
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING (DAUIN)

Master Degree in Computer Engineering

Master Degree Thesis

Control-Flow Integrity for Embedded Systems:
Study Case of an FPGA-Based Solution

Author: Antonio Ettore Epifani

Supervisor: Paolo Ernesto Prinetto

April, 2021

Abstract

Nowadays, embedded devices are taking on a significant degree of pervasiveness in many
sectors of our daily life, from industry to home automation, from healtcare to the urban
dimension. These devices are responsible for creating and managing an extraordinary
amount of data concerning our lives, which poses equally extraordinary challenges: on the
one hand, it becomes essential to secure the entire data traffic, and on the other, equally
important, these systems need to be reliable and not easily manipulated, according to the
resilience-by-design paradigm.

Physical security is fundamental but insufficient, since many breaches can be opened by
the code that such systems run. A relevant amount of weaknesses comes from the diffused
employ of typical embedded system languages, such as C and C++. These languages offer
a high level of hardware control and optimization, but at the same time, they are memory-
unsafe, i.e., the protection of the memory from possible corruptions is completely left to
the programmer.

Memory vulnerabilities open the door to many typologies of attacks, massively reported
and studied by security researchers, such as Code-Reuse Attacks (CRA), in which the flow
of the program is hijacked to sections of code already present in memory but not intended
to be executed in that order. One of the most famous offensive techniques belonging to
this category is called Return-Oriented Programming (ROP), along with some of its vari-
ants, Jump-Oriented Programming (JOP) and Call-Oriented Programming (COP). This
technique exploits a memory vulnerability inside a program in order to collect a malicious
sequence of bytes, said gadgets. These gadgets are used as a chain of little actions to form
a greater malware, able to execute arbitrary code in the context of the program.

The purpose of this thesis work is to present a practical use case of a Control Flow
Integrity solution based on a Control Flow Monitor synthesized inside a reconfigurable
hardware module. In this thesis, an ad-hoc firmware is uploaded onto a development
board, the SEcube™, which integrates a microcontroller, an FPGA and a Smart Card
Reader. In this scenario, the device communicates with a smartphone application via a
BLE peripheral in order to perform its intended tasks. The application, though, can deliver
a malicious payload which will hijack the program counter of the firmware. The final aim
of this work is to show the different behaviour of the embedded system in presence or not
of the Control Flow Integrity solution previously desribed.

2

Contents

1 Introduction 4
1.1 The Importance of Embedded Systems Security 4
1.2 Memory Corruption and Buffer Overflow 5

2 Background: Code-Reuse Attacks (CRA) 9
2.1 The principle . 9
2.2 Return-Oriented Programming (ROP) . 12
2.3 Code-Reuse Attacks Mitigations: CFI . 14

2.3.1 Software-based Mitigations . 15
2.3.2 Hardware-based Mitigations . 19

3 FPGA-based Control-Flow Integrity (CFI) for Microcontrollers 25
3.1 General Features . 25
3.2 CFG Edges Identification and Categorization 26
3.3 The Problem with Asynchronous Calls: ISRs 28
3.4 CFI Monitor Architecture . 29
3.5 Phases of the Protection Mechanism . 30
3.6 Advantages of the Hybrid Approach . 32

4 A Real-World example: Attack and Protection of the SEcube™ Chip 35
4.1 Device Architecture and Features . 35
4.2 Study Case: A Smart Access Monitor . 36
4.3 Vulnerability and Exploitation . 39

4.3.1 Overflowing the Unprotected Buffer 39
4.3.2 Crafting the ROP Chain . 40
4.3.3 Proof-of-Concept Attack . 41

4.4 Patching the Breach: FPGA monitor Setup 43
4.4.1 Code Instrumentation . 43
4.4.2 Synthesis of the Monitor . 45
4.4.3 Uploading the Instrumented Firmware and Monitor 45
4.4.4 Final Results . 45

5 Conclusions 47

Bibliography 51

3

Chapter 1

Introduction

1.1 The Importance of Embedded Systems Security
In the last decade, the Digital Revolution has brought extraordinary changes in the world.
We are witnessing a massive increase in the amount of data exchanged over the Internet
and there is more and more people connected to the Internet. According to [22], in 2017
the estimated number of connected IoT devices was around 27 billions, and this number
is forseen to increase by a 12% annualy, reaching 125 billions in 2030. IoT devices are
getting more and more diffused in every field, from business to private life. Not only they
produce and exchange massive amounts of data, but with digital progress, they are in charge
of managing many procedures and performing tasks that were normally conducted by
humans. We may find eloquent examples in domotics, modern medicine and biotechnology,
autonomous driving and smart production systems, just to cite a few. The motivation
of this transition is straight forward: moving to digitalized and connected environment
improves and efficiency and performance dramatically.

Being the benefits so obvious, we cannot ignore the risks. The Malfunctioning of these
systems would lead to potentially enormous losses and catastrophic safety or privacy related
issues. Just to mention the impact of a security hole in one of such systems, in [34],
the author describes serious flaw in the information exchanging protocol of a commercial
Smart Lock device. According to its write-up, in his research, the author found out that
the bug would allow major sensitive data disclosure about the owner of the device and
unauthenticated access to any malicious intruder who is capable of accessing the server to
which the device connects.

Another interesting example of security issue related to the IoT world is the Mirai
Botnet, which was discovered in 2016. The malware, developed by Mirai, had first to infect
a vulnerable device and would reproduce from that device by looking for other vulnerable
devices, trying to login inside those devices via telnet using some common credentials. The
Mirai Botnet was responsible for many Distributed Denial of Service attacks. Some of
them reached bandwidths like 1 Tbit/s.

In the past, common vulnerabilities in Operating Systems running on consumer-tier
laptops and PCs, would have rarely caused more than some data or financial losses. In the
era of Internet of Things, being all these systems around us, and being them capable of
transmitting and receiving data over the air poses two major problems, as evinced in the

4

1.2 – Memory Corruption and Buffer Overflow

example above:

1. The impact of a vulnerability inside a device can now be worringly high

2. The attack surface available to a malicious attacker is drastically expanded, to the
level that it is possible to compromise one of these devices from another part of the
globe.

The root of these two problems can be spotted in the fact that IoT devices are constantly
connected to the Web, since they have to communicate and monitor remotely different
parameters and collect important amounts of data. IoT devices belong to the broadest
category of Embedded Devices. It is possible to insert in this category all those devices
which are built for special purpose tasks and typically are composed of a system of small
dimensions. These two features come from the strict requirements of the contexts in which
these products are adopted. They need to

• be power-efficient

• fit in small slots/places

• perform (well) a single task

• be subject to stringent real-time constraints

Due to these necesseties, embedded systems often run small stack of software on their
hardware; few are the cases in which they are provided with a full featured Operating
System. Modern development stacks instead, nowadays, engulf different libraries and mid-
dlewares, which are responsible of guaranteeing the most common security features, such
as sandboxing and memory protection. Embedded Devices, on the other hand, run so
called bare-metal applications, which usually have small abstraction from the hardware, in
order to be fast and small. For this reason, they are usually developed in low abstraction
languages, such as C and C++. The adoption of these programming languages enables the
developer to have fine control and total responsibility over memory management. With-
out a Security-by-Design approach, the application will likely have different vulnerabilities
which can be easily exploited.

1.2 Memory Corruption and Buffer Overflow
Memory vulnerabilities are the main means of exploitation in embedded applications cyber
attacks. The principle behind them is that a malicious interactor with the application is
capable of writing into a memory location where she is not supposed to have access to.
Being able to write inside a program memory can have several consequences, but the most
of the time it results in a complete takeover, on behalf of the attacker, over the program
execution. Typically, an attacker aims at exploiting a memory corruption vulnerability in
order to arbitrarily write or read memory portions of the process/program.

One of the main methods of corrupting a program’s memory is known as Buffer Over-
flow. Buffers are regions of memory which are accessed in order to read or store data inside.
One of the most crucial challenges a programmer has to face when developing her code is

5

Introduction

to well design these buffers and allocate for them the correct amount of space. This is not
trivial, as the programmer has to either make assumptions about the length of the data
that the buffer has to store or check at run-time the length of the data before passing it
inside the buffer, which can result inefficient.

If these checks can be somehow deceived or the assumptions can be broken, a buffer
overflow vulnerability is present. The attacker writes more data into the buffer than what
the buffer can hold and the excess data will overwrite a memory region which does not
belong to the buffer. This is also possible and easy for an intruder because of the simpliity
of C in terms of memory management. Being a relatively low-level language, C does not
provide by default any checks on the boundaries of arrays and buffers.

Let us consider the following snippet of C code:
int main(){

char buffer[32];
scanf("%s", buffer);
...
return 0;

}

is vulnerable to memory corruption by buffer overflow because of the function scanf,
which allows input incoming from the user without any constraint on the length. Being the
buffer allocated for 32 bytes of spaces, if the user inputs a string longer than 32 characters,
it will overflow the buffer and corrupt some other memory regions. Typically this, would
result in a segmentation fault which would make the program crash. If the excess bytes,
though, are suitably crafted, the user could overwrite the return address of the function
on the stack and redirect the program counter to a location of her choice.

The one listed above is the most simple form of buffer overflow which is also called Stack
Overflow, because it overflows a buffer present in the stack, possibly overwriting past the
current frame.

A buffer overflow, though, may be sufficient on its own to cause a denial of service in
the program, but not to escalate to any profitable state for the attacker, like Information
Leakage or Arbitrary Code Execution. What is usually done by the attacker is to inject
in memory a Shellcode, which is a sequence of bytes which can be interpreted as machine
instructions. If the attacker manages to inject this snippet and to redirect the execution of
the program to that snippet, she can perform any operation written inside the Shellcode.
The name "shellcode" derives, indeed, from the fact that this snippet is often used to spawn
a command line shell in the context of the vulnerable program and gain flexible control
over the machine.

It is necessary, therefore, to carefully analyze the program and craft a proper payload
to reach any valuable state. Before concluding this introduction, it is important to remark
that buffer overflows are just the first stage of a memory vulnerability exploitation.

What we will focus on in this work is the second stage, which consists in crafting a
payload that manages to takeover the normal control-flow of the program. Thus, any mit-
igation to stack overflows and similar overflowing techniques, is not going to be discussed
in the following pages. The objective of this work is to remark the importance of providing
security solutions which respect the constrains of the embedded world. We do this by
describing a solution developed and presented at our department at Politecnico di Torino.

6

1.2 – Memory Corruption and Buffer Overflow

We do also desire to show the benefits of such a solution by providing a real world example.
We created an environment that reproduces an IoT Smart Access Monitoring system. We
then attack the system by individuating a vulnerability in the firmware running on the mi-
crocontroller. Finally, we apply our security mechanism by showing how it is implemented
and uploaded onto the board of choice.

The following of this thesis articulates on three chapters. In the next chapter we are go-
ing to describe the issue of Code Reuse Attacks, introducing Return-Oriented Programming
and its variants. Next we list and describe some of the most popular solutions belonging
to the category of Control-Flow Integrity. We make a difference between Software and
Hardware Mitigations.

In the third chapter we describe the solution that has been presented at PoliTo, by
listing its goals, and discussing about its architectures, referring to the main article on
which this work is based ??

The last chapter describes the procedure that has been executed in order to exploit a
memory vulnerability on the board. We first introduce the SEcube™ device and motivate
its choice. We then explain how we reached code-redirection with a ROP gadget chain and
demonstrate the effects of this attack. Finally we describe how to synthesize and upload
the design of the CFI monitor presented in ??, and how the adoption of this solution of
our design manages to block the attack we previously described.

7

8

Chapter 2

Background: Code-Reuse
Attacks (CRA)

2.1 The principle
As already mentioned in 1, memory corruption is the first step of an adversary to hijack a
program, and if the aim of the attacker is to redirect the control-flow of the program, she
has two options of attacks:

• Code-Injection

• Code-Reuse attacks

The former is a simple strategy that exploits the memory vulnerability to inject a
payload composed of a series of byte representing the machine instruction the attacker is
willing to execute. Typically, in calling conventions, the return address is written onto the
stack, and if the attacker manages to overwrite that address, she can potentially reach any
points in the code.

In a common Stack Overflow with code-injection attack, the payload that the attacker
would use to perform a simple code-injection resembles the following structure:

1. Optional padding to fill the buffer and smash the stack frame

2. Sequence of bytes which represented the opcode of the instructions that the attacker
intends to execute

3. Address which would overwrite the return address of the vulnerable function and
would point to the beginning of the injected opcodes.

Note that the padding at the beginning has a double use in this mechanism, since
it not only allows to fill the buffer and align the instructions and the address properly
inside memory, but it can serve as a NOP sled; the NOP instruction has the only purpose of
increasing by one the program counter and doing nothing more. If more NOP instructions are
put one after the other, their only effect is to reach as soon as possible the first instruction
which is not a NOP instruction, acting as a sled.

9

Background: Code-Reuse Attacks (CRA)

After the payload has been sent to the victim, the aftermath on the stack memory will
be the one represented in Fig. 2.1 at the right side

Figure 2.1. Stack before and after code injection. The return address is overwritten with
the address of the injected code

Code-Injection is simple and allows the attacker to exploit the vulnerability without
requiring any additional information about the program except for the stack addresses at
which her payload will be loaded. Nevertheless, a simple countermeasure can be adopted to
prevent an attacker from injecting malicious code onto the stack: NXE - Non eXEcutable
stack. This mitigation simply makes stack non executable, thus forbidding any payload
inserted in stack-dwelling buffers to hold shellcodes or other instructions opcodes. If the
attacker manages to overwrite the return address of the unsafe function, the program will
raise an exception and stop. A parallel approach is adopted for the heap section in the
process.

These kinds of mitigation almost annihilate any effort to inject arbitrary instructions
inside the program. This is the main drawback of code-injection, and the reason why
nowadays, hackers prefer to adopt a different approach, when trying to redirect the program
counter.

Code-Reuse Attacks supply to the lacks of code-injection. The principle is to reuse
already existing code inside the program. An intruder would proceed as follows to devise
such kind of attacks:

1. find interesting pieces of code inside the program that perform the wanted computa-
tions

2. retrieve the location of the code snippet and write it to an address which is going to
be put into the PC register

10

2.1 – The principle

The main challenge for an attacker is to find useful snippets of reusable code inside the
program. A common practice for an attacker is to choose functions from the linked library
libc, which is almost certainly present in any program that includes standard libraries.
This technique is generally known as return-to-libc. A program abuser can reach maximum
impact with this technique with an extremely concise payload, by returning to the system()
function, for example. By calling system(), the attacker can execute any other program on
the system, provided that she manages to pass the argument of the executable. A simple
solution could be to pass to an input of the program the name of the desired executable
as a string, or better, as an environment variable. /bin/sh is a good choice, being it short
and providing full access to the system. A graphical example of the situation before and
after exploitation for a return-to-libc attack is shown in Fig. 2.2

Figure 2.2. Exploitation of a buffer overflow for a return-to-libc attack

Defending against return-to-libc is not as trivial as simple code-injection. The attacker
does not execute code on the stack, hence, the simple Data Execution Prevention mecha-
nisms adopted to counteract normal code-injection will not work in this case. Furthermore,
reusing code allows for more complexity, which is limited in normal code-injection by the
fact that the desired instructions must be passed as opcodes.

11

Background: Code-Reuse Attacks (CRA)

2.2 Return-Oriented Programming (ROP)
One of main drawbacks of return-to-libc attacks is that the intruder has no chance of using
more than one function per time, and the degree of control is limited to the control over a
shared library function. Because of this, generally return-to-libc is not considered Turing
Complete, except for some complex variants of the technique, as described in [32]. In order
to mitigate this issue, in [28], Shacam explains a new code-reuse technique, which confers
much more control to the attacker than normale return-to-libc. ROP - Return-Oriented
Programming is a Turing-Complete methodology of exploiting preexistent code in program
memory. Shacam conjectures that in a sufficiently large code-base, the number of available
gadgets will be sufficient to build a chain for any computation the attacker may require.

In order to concatenate these gadgets and create the ROP chain, an attacker has to
dispose the location of the beginning of each gadget one after the other, in order of execu-
tion. After the instructions composing the gadgets have been executed, the ret instruction
at the end of each gadget will pop from the stack an address to be put in the Program
Counter. In a normal function call, the ret instruction would have popped the return
address of the function caller, put there by the call instruction. In the end, the ROP
chain can be seen as a portion of code

Basically, the principle of ROP is to create a chain of small pieces of code called gadgets.
These gadgets are typically ending lines of a basic block, which is a set of instructions
comprehended between two branch instructions. It requires, then, for a gadget to be
such, to end with a branch instruction, more specifically, ret instructions in x86 ISA. In
contrast to return-to-libc, this allows to reduce the number of lines an attacker has to look
for in order to perform a precise task, thus increasing the number of possible operations
permitted. It is demonstrated that with a sufficiently large code-base, it is possible to
perform any computation, and with different flavours.

Hereafter, we will consider an example of a Return-Oriented Programming payload
and its effects on the program memory and control-flow. Let us first observe the same
vulnerable piece of code:

void func(){
char buffer[32];
scanf("%s", buffer);
...

}

This snippet carelessly takes an input from the user and passes it to the buffer without
any boundaries check. The stack layout of such code is shown in Fig. 2.3

The malicious user simply has to fill the first 32 bytes arbitrarily plus 4 additional bytes
to overflow also the frame pointer. She then closes the payload with two addresses which
will be the gadget addresses. Fig. 2.4 describes the structure of this simple payload

We assume that the array buffer is the only variable allocated in the current stack
frame. After the payload has been moved inside the buffer by scanf, the first four bytes
after the sequence of 32 ’A’s will overwrite the frame buffer (we are still considering an
x86 architecture here, but this scenario is the same on other platforms too, like ARM).
The other 8 bytes represent the address at which the gadgets are located. When the ret
instruction will pop the first address, the processor will fetch the instruction at that address

12

2.2 – Return-Oriented Programming (ROP)

Figure 2.3. Stack before payload injection

Figure 2.4. Payload Example of a ROP attack

and then it will return as well, popping the next address. Fig. 2.5 clearly illustrates the
order of execution of the program after exploitation.

Figure 2.5. Stack’s situation after ROP

We have discussed up to here Return-Oriented Programming in x86 machines, which
provide the ret instruction to recover the return address from the stack and jump to the
instruction after the procedure call. Not all architectures have an explicit return instruc-
tion. It is the case of ARM processors. ARM ISA does not feature any ret instruction.
Instead, the calling convention for ARM demands that the return address is stored in the
ldr register before branching to the procedure. The ldr register is then pushed onto the

13

Background: Code-Reuse Attacks (CRA)

stack along with other registers. Before returning, the corresponding pop will place the
content of the ldr register inside pc, thus imitating the behaviour of a x86 ret.

MOV ldr, [pc, 8]
BX r0 #r0 contains procedure address
...

procedure preamble
POP {r0-r4, r7, ldr} #save ldr
...

procedure ending
PUSH {r0-r4, r7, pc} # take value previously in ldr into pc

The working principle of ROP is the same, the difference is that the algorithm of finding
gadgets has to take in consideration different structures for returning instructions.

Finally, it is worth mentioning that there exist variants of Return-Oriented Program-
ming, that are based on the same concept of gadgets, but they exploit simple branch
instructions like jmp, bx, call, and others. Researchers have developed new techniques
like Jump-Oriented Programming - JOP [4] and Call-Oriented Programming - COP [26].
The former uses jmp instructions and chains the gadgets with a dispatcher gadget, which
is a point to which a jumps at the completion of its execution and from which the next
gadget will be reached. The second uses gadgets that end with a call instruction. These
techniques allow to overcome some defense mechanisms developed to detect ROP, like
DROP [9] and DynIMA [15], which alert the system in case too many ret instructions are
executed one after the other.

Beside specific mitigations for each variant, in literature there exist plenty of disser-
ations and methodologies to implement Control-Flow Integrity. These techniques aim at
guaranteeing protection against code-reuse and code-injection attack. They achieve this
by building a model of the Control-Flow of the program and assuring that it is respected
during execution. We shall look now at the two broad categories of these techniques:
Software-Implementation and Hardware-Implementation of Control-Flow Integrity.

2.3 Code-Reuse Attacks Mitigations: CFI
We have analysed so far different possibilities of Code-Reuse attacks and some possible
defenses. The truth is that no mitigation mentioned so far is capable to stop completely
Code-Reuse Attacks. In the following lines we are going to analyze a vast category of
CRA defense mechanisms: Control-Flow Integrity - CFI. CFI tackles the principle of code
redirection by building a model of the Control Flow of the program: the Control-Flow
Graph - CFG. Before we enter into the details of the concept of CFG, we shall better
explain basic-blocks. Basic blocks are the snippets of instructions that are comprehended
between two branch instructions. A CFG is a directed graph of which nodes are basic blocks
of the program and edges are the different branches operation. Hence, an edge connects
two basic blocks if there is a branch instruction from one to the other. Fig. 2.6 shows an
example program and its corresponding CFG.

The objective of a Code-Reuse Attack is essentialy to violate this graph, by reaching
nodes from others with paths that are not present in the original CFG. Stated this way, the

14

2.3 – Code-Reuse Attacks Mitigations: CFI

Figure 2.6. Example of Control Flow Graph

scope of Control Flow Integrity is to assure that the CFG is not violated with unforeseen
branches and in case halt the system or reestablish the normal flow of execution. Therefore,
a CFI solution has to:

1. Build ahead of execution a CFG of the program

2. For each branching operation, check if it is whitelisted in the edge table of the graph

3. Perform action in case it is not allowed.

2.3.1 Software-based Mitigations
Since CFI enforcement has been first implemented in software, we analyse some software
solutions in this section. The first proposed implementation is the one from [1], where
Abadi et al. describe a solution based on simple Code Instrumentation. In their paper,
they show two alternative methods to wrap branch operations with some machine code
that checks whether the destination of the jump is valid.

Note that it is not necessary to instrument any single branch instruction, since those
instructions that are eligible victims of CRA are those that take a computed argument
that can be manipulated by an attacker, like jmp eax. Thus, the instrumentation has to
be performed only on indirect jumps.

Still, the Control Flow Graph pruned of direct jumps can be still very complex for
certain programs, and this produces an invalidating overhead on the execution. Therefore,

15

Background: Code-Reuse Attacks (CRA)

Figure 2.7. Branch Instrumentation proposed by Abadi et al. in [1]

once the principles of CFI were established with Abadi’s work, the objective of researchers
has been from that point on to improve implementation efficiency.

Two other solutions, notorious in literature, are Control-Flow Locking by [3] and Control-
Flow Lazy Check by [8].

In Control-Flow Locking, the principle is to protect branching sites with locking and
unlocking operations. This is similar to mutexes, though, in [3], the authors suggest that
atomicity and waiting are not two necessary conditions. The first and simplistic approach
they show is to use as locking variable k a key which can be 0 or 1. The locking opera-
tion (k = 1) will be performed before each indirect branch, while the unlocking operation
(k = 0) is performed after each valid indirect transfer target. Of course, before acquiring
the lock, it is necessary to check the the lock is available (if(k != 0) abort();). This
means that the attacker’s freedom of redirecting code is greatly limited to valid control-flow
transfer sites.

According to the authors, it is possible to reach full CFI enforcement with a key with
multiple bits. The locking and unlocking operation, in this way, can make distinction
between

• directly-callable functions return instruction

• indirectly-callable functions return instruction

• indirect function calls or jumps

The actual implementation of the different typologies is show in Fig. 2.8, which is taken
from [3].

In SPEC CPU2000, the second methodology proves to give less overhead in general
with respect to the first solution proposed by Abadi et al.. In terms of security, in [8],
the authors claim, though, that in Control-Flow Locking, an attacker can "redirect control
flow to the assignment instruction in the lock code, so the multi-bit control flow locking
is turned to be the single-bit one" [8]. Chen et al. have proposed, in the same work, a
different approach, called Control-Flow Lazy Check. This solution, as the name suggests,

16

2.3 – Code-Reuse Attacks Mitigations: CFI

Figure 2.8. Code Instrumentation proposed in [3] in the different typologies of
control transfer sites.

aims at detecting Control-Flow violations after the control transfer has occured and before
the the code can branch again from that site. Control-Flow Graph is built with an array
of pairs of addresses. The first address is the address of the current indirect branch, while
the second is the address of the next direct or indirect branch. This pair is inserted in the
array for each two consequent branches (of which the first has to rigorously be indirect).

Figure 2.9. Layout of K

During execution, the code is instrumented with various checks around each branch
instruction. A small container, named K in the paper, represented in 2.9, stores information
of current and previous branch during runtime. At each branch, it is checked on K whether
the previous branch was a direct or indirect branch. In case it was not, the current branch
address is stored next to the previous branch address. The two addresses are compared to
the addresses of the corresponding entry of the CFG, and if they do not match, then code
redirection is detected. In order not to allow the attacker to tamper with the checking
code, a lock-unlock mechanism wraps everything.

The authors of the paper have called this method fine-grained, since these checks are
present at every branch site. They noticed that this solution brought also unacceptable
overhead to the execution of programs. For this reason, they came up with the idea of
coarse-grained Control-Flow Lazily Check. In this case, the main checking operation is per-
formed every two direct branches. In [8], the authors claim that for an attacker who wants

17

Background: Code-Reuse Attacks (CRA)

to perform a complete intrusion, she has to reach a system call. This assumption makes
possible the relaxation of checking the code between two direct branches. As depicted in
??, K now stores the sequence of indirect branches between two direct branches. Whene
the sequence concludes (a direct branch is reached), the indirect branches sequence up to
that point is checked against the one present in the CFG, at the corresponding entry

Figure 2.10. Layout of K in coarse graind CFLC

To conclude the discussion about Software mitigations, [8] presents a table describing
the response to different attack techniques of the various methodologies explained until
now. It is possible to notice how this last two approaches grant protection also against
shellcode injection. The table is here reported in Fig. 2.11

Figure 2.11. CFI Software Implementation comparison

The main drawback of software approaches is still unsolved, because each of them, in
relation to the structure of the program they instrument, gives an overhead which in some
cases may be unacceptable. These are not the only solutions based on software, of course.
There exist some other techniques that are more platform or OS dependant. We are not
going to discuss about them, but just to cite a few, [14], [19], [18], [33] are implementations
of CFI methods which strongly depend on the Operating System and on the architecture
([14] and [18] are specific to smartphones).

In the next section, we are going to explore some hardware solutions and compare the
performance impact with respect to the software counterparts.

18

2.3 – Code-Reuse Attacks Mitigations: CFI

2.3.2 Hardware-based Mitigations
In literature, many hardware based solutions have been proposed. In contrast to software
solutions, modifications or extensions of the existing architectures are necessary. This
makes hardware implementations hard to develop, test and deploy. We are going to discuss
some of them in a wider perspective, dividing them by categories.

The first kind of hardware implementations is based on the encryption of the return
address or the target instructions of an indirect jump. In this scenario, we find works
like [21] and [25]. The two papers describe similar approaches, but with slightly different
circuitry implementations. In Fig. 2.12, a general schema of the protection mechanism is
showed.

Figure 2.12. General schema of Branch protection through encryption

It is necessary to make a distinction between function calls and jmp instructions while
considering this approach. When a call instruction is executed, along with the normal
effects on the stack and the program counter, the additional modules described in those
works encrypt the return address and push it onto the stack. In [21], there is an additional
stack to which these encrypted addresses are pushed, while [25] simply pushes them onto the
standard program stack. When ret instruction is executed, the encrypted return address
is popped, decrypted and stored in the program counter. In case of a ROP attack, if the
attacker has tampered with the address onto the stack, it will result in an invalid address

19

Background: Code-Reuse Attacks (CRA)

when the decryption module will decrypt it and the program will fail. In [21], the address
is popped from the second stack, decrypted and then compared with the address present
on the normal stack. If there is a mismatch, code-redirection is detected.

In [10], a different approach is adopted. The authors theorize a modification to CPUs
by paring each byte with a taintedness bit. These bits are used to instrument CPU registers
and memory. Whenever the bytes come from external inputs, like keyboard or network,
their relative taintedness bits are marked. The general principle that the authors suggest
is that no tainted byte should end into the program counter. This method requires not only
a radical change of internals of processors and memories, but also operating systems’ APIs
shall provide support for such functionality and mark as tainted bytes that come from
certain sources.

Another family of solutions make use of the open source architectures OpenRisc and
RISC-V, which provide processors’ architecture implementations under open source license.
This makes theorization of hardware solutions simpler for researchers. In this environment,
we are going to discuss about three solutions which present security mechanisms against
ROP and other code-reuse attacks. The above mentioned articles are [16], [5], [2]. They all
have in common an approach to defend against ROP attacks, which is a Shadow Stack. This
stack is only used for function calls and preserve the integrity of the return address. For
example, [2] implements the secondary stack with an additional module inside the cpu. The
module provides custom instructions which allow to store and retrieve the return address
and syncrhonize with the system stack. When the return address is pushed onto the normal
stack, this is also pushed onto the secondary stack. When the function returns, the address
is now popped directly from the secondary stack. In [5], the process is similar, though,
when returning from the procedure, the address stored in the secondary stack is XORed
with the original stack address. This allows to detect an intrusion, and act accordingly.
The authors in [5] also describe a Finite State Machine which synchronizes the circuitry
of the second stack with the execution of the program. In [16], FIXER also pushes the
return address on the stack and compares that with the one stored on the original stack.
The paper also mentions how the code shall be instrumented during compilation phase to
allow the configurable module to interact with the code. Instrumentation code is put at
function calls and return instructions and it consists in tags that are expanded preliminarly
to compilation. Tags expansion parses the assembly code and inserts instructions specific
to the configurable module.

In [16], forward-edge protection is also implemented via a "policy matrix", which con-
tains, for each function in the program, entries corresponding to the functions that it can
call via function pointers.

Along with solutions that make use of a secondary stack to protect return addresses and
function calls, there is in literature another model of mitigations, which aims at protecting
the entire basic blocks inside a program. In order to do so, it is necessary to collect infor-
mation about those basic blocks premiliminarly to code execution. The following solutions
all present a method to collect information and metadata about the program execution.
For the sake of the discussion, we are going to focus on the impact that the solutions have
on the existing hardware designs and on the implementation of the basic block protection.

The authors in [7] present a solution implementing a module external to CPU. The
interfaces with the main processor send to the module program counter updates and in-
structions, while the module responds back with possible Control-Flow exception. In Fig.

20

2.3 – Code-Reuse Attacks Mitigations: CFI

2.13 it is possible to observe the general schema of the internals of the module.

Figure 2.13. Implementation of external module presented in [7]

The precomputed hash is taken from the SCache and then it is compared with the
signature computed at the end of a basic block. As soon as instructions are decoded,
they are fetched by the CFI co-processor and the cumulative signature is computed. It is
important to notice that this implies computation of signature with instruction prefetched
for branch prediction. It is then important to evaluate the result of the hash comparison
on the basis of a misprediction of the branch. If the branch is taken, instead, a mismatch
will be signalled to the CPU as a Control-Flow Exception.

In [12], a similar approach is taken. The run-time hash is alwasy computed at the end
of the basic block. What changes here is that along with the basic block instructions, there
is also some metadata inside the hash computation, which contains information about
branches and calls.

Another class of solutions proposes changes in the branch-prediction mechanisms inside
scalar and super-scalar processors. In [20] and [29] this direction is followed as well. Branch-
prediction is what allows modern CPUs to fetch instructions located at the target of a
conditional branch and start processing those instructions, even if the branch will not be
taken; in such a case, the CPU will simply revert its status at the point before the jump,
and will now fetch the correct branch of instructions. The number of cycles wasted in the

21

Background: Code-Reuse Attacks (CRA)

pipeline is the same as if the processor had stalled until the branch was evaluated. In the
case, though, the prediction was correct, no cycles in the pipeline have been wasted, and
the result of the speculated instructions can be commited.

The author of [20] establishes its work in this spectrum. By exploiting the already exist-
ing branch prediction mechanism inside processors, the authors propose a module parallel
to the Branch Prediction Unit - BPU. The link between CRAs and Branch Mis-predictions
in instructions execution lies in the fact that the former indistinguishable from the latter,
from the BPU perspective. If considering normal execution, branch mis-predictions are
accounted as standard. When considering, though, unintended program behaviours, any
branch mis-prediction can be considered a potential intrusion. In [20], a Mis-prediction
Validation Unit is put beside the BPU. When a mis-prediction is discovered, the MVU
checks if it was due to an invalid code redirection. It is of course necessary to provide the
module with a list of valid branches, in order to validate the mis-prediction. The authors,
though, do not provide any further detail about the Control Flow Graph generation.

Figure 2.14. Mis-prediction Validation Unit. Image taken from [20]

In order to conclude this disseration about techniques to protect from Code-Reuse
attacks, we are going to include in the list of hardware solutions the works presented in
[11], [13], [30], which all have in common the extension of the Instruction Sets of the SPARC

22

2.3 – Code-Reuse Attacks Mitigations: CFI

processors to implement CFI solutions directly in hardware. The additional instructions
provide protection mechanisms similar to the ones discussed in all other solutions; the
point here is that code instrumentation is directly interpretable from the processor as
machine code, that will act directly on the hardware modules used to offer the protection
mechanisms (like shadow-stacks).

After having acquired a wider panorama of the current state of the art, it may be easier
now to understand where the solution that we are going to explain in the followings of this
thesis work can be positioned. As better explained in section 3.6, the solution presented
at our department tries to embody some of the advantages both from the software and the
hardware typologies.

It should be clear though at this point, that there exists no solution which can guarantee
CFI at low cost. The trade is basically between performance and hardware complexity.
It is also important to keep in mind that any solutions may provide false positives, thus
detecting CFI violations where they actually don’t exist. Finally, nearly all solutions
require code instrumentation before letting the code run under the protected environment.
The extrapolation of a CFG is fundamental in order to guarantee a correct detection of
intrusions. It is indeed an active area of research, the creation and implementation of the
CFG. In the area of embedded systems, where memory availability requirements may be
quite stringent, it is crucial to devise a CFG which does not occupy considerable space.

23

24

Chapter 3

FPGA-based Control-Flow
Integrity (CFI) for
Microcontrollers

3.1 General Features
In the wide spectrum of the solutions we have presented so far, the CFI technique that this
work aims at describing is to be considered as a hardware solution, while of course, some
software integration is required. This solution is conceived to be implemented mainly on
embedded systems. The target for which it was developed is the ARM family of micro-
controllers and it assumes that the firmware to be protected runs on bare-metal, without
an Operating System.

The majority of the information that is going to be reported in the following pages
comes from the work of Prinetto, Maunero and Roascio in [24].

As the title of their work suggests, the main requirement for this solution to be im-
plemented is a reconfigurable hardware module, like an FPGA, which the microcontroller
can communicate with. The advantages of having a module which does not feature an
immutable design are obvious, while what is most valuable from hardware solutions, i.e.
performance, must be kept. According to [31], it is expected to see FPGA spread and
become increasingly more popular. FPGAs allow to deliver more computational power to
devices. The ease of developing dedicated hardware with lines of code is becoming more
and more valuable, in a world which sees IoT and 5G as leading technologies at the horizon.

The most used communication scheme between microcontroller and FPGA sees the
FPGA memory mapped, and the CPU can access it via writing or reading to an address.

Given this trend, we claim that it is possible to implement a security solution to guar-
antee control-flow integrity which features several advantages. First, we want to protect
embedded systems with microcontrollers, without the support of any OS-provided secu-
rity feature like ASLR, privileged execution levels and such. In the embedded world, as
already mentioned in chapter 1, space and computing resources are rather limited, so the
first characteristic a security solution should have is to be able to be run on bare-metal.
Often, the strict timing requirements, like in real-time systems impose the use of software

25

FPGA-based Control-Flow Integrity (CFI) for Microcontrollers

which does not make use of abstraction. It is, then, important to provide a solution which
does not heavily impact performance, thus it is the least invasive possible.

Though nowadays, open hardware designs are available, and any company with good
profits can develop and create its own custom microcontroller, the expenses of engineering
and production can still be very hard to front. This is why an FPGA-based solution which
is architecture, board and platform independant is optimal.

Many solutions presented in ?? relied on creating and storing secrets. It is however pos-
sible, with sufficent means and costs, to overcome the memory and IC protection defenses.
Our solution does not use any kind of key or challenge and overcomes this threat.

Finally, as described in [23], it is important to take in consideration interrupts, which,
being asynchronous, can happen at any point during program execution, compelling control-
flow integrity solutions to reconsider many assumptions about branch targets.

3.2 CFG Edges Identification and Categorization
The solution we are presenting here includes specification on how to instrument the code
to be protected. Code Instrumentation, as already seen in chapter 2, in Control-Flow
Integrity, means to wrap crucial points with some labels/instructions that support or give
information to the main protecting algorithm. Here it is not different. First, though, we
have to carefully understand what are the points that require code instrumentation.

The Control-Flow Graph is made of nodes and directed edges. Being the nodes the basic
blocks of the program, the edges represent the control-flow transfer among these nodes. A
first classification of edges is:

• forward edges

• backward edges

The former are representing jumps and function calls, while the second are function
returns. In terms of CPU operations, in forward edges, the jump/call instructions simply
take an argument which is the address or the relative offset of the location at which the
edge points. This location is called the target of the edge. This practically results only
in the modification of the program counter. Backward edges instead, having to return
to a location which was previously computed/store, take their target from data memory
(typically from stack).

It is then necessary to differentiate direct edges from undirect edges. Direct edges are
edges representing jump/call instructions which have as argument hardcoded labels or
addresses. Indirect edges are the edges where the target has to be computed and passed
to the jump or call instructions by register or memory.

Direct edges do not require any kind of protection. They are secure by default, as long
as the code section is not writable. Indirect edges instead require further discussion. In
[24], the authors, after a series of assumptions in line with the characteristics of embedded
devices, arrive at the conclusion that, quoting, "it is always possible to list all the destina-
tions of all the edges of a CFG". Hence also indirect edges can be classified as secure, in
specific conditions. In order to arrive at this assertion, let us introduce the origin tree. The
origin tree is a representation of data dependancy of the content of a register or memory
address. In Fig. 3.1, an example is reported.

26

3.2 – CFG Edges Identification and Categorization

Figure 3.1. Code Snippet and origin tree of the R3 register

At the root of the origin tree there is the register of interest of which we want to trace
the origins back. The nodes are the memory locations or register that have contributed in
the current content of the register. This representation, thus, allows us to spot potential
vulnerabilities in the construction of a value of a register. The leaf of the tree are locations
where it is not possible to trace back anymore because either are constant values or are
inputs taken from the outside of the program. Here the authors of [24] assume that

• The entire program binary is stored in memory, statically linked.

• Code is immutable

• External inputs are never used directly as code pointers

Under these assumptions, it is possible to derive some conclusions. Being the program
statically linked and present in memory in its wholeness, "the construction of the origin tree
is always possible, no matter the complexity in constructing it" [24]. We can also deduce
that, if code is not writable and no function pointer can be arbitrarily crafted directly from
the user input, "the set of targets of an edge is always finite and enumerable" [24]. With
these postulates, we have now the means to identify what are secure and insecure edges. It
is straightforward, as already seen in the previous chapter, that direct edges, which take a
constant value as target location, are secure by nature. If code memory cannot be modified,
that instruction will always jump to that target, thus its origin tree will be composed by
a single node. In the case of indirect edges, we can make a further distinction, in contrast
with the other works we have presented so far. Not all indirect edges have to be considered
vulnerable. Indeed, with the help of the origin tree, we can trace back the origin of a
value and look inside the tree if that value was tainted at some point. This is similar to the
approach taken by [10], but we are not considering any fundamental hardware modification
here.

Now the challenge is to understand how can we identify the nodes where the value of
the root can be tainted. A conservative approach is to look for nodes which are present
in the data sections of the binary, being them the only areas where the code can actually
be modified by the user. This would still overshoot the problem, but up to now, there is

27

FPGA-based Control-Flow Integrity (CFI) for Microcontrollers

no other solution to be more precise and identify vulnerable points. It would necessitate
to have a pattern recognition mechanism, backed by a database of vulnerabilities, that is
able to recognize portions of code that may actually be considered dangerous. As there is
no such kind of techniques that is consistent and reliable enough, the authors of [24] have
decided to adopt a conservative approach in the implementation of their solution, which
anyway is much less conservative than the majority of the solutions taken in consideration
up to now. Note, for example, that a backward edge, representing a return operation, is
always an indirect branch, but it is not necessarily insecure. In ARM instructions, if the
return address is stored in lr at the beginning of the function, and that register is never
pushed onto the stack, that will still be a secure edge, according to the origin tree.

3.3 The Problem with Asynchronous Calls: ISRs
Up to this point in the discussion, we have considered CFI as a property to be guaranteed
in the context of applications executing in a relatively predictable and determined state.
The flow of execution, as intended by the programmer, if well coded, has a finite number of
branches with a finite number of target each. In such an environment, this is assumptions
are enough to theoretically protect Control-Flow. In practice, there are many contexts,
where the flow of execution is not predictable by design. It is the case of asynchronous
interrupts. Interrupts are now a wide-spread feature also for embedded devices, to be
considered essential in the case of real-time systems.

The main challenges to be front when dealing with Interrupt Service Routines are the
following:

• Asynchronous function call

• Context Switch

The first challenge is the one that causes major problems in our scenario. The solution
in [24], as many others, relies on code instrumentation in critical points of the code where
a branch instruction may be manipulated from an attacker. Withouth any unpredictable
behaviour, it is already challenging to identify these points. Now that we are introduc-
ing an undeterministic factor, the asynchronous interruption of code-execution completely
invalidates all the static analysis assumptions taken on the code in the offline-phase.

The second challenge is that, when serving an interrupt request, the currently running
execution context has to be preserved, since likely the current procedure or task will not
have reached a final state. This is why registers that are fundamental to the current context
have to be preserved. When an interrupt is raised, modern processors and microprocessors,
(e.g. the ARM Cortex-M series) automatically perform a Context Switch. This operation
saves onto the stack the main registers (in case of ARM processors, r0, r1, r2, r3, r12,
lr, pc and xpsr are pushed), and then load the address of the interrupt service routine
inside the program counter.

This means that a memory vulnerability inside the interrupt service routine can be
exploited by an intruder, which can now manipulate not only the return address, but also
other registers like the status registers or registers containing function arguments.

If not by disabling interrupt, or by using polling methods to verify peripheral states, a
technique to preserve context is necessary.

28

3.4 – CFI Monitor Architecture

3.4 CFI Monitor Architecture

Figure 3.2. CFI monitor Architecture. Image taken from [24]

The monitor architecture, depicted in Fig. 3.2, is based on a High Level State Machine
synthesized onto an FPGA. The interface of the monitor with the CPU consists of:

• A bus from the CPU transmitting data

• A bus from the CPU transmitting addresses

• A single-bit line which can raise an interrupt in the CPU

This simple interface is what makes this solution simple to implement in existing archi-
tectures. In order for it to work, a simple write instruction (e.g. a store) has to be issued
from the CPU. This instruction sends on the bus an opcode which will be interpreted from
the monitor in order to execute the proper operation.

Internally, the FPGA is composed of:

1. CFG edge table

2. label ID stack

29

FPGA-based Control-Flow Integrity (CFI) for Microcontrollers

3. register stack

The first table is prefilled in the offline phase with the valid edges that constitute the
CFG. The second is a stack where the different call location IDs are pushed. This stack is
similar to the one described in other solutions in section ??, and it serves similar purposes.
When a function is called, but it may be called in different code locations, this stack allows
to correctly identify the caller ID, in addition to verifying that the return address belongs
to a valid edge address pair. It is also useful when different functions are called one from
the other and stack frames start to increase.

The last stack is the register stack, which is used to save the execution context before a
context switch. The registers that are automatically saved onto the stack when an interrupt
request arrives to the CPU are automatically saved onto this stack as well. When returning
from an interrupt service routine, these registers will be restored from this stack.

All these components are managed and orchestrated by the Central Control Unit, which
receives signals from the CPU and is in charge of sending interrupts to the CPU in case
the HLSM reveals an invalid code-redirection.

Since the checks performed by the CFI monitor happen in parallel with respect to the
normal execution of the CPU, if strict timing constraints are not set, an attacker could
redirect code where instrumentation is not present and still be able to execute some instruc-
tions. For this reason, the CFI monitor, triggers a stringent timer that takes into account
the execution of branch instructions and instrumentation code. When the timer expires,
the CFI monitor expects to receive data regarding the target of the branch instruction. If
no data is received during this interval, the CFI monitor will halt the system, alerting that
an invalid code-redirection has happened. CPU and FPGA share the same clock source,
so the monitor simply has to consider how many clock cycles each instruction of the code
instrumentation adn branch instruction take. While executing instrumented code, inter-
rupts have to be disabled, since this would certainly make the timer expire without any
target code instrumentation being sent.

Finally, after the offline phase, where the FPGA monitor is set and code instrumented,
any read or write operations to the FPGA are disabled, so that it is not possible in any
way to modify or tamper the structure of the CFI monitor.

3.5 Phases of the Protection Mechanism
The protection mechanism of our solution is divided in two phases, as described in [24].
The first phase is an offline phase, which is executed before that the code is run on the
system. This is a crucial phase, since the structure and critical points of the binary that
will be executed are analyzed. When the code is run, the online phase starts. Here is
where all the preparation of the offline phase will be exploited to guarantee protection
against code-reuse attacks. The code instrumentation previously laid on the binary is now
executed at every critical point and it will put the CPU in communication with the FPGA,
by sending addresses and data.

Let us first see what code instrumentation generally does. After the program is compiled
to assembly code, a static analysis tool will be used to spot critical points, which are the
points where edges that need protection in the code lie. After these have been identified,
the corresponding source and target basic blocks are given a unique label ID, which may

30

3.5 – Phases of the Protection Mechanism

be the hash of the basic block position in the code. These labels serve to identify edges by
basic blocks pairs, which will be stored inside the Secure Edge Table, described in section
3.4. After labels have been created, the code is instrumented on the base of the typology of
critical point. There are 9 possible critical points types, each of which may need different
instrumentation. They are listed in [24]

1. Forward edge with single target: before the control-flow transfer happens, the ID of
the source basic block is sent to the monitor, while the ID of the target basic block
is sent after the transfer. These two IDs will be used to generate a pair representing
an edge which will be looked up in the Secure Edge Table. If the search misses, the
transfer is invalid and CPU will be halted due to code-reuse intrusion.

2. Backward edge with single target: this case is not much different from the above one,
since it is a simple branch which can end only in one point in the code

3. Forward edge with multiple targets: when a basic block can branch to different targets,
all of the are instrumented, and in Secure Edge Table, there will be many entries with
the same source BB and different target BBs. In this case, it is not possible though
to exactly predict where the branch should end, as this requires complex dynamic
analysis. Still it reduces strongly the availability of gadgets in the hands of the
attacker.

4. Forware secure edge to a function with backward edges with multiple targets: This
Critical point does not need protection, because the branch cannot be manipulated,
but since the function been called is capable of returning to multiple locations, it is
necessary to save the caller ID. This will be pushed onto the Secure Label Stack, in
order for it to be retrieved later when the function returns.

5. Backward edges with multiple targets: This is the follow up of the previous situation, in
which a function with multiple potential callers has been called. In order to recognize
who called it, the ID of the caller is popped from the Secure Label Stack. If the
caller ID does not correspond to the target ID, an exception is raised and execution
is halted.

6. Forward edges to a function with backward edges with single target: Since the source
BB here has to be protected, the BB ID of the caller is sent to the monitor and will
be checked if the target is a valid target. The same operation will be performed when
returning from the function

7. Forward edges to a function with backward edges with multiple targets: Same as above,
and the function ID label will be pushed onto the Secure Label Stack.

8. Entry point of an Interrupt Service Routine: All interrupt service routines are in-
strumented at their entry points. The instrumentation performs a series of store
operations that save all the registers that are automatically pushed onto the stack
when a context-switch happens. These registers are saved onto the Secure Register
Stack.

31

FPGA-based Control-Flow Integrity (CFI) for Microcontrollers

9. Exit Point of an Interrupt Service Routine: When returning from an ISR, a number
of load operations equal to the number of store operations performed at the entry
of the ISR is executed, restoring the content of the registers as it was before the
context-switch. These values popped from the Secure Register Stack is compared
with the content of the register present on the original stack. If they are different, an
intrusion is detected.

When the analysis phase is completed, an instrumented binary and a file containing
the edge table will be generated. This file has a .mif extension and will be given to the
synthesizer in order to generate the ROM that will constitute the Secure Edge Table. The
Synthesizer creates a bitstream which is passed to a secure boot loader, which sets up the
connection between the CPU and the FPGA and sends the bitstream (contained inside an
array) to the FPGA, in order to program the monitor.

In Fig. 3.3 a summary of the phases described until now is present.

Figure 3.3. Offline steps, image taken from [24]

3.6 Advantages of the Hybrid Approach
When discussing about the category of mitigation this solution belongs to, we may say that
it is both a hardware and a software solution. It possess the most important features of
both the categories, and tries to reject their disadvantages. It is based on code instrumen-
tation and on an additional hardware module. Software solution applications may result
in excessive overhead for certain types of systems, because in order to obtain the desired
robustness and protection, many instructions per branch should be added. Depending on
the nature of the binary instrumented, the overhead will scale proportionally with respect
to the number of branches present in the code. Even if the assumption that some branches
do not require protection is taken, this may still be not sufficient to have a measurable
degree of control over the overhead. This is the fundamental flaw of software solutions. In
solution presented in [24], code instrumentation is present, and so is the overhead, but it
is extremely reduced to the necessary instructions that are required to perform a store
operation at a certain address.

32

3.6 – Advantages of the Hybrid Approach

In hardware solutions, there is no such overhead, due to the fact that dedicated hardware
takes care of the meaningful functions. Nevertheless, hardware is fixed and immutable. Im-
plementing a solution in hardware fits only one platform, requiring to implement a different
design for different architectures. In solutions described in ??, some of them redesigned
various internal stages of modern CPUs. This extensions/modifications of already proven
designs is expensive and requires producer to add support for such functionalities.

Our solution avoids these problems by mixing the two approaches. Having a reconfig-
urable hardware module makes it possible to synthesize a design and change it whenever
an update is needed, all without degrading performance, which is hardware mitigations’
apanage. With reconfigurable hardware modules it is always possible to implement new
opcodes, new data structures and correct errors. Another advantage of this solution having
two separate components (i.e. code instrumentation and on-FPGA protection mechanism),
allows to deploy the same FPGA design on different platforms, by just adapting code in-
strumentation to the current architecture.

The other advantage of inheriting software mitigations peculiarities lies in the fact
that it is possible to trade between performance and security. It is indeed only necessary
to instrument branches that are critical from the security point of view while leaving
unprotected those that are critical performance-wise. According to [24], this choice could
be justified by the fact that those branches that require not to be overloaded with protection
instructions can be effectively engineered differently, in the attempt to fundamentally patch
vulnerabilities.

Our solution, in the end, does not provide the highest performance or greatest adapt-
ability and scalability, but aims at being the most practical and efficient way to properly
deploy a CFI solution which does meet performance constraint of all possible systems
typologies and is flexible enough to be widely adopted by manufacturers without grand
efforts.

33

34

Chapter 4

A Real-World example: Attack
and Protection of the
SEcube™ Chip

4.1 Device Architecture and Features
After a theoretical discussion of the inner workings of the CFI monitor, the goal of this
thesis work is to demonstrate practically the implementation of such method onto a real
embedded system. As already mentioned, in order for this solution to work, a particular
hardware configuration is required: a microcontroller which is capable to communicate
with a reconfigurable hardware module to exchange sensitive data with, as briefly depicted
in Fig. 4.1.

Figure 4.1. Simple communication schema between CPU and FPGA, taken from [24]

The solution we resorted to was the SEcube™ chip, provided by Blu5 Group®. It is a
3D System-in-Package, providing the following features:

35

A Real-World example: Attack and Protection of the SEcube™ Chip

• A STM32F4 microcontroller with an ARM Cortex-M4 core, 2MB of Flash and 256
KB of SRAM

• A MachX02 FPGA by Lattice Semiconductor™ with 240 KB of SRAM and 7000
4-bit LUTs

• An EAL5+ Certified Smart Card

The STM32 family of microcontrollers is wide-spread in the field of embedded systems,
so this architecture was chosen also because it reflects a real-world scenario. The SEcube™
comes with an Open SDK, available at [27]. The SDK provides core functionalities for the
main purposes of the SEcube™, which is intended to be use as a slave in conjunction with
a host to which it provides security features like key-management and encryption.

As we will see in the following sections, we have developed on top of this SDK func-
tionalities that mimic those that may be required in a real-world example, in the field of
IoT.

4.2 Study Case: A Smart Access Monitor
In order to demonstrate the impact of an attack to such kind of systems and the value of
a simple and efficient defense, like the one we presented aims to be, a practical example of
how the SEcube™ can be deployed, attacked and then protected has been prepared. As
a disclaimer, it is important to note, that the work done in preparation of this example
has been developed from ground-up, for what it concerns functionalities which were not
implemented in the Open Source SDK bundled with the SEcube™. No pre-existant code
was attacked and the vulnerabilities which were exploited were implemented on purpose
and tailored to better represent the risk of a breach inside such systems.

The study case that we have presented is the example of a Smart Access Monitor,
which may be present inside smart buildings. Such a system should be designed in order
to provide different security features, depending on what it is put at the edges of. It may be
used to protect the access to an area which is confidential, and as such, requires a limited
number of people, with certain privileges, to have the authorization to enter. This is the
case in almost every building that hosts offices, hospitals, military and industrial facilities
and many more.

In the context in which this thesis work is being written, where COVID-19 has spawned
the necessity to limit the number of individuals lying in a certain space, this monitor could
be in charge of controlling the access to an area, counting the number of people that have
entered it and denying access to any excess person.

In these use-cases, corruption of the system would not only mean the dismantling of the
security features that it intends to guarantee, but also the arise of new threats, like data
breaches including sensitive information about actors and denial of service. For example,
in the case of a company office, a successful attack on a smart access monitor from an
intruder could be used not only to grant access to actors who normally would not have it,
but it could deny access to people who rightly should be able to enter that area or it could
hand information about individuals that are registered inside the database of the system.

In this work, we have imagined a Smart Access Monitor that grants or denies access
on the basis of the rights that a user has to access a specific area. This means that the

36

4.2 – Study Case: A Smart Access Monitor

Figure 4.2. Here the architecture of the monitoring system, as well as the exchange of
data between the two main parts, is schematized

user must possess a secret that is exchanged with the monitor; the monitor will check in
its tables if the secret corresponds to a valid one and will take a decision accordingly. We
think of the system as connected to an actuator that unlocks or keeps locked a door that
separates the confidential area from the entry. A representation of the system we have
devised is available in Fig. 4.2

As the requirements have been laid, we can now discuss about the architecture of such
system. As described in Fig., the monitoring system is composed of two main devices:

• A device containing the secret of the person willing to enter

37

A Real-World example: Attack and Protection of the SEcube™ Chip

• A device which looks for the secret in its tables and takes a decision

The first device can be a Smart Card, a token or a smartphone. Following the tendency
in the world of IoT of interfacing devices with smartphones, due to the practicality that
these devices bring with them, these have been chosen as the devices tht are carried by
those who are asking for the access permission. We have developed an application for the
iOS™ platform. This application acts as a BLE server. BLE is one of the most used
functionalities in modern IoT devices. It is power efficient and offers functionalities which
facilitate small data exchanges between two devices. In order to exchange the required
information, the GATT protocol is used.

Figure 4.3. GATT server schematic, picture taken from [6]

In the GATT protocol, a server and a client are present. The server advertises its
presence by broadcasting periodically some advertisement data on each channel, and if a
client is interested, it will connect to the server. When connected to a Server, a client
can communicate with it only by reading and writing from and to its characteristics. The
characteristics of a server are small registers which store data inside. A set of characteristics
form a service. A server can run one or multiple services. In our case, the smartphone will
act as a server.

The second device is the SEcube™. The Open SDK of the SEcube™ exports some
cryptographic related functions, but we have relied little on them. We have implemented
though the core functionalities to communicate with a BLE server, thus making the monitor
the GATT emphclient. The SEcube™ DevKit that we have used for this experiment does
not provide any BLE module. We have resorted to use an ESP32-WROOM DevKit, which
the SEcube™ communicates with via UART. At [17] it is possible to download the firmware
to be flashed inside the ESP32 that exposes the BLE functionalities through AT Commands
to be sent over the UART Channel.

38

4.3 – Vulnerability and Exploitation

The system then works in the following way: a user who wants to access an area first
has to open the application on her smartphone to connect to the monitor. The application
starts the BLE server and initiates an advertising session. It advertises a particular service
name, which is captured by the monitor, that scans every 3 seconds. When it finds the
service of interest, the monitor establishes a connection with the GATT server. It asks
for available services and characteristics and when the characteristic of interest is found,
it writes there its secret. If the secret is valid, the monitor will send back on one of its
characteristics a response and controls the actuator of the lock/door accordingly.

4.3 Vulnerability and Exploitation
In order to find a vulnerability, an attacker first has to individuate a buffer that she can
fill with arbitrary data, and see if that buffer is unguarder from any boundary checks. In
our case, the code presents different points where buffers are created in order to store data
coming from the GATT Server. Since we are relying on sending data from our mobile
application, which is built on top the BLE framework for iOS provided by Apple™, we
have to consider that sending a payload from the smartphone could be limited in length
by the framework itself. One of the points where there are loose or no constraints at all is
where we exchange the secret key from the smartphone. The key transfer happens via a
BLE GATT Characteristic write, so in a secure application it is important that those lines
in the code are well protected.

4.3.1 Overflowing the Unprotected Buffer
In our code, as soon as the characteristic of interest has been found, the SEcube™ tries
to read the characteristic with the readChar function, which is our vulnerable function.
This function sends the AT command that reads the characteristic from the GATT server.
Here, a wrong assumption about the maximum length of the characteristic generates a
buffer overflow vulnerability. In order to simplify the exploitation, the vulnerable function
memcpy was used to demonstrate the issue. For security reasons, the key that is passed
from the smartphone to the SEcube™ should be encoded in base64 characters or string
hexadecimal in order not to contain any binary non-ASCII value. Although this assumption
does not protect the reading function, if readChar had contained a strcpy instead of a
memcpy, the attacker would have a much harder time in exploitaion phase. The 0x00 (NULL
character) terminates a string, thus it is interpreted from strcpy as a null termination,
and it will stop copying bytes into the buffer. There are techniques to avoid using 0x00
bytes, like XORing a register with itself and others, but the problem lies in the fact that
ROP gadgets may contain 0x00 bytes within.

Now that we know the location of a possible memory vulnerablity in the code, we have
to craft a payload that will hijack code execution in a profitable way for an attacker. Since
the code verifies the secret and then decides which action to take, a trivial redirection would
be to redirect code to the branch where it grants access to the user. With a ROPchain,
though, severe damage can be dealt, and we wanted to show the worst impact that a well
crafted ropchain has.

39

A Real-World example: Attack and Protection of the SEcube™ Chip

The readChar function declares three variables at its prologue. The buffer to be over-
flown is the char value[32] array. The disposition of variables inside the stack after the
prologue has finalized variables declaration is represented in Fig. 4.4

Figure 4.4. This is the layout of the stack when entering the readChar function. The
buffer value is 32 bytes long and before the stack base there are two other variables.

4.3.2 Crafting the ROP Chain
The SEcube™ comes with a host software that can be run onto a PC and connected to the
device. The host program interacts with the SDK and calls functions from it. Inside the
SDK, the management and storage of data happens via records, which are allocated into
flash memory for persistence. These records contain different types of information, among
which there are credential informations. The record_set function creates or modifies a
record that is identified by a type. The signature of the function is the following

bool record_set(uint16_t type, const uint8_t* data)

It requires an unsigned which identifies the type of the record and a pointer to a buffer
which contains the data that is desired to be stored. A record is 32 bytes long, so data
will be read for 32 bytes on. There is a particular record, which can be set from the host
program, that is the Admin PIN. This has type 0 and is the PIN that is used to access the
privileged functionalities from the host program.

Therefore, we have to call this function with type = 0 and data pointing to some
controllable memory location where we can read/write. By doing so, we would be able to
change the Admin PIN and potentially causing maximum damage, if an intruder can reach
to the host functionalities.

40

4.3 – Vulnerability and Exploitation

In ARM calling convention, in order to pass arguments to a function, they must be put
into r0-r3 registers. What we need is then:

• the address of the function record_set

• the address of a location in memory where we have control over the data (like a region
of all 0s)

• gadgets that put the arguments inside registers

• gadget that puts the address of the function inside the pc register.

Luckily enough, inside the binary of the firmware flashed in the SEcube™, there is an
instruction which performs the majority of the above-mentioned tasks.

pop {r0, r1, r4, r6, r7, pc};

It is, indeed, sufficient to put on the stack in order

• the first argument

• the second argument

• three 4-bytes values to be put in r4, r6, r7

• the record_set function address.

In Fig. 4.5 the layout of the ROPChain is showed. In order to simplify development, a
simple script that automatically generates the ROP chain by analyzing the binary has been
developed. The output of the program has been put then inside an array in the code of the
mobile application and is then concatenated to a user manipulated string (in the benign
application, the user string was controlled by a text field, which is used as the password for
the authentication to the monitor; now the user field is used to pad the the first 36 bytes
to fill the buffer).

4.3.3 Proof-of-Concept Attack
It is now time to show the application of the theory seen so far. In order to appreciate
the correct exploitation of the program, we have to connect to the host program with
the SEcube™ device. We have already said that the vulnerable function is the readChar
function, which reads the characteristic that contains the key from the GATT server (the
smartphone). The function prologue declares three variables:

char value[32];
char** lineSplit;
uint8_t len;

The function reads the data coming from the UART channel and, after some filtering,
it reads the data and copies it into the value[32] buffer with memcpy function. The
vulnerable snippet is the following:

41

A Real-World example: Attack and Protection of the SEcube™ Chip

Figure 4.5. Layout of the ROP chain. Red Arrows show the flow of execution of
instructions. From the POP instruction, the registers are loaded and control flow is
transferred to the record_set function

if(!readLine(&inputBuffer, line, 0)){ // actual read
lineSplit = split_string(line, ’,’, 1);
len = atoi(lineSplit[1]);
memcpy(value, lineSplit[2], len);

}

The len variable contains the length of the string contained in the line read from the
UART channel. This means that this value is user-controlled. The value variable is an
array of 32 bytes, so it can be overflown by simply writing more data in line.

As already mentioned, the record_set function creates or rewrites a record. Our
objective is to redirect the code there, as already described. We then want to check that
the record that we are going to modify is actually modified. This can be done by trying to
login. A sample initialization host program is available when downloading the SDK. This
sample looks for valid SEcube™ devices and factory initializes them, if they aren’t already.
It tries to login with the default Admin PIN, which is all 0s. If the PIN results invalid, it
deduces that the device has already been initialized, since the next step of initialization is
to set the Admin PIN to test.

l1.L1SetAdminPIN(pin_user); //set admin pin to "test"

42

4.4 – Patching the Breach: FPGA monitor Setup

In order for the SEcube™ to communicate with the host program, it must fall into
the device_loop function, which listens for host commands from the USB. This loop can
be reached from our BLE loop with a special password coming from the smartphone, say
’config’. When entered into the device_loop. In order to prove that the ROP chain was
successful, we are going to execute the following steps:

1. Initialize the device and set the password to ’test’

2. Run the BLE loop on the device

3. Send the ROP chain from the smartphone application and try to set the password to
all 0s

4. Try login with all 0s again

When we execute the first step, on the host console, the following output will appear:
Searching for SEcube(s)
Device Found!
User PIN set to "test" successfully
Admin PIN set to "test" successfully
Initialization completed Successfully

We then restart the device, that enters in the BLE loop again. The iOS™ has been
modified in order to include the payload after the user controlled text field. We simply put
40 characters in order to fill the buffer and overflow another pointer and an integer value
(we have put aaaaaaaaaaaaaaaaaaaaaaaaaaaaaabcddddeeee).

After the payload has been sent, we can send the device in device_loop function, which
waits for commands from the host. We connect with our host system and try again to log
in with the all 0s password. The result on the output terminal is the following:

Trying privileged login with all zeros
Login ok!

Logout ok!

The host program managed to login with a password that should have been changed.
This demonstrates that the attack was successful and the password has been changed.
Another and more immediate example to try would be to redirect the code directly to the
branch where the device allows the user in. This would reflect immediately on the mobile
application as a green writing saying that access was granted. Both examples, though,
show thoroughly the impact possibilities that a ROP attack would have on IoT devices
implementing similar functionalities.

4.4 Patching the Breach: FPGA monitor Setup
4.4.1 Code Instrumentation
In order to protect the code, as specified in 3.4, it is necessary to adopt code instrumen-
tation, since this is a hybrid approach. At the time this work is being written, there is,

43

A Real-World example: Attack and Protection of the SEcube™ Chip

however, no available automated code instrumentator. Such a program should prune out
all direct branches and compute the origin tree of each indirect branch value in the offline
phase. Hence, we do not show binary dimension overhead here and we focused instead on
the vulnerable branch, by writing code instrumentation by hand.

First of all it is necessary to identify the type of branch, among the ones listed in 3.5.
In our case, the readChar function is called only by the mainLoop function, so we do not
have to worry about multiple return locations for it. The vulnerable branch is a return
operation at the end of the readChar function, so this is an insecure backward edge with
single target location. Thus, the operations that have to be followed are:

• Mask out interrupts apart from the one that is important to us

• Mark the current branch location with a label and save it

• Store the label in the memory location #0x60000000

In order to accomplish this, the following assembler code instrumentation is put
CPSID i
PUSH {r1, r5}
MOV r1, #456
MOV.W r5, #0x60000000
STRH r1, [r5]
POP {r1, r5}

This is the instrumentation inserted at the source location. At the target location, we
have to perform the same operations, but the store operation is performed at a different
location.

PUSH {r1, r5}
MOV r1, #123
MOV.W r5, #0x60000000
STRH r1, [r5, #2]
POP {r1, r5}
CPSIE i

The strh instruction passes to the FPGA an address (second operand of the instruction)
and data (first operand of the instruction). The address to which the strh instruction
writes is the opcode for the monitor of the operation that has to be performed on the data.
In this case, the operations to be performed are:

1. Store the first label

2. Store the second label

3. Look for the label pair in the Secure Edge Table

4. Raise an exception if there is a miss in the table

44

4.4 – Patching the Breach: FPGA monitor Setup

It is important to mention that an internal timer in the monitor starts when executing
the first store and it waits until the next store. The time elapsed between these two
instruction is accurately computed and if the second store does not arrive before the
timer expires, an exception is raised. This is to avoid that the return instruction jumps
somewhere in the code that does not contain instrumentation.

4.4.2 Synthesis of the Monitor
It is important to synthesize the monitor from VHDL every time that the CFG of the code
changes. This is because the Secure Edge Table is synthsized within the monitor before-
hand. It is in fact necessary to fill this table before prior to synthesis. Since this process is
not automated yet, the table has to be filled manually. Since we have instrumented only
one edge, the table will contain only a pair. With the help of a script, it is possible to
write manually the label pairs and then converts it into a .mem file, which is used in the
synthesis phase to initialize the content of a ROM.

4.4.3 Uploading the Instrumented Firmware and Monitor
In the Lattice Diamond™ tool for the synthesis, it is possible to enable the option that
converts the bitstream of the design in a C array. This will be useful when we have to
upload the design of the monitor inside the FPGA.

In order to have the whole system working, it is necessary to back the firmware of
the SEcube™ with a bootloader which takes care of the preliminar configuration. The
bootloader takes the C arrays generated by the synthesis tool and uses them to send bit
by bit to the FPGA in order to program it. After this operation, which takes a pair of
minutes to complete, the bootloader toogles the RST pin of the FPGA in order to enter
the initial state of the Finite State Machine.

4.4.4 Final Results
When repeating all the steps that we have executed in 4.3.3, after having initialized the
FPGA, it is possible to observe that the attack will no longer work. Indeed, the application
still works normally when sending a normal payload from the smartphone application.
When providing the correct password via BLE characteristic, the smartphone application
will show a green message saying that authentication was successful.

We can appreciate the work of the CFI monitor when, instead, we try to send the
malicious payload via the BLE application. It is sufficient to repeat the same procedure as
before, in 4.3.3 and observe that it is no longer possible to login with the all 0s password,
after the initialization has been performed. When repeating steps from (1) to (3), it is not
possible anymore to login with all 0s. The message shown on the host terminal will be the
following:

Searching for SEcube(s)
Device Found!
SEcube already initialized!

45

A Real-World example: Attack and Protection of the SEcube™ Chip

This means that when trying to send the ROP chain, the monitor interepted the attempt
of code redirection and raised an exception which called a handler that reset the device,
restarting the loop.

The CFI monitor developed at our department has proven to be a rather easy to im-
plement solution, the requirements being only to use a device which mounts onboard a
reconfigurable hardware module. The performance overhead has been measured in [24] by
the authors and we report it in the table in Fig. 4.6

Figure 4.6. Measurements performed in [24] about CFI monitor overhead

46

Chapter 5

Conclusions

Nowadays, the question about security in the digital world is becoming more and more
relevant. This is due to the fact that the number of interconnected devices is increasing
exponentially. Not only the numbers are growing, but the role that these devices are
acquiring is getting more entangled with our daily lives. When we talk about computing
devices, we do not only refer to personal computers or servers, but we include smartphones,
watches, TVs and now also domestic appliances, like fridges, heating systems, doors, etc...

Malfunctioning of such devices not only means financial or confidential data losses, but
safety issues arise. If a smart door lock does not work as intended, the house inhabitants’
life is put to risk. It is true, though, that many countermeasures have been devised in
the last decades against the most popular categories of attacks, along with the spread of
good habits and awareness of the risks and impact of the digital world. Still, we are not
completely sound. The human factor and the growing complexity of technology are two
factors that likely will not disappear with time, being them intrinsic to the digital world.
The average user may be educated and informed, but having systems that integrate many
services, pieces of software and architectures, only professionals can deeply understand the
inner workings of systems, and yet mistakes are made also by those professionals.

What I have discussed about in my thesis work is linked to this topic, but limits to the
field of IoT and Embedded Systems. As already mentioned, this is the new frontier of the
Digital Revolution and it is of extreme importance to take the security in the Embedded
world in consideration. IoT devices, which are a subcategory of Embedded devices, are
exposed to two main problems:

• They are always interconnected.

• They have limited computing resources

• Often, they have to comply to real-time constraints

The first characteristic of these devices expands the attack surface available to intruders.
An attacker has the chance to connect to such systems via many protocols and from almost
anywhere in the world. The second and the last characteristic combined instead pose
difficult challenges to programmers and developers of such devices, since applying security
by design becomes hard. While in modern operating systems we may find several security

47

Conclusions

mechanisms, product of years of research and patches, in the embedded world this is more
complicated, since many times firmwares run on bare-metal, thus there are not prebuilt
and well-tested libraries or security features that prevent most of attacks. Having few
mega bytes of ROM imposes codebase to be concise; constraints about performance and
power-efficiency put a limit in the number of instructions that a processor can execute
for a given task. This automatically creates the necessity to trade between performance
and security. The most common type of vulnerabilities of native codebases are memory
vulnerabilities. These vulnerabilities are then exploited by attackers to take control over
the execution flow or read/write arbitrarily memory. There are two main ways to exploit
memory vulnerabilities:

• Code Injection

• Code Reuse

In this work, I have focused mainly on the second type. Code injection has proven to
be inefficient and less expressive with respect to code reuse techniques. The latest type of
Code Reuse attacks (Return-Oriented Programming, Jump-Oriented Programming, Call-
Oriented Programming, etc...), have demonstrated to give extreme expressiveness (reaching
easily Turing-completeness) and to be less prone to detection. The aim of this work is to
present the State of the Art of a family of techniques that aim at preventing such attacks:
they try to guarantee Control Flow Integrity. I have described and analyzed many of these
solutions, implemented in software or hardware. The two types of implementations have
their advantages and disadvantages: the first are flexible and rather easy to implement,
but slow, while the second are fast but require modifications to existing circuitry.

At our department, at Politecnico di Torino, a solution has been proposed, which strives
to merge the two approaches, bringing the advantages of both. This solution is theorized
for embedded devices that are bundled with a reconfigurable module that communicates
with the microcontroller. As statistics suggest, providing devices with an FPGA or other
reconfigurable hardware is a growing trend, with obvious advantage in terms of performance
and power efficiency. The solution that we describe here, which has been first presented in
[24], adopts this kind of devices and implements a CFI monitor onto an FPGA. While the
FPGA monitor represents the hardware part of the solution, while code instrumentation
constitutes the software part. This is why we consider this as hybrid approach.

In the second half of my thesis, I have developed a simulation of a safety critical ap-
plication. The scope of this application is to simulate an attack that exploits a memory
vulnerability and sends a ROP chain to redirect code execution. After having showed the
effects of the attack and the impact it can have on the safety properties of the system,
the currently available implementation of the CFI monitor is mounted onto the device, in
order to show that the attack cannot be executed anymore.

The application simulates a Smart Access Monitor that checks that a user has the rights
to access a confidential area. The monitor communicates with a smartphone, which belongs
to the user and contains the secret that authorizes the user to enter the area.

This work does not aim at providing additional performance measurements, due to the
fact that instrumenting a large codebase like the one of the firmware we have used is im-
practical without an automatic instrumentation tool. As the table in Fig. 4.6 reports, the

48

Conclusions

performance overhead is minimal for simple algorithms and benchmarks. This is justified
by three main factors

• Code instrumentation is reduced to minimal, a simple store operation has to be
performed

• Code instrumentation is inserted at most on all indirect branches and performance
can be tuned by trading security

• Edge check is performed by the hardware monitor

The proof that we have given shows that it is fairly simple to mount the monitor onto
the FPGA and that modifications to the program requires simple reconfiguration of the
design. The design is architecture independent, the only adaptation to be done is the code
instrumentation of the firmware.

At the current state, it is not possible to automate many of the passages, but it is
just a matter of work and time before that these tools will be developed and the update
procedure of the firmware, along with its new CFG, will also be straight forward.

Possible improvements in the direction of this thesis work may consist in implementing
the solution on a production software, hence completely instrumenting the codebase. In
order to achieve this, an automatic instrumentation tool has to be developed. Another
upgrade to improve the updatability of the CFI monitor. Currently, an update of the
monitor requires synthesizing the schematics and converting the bitstream into a C array
to copy in the source code of the bootloader. This process could be made more simple by
inserting the bitstream in FLASH or in ROM. Moreover, a change in the CFG requires
resynthesizing the schematics of the CFI monitor; an update of the firmware requires then
to reupload the entire bitstream. It would be sufficient to only update the Secure Edge
Table.

The ongoing trend of new architectures and microcontrollers implementing an FPGA
in their packages is what makes this solution so affordable. The rapidly increasing demand
of Embedded Devices in the IoT world, and not only, is what makes solutions like this
necessary. Code reuse attacks are usually very difficult to counteract, and staistfying both
performance and resources constraint is crucial in the embedded world.

49

50

Bibliography

[1] Martin Abadi, Mihai Budiu, and Úlfar Erlingsson. Control-Flow Integrity. Tech.
rep. MSR-TR-2005-18. ACM Conference on Computer and Communication Security
(CCS). 2005, pp. 340–353. url: https://www.microsoft.com/en-us/research/
publication/control-flow-integrity/.

[2] M. Alam, D. B. Roy, S. Bhattacharya, V. Govindan, R. S. Chakraborty, and D.
Mukhopadhyay. «SmashClean: A hardware level mitigation to stack smashing attacks
in OpenRISC». In: 2016 ACM/IEEE International Conference on Formal Methods
and Models for System Design (MEMOCODE). 2016, pp. 1–4. doi: 10.1109/MEMCOD.
2016.7797764.

[3] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. «Mitigating Code-Reuse Attacks with
Control-Flow Locking». In: Proceedings of the 27th Annual Computer Security Appli-
cations Conference. ACSAC ’11. Orlando, Florida, USA: Association for Computing
Machinery, 2011, 353–362. isbn: 9781450306720. doi: 10.1145/2076732.2076783.
url: https://doi.org/10.1145/2076732.2076783.

[4] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. «Jump-Oriented
Programming: A New Class of Code-Reuse Attack». In: Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security. ASIACCS ’11.
Hong Kong, China: Association for Computing Machinery, 2011, 30–40. isbn: 9781450305648.
doi: 10.1145/1966913.1966919. url: https://doi.org/10.1145/1966913.
1966919.

[5] C. Bresch, A. Michelet, L. Amato, T. Meyer, and D. Hely. «A red team blue team
approach towards a secure processor design with hardware shadow stack». In: 2017
IEEE 2nd International Verification and Security Workshop (IVSW). 2017, pp. 57–
62. doi: 10.1109/IVSW.2017.8031545.

[6] Chapter 4. GATT, Services and Characteristics. https : / / www . oreilly . com /
library/view/getting-started-with/9781491900550/ch04.html. [Online; ac-
cessed 21-March-2021].

[7] A. Chaudhari and J. A. Abraham. «Effective Control Flow Integrity Checks for Intru-
sion Detection». In: 2018 IEEE 24th International Symposium on On-Line Testing
And Robust System Design (IOLTS). 2018, pp. 1–6. doi: 10.1109/IOLTS.2018.
8474130.

51

https://www.microsoft.com/en-us/research/publication/control-flow-integrity/
https://www.microsoft.com/en-us/research/publication/control-flow-integrity/
https://doi.org/10.1109/MEMCOD.2016.7797764
https://doi.org/10.1109/MEMCOD.2016.7797764
https://doi.org/10.1145/2076732.2076783
https://doi.org/10.1145/2076732.2076783
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1109/IVSW.2017.8031545
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html
https://doi.org/10.1109/IOLTS.2018.8474130
https://doi.org/10.1109/IOLTS.2018.8474130

BIBLIOGRAPHY

[8] Linbo Chen, Jianhui Jiang, and Danqing Zhang. «Code Reuse Prevention through
Control Flow Lazily Check». In: Nov. 2012, pp. 51–60. isbn: 978-1-4673-4849-2. doi:
10.1109/PRDC.2012.17.

[9] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao, and Li Xie. «DROP:
Detecting Return-Oriented Programming Malicious Code». In: Information Systems
Security. Ed. by Atul Prakash and Indranil Sen Gupta. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 163–177. isbn: 978-3-642-10772-6.

[10] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer. «Defeating memory cor-
ruption attacks via pointer taintedness detection». In: 2005 International Conference
on Dependable Systems and Networks (DSN’05). 2005, pp. 378–387. doi: 10.1109/
DSN.2005.36.

[11] Nick Christoulakis, George Christou, Elias Athanasopoulos, and Sotiris Ioannidis.
«HCFI: Hardware-Enforced Control-Flow Integrity». In: Proceedings of the Sixth
ACM Conference on Data and Application Security and Privacy. CODASPY ’16.
New Orleans, Louisiana, USA: Association for Computing Machinery, 2016, 38–49.
isbn: 9781450339353. doi: 10.1145/2857705.2857722. url: https://doi.org/10.
1145/2857705.2857722.

[12] J. Danger, A. Facon, S. Guilley, K. Heydemann, U. Kühne, A. Si Merabet, and M.
Timbert. «CCFI-Cache: A Transparent and Flexible Hardware Protection for Code
and Control-Flow Integrity». In: 2018 21st Euromicro Conference on Digital System
Design (DSD). 2018, pp. 529–536. doi: 10.1109/DSD.2018.00093.

[13] L. Davi, M. Hanreich, D. Paul, A. Sadeghi, P. Koeberl, D. Sullivan, O. Arias, and Y.
Jin. «HAFIX: Hardware-Assisted Flow Integrity eXtension». In: 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC). 2015, pp. 1–6. doi: 10 . 1145 / 2744769 .
2744847.

[14] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz,
Ralf Hund, Stefan Nürnberger, and Ahmad-Reza Sadeghi. «MoCFI: A Framework to
Mitigate Control-Flow Attacks on Smartphones». In: (Jan. 2012).

[15] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. «Dynamic Integrity Mea-
surement and Attestation: Towards Defense against Return-Oriented Programming
Attacks». In: Proceedings of the 2009 ACM Workshop on Scalable Trusted Comput-
ing. STC ’09. Chicago, Illinois, USA: Association for Computing Machinery, 2009,
49–54. isbn: 9781605587882. doi: 10.1145/1655108.1655117. url: https://doi.
org/10.1145/1655108.1655117.

[16] A. De, A. Basu, S. Ghosh, and T. Jaeger. «FIXER: Flow Integrity Extensions for Em-
bedded RISC-V». In: 2019 Design, Automation Test in Europe Conference Exhibition
(DATE). 2019, pp. 348–353. doi: 10.23919/DATE.2019.8714980.

[17] ESP32 AT firmware - GitHub. https://github.com/espressif/esp-at. [Online;
accessed 21-March-2021].

[18] ZhiJun Huang, Tao Zheng, and Jia Liu. «A Dynamic Detective Method against ROP
Attack on ARM Platform». In: Proceedings of the Second International Workshop on
Software Engineering for Embedded Systems. SEES ’12. Zurich, Switzerland: IEEE
Press, 2012, 51–57. isbn: 9781467318532.

52

https://doi.org/10.1109/PRDC.2012.17
https://doi.org/10.1109/DSN.2005.36
https://doi.org/10.1109/DSN.2005.36
https://doi.org/10.1145/2857705.2857722
https://doi.org/10.1145/2857705.2857722
https://doi.org/10.1145/2857705.2857722
https://doi.org/10.1109/DSD.2018.00093
https://doi.org/10.1145/2744769.2744847
https://doi.org/10.1145/2744769.2744847
https://doi.org/10.1145/1655108.1655117
https://doi.org/10.1145/1655108.1655117
https://doi.org/10.1145/1655108.1655117
https://doi.org/10.23919/DATE.2019.8714980
https://github.com/espressif/esp-at

BIBLIOGRAPHY

[19] Zhijun Huang, Tao Zheng, Yunxiu Shi, and Ang Li. «A dynamic detection method
against ROP and JOP». In: 2012 International Conference on Systems and Infor-
matics, ICSAI 2012 (May 2012). doi: 10.1109/ICSAI.2012.6223219.

[20] Y. Lee and G. Lee. «Detecting Code Reuse Attacks with Branch Prediction». In:
Computer 51.4 (2018), pp. 40–47. doi: 10.1109/MC.2018.2141035.

[21] Yang Li, Zibin Dai, and Junwei Li. «A Control Flow Integrity Checking Technique
Based on Hardware Support». In: Oct. 2018, pp. 2617–2621. doi: 10.1109/IAEAC.
2018.8577547.

[22] IHS Markit™. The Internet of Things, a movement, not a market. https://cdn.
ihs.com/www/pdf/IoT_ebook.pdf. [Online; accessed 28-november-2020]. 2017.

[23] N. Maunero, P. Prinetto, and G. Roascio. «CFI: Control Flow Integrity or Control
Flow Interruption?» In: 2019 IEEE East-West Design Test Symposium (EWDTS).
2019, pp. 1–6. doi: 10.1109/EWDTS.2019.8884464.

[24] Nicolo Maunero, Paolo Prinetto, Gianluca Roascio, and Antonio Varriale. «A FPGA-
based Control-Flow Integrity Solution for Securing Bare-Metal Embedded Systems».
In: Apr. 2020, pp. 1–10. doi: 10.1109/DTIS48698.2020.9081314.

[25] P. Qiu, Y. Lyu, J. Zhang, D. Wang, and G. Qu. «Control Flow Integrity Based on
Lightweight Encryption Architecture». In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37.7 (2018), pp. 1358–1369. doi: 10.1109/
TCAD.2017.2748000.

[26] AliAkbar Sadeghi, Salman Niksefat, and Maryam Rostamipour. «Pure-Call Oriented
Programming (PCOP): chaining the gadgets using call instructions». In: Journal of
Computer Virology and Hacking Techniques 14 (May 2018), pp. 1–18. doi: 10.1007/
s11416-017-0299-1.

[27] SEcube Open Source SDK. https://www.secube.eu/resources/open-sources-
sdk/. [Online; accessed 21-March-2021].

[28] Hovav Shacham. «The Geometry of Innocent Flesh on the Bone: Return-into-Libc
without Function Calls (on the X86)». In: Proceedings of the 14th ACM Conference
on Computer and Communications Security. CCS ’07. Alexandria, Virginia, USA:
Association for Computing Machinery, 2007, 552–561. isbn: 9781595937032. doi:
10.1145/1315245.1315313. url: https://doi.org/10.1145/1315245.1315313.

[29] Y. Shi and G. Lee. «Augmenting Branch Predictor to Secure Program Execution».
In: 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’07). 2007, pp. 10–19. doi: 10.1109/DSN.2007.19.

[30] D. Sullivan, O. Arias, L. Davi, P. Larsen, A. Sadeghi, and Y. Jin. «Strategy with-
out tactics: Policy-agnostic hardware-enhanced control-flow integrity». In: 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). 2016, pp. 1–6. doi: 10.
1145/2897937.2898098.

[31] Top 10 Technologies That Will Drive the Future of Infrastracture and Operations.
https://www.gartner.com/en/documents/3970841/top- 10- technologies-
that - will - drive - the - future - of - infras. [Online; accessed 15-March-2021].
2019.

53

https://doi.org/10.1109/ICSAI.2012.6223219
https://doi.org/10.1109/MC.2018.2141035
https://doi.org/10.1109/IAEAC.2018.8577547
https://doi.org/10.1109/IAEAC.2018.8577547
https://cdn.ihs.com/www/pdf/IoT_ebook.pdf
https://cdn.ihs.com/www/pdf/IoT_ebook.pdf
https://doi.org/10.1109/EWDTS.2019.8884464
https://doi.org/10.1109/DTIS48698.2020.9081314
https://doi.org/10.1109/TCAD.2017.2748000
https://doi.org/10.1109/TCAD.2017.2748000
https://doi.org/10.1007/s11416-017-0299-1
https://doi.org/10.1007/s11416-017-0299-1
https://www.secube.eu/resources/open-sources-sdk/
https://www.secube.eu/resources/open-sources-sdk/
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/DSN.2007.19
https://doi.org/10.1145/2897937.2898098
https://doi.org/10.1145/2897937.2898098
https://www.gartner.com/en/documents/3970841/ top-10-technologies-that-will-drive-the-future-of-infras
https://www.gartner.com/en/documents/3970841/ top-10-technologies-that-will-drive-the-future-of-infras

BIBLIOGRAPHY

[32] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent Freeh, and Peng
Ning. «On the Expressiveness of Return-into-libc Attacks». In: vol. 6961. Sept. 2011,
pp. 121–141. isbn: 978-3-642-23643-3. doi: 10.1007/978-3-642-23644-0_7.

[33] Yubin Xia, Y. Liu, H. Chen, and B. Zang. «CFIMon: Detecting violation of control
flow integrity using performance counters». In: IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2012) (2012), pp. 1–12.

[34] Craig Young. Tripwire Research: IoT Smart Lock Vulnerability Spotlights Bigger Is-
sues. https://www.tripwire.com/state- of- security/featured/tripwire-
research-iot-smart-lock-vulnerability/. [Online; accessed 25-february-2021].
2020.

54

https://doi.org/10.1007/978-3-642-23644-0_7
https://www.tripwire.com/state-of-security/featured/tripwire-research-iot-smart-lock-vulnerability/
https://www.tripwire.com/state-of-security/featured/tripwire-research-iot-smart-lock-vulnerability/

	Introduction
	The Importance of Embedded Systems Security
	Memory Corruption and Buffer Overflow

	Background: Code-Reuse Attacks (CRA)
	The principle
	Return-Oriented Programming (ROP)
	Code-Reuse Attacks Mitigations: CFI
	Software-based Mitigations
	Hardware-based Mitigations

	FPGA-based Control-Flow Integrity (CFI) for Microcontrollers
	General Features
	CFG Edges Identification and Categorization
	The Problem with Asynchronous Calls: ISRs
	CFI Monitor Architecture
	Phases of the Protection Mechanism
	Advantages of the Hybrid Approach

	A Real-World example: Attack and Protection of the SEcube™ Chip
	Device Architecture and Features
	Study Case: A Smart Access Monitor
	Vulnerability and Exploitation
	Overflowing the Unprotected Buffer
	Crafting the ROP Chain
	Proof-of-Concept Attack

	Patching the Breach: FPGA monitor Setup
	Code Instrumentation
	Synthesis of the Monitor
	Uploading the Instrumented Firmware and Monitor
	Final Results

	Conclusions
	Bibliography

