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Abstract

In today’s Internet, IT security is a key component that faces new challenges
every day to offer services in a secure way. In this context, network monitoring
represents the main point to be able to detect cyber attacks, and, in today’s
network infrastructure, it is increasingly implemented using NFV (Network Function
Virtualization) technology where network services are implemented in pure software.
This brings several advantages such as flexibility and cost reduction as these
functions can be performed on general purpose hardware. In this context, eBPF
(Extended Berkeley Packet Filter) is an excellent technology, suitable for creating
network functions for fast packet processing in the Linux kernel. This thesis
work was born with the intention of analysing the advantages, disadvantages and
limitations of having a network monitoring using eBPF when it is used to provide
the necessary information to a detection algorithm of DDoS attacks, called LUCID.
LUCID is able to detect DDoS attacks through Deep Learning techniques, adapted
for limited resources environments. Network monitoring was carried out using two
frameworks that seamlessly integrate with LUCID. The first one is Polycube, an
open-source project developed at the Politecnico di Torino, which allows the creation
of extremely fast network monitoring programs. The second one is DeChainy, an
open-source framework for creating and distributing network monitoring probes in
eBPF.

During the thesis work, a number of tests were carried out aimed at obtaining all
the information necessary to understand the limits in having a detection algorithm
that runs on a single machine, responsible for both the security and forwarding
traffic to end users. In addition, tests were also carried out aimed at analysing only
the monitoring and data extraction parts. In the final part, we also thought about
a distributed version of the attack detection system, where the single instance of
detection runs on multiple machines simultaneously, in a parallel way, potentially
allowing for resource savings and attack detection speed increase.
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Chapter 1

Introduction

In the context of network monitoring, of particular interest is the monitoring
aimed at coping with possible cyber attacks, which in recent years are becoming
more and more frequent and for this reason, properly monitoring the network is a
fundamental point to ensure a safe use of internet services.

Although enormous progress has been made in recent years in the field of cyber
security, an ideal solution, 100% effective, has not yet been found, that is, one that
can successfully block all malicious sources and at the same time ensure a service
to good sources. Indeed, DDoS attacks remain one of the biggest threats on the
Internet and IT environments.

1.1 Goal of the thesis
The goal of this thesis work is to collect as much data as possible about the network
monitoring carried out with eBPF, coupled to a DDoS attack detection algorithm
(LUCID). From testing results, an attempt was therefore made to understand
the trend related to appropriate parameters vary, to better understand which
components can be improved to provide a more efficient detection of DDoS attacks.
Tests have been carried out to verify under what conditions the use of a single
machine on which both the detection algorithm and the traffic forwarding are
run, start to give performance problems, high resource consumption, increase in
detection time, decrease in the number of attackers found in the unit of time and
so on. In particular, we tried to divide the various components that form an IDS,
in order to concentrate which component can represent a strength and which a
weakness. The main reason that gave rise to this thesis was the need to find a
way to overcome some problems that could arise in the utilization of detection
algorithms that are used with the so-called SPF or Single Point of Failure and so,
many (really many) tests of various types have been conducted, under different
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Introduction

conditions and a lot of interesting data has been collected.
As mentioned earlier, the detection algorithm used is called LUCID. It exploits

the properties of Convolutional Neural Networks (CNN), a Deep Learning technical
specification that advanced the state-of-the -art in some specific scenarios such as
malware detection, network traffic analysis and intrusion detection. Furthermore
LUCID was chosen because it integrates perfectly with Polycube and DeChainy
which play the role of data provider on which LUCID performs its analysis.

1.2 Hypothesis
The world of detection is very wide, and, for this reason, in this thesis work we
have focused on the detection of attacks on a data center. As a matter of fact in a
data center, you usually update your hardware practically every year in order to
save costs, especially those of electricity, and data centers potentially have a lot of
unused hardware that can be used to detect DDoS attacks. Our hypotheses are
the following:

• The data center has one or more entry points: we only focus on one point;

• Attacking the data center means: attacking the entry nodes as the internal
servers are hidden from the outside world;

• In the data center we have N generic servers that offer a certain number of
services;

• There is a load balancer with basic functionality that sorts the traffic on the
various servers with a certain policy;

• On this data center there is dedicated hardware for detection, which is placed
between the data center and the outside world and which must also take care
of the forwarding of traffic. This could therefore represent a Single Point of
Failure as shown in Figure [1.1].
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forwarding
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Internet

Data center

Data center network

Figure 1.1: Possible representation of a data center.

1.3 Thesis structure
The thesis is organized as follows. Chapter 2 presents an overview of existing
cyber attacks and describes the main detection algorithms and how they are
applied to defend a network or data center. Chapter 3 explains the technologies and
frameworks used for the tests carried out. Chapter 4 presents in detail the Polycube
services, the relationship with LUCID, the most important parts of the eBPF probe
code, and, finally the tools, architecture and tests configuration performed. In
chapter 5 the tests carried out with LUCID are presented and the results obtained
are explained. Chapter 6 explains the results obtained by DeChainy used only
as a probe and extractor. Lastly Chapter 7 contains conclusions, with reference
to possible solutions of some limitations encountered and also regarding possible
future works.
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Chapter 2

Background

This chapter presents what is meant by Network Monitoring, Denial of Service and
what types of those exist, with particular focus on the SYN Flood attack, while, in
the second part we provide an overview of detection.

2.1 Network Monitoring
Network Monitoring refers to the component of a system that constantly monitors
the elements of a network and alerts the administrator, or another part of the
network in case of failures, errors or otherwise.

Network Monitoring is done using appropriate diagnostic software tools, but
also through specific hardware devices that are connected to the network and
which analyse network traffic and the operation of network devices. The two main
characteristics of having a constant monitoring of the network are:

• The ability to generate alarms that can be used by those who manage the
network to perform the appropriate checks;

• The possibility to generate a report where all the problems found during
monitoring are saved.

As mentioned above, these features are really important in the field of cyber
security because it allows you to find out if a cyber attack is in taking place.

2.2 Cyber attack taxonomy
With DoS or Denial of Service attack we mean a type of cyber attack, aimed
at exhausting the victim’s resources, which can be, for example, a website or a
web server, in such a way as to slow down or permanently block the provision
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of a service. Antoher type of attack is the DDoS or Distributed DoS where the
malicious traffic that reaches the victim comes from different sources.

Concerning DDoS attacks[1], they are usually distinguished them as:

• Application layer attacks: the goal of this type of attack is to exhaust the
target resources to create a DoS. The attack target the level at which web
pages are generated on the server and served in response to HTTP requests.
This because a single HTTP request is computationally cheap to perform on
the client side, but it can be expensive for the target server to respond, as the
server often loads multiple files and executes database queries to create a web
page. An example of this type of attack is the HTTP Flood;

• Protocol attacks: also known as state exhaustion attacks. Attacks of this type
cause a disruption of service due to excessive consumption of server resources
and/or the resources of network devices such as firewalls and load balancers.
Weaknesses in layer 3 and layer 4 of the network protocol stack are exploited
to make the victim server inaccessible. An example of this type of attack is
the SYN Flood which will be explained in more detail later;

• Volumetric attacks: in this type of attack, an attempt is made to create
congestion by consuming all available bandwidth between the target and the
larger Internet. Basically, large amounts of data are sent to a destination
using some form of amplification or other means to create massive traffic, such
as requests from a botnet (computer network or other IoT device that has
been infected with malware and commanded by a botmaster).

Here, a quick overview of the main flood cyber attacks [1] is provided with a
focus on SYN Flood:

• ICMP attack: typically, Internet Control Message Protocol (ICMP) echo
request and echo response messages are used to ping a network device for
the purpose of diagnosing the health and connectivity of the device and the
connection between the sender and the device. A Ping Flood is a type of
DoS or DDoS attack where the attacker sends a large number of ICMP echo
request packets. The Ping Flood attack aims to overwhelm the targeted device
ability to respond to an high number of requests and/or overload the network
connection with bogus traffic;

• UDP Flood Attack: a UDP flood is a type of DoS or DDoS attack where a
large number of User Datagram Protocol (UDP) packets are sent in such a
way that they overwhelm the device ability to process and respond. It mainly
takes advantage of the steps a server takes when it responds to a UDP packet
sent to one of its ports. Under normal conditions, the server that receives
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a UDP packet on a particular port, performs two steps in response: it first
checks if any programs are running which are currently listening for requests at
the specified port, and if no programs are receiving packets on that particular
port, the server replies with an ICMP packet to inform the sender that the
destination was unreachable;

• SYN flooding attack: a SYN Flood (Figure [2.1] from [2]) is a type of Denial-
of-Service (DDoS) attack that aims to make a server unavailable to legitimate
traffic or otherwise slow it down by consuming all available resources. In
this attack, a large number of initial connection request (SYN) packets are
sent, thereby attempting to overwhelm all available ports on a target server
machine. This type of attack works by exploiting the three way handshaking
process of a TCP connection. Under normal conditions, the TCP connection
is established through three different steps:

1. The client sends a SYN packet to the server to initiate the connection;
2. The server then responds to that initial packet with a SYN/ACK packet

in order to acknowledge the communication;
3. Finally, the client responds with an ACK packet to acknowledge receipt

of the packet from the server. After completing this handshake, the TCP
connection is open and it is capable of sending and receiving data.

If the client does not respond with a final ACK, the connection is considered
half open. In this type of DDoS attack, the victim server continually leaves
open connections and it waits for each connection to time out before the ports
become available again.

Protocols listed above, i.e. the ones exploited by attacks, are the same ones that
are checked in the eBPF probe used for the tests.

Finally, in Figure [2.2], from [3], it is possible to see the percentage of attacks
carried out in Q3 of 2020 divided by "attack vector", i.e. by the method used in
the attack. As you can see, the SYN Flood attack is the most used one with a
percentage of 42%.For this reason, in this thesis we paid more attention on SYN
Flood ones.
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Figure 2.1: SYN Flood attack

Figure 2.2: Top attack vectors.

2.3 Intrusion Detection Systems

In this section, we will first discuss the distinction between IDS and IPS, we will
then describe the analysis methodologies and finally the technologies with which
the IDS are implemented.

With the term "intrusion", we mean the attempt to compromise the so-called
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CIA (Confidentiality, Integrity, Availability). Intrusion detection is then the
process of monitoring the network and/or an IT system in order to find a possible
intrusion. In this context, the Intrusion Detection System or IDS plays the role of
a software or hardware component that is able to automate the detection of an
intrusion, while, for Intrusion Prevention System or IPS we mean an IDS with the
additional ability to stop an intrusion. It should be noted that an IDS differs from
other defense components such as the firewall, as an IDS monitors the system while
a firewall tries to prevent certain elements from entering. Figure [2.3], presented in
Liu et al. [4] is a great overview of the IDSs.

Figure 2.3: Taxonomy system of IDS

2.3.1 Methodologies for IDS

As described in Liato et al. [5], Intrusion Detection Systems methodologies are
classified into three main categories: Signature-based Detection (SD), Anomaly-
based Detection (AD) and Stateful Protocol Analysis (SPA).
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Signature-based Detection

A signature is a pattern or string that matches a known attack, intrusion, or threat.
Signature Detection is the process of comparing patterns with captured events to
recognize possible intrusions. Signature Detection is also known as Knowledge-
based Detection or Misuse Detection as it uses accumulated knowledge from specific
attacks and system vulnerabilities to identify an attack. The advantages of this
methodology are the simplicity of implementation, the low false positive rate
and, at the same time, the high true positive rate for known attacks. The main
disadvantages is that it cannot react to unknown attacks also known as "zero
day" attacks or in any case to known attacks that are modified. It also requires a
continuous signatures update (which can be both complicated and even expensive).

Anomaly-based Detection

An anomaly is defined as a deviation from known behavior, and the profiles represent
normal or expected behaviors derived from monitoring regular activity, network
connections, hosts, or users over a period of time. These profiles can be static or
dynamic and can be generated for various attributes such as failed login attempts,
processor usage, count of emails sent, etc. This methodology compares normal
profiles with observed events to recognize significant attacks and for this reason it is
also called Behavior-based detection since it is based precisely on behavioral analysis.
The advantages are that it can also detect new or unexpected vulnerabilities and is
not strictly dependent on the devices operating system. The disadvantages are that
it is risk prone to build “weak” profiles due to the variations of the observed events
(it is necessary to choose the right threshold), with a consequent high rate of false
positives, in addition there is a phase of vulnerability during the learning phase.

Based on what is meant by "behavior" of the target system, AD can be divided
into three main categories which are: Statistical-based, Knowledge-based, and
Machine learning-based. This last category contains in turn other sub-categories,
one of these includes the detection algorithm used in this thesis work.

Stateful Protocol Analysis

The stateful in SPA indicates that the IDS may know and track the protocol
states, (such as matching requests and responses). The SPA methodology seems
to resemble Anomaly-based but in reality they are essentially different. AD uses
preloaded profiles specific to the network or host, while the SPA depends on generic
profiles that are developed by the equipment supplier for a specific protocol. In
general, the network protocol models in SPA are originally based on the original
protocol standards of international organizations such as the IETF and IEEE. For
this reason SPA is also known as Specification-based detection. The advantages of
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this methodology are that it is able to recognize unexpected sequences of commands.
The disadvantages are that it requires a high consumption of resources, fails to
detect attacks that result in a benign behavior of a given protocol and finally there
could be problems between the protocol model used and how it is implemented.

2.3.2 Types of technology for IDS
There are four main categories, divided according to where they are implemented
to monitor suspicious activity and what kind of events they can recognize:

• Host-based IDS (HIDS);

• Network-based IDS (NIDS);

• Wireless-based IDS (WIDS);

• Network Behavior Analisys (NBA);

• Mixed IDS (MIDS), which is a hybrid technology of the first 4 categories.

A lack present in all IDS technologies is the presence of an accuracy that is never
100%. There are various indicators of the degree of accuracy, the most important
are:

• True Positive: the IDS correctly identifies a malicious activity as such;

• False Positive: the IDS misidentifies a benign activity as malicious;

• True Negative: the IDS correctly identifies a benign activity as such;

• False Negative: the IDS identifies a malicious activity as benign.

Thanks to these four indicators it is then possible to trace other values that are
useful for evaluating the goodness of an IDS or in any case of a detection algorithm
such as: False Positive Rate, Accuracy, Precision, F1 score and so on.

Host-based IDS

A HIDS monitors and collects the characteristics of hosts that contain sensitive
information, servers that provide public services, suspicious activities. This infor-
mation can be taken from the kernel, the system, the network, and so on. A HIDS
is based on a software agent that is installed on a single host and, for this reason,
this is the only IDS technology capable of analysing communication activities with
end-to-end encryption. The advantages are that it is possible to use a combination
of various techniques so as to provide more robust protection and to collect as much
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information as possible. The disadvantages are that due to the lack of information
on the context there is a higher rate of false positives and false negatives. This is
also due to the fact that the sharing of computational resources with the host can
cause delays in the generation of alarms and report, and coexistence in the same
OS can create conflicts with pre-existing security systems.

Network-based IDS

A NIDS monitors traffic on one or more specific network segments using appropriate
sensors, it then analyses the activity of applications and also protocols to recognize
suspicious activity. A NIDS is based on sensors that can be active or passive,
installed in the various network segments and also on the hosts; in particular they
can be loaded on the network cards configured in a promiscuous way, in order to
accept all the incoming traffic. The advantages are that the sensors are able to
analyse the application protocols with maximum visibility on the context and also
the possibility of using a combination of various detection methodologies. The
disadvantages are the high rate of false negatives and false positives, the inability
to detect attacks using encrypted traffic, and the lack of support in handling high
traffic loads.

Wireless-based IDS

A WIDS is similar to a NIDS, but it captures wireless traffic in ad-hoc networks,
sensor networks, and mesh networks. A WIDS consists of various passive sensors
that are installed on the WLAN nodes and also on the wireless clients, making
the system very accurate, thanks to its selective focus on the activity of wireless
protocols. A WIDS collects various data from the WLAN, from connected devices
such as access points, controllers, and so on, but also from terminal clients. The
disadvantages are that it is not suitable for monitoring application, transport and
network layers, the sensors are susceptible to physical interference attacks, and
cannot compensate for the use of unsecured wireless protocols.

Network Behavior Analisys

An NBA system inspects network traffic to recognize attacks with unexpected
traffic flows. It is based on mainly passive sensors that are installed in the network,
it is able to reconstruct the dynamics of malware infections and DDoS attacks. In
practice, it goes to see what happens inside the network, aggregating information
from various points and, then, making offline analysis. The main limitation is the
delay in detecting attacks caused by the processing of data streams in the form of
blocks and not in real time. The various data sources can be hosts, OSes and even
the services of various protocols.
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2.3.3 Architecture of an IDS
Let’s now briefly see the possible architectures of an IDS:

• Centralized: it collects and analyse data from a single monitored system;

• Distributed: it collects data from multiple monitored systems to detect single,
distributed and cooperative attacks;

• Hybrid: it represents a mix of the two previous architectures.

Distributed detection

In addition to collecting data to try to understand how to improve the detection
of DDoS attacks, using eBPF, we also looked at a possible implementation of a
distributed version of an IDS. This is because the distributed world can be an
interesting solution in detecting DDoS attacks.

We found a lot of documentation that talks about distributed algorithms for
detecting attacks on a network and in more networks. This documentation was
useful to understand the logic behind distributed algorithms, both for the exchange
of information between nodes but also to understand how detection is accomplished
(in some cases, since some of them only offer the possibility of distributing the
algorithm leaving the choice of how to detect to the end user).

In Hindy, Hanan, et al. [6], an overview about the distributed IDS is shown,
taking into account the decision phase, the infrastructure used and the calculation
position of the detection.

For example, in [7], they propose a collaborative DDoS detection method, which
deploys network monitors on edges of networks. Each monitor adopts a centralized
single point detection algorithm. All monitors are organized into AutoTree through
a Collaborative Platform (CP). Results of partial detections are integrated step
by step and ultimately gathered at the root node of AutoTree, which makes the
final judgment. All collaborative nodes work together by sharing results of local
detection, breaking limitation of centralized single point detection, as well as making
it possible to detect low-profile DDoS attacks hiding in high-volume normal traffic at
early stage of the attack. According to them, their approach can effectively reduce
false positive and false negative rate of DDoS detection. Nodes keep summarize
local traffic into Sketch matrix, and store a time series of Sketch matrixes. Through
reverse sketch, one can obtain corresponding anomalous IP address, thus saving
memory and computational resources of collaborative nodes.

Another good example of work in the distributed and collaborative world is [8].
This paper presents an innovative approach that coordinates distributed network
traffic Monitors and attack Correlators supported by Open Virtual Switches (OVS).
The Monitors conduct anomaly detection and the Correlators perform deep packet
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inspection for attack signature recognition. They collaboratively look for network
flooding attack signature constituents that possess different characteristics in the
level of information abstraction. Therefore, this approach is able to not only
quickly raise an alert against potential threats, but also to follow it up with careful
verification in order to reduce false alarms.
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Used technologies

This chapter provides a description of the key technologies on which this thesis is
based and the frameworks used.

3.1 eBPF (Extended Berkeley Packet Filter)

Extended Berkeley Packet Filter (eBPF) [9] represents the enchanced version of
BPF. It was proposed by Alexei Staravoitov in 2013 and it has first appeared in
Kernel 3.18 and renders the original version, which is being referred to as “classic”
BPF (cBPF) these days mostly obsolete. eBPF is a recent technology that enables
flexible data processing thanks to the capability to inject new code in the Linux
kernel at run-time, which is triggered each time a given event occurs. cBPF was
born in 1992 and was a very simple VM used to perform in-kernel packet filtering
(a famous example is tcpdump).

The important thing is that (BPF) [10] was mainly used to create packet
filtering programs, mainly used in monitoring activities. eBPF is very promising
due to some characteristics that can hardly be found all together, such as the
capability to execute code directly in the vanilla Linux kernel, hence without the
necessity to install any additional kernel module; the possibility to compile and
inject dynamically the code; the capability to support arbitrary service chains;
the integration with the Linux eXpress Data Path (XDP) for early (and efficient)
access to incoming network packets. At the same time, eBPF is known for some
limitations such as limited program size, limited support for loops, and more, which
may impair its capacity to create powerful networking programs.

In the following pages we see some of the most important features of eBPF [9].
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3.1.1 Verifier
A very important concept of eBPF is safety. Since an eBPF program can be loaded
at runtime in the kernel, it is checked by the verifier, which ensures that the given
program cannot harm the system. The verifier checks various aspects of an eBPF
program such as:

• The program must not have infinite loops;

• The program must not use uninitialized variables or access out-of-bounds
memory;

• The program must be of a certain size that meets the system requirements;

• The program must have a finite complexity. The verifier will evaluate all
possible execution paths and must be able to complete the analysis within
appropriate limits.

3.1.2 Helper Functions
Technically creating code that does complex operations with eBPF could be critical
because the C of the eBPF is limited. The solution that comes to the aid of
developers are helpers. Helpers are native software functions in the Linux kernel
that can be called within an eBPF program. A simple example of a helper is
bpf_trace_printk() [11], which is a "printk()-like" facility for debugging. An
interesting thing about helpers is that it is possible to put all the loops we want
unlike the eBPF where they are forbidden. However, while the eBPF code can be
injected on demand, the helpers must be compiled a priori into the Linux kernel.
So it is possible to use the helpers already listed in the Linux kernel or, in case
there is no helper that suits us, we can create a new one, however, to use it it
must be added to the Linux kernel In brief, helper functions allow eBPF programs
to consult a kernel-defined set of function calls to retrieve and send data to and
from the kernel. The support functions available may differ for each type of BPF
program.

3.1.3 Maps
One of the characteristics of traditional BPF was that it was stateless, this has
been changed in eBPF, indeed here you have a memory where to save the state.
The main purpose is to export data from the kernel to userspace, push data from
userspace to the kernel or share data between different eBPF programs. The
problem with having shared memory is concurrency. The solution that has been
defined in eBPF is to define non-generic but typed memory, that is a data structure
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called map [Figure 3.1], which has some particular form such as vector, hashmap,
table and so on and of which you can also have more than one simultaneously. If
maps are used, the concurrency does not have to be managed by the programmer
but the system takes care of it. The maps can also be nested, i.e. if it is possible
to have maps of various types of maps. In brief, maps are efficient key/value stores
that reside in kernel space.

They can be accessed from a BPF program in order to keep state among multiple
BPF program invocations. They can also be accessed through file descriptors from
user space and can be arbitrarily shared with other BPF programs or user space
applications or between user and kernel space. BPF programs which share maps
with each other are not required to be of the same program type.

There are different types of maps, which have behaviors and structures that
distinguish them. There are both generic maps, some of which are:

• BPF_MAP_TYPE_HASH;

• BPF_MAP_TYPE_ARRAY;

• BPF_MAP_TYPE_PERCPU_HASH;

• BPF_MAP_TYPE_PERCPU_ARRAY.

There are also non-generic maps, some of which are:

• BPF_MAP_TYPE_PROG_ARRAY;

• BPF_MAP_TYPE_PERF_EVENT_ARRAY;

• BPF_MAP_TYPE_PERF_EVENT_ARRAY;

• BPF_MAP_TYPE_STACK_TRACE.

Some maps also have a PERCPU version that allows you to have different instances
of the same table for each CPU core, which leads to an improvement in performance.
No synchronization mechanism is needed and maps can also be cached for a further
increase in access speed.
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User space
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MAPs
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eBPF program 1
eBPF program 2

Figure 3.1: Shared memory: architecture.

3.1.4 Tail calls
The concept of tail calls can be used to overcome the size limit of an eBPF program.
In practice, thanks to tail calls, an eBPF program can call another without going
back to the old program. Indeed, tail calls are different from the concept of function
calls. A tail call has minimal overhead and it is implemented as a long jump,
reusing the same stack frame.

3.1.5 Program Types
There are different types of programs, this is because the execution of an eBPF
program is triggered by a specific event in the kernel, called Hook Point. With
eBPF there are a number of hook points where you can listen for any events. These
hook points are located at different levels in the Linux networking stack. An event
can be captured as soon as it exits the card network, as soon as the Operating
System comes into play, in sockets or at the RAW level (traditional BPF). The
metadata associated with packets and allowed actions change according to the hook
used. For networking purposes, program execution starts when a packet arrives.
Two of the main types for networking are XDP (eXpress Data Path) and tc (traffic
control).
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Figure 3.2: Graphical representation of XDP and TC hook points.

XDP: eXpress Data Path

XDP [10] provides a mechanism to run an eBPF program at the lowest possible level
in the Linux networking stack, basically immediately after receiving a packet. No
expensive operations are performed at this level of the network stack, indeed here
we are before any allocation of kernel metadata structures such as skb, spending
fewer CPU cycles for packet processing than conventional stack delivery, but from
on the other hand, the information provided to the program is poor. XDP has
three operating modes:

• Driver (or Native) mode: the network card driver must support this model.
Note that, a device that runs in XDP Driver can redirect a packet only to
another device running XDP Driver;

• Offloaded mode: the BPF program is offloaded directly into the NIC instead of
running on the host CPU. This is usually implemented in so-called SmartNICs;

• Generic (or SKB) mode: in this case, XDP can also be used with drivers that
do not offer native support. Note that, a device that runs in XDP Generic
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can redirect a packet to all the devices that run in XDP Generic.

Possible use cases are as varied as: early packet discard (for example DDoS
mitigation), firewalling, load balancing, forwarding. After the XDP program has
been executed, an appropriate value is returned [Figure 3.3]:

• XDP_DROP: the packet is dropped directly at the driver level, without
wasting any other resources;

• XDP_PASS: the packet can keep going up the network stack. In this case, the
CPU that is processing the packet allocates an skb, populates it and passes it
forward to the GRO (Generic Receive Offloload) engine;

• XDP_TX: the packet just received is modified and/or checked and then is sent
back to the same NIC it came from. This type of action is used for example
to make load balancer;

• XDP_REDIRECT: the packet is redirected to another NIC;

• XDP_ABORTED: indicates an exception; in this case the behavior is the same
as XDP_DROP except that XDP_ABORTED passes trace_xdp_exception
tracepoint which can be further monitored to detect incorrect behavior.

Figure 3.3: Graphic representation of the possible actions of an XDP program.
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Obviously, like all things, XDP has not only advantages, indeed:

• With XDP it is possible to use only a limited number of helpers (compared
for example to those that can be called with TC;

• XDP Driver mode limitations: most XDP-enabled drivers today use a specific
memory model (e.g., one packet per page) to support XDP on their devices.
Among the different actions allowed in XDP, there is the possibility to redirect
the packet to another physical interface (XDP_REDIRECT). While this
action is currently possible within the same driver, in our understanding, it is
not possible between interfaces of different drivers;

• Generic XDP limitations: in case XDP is used without driver support, the
XDP program is executed immediately after the skb allocation and therefore
in practice loses the advantages that come from the Driver mode. Although it
must be said that it continues to perform better than TC;

tc (traffic control)

tc programs intercept data when it reaches the traffic control function of the kernel,
in RX or TX mode. Compared to XDP, a TC program [9]:

• The BPF input context is a sk_buff not a xdp_buff. When the kernel’s
networking stack receives a packet, after the XDP layer, it allocates a buffer
and parses the packet to store metadata about the packet. This representation
is known as the sk_buff;

• Compared to XDP, tc BPF programs can be triggered out of ingress and also
egress points in the networking data path as opposed to ingress only in the
case of XDP;

• The tc BPF programs do not require any driver changes since they are run at
hook points in generic layers in the networking stack. Therefore, they can be
attached to any type of networking device.

3.2 BCC
BCC is a toolkit for creating efficient kernel tracing and manipulation programs,
and includes several useful tools and examples. Thanks to BCC it is possible
to write eBPF programs much easier, this is made possible thanks to the kernel
instrumentation in C (which includes a C wrapper around LLVM) and front-end in
Python and lua. It is suitable for many tasks, including performance analysis and
network traffic control.
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3.3 Polycube
Polycube [12] is an open-source software framework based on eBPF, that enables
the creation of arbitrary and complex network function chains. A powerful in-
kernel data plane and a versatile user-space control plane with strong isolation,
persistence and composability characteristics can be used in every function. In
addition, a common model for each network function’s control and management
strategy simplifies the manageability and speeds up the implementation of new
network services.

Figure 3.4: Polycube architecture

Polycube architecture main points are:

• Polycubed is a service independent daemon that allows you to control the entire
polycube service, starting from startup, through configuration and stopping
all available network functions, i.e. services. This module mainly acts as a
proxy, that is, it receives a request from its REST interface, forwards it to the
appropriate service instance and responds to the user. Polycube supports both
local services which are implemented as shared libraries, which are installed
on the same server as polycubed and whose interaction occurs through direct
calls, but also remote services which are implemented as remote daemons
even running on a different machine, which communicate with polycubed via
gRPC;
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• A Polycube service can be seen as a plug-in that can be installed and started at
runtime. Each service must implement a specific interface to be recognized and
controlled by the polycubed daemon. Each network function is implemented
as a separate module and multiple versions of the same function can coexist,
this is because there may be cases where a simple and fast version is needed
and therefore a reduced set of functions may suffice, but, there may be cases
where the full but slower version is needed. Each implementation of the service
includes the datapath (Data Plane), i.e. the eBPF code to be injected into
the kernel, the control/management plane, which defines the primitives that
allow you to configure the behavior of the service, and the slow path, which
manages packets that cannot be fully processed in the kernel;

• Polycubectl represents the command line (CLI) which is independent of the
service and which allows you to control the entire system, such as start-
ing/stopping services, creating service instances and configuring/querying the
extension of each individual service. This module cannot know a priori which
service it will have to control and therefore its internal architecture is service-
agnostic, i.e. it is able to interact with any service through a well-defined
control/management interface that must be implemented in each service. To
facilitate the programmer life in the creation of Polycube services, there is
a set of tools for automatic code generation capable of creating the skeleton
of the control/management interface starting from the YANG (Yet Another
Next Generation) model of the service itself.

3.4 DeChainy

This section briefly describes what DeChainy [13] is and what it was for. DeChainy
is an open source framework to easily build and deploy eBPF/XDP network
monitoring probes and clusters of probes, in order to perform Service Programs
Chain efficiently.

DeChainy is not supposed to substitute already existent framework; on the other
hand, its aim is to offer a wider choice of possibilities for also those users who
are experimenting eBPF with other Python-friendly technologies, like TensorFlow
(for Machine Learning). In other words, DeChainy is a Polycube-like framework,
where the controlplane management which is written in Python and where the
cube concept does not exist. It is a recent framework, perhaps not complete where,
however, it is possible to define network functions in the controlplane in an easy
and fast way.
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3.5 LUCID
As explained in Chapter 2, Anomaly-based detection is divided into various cat-
egories, one of these is that of Machine-learning which in turn is part of Deep
Learning (DL) based detection. Deep Learning systems are very effective in discrim-
inating DDoS traffic from benign traffic, however they can be resource-intensive
from a training point of view. Going into even more detail, we find the Convolu-
tonial Neural Networks which represent a specific Deep Learning technique that
have become popular in recent times leading to important innovations. The CNN
application has advanced the state of the art in some specific scenarios such as
malware detection, code analysis, network traffic analysis and intrusion detection
in industrial control systems.

LUCID [14] (Lightweight, Usable CNN in DDoS Detection) is a lightweight,
Deep Learning-based DDoS detection framework. It leverages the properties of
Convolutonial Neural Networks to classify traffic flows as malicious or benign and
it is suitable for online resource-constrained environments. Using the most recent
datasets, LUCID is able to match the accuracy of the detection to the existing
state of the art, obtaining a reduction of about 40 times of the processing time,
compared to the state of the art. LUCID’s CNN encapsulates learning of malicious
activity from traffic to allow for the identification of DDoS patterns regardless
of their time positioning. An advantage of CNNs is that they produce the same
output regardless of where a pattern appears in the input. This encapsulation and
learning of features during model training eliminates the need for excessive feature
design, classification, and selection. In order to support an online attack detection
system, LUCID uses a new preprocessing method for network traffic that generates
a spatial data representation used as input for CNN.
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Figure 3.5: LUCID architecture

An important thing about LUCID is the concept of Custom Policy which can
be applied to the results obtained from LUCID’s prediction, in this way LUCID
can be used in various situations and the policy can be decided and changed by
the end user. LUCID’s output is represented by a quintuple that is a session called
flow [A], with source IP, source port, destination IP, destination port, protocol
type and a value that can be True or False depending on whether LUCID considers
that session as harmful or not. An example of a very simple Policy (which had
been used in preliminary tests) that allows us to find out if a source IP address is
malicious and separate it from the concept of quintuple is the following:

• a True result is assigned a value of +1;

• a False result is assigned a value of -1.

Finally, if the sum is greater than or equal to 0, that source IP address is deemed
malicious, otherwise it is not. In this way, for example the final result of LUCID
can be inserted in a DDoS mitigator.
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Architecture

In this chapter the two Polycube services used in the tests are explained in more
detail, also analysing the architecture and the relationship between LUCID and
Polycube, then the important parts of the eBPF code of the probe used for
monitoring will be analysed. In the final part, the general architecture used for the
tests will be shown with the appropriate configurations.

4.1 Used services
4.1.1 Helloworld service
The Helloworld [15] service represents the classic "Hello World" of any programming
language. Indeed, it is the simplest service in the Polycube framework. The
Helloworld service receives traffic from an interface and can:

• Forward traffic on a second interface;

• Forward traffic in the slow path;

• Drop traffic.
The important parts in the code of the ingress Data plane of this service are:

• BPF_ARRAY (action_map, uint8_t, 1); eBPF map of a single element that
is used to save the action that is set using polycubectl with the action flag;

• BPF_ARRAY (ports_map, uint16_t, 2); eBPF map of two elements where
the ID of the ports to be used are saved, the ports are always set with
polycubectl.

This service was used in tests carried out with LUCID and Polycube to simulate
the forwarding of traffic on the victim machine and also to have a baseline of
forwarded traffic.
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4.1.2 Dynmon service
The Dynmon (Dynamic Network Monitor) [16] service is a transparent service, it
means, it has no forwarding capability and it is not connected to other services but
is attacked. It allows the injection of eBPF code into the Linux kernel also enabling
network monitoring with the consequent possibility of collecting and exporting
custom metrics.

This service leverages the capabilities of Polycube to replace the eBPF code
that runs in the dataplane and use the eBPF maps to share data between the
data plane and the control plane. So thanks to Dynmon it was possible to inject
some eBPF code (explained later) used to monitor incoming traffic and collect
appropriate metrics on which LUCID will then carry out its analysis.

In order to configure the dataplane of the VNF for a cube of type Dynmon,
it is not possible to use polycubectl but it is necessary to use an appropriate
script to provide a configuration file in the JSON format that follows the YANG
containers structures and that sends that JSON to the Polycube control plane.
The configuration file must contain for the ingress-path and egress-path field the
following fields:

• "name": it is the name of the configuration;

• "code": it is the eBPF code to be injected in the kernel suitably formatted;

• "metric-config": it is the list of the metrics that will be exported;

• "extraction-options": they are the extraction options of a given metric. In
particular:

– "swap-on-read": it is used to have exchangeable maps, in this way their
reading is performed in an atomic way with respect to the dataplane;

– "empty-on-read": in this case, the content of the map is cleared once it
has been read.

Listing 4.1: Configuration file in JSON format.
1 {
2 " i ng r e s s −path " : {
3 "name " : " probe name " ,
4 " code " : " . . . " ,
5 " metric−c o n f i g s " : [
6 {
7 "name " : " . . . " ,
8 "map−name " : "MAP_NAME" ,
9 " ex t rac t i on −opt ions " : {

10 " swap−on−read " : . . . ,
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11 " empty−on−read " : . . .
12 }
13 }
14 ]
15 }
16 }

As for the metrics to be exported at the user level, they can be of two formats,
each of which has its own endpoint:

• /metrics: returns metrics in JSON format;

• /open-metrics: returns metrics in OpenMetrics format.

Regarding the Dynmon map extractor, it supports all major eBPF map types
(HASH, PERCPU HASH, QUEUE, STACK, ARRAY, PERCPU ARRAY, LRU
HASH AND LRU PERCPU HASH).

CodeRewriter

A very important part about Dynmon’s architecture, which is also done in DeChainy,
is the swap of the eBPF program used as a probe. In Polycube, there is a
component called CodeRewriter that takes care of dynamically adapting the injected
code based on the initial configuration file. This component uses a pattern to
identify, replace, and ultimately modify certain parts of the code provided during
configuration. There are two types of rewrite: PROGRAM_INDEX_SWAP and
PROGRAM_INDEX_RELOAD.

PROGRAM_INDEX_SWAP: this type of rewriting exploits the use and
creation of program chains that the framework allows to execute. Practically:

1. Clones the injected eBPF code;

2. Modifies in the cloned code all references to all maps that have been declared
as "swap-on-read";

3. Create a pivot program that, which will forward inbound or outbound traffic
to the right program;

4. Injects into the system first the pivot code, then the code entered by the user
and finally the cloned code.

Whenever metrics are requested from a user, the Control plane changes the index,
which is contained in the shared eBPF map, which corresponds to the version of
the program to be called by the pivot program. Since the maps in the two versions
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of the program are different, the metrics that will be returned to the user are
recovered from the one actually unused. In this way, atomicity is guaranteed as the
Data plane program has started using the other map as soon as the request arrives.

PROGRAM_INDEX_RELOAD: this type of rewriting is used in case
there is some error during the PROGRAM_INDEX_SWAP or the syntax of the
maps used by the user in the eBPF code is wrong. This solution has some drawbacks
in terms of performance. Practically:

1. Clones the injected eBPF code.

2. Change the name of the maps declared "swap-on" read in the cloned code.

3. Alternately inject the original eBPF code and the modified one into the system.

Since the obtained codes are alternately injected into the system, that is, they
are always recompiled and reinjected, this second solution is slower than the first.
However, even with this solution, the Control plane can atomically read the maps.

4.2 eBPF code of the probe
Here we see the eBPF [17] code that is injected into the Linux kernel. It is used to
analyse incoming traffic on an interface and to extract metrics and it is the same
in both Polycube and DeChainy tests, except for some small configuration changes.
The following parameters are very important:

• N_SESSION: represents the maximum number of TCP sessions that are
traced;

• N_PACKET_PER_SESSION: it represents the maximum number of packets
of the same TCP session. If this limit is not reached, a padding function is
used in the LUCID code (this is necessary to pass the data in the correct
format to the neural network); if the maximum value is reached, no more
packets will be captured for that session, until a request is made to obtain the
collected metrics, which in our case is made by LUCID;

• N_PACKET_TOTAL: it represents the maximum number of packets that
can be captured, usually N_SESSION*N_PACKET_PER_SESSION.

Each packet that belongs to a TCP session or to one of the other protocols
implemented such as UDP or ICMP, is analysed, and from this, some informations
are extracted and stored in the metric map for later consultation. The two important
data structures in the code are the following:
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1 BPF_QUEUESTACK_SHARED( " queue " , PACKET_BUFFER_DDOS, s t r u c t f e a tu r e s ,
N_SESSION ∗ N_PACKET_PER_SESSION, 0) __attribute ( (SWAP) ) ;

2 BPF_TABLE_SHARED( " hash " , s t r u c t sess ion_key , uint64_t ,
SESSIONS_TRACKED_DDOS, N_SESSION) __attribute ( (SWAP) ) ;

The PACKET_BUFFER_DDOS map is a Queue (this means that they are
automatically deleted when a read takes place) of size N_PACKET_TOTAL. This
map contains all the packets that the probe is able to capture filtered according
to their features. The SESSIONS_TRACKED_DDOS map is an Hash map of
size given by the value of N_SESSION. It contains session_key as the key and a
uint64_t as the value, it means that it is used to store the total number of packets
captured for each session.

In particular in Listing [4.2] we can see the definition of the struct session_key.
This structure is used to uniquely identify a session and it has 5 fields: source
IP address, destination IP address, source port, destination port, protocol ID. In
Listing 4.2, we can see the structure representing the features that need to be
exported at the user level. For simplicity, the features used with Polycube have
been displayed, while with DeChainy there is also the possibility to activate only
some features based on the protocol of the packet.

Listing 4.2: Session identifier.
1 s t r u c t sess ion_key {
2 __be32 saddr ;
3 __be32 daddr ;
4 __be16 spor t ;
5 __be16 dport ;
6 __u8 proto ;
7 } __attribute__ ( ( packed ) ) ;

Listing 4.3: Features to be exported.
1 s t r u c t f e a t u r e s {
2 s t r u c t sess ion_key id ;
3 uint64_t timestamp ;
4 uint16_t ipFlagsFrag ;
5 uint8_t tcpFlags ;
6 uint16_t tcpWin ;
7 uint8_t udpLen ;
8 uint8_t icmpType ;
9 } __attribute__ ( ( packed ) ) ;

• id: it is the session identifier;

• timestamp: it is the timestamp of when the packet has been analysed;

29



Architecture

• ipFlagsFrag: it represents the IP field Flags and the Fragment Offset (16 bytes
in total, 3 for flags);

• tcpFlags: it is the flags specified in the TCP header;

• tcpWin: it is the size of the TCP window;

• udpLen: it is the length of the UDP packet;

• icmpType: it is the type of the ICMP packet.

For each packet that is captured [A], the probe checks the type of protocol used,
then checks whether the current session identifying the packet has already reached
the maximum packet value it can be stored(N_PACKET_PER_SESSION). If
free space is still present, the features are extracted from the packet, otherwise, it
moves on to the next packet.

The Figure [4.1] shows the relationship between LUCID and Polycube.
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space
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Figure 4.1: Architecture of LUCID and Dynmon
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Briefly:

• LUCID makes a GET to the Polycube REST API, contacting a cube of type
Dynmon (in our case it will contact a cube named lucid1);

• Dynmon receives the request and starts extracting data from the eBPF maps,
then translates them into an appropriate format and replies to LUCID;

• Here LUCID performs a translation first, then there are the padding and data
normalization operations and then the prediction part takes place;

• A Custom Policy can also be applied following the LUCID output;

• After LUCID gives its result, it can wait for a certain period of time (default
10 seconds, in conducted tests 0 seconds) before performing a new GET.

It has been chosen to visualize the relationship between LUCID and Polycube
because it is much easier to represent and understand. In the case of LUCID and
DeChainy, the path is logically similar, except for the fact that you do not go
through a REST API and it is DeChainy who chooses how often to extract the
data through an appropriate configuration.

4.3 Used tools
Below is an overview of the tools used to run the tests and to obtain the results.

4.3.1 MoonGen
In order to create a DDoS attack, there are many tools and many ways. Our
choice fell on MoonGen [18], which is a scriptable high-speed packet generator built
on libmoon. The whole load generator is controlled by a Lua script: all packets
that are sent are crafted by a user-provided script. Thanks to the incredibly fast
LuaJIT VM and the packet processing library DPDK, it can saturate a 10 GbE
Ethernet link with 64 Byte packets while using only a single CPU core. MoonGen
can achieve this rate even if each packet is modified by a custom Lua script.

Another important feature of MoonGen is that it can also be used to receive
traffic and this can be set in the same userscript used to generate the attack. This
was really very useful because it allowed us in a simple way to obtain statistics
both on the attack and also on the traffic that is analysed by the DUT and sent
back, simulating a real case, where there is a machine that does detection and that
does the forwarding of traffic to servers within the data center.

In the Figure [4.2] can be seen the MoonGen architecture, where we see that
the inner core is represented by a LUA wrapper for DPDK that provides functions
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for generating packets and also an API to configure hardware-related features such
as timestamps and speed control. Here, the important thing for us is the userscript
which is used to define the logic used for generating the traffic and which we will
talk about later.

This can lead to exhausted receive queues or starving trans-
mission queues. Pause times introduced by the JIT com-
piler are in the range of “a couple of microseconds” [21].
The garbage collector (GC) works in incremental steps, the
pause times depend on the usage. All packet buffers are
handled by DPDK and are invisible to the GC. A typical
transmit loop does not allocate new objects in Lua, so the
GC can even be disabled for most experiments.
Pause times are handled by the NIC buffers: The cur-

rently supported NICs feature buffer sizes in the order of
hundreds of kilobytes [11, 12, 13]. For example, the smallest
buffer on the X540 chip is the 160 kB transmit buffer, which
can store 128µs of data at 10GbE. This effectively conceals
short pause times. These buffer sizes were sufficient for all
of our tests.

3.3 Hardware Architecture
Understanding how the underlying hardware works is im-

portant for the design of a high-speed packet generator. The
typical operating system socket API hides important aspects
of networking hardware that are crucial for the design of
low-level packet processing tools.
A central feature of modern commodity NICs is support

for multi-core CPUs. Each NIC supported by DPDK fea-
tures multiple receive and transmit queues per network in-
terface. This is not visible from the socket API of the op-
erating system as it is handled by the driver [10]. For ex-
ample, both the X540 and 82599 10GbE NICs support 128
receive and transmit queues. Such a queue is essentially a
virtual interface and they can be used independently from
each other. [12, 13]
Multiple transmit queues allow for perfect multi-core scal-

ing of packet generation. Each configured queue can be as-
signed to a single CPU core in a multi-core packet genera-
tor. Receive queues are also statically assigned to threads
and the incoming traffic is distributed via configurable filters
(e.g., Intel Flow Director) or hashing on protocol headers
(e.g., Receive Side Scaling). [12, 13] Commodity NICs also
often support timestamping and rate control in hardware.
This allows us to fulfill (R1) without violating (R4).
MoonGen does not run on arbitrary commodity hard-

ware, we are restricted to hardware that is supported by
DPDK [14] and that offers support for these features. We
currently support hardware features on Intel 82599, X540,
and 82580 chips. Other NICs that are supported by DPDK
but not yet explicitly by MoonGen can also be used, but
without hardware timestamping and rate control.

3.4 Software Architecture
MoonGen’s core is a Lua wrapper for DPDK that provides

utility functions required by a packet generator. The Moon-
Gen API comes with functions that configure the underly-
ing hardware features like timestamping and rate control.
About 80% of the current code base is written in Lua, the
remainder in C and C++. Although our current focus is on
packet generation, MoonGen can also be used for arbitrary
packet processing tasks.
Figure 1 shows the architecture of MoonGen. It runs a

user-provided script, the userscript, on start-up. This script
contains the main loop and the packet generation logic.
The userscript will be executed in the master task initially

by calling the master function provided by the script. This
master function must initialize the used NICs, i.e., config-
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Figure 1: MoonGen’s architecture

ure the number of hardware queues, buffer sizes and filters
for received traffic. It can then spawn new instances of it-
self running in slave tasks and pass arguments to them. A
slave task runs a specified slave function. It usually receives
a hardware queue as an argument and then transmits or
receives packets via this queue. Starting a new slave task
spawns a completely new and independent LuaJIT VM that
is pinned to a CPU core. Tasks only share state through the
underlying MoonGen library which offers inter-task commu-
nication facilities such as pipes. All functions related to
packet transmission and reception in MoonGen and DPDK
are lock-free to allow for multi-core scaling.
MoonGen comes with example scripts for generating load

with IPv4, IPv6, IPsec, ICMP, UDP, and TCP packets, mea-
suring latencies, measuring inter-arrival times, and generat-
ing different inter-departure times like a Poisson process and
bursty traffic.

4. SCRIPTING API
Our example scripts in the git repository are designed to

be self-explanatory exhaustive examples for the MoonGen
API [5]. The listings in this section show excerpts from the
quality-of-service-test.lua example script. This script
uses two transmission tasks to generate two types of UDP
flows and measures their throughput and latencies. It can
be used as a starting point for a test setup to benchmark
a forwarding device or middlebox that prioritizes real-time
traffic over background traffic.
The example code in this section is slightly different from

the example code in the repository: it has been edited for
brevity. Error handling code like validation of command-line
arguments is omitted here. The timestamping task has been
removed as this example focuses on the basic packet gener-
ation and configuration API. Most comments have been re-
moved and some variables renamed. The interested reader
is referred to our repository [5] for the full example code
including timestamping.

Figure 4.2: MoonGen architecture.

4.3.2 Pidstat
Pidstat [19] (PID Statistics) is the tool used in tests to obtain various statistics
regarding the CPU consumption of a particular process. In particular the %
user, that is the amount of CPU consumed on the user space side by LUCID and
Polycube.

4.3.3 Docker stats
The docker stats [20] command returns a live data stream for running containers.
To limit data to one or more specific containers, specify a list of container names or
ids separated by a space. In the tests carried out it was used to obtain information
on the resources consumed by the DeChainy docker which correspond to the sum
of resources consumed by the various user-side components of DeChainy including
the extractor and LUCID.
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4.3.4 Perf stat
The perf stat [21] command is used to collect statistics from suitable counters. It
was used to try to explain the decreasing trend of traffic forwarded and therefore
received by the attacking machine.

4.4 Configurations
The testbed is composed by two physical machines connected with two direct links
using dual-port Ethernet Controller 10-Gigabit X540-AT2 NICs. One machine
operates as DUT (Device Under Test), i.e. the victim of the attack, on which the
detection algorithm, coupled with Polycube or DeChainy, is executed and which
forwards the packets between its two interfaces. The attacking machine represents
both the attacker who generates an attack on the first interface and a server that
receives traffic on the second interface in order to perform statistics. The two
machines are configured as follows:

• DUT/Victim: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz processor with 4
cores (8 with hypertreading), 32 KB of L1 cache, 256 KB of L2 cache and
819 KB of L3 cache; 32 GB of DIMM DDR4 and Ubuntu 20.04.1 LTS. The
version of the kernel used is 5.9.1-050901-generic, this being able to install
all the frameworks and tools but also to take advantage of some operations
(batch) developed in recent kernels;

• Attacker : Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz processor with 4 cores
(8 with hypertreading), 32 KB of L1 cache, 256 KB of L2 cache and 819 KB
of L3 cache; 32 GB of DIMM DDR4 and Ubuntu 20.04.1 LTS. The version of
the kernel used is 5.4.0-65-generic.

enp1s0f0 enp1s0f0

enp1s0f1 enp1s0f1

VICTIM ATTACKER

Figure 4.3: Architecture used to conduct the tests.
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4.4.1 Baseline
In order to understand how much traffic analysis or network monitoring affects,
two tests were conducted aimed at obtaining a baseline. This baseline represents
the amount of traffic that the interface of the test machine, configured as in the
following tests, is able to manage.

• The first test was done with Polycube, using the Helloworld service. In this
way we can see how much traffic the interface is able to forward, if the packet
is not even touched. In this case the traffic received by the attacking machine
is 10.60 Mpps;

• The second test represents a somewhat more realistic baseline. In this case we
used Linux’s xdp_redirect_map program which does forward traffic to another
interface using the bpf_redirect_map() helper. In addition to forwarding,
both has a forwarded packet counter and MAC address swap. In this case the
traffic received by the attacking machine is 5.59 Mpps.

4.4.2 Attacker machine
In the machine used as attacker, MoonGen has been installed, which allows you
to use your own script to generate a custom attack. The script used comes
from [22] which was later modified to obtain data on the traffic received on the
second interface. The attack in question is a SYN Flood attack with the following
parameters:

• The source IP network is 15.0.0.0/8 which means the attack uses 224 different
addresses;

• The range of ports used is 2000-2100;

• The rate was left at the maximum. On average, the attack has a throughput
of 14.88 Mpps and with 64-byte packets, where 64 bytes is the length of the
ethernet frame containing the SYN packet, including the CRC;

• The script generates packets starting from the source port and cycling on
all IPs. This way we mimic the behavior of a real SYN Flood attack case,
and in addition we are sure that for the entire duration of a test there are no
repeated sessions.

Thanks to this attack we have put ourselves in a position to analyse traffic that
always has different IP addresses for a given GET. To start the attack just run the
custom script using MoonGen.
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4.4.3 Victim machine
Here we see the victim machine configuration:

• The interfaces enp1s0f0 and enp1s0f1 have been configured with a single queue,
which is mapped on a single core (the two queues share the same core). In this
way, the obtained data are not affected by any hyper treading mechanisms and
we can then obtain more data, allowing us to understand if it is worthwhile to
scale; because maybe a single core/queue cannot handle all incoming packets
when it is under attack. The Dynmon service eBPF code (it means the probe
eBPF code) and the Helloworld service eBPF code, in the case of Polycube,
and the probe eBPF code in the case of DeChainy, are executed in a single
core. The user-level code is executed on multiple cores, managed by the OS;

• pidstat was used to monitor Polycube and LUCID’s CPU. In particular for
Polycube, to understand how much it consumes to extract data in userspace,
given that, with pidstat, is not possible to know how much consume the eBPF
program that runs in the kernel. This because when a packet arrives from
outside, an interrupt is triggered, which will not be processed in the Polycube
context and therefore we cannot obtain the information having the Polycube
PID;

• docker stats was used to monitor DeChainy’s CPU (which also includes the
LUCID CPU).

Here we see the Data plane configuration, i.e. the eBPF code that deals with
monitoring:

• N_SESSION: it is the number of max TCP session tracked by the eBPF
code. This value starts from 256 and has been increased by powers of 2 until
an upper limit due to Polycube or DeChainy is found;

• N_PACKET_PER_SESSION: it is the number of packets from the same
TCP session. This value was set at 10. This is because in the tests carried
out, the neural network used was trained using a time window of 10 seconds
(10s) and a flow length of 10 packets (10p). In particular, the model used is
10s-10p-SYN2020-CNNLight, which was created just for SYN flood attacks. So
to continue to have a high True Positive and obtain data as real as possible on
the amount of traffic that the part that deals with monitoring and forwarding
the data to LUCID can manage, the value of Packet Per Session has been
imposed on 10. Indeed, even if this value had been greater, a maximum of 10
packets would still have reached the neural network.
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Chapter 5

Evaluation: detection

This chapter presents a series of tests performed with Polycube and DeChainy
together with LUCID, in order to evaluate their advantages and disadvantages and
also find possible improvements. The tests done are intended to evaluate:

• What are the limits of Polycube and DeChainy coupled with LUCID (used
sequentially) where they represent the data source on which LUCID can do
his analysis;

• Based on the modification of the appropriate parameters in the eBPF code
that performs the monitoring, see what changes in the level of traffic analysed,
consumption of resources and so on;

• Analyse the various components of an IDS.

5.1 Tests with LUCID

5.1.1 LUCID configuration
Here we see the important parameters in the LUCID and also in the DeChainy
configuration when it is used with LUCID:

• Time Detection: it represents the attack and detection duration. It was set
to 60 seconds and it should be noted that, in some cases, it depends on the
parameters such as configuration, the duration of the detection and therefore
of the attack is greater (more details will be provided later). As a minimum
detection and attack time, the value of 60 seconds has been chosen so that
the kernel can apply some optimizations to the reception queues and stabilize
the amount of traffic it can handle;
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• Time GET: represents the time between two consecutive GETs made, after
LUCID has produced its result. More specifically, it represents the time
between two consecutive GETs that LUCID does to Polycube or the time
between two GETs done by DeChainy to the method that takes care of
everything (extraction and recall of LUCID). In practive, in the case of
LUCID and Polycube, LUCID makes to the data provider a GET, waits until
it receives the data, analyses the traffic, produces a result, waits for a Time
GET and does another GET. Logically, in the case of DeChainy the same
happens, only it is not LUCID who decides when to perform a new GET but
DeChainy himself. In the initial tests, the Time GET was set at 1 second,
then it was decided to remove it completely in order to go to maximum power,
because we are in the case of hardware that only has to do traffic detection
and forwarding and therefore it is useless for it to stand still even for only 1
second;

• Time Window: it is used to simulate the acquisition process of online
systems. LUCID collects all the packets from the flow with capture time
between t0, the capture time of the first packet, and time t0+t. This value
was left at 10 seconds, the default value. It should be noted that, since the
packets analysed in a GET are always part of a time window of less than 10
seconds, another time window could also be chosen.

• In the original LUCID code there was also a Timeout GET. This value has
been removed precisely to measure the time required to obtain data when
some parameters in the probe’s data plane code change.

Now let’s see how to configure the victim machine to be able to run the tests,
both with Polycube and with DeChainy. To facilitate the execution of the tests,
appropriate bash functions have been created that group several commands that
are listed in the appendix [A].

For the interfaces configurations was used ethtool [23], in this way each interface
will use a single queue which will be mapped to a single core of the machine. This
choice was made because in this way we can obtain data without counting hyper
threading [A].

In addition to ethtool an affinity [24] script was used, in this way, the two
interfaces will use the same queue/core. This script must be used at the beginning
of each test, after injecting the eBPF code (after injecting the probe code with
Polycube or after starting DeChainy).

LUCID and Polycube

For these tests, Polycube was used as a data provider for LUCID. In particular,
the Polycube services that have been used are:
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• Helloworld of type XDP_DRV and in forward mode, connected between
enp1s0f0 and enp1s0f1 [A];

• Dynmon of type XDP_DRV, connected to the enp1s0f0 interface. To create a
Dynmon service a python script was used as an injector because the eBPF
code must be properly formatted in JSON [A].

We use XDP_DRV which is a eBPF hooks that have to be supported by the NIC
driver and with this we can have the highest dropping rate. In practice, the service
is loaded as an XDP program in the so-called driver mode and that can discards
the packets as soon as they arrive in the NIC driver, before delivering them to the
main network components of the OS.

In order to perform the tests with LUCID and Polycube we need to follow these
steps:

1. In the dataplane-test.json [A] file we put in the "code" section, the eBPF code
of the probe, suitably formatted and with the value of the number of sessions
chosen;

2. Start Polycube [A];

3. Create an instance of the Helloworld service of type XDP_DRV, connect it
between the two interfaces and set it as "forward" action, in order to forward
between the two interfaces [A];

4. Create a Dynmon service instance of type XDP_DRV and attach it to the
first interface. To do this we need to use the dynmon_injector script [A];

5. Run the affinity script [A];

6. Run LUCID [A];

7. Launch the attack with MoonGen [A];

8. After a few seconds (to warm up the cache) from the first GET that returns
data, start perf stat [A];

9. For the resources consumption on the user side of LUCID and Polycube, we
need to give these commands. It should be noted that they must be given only
after both the attack and LUCID have been started (which before performing
the first GET has sleep in order to synchronize everything) [A].

In this series of tests, Polycube and LUCID work sequentially, this means that
LUCID performs a GET, Polycube extracts the metrics and then responds to
LUCID, which analyzes the traffic and returns a result, then another is done GET.
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Figure 5.1: Connection of the two Polycube cubes to the two network interfaces
with LUCID.

LUCID and DeChainy

In these tests, DeChainy was used as a data provider for LUCID. For ease of use,
the docker version of DeChainy has been used. In order to perform the tests with
DeChainy we need to follow these steps:

1. Modify the startup.json file appropriately (which for simplicity is located in the
main directory of DeChainy) [A]. The startup.json represents the configuration
file where to load both the dataplane and the controlplane and also specify
the interface on which to place the probe and in the case of our tests also the
interface to which to redirect the traffic;

2. Starting DeChainy [A]: DeChainy will start making empty GETs (that will not
be counted) until it finds some data to extract from the maps which happens
immediately after the start of the attack;

3. Run the affinity script [A];

4. Launch the attack with MoonGen [A];

5. As before, after a few seconds, perform perf stat [A];

6. As regards the consumption of resources, just execute this command which
is used to save all the information in an appropriate file with the number of
sessions chosen [A].
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In this series of tests, as before, the DeChainy extractor and LUCID work sequen-
tially, it means that a GET is done to a given method, the metrics are extracted,
LUCID analyses the traffic and returns a result, then another GET is done.

 eBPF maps

User space

Kernel space

Metrics

enp1s0f0
enp1s0f1

Control
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function

eBPF code

Data extraction phase

LUCID

DeChainy

Figure 5.2: LUCID and DeChainy architecture used in tests.

5.1.2 Data to collect
Here is a list of data that is recorded at the end of each test (of which only the
most important will be explained later in appropriate graphs):

• N Session used;

• Real Time Detection (Time of the attack): as mentioned before, the time
detection is fixed at 60 seconds, but because we are not in a perfect and
synchronic way, due to delays in providing the data, the real time detection
exceeds 60 seconds. This way we can do an integer of GETs and not truncate
the data we want to get;
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• Total Time Work: this value represents the actual working time, not counting
any delays due to the writing of the information to be obtained from the tests.
The value is almost identical to Real Time Detection;

• Total Packets Analysed, Packets Analysed per Second, Packets Analysed per
GET : where by Analysed Packets we mean the number of packets that pass
from kernel level to user level, before moving on to the detection algorithm;

• Unique Total True Positive, Unique True Positive per GET, Unique True
Positive per Second: these values represent the LUCID output to which our
Custom Policy is applied. Since we have 100% accuracy, this value is equal to
the number of packets with unique IP addresses that we were able to detect;

• LUCID processing Time per GET : includes prediction time, padding time
and normalization time and in the case of tests with Polycube also the data
translation time;

• Polycube/Dechainy processing Time per GET : it is the time it takes the data
provider to get the data from kernel level maps to metrics in the right format
at the user level. In the case of Polycube, this time also includes the data
serialization and deserialization time.

• Number of GETs that were performed during the test;

• Average CPU value of LUCID, Polycube and DeChainy at the user level, with
pidstat and also with docker stats;

• Mpps inbound on the attacking machine, as the victim does packet forwarding
on the second interface;

• perf stat output: some counters can be useful to explain the forwarded traffic
trend;

5.2 Packets analysed
The quantity of packets captured by the eBPF probe and arriving at the user level
(after the extraction phase) with both Polycube and DeChainy, used sequentially
with LUCID, is now shown in various ways. Note that due to the nature of
the attack and the model used for the neural network, LUCID always has 100%
accuracy. This has resulted in that the amount of captured packets arriving at the
user level (Packets Analysed), matches and nearly equal (due to rare overlaps) with
the amount of unique malicious addresses found by LUCID (Unique True Positive)
with our Custom Policy.
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This thesis work mainly focused on the analysis of the various components of
an IDS, in particular on the monitoring of the network and not on collecting data
relating to the accuracy of the detection algorithm. Therefore, it was preferred,
also for practical reasons in the visualization, to explain only the graphs concerning
the quantity of packets analysed. One important thing to note is that, even if the
tests had been done with all cores (4 in the victim machine), the values would not
have been multiplied by the number of cores.

5.2.1 Total Packets Analysed
In Figure [5.3] is shown the total number of packets analysed trend by the eBPF
probe at the end of each test, both in the case of Polycube and DeChainy, with
respect to the increase in the number of sessions set in the probe code (N Session).
As we can see, in the case of Polycube, the last two values of N Session are missing,
this is because we realized that with the value of 131072, the Polycube extractor
time was higher than the 60 second limit imposed in all tests, value beyond which
the test is automatically concluded. Finally, with DeChainy we chose to stop with a
number of sessions of 524288 because we saw that the value of analysed packets was
stabilizing. This figure only wants to show the final value of the packets analysed
at the end of each test. As said before, this value is almost equal to the number
of unique IP addresses found at the end of each test, almost equal because some
overlap of attacking IP addresses can occur.
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Figure 5.3: Total Packets Analysed by Polycube and DeChainy coupled with
LUCID with respect to the number of sessions.
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5.2.2 Total Packets Analysed per GET

The Figure [5.4] displays the packets value that are analysed in each GET performed
by LUCID, both in the tests carried out with Polycube and with DeChainy. As it
can be seen, the value of packets analysed in each GET is equal to the value of the
number of sessions set in the eBPF probe. This is because as mentioned before,
the attack used in the tests has such a high number of addresses 224 and a high
enough port value (100) that in 100% of cases, for each session, only one packet is
captured in a single GET.

An important thing to note is that, in the tests carried out we only used malicious
traffic, since we want to carry out a performance analysis on the monitoring and not
on the accuracy of the chosen detection algorithm and this, in addition to giving us
the opportunity to focus on the attack, it resulted in 100% accuracy in every test
performed. It means that the value of packets scanned for GET matches the value
of malicious unique IP addresses found for GET. This value therefore hypothetically
represents the maximum value of malicious IP addresses that are found at each
GET and by doing so we can focus only on the monitoring/detection part and not
on the attack response part, perhaps using a DDoS mitigator. Trivially, there is an
exponential trend and therefore by increasing the value of the number of sessions in
the probe, the number of packets that LUCID can analyse in a GET also increases.
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Figure 5.4: Average Packets Analysed per GET by Polycube and DeChainy
coupled with LUCID with respect to the number of sessions.
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5.2.3 Total Packets Analysed per Second
Since the total real time of each test may vary slightly due to different times of
extracting the metrics from the eBPF maps, Figure [5.5] shows how many packets
are analysed every second with respect to the value of the number of sessions
chosen, both in the case of Polycube and than in the case of DeChainy.

This is one of the most important values from the tests carried out, indeed,
thanks to this value we can actually see how many packets are analysed in the unit
of time regardless of how long the test lasted.

• In the case of Polycube, we see that the packets value analysed per second
oscillates between a minimum of 1874 and a maximum of 1978. The Polcyube
values are lower than DeChainy, and this is due to the fact that Polycube’s
map extractor is slower than DeChainy’s;

• In the case of DeChainy, the value oscillates between a minimum of 6136
and a maximum of 16186. The important thing to note is that, even in
DeChainy’s case, the value of the packets that are analysed every second is
really low compared to the amount of packets passing through the interface.
As mentioned earlier, the attack has a value of 14.88 Mpps, the two interfaces
of the victim machine are mapped to a single queue which is mapped to a single
core of the machine. The traffic baseline supported by the interfaces with this
configuration is given by the value forwarded using xdp_redirect_map, about
5.59 Mpps; while in the case of DeChainy and LUCID, used sequentially, the
value of traffic forwarded to the attacking machine fluctuates between 2.05
and 1.59 Mpps. This means that, even in the best of cases, about 99% of
packets do not even get analysed by the detection algorithm, since the eBPF
probe, once it has full maps, directly discards the packet. For the same reason,
further tests were carried out.

Finally, as we can see, there is an increasing trend as the number of sessions set
in the eBPF probe increases up to a certain value, beyond which the number of
packets analysed per second begins to stabilize, undergoing some variations.
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Figure 5.5: Average Packets Analysed per second by Polycube and DeChainy
coupled with LUCID with respect to the number of sessions.

5.3 Processing time
The processing times of LUCID, Polycube and DeChainy are now shown. For the
sake of convenience in the visualization, two different graphs have been created for
each case.

5.3.1 LUCID processing Time
The Figure [5.6] shows the LUCID processing time trend for each GET with
Polycube, while Figure [5.7] shows the LUCID processing time trend for each GET
with DeChainy, in both case, as the number of sessions set in the eBPF probe
increases.

LUCID processing time is the sum of padding, data normalization and prediction
time. As we can see, the prediction time is really low, indeed most of LUCID’s
processing time is due to padding and data normalization. These are two necessary
operations that are performed to deliver the data in the correct format to the
neural network. In practice, each attribute value is normalized on a scale [0, 1]
and the samples are filled with padding (all zero values) so that each sample is of
fixed length N, that is, up to the maximum value imposed by the value of Packet
Per Session in the eBPF probe. This is because, having fixed length samples is a
requirement for a CNN to be able to learn about an entire set of samples. In our
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case, there being only one packet in each session and having set 10 as the maximum
packet value for each session, it means that 9 packets will be padding.

So, even if the prediction time is low, padding and normalization times are much
greater, meaning that LUCID works for a not negligible time and that, indeed,
LUCID occupies a value of about 9.66 seconds in the case of Polycube with number
of sessions 131072 and a value of 30.3 seconds in the case of DeChainy with number
of sessions 524288 for each GET. This means that for this period of time, Polycube
and DeChainy remain waiting without doing anything and especially in the case
of DeChainy this leads to a huge drop in performance since for the same number
of sessions, the processing time of DeChainy is less (much less) than the entire
LUCID processing time. This does not detract from the fact that LUCID can
represent an excellent detection algorithm, which, by exploiting CNNs, can provide
better results with low resource consumption providing better results. Furthermore
it works perfectly with Polycube and DeChainy, and as will be discussed later,
this relationship could be improved by running LUCID asynchronously or in other
ways as well, for example by improving padding and normalization operations.
Regarding the LUCID processing time trend as the number of sessions varies, there
is simply an increasing trend due to the fact that more data are processed for each
GET.
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Figure 5.6: Average LUCID processing Time per GET coupled with Polycube
with respect to the number of sessions.
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Figure 5.7: Average LUCID processing Time per GET coupled with DeChainy
with respect to the number of sessions.

Even if the version of LUCID used is the same for all the tests carried out, with
the same number of sessions, it can be seen that with Polycube and with DeChainy,
the prediction times are slightly different. Although the prediction time has very
little impact on the total processing time of LUCID, investigating more deeply, two
possible explanations have been found:

1. The prediction time may vary based on the resources consumed by the machine
at that particular time, therefore it depends on the consumption of Polycube,
DeChainy and also on any active processes on the machine;

2. As can be seen from Figure [5.8], the first prediction time value is much
higher than the others. This may be due to the fact that the first time
the prediction is made, Tensorflow needs a certain period of time for some
initialization processes and that it subsequently uses caching mechanisms and
other optimizations. Thanks to the this point, it is possible to understand the
difference between LUCID’s prediction times in cases where it is used with
Polycube and DeChainy, indeed for example with a value of the number of
sessions of 32768, with Polycube 4 GETs are carried out while with DeChainy
30 GETs are carried out [A];

3. On the other hand, with low number of sessions values, it can be seen that
LUCID’s prediction times with Polycube are lower than when used with
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DeChainy, this could be due to the fact that LUCID with Polycube is a
separate script, which runs so in a main thread, while in the case of DeChainy,
LUCID is executed in a secondary thread.
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Figure 5.8: LUCID prediction times coupled with Polycube, with value of the
number of sessions: 16384, 32768, 65536.

5.3.2 Polycube and DeChainy processing Time
For the sake of practicality in the visualization, two different figures have been
created. In Figure [5.9] it can be seen the Polycube processing time trend for each
GET that is carried out by LUCID, as the number of sessions increases. With
Polycube processing time, we mean the sum of data extraction time from the
eBPF maps, the data serialization and deserialization times, given that LUCID
and Polycube communicate through a REST interface, although, these last two
times are insignificant compared to the extraction time.

As we can see, there is an (almost) exponential trend and for high values in the
number of sessions, the processing times become truly enormous. This is caused
by how the extraction of maps is carried out in Dynmon, which, in addition to
allowing the injection of eBPF code at runtime for the creation of custom probes,
also allows you to pass data from the kernel level to the user.

The problem in the extractor, written in C++ as a programming language, is
given by the fact that, for each packet from which a certain amount of information
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is to be extracted, there is a conditional construct that serves to identify what
type of data must be extracted (int, float, struct, etc...) and which function to
call. This conditional construct is done to each packet, so there is no memory of
the previous packet. To solve this problem, the parsing phase could only be done
the first time, since, all subsequent times, the information to be extracted from
the packets does not change. In short, it would be necessary to adopt a caching
system and save the sequence of functions to be called in a suitable data structure.
In addition to this, another possible solution is to eliminate the conversion of the
data extracted from the maps to JSON, since, being sent to the Polycube REST
interface, they are subsequently converted. During the thesis work, it was preferred
to continue with the tests instead of improving the Dynmon extractor, to obtain as
much data as possible, this also because in addition to Polycube, Dechainy was
also used which, from preliminary tests carried out, we knew it had a very efficient
extractor written in Python.
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Figure 5.9: Average Polycube processing Time per GET with respect to the
number of sessions.

In Figure [5.10] we see the DeChainy extractor processing time trend for each
GET as the number of sessions used varies. With DeChainy processing time, we
only mean data extraction time from the eBPF maps. Indeed, LUCID is not a
separate entity from DeChainy but represents a part of the Control plane. As we
can see, here too, there is an (almost) exponential trend, except that the maximum
value is 2.55 seconds with 524288 as the value of the number of sessions. The
DeChainy extractor turns out to be much faster, but, even if 2.55 seconds may
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seem short, in this time frame, the attack used in the tests performed about 38
million requests. As we will see later, the time required by the extractor also
depends on the fact that immediately after the extraction, it prepares the data by
creating suitable flows that will later be used by LUCID, operations that can also
be removed from the extractor.

N Session

S
ec

on
ds

0

1

2

3

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288

Figure 5.10: Average DeChainy processing Time per GET with respect to the
number of sessions.

5.4 CPU consumption with detection
This section shows the CPU consumption on the user side of Polycube, Dechainy
and LUCID as the number of sessions set in the eBPF probe varies. Obviously it
must be taken into account that these values may vary due to various optimiza-
tions on the Operating System side and that with a different attack, the CPU
consumed, especially by LUCID, would have been different due to the padding and
normalization operations and consequently (in the case of Polycube) also to the
translation of the data. It should also be noted that the CPU consumed by the
eBPF code is not counted since the eBPF code (both monitoring and forwarding)
has been set on a core and being the attack quite high, the CPU consumed on the
kernel side is always at 100%, in addition, with pidstat it is possible to see only
the CPU consumed by a process whose PID is provided, PID that we do not have
a priori. With these data we just want to understand how much the extraction
and detection itself consume.
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5.4.1 Polycube
The Figure [5.11] shows the user side CPU consumed trend of Polycube (extractor
and other operations to communicate with LUCID) and LUCID. As we can see,
the sum of the two percentages is about 100%, so LUCID and Polycube together
use (approximately) a core of the victim machine. LUCID and Polycube are used
sequentially and the one displayed is an average over the entire test. Indeed, there
are times when Polycube waits for LUCID and vice versa. Let’s analyse two
example cases in detail:

• In the case of the number of sessions set to 256, the CPU value of LUCID is
17.31%, and the CPU value of Polycube is about 80%, this is because even if
it is true that the work done by the extractor of Polycube for a single GET is
low, the number of GETs performed by LUCID is greater in the unit of time
and therefore Polycube works continuously on new requests and new data;

• In the case of the number of sessions equal to 131072, LUCID performs a
single GET and then waits for the data, waiting for about 62 seconds during
which, the Polycube map extractor is working to bring the metrics to LUCID,
then for all the wait LUCID will have a CPU value of about 0% and then
reach an average of 16.57% (obviously with peaks of 100%).
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Figure 5.11: Average %CPU of Polycube and LUCID with respect to the number
of sessions.
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5.4.2 DeChainy
In the tests carried out with DeChainy, the docker used represents the set of the
LUCID detection algorithm and the map extractor (and also the part that manages
everything), so the following Figure [5.12] shows the user side CPU consumed trend
of the two programs mentioned above. The % is intended on 4 cores so 100% means
1 core of the machine and this data was obtained using the docker stats command
[A]. From the Figure it can be seen that there is no growing trend with the increase
in the number of sessions and that at a certain point there is a certain stability.
This is due to the fact that for small extractions a greater number of GETs are
made in the unit of time that must be managed (same speech for large extractions).
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Figure 5.12: Average %CPU of DeChainy (with LUCID) with respect to the
number of sessions.

The CPU consumed by Polycube and LUCID and also consumed by DeChainy
(extractor and LUCID) are approximately the same. As we can see, most of the
consumed resources are due to extraction and not to LUCID.
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5.5 Traffic forwarded
This section, shows the traffic forwarded by the victim machine, which, in addition
to doing detection, also takes care of the forwarding. In this way we simulate a
machine that is positioned between the outside and inside of a data center to be
protected. The traffic that arrives at the attacking machine is made up of traffic
that arrives at the eBPF probe and that has traveled through it in its entirety
(i.e. traffic that will later be extracted) or that has traveled it up to the full map
control and therefore has been immediately dropped, i.e. in this case redirected to
the second interface.

The case with Polycube and Dechainy are analysed separately to facilitate the
visualization and explanation of the collected data. For both cases, the first point
that catches the eye is that the amount of traffic received has dropped drastically
compared with our two baselines: xdp_redirect_map where the packet is edited
and Polycube’s Helloworld where only forwarding is done. Note that these values
may also vary slightly depending on the actual machine load.

Mpps Polycube

The Figure [5.13] shows the trend of forwarded traffic in the case of Polycube. As
we can see, there is a decreasing trend as the number of sessions increases.

N Session

0

1

2

3

256 512 1024 2048 4096 8192 16384 32768 65536 131072

Figure 5.13: Traffic forwarded by the victim machine with Polycube coupled
with LUCID and received by the attacker machine with respect to the number of
sessions.
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Mpps DeChainy

The Figure [5.14] shows the trend of forwarded traffic in the case of DeChainy. With
low values of the number of sessions, the traffic forwarded is not really descending,
starting from 2048 we see the decreasing trend as the number of sessions increases.
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Figure 5.14: Traffic forwarded by the victim machine with DeChainy coupled
with LUCID and received by the attacker machine with respect to the number of
sessions.

Explanation of forwarded traffic

The inversely proportional trend to the increase in the number of sessions is due to
the increasing quantity of packets that are analysed at each request (GET) made by
LUCID; since increasing the number of sessions, increases the number of times the
eBPF probe will be in the case of the map not fully and therefore the packet will
not be discarded (redirected) immediately, but the probe will do all the necessary
checks and then push the packet in the appropriate map (slow path).

These results are in contrast with the value of Packets Analysed per Second,
which could have led us to think that increasing the number of sessions in the eBPF
probe, increases the performance at all points. In fact, if the number of sessions
increases, the number of packets analysed increases, the traffic forwarded decreases,
so the solution to an effective detection is not so easy.

Although still to be thoroughly investigated, another promising and possible
explanation for the decreasing trend in forwarded traffic could be the following:
cache problem. For this reason perf stat was used and as can be seen in the
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appendix [A], various counters were used and the monitoring time of perf stat was
set to 40 seconds, not to get too close to the end of the test and to get the data
as close as possible to the steady state trend. The command is launched a few
seconds after the start of the detection in order to warm up the caches.

Of all the counters used, the most important are (where LLC stands for Last
Level Cache):

• LLC-load indicates the number of times a load request occurs in level 3 cache;

• LLC-load-miss indicates the number of times in which, against of a load
request in the level 3 cache, there has been a miss, that is, the data was not
found. Excludes hardware and software prefetching.

The increasing trend of LLC-loads and LLC-load-misses as the value of the
number of sessions increases, i.e. the size of the SESSIONS_TRACKED_DDOS
map in the eBPF probe, indicate that, the larger the map, the more accesses there
are to both the cache L3 than to the main memory, and therefore it also increases
the response time when the map lookup is performed. This can therefore explain
the decreasing trend of forwarded traffic as the number of sessions increases.
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Figure 5.15: LLC-loads and LLC-load-misses of Polycube used with LUCID with
respect to the number of sessions.
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Figure 5.16: LLC-loads and LLC-load-misses of DeChainy used with LUCID
with respect to the number of sessions.

If this observation turns out to be correct, since the level 3 cache is shared
among all cores, it might be a good idea to switch to a distributed version. In fact,
using N nodes instead of just one, we will multiply by N the value of the level 3
cache (and also of the main memory). Although, there would still be other factors
to consider such as sharing the L3 cache with other processes that do not deal with
detection.

A note about the difference in forwarded traffic between Polycube and DeChainy,
it mainly depends on two things:

1. The mechanism with which Polycube implements the redirect is different from
that of DeChainy: the packet follows a different path;

2. In the case of DeChainy, the number of GETs performed by LUCID is much
larger than the number of GETs performed in the case of Polycube. For this
reason, more traffic is analysed per unit of time and at the same time less is
forwarded. This second point does not represent a real disadvantage given
that in any case the traffic analysed and which is subsequently detected is
greater. A proof in favor of this point is given by the results of the traffic
forwarded by DeChainy in the case of extraction only, indeed, here the number
of GETs per unit of time increases dramatically, and the forwarded traffic
decreases, especially for larger values of the number of sessions.
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Evaluation: extraction

After having seen all the results of the tests carried out in the detection case, it
was decided to perform another type of test with DeChainy only used as an eBPF
probe and as a data extractor. In this way we have seen how much traffic it is able
to analyse, that is how much traffic is brought from the kernel level to the user level.
These tests are very important since, in the case of DeChainy and LUCID, it is the
padding and normalization operations of LUCID that slow down DeChainy, who
must wait for the detection results instead of being able to do another extraction.
So, we want to know how much traffic can DeChainy manages used alone without
detection, in such a way as to have a baseline and not be strictly tied to a single
detection algorithm used sequentially.

To be able to perform this type of test, just follow the steps specified in the
previous chapter and modify the Control plane appropriately, not calling LUCID
after extraction. As for the previous tests, the Time GET is set to 0 seconds while
the Time Detection to 60 seconds.

In this case, the packets extraction is intended as extraction from the queue
without the creation of flow with relative features, indeed this part can possibly be
done asynchronously and re-enter as LUCID’s work since those given features are
made ad hoc for LUCID. In brief, by extraction we mean only the pop from the
QUEUE map, PACKET_BUFFER_DDOS map.

6.1 Packets analysed

This section shows the packets captured and extracted trend by DeChainy as the
number of sessions set in the eBPF probe varies. As we can see, the value of
analysed packets is literally greater. Indeed, as mentioned earlier, DeChainy was
slowed down by having to wait for LUCID since his extraction time is shorter.
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6.1.1 Packets analysed per second
Figure [6.1] shows the packets value extracted trend per second by DeChainy. There
is no real growing trend as the number of sessions increases and in general the
average is around 424,000 packets per second. This represents a huge increase
compared to the tests carried out with detection, where the average was about
14,000 packets. The value of packets analysed per second by DeChainy opens
up new avenues. One of this, is to abandon the use of DeChainy and LUCID
sequentially and then start using LUCID asynchronously.
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Figure 6.1: Total Packets Analysed per Second by DeChainy with respect to the
number of sessions.

6.2 Processing Time
In Figure [6.2] we can see the DeChainy processing time which in this case represents
only the extraction time of the packets from the eBPF map. Compared to the tests in
which DeChainy was used with LUCID, the DeChainy processing time has decreased,
because, as said before, in this case the extraction function has been changed which
now only deals with retrieving all packets from the PACKET_BUFFER_DDOS
queue and not creating the flows. In a simple while loop, a pop is done from the
queue, this is because unfortunately Queue does not support the batch operation.

58



Evaluation: extraction

N Session

S
ec

on
ds

0

1

2

3

4

5

25 51 10 20 40 81 16 32 65 13 26 52 10 20

Figure 6.2: Processing Time per GET of DeChainy with respect to the number
of sessions.

6.3 CPU consumption

Figure [6.3] shows the trend of the DeChainy user level CPU as the number of
sessions varies. Due to the fact that the number of extractions per unit of time
has increased, the resources consumed have also increased. The average value is
around 111, which means it takes up around one core.
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Figure 6.3: Average %CPU of DeChainy with respect to number of sessions.
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6.4 Traffic forwarded
Figure [6.4] shows the traffic forwarded trend by DeChainy. Leaving aside the
first values, it can be seen that also in this case, as in the case of DeChainy used
together with LUCID, there is a decreasing trend as the number of sessions set in
the eBPF probe increases. Since DeChainy no longer has to wait for LUCID, it
performs a greater number of extractions per unit of time (GET), so the eBPF
probe code will be found for less time in the case of a full map and a packet will not
be redirected immediately, but extra instructions will be made (slow path). For this
reason, with the same number of sessions, there is a decrease in forwarded traffic,
not very visible for the first values of the number of sessions, since the processing
time between two GETs could be more or less similar in the two cases (detection
and extraction), but more evident for high values, where the LUCID processing
time in the first case become more evident. Thanks to the baseline of forwarded
traffic, to the figure that shows the forwarded traffic in the detection case (always
with DeChainy) and to the latter figure, it is possible to understand how much the
monitoring, the extraction of data in the unit of time and the relationship affect
between extracted/analysed traffic and forwarded traffic. Indeed, the higher the
extracted/analysed traffic, the lower the forwarded traffic and this can be seen
especially for larger values of the number of sessions.

From Figure [6.4] we can also see that, DeChainy extractor is excellent, indeed,
for example, taking the case with the number of sessions of 5424288, the forwarded
traffic is 1.44 Mpps, while the value of packets extracted per second by the extractor
is of about 400 thousand. This means that about 27.78% of the traffic could be
analysed by a detection algorithm asynchronously and 72.22% of the traffic is not
extracted. Even if 72% of the traffic is not analysed, compared to the case of
DeChainy and LUCID used sequentially these values are much better.
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Figure 6.4: Traffic forwarded by DeChainy with respect to the number of sessions.
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Finally, as in the case of tests with detection, in Figure [6.5] we can see the
trend of the LLC-loads and LLC-load-misses values as the value of the number of
sessions varies. These values are a further confirmation of what was said in the
previous chapter about the possibile cache problem.
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Figure 6.5: LLC-loads and LLC-load-misses of DeChainy with respect to the
number of sessions.
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Chapter 7

Conclusions

The work described in this thesis represents an analysis of the various components
that are used to create an IDS, starting from monitoring, passing through extraction
and arriving at detection. A series of actions to be evaluated in order to improve the
current state-of-the-art for IDS systems are also considered, e.g. which parameters
can be more or less useful to obtain an efficient network monitoring (for example
the value of the number of analysed sessions), which parts should be improved
from an engineering point of view and which components are really important.

One of the most interesting results that can be drawn from this thesis work is
that data extraction is much more CPU-demanding than the detection itself. In
fact, it has been seen that, even if eBPF/XDP offers an interesting support for
traffic monitoring, monitoring is the part that mostly impacts the amount of traffic
that can be handled by a machine. In the considered case, in fact, the limit on the
number of analysed flows is not determined by LUCID but is determined by the
component that deals with monitoring. Finally, operations carried out to provide
the data, in a certain format, to the component that deals with the prediction
represent a very critical object.

From the tests carried out, various conclusions can be drawn regarding both
Polycube, DeChainy and LUCID taken individually but also coupled together to
form a real IDS:

• As far as Polycube is concerned, it can be seen that the main technological
limit is represented by the map extractor, an extractor that, perhaps with
another paradigm, could certainly lead to better results. However, Polycube
represents an excellent framework, which has a huge amount of services to
offer, allows you to easily create service chains and in our case, thanks to
Dynmon, it allows you to create custom eBPF probes.

• DeChainy, even if not yet complete, represents a brilliant framework that
allows you to easily write the Control plane in Python and quickly test custom
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eBPF probes. The map extractor proved to be excellent both in terms of
performance and ease of changing data extraction policies.

• As for LUCID, the results show that this algorithm represents an excellent
solution in the detection of DDoS attacks, which can be easily modified with
appropriate Custom Policies to meet any type of end-user need and which
finally integrates perfectly with Polycube and DeChainy. As for the LUCID
times, it should be noted that the prediction phase has very low times and that
most of the LUCID processing time is due to the padding and normalization of
the data when the traffic value starts to be high, operations that can certainly
be improved from an engineering point of view.

7.1 Future works
The choice of Open Source components, their modularity and their ease of integra-
tion, leave wide space for future work, both from an implementation and research
point of view. Some of the future works that can be based on this thesis work can
be the following.

A first direction consists in continuing the analysis of the components discussed,
using for example other types of attacks, that include both malicious and benign
traffic or in any case other attack patterns in order to obtain other data on detection
performance.

Since the DeChainy extractor takes much less time with respect to the total
LUCID processing time, a possible further direction could be to perform the
detection asynchronously with respect to the extraction. For instance, immediately
after extracting data from eBPF maps, we could invoke LUCID in an asynchronous
thread/process and immediately perform another extraction. In this way, the
DeChainy extractor would not remain on hold and could continue to extract traffic
which would later be analysed by LUCID. All the operations necessary for the
detection, starting from the creation of the flows, the padding, the normalization
and finally the prediction could be done asynchronously. Obviously, this solution
could also bring both advantages and disadvantages such as excessive consumption
of resources and therefore in this case it would be convenient to continue to use
hardware dedicated only to detection.

Finally, the most challenging direction could be to move into a fully distributed
world, using Polycube or DeChainy as a data provider and LUCID as a detection
algorithm. An example of architecture is the one shown in Figure [7.1]. This
direction follows the research activities that are currently carried out by several
companies such as Cloudflare, leader in the field of cybersecurity and also Facebook,
with its Katran load balancer.
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Figure 7.1: Possible architecture for distributed IDS.

The possible advantages of a fully distributed IDS are the following:

• Scalability;

• Ability to reduce false positives;

• Reduce resource consumption on devices that perform detection;

• (Hopefully) Increase the number of attackers per unit of time;

• (It depends) Do not use servers dedicated only to IDS, but integrate this job
on normal servers that process also other workloads.

Having a distributed version of a detection algorithm does not only brings advan-
tages but also opens the way to possible problems:

• How does a network device know that someone is attacking it, if it does not
have full vision but only sees some traffic?

• How to make a decision effectively?

• Is there a convenient and effective way to make N nodes on which detection is
made collaborate?

Furthermore, in case of a distributed approach, we also need to know who should
decide whether a given source is an attacker or not. In the literature there are
various solutions with pros and cons:

• Master node that decides: having a complete view of the network thanks to
the fact that all nodes send it information on possible attackers. The solution
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taken may actually be the right one since the information in its possession is
a lot, but the master node can be a bottleneck;

• All nodes decide on their own on the basis of information that is exchanged
periodically, perhaps using a distributed hash table;

• A node is elected as master only for a certain period of time: this is the policy
implemented by the RAFT protocol, which is the basis of the etcd distributed
database in Kubernetes.
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Appendix A

Commands and
configurations

Here it is shown the various commands used to set up and run the tests and some
important pieces of code.

Listing A.1: Configuration JSON file used in LUCID-Polycube tests.
1 {
2 " i ng r e s s −path " : {
3 "name " : " Packets f e a t u r e e x t r a c t o r LUCID−Polycube " ,
4 " code " : " . . . " ,
5 " metric−c o n f i g s " : [
6 {
7 "name " : "PACKET_BUFFER_DDOS" ,
8 "map−name " : "PACKET_BUFFER_DDOS" ,
9 " ex t rac t i on −opt ions " : {

10 " swap−on−read " : true ,
11 " empty−on−read " : t rue
12 }
13 } ,
14 {
15 "name " : "SESSIONS_TRACKED_DDOS" ,
16 "map−name " : "SESSIONS_TRACKED_DDOS" ,
17 " ex t rac t i on −opt ions " : {
18 " swap−on−read " : true ,
19 " empty−on−read " : t rue
20 }
21 }
22 ]
23 }
24 }
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Listing A.2: How to run Polycube.
1 sudo polycubed
2

3 # OR
4

5 docker run −p 9000:9000 −d −−name polycube−docker −−p r i v i l e g e d −−
network host −v / l i b /modules : / l i b /modules : ro −v / usr / s r c : / usr / s r c :
ro −v / etc / l o c a l t i m e : / e t c / l o c a l t i m e : ro polycubenetwork / polycube /
bin /bash −c ’ polycubed ’

Listing A.3: How to create a Helloworld service and attach it to the two interfaces
in forward mode.

1 f unc t i on add−he l l owor ld ( ) {
2 po lycubec t l h e l l owor ld add hw0 type=XDP_DRV
3 po lycubec t l hw0 por t s add port1 peer=enp1s0f0
4 po lycubec t l hw0 por t s add port2 peer=enp1s0f1
5 po lycubec t l hw0 s e t ac t i on=forward
6 }

Listing A.4: How to create a Dynmon service and attach it to the an interface
1 . / dynmon_injector . py l u c i d 1 −m XDP_DRV −d enp1s0f0 . . / dataplane−t e s t .

j s on

Listing A.5: How to run LUCID.
1 f unc t i on run−luc id −polycube ( ) {
2 cd ~
3 cd luc id −polycube
4 conda a c t i v a t e t e s t 1
5 python3 cnn−ddo−detec t ion −keras . py −−p r e d i c t polycube −−model

t ra ined −models /10 s −10p−SYN2020−CNNLight . h5 −−dataset_type SYN2020
−−victim_net <vict im−net> −−session_number " $1 "

6 }

• –predict <type>: indicates in which mode LUCID is used. If "polycube" is
put, LUCID will use Polycube as the data provider.

• –model <path>: indicates the file that contains the model that will be used
by the neural network.

• –dataset_type <type>: indicates the type of dataset to use. Possible values
are IDS2012, IDS2017, IDS2018, SYN2020.

• –victim_net <victim-net>: Indicates the victim network.
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• –session_number "$1": this is the only parameter you need to input. Represents
the value of the number of sessions chosen. In this way, the information we
want to obtain from the test will be printed in a file with as "lucid-polycube-
SN-value".

Listing A.6: Information on the consumption of resources on the user side of
LUCID and Polycube.

1 f unc t i on luc id −cpu−i n f o ( ) {
2 cd ~
3 PIDL=$ ( ps −u t e s t 1 | grep −E ’ python3 ’ | grep −v ’? ’ | awk ’{

p r i n t $1 } ’ )
4 LC_NUMERIC=C.UTF−8 p i d s t a t −u −t −p $PIDL 1 >> luc id −polycube /cpu

−i n f o / luc id −SN−"$1 " . p i d s t a t
5 }
6

7 f unc t i on polycube−cpu−i n f o ( ) {
8 cd ~
9 LC_NUMERIC=C.UTF−8 p i d s t a t −u −t −p $ ( p ido f polycubed ) 1 >> luc id

−polycube /cpu−i n f o / polycube−SN−"$1 " . p i d s t a t
10 }

Listing A.7: Configuration file for DeChainy: startup.json.
1 {
2 " probes " : [
3 {
4 " p lug in " : " adaptmon " ,
5 "name " : <probe name>,
6 "mode " : <mode>,
7 " i n t e r f a c e " : <inter face_1 >,
8 " r e d i r e c t " : <inter face_2 >,
9 " time_window " : value ,

10 " i n g r e s s " : " . . . " ,
11 " cp_function " : " . . . " ,
12 " f i l e s " : {
13 " model " : " . . . "
14 }
15 }
16 ]
17 }

1. "name": is the name of the probe.

2. "mode": is the type of the probe. It was set as XDP_DRV to have the highest
packet drop rate.
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3. "interface" and "redirect": respectively represent where the probe is positioned
and to which interface to redirect traffic.

4. "ingress": the eBPF code of the probe must be entered, suitably formatted
with the formatter script.

5. "cp_function": "cp" stands for Control Plane. It is the Python code properly
formatted with the formatter script. In this code, both the extraction of
the data taken from the kernel level maps and the LUCID part (padding,
normalization and prediction) is done.

6. "time_window": indicates how often (in seconds) the function that takes care
of passing the results from kernel level to user level will be called. In the tests
carried out, this section was not actually used but the time between two GETs
was manually set in an appropriate DeChainy configuration file (utility file).

7. "model": represents the model used to train LUCID’s neural network. The
model can be passed by putting the path to the correct file or it can be put
as Base64 using a suitable formatting script.

Listing A.8: Run DeChainy docker with libraries for machine learning using the
startup json in the root folder and the code of the local version.

1 f unc t i on dechainy−docker−run ( ) {
2 sudo docker run −−name dechainy−docker −−rm −−p r i v i l e g e d −−

network host −v / l i b /modules : / l i b /modules : ro −v / etc / l o c a l t i m e : /
e t c / l o c a l t i m e : ro −v / usr / s r c : / usr / s r c : ro −v /home/ t e s t 1 / dechainy : /
app / : ro s41m0n/ dechainy : ml−cpu

3 }

Listing A.9: How to get information about the CPU consumed by DeChainy
using docker stats.

1 f unc t i on dechainy−docker−s t a t s ( ) {
2 cd ~
3 sudo docker s t a t s dechainy−docker >> CUSTOM_PATH/DeChainy−SN−"$1

" . s t a t s
4 }

Listing A.10: How to start the attack.
1 f unc t i on s ta r t −attack ( ) {
2 sudo . / bu i ld /MoonGen . / custom−attacks / l3−tcp−syn−f lood −rx . lua
3 }
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Listing A.11: How to perform perf with suitable counters.
1 f unc t i on per f −stat −i n f o ( ) {
2 sudo p e r f s t a t −e cache−r e f e r e n c e s , cache−misses , L1−icache −load−

misses , L1−dcache−loads , L1−dcache−load−misses , L1−dcache−s to r e s ,
l 2_rqs t s . all_demand_miss , l 2_rqs t s . code_rd_hit , l 2_rqs t s .
code_rd_miss , l 2_rqs t s . demand_data_rd_hit , l 2_rqs t s . miss , l 2_rqs t s .
demand_data_rd_miss , l 2_rqs t s . al l_demand_references ,LLC−loads ,LLC−
load−misses ,LLC−sto r e s ,LLC−store −misses −C 0 −r 40 s l e e p 1

3 }

Listing A.12: Example of how a packet is analyzed by the probe.
1 case IPPROTO_TCP: {
2 // 1
3 s t r u c t tcphdr ∗ tcp = data + s i z e o f ( s t r u c t eth_hdr ) +

ip_header_len ;
4 i f ( ( void ∗) tcp + s i z e o f (∗ tcp ) > data_end ) {
5 re turn RX_OK;
6 }
7

8 // 2
9 s t r u c t sess ion_key key = get_key ( ip−>saddr , ip−>daddr , tcp−>

source , tcp−>dest , ip−>pro to co l ) ;
10 uint64_t ∗ value = SESSIONS_TRACKED_DDOS. lookup_or_try_init(&key

, &zero ) ;
11 i f ( ! va lue ) {
12 break ;
13 }
14 ∗ value += 1 ;
15

16 // 3
17 i f (∗ va lue > N_PACKET_PER_SESSION) {
18 re turn RX_OK;
19 }
20

21 // 4
22 s t r u c t f e a t u r e s new_features = { . id=key , . timestamp=

pcn_get_time_epoch ( ) , . ipFlagsFrag=bpf_ntohs ( ip−>f rag_o f f ) ,
23 . tcpWin=bpf_ntohs ( tcp−>window ) ,
24 . t cpFlags=(tcp−>cwr << 7) | ( tcp−>ece << 6) | ( tcp−>urg << 5)

| ( tcp−>ack << 4)
25 | ( tcp−>psh << 3) | ( tcp−>r s t << 2) | ( tcp−>syn << 1)

| tcp−>f i n } ;
26

27 // 4
28 PACKET_BUFFER_DDOS. push(&new_features , 0) ;
29 break ;
30 }
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Let’s just take the case of TCP:

1. Level 4 is parsed and then a packet size check is performed.

2. Check if the session of the captured package has already been traced in the
past, otherwise it is initialized, all this thanks to the lookup_or_try_init
method.

3. Check whether the maximum number of packets that can be captured has
been reached for this session.

4. Extract all the necessary info and fill the struct features.

5. Extracted features are added to the PACKET_BUFFER_DDOS map.

Listing A.13: LUCID output after prediction in human readable format
1 [ ’ 1 5 . 0 . 0 . 5 ’ ’2000 ’ ’ 1 9 2 . 1 6 8 . 1 . 2 ’ ’80 ’ ’TCP’ ’ True ’ ]
2 [ ’ 1 5 . 0 . 0 . 6 ’ ’2000 ’ ’ 1 9 2 . 1 6 8 . 1 . 2 ’ ’80 ’ ’TCP’ ’ True ’ ]
3 [ ’ 1 5 . 0 . 0 . 7 ’ ’2000 ’ ’ 1 9 2 . 1 6 8 . 1 . 2 ’ ’80 ’ ’TCP’ ’ True ’ ]
4 [ ’ 1 5 . 0 . 0 . 8 ’ ’2000 ’ ’ 1 9 2 . 1 6 8 . 1 . 2 ’ ’80 ’ ’TCP’ ’ True ’ ]

N Session Polycube DeChainy N Session Polycube DeChainy
256 446 1431 16384 7 57
512 228 1033 32768 4 30
1024 106 665 65536 2 14
2048 59 408 131072 1 8
4096 28 218 262144 4
8192 15 114 524288 2

Table A.1: Number of GETs made by Polycube and DeChainy with LUCID.

Listing A.14: Configure interfaces with ethtool
1 sudo e t h t o o l −L enp1s0f0 combined 1
2 sudo e t h t o o l −L enp1s0f1 combined 1

Listing A.15: Configure affinity
1 sudo . / s e t _ i r q _ a f f i n i t y . sh <core> enp1s0f0 enp1s0f1

Pay attention to which core the eBPF code fixes, as it may happen that for
optimization reasons the LUCID code is fixed on the same core as the eBPF code
and therefore the performance is lower. For completeness, in the tests carried out
with Polycube, the core value was different from 0, since it was noticed that LUCID
(maybe due to miniconda) was fixed on core 0.
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