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ABSTRACT 

Implementation and Evaluation of 3D Graphics Compression for Optimizing 
the Quality of User Experience in Networked Virtual Reality 

by Fabrizio Lo Presti 

 

A thesis on the implementation of a 3D Graphics Compression interface between 

an already available compression algorithm developed in C++ and Unity. The 

objective of this work is to design a method to provide better quality of user 

experience for VR simulation through the utilization of a decoder in Unity to 

execute at runtime and decompress data while downloading it from a remote 

server, saving resources from the user’s terminal and lowering the complexity of 

the terminal’s computations. Lastly, an evaluation between the state-of-the-art 

solutions for treating compressed data in Unity and this new method is performed 

to verify the consistency of the improvement. The thesis explores the key passages 

needed to create the final model, among them the choice of the right 

communication protocol for an optimized data transmission, the choice of the 

most suitable inter-process communication method for data exchange between 

C++ and C#, the implementation of concurrent programming and the choice of 

compliant 3D objects to provide a coherent simulation. The final simulation 

consists of a user-friendly environment (visit to a museum), navigable either via 

HMD or Desktop VR (WoW), in which heavily dense 3D meshes are progressively 

retrieved and rendered as they are downloaded from a remote server.  
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By analyzing the statistics related to the delay of each LOD retrieval the results 

show that the proposed solution brings an optimization in terms of efficiency in 

the tangibility of the scene, also providing excellent outcomes on environments 

with limited network availability.  
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a .  F u n d a m e n t a l  T h e o r e t i c a l  C o n c e p t s  

 

• 3D Mesh: A collection of geometric information that describes the shape 

of a tridimensional object. It is composed of vertices ( single points ), edges 

( straight lines that connect two vertices ) and faces ( flat surfaces enclosed 

by edges ). Meshes are empty volumes, therefore they only consist of the 

3D grid formed by the combination of the geometric elements mentioned 

before. A 3D mesh can be classified as manifold or non-manifold; they are 

manifold if, for every edge, there are exactly two faces that contain it. 

 

• Data compression: process of reducing the size of data to fewer bits while 

maintaining a coherence with the original information. The compression is 

either lossy, meaning that some information is lost during the process, or 

lossless, meaning that the bits are reorganized so that less space is needed 

to store the same amount of information. Data is often compressed at the 

source of a transmission or storage process, to lessen the resources that are 

required to perform these operations. For 3D objects, data compression 

usually focuses on basic assumptions on the shape of the mesh: the 

subsequent faces of a certain model are mostly placed in a coherent 

position with respect to the previous ones, so it is possible to exploit these 

information to efficiently code the geometry of the mesh. Another 

important issue to address, when dealing with 3D compression, is the 

behavior of textured meshes when compressed: how the UV information is 

preserved and if the texture itself may be compressed to further reduce the 

size of the whole model are some of the questions to answer to optimize 

this process.  
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• .OBJ : geometry definition file format, it represents the coordinates for each 

vertex, the vertex normal, the UV position of each texture coordinate 

vertex and the faces. 

 

Example of line representing a vertex:    v   1.2   0.44   0.12   1.0 

 

Vertex coordinates are expressed in the form (x, y, z, [w]), with a default 

value of w of 1.0. 

 

Example of line representing texture coordinates:   vt   0.200 0.800 [0]  

 

Texture coordinates are expressed in the form (u [, v, w]), with each value 

varying between 0 and 1; the two optional values are set to 0 by default. 

 

Example of line representing vertex normals:   vn    0.312   0.000   0.312 

 

Vertex normals are expressed in the form (x, y, z), the normals are not 

necessarily unit vectors. 

 

Example of line representing a face:     f   4//4   7//7   19//19 

 

Faces are defined as lists of vertex, texture and normal indices with the 

format vertex_index/texture_index/normal_index. 
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• .MTL : Material Template Library format, always associated to an .OBJ, 

describes the material properties of objects [9]. The .OBJ file has a 

reference to one or more .MTL files that define material properties such as 

color diffusion and others, according to the Phong model [10]. 

 

Example of .MTL file format: 

newmtl material_0 

Ka 1.000 1.000 1.000 

Kd 1.000 1.000 1.000 

Ks 1.000 1.000 1.000 

Ns 1000 

map_Kd obj_map.jpg 

 

Each .MTL file can define more than one material with newmtl command, 

and each material may have different properties. An explanation of the 

basic properties of a material follows: the ambient color is defined using 

Ka, the diffuse color is defined using Kd and the specular color using Ks, 

each one of them refers to RGB model with values between 0 and 1. The 

specular color is weighted through the specular exponent Ns. If the 

material is textured, the definition of the texture maps is done using 

map_XX, accordingly to which material property must follow the texture. 
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1 . I n t r o d u c t i o n  

3D models are getting more complex and detailed everyday thanks to the 

development of computer graphics applications. This increase of quality, obtained 

by adding more and more geometric information and appearance attributes ( such 

as texture maps ) inevitably leads to the growth of the 3D object in terms of size 

and to an augmented complexity in reading and managing the model. While this 

represents a big step towards the final aim of rendering an hyper realistic 

environment, nowadays applications are mostly based on network communication 

( i.e. web 3D applications ), therefore it may be inefficient to produce  large-scale 

information, due to the fact that the application requires low-latency visualization 

in order to provide a satisfactory user experience. This issue can be addressed by 

applying efficient compression techniques that both reduce the storage size and 

equally organize data so that it could be efficiently read and easily used by the 

endpoint of the communication.  

When choosing to compress a 3D mesh, one must consider different choices: the 

first one is between single-rate approaches and progressive approaches. The single-

rate approach usually gives a very high compression rate, and the decompressed 

mesh is identical or only slightly different from the original one. Its main drawback 

is that, in order to decompress and visualize the mesh, all the data must be received 

at the decompression stage, and if any network issue occurs during the 

communication, the amount of data received up to that point cannot be used to 

retrieve a partial model. The progressive approach has two main benefits: it 

provides a stream of data that consists in a constant refinement of a coarse version 

of the model, so that the receiver is able to visualize at least a lower resolution 

model while the communication is ongoing, and it also allows to produce different 

levels of detail [16], adapting the complexity of the model to the resource capacity 

of the client. 
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The main drawback of progressive techniques is the complexity of the algorithms 

that are needed to implement them, plus, there are still some limitations in the 

categories of 3D models that can exploit these approaches: as stated by Caillaud et 

al. [1] most of them only deal with triangular manifold meshes and just a few can 

compress either polygonal manifold or triangular non-manifold meshes.  

Until now, the focus of this research branch has been to develop an algorithm 

which could provide a progressive codec of 3D meshes in a simple and efficient 

way. The main objectives of this thesis are to evaluate the performance of  the 

lossless progressive compression algorithm provided in MEPP2, a platform 

developed by LIRIS ( Laboratoire d’InfoRmatique en Image et Systèmes 

d’information ) to manage 3D models, and, finally, to design and implement a VR 

simulation via Unity, in which the compressed objects are retrieved from a remote 

server and made available to the user as soon as enough data is ready. The coarse 

version of the object will be in sight in a very short time and as the data flows from 

the server to the client, the 3D mesh will be more and more detailed up until its 

original complexity. 
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2 . P r e v i o u s  w o r k  a n d  S t a t e  o f  t h e  A r t  

In 2005, two reviews about the innovative work on mesh compression were 

published. Since then the 3D mesh compression was limited to a very specific set 

of meshes, it involved single-rate compression only and didn’t take into account 

large mesh compression or random accessible algorithms, in which only some 

requested portions of the input mesh are compressed. The future study of these 

algorithms set the base for progressive random accessible algorithms, capable of 

decompressing different parts of the input at different levels of detail. 

Compressing a 3D mesh is different from encoding known structures as sound 

and images: the model is not certainly regular; thus, a mesh encoder must work on 

the structure itself and encode the connectivity instead of the geometry. The 

general assumption behind the connectivity compression techniques is to perform 

a traversal of the mesh and emit symbols that vary on the patterns met. 

One of the first work in mesh compression is the generalized triangle mesh format 

of Deering (1995), which exploited generalized triangle strips, a mesh 

representation useful to transfer data from CPU to GPU in an efficient way: a 

triangle strip is a sequence of vertices where each additional vertex describes a new 

triangle with the two former vertices of the strip. This is considerably more efficient 

than the standard index representation, in which, for coding one triangle, the three 

vertex indices are needed. Deering also noticed that many of the internal vertices 

are encoded twice, so he proposed to push their positions in a queue and refer 

them by their position in it; the experiments showed that, even with this 

configuration, Deering’s algorithm achieves compression rates from 3.3 to 9.8 bpv 

(bits per vertex). 
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Another development that is worth mentioning is the one provided by the 

algorithm of Touma and Gotsman(1998), based on valence encoding: a manifold 

triangular mesh has approximately twice less vertices than triangles, so creating an 

algorithm that generates one symbol per vertex to describe its local connectivity is 

more efficient than a triangle traversal approach. By encoding the list of vertex 

valences with an entropy encoder, they obtained a compression rate of 2.3 bpv, 

which is still today an admirable result in the world of connectivity compression 

methods.  

Figure 1. Visual example of manifold/non-manifold meshes. Image retrieved from [2] 

In 2001, Ho et al. proposed a solution for handling large meshes that could not fit 

into the main memory. This method consisted in partitioning the input model and 

compress each part independently. In 2003 Ueng came up with a recursive 

technique in which the mesh connectivity data is divided into blocks called octans, 

with an octree data structure based on the geometry. 

The techniques that have been analyzed so far are lossless, meaning that the 

reconstructed data is the same as the original, but some applications didn’t require 

to rebuild the initial connectivity of the model after decompression, for this 
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purpose a set of algorithms that further enhanced compression rates, exploiting 

this new degree of freedom, were developed: the standard mesh simplification that 

can be found in almost every 3D manipulation program is based on a lossy 

compression. 

For what concerns progressive mesh compression, the first time the concept of 

progressive mesh has been introduced was in 1996. The researcher Hoppe built 

the idea of it around an incrementing decimation of the model using the edge 

collapse operator [3], driven by an optimization formula that minimizes an energy 

function. The main strength of this algorithm is the possibility to select the amount 

of refinement during the decoding phase, but the main drawback is a very low 

compression rate (37 bpv using a 10-bit quantization). To address this 

disadvantage, some algorithms in which the vertex split operations are performed 

in batches were developed. 

Figure 2. Edge collapse and Vertex split. Image retrieved from [3] page 39:16 

Another progressive compression technique is based on vertex removals, followed 

by a local patch retriangulation; the first time this method has been adopted was in 

1998 by Li and Kuo, alongside with the idea of adapting the vertex quantization 

along the different levels of detail.  

As of today, due to the necessity of compressing larger meshes and the limitations 

on the delay for streaming applications, two new branches of 3D mesh 

compression are being developed: random accessible mesh compression ( used to 

decompress only a part of the mesh ), which could be either single-rate or 
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progressive, and for which few approaches have been proposed, and dynamic 

mesh compression, for which the current trend is to consider local scalable 

methods, that fit well with low-delay applications[3]. 

Another important mention for the purpose of this work is Draco1, an open source 

library for compressing and decompressing 3D meshes developed by Google. 

Draco uses a single-rate approach to process the meshes, with very low 

compression-decompression delay, furthermore, several parameters can be 

customized to achieve the desired compromise between efficiency and cost. This 

library is released as C++ source code and it also provide a Unity plugin to easily 

perform the decompression inside the platform. 

The compression algorithm that will be analyzed and used in this work has been 

developed by Ho Lee, Guillaume Lavoué and Florent Dupont. It consists in a 

lossless progressive compression algorithm based on R-D optimization, that is 

suited for non-manifold meshes with color attributes. The quantization precision 

is adapted to the intermediate levels, and can be chosen between two tactics: the 

first one, more precise but computationally heavier, consists in a mesh distortion 

measurement; the second one, suited for applications in which the computational 

time must be limited, is a quasi-optimal decision based on the analysis of the 

complexity of the model. For the purposes of this work it is not necessary to further 

explain the inner mechanisms of the algorithm, which can be found in [4], but it is 

worth to notice that the results show an outperform with respect to the state-of-

the-art algorithms regarding colored meshes, and a very satisfactory result with 

respect to the most efficient algorithms for non-colored meshes. 

The first Unity simulation to test the quality of the compression algorithm and to 

evaluate the impact on the application’s usability has been developed by former 

 
1 https://github.com/google/draco 

https://github.com/google/draco
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researchers in LIRIS. Their work consisted in an open space environment in which 

the player could move around freely and select a 3D model that would be created 

from his HTC Vive controller. The retrieval of the object was implemented with 

an FTP communication protocol, the data transfer was between the client a private 

server inside the laboratory. The most noticeable issue was that, during the time in 

which the object was downloaded from the server, the whole application froze, 

and the user could not move or interact in any way with the environment. This 

problem was related to the lack of multiprogramming. 

The work of this thesis starts from analyzing the code of the previously mentioned 

application and addressing the main issues. Consequently, the focus will be to 

develop a new Unity program that could easily provide both objective quality data 

for the evaluation of the progressive compression algorithm and subjective quality 

data for the user experience in a VR/WoW environment in which the object appear 

more detailed as soon as enough information is available. 
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3 . E n v i r o n m e n t  s e t u p  

The idea behind this project is to create a museum environment, in which the 

player could move and take a closer look to the set of art pieces that are rendered 

in the scene as they are downloaded from a remote server. To achieve so, it has 

been selected, among a group of possible alternatives, an asset2 from the Unity 

Asset Store that fits as the right compromise between its price and its quality, in 

terms of visuals and orderliness.  

This chapter explains the environment setup for the Unity simulation. The 

application can be used as a Window on World (WoW) [11] with mouse and 

keyboard inputs, or via Immersive Virtual Reality. For this purpose, and for the 

available technologies at the laboratory, the headset that has been used is the HTC 

Vive. 

The HTC Vive is a tethered VR headset, therefore, the computation needed for 

the VR application are performed inside the computer, making its architecture 

become the bottleneck of the. On a brighter side, the movement limitations caused 

by the wiring do not result in a tangible issue because the player is not supposed to 

perform complicate gestures or motions in order to explore the museum. 

The headset is configured using VIVEPORTTM Software, and every input of the 

controller is customizable through the application SteamVR.  

To obtain an adequate level of immersivity it is necessary to choose between a 

roster of metaphors of navigation, that are models to explore the Virtual Reality 

environment. For this purpose, two choices have been made: 

 
2
https://assetstore.unity.com/packages/3d/props/interior/gallery-showroom-environment-92146 

  

https://assetstore.unity.com/packages/3d/props/interior/gallery-showroom-environment-92146
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-The first one is Teleportation [12], with this the user can quickly teleport in a 

selected area by pointing the controller towards a Teleport Area ( an object to 

whom the script “TeleportArea” is attached ) while holding the Trigger button; 

once released, the player will immediately move to his new position. While this 

metaphor of navigation is very simple, understandable and fast, it could lead to a 

very common problem in VR simulations: motion sickness. Motion sickness is 

experienced when there is a contrast between the movement perception in the 

human body ( sight, vestibular system and somatosensory system ) and the external 

( mostly visual ) stimuli that are provided by the virtual environment. In this specific 

case suddenly switching position without a proper transition, i.e. fade-in/fade-out, 

may cause nausea, confusion and disorientation. This metaphor has been 

implemented by using the SteamVR asset in Unity. 

-The second one is Directional movement using the Trackpad. This metaphor is 

less immersive than teleportation, but it has been implemented to address the 

motion sickness and to allow the user to move smoothly inside the museum. This 

metaphor has been implemented by customizing the task of the Left Trackpad via 

SteamVR. 

During the first phase of development the idea was to start the download of the 

3D model once a virtual button, close to the pedestal where the art piece was 

supposed to appear, was pushed. This could be accomplished whether using the 

controller through a selection metaphor ( in immersive VR ) or by pressing the “I” 

keyboard button when the player is in the proper range ( in Window on World ). 

When the object is hovered, its silhouette is outlined by the means of the Outline 

script attached to it.  

The Virtual Hand [13] has been the selection metaphor chosen for the purpose: 

the user could reach the button moving the controller ( which had the resemblance 

of a hand in the VR environment ) and then press the Grip on the controller to 
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push it. The main drawback of this implementation, despite its simplicity, is the 

object reachability: to properly activate the interaction, the virtual hand needs to be 

as close to the button as it would be necessary on a real scenario. The natural 

manipulation has not been an issue since there was no actual manipulation other 

than the event of pushing the button. 

For what concerns the Desktop VR, the navigation has been implemented through 

a customization of the FPSController, an asset available in the Unity Standard Assets 

library. The interaction with the environment occurs by using the Raycast  [14] 

technique: the camera, representing the sight of the player, casts a ray that is 

orthogonal to its plane of view, characterized by a maximum length and colliding 

against all the colliders in the scene. When the ray hits an interactable object the 

object will be highlighted, and if the “I” key is pressed, the event will occur.  

Figure 3. Visual explanation of Raycasting. Retrieved from3 

The next chapter will discuss about the mechanism that takes place once the user 

interacts with the pedestal. 

 
3 https://medium.com/@miguel.araujo/raycast-what-the-hell-is-that-6d36b3c8dd8b 

https://medium.com/@miguel.araujo/raycast-what-the-hell-is-that-6d36b3c8dd8b
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4 . A n a l y s i s  o f  u n c o m p r e s s e d  d a t a  r e t r i e v a l  

 For the first part of the work a collection of test models has been retrieved locally 

and rendered in the scene at runtime: the format of these models is .obj, paired with 

an .mtl file which contains the material and texture information ( see appendix a for 

more information ). The functions needed to import the file are available in the 

ObjReader DLL4. ConvertFile, which performs a conversion from an .obj file ( present 

into the project folder under a specified path ) into a Unity mesh that will be 

pictured inside the scene, has the following parameters: the object file path, a 

Boolean that let the function know if a material will be used, and finally the material 

itself. The first experiment was performed with object retrieved a local project 

folder. The sample objects provided inside the assets plus a set of objects from the 

laboratory database have been used to test the velocity of the algorithm: 

 

 

 

 

 

 

 

Table 1. Local .OBJ retrieval results 

 
 4 https://starscenesoftware.com/objreader.html  
 

File Size Rendering Time 

Napoleon_obj.obj 651879KB 2m 56.73s 

Dragonfly_obj.obj 199413KB 1m 4..51s 

Bugatti_obj.obj 84159 KB 22.62s 

BorderlandsCosplay_obj.obj 56667 KB 15.78s 

Frog_obj.obj 26023 KB 8.3s 

Car_obj.obj 1808 KB 1.25s 

Pig_obj.obj 347 KB 0.88s 

Spot_obj.obj 265 KB 0.85s 

https://starscenesoftware.com/objreader.html


22 
 

Since the principal issues with the previous work were the lack of multithreaded 

programming and the prohibitive timing for a real-time application, before 

collecting data on the performances given by downloading and processing the 

uncompressed data at runtime, it was necessary to choose the right network 

protocol to minimize the delay and to implement a concurrent programming 

solution. All of the following tests in this chapter have been performed via Wi-Fi 

connection to the roaming service eduroam ( the rendering time may significantly 

lower if a more performant internet connection is used ). The first experiment 

regarding remote communication protocols has been made following the former 

work’s choice and results have been compared to the local retrieval simulation. The 

objects have been uploaded in the laboratory’s private FTP server using Filezilla5. 

The functions available inside the System.Diagnostic library have been used to 

measure the latency between the input of the user and the end of the execution. 

File Size Rendering Time 

Napoleon_obj.obj 651879KB 14m 23.36s 

Dragonfly_obj.obj 199413KB 5m 13.21s 

BorderlandsCosplay_obj.obj 56667 KB 1m 57.8s 

Frog_obj.obj 26023 KB 43.3s 

Car_obj.obj 1808 KB 33s 

Pig_obj.obj 347 KB 24.9s 

Spot_obj.obj 265 KB 23.5s 

Dog_obj.obj 1KB 14.88s 

Table 2. Remote .OBJ retrieval results ( FTP ) 

 
5 https://filezilla-project.org/ 

https://filezilla-project.org/
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It has been noticed that, despite the different sizes of the objects taken into account 

a fixed delay was present: the File Transfer Protocol is a connection-oriented 

protocol, so the client must perform a TCP handshake with the FTP server before 

starting to communicate, causing a flat delay in the operation. 

The choice therefore moved to HTTP because, being a connection-less protocol, 

the delay caused by connection establishment mechanisms is absent; additionally, 

this protocol is widely used and a consistent number of supporting libraries (both 

in C# and C++) are available. 

File Size Rendering Time 

Napoleon_obj.obj 651879KB 13m 36.76s 

Dragonfly_obj.obj 199413KB 4m 51.21s 

ClassicSideTable_obj.obj 70656KB 2m 19.93s 

TigerFighter_obj.obj 58675KB 1m 9.63s 

BorderlandsCosplay_obj.obj 56667KB 1m 36.85s 

Deathstroke_obj.obj 55398KB 1m 16.57s 

Giraffe_obj.obj 26215KB 42.88s 

Frog_obj.obj 26023KB 29.79s 

Table 3. Remote .OBJ retrieval results ( HTTP ) 

For what concerns the texture inside the .mtl file, the experiments showed that the 

amount of time needed to apply the material to the object within the ObjReader 

script is irrisory with respect to the total computation time, thus, for every 

experiment until here, the texture files are picked up from a local folder in the Unity 

Project.  
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With the obtained results, taken into account the non-deterministic behavior 

caused by the workload variance on the CPU and the GPU and by the high 

variability of network traffic, it is possible to compare the trends of the algorithm’s 

performance for local import, remote download via FTP and via HTTP:  

Figure 4. Graphs comparison of local .OBJ retrieval, FTP download and HTTP download. 

 
Figure 5. Closeup on smaller values from graph at Figure x. 
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The resulting trend is as expected: noting that the fluctuation for lower size values 

is caused by the  variability of the experiment itself, the HTTP protocol provides a 

flat reduction of the time needed to render the mesh inside the scene.  

 

The two remote retrieval simulations result in a drastic increase of time for the 

visualization of the meshes with respect to the local retrieval, and they are not 

suitable for being used in a real-time application; furthermore, despite the fact that 

the growth trend of the local simulation is not sharp, the first scenario is also not 

suitable for a real-time application, since the size of the .OBJ file is still too large to 

allow a smooth runtime visualization. This scenario is also weighed down by the 

impossibility of performing any action during the importation, so the next chapter 

will focus on implementing a multithreaded environment to address this issue. 



26 
 

5 . C o n c u r r e n t  p r o g r a m m i n g  i n  U n i t y   

As specified in Chapter 2, one of the most critical points to be addressed is the 

implementation of multithreaded programming. A program is considered concurrent 

when there are two of more simultaneous execution flows in the same addressing 

space that work to achieve a common goal. The available cores of the CPU are 

divided and assigned from the scheduler in a non-deterministic fashion. The main 

advantages of this approach are the superimposition between computation and IO 

operations, the reduction of the complexity derived from the process 

communication and the effective use of the multicore CPU; on the other hand, the 

program is more complex, it is necessary to coordinate the memory access, there 

are new sources and new typologies of errors and the execution is non-

deterministic. 

The goal of this task is to allow the player to move around the environment and 

perform other actions while the application computes the occurred calculations for 

rendering the 3D meshes. A few different approaches have been tested before the 

final, optimal solution: 

The first approach has been to exploit the well-known low level structures for 

synchronization: as soon as the client requests the 3D object, the main flow creates 

and launches a thread who is devoted to the import operation, while the main 

thread still manages the movement and the interactions of the user. The 

mechanism for letting the main thread understand when the importation was 

concluded was a semaphore: a semaphore is a low level synchronization primitive 

that restricts the number of threads that could concurrently access to a resource; it 

has two functions and a counter that usually starts at 1: the first function is called 

by a thread who wants to access to the common resources and, if the counter is 

different than 0, it decreases its value and access the data; the other function is 
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called when the thread has finished its operations with the common resources, and 

it increments the counter value by one. The secondary thread would acquire the 

semaphore and populate the empty object with the requested one, while the main 

thread would wait for the semaphore to be available and, subsequently, render the 

object in the scene. 

The solution above was incomplete: even though the two tasks are managed in two 

different working threads, the main one is forced to wait for the completion of the 

second one and no action can be performed while the computation is ongoing. It 

has subsequently been chosen to use Coroutines: a coroutine is a function that can 

pause execution and return control to Unity and then continue where it left off on 

the following frame6. The point at which execution will pause/resume is the yield 

return x and any variable or parameter will be preserved between yields.  For this 

purpose, two coroutines have been used: the first one ( Load() ) loads the object by 

calling the methods of the ObjReader class and sets the value of a Boolean global 

variable, representing the availability of the object, to true; the other one ( check() ) 

is a simple implementation of polling, a cyclic verification of the state of an event. 

The main disadvantage in the polling approach is the busy wait, that causes 

unnecessary computations for the CPU. 

The solution that has been selected in the final version is using UnityEvents: they 

are a way for efficiently allowing user driven callback to be persisted from edit time 

to run time7. This approach leads to a better result because there is no polling 

mechanism, as soon as the event is triggered the needed functions are called. In the 

next chapters it will be explained the usage of these structures for the simulation. 

 
6 https://docs.unity3d.com/Manual/Coroutines.html 

7 https://docs.unity3d.com/Manual/UnityEvents.html 

https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/UnityEvents.html
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6 . E v a l u a t i o n  o f  D r a c o  p e r f o r m a n c e  

Before evaluating the performances of the progressive compression algorithm 

developed by the LIRIS team, it has been proven useful to perform a deeper 

analysis on one of the most performing single-rate compression algorithms 

available. The main reason why this approach has been a consistent portion of this 

study is because it has been possible to create a simple and explanatory version of 

the final product. 

The Draco encoder has a set of parameters for customizing the compression: 

• quantization parameter ( qp ): it represents the number of bits for the 

position attribute. 

• quantization for textures ( qt ): it represents the number of bits for the 

texture coordinate attribute. 

• quantization for normal ( qn ): it represents the number of bits for the 

normal vector attribute. 

• quantization for generic attribute ( qg ): it represents the number of bits for 

the generic attribute. 

• compression level ( cl ): it represents the compression level, with 10 as the 

most compressed and 0 as the least compressed. 

Different compression levels mean different algorithms for compression 

techniques such as entropy coding. It is possible that the maximum compression 

is achieved by means of arithmetic coding and the fastest compression is achieved 

by means of Huffman coding. The different quantization values are strictly related 



29 
 

to geometry data: a 3D grid incorporates the mesh and all the points belonging in 

one of the cells are collapsed into one and will be mapped with a specific value of 

the index. The denser the grid is the more information are coded. 

For the purposes of this work it has been chosen a value of qp equal to 16, which 

has proven to be the right compromise between visual quality ( no visible 

compression artifacts ) and compression efficiency, and the result have been 

satisfactory: there was an increase in speed of about 24:1 ( what is locally loaded in 

roughly 24 seconds is now both loaded from the File System, decompressed and 

displayed at runtime in about 1 second ). 

Draco’s Unity plugin does not include a script for downloading .drc files from 

internet, so a method that downloads the file from via http in the form of a 

bitstream ( .bytes ) and acts as an interface between the data stream and the 

decompression algorithm has been implemented. The obtained results were also 

positive: the gain obtained for downloading, decompressing and displaying a .drc 

object on a web server, compared to the same process for an .obj file, is equal to 

approximately 96:1, considering that the size of the compressed file is, on average, 

around 50 times smaller than the original. 

The tests concerning the http retrieval of Draco compressed meshes have been 

carried out with a cabled connection and a nominal bandwidth of 1Gbps. 
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The results table follows: 

File Size  

(Uncompressed) 

Size 

(Texture) 

Size* 

(Draco) 

Time to Encode Local Import 

(Draco) 

http Import** 

(Draco) 

Napoleon_obj.obj 651879KB 17612KB 9164KB 11.26s 5.69s 5.86s 

Dragonfly_obj.obj 199413KB 25292KB 4300KB 9.24s 2.54s 2.69s 

ClassicSideTable_obj.obj 70656KB 6768KB 1771KB 2.3s 1.08s 1.11s 

TigerFighter_obj.obj 58675KB 2846KB 1116KB 1s 0.68s 0.8s 

BorderlandsCosplay_obj.obj 56667KB 9758KB 1085KB 1.72s 0.6s 0.95s 

Deathstroke_obj.obj 55398KB 6656KB 1054KB 1.7s 0.77s 0.85s 

Giraffe_obj.obj 26215KB 4587KB 497KB 0.46s 0.35s 0.58s 

Frog_obj.obj 26023KB 4505KB 537KB 0.45s 0.36s 0.59s 

*Quantization parameter qp=16 bit;  **tested on different connections, result may vary on network state 

Table 4. Local and remote retrieval of .drc files 

 

 
Figure 6. Graphs comparison of local uncompressed and .drc retrieval 

 

Figure 7. Graphs comparison of remote uncompressed and .drc retrieval 
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Figure 8. Graphs comparison of local and remote .drc retrieval 

The results show that there has been an enormous improvement with respect to 

the retrieval time for uncompressed objects: the object is rendered in the scene 

quickly and the difference with the original version are not noticeable. As said 

before, this experiment has been performed with a highly performant cabled 

internet connection; in this scenario, a compressed object with a size of 

approximately 9 MB is rendered in the scene in circa 6 seconds. This is a grand 

improvement with respect to the roughly 13 minutes of the same mesh without 

any compression applied, but, for bigger meshes ( and for different network 

conditions ), this outcome will not scale well, since it is necessary to wait for the 

whole data to be downloaded to finally have the model inside the simulation. This 

result is amendable with the exploitation of progressive codec techniques, that will 

be discussed in the next chapter. 
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 7 . A n a l y s i s  o f  M E P P 2  

MEPP28 is a C++, cross-platform, software development kit for processing and 

visualizing 3D surface meshes and point clouds. The program is structured so that 

it is possible to use both an application programming interface to create 

personalized filters and use them without accessing to the program interface itself, 

or it is possible to implement a plugin into the graphical user interface to produce 

results inside the application. MEPP2 has been built on Qt, OpenSceneGraph, Boost 

and Eigen, and optional dependencies include FBX, Draco and Clmg. 

Figure 9. MEPP2 Interface: flowerpot compressed at different Levels of Detail 

 
As specified in [4], the algorithm extends the concept of the valence-driven single 

rate approaches for progressive encoding. The base algorithm proposed by Alliez 

and Desbrun [5] consecutively applies two vertices conquests which remove a set 

of vertices, generating the different LODs. The vertex conquest is strictly 

connected to vertex decimation and retriangulation to maintain the shape of the 

 
8 https://projet.liris.cnrs.fr/mepp/mepp2/index.html 

https://projet.liris.cnrs.fr/mepp/mepp2/index.html
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original mesh as faithfully as possible. Two types of conquest are distinguishable: 

the decimation conquest travers the mesh in a deterministic way and, as the valence 

code of the current front vertex is inferior or equal to 6, it is removed and a 

retriangulation occurs. The clean conquest is similar, but the threshold is set at 3 

instead of 6. For what concerns the geometry coding, first a global and uniform 

quantization is applied to the coordinates, after that, assuming that the mesh is 

smooth and regular, the resulting coordinates of the vertex conquest are predicted 

from the average position of the 1-ring neighboring vertices and the difference is 

encoded. The further development of this base algorithm has led to some 

improvements inside the compression plugin: the quantization precision is fitted 

to each LOD in consonance with its complexity to optimize the rate-distortion 

performance. It is important to state that the choice of the quantization parameter 

is extremely important when dealing with high resolution meshes, in fact, many 

artifacts are visible when a limited number of quantization bits are chosen for the 

compression of a 3D model with a large number of elements; on the other hand, 

the visual distortions caused by the same number of quantization bits on the same 

mesh with lower resolution are hardly noticeable.  A visual example follows: 

 

Figure 10. Model at different resolutions behave differently when compressed with the same quantization precision. 
Retrieved from [4] 
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This examination demonstrates that each intermediate mesh that is the result of 

the compression can be quantized at different precision without compromising the 

geometry quality. Since the quantization parameter has to be chosen for each LOD, 

the next operation between vertex decimation and adjustment of the quantization 

parameter must be optimally determined at each iteration, furthermore, the 

decrease of the parameter has to be efficiently encoded to avoid a significant 

overhead that could slow down the computation. The main drawback of this 

approach is its high computational time, so it is possible to use another faster sub-

optimal approach: the basic assumption on which this approached is built is  that 

a single global optimal quantization precision exists for each iteration 

independently of precedent operations, and it is possible to calculate that analyzing 

the geometry properties of the mesh, the more complex it is the more precision is 

needed; this operation takes into account the volume of the bounding box 

surrounding the mesh, the surface area and the total number of vertices. The sub-

optimal quantization precision is determined as: 

  

𝑞𝑠𝑜 = round(−1.248 ∗ log (
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
) − 0.954) 

Retrieved from [4] 
 

The algorithm calculates qso at each iteration and if the current number of 

quantization bits is higher than this value the decrease of quantization precision is 

performed, otherwise, the decimation is performed. 

 

MEPP2 supports various 3D data types including static, dynamic meshes and point 

clouds, furthermore, it integrates different data structures. For the purpose of this 

work the OpenMesh structure has been chosen, considering its efficiency and 

simplicity in manipulation and processing 3D data. 
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The core of the platform is the Face Edge Vertex Volume template library, which 

offers an abstraction layer over the different 3D data types. The libraries that 

provide the key features to process the mesh are CGAL and Boost: the first one 

provides vertex and edge manipulation features, while the second one extends 

these concepts with half-edge and face features. [6] 

 
As previously stated, MEPP2 provides an interface using plugins, that are selected 

at compilation time and automatically loaded at runtime. A plugin incapsulates a 

filter, that performs the desired operation on the mesh.  

 

The first task that has been performed using MEPP2 is the creation of a filter that 

retrieves the compressed object from the network and decompress it in a single-

rate fashion. The details about the decompression have not been furtherly analyzed 

since the platform already had a plugin that decompress a local file, hence the 

critical point has been to perform the http request in C++. 

 

The idea of designing the request from scratch was not suitable, hence the 

remaining option was to choose a packaged library that could provide the needed 

components. 

 

The library libcurl 9 is the most common and most used among the different options 

available: it supports a wide variety of communication protocols, supporting secure 

connections through SSL, it is thread-safe and thoroughly documented. 

Nevertheless, since the MEPP2 platform relies on a heavy-structured code that 

guarantees its portability and flexibility in choosing from a various set of mesh data 

and parameters, it was deemed to be more efficient to integrate the communication 

functionalities with other branches of the already present libraries: Qt and boost. 

 
9 https://curl.se/libcurl/  

https://curl.se/libcurl/
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Boost is a portable C++ set of source libraries that has been implemented to 

correctly perform alongside C++ Standard Library. The module that will be added 

for this work is beast 10, a header-only library that provides the fundamentals for 

creating networking protocol communications inside a C++ application. 

 

The boost version that was built inside the software did not support secure 

connections through ssl, so it has been necessary to update the library set. Since the 

process of updating the dependencies inside the platform could have been of use 

for other projects that used MEPP2, the libraries have been updated to the newest 

boost version by building the new components with CMake 11. 

 

It has not been necessary to implement a plugin, considering that the MEPP2 

function will be invoked by a C# script, therefore a simple filter has been 

implemented, http_client_ssl.cpp, that runs the setup of the communication between 

the remote server and the client itself. Later on this filter has been updated to an 

asynchronous version ( http_client_async_ssl.cpp ) to exploit the benefits of a 

multithreaded program for downloading the object and sending the batches to 

Unity at the same time.  

 

In the next chapter the design of the communication between the C++ code and 

the C# script will be discussed, together with the other possible attempts that have 

been made. 

 

 
10 https://www.boost.org/doc/libs/1_74_0/libs/beast/doc/html/beast/introduction.html 

11 https://cmake.org/  

https://www.boost.org/doc/libs/1_74_0/libs/beast/doc/html/beast/introduction.html
https://cmake.org/
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8 . C o m m u n i c a t i o n  b e t w e e n  d i f f e r e n t  p r o c e s s e s  

A process is an instance of an executing program, identified by its Process ID (PID) 

and defining its own addressing space, in which various independently scheduled 

execution flows can operate. It may occur that the isolation level provided by the 

standard structure of a process sophisticates the achievement of a goal that is 

common to more processes, for this reason, it is possible to reduce this isolation 

in a controlled manner.  

The first attempt of setting up a communication bridge between the two interfaces 

was made creating a C++ DLL: by including the dynamic library inside a C# script 

one could retrieve some of the data structures available inside the MEPP2 program, 

however, it was not possible calling the complex functions needed to perform the 

remote download and manipulation of the 3D object. It has lastly been chosen to 

use an IPC mechanism. 

Inter Process Communication (IPC) is an isolation level reduction mechanism that 

allows safe data-exchange and activity-synchronization. The exchanged 

information has to be adapted to be comprehensible to the recipient: this may 

result easier if the two programs are already written in the same programming 

language, but when the programs are more different the issue is not trivial. Internal 

representations are not suited to be exported in any case ( e.g. pointers only have 

meaning inside the addressing space they’re created in ), external representations 

for arbitrary data structures exist, but in this case, since the recipient will expect a 

bitstream to work on, the flow from the sender to the receiver will not have its 

format manipulated. 
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The IPC mechanism that has been implemented for the simulation is the NamedPipe 

[15], which allows the transfer of byte sequences of arbitrary size. The 

communication is 1-1 with markers that delimit the single messages. 

The first sample code that has been implemented to test the effectiveness of the 

NamedPipe performed as following: the Pipe server, hence the one who provides 

the data, waits for a request from the Pipe client ( i.e. the pipe-end inside the C# 

script ), once it receives the initialization message from the client, the pipe-end in 

the C++ program creates a sample message and sends it as a binary stream; the 

pipe-client just performs the request, receives the stream and saves it as a binary 

file. 

After successfully implementing this sample, the filter that performed the object 

retrieval has been updated from a blocking read to an asynchronous one: while the 

C++ program is downloading the progressive-compressed object and filling a local 

buffer, another thread sends the available chunk via IPC so that the C# could start 

performing the rendering of the first Levels Of Details and keep receiving data 

until the decompressed mesh at the maximum quality is rendered. 
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9 . D e s i g n  o f  t h e  f i n a l  s o l u t i o n  

The first idea that came up together with the supervisors of this work was the 

following: the MEPP2 side is in charge of both downloading the data from the 

remote server, recognize when a batch, i.e. a portion of the bitstream that contains 

a set of comprehensible information so that the decompressing process could take 

place, has been downloaded and finally send the decompressed intermediate object 

via IPC. The main issue about this approach was that, in order to know how many 

bytes correspond to a single, complete batch, it was necessary to access to the 

header of the file and extract these information among the whole data that is 

written in it; another critical issue is that an object which is compressed in a 

progressive fashion has a peculiar structure in which, given n total batches, hence 

n total LODs, for each i-th element with i ∈ n and i != 0, the data inside i has 

meaning only if preceded from all the previous batches. 

 

Figure 11. Visual explanation of Levels Of Detail. Each batch is complete when all the information for the 

geometry of that LOD is available. Retrieved from12 

 

 
12 https://developer.nvidia.com/blog/using-turing-mesh-shaders-nvidia-asteroids-demo/  

https://developer.nvidia.com/blog/using-turing-mesh-shaders-nvidia-asteroids-demo/
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During the development of the work it has been noticed that the extrapolation of 

information from the header of the compressed file was not trivial: the structure 

that act as a wrapper for the compressed mesh was made to be portable and 

efficient with different data structures, a direct consequence is that it is complex 

and hardly readable; additionally, the whole platform has been designed to draw 

multiple functions from different source libraries and possesses a vast number of 

filters and functionalities, therefore creating a new method that locates and extracts 

these values would have strayed from the original goal of the work. Another 

complication is tied to the fact that, as stated before, every new batch needs all the 

data from the previous ones to provide a new Level Of Detail ( it can be seen as a 

data refinement ), so appending the new bytes into a non-volatile buffer without 

any optimization technique would have caused extra workload for the processor. 

Confronting with these constraints, it was decided to continue with a more abstract 

model that mimics in a reliable way the actual behavior of the original simulation, 

allowing to obtain visible improvements and easily appreciable with respect to the 

estimated model based on the utilization of MEPP2 codec. 

This new model is based on a revisitation of the progressive approach exploiting 

the previously mentioned codec algorithm Draco: a set of gradually decimated .obj 

files is generated from a heavy and complex 3D model, also in the .obj format; then, 

each one of these pseudo-LODs is compressed with the Draco encoder and merged 

together to form a unique binary file, that will be uploaded on the remote server 

and eventually retrieved using the already implemented mechanism inside MEPP2. 

While this model does not exploit the standard progressive approach, it actually 

achieves another goal for the optimization of the process: in the previous version 

the compressed object would be retrieved and decompressed in the C++ 

application, then the decompressed batch will be sent to the application, that will 

only render it inside the scene by translating the format of the mesh into one that 
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is understandable by Unity; with this solution, the decoder is directly implemented 

inside the C# script, so the amount of data to send is considerably inferior since it 

consists of the compressed version and not of the uncompressed one, lessening 

the workload for the IPC process and exploiting the cutting-edge algorithm behind 

the Draco decoder. 
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1 0 . M e s h L a b  a n d  m o d e l  s e t u p  

MeshLab is an open source platform for processing and editing 3D triangular 

meshes; it offers different methods for the decimation of triangulated surfaces and 

preserving the geometrical detail and the texture mapping. 

Two methods have been taken into consideration for the mesh simplification: the 

first one is a Clustering Decimation, in which a 3D grid with a determined cell density 

is created so that it fully encloses the model, then the vertices are discretized so that 

each group ( cluster ) of vertices that belongs to a certain cell is merged into one 

single vertex. This decimation method allows different approaches in the Cluster 

Generation ( hierarchical approach or top-down / bottom-up ), but, most 

importantly, the quality of the result is strictly connected to the chosen approach 

in computing the representative vertex that will substitute each cluster.  

Figure 12. Three possible alternatives for computing the representative vertex. Retrieved from13 

Choosing the representative vertex by computing the average value means 

calculating the average value of each dimension and creating a point in that specific 

 
13 http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/08_Simplification.pdf 

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/08_Simplification.pdf


43 
 

position ( the point may not belong to the original mesh ); choosing the median 

approach means that the representative vertex belongs to the original mesh, and it 

is the one that lies at the midpoint of the distribution of the vertices inside the 

cluster. The error quadrics approach assumes that the patch is expected to be 

piecewise flat, therefore the representative vertex is chosen so that it minimizes the 

distance to neighboring triangles’ planes, minimizing the squared distance error. 

The edges are calculated during the mesh generation, given two clusters X and Y, 

and its representative vertices, respectively  x and y, the edge ( x, y ) is created if 

there was at least an edge ( xi , yj ) with xi ∈ X and yj ∈ Y . 

The second method taken into account is the Quadric Edge Collapse Decimation ( with 

texture ), which is based on decimation via pair contraction and approximation of 

error with quadrics. While vertex decimation are careful to preserve model 

topology and assume manifold geometry, edge contraction algorithms’ iteration 

has to be carefully designed in order to address the non-manifoldness of the 

resulting mesh or the flip of a face caused by such operation [7]. In a quadric edge 

collapse decimation, the vertices belonging to an edge are collapsed, and this 

operation is performed iteratively until the desired simplification is reached. The 

edges to decimate are chosen at initialization time with the assumption that these 

simplification will not heavily compromise the topology of the mesh; the edge to 

be contracted in the iteration is chosen taking into account its cost, that is based on 

the approximation of error with quadrics, whose example of derivation is given by 

Ronfard and Rossignac [8]. The pairs are placed in a data structure and ordered by 

their local cost and, for each iteration, the pair with the lowest cost is collapsed, 

while the other pairs’ cost is updated. 
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The Clustering method is known to be faster than the Quadric Edge Collapse, but 

with equal sizes the second approach resulted in a better quality, additionally, this 

filter preserves the UV parametrization, generally providing an even better quality 

of the decimated mesh, thus it has been chosen to use the second method. 

To improve the quality of the final simulation a set of greatly detailed meshes has 

been chosen from the Sketchfab database. Each model has been processed in the 

following way: 

• The mesh is imported into MeshLab and decimated with Quadric Edge 

Collapse into 5 different Levels Of Detail, respectively composed of 1k, 10k, 

30/50k ,100k ,300/400/500k resulting faces, in dependency with the 

original geometry. 

• The original .obj file is compressed via Draco encoder, with a quantization 

parameter qp of 16, then every .obj file that is the result of the precedent 

operation is also encoded with the same quantization parameter. 

• The last file, XLod.drc.bytes, is created by appending in an orderly manner 

the previous .drc files, from the coarse one to the non-decimated one. 

The textures have not been manipulated and they have been locally imported inside 

the Unity project. 
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Figure 13. Horse. Different levels of detail through the MeshLab decimation filter. 3D model attribution to14 

Table 5. Horse 3D model decimation table 

 
14 https://sketchfab.com/3d-models/pferdestatue-0bd8088f92be4a39a3c8a7faafbf897f  

Horse Vertices Faces OBJ Size Draco size 

Full size 304131 608373 72953 KB 1440 KB 

I 444 1000 109 KB 8 KB 

II 4944 10000 1056 KB 48 KB 

III 14944 30000 3159 KB 118 KB 

IV 49944 100000 10489 KB 322 KB 

V 149944 300000 31698 KB 803 KB 

https://sketchfab.com/3d-models/pferdestatue-0bd8088f92be4a39a3c8a7faafbf897f
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Figure 14-15 Bronze Cat and Lion. 3D models attribution 15 16 

 

 

 

 

 

 

Figure 16-17 Sphinx and Putti. 3D models attribution 17 18 

 
 

15 https://sketchfab.com/3d-models/bronze-cat-e4c8a7ec94ea4f4bb0a1170f275071bd 

16 https://sketchfab.com/3d-models/lowe-von-asparn-57a57a99ce1f4e45adee5ae37a91f51b 
17 https://sketchfab.com/3d-models/sphinx-d94a2dfbf413465395fde1bd17981b85 
18 https://sketchfab.com/3d-models/putti-gruppe-49342e3b3c7d4e3c92bb5525ffeb397f 

https://sketchfab.com/3d-models/bronze-cat-e4c8a7ec94ea4f4bb0a1170f275071bd
https://sketchfab.com/3d-models/lowe-von-asparn-57a57a99ce1f4e45adee5ae37a91f51b
https://sketchfab.com/3d-models/sphinx-d94a2dfbf413465395fde1bd17981b85
https://sketchfab.com/3d-models/putti-gruppe-49342e3b3c7d4e3c92bb5525ffeb397f
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Table 6. Lion 3D model decimation table 

 

 

 

 

 

 

 

Table 7. Putti 3D model decimation table 

 

Lion Vertices Faces OBJ Size Draco size 

Full size 358928 714772 73617 KB 1702 KB 

I 478 1000 114 KB 8 KB 

II 4978 10000 1132 KB 54 KB 

III 24978 50000 5594 KB 209 KB 

IV 49978 100000 11083 KB 372 KB 

V 199978 400000 43794 KB 1128 KB 

Putti Vertices Faces OBJ Size Draco size 

Full size 315159 630380 75385 KB 1518 KB 

I 469 1000 110 KB 8 KB 

II 4969 10000 1059 KB 50 KB 

III 14969 30000 3165 KB 122 KB 

IV 49969 100000 10520 KB 334 KB 

V 149969 300000 31734 KB 828 KB 
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Table 8. Sphinx 3D model decimation table 

 

 

 

 

 

 

 

 

Table 9.  Bronze Cat 3D model decimation table 

 

Sphinx Vertices Faces OBJ Size Draco size 

Full size 308254 616584 74125 KB 1513 KB 

I 462 1000 111 KB 8 KB 

II 4962 10000 1067 KB 51 KB 

III 14962 30000 3194 KB 123 KB 

IV 49962 100000 10609 KB 337 KB 

V 149962 300000 31951 KB 828 KB 

Bronze Cat Vertices Faces OBJ Size Draco size 

Full size 650778 1301367 87682 KB 2311 KB 

I 533 1000 92 KB 5 KB 

II 5035 10000 921 KB 33 KB 

III 25041 50000 4820 KB 132 KB 

IV 50046 100000 9761 KB 243 KB 

V 250094 500000 51677 KB 1053 KB 
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1 1 . I m p l e m e n t a t i o n  a n d  R e s u l t s  

The Museum project has been finally put together as the result of the studies 

previously discussed. Performances and impact of three different versions of the 

simulation are evaluated: 

• Uncompressed object retrieval scenario: a batch of .obj files are gradually 

downloaded while the character explores the scene. In this scenario, the 

meshes will appear after a long delay, only when they are retrieved in their 

entirety. 

• Single-rate compression object retrieval scenario: the batch of .obj files is 

firstly compressed via Draco, then, they are uploaded in an http server, 

retrieved by a dedicated C++ filter and decompressed with a C# script. In 

this scenario, the meshes will appear in a short delay, only when they are 

retrieved in their entirety. 

•  Progressive visualization of compressed object retrieval scenario: each .obj 

file is split into 6 different-sized versions, each one of them is compressed 

via Draco and glued together into a unique file, that will be gradually 

retrieved from the remote http server. In this last scenario a first coarse 

version of the mesh will appear in a noticeably shorter delay and it will 

consequently be enhanced as the download progresses, finally turning into 

the most detailed version. 
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During the simulation, the user walks inside the museum, eventually colliding with 

a set of invisible objects, one for each mesh, that will trigger the operation of 

retrieval for a certain art piece. The user is free to move around the area throughout 

all the loading phases of the object(s), and he may activate more than one trigger.  

Figure 18. Visual explanation of the trigger process in WoW. Screenshot from the final version of the 
application. 

 

If the simulation is played in VR through the mounted headset, the triggers will be 

activated as previously mentioned if the user is moving with the Trackpad. 

Additionally, a mesh covering an area around the pedestal of each art piece has 

been created and marked as a trigger so that, in case the user teleports to a new 

location, if this new location is contained in one of the said areas, the loading 

operation will immediately take place. 
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The key functions behind the operation are explained in the following paragraphs: 

For each object that will be downloaded there is an invisible trigger (Fig. 18) that will 

invoke an Event. The startSimulation.cs script is the one delegated to the progressive 

compression simulation: it will initialize the C++ process with the task of 

establishing an http-secure connection, then it will invoke the Event so that the 

scripts attached to the empty object can run, and finally it waits for some data 

available to read from the pipe. The startFullSimulation.cs script is the one devoted 

to start the second scenario of the application, the one in which the compressed 

most detailed version of the mesh is retrieved. 

Each empty object in the scene that represents the “shell” of the 3D model has 

two important scripts attached to it:  

• PipeBud.cs initializes the client of the piped communication, creates a buffer 

in which data will be written, then performs multiple read until the number 

of reading is equal to 6 ( 5 LODs and the original compressed object ). 

This script also invokes an event in order to alert the script 

DracoDecodingObjects.cs that a batch is ready to be processed. 

• DracoDecodingObjects.cs is a customization of the original decoding script 

provided by draco: it works for piped communication with the C++ code,  

decoding locally retrieved objects and decoding 3D objects once 

downloaded via http. The textures of the meshes are also processed inside 

this script. 
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On C++ side, the MEPP2 filter http_client_async_ssl.cpp works as follows: 

In the function Pipis the namedPipe is created and it is called every time a batch of a 

specific object is ready to be sent; this function calls the InstanceThread method, that 

instantiates and specifies the task of a new thread once a client connects to the 

namedPipe. All the necessary data to perform the request, such as the size of the 

different batches, the host, the port and the target, is provided as a set of parameters 

by the C# script devoted to start the execution of the C++ program and it is 

collected as the server receives the first request message from the client, along with 

the ID of the object to retrieve. The method async_read_some provided by the 

boost/beast library is the one who performs a gradual read, allowing to access data 

while the http retrieval is still performing. The on_read method is called every time 

the previous function returns:  every time a chunk of data is read and saved in the 

buffer, this method saves the body of the http reply and, finally, every time the 

chunk is big enough to contain a batch, it sends the data through the pipe. 

 

 

Figure 19. Flowchart of the C++ process. 
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Figure 20. Flowchart of the object retrieval process. 



54 
 

An example of a running simulation follows: 

The player starts his experience at the entrance of the museum. At this specific 

moment, no object is present inside the museum. The player starts exploring the 

area by walking across the main entrance and triggering the “Lion” art piece to 

show up. From here he has free access to the rest of the area, so he can walk 

towards the other separators to trigger the activation of another event or just wait 

for the first art piece to complete its rendering. 

Figure 21. Screenshot of the Simulation #1. 

As he discovers the different rooms, the museum takes life by being populated 

with different sculptures. 

Figure 22. Screenshot of the Simulation #2. 
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The next table summarizes the rendering times of each object in the scene by taking 

into account the second scenario ( first column ) and the third scenario ( second to 

last column ): 

 

Table 10.  Results table. The first column is referred to the single-rate scenario, the other columns to the 

progressive scenario. 

 

It is worth noticing that the difference in rendering time, related to the variability 

of the sizes of each object, is nullified during the first steps of the algorithms, since 

the batches have similar sizes. As a consequence, an object will always be visible in 

short time, although the time for completing its retrieval will vary on the long term.   

Mesh Full Reso 

Rendering 

Time 

Batch #1 Batch #2 Batch #3 Batch #4 Batch#5 Full Reso 

Batch 

Bronze Cat 2.32s 0.01s 0.03s 0.11s 0.25s 0.94s 2.19s 

Lion 2.01s 0.03s 0.07s 0.17s 0.36s 1.01s 2.05s 

Horse 1.82s 0.05s 0.17s 0.43s 0.92s 1.69s 2.79s 

Sphinx 1.80s 0.01s 0.04s 0.10s 0.29s 0.72s 1.68s 

Putti 1.95s 0.01s 0.03s 0.09s 0.30s 0.77s 1.77s 
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The rendering times of the objects in the second scenario ( dots ) and in the third 

scenario ( crosses ) are compared in the following graph: 

Figure 23. Performance comparisons between second and third scenario. 

As expected, the third simulation provides an almost-immediate visualization of a 

low-detailed version of the meshes; in some cases, the final batch of a 3D model 

will be rendered with a slight delay with respect to the same object retrieved using 

the single-rate approach: as it has been stated before, this may be caused by the 

complexity of the process behind the progressive simulation. Overall, the behavior 

of the simulation confirms that the progressive approach brings a tangible 

optimization regarding user experience while not excessively overcharging the 

systems’ resources. 
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Another important experiment has been conducted to broaden the perspective of 

this work. A test of efficiency in case of different network scenarios has been 

developed as follows: two additional simulations have been performed and 

compared to the standard scenario, that was carried out with an effective 

bandwidth of approximately 40 Mbps. For the first experiment the wireless band 

of the device in which the experiment takes place has been limited by setting a low 

priority on Quality of Service router regulation, next, the band has been kept busy 

by downloading and streaming content on different devices connected to the same 

router. As a result, the effective bandwidth on the terminal was around 1 Mbps. 

For the second experiment the terminal has been connected via hotspot to a mobile 

4G data network, with an effective bandwidth of roughly 25 Mbps. 

 

 

Figure 24. Different network scenarios for Lion 3D model retrieval. 
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It is firstly noticeable that, lowering the bandwidth, the most detailed version of 

the mesh ( Level Of Detail #6 ) will render with a consistent delay with respect of 

directly retrieving the Full Resolution mesh ( as performed in scenario #2 ). On 

the other hand, the experiment proved that there is a remarkable difference 

between the retrieval of the Full Resolution mesh in a band-limited environment 

(the user must wait more than one minute before seeing anything), and the LOD-

based approach, in which the object is present in the scene with a 100ms delay. 

Furthermore, the fourth Level of Detail is rendered with a delay of 18 seconds, and 

its level of detail is generally acceptable within a dynamic scenario: the user will 

hardly notice the following improvements unless he gets very close to the object.  
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1 2 . C o n c l u s i o n  a n d  P e r s p e c t i v e s  

In conclusion, this experiment led to satisfactory results and it successfully models 

the proposed scenario, with a remarkable difference with reference to the raw 

retrieval of a 3D uncompressed object. 

The proposed solution also helps maintaining an acceptable degree of immersivity: 

since one of the most known application areas of LODs is saving up memory for 

distant objects ( i.e. when their details are still not noticeable ), the trigger is placed 

at an adequate distance so that the user is not capable of distinguishing the 

imperfections of the intermediate model, but he can immediately notice that there’s 

a certain object with a certain shape; additionally, in case he walks up to take a 

closer look, the object will have the time to acquire more detail. From these 

considerations, the third scenario results to be the most effective one both in terms 

of immersivity and requisites for a real time application, in coherence with the 

thesis that has been carried out in this work; furthermore, this solution better 

performs in environments with limited or unstable bandwidth: the first batch 

usually has a limited number of vertices and, consequently, a size of roughly a 

dozen of KB to be downloaded. 

Some possible improvements and integrations may be the setup of a subjective 

quality measurement experience, in which the users are asked to give their 

impressions on the different scenarios; another possible development could be the 

insertion of distractor elements ( i.e. masquerading ) for diverting the user’s 

attention while meshes are being loaded. A further study may be conducted on 

how remote retrieval of adaptive textures may change the result in terms of 

efficiency. 
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This work paves the way for future developments in the optimization of user 

experience in VR environments in many scenarios ( videogames, staff training, 

instruction etc. ), opening doors to new possible researches in the field, focusing 

on optimizing visual experience without further computational cost, up until the 

almost integral shift of graphic applications’ computation load from the user’s 

terminal to a dedicated remote machine. 
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