
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Development of a real-time solution for
an interactive VR representation of large

star catalogues

Supervisors

Prof. Andrea SANNA

Candidate

Paolo GALLO

April, 2021

Abstract

This thesis takes place in the context of Virtual Reality and Data Visualization
techniques applied to large astronomical datasets. The goal of this work is to
improve and extend the already existing Astra Data Navigator application, built
with the Unity game engine, and make it capable of loading and displaying large
star catalogues in a realistic and real-time 3D environment.

The software was built in the VR laboratory of ALTEC - Aerospace Logistics
Technology Engineering Company - while interfacing with other European projects
such as NEANIAS and ESA’s Gaia mission, which is particularly relevant to this
work. The catalogue of celestial objects observed by the Gaia astrometric satellite
is the largest collection of stars available to date, counting over 1.8 billion entries;
being able to navigate and interact with this data in 3D would be extremely useful
for both scientific and educational purposes, but most VR tools are limited to a
much smaller object count and cannot be extended further.

On the data management side, the application (which has an integrated star
catalogue but also supports external data sources in the form of CSV files or SQL
databases) offers the choice between two different modes: the user can choose to
load all of the available data at startup and store it in the system memory, which
requires more resources and increased loading time but then provides a seamless
navigation of the 3D environment, or he can opt for a dynamic loading solution
(better suited for large catalogues), that only selects relevant data based on the
current observer position, saving a lot of resources but introducing additional
loading times that interrupt the navigation experience.

Processing and rendering such large amounts of objects in real-time can be a
difficult task, which was however solved by carefully managing the application’s
resources, choosing the right data structures, optimizing algorithms in order to take
advantage of the multiple cores in modern processors and exploiting the massive
parallelism provided by GPUs via programmable shaders. All the techniques
employed to overcome these challenges are described in depth in this work, along
with their implementation details and limitations, while also highlighting some of
the features that are made possible by these systems.

The results of performance analyses and user testing of the final product are
also presented in this study, showing how most of the project’s goals have been suc-
cessfully accomplished but also highlighting a few shortcomings of the implemented
solution, which could be overcome by further development.

i

Table of Contents

Introduction 1

1 State of the Art 5
1.1 Point clouds . 5

1.1.1 GAVS - Gaia Archive Visualization Service 6
1.1.2 Gaia 3D Starmap . 6

1.2 Planetarium software . 7
1.2.1 Stellarium . 8

1.3 Universe exploration in Virtual Reality 9
1.3.1 Gaia Sky . 10

1.4 Astra Data Navigator . 12
1.4.1 Large star catalogues in Astra Data Navigator 13

2 Technologies and Tools 14
2.1 Project requirements . 14
2.2 Unity . 15

2.2.1 Floating point accuracy . 16
2.2.2 Space Graphics Toolkit . 17

2.3 Star catalogues . 18
2.3.1 Gaia Archive . 19

2.4 Database systems . 20
2.5 Hardware . 20

2.5.1 Stereoscopic system . 21

3 Design and Development 22
3.1 Architecture . 22
3.2 Star catalogues . 22

3.2.1 Data format . 23
3.2.2 Parameters . 24
3.2.3 Internal catalogues . 25
3.2.4 External catalogues . 27

3.3 Configuration file . 28
3.4 Dataset loading . 29

3.4.1 Static loading . 30

ii

3.4.2 Dynamic loading . 30
3.4.3 AdnLoader . 31

3.5 Celestial objects management . 32
3.5.1 AdnCelestialMap . 32
3.5.2 AdnUniverseManager . 33
3.5.3 Selectable objects . 34

3.6 Star visuals . 35
3.6.1 Rendering stars . 35
3.6.2 3D star models . 38

3.7 Object pooling . 39
3.8 Multi-threading . 41
3.9 User Interface . 42
3.10 Stereoscopy . 43

4 Results and Analysis 45
4.1 Performance analysis . 45

4.1.1 Comparison with the previous version 45
4.1.2 Scalability of static and dynamic loaders 47

4.2 Issues . 48
4.3 Subjective evaluation tests . 50

5 Conclusions and Future Work 55

Appendix 57
A.1 UpdateNearbyStars function . 57
A.2 AdnStarfield component . 58
A.3 User survey . 61

Bibliography 66

iii

List of Figures

1 An example of data visualization in VR 2
2 NASA’s application to visualize the Earth’s magnetosphere in VR . 3

1.1 GAVS web interface . 7
1.2 Screenshot of the Gaia 3D Starmap application 7
1.3 Screenshot of Stellarium, a free planetarium software 8
1.4 An example scene captured in Celestia 10
1.5 Screenshot of the Space Engine application 10
1.6 The virtual universe of Gaia Sky 11

2.1 Screenshot of the Unity Editor . 16
2.2 Comparison between traditional navigation and the floating origin

technique . 17
2.3 Image of the Gaia astrometric satellite 19
2.4 ALTEC VR room . 21
2.5 ALTEC’s stereoscopic projector . 21

3.1 Simplified overview of Astra Data Navigator ’s execution flow 23
3.2 Comparison between text file catalogues and SQLite3 databases . . 24
3.3 Example of equatorial coordinates 26
3.4 Architecture diagram of all star loader scripts, inheriting from the

IAdnStarLoader interface, each handling a different data source type 27
3.5 UML class diagram of AdnStar and related entities 29
3.6 Flow chart of the AdnLoader.Start method 31
3.7 Example of the AdnCelestialMap data structure 33
3.8 Screenshot of star selectors and AdnFloatingWarpPin 35
3.9 Illustration of the quad generation process operated by AdnStarfield’s

vertex shader . 37
3.10 The 3D model of a star in ADN 39
3.11 Editor settings of the StarMesh object 39
3.12 Performance and GC allocations related to spawning and removing

stars, with and without object pooling 40
3.13 Comparison graph between single and multi-threaded performance . 41
3.14 Screenshot of Astra Data Navigator GUI, showing the InfoPanel,

LogPanel and SearchPanel elements 43

iv

3.15 XR Plug-in Management settings inside Unity 44

4.1 Performance comparison between the original application (left) and
the new version of ADN (right) . 46

4.2 Startup time (left) and memory usage (right) of Astra Data Navigator
when loading 1 million stars . 46

4.3 Time and memory usage analysis for Static and Dynamic loading
methods . 47

4.4 Average results for perceived workload, self-evaluation and sickness
in both tasks . 51

4.5 User evaluation of interface intuitiveness and system usability . . . 51
4.6 Evaluation of the perceived performance and realism of stars in ADN 52
4.7 Assessment of the number of visible stars in the universe, in both

Static and Dynamic mode . 53
4.8 User rating of Astra Data Navigator ’s startup time, with both loading

methods . 54
4.9 Subjective scores evaluating the speed of navigation in the 3D star

catalogue in each loading mode . 54

v

List of Tables

1.1 Comparison between VR astronomical data visualization tools . . . 12

3.1 Astra Data Navigator star catalogue parameters 25

vi

Acronyms

2D bi-dimensional.

3D three-dimensional.

ADN Astra Data Navigator.

API Application Programming Interface.

AR Augmented Reality.

CAVE Cave Automatic Virtual Environment.

CPU Central Processing Unit.

CSV Comma-separated values.

DB Database.

DBMS Database Management System.

DEC Declination.

ECS Entity Component System.

ESA European Space Agency.

FPS Frames Per Second.

GB Gigabyte.

GC Garbage Collector.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

ID Identifier.

vii

IPD Inter-pupillary distance.

IT Information Technology.

MB Megabyte.

RA Right Ascension.

RAM Random Access Memory.

SGT Space Graphics Toolkit.

SQL Structured Query Language.

UI User Interface.

UML Unified Modeling Language.

VR Virtual Reality.

XML Extensible Markup Language.

viii

Glossary

asymptotic complexity The growth of the execution time of an algorithm as
the input size (N) gets large.

billboard A 3D computer graphics sprite that is always facing the viewer.

database An organized collection of data, typically stored and accessed from a
computer system.

effective temperature The temperature of a black body that would emit the
same total amount of electromagnetic radiation, often used as an estimate of
a body’s surface temperature.

factory A creational pattern that deals with the problem of creating objects
without having to specify the exact class of the object that will be created.

framerate The frequency (rate) at which consecutive images called frames appear
on a display.

framework A universal, reusable software environment that provides particular
functionality to facilitate the development of software applications.

garbage collection A form of automatic memory management, where the garbage
collector attempts to reclaim memory occupied by objects that are no longer
in use by the program.

headset A support framework with attached electronic devices that is worn on
the head.

jitter High-frequency motion, which causes visual instability.

magnitude A measure of the brightness of an astronomical object as observed
from Earth.

mesh A collection of vertices, edges and faces that defines the shape of a polyhedral
object.

ix

overhead Combination of excess or indirect computation time, memory, band-
width, or other resources that are required to perform a specific task.

parallax The apparent shift of position of any nearby star against the background
of distant objects.

procedural generation A method of creating data algorithmically as opposed
to manually, typically through a combination of human-generated assets
and algorithms coupled with computer-generated randomness and processing
power.

proper motion The astrometric measure of the observed changes in the apparent
places of stars or other celestial objects in the sky, as seen from the center of
mass of the Solar System, compared to the abstract background of the more
distant stars.

query A command run on a database, to access or modify its content.

refresh rate The number of times per second that a raster-based display device
displays a new image.

rendering The process of generating a photorealistic or non-photorealistic image
from a 2D or 3D model by means of a computer program.

shader A type of computer program, running on a GPU, used to calculate rendering
effects in 3D scenes.

singleton A software design pattern that restricts the instantiation of a class to
one single instance.

spacecraft A vehicle or machine designed to fly in outer space.

texture A bitmap image applied to a surface in computer graphics.

twinkling Variations in apparent brightness, colour, or position of a distant
luminous object viewed through a medium.

virtual reality A simulated immersive experience that can be similar to or com-
pletely different from the real world.

x

Introduction

With large datasets comes the need for meaningful visual representations, that
allow users to see beyond the rows of a database and grasp the actual information
contained in such enormous volumes of data. This idea has been the starting point
for all Data Visualization techniques, which have become more and more relevant
since the advent of Big Data made it almost impossible for humans to extract
knowledge from large datasets using “traditional” techniques. Astronomy and
astrophysics, like all experimental sciences, are no strangers to this problem; in fact,
the high rate of data acquisition in observational astrophysics is often a driving
force in the development of innovative solutions for scientific data visualization [1].
Even beyond the research aspects, presenting this information to non-expert users
in a way that they can easily understand (e.g. for dissemination purposes) is a
difficult challenge in itself.

Virtual Reality (VR) technologies are, in this sense, extremely powerful tools
that can be used to craft real-time interactive applications for data exploration,
allowing astronomers to break down and understand large datasets. This is
possible by creating realistic 3D environments where users can interact with
visual representations of the data in otherwise impossible ways, offering different
perspectives on the observed phenomenon and endless new possibilities, such as
remote collaboration. At the same time, these immersive experiences (especially
when combined with peripherals like headsets or motion tracking hardware) are
a great opportunity to reach a large audience outside of the scientific community,
by creating game-like scenarios (or sandboxes) that can be used for educational
purposes and result in higher levels of engagement and often better retention.

Multiple research studies and real-world experiments conducted in recent years
can validate these points, for example:

• A 2014 paper presented during the IEEE International Conference on Big
Data [2] explored the possibilities offered by VR visualization of astronomical
data using the Unity 3D engine along other platforms, and found out that
scientists performed better in the immersive environment compared to their
“traditional” bi-dimensional tools.

• A study [3] published in 2016, sponsored by HTC Vive, compared learning
rates and test scores of two groups of high school students, one of which
used the Universe Sandbox VR application and the other received a more

1

Introduction

Figure 1: An example of data visualization in VR

“traditional” education. In the immediate post-test, the VR group scored an
average of 93%, whereas the control group scored an average of 73%. These
results persisted even after two weeks, when the average scores of the two
groups were 90% and 68%, respectively. Especially meaningful is a comment
collected from one of the student participants, who said:
“I feel like I’m in the middle of the universe. It’s so beautiful. I hope that
VR can be available in my school as soon as possible – I will be extremely
interested in the VR-based subjects.”

Virtual Reality in aerospace and astronomy
Historically, the concept of a “virtual reality” has been around since the beginning
of the 20th century [4]. However, it is only between 1970 and 1990 that, thanks to
the rapid growth of 3D computer graphics, these technologies started to become
real and actually usable, even though still in a rudimentary form; during these
years, the VR industry mainly provided devices for medical, flight simulation and
military training purposes. The aerospace field played a major role in the early
development of these technologies, with NASA1 developing the Virtual Interface
Environment Workstation (VIEW) - a head-mounted stereoscopic display system
equipped with motion-tracked gloves and suit, used for astronaut training - in the
late ’80s [5].

VR and AR technologies have therefore always been showing a lot of potential
for transforming many fields of research and engineering, but since the ’90s the
commercial focus of these devices shifted heavily towards the entertainment industry.

1NASA: agency responsible for USA’s space program and aerospace research

2

Introduction

It is only in recent years that these tools began to be used in a more widespread
way for scientific and engineering applications.

The intuitive, low-cost and low-risk immersive experiences that these technologies
provide are very useful in the aerospace field, where they are mostly used to help
with advanced personnel training (e.g. astronauts), spacecraft design, mission
planning, scientific data analysis and simulation. NASA is still at the forefront
of companies that research and employ these technologies for enhancing their
operations. Since 2017, a team of experts at Goddard Space Flight Center, led by
Thomas Grubb, has been exploring potential uses of VR and AR for the agency’s
own scientific and engineering needs; this research led to the development of several
immersive applications currently in use at NASA, including a VR visualization of
the Earth’s magnetosphere (figure 2) and a tool to virtually assemble a spacecraft
and validate some of its characteristics [6].

Figure 2: NASA’s application to visualize the Earth’s magnetosphere in VR

On the other hand, astronomers have been traditionally conducting their studies
using paper graphs, databases and other legacy techniques, which make it difficult
to have a comprehensive understanding of the observed phenomenon and spotting
patterns or correlations inside the analyzed data. According to NASA, “[...]
scientific discovery is one of the most compelling reason to develop an VR/AR
capability” (P. Hughes) and Grubb’s team has been dedicating to the creation of
such tools, with very promising results (see paragraph 1.1).

The important new discoveries made possible by these technologies, along with
the increasing amount of data available to astronomers, are pushing virtual reality
forward as a first-class astronomical research and data visualization tool.

3

Introduction

The thesis project
ALTEC - Aerospace Logistics Technology Engineering Company - is an italian excel-
lence providing logistics and engineering support to the International Space Station
and other space exploration projects, such as the Gaia mission. The company is
part of the DPAC (Data Processing and Analysis Consortium), responsible for
collecting and processing data to produce the Gaia star catalogue (see paragraph
2.3), which already counts over 1.5 billion observed objects.

In the context of the NEANIAS European project [7], which aims at developing
digital services to satisfy the evolving needs of the scientific community, ALTEC
intends to provide a realistic and interactive VR representation of astronomical
datasets, that could be used to visualize the Gaia catalogue for both research and
educational purposes.

This project’s goal is therefore to extend the capabilities of the already existing
Astra Data Navigator application, by developing a system able to load very large
star catalogues (made up of millions or even billions of objects) and represent them
in a 3D environment. The tool should also provide meaningful ways to explore
and interact with the available data, all of it while running in real-time on a single
workstation, using the Unity game engine.

The thesis is split into 5 chapters, whose contents are briefly described in the
following paragraphs.

In the first chapter, several existing solutions for star catalogues visualization
(including Astra Data Navigator in its original form) are analyzed and compared
with each other, focusing on the number of stars that they are able to display,
the fidelity of the representation, the types of interaction they provide (for both
scientific and educational purposes) and the data sources they support.

The second chapter will contain an overview of the project requirements, along
with a description of the major technologies and tools used throughout the devel-
opment of this thesis, including the Unity game engine and the star catalogues
themselves.

The third chapter of the thesis will focus entirely on the design process and the
development of the application, providing details about how new features have been
implemented and the optimization techniques chosen to overcome some technical
limitations.

Results of this work will be presented in the fourth section, followed by an
in-depth analysis of the major issues that were encountered during the development,
some of which still remain open, and how they impact the application. Performance
metrics will also be provided, highlighting both positive results and some of the
aforementioned limitations. Finally, this chapter will contain an analysis of user
feedback and the data that was collected through user tests.

The last chapter of the thesis will compare the final results of this work with
the original design goals, and will explore potential improvements and new features
that could be implemented in the future.

4

Chapter 1

State of the Art

As the amount of astronomical data available to the scientific community increases
and larger catalogues are assembled, the need of data visualization tools has lead to
the development of several solutions for representing and analyzing such information.
Among the numerous systems that were proposed and developed for solving the
visualization problem, the focus has been clearly shifting towards computer graphics
and virtual reality solutions. The large amounts of data that these applications
have to deal with, though, make the creation of such systems a difficult challenge
mostly due to technological limitations (in terms of memory, storage, bandwidth
and computing power requirements) that each application tried to overcome using
a few different approaches.

1.1 Point clouds

One increasingly common way of representing very large datasets is the use of point
clouds. A point cloud is a set of data points in space, each with its own set of X, Y
and Z coordinates, which can be easily used to encode and display three-dimensional
information; the point cloud can be 4D if color data for each point is also present.
This technique is mainly adopted in the field of 3D scanning and photogrammetry,
where it is used to encode very precise and fine-grained information about the shape
of objects and their external surfaces (usually captured with LIDAR scanners),
but it can also be applied to big data visualization and analysis thanks to its
compactness (only 3 or 4 values per-point, with ongoing efforts for point clouds
compression standards by the MPEG1 [8]), efficient processing techniques (using
machine learning or filtering algorithms) and the ease of rendering such points,
even in large amounts, on modern GPUs.

1MPEG: Moving Picture Experts Group, an alliance of working groups that sets standards for
media coding and transmission and file formats for various applications

5

State of the Art

The main drawbacks of this approach are the limited amount of information
that can be encoded in each point and the poor level of interaction with the
representation (often just restricted to scaling and rotating the dataset to observe
its spatial distribution).

Despite these limitations, point clouds have recently been employed for visual-
izing large star catalogues: in 2020, using a VR simulation (powered by NASA’s
PointCloudsVR application) that animated the speed and direction of 4 million
stars in the local Milky Way neighborhood, astronomers obtained a new perspective
on the stars’ motions, which helped them classify star groupings and gain a better
understanding of how the local stellar neighborhood formed [9].

1.1.1 GAVS - Gaia Archive Visualization Service

The Gaia Archive Visualization Service [10], available on the official Gaia Archive
website (see paragraph 2.3.1), is an interactive tool to visually explore and analyze
the huge catalogue of stars observed by the Gaia satellite since 2014. Through
the web interface, it is possible to navigate the dataset using 2D maps of the
galaxy, plot user-configurable graphs of star attributes and view a 3D point cloud
representation of (almost) the entire catalogue (figure 1.1).

This tool is of terrific value to any scientist interested in exploring this dataset,
since it provides almost unrestricted access to all the information collected by the
Gaia satellite in a visual and interactive way, but it is completely obscure to any
non-expert user. It does not provide any immersion, since most of the data is
visualized in a bi-dimensional form and the only 3D representation is a point cloud
with very limited interaction.

1.1.2 Gaia 3D Starmap

This web application [11], created by developer Charlie Hoey using JavaScript and
the WebGL API, provides a monochromatic point cloud representation (figure
1.2) of around 2 million stars taken from the first Gaia data release (DR1). Its
peculiarity resides in the peer-to-peer system used to distribute the dataset to
clients that are loading the application, which then share it to other users later on,
making it extremely scalable and independent from a central server.

Being a WebGL app with low memory and bandwidth requirements, it can be
run by any device connected to the internet, including smartphones, while also
supporting VR headsets through the WebVR API. As already discussed, though,
the interaction with the point cloud is very limited and only slightly improves
what is offered by the GAVS (which on the other hand is able to load much more
data points), heavily restricting its potential for both scientific and educational
purposes.

6

State of the Art

Figure 1.1: GAVS web interface Figure 1.2: Screenshot of the Gaia 3D
Starmap application

1.2 Planetarium software

Planetariums are theatres built primarily for presenting educational and entertaining
shows about astronomy and the night sky, or for training in celestial navigation
[12]. They feature a large dome-shaped projection screen where stars, planets and
other celestial objects are shown and made to move realistically as they would
appear from a point of view centered on the Earth (simulating their proper motion).
Traditionally, these systems employed special projectors made by combining optical
and electro-mechanical technologies (called “star balls”) to create an image of the
celestial scene on the planetarium dome. Over the last 20 years, an increasing
number of planetariums have switched to using digital systems that rely on specific
software to generate realistic images of the night sky and one or more digital
projectors to display them.

Digital planetariums have several advantages over “traditional” ones beyond
reduced costs: the data that is displayed can be changed dynamically at any point
in time and additional interactivity is allowed by the system, such as getting more
information about an object, zooming or changing the viewpoint in 3D space. These
virtual reality capabilities provide important educational benefits, because they
stimulate curiosity in the audience and convey an additional sense of depth that
would otherwise not be present.

Of course, such systems also have their limitations: the immersive experience
cannot be recreated outside of these large installations (e.g. by a single user with
a VR headset), but most importantly the viewpoint is typically restricted to the
Earth’s surface, which subtracts from the three-dimensional nature of the universe
and makes it inappropriate to use these software for scientific data visualization.

7

State of the Art

Figure 1.3: Screenshot of Stellarium, a free planetarium software

1.2.1 Stellarium

Stellarium [13] is an open-source planetarium software, which is able to render a
realistic projection of the night sky in real time. It is developed using OpenGL and
is available on Windows, Linux and macOS as well as all major mobile operating
systems and any web browser (figure 1.3).

The application works by simulating what would be seen (e.g. using a telescope)
from some point on Earth’s surface at any moment in time, showing a realistic
3D representation of the sky projected on a curved dome-shaped surface. In the
default configuration, the provided astronomical catalogues contain over 600,000
stars and 80,000 deep sky objects, but they can be easily expanded to more than
177 million stars and 1 million deep sky objects. Using a powerful zoom feature,
the user can explore the celestial dome (which is updated in real time) and select
any object to open a panel containing additional information about it. Sunrise and
sunsets, eclipses, constellations, comets and shooting stars as well as other effects
such as star twinkling are also simulated and visualized by this application.

Stellarium is mostly oriented towards educational and entertainment purposes,
whether used in a planetarium installation or by any field astronomy enthusiast
(the so called “backyard astronomers”). Even though it can display very large
catalogues and is extendable via plug-ins and scripts, it is not well suited for
scientific purposes such as astronomical research because of the viewpoint, which is
restricted on the Earth’s surface and prevents the user to observe the dataset from
different perspectives.

8

State of the Art

1.3 Universe exploration in Virtual Reality
Another common way of doing astronomical data visualization is to build real-time
interactive applications that display celestial objects in a fully three-dimensional
space and allow the user to navigate in the universe using a first-person perspective.
Instead of representing the data from a statistical point of view (such as with point
clouds) or from a static point of view (like a planetarium), all of these applications
focus heavily on the exploration side of the experience, placing the user in a realistic
3D environment where the look and - to some extent - the behaviour of celestial
bodies is being simulated, therefore providing an immersive and highly interactive
way of visualizing such datasets.

These applications are well suited for educational purposes as well as scientific
research, because they allow both professionals and non-expert users to find useful
information and extract some meaning from the presented data. Their main
limitation resides in the size of supported astronomical catalogues, which is often
lower compared to a point cloud representation, due to the higher computational
cost of rendering and updating such virtual universe.

Following this paragraph is an overview of the most advanced and successful
applications of this kind available to date, with special attention given to their
support of large star catalogues and the types of interaction offered to the user.

• Celestia [14] is a free and open source 3D astronomy software available for
all major desktop and mobile operating systems, created by Chris Laurel
and whose development is now carried on by the community. It displays
the full Hipparcos catalogue (118,000 stars, see paragraph 2.3) along with
many planets, satellites (both natural and artificial), asteroids and comets.
Orbits are computed using the VSOP87 planetary theory, without simulating
gravity, but the positions of both stars and galaxies are fixed. There are
several add-ons available for download, which can also expand the number of
celestial objects handled by the application.
Inside of this simulated universe (figure 1.4) the user is free to navigate at
different speeds, orbit around celestial bodies, track moving objects, zoom
the view in and out and move forward and backwards through time (up to 2
billion years).

• Space Engine [15] is a single-user virtual universe simulator, created by
the russian developer and astronomer Vladimir Romanyuk and available for
Windows PCs. It features over 130,000 real objects (including the Hipparcos
star catalogue and several exoplanets with their host stars) but also employs
scientifically-accurate procedural generation algorithms to create (according to
the author) trillions of pseudo-realistic objects and place them in the simulated
universe. Celestial bodies that form a planetary system move, stars rotate
around their axes and orbit each other in star systems, but stellar proper
motion is not simulated and galaxies do not rotate nor move.

9

State of the Art

Similarly to Celestia, the user can freely travel inside the large universe
collecting information about the selected objects (figure 1.5) and can also alter
the speed of time to observe different astronomical phenomena simulated by
the application.

• CosmoScout VR is a virtual universe simulator developed at the German
Aerospace Center (DLR); the project is open source [16] and can be built for
both Linux and Windows platforms. CosmoScout VR uses physically based
rendering and is capable of accurately compute the positions of celestial bodies
and spacecrafts using SPICE, it can also reproduce planetary surfaces using
terrain maps. It is exclusively based on real astronomical data and can display
the Hipparcos, Tycho and Tycho2 star catalogues (see paragraph 2.3) all in
real-time.
The application is subdivided into several plugins which are completely optional
and can be used to customize the feature set of the application to suit each
user’s needs. Some of these features include landing on planets and using
several terrain measurement tools, simulating and showing trajectories of
celestial bodies, interfacing with Web APIs, record high-quality videos and
so on. The application’s support for a wide variety of input and tracking
hardware, VR headsets and stereoscopic systems makes the user interactive
experience much more immersive.

Figure 1.4: An example scene captured
in Celestia

Figure 1.5: Screenshot of the Space
Engine application

1.3.1 Gaia Sky
One of the most advanced real-time 3D astronomy visualization software is Gaia
Sky [17], developed in the framework of ESA’s Gaia mission by the Astronomisches
Rechen-Institut (University of Heidelberg, Germany). It is free and open source, it
runs on Windows, Linux and macOS and supports a wide variety of VR headsets
and stereoscopic devices. The software is written in Java, using OpenGL as its
graphics API and GLSL as the language for writing shaders.

10

State of the Art

The biggest technical achievement of this application is being able to load and
display a great portion of the Gaia catalogue (up to more than 680 million stars)
along with the Solar System and several other astronomical catalogues for asteroids,
exoplanets, galaxies and nebulae. There are plenty pre-packaged datasets available
for download from inside the application itself, which can be expanded by the user
using standard formats such as VOTable, FITS and CSV.

The user is free to explore this large and complex virtual universe (figure
1.6) choosing between a “focus” mode (where the camera is always locked to the
selected celestial object), a free camera mode and the option of following the
point of view of the Gaia satellite. The navigation of the universe is completely
seamless and accompanied by many features and tools for data visualization, such
as displaying the orbit of all Solar System objects and motion vectors for stars,
showing constellation names and their shape, highlighting star clusters, applying
real-time filters to the data and visualizing phenomenons like relativistic aberration
and gravitational wave effects [18]. As with the other applications of this kind, Gaia
Sky also simulates the passing of time by moving planets, satellites and asteroids
along their orbits and giving the user control over the speed of the simulation.

Figure 1.6: The virtual universe of Gaia Sky

Table 1.1 draws a comparison between star catalogues and VR support of Gaia
Sky and all previously mentioned applications, which represent the state of the art
of astronomical data visualization in Virtual Reality.

11

State of the Art

Application Supported
star catalogues

Expandable
dataset

Navigation
options VR support

Gaia 3D Starmap Gaia DR1 subset
(2M objects) No Rotate point cloud,

zoom in/out WebVR

Stellarium Up to 177M stars Yes
(with plug-ins) Powerful zoom Planetarium dome projection,

spheric mirror projection

Celestia Hipparcos Yes
(with add-ons)

Point-and-goto,
exponential zoom,

spaceflight
Specialized CAVE ports

Space Engine
Hipparcos

and procedural
generation

No
Click-and-go,

exponential zoom,
spaceflight

SteamVR,
Windows Mixed Reality

CosmoScout VR Hipparcos,
Tycho and Tycho2 No Free movement,

Solar System map
VR headsets, stereo systems,
tracking hardware, CAVEs

Gaia Sky Gaia EDR3
(up to 680M stars)

Yes
(VOTable, FITS,
CSV and others)

Select-and-goto,
free movement,

spaceflight

VR headsets,
3DTV, stereoscopic and
multi-projector systems

Table 1.1: Comparison between VR astronomical data visualization tools

1.4 Astra Data Navigator
Astra Data Navigator (ADN) is a stereoscopic and interactive 3D application
developed by ALTEC. It is able to visualize many celestial objects in the Solar
System (accurately positioned in space according to their real position at 00:00:00
of 20 June 2019) along with a large number of stars contained in the Hipparcos
catalogue (around 113,000), which is loaded from a text file at application startup.
All of these objects are static, but additional work is being carried on to introduce
the concept of time in the simulation, updating planets’ and satellites’ positions
over time and moving them along their orbits. Stars are rendered using a static
particle system, except for those that are closest to the camera, which are instead
represented using shaded 3D models.

ADN provides two main ways of navigating the virtual universe:

• Warp: the user can pick the celestial object of interest by either selecting it
in the scene or using the search feature to find it by name; then, with the click
of a button, a “warping” animation will move the camera near the position of
the target object.

• Free movement: the camera, which by default is locked to the selected
object, can be unlocked and controlled using W/A/S/D or the arrow keys. In
this mode, the user is free to move at any speed (adjustable using the mouse
scroll-wheel), albeit performance is sub-optimal when traveling too fast.

12

State of the Art

1.4.1 Large star catalogues in Astra Data Navigator
The goal with this new version of Astra Data Navigator was to provide a VR
application capable of visualizing large astronomical datasets (in the order of
several millions of stars) that are typically represented using point clouds, but with
the interactivity and ease of navigation that only VR universe exploration tools
can provide. The user should be able to look around and move freely between
any entity in the scene, gathering additional information about the objects by
interacting with them and observing each one as a realistic 3D model.

In the most recent version of ADN , the baseline dataset loaded by the application
is a pre-computed subset (see paragraph 3.2.3) of the Tycho2 catalogue, containing
around 2.5 million of the brightest stars in our galaxy. Instead of relying on text
files, the star catalogue is now stored in the form of a SQLite database. The user
also has the ability of extending the application dataset by connecting it to an
external data source, such as another database or a formatted text file (CSV), from
which more stars will be loaded.

Another new feature added to Astra Data Navigator is a configuration file, which
can be edited by the user (according to the provided documentation) to customize
the application behaviour and dataset loading. For example, star catalogues can be
handled using two methods: a static loader, which reads all of the available data at
startup (allowing for seamless movement in the universe, without further loading),
or a more dynamic approach which loads new stars progressively as the observer
moves through the scene. In any case, the maximum amount of stars that can be
active at once is capped at a value of 5 million for performance reasons. Using
the dynamic loading method it would technically be possible to use the full Gaia
catalogue with ADN, but loading times would be extremely long and therefore
impractical.

The data available for each star has also been updated to the latest data
release of the Gaia catalogue (EDR3) and now includes the source identifier along
with cross-matching IDs, X/Y/Z positions of the star, its radius and the effective
temperature measured by the satellite. For a small subset of stars, the application
now has additional information such as their proper name and the name of their
constellations. All available data is shown to the user via an InfoPanel every time
that an object is selected.

In order to improve the visual fidelity of the 3D environment, the rendering
quality of both far-away and close-up stars has been improved using shaders and
other effects based on some physical parameters (such as the temperature, which is
used to determine the surface color of each star).

Astra Data Navigator is designed to work on desktop operating systems like
Windows and macOS, as well as web platforms such as WebGL. It already supports
active stereoscopic projectors, while a version offering integration with VR headsets
is currently work-in-progress.

13

Chapter 2

Technologies and Tools

2.1 Project requirements
Virtual Reality applications are complex software systems whose developers often
need to solve many different architectural or technological problems in order to
achieve the final result and fulfill all project requirements; this is true for VR
applications targeting the entertainment world as well as those developed with
a scientific purpose, such as this project. Following is an overview of the main
requirements and goals of this work on the Astra Data Navigator application.

• Scalability to large datasets: the most up-to-date star catalogues contain
information for up to millions or even billions of celestial objects; being a
data visualization software, ADN should be able to load and represent large
datasets with reasonable performance, while fitting into the resource limits of
the target hardware (system memory and processing power).

• User configuration and extensibility: the goal of Astra Data Navigator
is to provide the user with a 3D representation of astronomical datasets and
large star catalogues, where there often isn’t a one-size-fits-all solution; for
this reason, the user should be able to decide which data has to be loaded by
the application, extending the baseline catalogues with additional data sources
and configuring several parameters of the program’s behaviour to better suit
his own needs.

• Display star catalogues information: interactivity is a key advantage of
virtual reality representations, because it allows users to not only see the data
in a 3D environment but also gain additional information about it through
actions performed in the virtual world. This means displaying the parameters
used to represent the object itself (such as position and size) as well as
additional information such as catalogue IDs, common names, constellations
and anything else that can be read from astronomical catalogues.

14

Technologies and Tools

• Smooth and intuitive navigation: with such a large universe at his dis-
posal, the user should be provided with ways to conveniently explore all of the
available data. In this sense, the application must support several navigation
methods which may fit different usage scenarios but should all be equally
effective, while the Graphical User Interface (GUI) should not get in the way
of such exploration but instead facilitate it. An additional goal, considering
the large amount of data handled by the application, would be to have the
loading process interfere as little as possible with the navigation, in order to
not ruin the user experience.

• Graphical fidelity of the representation: when creating a virtual repre-
sentation of real-world data, the realism of the 3D environment and its level of
visual detail are key ingredients for achieving a truly immersive experience for
all kinds of users. In this scenario, the graphical representation of celestial ob-
jects can also be used to show relevant attributes of the underlying data, such
as the size, temperature and luminosity of stars. The 3D models, effects and
rendering techniques used by the application should therefore be as accurate
and realistic as possible, without compromising its performance profile.

• Stereoscopy support: even though VR applications can still be used on
traditional flat screens, the experience and the level of immersion are greatly
enhanced by dedicated hardware. In this case, the application has been
designed to work in ALTEC’s VR laboratory, which is a single-screen CAVE
equipped with an active stereoscopic projector, and therefore it must take
advantage of this more immersive view mode.

Since some of these problems are common and not unique to Astra Data Navi-
gator, there are many tools and technologies already available on the market (or
in the open source community) that provide powerful frameworks and well-tested
solutions to help overcome these challenges without having to create everything
from scratch. For this reason, several existing software packages and tools came
into play during the development of this application.

2.2 Unity
Unity [19] is a cross-platform game engine (figure 2.1) that can be used to create
2D, 3D, Virtual Reality and Augmented Reality applications such as games, sim-
ulations and other experiences. It integrates several tools and libraries to make
the development of said applications easier, and provides support for deploying
the final product to over 25 different platforms. The engine itself has been written
using the C++ programming language, but the development of applications using
Unity is done through C# scripting.

The Unity game engine has been chosen for the development of Astra Data
Navigator because it provides a simple and flexible all-in-one framework for creating

15

Technologies and Tools

complex VR interactive experiences. An additional advantage of using Unity is
being able to access the Asset Store, where members of the community can publish
their own packages (free or paid) which implement additional features or contain
pre-made content that can be easily reused. Compared to creating everything from
the ground up (e.g. using C++ with the OpenGL graphics API [20]) this approach
greatly reduces the amount of complexity and time to get to the end result, as well
as simplifying the maintenance of the application and its portability to multiple
platforms; additionally, Unity provides out-of-the-box support for the stereoscopic
3D devices required for this project.

Of course, using a general purpose game engine like Unity also has some draw-
backs, which are mainly found in some limitations of the API and the performance
overhead caused by the lack of full control over the application runtime. An expert
developer, given enough time, could probably get better results by building custom
tools and technologies tailored to suit the application’s needs, but more often than
not this small sacrifice of performance and control is worth it compared to the
large gains in project complexity and reduced development time.

Figure 2.1: Screenshot of the Unity Editor

2.2.1 Floating point accuracy
One area where general-purpose game engines are usually lacking, when adopted
to simulate large astronomical environments, is the precision of numerical data
types used for rendering the scene. Unity, as many other game engines, uses
single-precision (32 bit) float values to store the position, rotation and scale of
each object; while this is fine for a typical application, large virtual worlds suffer
from the accuracy degradation happening as objects get further away from the
origin, causing visual artifacts (such as spatial jitter) and simulation inaccuracies.

16

Technologies and Tools

Traditional approaches to overcome this issue fall into three main classes [21]:

• On-the-fly shifting of coordinates: using this approach requires that,
before executing any meaningful calculation or rendering pass, the viewpoint
and all objects are shifted to sit near the origin (to have small, accurate
coordinates) and then restored to their previous positions.

• Multiple local coordinate systems: virtual worlds can also be subdivided
into smaller regions, and objects’ positions could be stored relative to the
origin of their local coordinate system, limiting the accuracy degradation
by keeping regions small enough. This technique requires additional data
structures and management to handle the movement between different regions.

• Floating Origin: using this technique, instead of allowing the observer to
move around the world, inverse transformations are applied to the entire
scene while the camera is kept fixed at the origin (see figure 2.2). This way,
objects closer to the observer (and therefore most relevant) will always have
coordinates near the origin of the universe and small enough to not cause any
visual artifact. This approach has an additional performance cost, especially
for complex scenes, since transformations have to be applied to all of the
objects instead of just the camera.

In Astra Data Navigator , this problem has been solved by integrating the Space
Graphics Toolkit asset, described in more detail in section 2.2.2.

Figure 2.2: Comparison between traditional navigation and the floating origin
technique

2.2.2 Space Graphics Toolkit
The Space Graphics Toolkit (SGT) is an asset developed by Carlos Wilkes, available
for purchase on the Unity Asset Store [22]. It provides a vast collection of pre-made

17

Technologies and Tools

(but customizable) scripts and graphical effects which are designed to simplify the
development of space games and achieve realistic visuals.

The solution to the floating point precision problem adopted by SGT is an hybrid
between the “traditional” floating origin technique and multiple local coordinate
systems. Every GameObject in the scene with a SgtFloatingObject component
attached to it will be moved as part of the floating world, while the camera is
always kept near the origin (as an optimization, the shifting happens only when
the observer has moved more than 100 units away from the origin) but, in addition
to that, the universe is virtually split into cubic cells (each one being 5× 107 units
large). The position of each object is stored in a SgtPosition component using
three 64 bit integers to identify the cell and three floating point values to position
the object inside of it. According to the author, combining these two methods
together allows to represent a Unity scene as large as the observable universe,
without incurring in any noticeable precision issue.

2.3 Star catalogues
There are several astronomical catalogues containing information about stars, which
have been produced for different purposes over the years [23] and are all publicly
available to consult and download. Since listing every single star in the sky is an
almost impossible goal, the so called “full-sky” catalogues attempt to record every
star brighter than a given magnitude.

The star catalogues which are more relevant to this work are described in the
following list.

• Hipparcos (HIP) [24]: compiled with the data collected by European Space
Agency (ESA)’s astrometric satellite Hipparcos, this catalogue was published in
1997 and contains high-precision measurements of brightness, proper motions,
parallaxes and spectral information of 118,218 stars.

• Tycho-2 [25]: an astronomical catalogue containing positions, proper mo-
tions and photometric data, derived from the observations collected by the
Hipparcos satellite, for more than 2.5 million of the brightest stars in our
galaxy. The reason why this catalogue is much larger than HIP is because
the former only contains data that was measured with an accuracy greater
than 2 milliarcseconds1, whereas the overall error for all stars in Tycho-2 is 60
milliarcseconds.

• Gaia: the Gaia satellite (figure 2.3) was launched in 2013 as a follow-up to
the Hipparcos mission and aims to construct the largest and most precise 3D
space catalogue ever made; the full dataset will be published in 2022, but
available data is being released in stages that contain increasing amounts

11 arcsecond = 1
3600 of a degree

18

Technologies and Tools

of information. Currently, the latest Gaia early data release (EDR3 [26],
published December 2020) contains positions and brightnesses for 1.8 billion
stars, including distances and proper motions for more than 1.3 billion stars.

Figure 2.3: Image of the Gaia astrometric satellite

2.3.1 Gaia Archive
The Gaia Archive [27] is the official ESA web portal to the entire Gaia catalogue.
It contains up-to-date information about the Gaia mission and provides ways to
download the data files, run basic searches or advanced queries on the database
(using the Astronomical Data Query Language, ADQL) as well as having a detailed
documentation about every aspect of the dataset and its meaning. In addition to
the various Gaia data releases, the archive also contains several external catalogues
such as HIP, Tycho-2 and many others, while providing cross-matching tables which
can be used to correlate entries of multiple catalogues that refer to the same star.

Since the amount of data in the Gaia Archive is huge, manual queries might not
always be the best way of accessing the star catalogue information. For this reason,
ESA provides a Python Astroquery package, called astroquery.gaia, to allow
programmatic access to the Gaia Archive. Astroquery is a set of tools for querying
astronomical web forms and databases, developed as part of the Astropy project
[28], which aims at creating an ecosystem of interoperable astronomy packages for
Python. In the context of this work, the astroquery.gaia package was used to
query and download chunks of the Gaia catalogue and insert them in the local
database used by Astra Data Navigator , after applying some pre-processing (for
more details, see paragraph 3.2.3).

19

Technologies and Tools

2.4 Database systems

Relational databases have multiple advantages over the naïve approach of storing a
large dataset in a text file that has to be parsed at application startup, because they
allow for a much more structured and efficient access to the data (or just portions
of it) using Structured Query Language (SQL). Additionally, writing information
that is mostly numeric in the form of text often results in larger file size and slower
parsing performance (see paragraph 3.2.1).

In order to store and access large star catalogues in Astra Data Navigator , more
than one Database Management System (DBMS) has been used throughout the
development of the application.

SQLite3

SQLite [29] is a publicly available software library, written using the C programming
language, that implements a full-featured SQL DBMS. What makes it unique,
compared to other DBMS software, is the fact that it’s not a standalone process
but a self-contained library which has to be built into the application that uses it,
making it extremely lightweight and easy to run on any platform (it is, in fact, the
most widely deployed and used database engine in the world).

SQLite3 has been integrated into ADN through the System.Data.SQLite library
[30] for C# and is used to store and access the baseline star catalogue, which is
included with any release of the application.

PostgreSQL

PostgreSQL [31] is a powerful open source and cross-platform object-relational
database system. As most DBMS software, it is run as a separate process (typically
on a dedicated server) that applications can connect to for accessing its data.
Compared to SQLite, it is much better suited to handle very large amounts of data
since it doesn’t rely on a single file.

In the context of this project, PostgreSQL was used to set up an external data
source (larger than the baseline catalogue) from which Astra Data Navigator could
load additional star information.

2.5 Hardware

The application is designed to run on a Dell Precision Tower 7810 machine, which
has two Intel Xeon E5-2650 v3 processors (each with 10 cores and a frequency of
2.30 GHz), 32GB of RAM and a NVIDIA Quadro K5200 graphics card.

20

Technologies and Tools

2.5.1 Stereoscopic system
To achieve the stereoscopic 3D effect (also called “3D view”) each of the viewer’s
eyes must receive a slightly different image accounting for the distance between the
pupils (IPD); the two views are then merged together by the human brain, creating
the illusion of a three-dimensional image. There are many technologies that can
make this happen, but they can all be grouped into two categories [32]:

• Passive systems rely on the ability of the screen (or projector) to display two
images at once in such way that they can be easily separated, for example
using different light polarization or chromatically opposite colors (typically
red and cyan). Through the use of passive filters such as polarized glasses or
colored lenses, viewers can send the appropriate input to each eye and perceive
the stereoscopic effect.

• Active stereoscopy, instead, makes use of glasses with electronics that interact
with the display. In this scenario, the screen rapidly alternates between
presenting an image for the left eye and one for the right eye, while the
viewer’s glasses (which need to be synchronized with the display) employ a
shutter system to let each eye only see the appropriate images; this is usually
achieved by using liquid crystal shutters on the lenses, that become dark when
some voltage is applied and can be made transparent again when the next
frame is displayed on the screen.

ALTEC’s VR laboratory (figure 2.4) is equipped with a Barco RLM-W14 active
stereoscopic projector (figure 2.5), which operates at a resolution of 1920x1200 pixels
and a refresh rate of 120Hz; the stereoscopic glasses in use are synchronized with
the projector through an infrared signal. Due to the nature of active stereoscopy,
the overall perceived (per-eye) image refresh is halved with respect to the screen’s
refresh rate, and therefore in this case will be 60Hz.

Figure 2.4: ALTEC VR room Figure 2.5: ALTEC’s
stereoscopic projector

21

Chapter 3

Design and Development

3.1 Architecture

The main goal of this work, as already mentioned, was to extend the capabilities of
an existing VR application to support the visualization of large star catalogues.
A choice that was made since the beginning of development has been to keep the
overall system architecture as close as possible to the existing one and only make
the changes required to add new features or improve performance. By doing so, any
user that was familiar with the previous version of the application would still be
able to use it without too much effort, because of the similar user experience and
GUI, while also taking advantage of the new features and improved functionality.

The Unity project of Astra Data Navigator consists of a single scene, which
contains a few elements that take care of initializing the application state at startup
and populate the scene with instances of the celestial objects loaded from catalogues.
Some of these components are also responsible for updating the virtual universe at
runtime, as a consequence of actions performed by the user inside the simulation.
The diagram in figure 3.1 represents a simplified overview of the application’s flow
of execution, from startup to handling user interaction.

3.2 Star catalogues

Before the development of any new or improved feature began, an initial analysis
was conducted in order to plan how ADN could support large datasets and satisfy
the requirements described in paragraph 2.1. The main points addressed by this
analysis were the following:

• Choice of a data source format: the encoding of the catalogue, as well as
its storage format, could have a major impact on the resource requirements of
the application (e.g. storage space) and its cross-platform compatibility.

22

Design and Development

Figure 3.1: Simplified overview of Astra Data Navigator ’s execution flow

• Selection of star parameters: increasing the set of catalogue parameters
used by ADN means that users will have more data at their disposal, but will
also impact the amount of resources used by the application.

• Planning support for user-defined catalogues: one of the project re-
quirements is to make the astronomical dataset easily expandable by the
user. In order for this to be possible, Astra Data Navigator must provide a
standard way of creating compatible star catalogues and connect them to the
application so that they can be used.

3.2.1 Data format
The previous version of ADN used regular text files to store the astronomical
catalogues loaded by the application, which could then be easily serialized as a
Unity TextAsset resource and used from the code without having to access any
external file. This solution worked fine for the Hipparcos catalogue previously
in use, but had to be reconsidered when aiming at loading datasets with several
million of entries.

Text files are not ideal for storing large amounts of numeric data, because the
ASCII encoding does not provide an efficient representation of numbers with many
digits, thus increasing the overall file size. Additionally, these values require an
extra conversion from their literal representation (C# string) to the appropriate
numeric data type (int, float or double), making the loading process slower.

A database, on the other hand, offers a more standardized and flexible way of
storing large amounts of information and should be much more capable of efficiently
handling different data types (text, numeric, binary, etc...). Another fundamental

23

Design and Development

feature of database systems is the ability of randomly accessing information using
SQL queries, a powerful tool for extracting a subset of the available data that
matches some conditions, instead of having to sequentially read the entire file
looking for the required entries.

The original solution was compared to a SQLite3 DB using a Python script that
generated catalogues with a size between 10.000 and 1,5 million of randomized
entries, in both *.txt and *.db format, which were then loaded by Astra Data
Navigator while measuring the startup time (from code, using C# Stopwatch class).
Results of this test (figure 3.2) show a 33% reduction in file size and roughly double
the speed when loading the same dataset from a database rather than using a text
file. Following this analysis, SQLite3 has been adopted as the main star catalogue
format.

Figure 3.2: Comparison between text file catalogues and SQLite3 databases

3.2.2 Parameters

Typical star catalogues contain tens or even hundreds of astrometric and photomet-
ric parameters measured by the satellite for each observed celestial object. Many
of these values are useful for astronomers or contain metadata about the catalogue
itself (e.g. measurement errors), but do not translate to any meaningful property
for a 3D representation of stars. The attributes chosen to represent a star in the
application dataset must be carefully selected because, even though each one can
be stored as a double (8 bytes), adding a couple of parameters may increase the
storage and memory footprint of the application of a few hundred MBs (considering
millions of stars in the catalogues).

For Astra Data Navigator , the set of required parameters has been reduced
to those which are essential for a proper 3D visualization, while other fields can
provide additional information to the user but are completely optional and not
strictly required by the application (see table 3.1).

24

Design and Development

Parameter Required Type Description

SOURCE_ID Yes String Alphanumeric identifier of the star,
must be unique inside the catalogue

X/Y/Z Yes double Star position according to the J2000
reference frame, in parsec (pc)

TEMP_EFF Yes float Effective temperature, in Kelvin (K)

RADIUS Yes float Radius, in Solar Radius units (RSUN)

PROPER_NAME No String Common name of the star (or NULL)

CONSTELLATION No String Name of the constellation which
this star is part of (or NULL)

HIPPARCOS_ID No int Unique identifier of the star
in the HIP catalogue (or NULL)

TYCHO_ID No String Unique identifier of the star in
the Tycho-2 catalogue (or NULL)

Table 3.1: Astra Data Navigator star catalogue parameters

3.2.3 Internal catalogues
While offering to users the option of loading custom datasets, ADN also includes a
baseline star catalogue which is always loaded by the application and provides a
starting point for populating the virtual universe with stars.

This database contains the vast majority of Tycho-2’s entries, excluding stars
with negative parallax measurements (removed because it wasn’t clear how it should
be handled when generating X/Y/Z coordinates), for a total of 2.441.300 objects.

Instead of taking parameters from the Tycho-2 catalogue, which is over 20
years old, all the information for these stars has been extracted from the latest
Gaia data releases (DR2 and EDR3) using cross-matching tables and identifiers.
This whole process has been automated through a Python script which uses the
astroquery package to run a query on the Gaia Archive, executing a JOIN on
the source_id attribute between the gaiadr2.gaia_source, gaiaedr3.gaia_source
and gaiaedr3.tycho2tdsc_merge_neighbour tables, selecting all stars with positive
parallax and then downloading the results. Additional pre-processing steps were
required to prepare the data for the application catalogue:

1. Stellar positions are represented using equatorial coordinates (figure 3.3):
Right Ascension (RA), Declination (DEC) and distance (which can be ob-
tained from the parallax measurement). These are transformed to cartesian

25

Design and Development

coordinates using astropy’s SkyCoord function to convert those values into
the galactocentric reference frame and then applying a simple offset to the
result.

Figure 3.3: Example of equatorial coordinates

2. Some of the stars in the catalogue might have missing values for some of
the parameters that are required by the application. In that case, the script
provides a default value for those fields, which is taken from the corresponding
parameter of the Sun.

3. Using a separate text-file catalogue which contains proper names and constel-
lation data for over 300 stars in HIP, the script is also able to compile those
fields for the most well-known objects in the dataset.

After performing all these operations, the script proceeds to insert the data
into a SQLite3 database file called adn_base.db, which is loaded at startup by the
AdnStarDefaultLoader script.

A secondary catalogue, containing similar information (excluding the cross-
matching IDs) but only for HIP stars, is also built using this method but written
to a text file instead. This is done to provide a fallback for those scenarios where,
due to some platform restrictions (e.g. on WebGL) or because of some error, the
adn_base.db file might not be accessible. In those cases ADN will run with a
reduced dataset loaded by the AdnStarHipparcosLoader script, because text files
can be serialized as a TextAsset and therefore are always available to the application
thanks to Unity’s resource system.

26

Design and Development

3.2.4 External catalogues

Additional dataset support in Astra Data Navigator is implemented through two
loader scripts and the configuration file (paragraph 3.3). By editing config.xml,
the user can specify the external data source type and provide the parameters for
connecting to it at application startup.

The provided catalogue must contain all the required star attributes and can be
in one of the following formats:

• SQL database: using Microsoft’s ADO.NET framework [33] and the Ad-
nDatabaseAdapter factory class, the application is compatible with multiple
database providers (currently SQLite, PostgreSQL and Oracle). This is com-
pletely transparent to the AdnStarDatabaseLoader script, which is in charge
of validating and loading data from the provided source using either the static
or dynamic method (see paragraph 3.4).

• Text file (CSV): support for text files is provided because, while not being
optimal for loading large amounts of data, it is a much easier format to
produce (even by hand) and could still perform well for small or medium sized
catalogues. The script which takes care of validating and loading the provided
file is AdnStarFileLoader, but it only supports the static loading option.

Figure 3.4: Architecture diagram of all star loader scripts, inheriting from the
IAdnStarLoader interface, each handling a different data source type

27

Design and Development

3.3 Configuration file
As already mentioned, in Astra Data Navigator the user has control over a few
aspects of the application’s behaviour. This customization system is implemented
through the use of a configuration file (config.xml, located in the the same
directory as the executable) and the AdnSettingsManager script.

The choice of XML for the config file is mainly due to the human-friendliness
nature of this format, which makes it easily readable and editable even by non-
expert users, and its native support by the C# language (through the System.Xml
library). File size and parsing performance are not a concern in this case, since
config.xml will always contain a very limited amount of data.

The file is subdivided in a few top-level sections (called “nodes” by the XML
standard), each one containing some user-configurable settings:

• Execution: used to specify the application’s execution mode, which can be
one of [PC, WebGL, HeadsetVR]

• Revolution: contains a few settings related to revolution motion simulation

• StarLoader: allows to customize the way Astra Data Navigator loads the
provided star catalogues

– Method: specifies which loading method will be used, available options
are [Static, Dynamic] (see paragraph 3.4 for more details)

– DataSource: type of the additional dataset that will be loaded by the
application, supported values are [None, File, SQLite, PostgreSQL, Oracle]

– Params: required for connecting to the external data source, it may be
a file path or a database connection string

– StarPrefix: this string will be combined with the SOURCE_ID to create
the name of each star loaded from the user catalogue

– ValueToKm: conversion factor from the dataset’s length unit (default:
parsec) to Km

• Simulation: general options regarding the universe simulation (such as the
start date/time)

• Logger: this section contains a few settings to customize the event logging
behaviour of the application

The AdnSettingsManager script is responsible for parsing the config.xml file
at startup and loading settings that will be used by other scripts to perform their
operations. This is ensured by adding the [DefaultExecutionOrder(-1000)]
directive at the top of the file, which tells Unity to run this code before anything
else in the project.

28

Design and Development

Inside its Awake function, the script opens the configuration file by creating
an XmlDocument object with its path and then reads all the XML nodes using
the SelectSingleNode method. All settings are initialized using values found in
config.xml and then stored as public static variables, accessible from any part
of the code. In case an error happens while parsing the options file, ADN will fall
back to a set of default “safe” parameters after writing a warning message to the
application log stream.

3.4 Dataset loading

In the application code, each star is represented by an AdnStar instance which
holds all the available data about the object. This entity is part of a hierarchy of
classes which derive from the common AdnCelestialObject base (figure 3.5).

Figure 3.5: UML class diagram of AdnStar and related entities

Taking into account the size of all member fields, as well as the additional
memory overhead introduced by the C# runtime for all reference types, each
AdnStar object is estimated to be atleast 140 bytes large. This consideration, along
with the fact that the execution time of a few algorithms scales linearly with the
number of AdnStar entities, led to the introduction of a hard limit to the maximum
amount of active stars in the application, set at 5 million. Loader scripts check
how many objects are present in the virtual universe and stop loading new stars if
the cap has been reached, writing a log message to warn the user about the event.

As it was briefly mentioned in section 3.3, the user is given control over the
technique used by the application to load data from the available catalogues. Two
methods are offered - Static and Dynamic - providing different trade-offs between
loading times, navigation speed and system resource usage.

29

Design and Development

3.4.1 Static loading
The static method represents the most “traditional” and simple way of loading
data from star catalogues. Using this option, loader scripts will only call the
Load method once when the application is started and will proceed to read all the
available entries from the provided data source (e.g. using a SELECT * statement
without any WHERE clause), constructing a new AdnStar object for each one until
the end of the catalogue or the limit on the number of stars is reached.

Using this solution means that, after a longer loading time at application startup,
the navigation inside the virtual universe is a completely seamless experience. The
main limitations of this mode are found in the increased resource usage (mostly
RAM) and the inability of fully representing star catalogues of a (combined) size
larger than 5 million objects. In all those cases where the dataset size does not
exceed the maximum supported value, this method should be preferred over the
alternative as long as the target system has the required resources (1.5 GBs of
available memory).

3.4.2 Dynamic loading
When handling very large star catalogues, the static loading option is not a feasible
solution for the reasons already discussed. This alternative method approaches the
problem from a different perspective: it is based on the observation that, from a
given position in the universe, only a minor portion of stars can actually be seen
“by naked eye” and therefore not all data needs to be in memory at once.

When the application operates in dynamic mode, it periodically searches in
the available catalogue to determine which objects are actually relevant for that
viewpoint and loads them, resulting in a much smaller working set.

The most naïve way of determining star visibility would be to check the distance
of each object from the observer and load all those that fall inside a pre-determined
range. Using proximity as the only metric, though, results in much of the loaded
data not being visible and the universe looking extremely empty.

The correct approach would be to consider the magnitude of each object but,
since that information is not present in the application’s internal catalogues, the
visibility of stars is estimated based on their radius and their distance from the
observer. The following query is used to select all stars in the catalogue which are
considered “visible” from the current observer position:

SELECT source_id, x, y, z, temp_eff, radius
FROM stars
WHERE radius > 0.032 * SQRT((@posX - x)*(@posX - x)

+ (@posY - y)*(@posY - y)
+ (@posZ - z)*(@posZ - z))

where @posX, @posY and @posZ are placeholders that get substituted with the
observer position values (in parsec) by the DbCommand.Parameters.Add function.

30

Design and Development

To avoid accumulating too many objects in memory, those that are no longer
relevant should also be removed from the working set. For each entry selected
by the dynamic loading query, the script looks up the object ID to check if it’s
already active in the scene and constructs a new AdnStar only when needed, while
marking existing objects as “keep-alive”. A cleanup pass is run after the loading is
completed, to remove all stars that are no longer visible and free precious system
resources.

The dynamic loading approach is still limited to a maximum of 5 million active
stars, but it should rarely (if ever) hit it. The main advantages of this mode reside in
faster startup time, reduced memory usage and scalability to much larger catalogues
beyond 5M objects. The downside is that the application will freeze (after showing
a message in the UI) to load new stars at runtime, which happens frequently when
travelling at faster-than-light speed or if the user is warping between locations that
are far away from each other.

3.4.3 AdnLoader
The script responsible for managing the whole loading process is AdnLoader. It’s set
up with a [DefaultExecutionOrder(-80)] directive to run it before the majority
of other application scripts; inside the Start function (figure 3.6) it takes care of
executing specialized loader scripts in a fixed order, handling any error that may
happen (e.g. switching to AdnStarHipparcosLoader if the adn_base.db database
cannot be accessed) and finally calls AdnUniverseManager to create the scene (see
paragraph 3.5.2).

Figure 3.6: Flow chart of the AdnLoader.Start method

A special event, called OnLoadingTrigger, is defined and used by the camera
script to signal every time that the observer has moved more than 10 parsec away
from the previous loading point, with an additional parameter that specifies the

31

Design and Development

current position. When such event is raised and the application is operating in
dynamic loading mode, all loader scripts (including those for external data sources)
run their Load function using the given position; after completing this task, the
RemoveUnused method takes care of cleaning up old objects and the scene is
updated with the new stars.

The AdnLoader script also manages access to the underlying dataset as needed
by the SearchPanel (described in paragraph 3.9). Using C# Task objects, a search
command is launched in parallel on all catalogues; each loader will return an
HashSet with the objects that matched the provided input, which are then merged
together using the UnionWith function and finally returned to the caller.

3.5 Celestial objects management
Once they are loaded, all AdnCelestialObject instances (including stars, planets
and satellites) are stored in the AdnCelestialMap data structure, while the task
of initializing and updating of the scene is delegated to the AdnUniverseManager
script. These components will be described in the following sections.

3.5.1 AdnCelestialMap
This class implements the application’s core data structure, therefore its efficiency is
key for many algorithms to perform well on large datasets. Their computational cost
scales linearly with the number of active objects, thus it’s critical that operations
on AdnCelestialMap introduce the smallest possible overhead.

The original implementation of this data structure was a simple C# Dictionary
of <String, AdnCelestialObject> pairs, which used object identifiers as the key
and had a O (1) complexity when accessing items by their ID.

This was improved by a new design (figure 3.7), which combines a dictionary
and a many C# Lists (which are just dynamic arrays), one for each celestial
object type. Items are stored in the appropriate List in an unordered fashion,
while the Dictionary maps each ID to a position inside of the corresponding List.
The resulting data structure has the following characteristics:

• O (1) insertion of new items, in both the Dictionary and at the end of the
appropriate List.

• O (1) access by ID, first looking up the identifier in the Dictionary and
then using the result to access the object in the actual List.

• O (1) existence check, which is useful for dynamic loading as well as handling
potential conflicts if two objects (coming from different catalogues) have the
same ID. In that case, only the first one is kept while the other is ignored, but
the user is notified with a warning message.

32

Design and Development

• O (1) removal, which would normally be O (n) using List, is possible thanks
to the lack of item ordering. The object that has to be removed can be
swapped with the last element of the collection, and therefore its deletion will
not cause any shifting of following items.

• Access to all objects of a single type without having to iterate through
the entire map and perform type casts, because AdnCelestialMap can return a
read-only pointer to the collection of any type of entity (e.g. AdnStar). This
also allows for O (1) indexed access among objects of a single type.

• Convenient iteration across all entities is achieved by providing a custom
IEnumerator implementation, which is used by foreach statements, that
moves through the available Lists in a sequential way.

• Only finding objects by partial name is O (n), but that’s a non-critical
operation which doesn’t require further optimization.

Figure 3.7: Example of the AdnCelestialMap data structure

3.5.2 AdnUniverseManager
The scene and all active celestial objects are managed by the AdnUniverseManager
script, which is a singleton class and contains the AdnCelestialMap data structure
as a public static member.

Scene initialization

Once all loader scripts have finished reading data from the available catalogues,
AdnLoader calls the Initialize function that takes care of spawning objects in the
scene. In particular, the SpawnAll function iterates over all objects in the celestial
map, calls Unity’s Instantiate function to spawn their Prefab in the scene and sets
a few parameters such as the position, size and name of the new entity.

33

Design and Development

While AdnPlanet and AdnSatellite entities are always created at the beginning,
instantiating a GameObject for every star in the catalogue is not feasible due to
resource and performance limitations. Therefore, stars are rendered in a different
way (see paragraph 3.6) and only those that will be interactable (which is a small
subset of the total) are spawned as actual objects in the scene. The criterion
used to determine if a star should be interactable or not is implemented in the
IsReachable function, which checks if the ratio between the object size and its
distance from the camera is greater than a fixed threshold. Since calculating the
euclidean distance between two points requires computing a square root, which
is often a slow operation even on modern processors, one optimization exploited
by IsReachable is using the squared distance to save some CPU time without
compromising the results (the radius and threshold values are squared as well).

Scene update

The subset of reachable stars has to be periodically updated in order to provide
a useful interaction with the virtual universe. Similarly to how dynamic loading
works, this process is also based on a OnStarsUpdateTrigger event raised by the
camera script to signal every time that the observer has moved more than 1.5
parsec away from the previous position. AdnUniverseManager provides an handler
for this event, called UpdateNearbyStars, which iterate on every star in the working
set to determine which ones are reachable from the current camera position and
takes care of instantiating their GameObjects in the scene.

Since this operation may become slow when there are millions of items in
AdnCelestialMap, the algorithm takes advantage of object pooling (see section 3.7)
and multi-threading (see section 3.8) to reduce the runtime cost of this operation.

3.5.3 Selectable objects

GameObjects instantiated according to the previous logic must provide a way for the
user to conveniently move between celestial objects in the scene and interact with
them. This is done by using the SgtFloatingTarget component, that allows to select
a star, planet or satellite by clicking on it and activates the SgtFloatingWarpPin UI
element, which can be used to see the object’s name and warp to it using a button.

All interactable entities have a Selector attached to them, that can be globally
toggled on or off by the user and helps to distinguish which objects are reachable
from the current position. A selector is implemented using a SpriteRenderer
component and a SgtFastBillboard script that rotates it to always be facing towards
the camera; selector objects are also scaled according to their distance from the
observer so that they all appear of the same size (figure 3.8).

34

Design and Development

Figure 3.8: Screenshot of star selectors and AdnFloatingWarpPin

3.6 Star visuals
A lot of effort has been put towards making both far-away and close-up stars to
look as realistic as possible, while keeping an eye out for performance.

3.6.1 Rendering stars
In typical 3D applications or videogames, a starry sky would be rendered using a
“skybox”, which is a simple 6-sided textured cube drawn behind all other graphics.
That approach works well when the sky is just a background to the main environ-
ment, but in this case it makes up the entire scene where the user can navigate
and therefore it must be rendered in full 3D.

Stars are very large objects, but they’re also placed in the scene at astronomical
distances and therefore will almost never be visible if rendered just as they are. In
ADN , the actual radius of a star is multiplied by a factor of 450000, altering the
apparent size of the object so that it can be visible from further away. With this
approach, the radius should be scaled down progressively as the camera gets closer
to the object, or otherwise it would be inaccurate. The formula used to determine
the size of a star is the following:

float radius = 450000f * star.Radius;
if (distance < STARFIELD_RESIZE_DISTANCE)

radius *= (distance / STARFIELD_RESIZE_DISTANCE);

where STARFIELD_RESIZE_DISTANCE is set to 50 parsecs.

35

Design and Development

Several techniques were tried for rendering a large number of stars in the virtual
universe, trying to get to the required level of performance. The following list
describes the steps which led to the currently adopted solution:

1. The application originally used Unity’s Particle System to draw stars in the
universe. This solution worked for a smaller catalogue (Hipparcos) but had
noticeable performance issues when scaling to larger amounts of entities; addi-
tionally, particles cannot be individually resized from code without rebuilding
the entire Particle System, which slowed down the navigation.

2. Creating a GameObject instance for each star is not really possible (as discussed
in paragraph 3.5.2), but in recent years Unity has introduced a new way of
dealing with large amounts objects in a scene: the Entity Component
System (ECS). This system is based on the principles of Data-Oriented
Design [34] and aims at taking advantage of modern multi-core CPUs and
their caches to deliver greater performance when dealing with lots of objects
with similar behaviour. An attempt was made at rendering all stars with
full 3D models using this system: performance was much better compared to
the GameObject approach, but it still wasn’t good enough because with the
Hipparcos catalogue the framerate was only around 40 FPS.

3. The Space Graphics Toolkit asset provides a few components to render groups
of stars in 3D space, using camera-facing billboards. Most of them use
procedural generation algorithms to create starfields based on user-defined
parameters, but the SgtStarfieldCustom component operates by rendering
a set of user-provided SgtStarfieldStar objects which define the position, radius
and color of each star. This component is very efficient at rendering large star
catalogues, but it has 2 main limitations:

• It only works with SgtStarfieldStar objects, which means that the entire
collection of stars must be duplicated, wasting a lot of memory, especially
because the class has several fields not used by ADN .

• Internally, this components builds a mesh with a lot of Quads (one for each
star) on which it maps the billboard texture; this mesh is then submitted
every frame to the GPU for rendering. Whenever a single piece of the
Starfield is changed, though, this mesh has to be rebuilt and the process
may take up to a few seconds when dealing with millions of stars.

4. The current solution is implemented by the AdnStarfield script and a
custom shader, inspired by the SGT solution but heavily improved for the
scope of this application. More details are described in the following sections.

36

Design and Development

AdnStarfield

AdnStarfield is a customized (and simplified) version of the SgtStarfieldCustom
component, from which it removes all of the unnecessary features. It overcomes
the main limitations of the SGT solution by operating directly on the collection
of AdnStar objects contained in AdnCelestialMap (see paragraph 3.5.1) and by
employing a different solution for rendering the starfield.

The technique in use is called procedural draw call and consists in generating
vertices inside the shader instead of receiving a pre-determined mesh object. In
this case, the AdnStarfield script fills a ComputeBuffer with structs that hold the
position, radius and color of each star, and then calls the Graphics.DrawProcedural
function to submit a procedural draw call to the GPU. Inside the vertex stage of
the graphics pipeline, the shader reads data from the ComputeBuffer and outputs
6 vertices (2 triangles that make up a quad) for each star (figure 3.9). This method
has two advantages:

• The CPU only needs to pack data in the ComputeBuffer instead of building
the whole mesh, which reduces the amount of data transferred to the GPU
by a factor of 6 and makes draw calls faster. This task is executed only at
startup or when the active stars change (e.g. with dynamic loading), but can
be easily accelerated using multi-threading (see paragraph 3.8).

• The size of each star is computed on the GPU, by changing the offsets of the
6 generated vertices from the provided (center) position. This means that the
resizing algorithm can run every frame with little to no additional cost, based
on the camera position which the shader can easily access.

Figure 3.9: Illustration of the quad generation process operated by AdnStarfield’s
vertex shader

37

Design and Development

Rendering precision

The approach of generating vertices on the GPU with a procedural draw call had
one issue: numeric precision. Stars are not part of the Unity scene in the form
of GameObjects and therefore do not benefit from the Floating Origin technique
provided by the SGT asset, instead their position always refers to the center of the
reference system, which in our case is the Sun; this results in a loss of rendering
precision for stars that are further away from the center of the scene. This issue was
accentuated by the fact that shader programs can only operate using single-precision
(32 bit) float values, which caused flickering and jittering to star billboards when
the camera was getting closer to them.

A good solution to this problem was found in a blog post [35] by graphics
developer Philip Rideout, who suggests a way to emulate double-precision math
using pairs of 32 bit float values and doing a few extra calculations to minimize
errors introduced by arithmetic operations (see vertex shader code in Appendix
A.2). While this isn’t exactly on par with 64 bit math, it is good enough to
drastically reduce the severity of the issue and make it just barely noticeable for
extremely distant stars.

3.6.2 3D star models

When the camera gets close enough to a star, a 3D model will be spawned in
the scene to represent that object (figure 3.10). The base model of a star is
just a Unity Sphere, but with additional components provided by the SGT asset
that allow to create a few visual effects (figure 3.11). In particular, the surface
is rendered using the StarSurface animated material, whose color is set in code
based on the actual star temperature (through scientific calculations and the
use of a look-up table). The stellar corona and prominences are recreated using
the SgtCorona and SgtProminence components, placed on children GameObjects,
colored with a variant of the surface color whose saturation has been increased by
a factor of 3. Additionally, the star model has a Light component attached to a
children GameObject, set to be an omni-directional point light and marked as a
SgtFloatingLight to work properly with SGT ’s floating origin system.

The script attached to the star GameObject, in charge of handling the materials
and setting up visual effects with the correct parameters is called AdnStarRenderer.
Since multiple 3D stars cannot be visible at the same time (due to how far they
are from each other), there is almost always just a single model in the scene, which
gets reused through object pooling (see section 3.7) by updating the parameters of
AdnStarRenderer to match the characteristics of the star that is being represented.

38

Design and Development

Figure 3.10: The 3D model of a star in ADN

Figure 3.11: Editor
settings of the StarMesh
object

3.7 Object pooling

As discussed in a few of the previous points, creating a GameObject for every entity
in the scene would not be feasible when dealing with such large amounts of objects,
due to memory limitations and performance reasons. The easiest way to overcome
this would be to instantiate only a subset of the data which is “relevant” and
then updating the scene over time by creating new objects and destroying older
ones as they become unused. The issue with this approach is that, in a managed
programming language like C#, creating and destroying objects means that a lot of
heap allocations and garbage collection will happen. These are slow operations that
may heavily impact the application’s framerate and responsiveness, and should
therefore be avoided as much as possible.

A solution to this problem is given by the object pooling pattern and consists
in keeping unused objects in a separate “pool” instead of destroying them, to be
reused later on. In ADN this is implemented by keeping a Stack of the desired type
and then, when an entity has to be removed, it is simply deactivated and added
to the collection. The next time a new object of that type has to be instantiated,
the item on top of the stack will be popped, re-purposed with new parameters and
finally enabled using SetActive(true).

39

Design and Development

Through this approach it is possible to avoid the majority of memory allocations
and garbage collection when instantiating objects. The first set of entities will
still need to be created from scratch (because the pool is empty at the beginning)
but following allocations will be avoided by re-using objects in the pool. Since
activating an object is much faster than calling Instantiate, this provides a notice-
able performance improvement for operations that frequently create and remove
GameObjects, such as UpdateNearbyStars (figure 3.12).

Figure 3.12: Performance and GC allocations related to spawning and removing
stars, with and without object pooling

40

Design and Development

3.8 Multi-threading
Modern CPUs are equipped with many physical and logical processors (cores
and threads, respectively) which can execute multiple operations in parallel. In
Astra Data Navigator , this is exploited by UpdateNearbyStars and other functions
that need to process large amounts of data (all active stars). Instead of having
a single for or foreach loop to iterate on all objects of interest and performing
some operations on them, C#’s Parallel.ForEach is used to spread the execution
of the algorithm across all available threads. This is achieved by creating a
RangePartitioner object to subdivide the data array in a specified number of
chunks (in this case, equals to Environment.ProcessorCount) and then passing it
to the Parallel.ForEach construct, that will take care of processing each partition
of the data on a separate thread (see Appendix A.1).

One limitation of Unity is that all of the core engine API calls are not thread-
safe, therefore operations like spawning and destroying a GameObject can only be
executed from the main thread. In the case of UpdateNearbyStars, which needs
to remove unused objects and spawn new selectors in the scene, this problem has
been solved by accumulating all AdnStar objects classified as “reachable” into a
thread-safe ConcurrentQueue collection and then processing these items on the
main thread, after the Parallel.ForEach loop has finished, to spawn the required
objects in the scene.

While not changing the asymptotic complexity of these algorithms (which is
always O (n)), spreading the workload across multiple threads speeds up execution
times by a factor of 10 (figure 3.13), thanks to the parallelism provided by the
20-core CPU on the target machine.

Figure 3.13: Comparison graph between single and multi-threaded performance

41

Design and Development

3.9 User Interface
The Graphical User Interface (GUI) of Astra Data Navigator (figure 3.14) has been
kept similar to the older version of the application, in order to maintain consistency.
Nevertheless, several changes and additions were made to support the new features
and improve the experience:

• Because the application startup could take up to 30 seconds, a loading
screen is shown on top of the UI while the application loads data from
catalogues using a background Task. It is made up of an Image component,
an animated (rotating) loading icon, a Text object used to display the current
status (provided by AdnLoader) and a LoadingScreen script which fades out
the image when the scene is fully loaded, using a Unity Coroutine.

• A dynamic loading screen is shown to the user when ADN is populating
the virtual universe with new stars as the observer moves in the scene, which
may take a few seconds. This element is a semi-transparent Panel, with a
static loading icon and Text in the bottom left, that is enabled and disabled
by AdnLoader when needed. Because Unity updates the UI at the end of the
current frame, the dynamic loading function must be delayed by 1 frame or it
would freeze the application before the Panel is shown: this is achieved using
the yield return null instruction inside of a Coroutine.

• The existing SearchPanel and the search function itself have been modified
to work with much larger datasets. Instead of updating results every time the
user types a new character in the InputField, the search is now launched with
a Button and is executed as a background Task on all available catalogues in
parallel. Since this operation may take a few seconds, an animated (rotating)
icon is shown in the search panel while the tasks are running, and disabled
when results are available.

• A new InfoPanel is shown every time a celestial object in the scene is
selected, to show all the available data about that object. To collect the
required information, this script executes a query on the internal catalogue
to load additional fields that are not contained in the AdnStar class (to save
memory), such as the available cross-matching IDs. Other values are not
directly stored anywhere but can be derived from existing parameters (e.g.
stellar classification and B-V Index can be extrapolated from the temperature).
This panel is highly modular because it spawns each info entry as a separate
Text object, therefore it will be easy to modify and extend in the future.

• The application has a custom logging system implemented by the AdnLogger
class, used to record errors and events to a logs.txt file. At runtime, the
LogPanel UI element (which can be enabled and disabled using a Button on
the sidebar) shows these warning and log messages to the user. The panel has

42

Design and Development

a ScrollRect component which contains the log entries and has a Scrollbar
to navigate between them. Since each log entry is a separate GameObject,
having too many of them might impact the application’s performance and
therefore only the most recent ones are kept in the panel (history size can be
set in the configuration file, using the UILogMaxLines field).

Figure 3.14: Screenshot of Astra Data Navigator GUI, showing the InfoPanel,
LogPanel and SearchPanel elements

3.10 Stereoscopy
Support for stereo 3D view in Astra Data Navigator has been implemented using
Unity’s XR Management plugin, which can be installed directly from the editor,
and setting it up to work with the Windows Mixed Reality platform (see figure
3.15). When using this plugin, no additional configuration is required inside Unity
and the application immediately runs in stereoscopic mode when a compatible
display is detected.

The stereo separation, which determines how different the left and right-eye
images are, can be tuned from the graphics driver (in this case, NVIDIA Control
Panel). This value has been lowered to 10%, because the default setting of 15%
was found to cause too much strain on the viewer’s eyes and also because it would
cut off part of the UI on the edges of the screen.

With the default configuration, the stereoscopic effect increases the depth of
the scene and makes objects appear further than they actually are, with the GUI
“floating” on top. The opposite effect, with objects appearing closer to the viewer,

43

Design and Development

Figure 3.15: XR Plug-in Management settings inside Unity

can be achieved by enabling the Stereo - Swap eyes option in the graphics driver
settings. The first configuration was chosen because, after trying both versions, the
latter was causing too much fatigue to the user and the nature of the content (which
doesn’t offer many depth cues) meant that the 3D effect wasn’t very pronounced.

44

Chapter 4

Results and Analysis

4.1 Performance analysis

Performance characteristics of the developed solution play a very important role in
determining how close the application has come to the original project goals. Low
framerates, excessive memory usage and slow loading times should be avoided in
order to fulfill the requirements of scalability to very large datasets and smooth
navigation inside the virtual universe.

Since this work was a modification over an existing solution, section 4.1.1
compares the final results with the starting point of the thesis to quantify the
performance improvements. Then, in section 4.1.2, the static and dynamic loading
methods are tested to see how well ADN can scale up to larger catalogues.

4.1.1 Comparison with the previous version

When analyzing the performance of real-time VR applications, framerate is an
important metric to consider, because it indicates how much time is taken by the
CPU and GPU to complete the work of a single frame, and defines how smooth the
application will feel for the user. For a good VR experience that feels responsive
and doesn’t cause any sickness, the framerate should be at least 60 FPS.

The use of a particle system to render stars in the old version of the application
came with a big performance hit, which became worse when more stars were added
to the simulation. The new shader-based solution (see paragraph 3.6.1), instead, is
extremely lightweight and its cost barely increases with the number of stars.
Figure 4.1 compares the framerate of the original application running with the
Hipparcos catalogue (113,000 objects) and the new version of Astra Data Navigator,
operating with 5 million stars. It can be seen how the render thread on the CPU
now does very little work, because the majority of the calculations for star rendering
are done on the GPU with a much greater parallelism and speed.

45

Results and Analysis

Figure 4.1: Performance comparison between the original application (left) and
the new version of ADN (right)

As mentioned in paragraph 1.4, the free movement navigation mode was pre-
viously afflicted by poor performance and noticeable slowdowns, which made it
almost unusable. These issues are solved in the new version of ADN thanks to
the combination of object pooling, multi-threaded update algorithms and the new
starfield shader.

When measuring the application’s capabilities of handling large star catalogues,
memory usage and loading times are also very important to consider. Both
of these metrics have been significantly improved thanks to data structures opti-
mization, careful selection of the star catalogue parameters, improvements made
to the loader scripts and, most importantly, the use of a database as the main
application data source. The graphs in figure 4.2 show the difference in loading
times and memory footprint between the old and the new version of ADN (using
the static loader), when provided with a catalogue of 1 million stars.

Figure 4.2: Startup time (left) and memory usage (right) of Astra Data Navigator
when loading 1 million stars

46

Results and Analysis

4.1.2 Scalability of static and dynamic loaders
The improvements in loading performance compared to the previous version of
Astra Data Navigator are clear and already allow for a noticeable increase in the
amount of stars that can be handled by the application (24x just with the baseline
catalogue), but it would also be useful to compare the two loading methods - Static
and Dynamic - against each other to see how they behave when scaling up to very
large datasets.

Figure 4.3 plots the loading time and RAM usage of the application running
in both modes, with catalogues that go from 100,000 entries to a maximum of 10
million stars. The static loader graph plateaus after the 5 million mark because
it has reached the maximum amount of objects that can be loaded at runtime,
whereas the dynamic loader can scale up to catalogues of any size but the time
required by the DBMS to execute the selection query increases linearly with the
number of entries in the dataset (and it should reach that of the static loader at
around 20 million stars).

Figure 4.3: Time and memory usage analysis for Static and Dynamic loading
methods

47

Results and Analysis

The memory usage graph highlights the advantage of the dynamic loading
method, which is able to select only a small subset of relevant stars out of all those
contained in the catalogue, resulting in a much smaller memory footprint even if
the actual dataset is larger. In any case, the 5 million limit to the number of active
stars guarantees that the application will never use more than 1.5 GBs of RAM.

It must be noted, though, that the loading time reported for the Dynamic
method will not only affect the application startup, but will also happen every
time that the user moves by over 10 parsecs in the scene, causing a much more
fragmented and discontinuous experience, filled with loading screens.

Therefore, even if this method would technically allow to connect the entire
Gaia catalogue to Astra Data Navigator without saturating the system resources,
loading times experienced by the user when starting the application and navigating
through the virtual universe would be extremely long (estimated over 30 minutes)
and totally impractical.

4.2 Issues
Several issues were encountered during the development of Astra Data Navigator,
some of which have not been resolved yet. The following list contains an analysis
of the most relevant problems still present in the current version of the application:

• Dynamic loading times: the main goal of this project was to introduce
support for large star catalogues id ADN , and eventually being able to
navigate the entire 1.8 billion Gaia stars in real-time 3D. As demonstrated
by paragraphs 4.1.1 and 4.1.2, this work achieved substantial improvements
compared to the original version of Astra Data Navigator , but not quite enough
to actually support the full Gaia catalogue. The dynamic loader supports
large datasets but has to periodically update the scene with new objects read
from the catalogue, which means rebuilding the entire AdnStarfield even if just
a single star is added or removed from the working set, causing continuous
interruptions to the user experience and preventing a seamless navigation of
the virtual universe.

Solving this issue would require a new architecture (e.g. splitting the universe
in an octree-like structure and having an independent starfield instance for
each cell) and possibly even moving away from relational databases in favor
of some custom compressed binary format, which arranges the data in such a
way that is faster to access at runtime.

Since the implementation these techniques is a complex task that would take
a lot of time, for the current version of ADN the choice has been to tolerate
this limitation and simply show a loading screen every time that the scene
has to be dynamically updated, to inform the user about what is happening
instead of just freezing the application.

48

Results and Analysis

• Star representation: the components used to create the 3D model of a star
and its visual effects (see paragraph 3.6.2) offer many tweakable parameters
to define the object’s appearance. Since ADN is aiming to achieve realistic
visuals, aspects like the number and length of star prominences, the brightness
of the stellar corona and the animation parameters of the surface shader should
be tied to physical properties of the celestial object. This is not implemented
in the current version of the application, for two reasons:

1. It would require the consulting of an astrophysics expert, in order to find
formulas that correctly map star parameters to realistic visual effects of
the 3D objects.

2. Storing all these additional values (for each entry) in the AdnStar class
and in the catalogue would drastically increase the memory and storage
requirements of the application.

Currently, the only scientifically-accurate aspects of a star’s 3D representation
are its position, size and color (which is derived from the effective tempera-
ture). Every other parameter has been hand-picked to achieve a convincing
appearance but is fixed for any star in the virtual universe, which causes many
objects to look almost identical and may take away from the realism of the
representation.

• Stereoscopic effect: the type of scene rendered by ADN doesn’t have the
optimal characteristics to achieve a good stereo 3D effect. This is due to a
couple of reasons:

1. There is no actual background other than deep space, which is only
populated by very small and far-away stars that do not provide meaningful
depth cues to create the perception of 3D.

2. There is no real foreground, because even objects that occupy the entire
screen are always many thousands of kilometers away from the camera.
This means that Unity considers them as part of the background, which
will make these objects appear further away from the observer instead
of “coming out of the display”, as one would expect from a stereoscopic
application.

These issues are tied to the nature of the content and cannot be easily resolved;
the only component that actually benefits from the stereoscopic rendering is
the UI, which is drawn in the foreground and therefore appears to be “floating”
in front of the display. Some elements of the User Interface that are close
to the left and right edges of the screen, though, are partially cut off by the
camera and might cause some trouble to the viewers.
Solving this issue would require to rework the entire UI layout, moving buttons
and panels away from the edges of the window and maybe allowing the user
to position each panel manually according to his/her preferences.

49

Results and Analysis

4.3 Subjective evaluation tests

After the development had concluded, a group of 12 people was asked to test
this new version of Astra Data Navigator in order to obtain a subjective quality
assessment of the application and receive suggestions for future improvements.

The test group was made up of 7 male and 5 female subjects, with an age
between 24 and 59 years, selected to have a wide variety of skills and different
professional backgrounds. Among these people there were a wearers of glasses,
which is an important factor because it may cause additional fatigue when viewing
stereoscopic content; 11 out of 12 people declared to have already had at least one
Virtual Reality experience.

The subjects were presented with a survey (see Appendix A.3) that guided the
testing of the application and was designed to measure the overall system usability,
intuitiveness of the UI, realism of the representation and perceived performance
characteristics.

The questionnaire consists of three parts: the first one has to be completed prior
to starting the application and collects general information about the test subject,
such as age, sex and previous VR experiences; the second part contains 2 tasks
which have to be performed by the user, followed by a few questions taken from the
NASA TLX tool [36] for assessing the perceived workload of the requested actions
and check if the application is causing any nausea or sickness to the user. The first
task consists in launching Astra Data Navigator with the default configuration and
navigating between stars in the virtual universe using the three available modes
(click-and-go with selectors, search panel and free camera movement); the second
task requires the user to edit the config.xml file by changing the loading method
from Static to Dynamic, then restart the application and repeat similar actions
to those of task 1. These actions are designed to evaluate the ease of exploring a
large star catalogue in 3D with the provided navigation tools, but also to see if
the XML-based configuration system is intuitive enough and, most importantly, to
have all users try both loading so that they can directly compare their performance
characteristics. During these tests, the application was set up to use the internal
Tycho-2 catalogue plus an external PostgreSQL database with an additional 10
million stars.

After completing each task, the user has to answer 5 questions (mental workload,
physical workload, time to complete the task, success in performing the actions,
sickness or nausea felt) with a value between 1 and 10. Figure 4.4 reports the
average result for each of these questions, showing good and consistent values for
both tasks. A very positive result is the little to no sickness experienced by test
subjects when using ADN (probably due to the weak stereoscopic effect, but also
thanks to the choice of not swapping the two images in the NVIDIA driver), while
the increase in mental workload and the lower overall self-evaluation score of task
2 can be attributed to the configuration system not being extremely intuitive for
non-expert users.

50

Results and Analysis

Figure 4.4: Average results for perceived workload, self-evaluation and sickness
in both tasks

The third and last section of the survey, which must be compiled after using
the application, is designed to assess the intuitiveness, usability, realism and
performance (using both loading methods) of the tool when navigating large star
catalogues. Each question can be answered with a score on a scale that goes from
1 to 5 (worst to best) to evaluate different aspects of the user experience.

At the end, the user also has the chance to write any improvement that he or
she may want to suggest for future development of Astra Data Navigator .

Figure 4.5: User evaluation of interface intuitiveness and system usability

51

Results and Analysis

The graph in figure 4.5 illustrates the scores assigned by users to the intuitiveness
of the User Interface and the navigation in the virtual universe, as well as a usability
score which refers to the application as a whole. Results are mostly positive, with
the majority of users (66.7%) considering the UI “Good” and a system usability score
that contains only “Good” and “Very Good” answers, equally split. This doesn’t
mean that the User Interface of Astra Data Navigator cannot be improved, as most
of the user suggestions focus on aspects of the UI, asking to make the controls
bigger and more easily reachable (2 suggestions), to simplify the configuration
system (1 suggestion) and add a new panel containing the navigation history in
order to go back to previously visited celestial objects (1 suggestion).

When questioned about the perceived performance (framerate, responsiveness)
of the application and the realism of 3D stars, users also answered rather positively.
As it can be seen in figure 4.6, test subjects were very satisfied with the application’s
performance (66.7% “Very Good” and 33.3% “Good” answers), while judgements
regarding the realism of stars were also mostly positive (over 83% of the users
felt that it was “Good” or better) but also included a 16.7% of lower “Acceptable”
scores, possibly coming from users with a good understanding of these subjects.

Figure 4.6: Evaluation of the perceived performance and realism of stars in ADN

Finally, a few questions required a direct comparison between the Static and
Dynamic loading methods, more specifically regarding the application startup time,
the amount of visualized data and the experience of navigating the 3D environment.
Figure 4.7 highlights a very positive result: the vast majority of the users (91.7%)
didn’t notice any reduction in the amount of visible stars when switching to the
dynamic loading method, which means that the visibility formula in use is very
effective at selecting stars which can be seen from the current observer position.

52

Results and Analysis

Figure 4.7: Assessment of the number of visible stars in the universe, in both
Static and Dynamic mode

When it comes to comparing the loading times of the two modes (figure 4.8),
the static loader is considered “Slow” by 16.7% of testers but 50% of them still
find it “Fast”, while the dynamic loader is “Very Fast” and “Fast” according to
33.3% and 41.7% of answers, respectively.

After the initial loading is done, though, the situation is reversed (figure 4.9): the
majority of users (66.7%) find the Static method to allow a “Very Fast” navigation
inside the virtual universe, while the Dynamic method is considered “Acceptable”
by 41.7% of the subjects, but 16.7% of users find it to be “Slow” and 8.3% of the
testers even mark it as “Very Slow”.

These results are expected and confirm what has already been discussed in
sections 3.4 and 4.1.2: the dynamic loader allows the application to operate with
larger datasets requiring less system resources, but the additional loading times
interrupt the experience and are not well accepted by users.

53

Results and Analysis

Figure 4.8: User rating of Astra Data Navigator ’s startup time, with both loading
methods

Figure 4.9: Subjective scores evaluating the speed of navigation in the 3D star
catalogue in each loading mode

54

Chapter 5

Conclusions and Future
Work

The presented work has successfully led to the development of a real-time solution for
loading and visualizing large star catalogues in an interactive VR application. The
capabilities of Astra Data Navigator have been considerably improved with respect
to the original version, delivering a 24 times increase in baseline star catalogue size
(with better performance) and introducing support for user-provided data sources
in both file and database formats. In its latest version, ADN can display larger
astronomical datasets than most state-of-the-art VR universe exploration tools, up
to several million entries, even though the capabilities of Gaia Sky remain currently
unmatched.

The analysis and subjective tests conducted on the final version of the application
highlighted several positive results with regards to the intuitiveness and performance
of this tool as well as the realism of the represented 3D environment, but also
uncovered a few shortcomings of the current solution, which could be improved
upon by further development.

Most user suggestions focus on the UI, which could benefit from a few usability
improvements as well as a general rework to overcome some of the issues related to
stereoscopic rendering. In this sense, the choice of keeping the User Interface as
consistent as possible with the original version of the application did not pay off as
expected. Some areas of the UI could be enhanced in the future, for example:

• Implementing a graphical interface for the configuration system, instead of
relying on the user manually editing the config.xml file, would make this
feature more accessible and less prone to human errors even for people with
less IT skills.

• Introducing a new panel, which displays the user’s navigation history and
allows to quickly go back to previously visited object by double-clicking on
their name in the list.

55

Conclusions and Future Work

• Panels could be made repositionable, so that the user can drag them anywhere
according to personal preference and they would keep that position until the
application is closed.

• Considering compatibility with VR headsets and other devices, the User
Interface could be moved to exist in world space instead of being drawn as a
2D overlay on the screen.

• Additional input systems, such as 3D mouse or motion tracking, could provide
a more natural way to interact with the application and navigate the virtual
universe.

Another very useful feature would be a "visual query" system that allows users
to select and filter which stars have to be loaded from the catalogue and rendered
in the scene, based on some parameters or conditions (e.g. all objects within a
certain distance or all stars with a temperature inside the specified range), and
then offers the option to save the query results to a FITS or VOTable file.

One major issue, pointed out by performance analyses and the user survey,
concerns the additional loading times introduced by the application when operating
with the Dynamic method. In order to provide a better user experience and a
seamless navigation, the dynamic loading system could be improved by making it
work in the background, reading data from the catalogues as the observer moves
across the virtual universe and updating the scene in small chunks without freezing
the application or requiring any kind of loading screen. To achieve this level of
performance, a standard database might not be sufficient but a more complex
binary file format could work better, even though it would require an additional
pre-processing step to convert user catalogues in the desired form.

The realism and graphical fidelity of celestial objects could also be improved, by
adding more parameters to the supported star catalogues and using them to drive
the visual representation of 3D objects in a scientifically accurate way. Finally,
the introduction of new astronomical objects to the scene, such as galaxies and
nebulae, would drastically increase the realism of the virtual environment for both
astronomers and non-expert users.

This study showed the potential of using Virtual Reality technologies to support
scientific research in the astronomy field, while also providing a valuable tool for
educational purposes, thanks to the visualization of large star catalogues in a real-
time interactive 3D environment. It would require additional time and resources to
perfect the user experience and improve the aspects found lacking in the current
solution, but results achieved so far have been very convincing and encourage
further development of this application.

56

Appendix

A.1 UpdateNearbyStars function

1 public void UpdateNearbyStars (SgtPosition cameraPosition)
2 {
3 // Loop through all active stars to see if some can be removed
4 AdnFloatingStar [] activeStars = SgtFloatingRoot . FirstInstance .
5 GetComponentsInChildren < AdnFloatingStar >(false);
6
7 for (int i = 0; i < activeStars . Length ; i++)
8 {
9 if (! IsReachable (ref cameraPosition , activeStars [i]. Star) ||

10 ! CelestialMap . Contains (activeStars [i]. Star))
11 {
12 DestroyStar (activeStars [i]);
13 }
14 }
15
16 ReadOnlyCollection <AdnStar > stars = CelestialMap . GetStars ();
17 ConcurrentQueue <AdnStar > toBeSpawned = new ConcurrentQueue <AdnStar >();
18
19 // Partition the array in chunks based on the number of logical processors
20 int partitionCount = Environment . ProcessorCount ;
21 int partitionSize = (stars . Count / partitionCount) + 1;
22 var rangePartitioner = Partitioner . Create (0, stars .Count , partitionSize);
23
24 Parallel . ForEach (rangePartitioner , (range , loopState) =>
25 {
26 for (int i = range . Item1 ; i < range . Item2 ; i++)
27 {
28 if (IsReachable (ref cameraPosition , stars [i]) &&
29 ! _spawnedStars . Contains (stars [i]))
30 {
31 toBeSpawned . Enqueue (stars [i]);
32 }
33 }
34 });
35
36 // Spawn all stars that have been found to be reachable
37 foreach (AdnStar star in toBeSpawned)
38 {
39 SpawnStar (star);
40 }
41 }

57

Appendix

A.2 AdnStarfield component
StarInfo struct

1 [StructLayout (LayoutKind . Sequential)]
2 readonly struct StarInfo
3 {
4 readonly Vector3 pos_highpart ;
5 readonly Vector3 pos_lowpart ;
6 readonly float radius ;
7 readonly Color color ;
8
9 public StarInfo (in (Vector3 highpart , Vector3 lowpart) pos ,

10 in float radius , in Color color)
11 {
12 this. pos_highpart = pos. highpart ;
13 this. pos_lowpart = pos. lowpart ;
14 this. radius = radius ;
15 this. color = color ;
16 }
17 }

Starfield generation

1 protected void BuildStarfield ()
2 {
3 if (stars . Count == 0)
4 return ;
5
6 var data = new NativeArray <StarInfo >(stars .Count , Allocator .Temp ,
7 NativeArrayOptions . UninitializedMemory);
8
9 // Spread the workload of compute buffer generation across all processors

10 int partitionSize = (stars . Count / Environment . ProcessorCount) + 1;
11 var rangePartitioner = Partitioner . Create (0, stars .Count , partitionSize);
12
13 Parallel . ForEach (rangePartitioner , (range , loopState) =>
14 {
15 for (int i = range . Item1 ; i < range . Item2 ; ++i)
16 {
17 data[i] = new StarInfo (
18 AdnUtils . SgtPositionToHighPrecision (ref stars [i]. Position),
19 450000 f * stars [i]. Radius , stars [i]. Color);
20 }
21 });
22
23 starsBuffer ?. Dispose ();
24 starsBuffer = new ComputeBuffer (stars .Count , (3 + 3 + 1 + 4) * sizeof (float),
25 ComputeBufferType . Default);
26 starsBuffer . SetData (data , 0, 0, data. Length);
27
28 // Bind the compute buffer to the starfield shader
29 material . SetBuffer (" _Stars ", starsBuffer);
30
31 data. Dispose ();
32 }

58

Appendix

Draw call

1 protected void HandleCameraDraw (Camera camera)
2 {
3 if (SgtHelper . CanDraw (gameObject , camera) == false)
4 return ;
5
6 var sgtCamera = default (SgtCamera);
7 if (SgtCamera . TryFind (camera , ref sgtCamera) == true)
8 {
9 properties . SetFloat (SgtShader . _CameraRollAngle ,

10 sgtCamera . RollAngle * Mathf . Deg2Rad);
11
12 // Decompose camera position in 2 floats , for double precision emulation
13 SgtPosition position = AdnCamera . Instance . SgtCamera . SnappedPoint ;
14 (Vector3 highpart , Vector3 lowpart) =
15 AdnUtils . SgtPositionToHighPrecision (ref position);
16
17 properties . SetVector (" _CameraPositionHighpart ", highpart);
18 properties . SetVector (" _CameraPositionLowpart ", lowpart);
19 }
20 else
21 {
22 properties . SetFloat (SgtShader . _CameraRollAngle , 0.0f);
23
24 properties . SetVector (" _CameraPositionHighpart ", Vector3 .zero);
25 properties . SetVector (" _CameraPositionLowpart ", Vector3 .zero);
26 }
27
28 // " Infinite " bounds so that the starfield never gets culled
29 Bounds bounds = new Bounds (this. transform .position ,
30 new Vector3 (float .MaxValue , float .MaxValue , float . MaxValue));
31
32 // Submit a procedural draw call to the GPU for rendering the star quads
33 Graphics . DrawProcedural (material , bounds , MeshTopology . Triangles ,
34 vertexCount : stars . Count * 6, instanceCount : 1, camera , properties ,
35 ShadowCastingMode .Off , receiveShadows : false , gameObject . layer);
36 }

Vertex shader

1 # define STARFIELD_RESIZE_DISTANCE 1.5 e15f
2
3 struct star
4 {
5 float3 position_highpart ;
6 float3 position_lowpart ;
7 float radius ;
8 float4 color ;
9 };

10
11 static const float3 _OFFSETS [6] =
12 {
13 float3 (-1.0f, 1.0f, 0.0f),
14 float3 (1.0f, 1.0f, 0.0f),
15 float3 (-1.0f, -1.0f, 0.0f),
16 float3 (1.0f, -1.0f, 0.0f),
17 float3 (-1.0f, -1.0f, 0.0f),
18 float3 (1.0f, 1.0f, 0.0f)
19 };

59

Appendix

20 float3 _CameraPositionHighpart ;
21 float3 _CameraPositionLowpart ;
22
23 uniform StructuredBuffer <star > _Stars : register (t1);
24
25 struct v2f // Vertex shader outputs
26 {
27 float4 vertex : SV_POSITION ;
28 float4 color : COLOR ;
29 float2 texcoord0 : TEXCOORD0 ;
30 float3 texcoord1 : TEXCOORD1 ;
31
32 UNITY_VERTEX_OUTPUT_STEREO
33 };
34
35 void Vert(in uint id: SV_VertexID , out v2f o)
36 {
37 UNITY_INITIALIZE_OUTPUT (v2f , o);
38 UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO (o);
39
40 // Calculate quad and vertex numbers from the current index
41 uint quadId = id / 6;
42 uint vertexId = id % 6;
43
44 // Retrieve the correct star data from the compute buffer
45 float3 pos_highpart = _Stars [quadId]. position_highpart ;
46 float3 pos_lowpart = _Stars [quadId]. position_lowpart ;
47 float radius = _Stars [quadId]. radius ;
48 float4 color = _Stars [quadId]. color ;
49 float3 offset = _OFFSETS [vertexId];
50
51 // Vertex positions have to be calculated using double - precision emulation
52 float3 t1 = pos_lowpart - _CameraPositionLowpart ;
53 float3 e = t1 - pos_lowpart ;
54 float3 t2 = ((- _CameraPositionLowpart - e) + (pos_lowpart - (t1 - e))) +
55 pos_highpart - _CameraPositionHighpart ;
56 float3 high_delta = t1 + t2;
57 float3 low_delta = t2 - (high_delta - t1);
58 float3 vertex = high_delta + low_delta ;
59
60 // Scale the actual radius based on distance
61 float dist = length (vertex .xyz - _WorldSpaceCameraPos);
62 if (dist < STARFIELD_RESIZE_DISTANCE)
63 radius *= (dist / STARFIELD_RESIZE_DISTANCE);
64
65 // Generate the vertex coordinate
66 float3 vertexMV = UnityObjectToViewPos (vertex);
67 float4 cornerMV = float4 (vertexMV , 1.0f);
68 // The offset vector is rotated to always match the camera roll angle
69 offset .xy = Rotate (offset .xy , _CameraRollAngle);
70 cornerMV .xy += offset .xy * radius ;
71
72 // Project the vertex in view space , but also pass the actual
73 // vertex position to the fragment shader using the UV1 channel
74 o. vertex = mul(UNITY_MATRIX_P , cornerMV);
75 o. texcoord1 = cornerMV .xyz;
76
77 // Forward color information and texture mapping to the fragment shader
78 o. color = color ;
79 o. texcoord0 = _UVS[vertexId];
80 }

60

Appendix

A.3 User survey

61

Appendix

62

Appendix

63

Appendix

64

Appendix

65

Bibliography

[1] Brian R. Kent. Techniques and Methods for Astrophysical Data Visualization.
National Radio Astronomy Observatory. 2017. url: https://iopscience.
iop . org / journal / 1538 - 3873 / page / Techniques - and - Methods - for -
Astrophysical-Data-Visualization (cit. on p. 1).

[2] C. Donalek et al. «Immersive and Collaborative Data Visualization Using
Virtual Reality Platforms». In: IEEE International Conference on Big Data.
2014. url: https://arxiv.org/ftp/arxiv/papers/1410/1410.7670.pdf
(cit. on p. 1).

[3] New Research Suggests VR Offers Exciting New Ways to Unlock Student
Potential. HTC Vive. Dec. 2016. url: https://www.prnewswire.com/news-
releases/new-research-suggests-vr-offers-exciting-new-ways-to-
unlock-student-potential-300375212.html (cit. on p. 1).

[4] History of VR - Timeline of Events and Tech Development. url: https:
//virtualspeech.com/blog/history-of-vr (cit. on p. 2).

[5] The Virtual Interface Environment Workstation (VIEW). NASA. url: https:
//www.nasa.gov/ames/spinoff/new_continent_of_ideas/ (cit. on p. 2).

[6] NASA Explores Potential of Altered Realities for Space Engineering and
Science. NASA. Aug. 2017. url: https://www.nasa.gov/feature/goddard/
2017/nasa-explores-potential-of-altered-realities-for-space-
engineering-and-science (cit. on p. 3).

[7] NEANIAS Project website. url: https://www.neanias.eu (cit. on p. 4).
[8] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai.

«An overview of ongoing point cloud compression standardization activities:
video-based (V-PCC) and geometry-based (G-PCC)». In: APSIPA Trans-
actions on Signal and Information Processing 9 (2020), e13. doi: 10.1017/
ATSIP.2020.12 (cit. on p. 5).

[9] NASA Scientists Tap Virtual Reality to Make a Scientific Discovery. NASA.
Jan. 2020. url: https://www.nasa.gov/feature/goddard/2020/scienti
sts-tap-virtual-reality-for-discovery (cit. on p. 6).

[10] Gaia Archive Visualization Service. url: https://gea.esac.esa.int/
archive/visualization (cit. on p. 6).

66

https://iopscience.iop.org/journal/1538-3873/page/Techniques-and-Methods-for-Astrophysical-Data-Visualization
https://iopscience.iop.org/journal/1538-3873/page/Techniques-and-Methods-for-Astrophysical-Data-Visualization
https://iopscience.iop.org/journal/1538-3873/page/Techniques-and-Methods-for-Astrophysical-Data-Visualization
https://arxiv.org/ftp/arxiv/papers/1410/1410.7670.pdf
https://www.prnewswire.com/news-releases/new-research-suggests-vr-offers-exciting-new-ways-to-unlock-student-potential-300375212.html
https://www.prnewswire.com/news-releases/new-research-suggests-vr-offers-exciting-new-ways-to-unlock-student-potential-300375212.html
https://www.prnewswire.com/news-releases/new-research-suggests-vr-offers-exciting-new-ways-to-unlock-student-potential-300375212.html
https://virtualspeech.com/blog/history-of-vr
https://virtualspeech.com/blog/history-of-vr
https://www.nasa.gov/ames/spinoff/new_continent_of_ideas/
https://www.nasa.gov/ames/spinoff/new_continent_of_ideas/
https://www.nasa.gov/feature/goddard/2017/nasa-explores-potential-of-altered-realities-for-space-engineering-and-science
https://www.nasa.gov/feature/goddard/2017/nasa-explores-potential-of-altered-realities-for-space-engineering-and-science
https://www.nasa.gov/feature/goddard/2017/nasa-explores-potential-of-altered-realities-for-space-engineering-and-science
https://www.neanias.eu
https://doi.org/10.1017/ATSIP.2020.12
https://doi.org/10.1017/ATSIP.2020.12
https://www.nasa.gov/feature/goddard/2020/scientists-tap-virtual-reality-for-discovery
https://www.nasa.gov/feature/goddard/2020/scientists-tap-virtual-reality-for-discovery
https://gea.esac.esa.int/archive/visualization
https://gea.esac.esa.int/archive/visualization

BIBLIOGRAPHY

[11] Gaia 3D Starmap. url: https://charliehoey.com/threejs-demos/gaia_
dr1.html (cit. on p. 6).

[12] Planetarium (Wikipedia). url: https://en.wikipedia.org/wiki/Planeta
rium (cit. on p. 7).

[13] Stellarium website. url: https://stellarium.org/ (cit. on p. 8).
[14] Celestia website. url: https://celestia.space/ (cit. on p. 9).
[15] Space Engine website. url: http://spaceengine.org/ (cit. on p. 9).
[16] CosmoScout VR repository. url: https://github.com/cosmoscout/cosmo

scout-vr (cit. on p. 10).
[17] GaiaSky website. url: https://www.zah.uni- heidelberg.de/gaia/

outreach/gaiasky (cit. on p. 10).
[18] A. Sagristà, S. Jordan, T. Müller, and F. Sadlo. «Gaia Sky: Navigating

the Gaia Catalog». In: IEEE Transactions on Visualization and Computer
Graphics 25.1 (2019), pp. 1070–1079. doi: 10.1109/TVCG.2018.2864508
(cit. on p. 11).

[19] Unity game engine website. url: https://unity.com (cit. on p. 15).
[20] OpenGL website. url: https://www.opengl.org (cit. on p. 16).
[21] C. Thome. «Using a floating origin to improve fidelity and performance

of large, distributed virtual worlds». In: 2005 International Conference on
Cyberworlds (CW’05). 2005, 8 pp.–270. doi: 10.1109/CW.2005.94 (cit. on
p. 17).

[22] Space Graphics Toolkit in the Unity Asset Store. url: https://assetstore.
unity.com/packages/tools/level-design/space-graphics-toolkit-
4160 (cit. on p. 17).

[23] Star catalogues (Wikipedia). url: https://en.wikipedia.org/wiki/Star_
catalogue (cit. on p. 18).

[24] M. A. C. Perryman et al. «The Hipparcos Catalogue.» In: Astronomy and
Astrophysics 500 (July 1997), pp. 501–504 (cit. on p. 18).

[25] E. Høg, C. Fabricius, V. V. Makarov, S. Urban, T. Corbin, G. Wycoff, U.
Bastian, P. Schwekendiek, and A. Wicenec. «The Tycho-2 catalogue of the
2.5 million brightest stars». In: Astronomy and Astrophysics 355 (Mar. 2000),
pp. L27–L30 (cit. on p. 18).

[26] Gaia Collaboration, A. G. A. Brown, A. Vallenari, T. Prusti, J.H.J. de
Bruijne, et al. «Gaia Early Data Release 3. Summary of the contents and
survey properties». In: (Oct. 2020). doi: 10.1051/0004-6361/202039657
(cit. on p. 19).

[27] Gaia Archive. url: https://gea.esac.esa.int/archive (cit. on p. 19).
[28] Astropy project website. url: https://www.astropy.org (cit. on p. 19).

67

https://charliehoey.com/threejs-demos/gaia_dr1.html
https://charliehoey.com/threejs-demos/gaia_dr1.html
https://en.wikipedia.org/wiki/Planetarium
https://en.wikipedia.org/wiki/Planetarium
https://stellarium.org/
https://celestia.space/
http://spaceengine.org/
https://github.com/cosmoscout/cosmoscout-vr
https://github.com/cosmoscout/cosmoscout-vr
https://www.zah.uni-heidelberg.de/gaia/outreach/gaiasky
https://www.zah.uni-heidelberg.de/gaia/outreach/gaiasky
https://doi.org/10.1109/TVCG.2018.2864508
https://unity.com
https://www.opengl.org
https://doi.org/10.1109/CW.2005.94
https://assetstore.unity.com/packages/tools/level-design/space-graphics-toolkit-4160
https://assetstore.unity.com/packages/tools/level-design/space-graphics-toolkit-4160
https://assetstore.unity.com/packages/tools/level-design/space-graphics-toolkit-4160
https://en.wikipedia.org/wiki/Star_catalogue
https://en.wikipedia.org/wiki/Star_catalogue
https://doi.org/10.1051/0004-6361/202039657
https://gea.esac.esa.int/archive
https://www.astropy.org

BIBLIOGRAPHY

[29] SQLite website. url: https://www.sqlite.org/index.html (cit. on p. 20).
[30] System.Data.SQLite library. url: https://system.data.sqlite.org/

index.html/doc/trunk/www/index.wiki (cit. on p. 20).
[31] PostgreSQL website. url: https://www.postgresql.org (cit. on p. 20).
[32] Stereoscopy (Wikipedia). url: https://en.wikipedia.org/wiki/Stereosc

opy (cit. on p. 21).
[33] Microsoft ADO.NET documentation. url: https://docs.microsoft.com/

en-us/dotnet/framework/data/adonet (cit. on p. 27).
[34] What is Data-Oriented game engine design ? url: https://gamedevelop

ment.tutsplus.com/articles/what-is-data-oriented-game-engine-
design--cms-21052 (cit. on p. 36).

[35] Philip Rideout. Emulating Double Precision. url: https://prideout.net/
emulating-double-precision (cit. on p. 38).

[36] NASA Task Load Index (TLX) Website. NASA. url: https://humansystems.
arc.nasa.gov/groups/TLX/ (cit. on p. 50).

68

https://www.sqlite.org/index.html
https://system.data.sqlite.org/index.html/doc/trunk/www/index.wiki
https://system.data.sqlite.org/index.html/doc/trunk/www/index.wiki
https://www.postgresql.org
https://en.wikipedia.org/wiki/Stereoscopy
https://en.wikipedia.org/wiki/Stereoscopy
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet
https://gamedevelopment.tutsplus.com/articles/what-is-data-oriented-game-engine-design--cms-21052
https://gamedevelopment.tutsplus.com/articles/what-is-data-oriented-game-engine-design--cms-21052
https://gamedevelopment.tutsplus.com/articles/what-is-data-oriented-game-engine-design--cms-21052
https://prideout.net/emulating-double-precision
https://prideout.net/emulating-double-precision
https://humansystems.arc.nasa.gov/groups/TLX/
https://humansystems.arc.nasa.gov/groups/TLX/

Acknowledgements

Having reached the end of my studies, I would like to acknowledge and thank
everyone who supported me so far and allowed me to get to this point.

First, I would like to express my gratitude to my supervisor, professor Andrea
Sanna, for his continuous availability and the valuable advice that guided me in
the writing of this thesis.

I would also like to thank ALTEC for giving me the opportunity of working
on this project and the additional support provided to overcome the technical
difficulties caused by the current pandemic. I am very grateful to Eugenio Topa,
along with the other members of the team, for the supervision of my work and the
warm welcome within the company.

I also want to acknowledge my fellow colleague Simone Terzuolo, whom which I
shared the majority of my time in ALTEC and collaborated with for the development
of Astra Data Navigator .

Finally, I would like to thank my close friends and family for encouraging and
supporting me during the entirety of my studies; a special "thank you" goes to
Teresa, who has filled the last 2 years of my life and hopefully many more to come,
for bearing with me during the most stressful moments and never letting a single
day pass without showing genuine interest about the progress of my thesis work.

	Introduction
	State of the Art
	Point clouds
	GAVS - Gaia Archive Visualization Service
	Gaia 3D Starmap

	Planetarium software
	Stellarium

	Universe exploration in Virtual Reality
	Gaia Sky

	Astra Data Navigator
	Large star catalogues in Astra Data Navigator

	Technologies and Tools
	Project requirements
	Unity
	Floating point accuracy
	Space Graphics Toolkit

	Star catalogues
	Gaia Archive

	Database systems
	Hardware
	Stereoscopic system

	Design and Development
	Architecture
	Star catalogues
	Data format
	Parameters
	Internal catalogues
	External catalogues

	Configuration file
	Dataset loading
	Static loading
	Dynamic loading
	AdnLoader

	Celestial objects management
	AdnCelestialMap
	AdnUniverseManager
	Selectable objects

	Star visuals
	Rendering stars
	3D star models

	Object pooling
	Multi-threading
	User Interface
	Stereoscopy

	Results and Analysis
	Performance analysis
	Comparison with the previous version
	Scalability of static and dynamic loaders

	Issues
	Subjective evaluation tests

	Conclusions and Future Work
	Appendix
	UpdateNearbyStars function
	AdnStarfield component
	User survey

	Bibliography

