an S-Box to DPA attacks: the smaller the TO
of an S-Box the higher its resistance. The author also proved that the lower bound
for the TO (meaning the highest possible resistance against DPA) is achieved by
particular affine functions, whereas the upper bound is achieved by bent functions1

(proving his initial claim that the higher the nonlinearity of a Boolean function
the lower its resistance against DPA). Carlet in [14] defines a lower bound for this
metric, proving that highly nonlinear Boolean functions like the ones that compose
the S-Box of AES have “very bad transparency orders”;

• Improved Transparency Order: Following the work of Prouff on the trans-
parency order, Chakraborty et al. define, a decade later, the so called Improved
Transparency Order. The authors prove that Prouff’s definition is not sufficient
to achieve a satisfying level of security. However, choosing S-Boxes with small
minimum transparency order is a sound strategy if combined with other classical
countermeasures like masking. Based on the definition given by the authors, the
lower the ITO, the lower the success probability to extract the secret key based on
leakages associated to the S-Box [41];

• Confusion Coefficient: In 2012, Fei et al. [42] introduced the Confusion Coefficient
(CC). According to the authors, a low (standard) deviation of the confusion coefficient
κ characterizes an S-Box with a high resistance against physical attacks. However,
Picek et al. [43] as well as Stoffelen [44] report that the higher the CC metric, the
higher the resistance of the S-Box against side-channel attacks [45]. The confusion
coefficient measures the discrepancy between the hypothesis of an intermediate
state using the correct (secret) key and any hypothesis made with a (wrong) key
assumption [36]. Therefore, as one compares possible intermediate processed values,
the confusion coefficient depends on the underlying cryptographic algorithm and
thus, if the attacker targets an S-Box operation, on the side-channel resistance of
that specific S-Box [36];

• Autocorrelation Function: The maximum value ACmax assumed by this param-
eter, obtained when evaluating all the Boolean functions that compose an S-Box
structure, can be considered as a measure of the resistance of the S-Box against
SCA. The lower ACmax the better [46];

• Success Rate: Also known as success probability, the SR is used by cryptanalysts to
measure the resistance of an implementation against CPA. The SR metric represents
the probability with which a physical attack can extract secret keys from the
device [45].

1Bent functions are a special type of Boolean functions that present resistance by definition to linear
cryptanalysis and apparently perfect resistance against differential cryptanalysis. [40]
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A work by Carlet, Heuser and Picek [36] highlights the fact that the (almost) preser-
vation of Hamming weight and a small Hamming distance between a plaintext x and an
intermediate F (x) are two properties which, from an intuitive perspective, can strengthen
the resistance to SCA. The authors also verify the claim and additionally observe that,
especially in the case of the Hamming weight, S-Boxes with no difference between the
HW of their input and output have nonlinearity equal to 0, therefore obtaining terrible
properties against classical cryptanalysis. The authors finally confirm that having an
S-Box more resilient against SCA will make it potentially more vulnerable against classical
cryptanalysis, without however excluding possible trade-offs, similarly to what Prouff
already proved.

A first publication to prove the theoretical claims advanced on many new S-Box
structures was addressed by Lerman et al. in [45]. The authors analyzed several designs,
highlighting the fact that, in some cases, metrics proposed above like CC and TO lack
accuracy to evaluate the resistance of S-Boxes against side-channel attacks.

For instance, when theoretically evaluating the designs under attack, the authors
observed that both TO and CC metrics contradict themselves. For instance, in the case of
larger S-Boxes, where a higher nonlinearity is expected, the authors obtained a large value
of the TO which also indicates a lower resistance to SCA, therefore confirming Prouff’s
claim [35] on the opposition of the two properties. However, Lerman’s observations
did not replicate the same rationale in the case of the Confusion Coefficient, leading
to a first contradiction between the two metrics. The results obtained with theoretical
simulation also indicated that theoretical metrics such as TO and CC “do not match
actual attacks when the leakage model matches the leakage function (representing the worst
case scenario i.e., when the adversary knows how the device leaks information).” Finally,
when evaluating experimental results on a real device, the authors concluded that “the
complexity of a side-channel attack cannot be represented using any theoretical metrics
based on a single scalar value” and that “the outcomes of the theoretical metrics do not
always reflect the success rate of a side-channel attack when considering simulated and
real leakages” [45].

4.2 Design Methodologies

The most common generation methods used for the design of S-Box structures can be
divided into three main categories: algebraic construction, pseudo-random generation and
heuristic techniques.

Algebraic methods have been used to build many “historical” S-Box structures, such
as the one used in AES [16]. They are in fact known for their excellent cryptographic
properties against linear and differential cryptanalysis, thus making them the preferred
choice by cryptographers in past years. Further analysis has shown that this methodology
leads to the existence of a system of polynomial equations with low degree which can
pose as a “potential vulnerability” of the cipher to algebraic attacks [47].

In the case of pseudo-random generation, S-Boxes are constructed from a table of
random values. This methodology warrants random structures, but the S-Boxes generated
lack of relevant cryptographic properties in most cases [48].

Finally, the heuristic approach is an attempt to maintain the randomness present in
the structure of pseudo-random generated S-Boxes, with properties as close as possible
to the ones present in algebraic constructions [48]. This methodology will be further
elaborated later.

In cryptography, it is also not uncommon to build an S-Box from smaller ones, usually
an 8-bit S-Box from several 4-bit S-Boxes. In many cases, such a structure is used not
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only to allow an efficient implementation of the S-Box in hardware or using a bit-sliced
approach, but also to protect S-Boxes implemented in this way against side-channel
attacks [47].

In recent years, novel design methodologies like chaos-based generation, quantum-based
structures and many others have been presented. The resulting S-Box structures claim to
overcome both classical and side-channel cryptanalysis. In the following sections a brief
overview on the most common methodologies is presented, illustrating the corresponding
results and publications.

4.2.1 Chaos-Based Methods

Chaos-based methodologies propose a new rationale to be used for the creation of S-Box
structures, based on the use of chaotic systems as a source of randomness. The three
main reasons behind this choice are summarized by Özkaynak in [49]:

• Chaotic systems’ long-term behavior is non-periodic;

• System trajectories are dependent on the initial conditions and control parameters;

• The equation of a chaotic system is deterministic and its irregular behavior is caused
by intrinsic nonlinearities rather than noise.

The above characteristic present a good premise for structures able to provide enough
confusion to a block cipher algorithm, like S-Boxes.

Many different randomness sources have been presented in literature, some of which
leverage chaotic maps and hyper chaotic systems (see [50], [51], [52] and [53]). For instance,
Özkaynak in [49] produced more than 20.000 S-Box based on discrete and continuous-time
chaotic systems as Logistic Map and Lorenz’s system. In most cases, the construction of
S-Boxes with good cryptographic properties involves the use of optimization algorithms
to operate on the initial values provided by the main source of randomness. The choice
of a good source of randomness is extremely important, so are its initial parameters. The
values it returns need to be normalized in the range [0, 255] and possibly discarded in
case the final value obtained is already in the S-Box LUT (to guarantee bijection). Once
a large set of possible S-Box candidates is available, the optimization function iterates
on every candidate building a ranking and sorting the best candidates which maximizes
both nonlinearity and differential propagation (also called I/O XOR distribution).

The same publication by Özkaynak demonstrated that current chaos-based S-Box
structures have worse cryptographic properties than those of the S-Box proposed by
Daemen and Rijmen for AES. For instance, while the nonlinearity index of AES S-Box is
112 [16], in the case of chaos-based designs the maximum value achieved has been shown
to be 106.75 [49]. Similarly, while the maximum differential propagation probability in
the case of AES S-Box is of 4/256 (even if most entries achieve even lower ratios: either
0/256 or 2/256 [16]), the minimum value for this metric achieved by current chaos-based
structures is of 10/256 [49]. The above metrics, also highlighted in a derivative work by
Açikkapi in [37], are sufficient to prove that the actual chaos-based S-Box structures are
less resistant to classical cryptanalysis such as linear and differential attacks.

In literature, as reported in [37], chaos-based S-Boxes have been indicated as an
alternative defense against implementation attacks, especially side-channel analysis. In
this publication, the authors tested 3 different S-Box structures: the first being the
classical one used in AES while the remaining two are chaos-based and directly taken
from Özkaynak’s research [49] (the authors picked the best and the worst performing
S-Boxes proposed in his paper). The results obtained prove that the proposed chaos-based
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S-Box structures are slightly more resistant against side-channel attacks. However, by
recalling the statement given by Prouff in [35] we can argue back with the observations
obtained by Açikkapi, claiming that the observed strengths against SCA are mainly due
to the low nonlinearity and low differential probability score obtained by both chaos-based
structures.

4.2.2 Heuristic Methods

Heuristic methods fall into the class of optimization algorithms: their goal is to solve
a search problem in a faster and more efficient way with respect to exact/exhaustive
algorithms, sacrificing, in general, the quality of the final results for speed of execution.
In most cases, due to the fact that many problems have an NP-Hard complexity, heuristic
algorithms are de facto the only feasible approach to solve them. For instance, in the case
of an 8x8 S-Box structure like the one of AES, the different possible S-Boxes obtainable
are 256256 (since each of the 256 input values can assume 256 different output values):
the search space is incredibly large [54].

Many heuristic algorithms have been proposed for the search of S-Box structures with
good trade-offs between classical cryptanalysis properties and SCA resistance. In 2014
Picek et al. [43] leveraged heuristic methods and the confusion coefficient CC to build
S-Boxes with improved resistance to implementation attacks. In the case of 8x8 S-Boxes
the improvement have, once again, the counter-effect of worsening classical cryptanalytical
properties like nonlinearity and differential uniformity.

In general, as observed by Picek et al. in [55], the quality of solutions produced by
such methods could fit somewhere between the random search (which return S-Boxes
with poor cryptographic results) and algebraic constructions (which return structures
having the best cryptographic properties). Moreover, the authors highlight the importance
of exploring the entire space of solutions. Since many cryptographic properties are in
opposition between each other, moving away from algebraic methodologies and explore
the use of heuristic algorithms is beneficial as it allows to explore the available trade-offs.
This claim confirms the possibility for heuristic methods to improve properties related to
side-channel attacks providing good trade-offs with cryptographic properties. In this same
publication, the authors present a new cost function, used to obtain bijective S-Boxes
that reach a nonlinearity scores of 104 [55].

In [46] the authors leverage both genetic algorithm (GA) and a hill-climb method
to design S-Boxes with relatively high nonlinearity and low autocorrelation. The result
obtained also prove that the heuristic algorithm used can find S-Box structures faster
than exhaustive search, with better cryptographic properties with respect to the ones
obtained with random search.

One of the latest contributions to heuristic methodologies has been proposed by Freyre
et al. in 2020 [48]. The authors adopted a novel hybrid heuristic method based on Leaders
and Followers2 and hill-climbing algorithms obtaining “excellent results for confusion
coefficient variance”. In addition, the group leverages the cost function proposed by Picek
in [55] to improve the nonlinearity score of their findings, obtaining values always greater
or equal than 100. The authors run their algorithm on a Haswell Core™-i7 , obtaining
two of the most performing S-Box among the entire set they built in 40 and 44 hours
of running time. The structure obtained prove to have better theoretical side-channel
resistance than many real-life S-Boxes used in algorithms like AES and PICARO [34] while
satisfying nonlinearity and differential properties.

2A metaheuristic algorithm that tries to avoid biased comparisons among the evolved results by using
two distinct populations: the first stores the best solutions found (leaders), the second (followers) stores
sub-optimal solutions pursuing the results obtained by the first group. [48]
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Chapter 5

Experimental Results

5.1 Introduction and motivations

The work carried out in this thesis consists in empirically verifying the resilience to
side-channel attacks of some of the latest proposals of S-Box structures. The results
obtained provide an idea of the qualities of such structures, allowing to understand the
relevance of the results achieved by the academic research. The objective is to test the
structures examined in the context of a real attack scenario carried out by means of
specialized but low cost and affordable equipment.

We have chosen to analyze a series of chaos-based and heuristic-based S-Box structures
produced by the respective methodologies, considered among the most promising.

Similar discussions have already been addressed in several recently published papers.
In 2011 Boey, O’Neil and Woods [56] tested four different ASIC implementations (including
AES and DES) on a SASEBO board. In 2016 Lerman et al. [45] proposed an extensive
attack testing multiple 8x8 structures on an ATmega 328p 8-bit microcontroller, carried
on using an external oscilloscope. The authors observed that the obtained experimental
results differed from the outcome of theoretical metrics. Finally, in 2019 Açikkapi et al.
tested two different chaos-based S-Boxes initially proposed by Özkaynak in [49]. The
setup included a ChipWhisperer™ Lite board attacking an XMEGA 8-bit microcontroller.
The authors compared the results obtained against the ones related to the original AES
S-Box proving the presence of a slightly higher resistance to side-channel analysis.

5.2 S-Boxes overview: properties and selection criteria

The attack is conducted onto six different S-Box structures, one of which is the original
AES S-Box, used as a reference structure. The software implementation of the AES-128
algorithm in use is comparable to what is currently used in smartcards and other small
embedded devices to protect user data in everyday scenarios.

The remaining five S-Box structures under attack were selected among the latest
publications for both chaos-based and heuristic-based methodologies. Three of these come
from the work presented by Freyre et al. in [48] and were designed to specifically target
resistance to side-channel analysis.

The fifth S-Box selected corresponds to the last structure among the six proposed by
Hussain et al. in [57], referred in the original publication to as “S-box-6”. The authors
leverage the use of a chaotic logistic map as a source of randomness in order to achieve a
structure with excellent properties against cryptanalysis. The methodology used, however,
does not take into account any design criteria to improve resistance to side-channel
analysis. This S-Box is thus considered in the same way as the original structure of AES

60



S-Box Nonlinearity Differential Uniformity Confusion Coefficient

sbox_aes [16] [43] 112.0 4/256 0.111
sbox_freyre_1 [48] 100.0 8/256 4.500
sbox_freyre_2 [48] 100.0 8/256 4.492
sbox_freyre_3 [48] 102.0 8/256 1.934
sbox_hussain_6 [57] 112.0 4/256 n.d.
sbox_ozkaynak_1 [49] 106.7 10/256 n.d.

and it is compared to all other designs provided with theoretical countermeasures against
SCA.

The last structure taken into consideration has been initially proposed by Özkaynak
in [49] and tested by Açikkapi in [37] with a similar attack setup as the one proposed in
this thesis. The structure, in the original publication, is referred to as “Proposal 2”.

The cryptographic properties of the six structures under attack are presented in
Table 5.2, whereas their hexadecimal representation is available at https://github.com/
Mrcuve0/Thesis-Work.

5.3 Instrumentation setup

This thesis work leverages a similar instrument setup to the one used by Açikkapi in [37].
The attack is in fact carried on using a ChipWhisperer™ Lite, whose kit also provides
an XMEGA target board (see 3.7). The XMEGA 8-bit AVR microcontroller runs the AES-128
software implementation under attack. The entire communication with the attacked
microcontroller happens thanks to the ChipWhisperer™ board, which also acts as a
programmer. The data transmitted to the microcontroller, such as the plaintext and the
secret key, is firstly crafted on a personal computer. It is then sent to the ChipWhisperer™
capture board which finally forwards it to the XMEGA board via serial communication. The
AES-128 implementation is therefore wrapped by a user program able to listen on a serial
port for data transmitted. The entire XMEGA code is ready to use and provided by NewAE
itself [58].

5.4 Steps of the analysis

The proposed analysis consists of evaluating each of the selected structures individually,
changing the code implementation of AES-128 at each iteration, replacing the standard
S-Box structure with the one under attack. The substitution is automatically achieved at
compilation time. The microcontroller is then programmed with the modified version of
the code leveraging the main ChipWhisperer™ board, which acts as an AVR programmer.

Once the target board programmed, the ChipWhisperer™ is instructed to capture
a certain number of traces. For each trace the Python script running on the personal
computer creates a new plaintext, which is then sent together with the (fixed) encryption
key to the capture board. The board then resets the microcontroller, sends the received
[plaintext - key] pair and launches an AES-128 execution on the microcontroller side,
while capturing the related power trace. Finally, the power trace data is sent back to the
personal computer. The process is repeated N times, where N indicates the number of
traces to be collected. Once the capture phase is complete, the microcontroller code is
compiled again by swapping the current structure with the next structure to be evaluated.
The entire process is repeated until there are no more S-Boxes to evaluate.
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Once the trace collection completed, ChipWhisperer™ can be disconnected and the
attack can proceed on the personal computer for offline analysis, which consists of a
correlation power attack. The analysis is iterated, once again, for a number of times
equal to the number of different structures to analyze. For each structure, a reduced
replica of the first steps of AES-128 (addRoundKey and SubBytes) is built. The leakage
model adopted defines the estimate of the power consumption as the Hamming weight of
the intermediate value obtained as output of the replica. All the N traces collected are
analyzed following the standard methodology used for correlation power attacks (see 3.5).

The implementation of the attack is already provided as a built-in Python function
provided by ChipWhisperer™ (also known as “chipwhisperer analyzer”). Some modifi-
cations are although necessary to adapt the leakage model in use: as the S-Box in the
microcontroller changes at each iteration during the capture phase, the same must happen
with the leakage model during the analysis phase.

The provided APIs provide the possibility to periodically pause the attack after the
evaluation of a certain number of traces. Having this possibility allows the attacker to
build a custom Python callback function which enables for a multitude of purposes. In
the most common scenario, this function can be used to report the current status of the
attack, observing the intermediate results achieved. In our specific implementation, the
callback function allows to save multiple “checkpoints” of the results obtained: each time
the attack is paused the results are dumped in a Pandas DataFrame structure. This data
structure allows to easily handle the various results in a multi-row multi-column table
format, enabling for a fast and simplified data management. Each checkpoint defines a
new DataFrame instance, which is slightly manipulated to highlight the (possible) presence
of the correct key bytes in a specific point of the attack. The final table structure obtained
ranks the possible values of each of the 16 subkeys from most to least likely. The number r
of rows in the table (representing the related r subkey guesses) is user-defined. Conversely,
the number of columns is fixed to 16, the size of an entire key. Each structure is finally
automatically exported as a pre-compiled LATEX table and to html and csv files.

Once the offline analysis for the current S-Box is completed, all the data and results
obtained during the various checkpoints are used to draw two different plots:

1. PGE v. Traces plot: this graph shows the PGE (Partial Guessing Entropy)
trend of each of the correct subkeys. The guessing entropy is generally defined
as “the average number of successive guesses required with an optimum strategy
to determine the true value of a random variable X” [59] [60]. In this case, as
highlighted by O’Flynn and Chen in [60], the guessing entropy represents the
distance, in terms of positions, of the correct subkey value from the top position in
the ranking made from all the possible subkey candidates. In other terms the PGE
graph shows, for each checkpoint, how far the correct value of the subkey is from the
first position in the ranking. Since the collected results data grows as the number
of completed checkpoints increases, we expect the PGE of each subkey to reduce
overtime, meaning that the more traces are analyzed the more the correct subkey
candidate is assumed to be found. In the case of S-Box structure with side-channel
resistance properties we expect an additional difficulty in finding the correct subkey
candidates, meaning that the PGE obtained by each subkey should be greater than
0 even for a high number of traces.

2. Correlation v. Traces plot: this graph shows the correlation trend for all the
16 subkey bytes superimposed to the correlation of the wrong key candidates. The
value represented in the graph corresponds to the absolute value of Pearson’s linear
correlation coefficient, meaning that the range value spans from 0, the minimum, to
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1, the maximum. An absolute correlation of 1 indicates that the leakage model in
use perfectly represents the real power consumption of the device. In a standard
correlation power attack the correlation graph gradually splits and isolates the
correct subkey candidates from the wrong ones, meaning the attack is able to
successfully reconstruct the secret key used. On the other hand, in the case of
S-Boxes with side-channel resistance properties, we expect the attack is unable to
satisfyingly separate the correct key candidates form the wrong ones. The graph
should result in a tangled representation of the various correlations.

5.5 Results and comments

The analysis illustrated in the previous section has been implemented using a Python
script, able to automatically handle all the aspects related to the data collection: from the
S-Box code manipulation to the automatic graph creation. The script source code, the data
and the graphs obtained are available at https://github.com/Mrcuve0/Thesis-Work.

In this section are reported the results obtained when running the main script for
50, 100, 1000 and 5000 traces. Each time the six different S-Box structures were tested,
collecting the results and plotting the related graphs.

As expected, the original AES S-Box proved to be weak against correlation power
analysis, revealing nearly the whole key after just 30 different executions. As pictured
in Fig 5.1, 15 out of the 16 subkeys were entirely revealed at the 40-th trace. At this
checkpoint, 15 subkeys had a PGE = 0, meaning that the corresponding key candidates
were (correctly) leading the ranking. Byte #8, however, entered the PGE < 10 zone
only after 55 traces. This means that, prior 55 traces, 10 incorrect subkey candidates
for Byte #8 had a higher correlation, therefore were in higher position in the ranking
for that specific byte position. The PGE < 10 threshold has been proposed by O’Flynn
and Chen in [60] as a valuable indicator of the resistance of an implementation against
side-channel analysis. This threshold should be taken into consideration only when the
last byte of the key crosses it, entering the zone below the threshold. If such scenario
happens, all the 16 bytes can be found within 10 places in the related ranking, meaning
that an attacker can easily retrieve the key with a reduced exhaustive search even if not
all key bytes found have a PGE = 0. Although being quite simplistic, this indicator can
be adopted to denote at which point a specific S-Box can be considered broken.

Table 5.1 reports the various instants in which each S-Box broke the PGE < 10
threshold. The results are reported for all the four executions of the Python script. The
data collected moving from one execution to the other (e.g., from 50 traces to 100 traces)
is not additive. This means that, for instance, the second execution captured 100 traces ex
novo, without accounting for the 50 traces captured in the first execution. This explains
the differences among different executions for the same S-Box. It is easily observable
that the margin of error provided by this indicator is quite large, since some S-Boxes
break the threshold with a difference of 20 traces moving from one execution to another.
However, in two cases, sbox_freyre_1 and sbox_freyre_2, the resistance against the
PGE threshold is quite remarkable, largely above a possible margin of error.

Similar results to the AES S-Box were reported by the structures proposed by Hussain
and Özkaynak, with a slightly improved but no significant resistance for the latter. The
results obtained by analyzing Hussain’s S-Box confirmed that no side-channel countermea-
sure was accounted during the structure design phase, as expected. For the sake of brevity.
the graphs related to these two structures are not included as their representations (and
overall results) are similar to the ones related to the AES S-Box. Likewise, the first and
the second S-Box proposals by Freyre obtains similar results in all the scenarios tested.
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S-Box 50 traces 100 traces 1000 traces 5000 traces

sbox_aes ≈ 32 traces ≈ 55 traces below th. below th.
sbox_freyre_1 over th. over th. ≈ 190 traces below th.
sbox_freyre_2 over th. over th. ≈ 520 traces below th.
sbox_freyre_3 ≈ 43 traces ≈ 26 traces below th. below th.
sbox_hussain_6 ≈ 39 traces ≈ 46 traces below th. below th.
sbox_ozkaynak_1 over th. ≈ 49 traces below th. below th.

Table 5.1: How many traces where required to break the PGE < 10 threshold for each
attack iteration?

Therefore, we decided to report, among the two, only the second structure.
Conversely, we decided to report the sbox_freyre_3 structure presented by Freyre,

since it shows some similar properties to sbox_freyre_2 but with a much lower amplitude.
For instance, the structure reached the PGE threshold in less traces than AES S-Box, as
visible in 5.5, denoting no significant improvements against side-channel analysis. In 5.6
the “confusion” added to the correlation traces is, however, clearly visible, especially if
directly compared with the same graph in the case of AES 5.2. In any case, we can see
that the “entanglement” produced in the correlation traces is not sufficient to prevent the
attack, as there is still a clear separation between the two groups of traces.

The results obtained by the second S-Box structure proposed by Freyre et al.,
sbox_freyre_2, can be appreciated in Fig 5.3 and Fig 5.4, respectively. If we com-
pare these two plots with the ones obtained by the original AES S-Box, in Fig 5.1 and
Fig 5.2, we can easily observe how the structure proposed by Freyre significantly improves
the resistance against SCA. For instance, in the PGE graph 5.3 we can observe how
Byte #12 and Byte #8 fluctuates multiple times without entering with an appreciable
momentum the subthreshold zone. The correlation plot 5.3 shows how tangled the corre-
lation traces of the correct subkeys are with the ones related to wrong guesses, with the
correlations of Byte #12 and Byte #8 separating from the rest of the group of correct
key candidates.

Moving towards the third and fourth executions of the Python script (1000 and 5000
traces), we can further appreciate the separation among the various correlations in graphs
like Fig 5.7 and Fig 5.8. Both graphs in 5.8 and in 5.10 converge into three main sets of
traces, with the one with higher correlations associated to the set of correct key guesses.
In the case of sbox_freyre_2in Fig 5.9, both Byte #12 and Byte #8 continue to present
lower correlations with respect to the other correct subkeys. This fact, however, does not
significantly impact the results for the PGE indicator, which threshold has already been
broken many traces before, at around 500 traces.
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Figure 5.1: PGE for AES S-Box, 100 traces, PGE threshold crossed at ≈ 55 traces.

Figure 5.2: Correlations for AES S-Box, 100 traces.
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Figure 5.3: PGE for sbox_freyre_2, 100 traces, PGE threshold NOT crossed.

Figure 5.4: Correlations for sbox_freyre_2, 100 traces.
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Figure 5.5: PGE for sbox_freyre_3, 100 traces, PGE threshold crossed at ≈ 27 traces.

Figure 5.6: Correlations for sbox_freyre_3, 100 traces.
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Figure 5.7: Correlations for sbox_freyre_2, 1000 traces.

Figure 5.8: Correlations for sbox_freyre_3, 1000 traces.
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Figure 5.9: Correlations for sbox_freyre_2, 5000 traces.

Figure 5.10: Correlations for sbox_freyre_3, 5000 traces.
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Chapter 6

Conclusions

6.1 Comments

The results obtained and partially discussed in the previous chapter confirm the ability
of some of the latest S-Box proposal to provide a significantly higher resistance to
side-channel analysis, acting as a lightweight countermeasure against this class of attacks.

The attack procedure carried on in this thesis confirmed once again the poor perfor-
mance provided by the original AES S-Box structure. These kind of structures, created
without taking into account side-channel analysis, fail to provide any additional pro-
tection. The S-Box proposed by Hussain in [57] was selected on purpose to confirm
the theory already demonstrated by Prouff, Guilley, Picek and many others: properties
like nonlinearity and differential uniformity do not relate to the presence of any natural
countermeasure against SCA.

Other chaotic structures like the one proposed by Özkaynak in [49] provide slightly
better results if compared against the S-Box of AES but still not sufficient to successfully
prevent a physical attack, pushing the number of required traces not too far away from
what originally done by the original encryption algorithm.

Finally, the heuristic-based structures proposed by Freyre et al. in [48] provide great
insight on the state of the art achieved by this design methodology. The graphs obtained
in the previous chapter demonstrates the highest side-channel resistance among all the
S-Boxes tested, in some cases increasing the trace requirements up to a factor of 10 5.1.
The metrics provided by Freyre enable for further observations on the impact of the
Confusion Coefficient. From the data collected it is possible to notice that the higher
the Confusion Coefficient the higher the number of traces required and the lower the
discrepancy among the various correlation traces, like pictured in graphs like 5.4 5.7
and 5.9. The observed data perfectly confirm the claims provided by Picek et al. in [43] and
Stoffelen in [44]. We observed that both sbox_freyre_1 and sbox_freyre_2 structures
acted similarly, having a CC of 4.5 and 4.492, respectively. Conversely, sbox_freyre_3,
with a CC of 1.934, showed some principle of correlation confusion but not significant
enough to increase considerably the resistance against side-channel power analysis.
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6.2 Future work

Future work may be directed toward the analysis of additional new S-Box structures, with
the ultimate goal of gaining an even broader view of the state of the art in side-channel
resistance designs. Further real-world testing is still needed as the demand for lightweight
countermeasures continues to increase.

Further testing will need to be conducted leveraging the same physical configuration,
with the goal of defining empirical metrics that can better indicate resistance against
physical attacks than the PGE metric used in our tests.

Finally, a comprehensive characterization capable of correlating theoretical metrics
to real-world results is needed, expanding the analysis to additional properties such as
transparency order and revisited transparency order.
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