
POLITECNICO DI TORINO
-

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE
LYON

Master’s degree course in Computer Engineering

Master’s Degree Thesis

Implementation and evaluation of 3D graphics
compression for optimizing the quality of user

experience in networked virtual reality

Supervisor

Professor Andrea Giuseppe Bottino

Associate Supervisors

Professor Guillaume Lavoué
Professor Jean-Philippe Farrugia

Candidate

Fabrizio Lo Presti

A.Y. 2020-2021

2

Politecnico di Torino – Institut National
des Sciences Appliquées de Lyon

ABSTRACT

Implementation and Evaluation of 3D Graphics Compression for Optimizing
the Quality of User Experience in Networked Virtual Reality

by Fabrizio Lo Presti

A thesis on the implementation of a 3D Graphics Compression interface between

an already available compression algorithm developed in C++ and Unity. The

objective of this work is to design a method to provide better quality of user

experience for VR simulation through the utilization of a decoder in Unity to

execute at runtime and decompress data while downloading it from a remote

server, saving resources from the user’s terminal and lowering the complexity of

the terminal’s computations. Lastly, an evaluation between the state-of-the-art

solutions for treating compressed data in Unity and this new method is performed

to verify the consistency of the improvement. The thesis explores the key passages

needed to create the final model, among them the choice of the right

communication protocol for an optimized data transmission, the choice of the

most suitable inter-process communication method for data exchange between

C++ and C#, the implementation of concurrent programming and the choice of

compliant 3D objects to provide a coherent simulation. The final simulation

consists of a user-friendly environment (visit to a museum), navigable either via

HMD or Desktop VR (WoW), in which heavily dense 3D meshes are progressively

retrieved and rendered as they are downloaded from a remote server.

3

By analyzing the statistics related to the delay of each LOD retrieval the results

show that the proposed solution brings an optimization in terms of efficiency in

the tangibility of the scene, also providing excellent outcomes on environments

with limited network availability.

4

TABLE OF CONTENTS

List of Figures .. 5

List of Tables.. 6

Acknowledgements ... 7

a. Fundamental Theoretical Concepts .. 8

1. Introduction ... 11

2. Previous work and State of the Art ... 13

3. Environment setup ... 18

4. Analysis of uncompressed data retrieval .. 21

5. Concurrent programming in Unity .. 26

6. Evaluation of Draco performance ... 28

7. Analysis of MEPP2... 32

8. Communication between different processes ... 37

9. Design of the final solution ... 39

10. MeshLab and model setup .. 42

11. Implementation and Results ... 49

12. Conclusion and Perspectives .. 59

5

LIST OF FIGURES

Number Page
1. Manifold and non-manifold meshes ... 14

2. Edge collapse and Vertex split ... 15

3. Visual explanation of Raycasting ... 20

4. Graphs comparison of .OBJ retrieval ... 24

5. Closeup of Graphs of .OBJ retrieval ... 24

6. Graphs comparison of local .OBJ and .DRC retrieval 30

7. Graphs comparison of remote .OBJ and .DRC retrieval 30

8. Graphs comparison of local and remote .DRC retrieval 31

9. MEPP2 Interface .. 32

10. Example of quantization precision for compressed meshes 33

11. Visual explanation of Levels Of Detail ... 39

12. Computing representative vertex on Cluster decimation 42

13. Horse 3D model ... 45

14. Bronze Cat 3D model .. 46

15. Lion 3D model .. 46

16. Sphinx 3D model .. 46

17. Putti 3D model .. 46

18. Visual explanation of the trigger process in WoW 50

19. Flowchart of the C++ process ... 52

20. Flowchart of the object retrieval process ... 53

21. Screenshot of the Simulation #1 ... 54

22. Screenshot of the Simulation #2 ... 54

23. Final implementation: comparison between scenarios 56

24. Different network scenarios for Leon 3D model retrieval 57

6

LIST OF TABLES

Number Page
1. Local .OBJ retrieval results ... 21

2. Remote .OBJ retrieval (FTP) .. 22

3. Remote .OBJ retrieval (HTTP) .. 23

4. Local and remote retrieval of .DRC files .. 30

5. Horse 3D model decimation table... 45

6. Lion 3D model decimation table ... 47

7. Putti 3D model decimation table ... 47

8. Sphinx 3D model decimation table ... 48

9. Bronze Cat 3D model decimation table ... 48

10. Final implementation: numeric results .. 55

7

ACKNOWLEDGMENTS

I dedicate this thesis to every person who has been present during my educational

path and helped me growing both professionally and personally.

My deepest thanks to my on-site supervisors, Professor Guillaume Lavoué and

Professor Jean-Philippe Farrugia, who directed me effectively and carefully

through the work, paying particular attention to my ideas and providing me with

all the support I needed and even more, considering the peculiar condition in which

this work has been carried on.

I would also like to thank my Italian supervisor, Professor Andrea Bottino, for

providing me with the guidelines to build and refine this paper and for following

my work during the period abroad.

I wish to reserve a special thank you to my family, and especially to my mother and

father, who supported me along each step of this journey and have always been

present, through good times and tough times.

Finally, I dedicate this work to my closest, irreplaceable and much-loved friends,

and to the new ones I made in Lyon, who made me feel at home since the very

beginning.

Fabrizio Lo Presti

8

a . F u n d a m e n t a l T h e o r e t i c a l C o n c e p t s

• 3D Mesh: A collection of geometric information that describes the shape

of a tridimensional object. It is composed of vertices (single points), edges

(straight lines that connect two vertices) and faces (flat surfaces enclosed

by edges). Meshes are empty volumes, therefore they only consist of the

3D grid formed by the combination of the geometric elements mentioned

before. A 3D mesh can be classified as manifold or non-manifold; they are

manifold if, for every edge, there are exactly two faces that contain it.

• Data compression: process of reducing the size of data to fewer bits while

maintaining a coherence with the original information. The compression is

either lossy, meaning that some information is lost during the process, or

lossless, meaning that the bits are reorganized so that less space is needed

to store the same amount of information. Data is often compressed at the

source of a transmission or storage process, to lessen the resources that are

required to perform these operations. For 3D objects, data compression

usually focuses on basic assumptions on the shape of the mesh: the

subsequent faces of a certain model are mostly placed in a coherent

position with respect to the previous ones, so it is possible to exploit these

information to efficiently code the geometry of the mesh. Another

important issue to address, when dealing with 3D compression, is the

behavior of textured meshes when compressed: how the UV information is

preserved and if the texture itself may be compressed to further reduce the

size of the whole model are some of the questions to answer to optimize

this process.

9

• .OBJ : geometry definition file format, it represents the coordinates for each

vertex, the vertex normal, the UV position of each texture coordinate

vertex and the faces.

Example of line representing a vertex: v 1.2 0.44 0.12 1.0

Vertex coordinates are expressed in the form (x, y, z, [w]), with a default

value of w of 1.0.

Example of line representing texture coordinates: vt 0.200 0.800 [0]

Texture coordinates are expressed in the form (u [, v, w]), with each value

varying between 0 and 1; the two optional values are set to 0 by default.

Example of line representing vertex normals: vn 0.312 0.000 0.312

Vertex normals are expressed in the form (x, y, z), the normals are not

necessarily unit vectors.

Example of line representing a face: f 4//4 7//7 19//19

Faces are defined as lists of vertex, texture and normal indices with the

format vertex_index/texture_index/normal_index.

10

• .MTL : Material Template Library format, always associated to an .OBJ,

describes the material properties of objects [9]. The .OBJ file has a

reference to one or more .MTL files that define material properties such as

color diffusion and others, according to the Phong model [10].

Example of .MTL file format:

newmtl material_0

Ka 1.000 1.000 1.000

Kd 1.000 1.000 1.000

Ks 1.000 1.000 1.000

Ns 1000

map_Kd obj_map.jpg

Each .MTL file can define more than one material with newmtl command,

and each material may have different properties. An explanation of the

basic properties of a material follows: the ambient color is defined using

Ka, the diffuse color is defined using Kd and the specular color using Ks,

each one of them refers to RGB model with values between 0 and 1. The

specular color is weighted through the specular exponent Ns. If the

material is textured, the definition of the texture maps is done using

map_XX, accordingly to which material property must follow the texture.

11

1 . I n t r o d u c t i o n

3D models are getting more complex and detailed everyday thanks to the

development of computer graphics applications. This increase of quality, obtained

by adding more and more geometric information and appearance attributes (such

as texture maps) inevitably leads to the growth of the 3D object in terms of size

and to an augmented complexity in reading and managing the model. While this

represents a big step towards the final aim of rendering an hyper realistic

environment, nowadays applications are mostly based on network communication

(i.e. web 3D applications), therefore it may be inefficient to produce large-scale

information, due to the fact that the application requires low-latency visualization

in order to provide a satisfactory user experience. This issue can be addressed by

applying efficient compression techniques that both reduce the storage size and

equally organize data so that it could be efficiently read and easily used by the

endpoint of the communication.

When choosing to compress a 3D mesh, one must consider different choices: the

first one is between single-rate approaches and progressive approaches. The single-

rate approach usually gives a very high compression rate, and the decompressed

mesh is identical or only slightly different from the original one. Its main drawback

is that, in order to decompress and visualize the mesh, all the data must be received

at the decompression stage, and if any network issue occurs during the

communication, the amount of data received up to that point cannot be used to

retrieve a partial model. The progressive approach has two main benefits: it

provides a stream of data that consists in a constant refinement of a coarse version

of the model, so that the receiver is able to visualize at least a lower resolution

model while the communication is ongoing, and it also allows to produce different

levels of detail [16], adapting the complexity of the model to the resource capacity

of the client.

12

The main drawback of progressive techniques is the complexity of the algorithms

that are needed to implement them, plus, there are still some limitations in the

categories of 3D models that can exploit these approaches: as stated by Caillaud et

al. [1] most of them only deal with triangular manifold meshes and just a few can

compress either polygonal manifold or triangular non-manifold meshes.

Until now, the focus of this research branch has been to develop an algorithm

which could provide a progressive codec of 3D meshes in a simple and efficient

way. The main objectives of this thesis are to evaluate the performance of the

lossless progressive compression algorithm provided in MEPP2, a platform

developed by LIRIS (Laboratoire d’InfoRmatique en Image et Systèmes

d’information) to manage 3D models, and, finally, to design and implement a VR

simulation via Unity, in which the compressed objects are retrieved from a remote

server and made available to the user as soon as enough data is ready. The coarse

version of the object will be in sight in a very short time and as the data flows from

the server to the client, the 3D mesh will be more and more detailed up until its

original complexity.

13

2 . P r e v i o u s w o r k a n d S t a t e o f t h e A r t

In 2005, two reviews about the innovative work on mesh compression were

published. Since then the 3D mesh compression was limited to a very specific set

of meshes, it involved single-rate compression only and didn’t take into account

large mesh compression or random accessible algorithms, in which only some

requested portions of the input mesh are compressed. The future study of these

algorithms set the base for progressive random accessible algorithms, capable of

decompressing different parts of the input at different levels of detail.

Compressing a 3D mesh is different from encoding known structures as sound

and images: the model is not certainly regular; thus, a mesh encoder must work on

the structure itself and encode the connectivity instead of the geometry. The

general assumption behind the connectivity compression techniques is to perform

a traversal of the mesh and emit symbols that vary on the patterns met.

One of the first work in mesh compression is the generalized triangle mesh format

of Deering (1995), which exploited generalized triangle strips, a mesh

representation useful to transfer data from CPU to GPU in an efficient way: a

triangle strip is a sequence of vertices where each additional vertex describes a new

triangle with the two former vertices of the strip. This is considerably more efficient

than the standard index representation, in which, for coding one triangle, the three

vertex indices are needed. Deering also noticed that many of the internal vertices

are encoded twice, so he proposed to push their positions in a queue and refer

them by their position in it; the experiments showed that, even with this

configuration, Deering’s algorithm achieves compression rates from 3.3 to 9.8 bpv

(bits per vertex).

14

Another development that is worth mentioning is the one provided by the

algorithm of Touma and Gotsman(1998), based on valence encoding: a manifold

triangular mesh has approximately twice less vertices than triangles, so creating an

algorithm that generates one symbol per vertex to describe its local connectivity is

more efficient than a triangle traversal approach. By encoding the list of vertex

valences with an entropy encoder, they obtained a compression rate of 2.3 bpv,

which is still today an admirable result in the world of connectivity compression

methods.

Figure 1. Visual example of manifold/non-manifold meshes. Image retrieved from [2]

In 2001, Ho et al. proposed a solution for handling large meshes that could not fit

into the main memory. This method consisted in partitioning the input model and

compress each part independently. In 2003 Ueng came up with a recursive

technique in which the mesh connectivity data is divided into blocks called octans,

with an octree data structure based on the geometry.

The techniques that have been analyzed so far are lossless, meaning that the

reconstructed data is the same as the original, but some applications didn’t require

to rebuild the initial connectivity of the model after decompression, for this

15

purpose a set of algorithms that further enhanced compression rates, exploiting

this new degree of freedom, were developed: the standard mesh simplification that

can be found in almost every 3D manipulation program is based on a lossy

compression.

For what concerns progressive mesh compression, the first time the concept of

progressive mesh has been introduced was in 1996. The researcher Hoppe built

the idea of it around an incrementing decimation of the model using the edge

collapse operator [3], driven by an optimization formula that minimizes an energy

function. The main strength of this algorithm is the possibility to select the amount

of refinement during the decoding phase, but the main drawback is a very low

compression rate (37 bpv using a 10-bit quantization). To address this

disadvantage, some algorithms in which the vertex split operations are performed

in batches were developed.

Figure 2. Edge collapse and Vertex split. Image retrieved from [3] page 39:16

Another progressive compression technique is based on vertex removals, followed

by a local patch retriangulation; the first time this method has been adopted was in

1998 by Li and Kuo, alongside with the idea of adapting the vertex quantization

along the different levels of detail.

As of today, due to the necessity of compressing larger meshes and the limitations

on the delay for streaming applications, two new branches of 3D mesh

compression are being developed: random accessible mesh compression (used to

decompress only a part of the mesh), which could be either single-rate or

16

progressive, and for which few approaches have been proposed, and dynamic

mesh compression, for which the current trend is to consider local scalable

methods, that fit well with low-delay applications[3].

Another important mention for the purpose of this work is Draco1, an open source

library for compressing and decompressing 3D meshes developed by Google.

Draco uses a single-rate approach to process the meshes, with very low

compression-decompression delay, furthermore, several parameters can be

customized to achieve the desired compromise between efficiency and cost. This

library is released as C++ source code and it also provide a Unity plugin to easily

perform the decompression inside the platform.

The compression algorithm that will be analyzed and used in this work has been

developed by Ho Lee, Guillaume Lavoué and Florent Dupont. It consists in a

lossless progressive compression algorithm based on R-D optimization, that is

suited for non-manifold meshes with color attributes. The quantization precision

is adapted to the intermediate levels, and can be chosen between two tactics: the

first one, more precise but computationally heavier, consists in a mesh distortion

measurement; the second one, suited for applications in which the computational

time must be limited, is a quasi-optimal decision based on the analysis of the

complexity of the model. For the purposes of this work it is not necessary to further

explain the inner mechanisms of the algorithm, which can be found in [4], but it is

worth to notice that the results show an outperform with respect to the state-of-

the-art algorithms regarding colored meshes, and a very satisfactory result with

respect to the most efficient algorithms for non-colored meshes.

The first Unity simulation to test the quality of the compression algorithm and to

evaluate the impact on the application’s usability has been developed by former

1 https://github.com/google/draco

https://github.com/google/draco

17

researchers in LIRIS. Their work consisted in an open space environment in which

the player could move around freely and select a 3D model that would be created

from his HTC Vive controller. The retrieval of the object was implemented with

an FTP communication protocol, the data transfer was between the client a private

server inside the laboratory. The most noticeable issue was that, during the time in

which the object was downloaded from the server, the whole application froze,

and the user could not move or interact in any way with the environment. This

problem was related to the lack of multiprogramming.

The work of this thesis starts from analyzing the code of the previously mentioned

application and addressing the main issues. Consequently, the focus will be to

develop a new Unity program that could easily provide both objective quality data

for the evaluation of the progressive compression algorithm and subjective quality

data for the user experience in a VR/WoW environment in which the object appear

more detailed as soon as enough information is available.

18

3 . E n v i r o n m e n t s e t u p

The idea behind this project is to create a museum environment, in which the

player could move and take a closer look to the set of art pieces that are rendered

in the scene as they are downloaded from a remote server. To achieve so, it has

been selected, among a group of possible alternatives, an asset2 from the Unity

Asset Store that fits as the right compromise between its price and its quality, in

terms of visuals and orderliness.

This chapter explains the environment setup for the Unity simulation. The

application can be used as a Window on World (WoW) [11] with mouse and

keyboard inputs, or via Immersive Virtual Reality. For this purpose, and for the

available technologies at the laboratory, the headset that has been used is the HTC

Vive.

The HTC Vive is a tethered VR headset, therefore, the computation needed for

the VR application are performed inside the computer, making its architecture

become the bottleneck of the. On a brighter side, the movement limitations caused

by the wiring do not result in a tangible issue because the player is not supposed to

perform complicate gestures or motions in order to explore the museum.

The headset is configured using VIVEPORTTM Software, and every input of the

controller is customizable through the application SteamVR.

To obtain an adequate level of immersivity it is necessary to choose between a

roster of metaphors of navigation, that are models to explore the Virtual Reality

environment. For this purpose, two choices have been made:

2
https://assetstore.unity.com/packages/3d/props/interior/gallery-showroom-environment-92146

https://assetstore.unity.com/packages/3d/props/interior/gallery-showroom-environment-92146

19

-The first one is Teleportation [12], with this the user can quickly teleport in a

selected area by pointing the controller towards a Teleport Area (an object to

whom the script “TeleportArea” is attached) while holding the Trigger button;

once released, the player will immediately move to his new position. While this

metaphor of navigation is very simple, understandable and fast, it could lead to a

very common problem in VR simulations: motion sickness. Motion sickness is

experienced when there is a contrast between the movement perception in the

human body (sight, vestibular system and somatosensory system) and the external

(mostly visual) stimuli that are provided by the virtual environment. In this specific

case suddenly switching position without a proper transition, i.e. fade-in/fade-out,

may cause nausea, confusion and disorientation. This metaphor has been

implemented by using the SteamVR asset in Unity.

-The second one is Directional movement using the Trackpad. This metaphor is

less immersive than teleportation, but it has been implemented to address the

motion sickness and to allow the user to move smoothly inside the museum. This

metaphor has been implemented by customizing the task of the Left Trackpad via

SteamVR.

During the first phase of development the idea was to start the download of the

3D model once a virtual button, close to the pedestal where the art piece was

supposed to appear, was pushed. This could be accomplished whether using the

controller through a selection metaphor (in immersive VR) or by pressing the “I”

keyboard button when the player is in the proper range (in Window on World).

When the object is hovered, its silhouette is outlined by the means of the Outline

script attached to it.

The Virtual Hand [13] has been the selection metaphor chosen for the purpose:

the user could reach the button moving the controller (which had the resemblance

of a hand in the VR environment) and then press the Grip on the controller to

20

push it. The main drawback of this implementation, despite its simplicity, is the

object reachability: to properly activate the interaction, the virtual hand needs to be

as close to the button as it would be necessary on a real scenario. The natural

manipulation has not been an issue since there was no actual manipulation other

than the event of pushing the button.

For what concerns the Desktop VR, the navigation has been implemented through

a customization of the FPSController, an asset available in the Unity Standard Assets

library. The interaction with the environment occurs by using the Raycast [14]

technique: the camera, representing the sight of the player, casts a ray that is

orthogonal to its plane of view, characterized by a maximum length and colliding

against all the colliders in the scene. When the ray hits an interactable object the

object will be highlighted, and if the “I” key is pressed, the event will occur.

Figure 3. Visual explanation of Raycasting. Retrieved from3

The next chapter will discuss about the mechanism that takes place once the user

interacts with the pedestal.

3 https://medium.com/@miguel.araujo/raycast-what-the-hell-is-that-6d36b3c8dd8b

https://medium.com/@miguel.araujo/raycast-what-the-hell-is-that-6d36b3c8dd8b

21

4 . A n a l y s i s o f u n c o m p r e s s e d d a t a r e t r i e v a l

 For the first part of the work a collection of test models has been retrieved locally

and rendered in the scene at runtime: the format of these models is .obj, paired with

an .mtl file which contains the material and texture information (see appendix a for

more information). The functions needed to import the file are available in the

ObjReader DLL4. ConvertFile, which performs a conversion from an .obj file (present

into the project folder under a specified path) into a Unity mesh that will be

pictured inside the scene, has the following parameters: the object file path, a

Boolean that let the function know if a material will be used, and finally the material

itself. The first experiment was performed with object retrieved a local project

folder. The sample objects provided inside the assets plus a set of objects from the

laboratory database have been used to test the velocity of the algorithm:

Table 1. Local .OBJ retrieval results

 4 https://starscenesoftware.com/objreader.html

File Size Rendering Time

Napoleon_obj.obj 651879KB 2m 56.73s

Dragonfly_obj.obj 199413KB 1m 4..51s

Bugatti_obj.obj 84159 KB 22.62s

BorderlandsCosplay_obj.obj 56667 KB 15.78s

Frog_obj.obj 26023 KB 8.3s

Car_obj.obj 1808 KB 1.25s

Pig_obj.obj 347 KB 0.88s

Spot_obj.obj 265 KB 0.85s

https://starscenesoftware.com/objreader.html

22

Since the principal issues with the previous work were the lack of multithreaded

programming and the prohibitive timing for a real-time application, before

collecting data on the performances given by downloading and processing the

uncompressed data at runtime, it was necessary to choose the right network

protocol to minimize the delay and to implement a concurrent programming

solution. All of the following tests in this chapter have been performed via Wi-Fi

connection to the roaming service eduroam (the rendering time may significantly

lower if a more performant internet connection is used). The first experiment

regarding remote communication protocols has been made following the former

work’s choice and results have been compared to the local retrieval simulation. The

objects have been uploaded in the laboratory’s private FTP server using Filezilla5.

The functions available inside the System.Diagnostic library have been used to

measure the latency between the input of the user and the end of the execution.

File Size Rendering Time

Napoleon_obj.obj 651879KB 14m 23.36s

Dragonfly_obj.obj 199413KB 5m 13.21s

BorderlandsCosplay_obj.obj 56667 KB 1m 57.8s

Frog_obj.obj 26023 KB 43.3s

Car_obj.obj 1808 KB 33s

Pig_obj.obj 347 KB 24.9s

Spot_obj.obj 265 KB 23.5s

Dog_obj.obj 1KB 14.88s

Table 2. Remote .OBJ retrieval results (FTP)

5 https://filezilla-project.org/

https://filezilla-project.org/

23

It has been noticed that, despite the different sizes of the objects taken into account

a fixed delay was present: the File Transfer Protocol is a connection-oriented

protocol, so the client must perform a TCP handshake with the FTP server before

starting to communicate, causing a flat delay in the operation.

The choice therefore moved to HTTP because, being a connection-less protocol,

the delay caused by connection establishment mechanisms is absent; additionally,

this protocol is widely used and a consistent number of supporting libraries (both

in C# and C++) are available.

File Size Rendering Time

Napoleon_obj.obj 651879KB 13m 36.76s

Dragonfly_obj.obj 199413KB 4m 51.21s

ClassicSideTable_obj.obj 70656KB 2m 19.93s

TigerFighter_obj.obj 58675KB 1m 9.63s

BorderlandsCosplay_obj.obj 56667KB 1m 36.85s

Deathstroke_obj.obj 55398KB 1m 16.57s

Giraffe_obj.obj 26215KB 42.88s

Frog_obj.obj 26023KB 29.79s

Table 3. Remote .OBJ retrieval results (HTTP)

For what concerns the texture inside the .mtl file, the experiments showed that the

amount of time needed to apply the material to the object within the ObjReader

script is irrisory with respect to the total computation time, thus, for every

experiment until here, the texture files are picked up from a local folder in the Unity

Project.

24

With the obtained results, taken into account the non-deterministic behavior

caused by the workload variance on the CPU and the GPU and by the high

variability of network traffic, it is possible to compare the trends of the algorithm’s

performance for local import, remote download via FTP and via HTTP:

Figure 4. Graphs comparison of local .OBJ retrieval, FTP download and HTTP download.

Figure 5. Closeup on smaller values from graph at Figure x.

25

The resulting trend is as expected: noting that the fluctuation for lower size values

is caused by the variability of the experiment itself, the HTTP protocol provides a

flat reduction of the time needed to render the mesh inside the scene.

The two remote retrieval simulations result in a drastic increase of time for the

visualization of the meshes with respect to the local retrieval, and they are not

suitable for being used in a real-time application; furthermore, despite the fact that

the growth trend of the local simulation is not sharp, the first scenario is also not

suitable for a real-time application, since the size of the .OBJ file is still too large to

allow a smooth runtime visualization. This scenario is also weighed down by the

impossibility of performing any action during the importation, so the next chapter

will focus on implementing a multithreaded environment to address this issue.

26

5 . C o n c u r r e n t p r o g r a m m i n g i n U n i t y

As specified in Chapter 2, one of the most critical points to be addressed is the

implementation of multithreaded programming. A program is considered concurrent

when there are two of more simultaneous execution flows in the same addressing

space that work to achieve a common goal. The available cores of the CPU are

divided and assigned from the scheduler in a non-deterministic fashion. The main

advantages of this approach are the superimposition between computation and IO

operations, the reduction of the complexity derived from the process

communication and the effective use of the multicore CPU; on the other hand, the

program is more complex, it is necessary to coordinate the memory access, there

are new sources and new typologies of errors and the execution is non-

deterministic.

The goal of this task is to allow the player to move around the environment and

perform other actions while the application computes the occurred calculations for

rendering the 3D meshes. A few different approaches have been tested before the

final, optimal solution:

The first approach has been to exploit the well-known low level structures for

synchronization: as soon as the client requests the 3D object, the main flow creates

and launches a thread who is devoted to the import operation, while the main

thread still manages the movement and the interactions of the user. The

mechanism for letting the main thread understand when the importation was

concluded was a semaphore: a semaphore is a low level synchronization primitive

that restricts the number of threads that could concurrently access to a resource; it

has two functions and a counter that usually starts at 1: the first function is called

by a thread who wants to access to the common resources and, if the counter is

different than 0, it decreases its value and access the data; the other function is

27

called when the thread has finished its operations with the common resources, and

it increments the counter value by one. The secondary thread would acquire the

semaphore and populate the empty object with the requested one, while the main

thread would wait for the semaphore to be available and, subsequently, render the

object in the scene.

The solution above was incomplete: even though the two tasks are managed in two

different working threads, the main one is forced to wait for the completion of the

second one and no action can be performed while the computation is ongoing. It

has subsequently been chosen to use Coroutines: a coroutine is a function that can

pause execution and return control to Unity and then continue where it left off on

the following frame6. The point at which execution will pause/resume is the yield

return x and any variable or parameter will be preserved between yields. For this

purpose, two coroutines have been used: the first one (Load()) loads the object by

calling the methods of the ObjReader class and sets the value of a Boolean global

variable, representing the availability of the object, to true; the other one (check())

is a simple implementation of polling, a cyclic verification of the state of an event.

The main disadvantage in the polling approach is the busy wait, that causes

unnecessary computations for the CPU.

The solution that has been selected in the final version is using UnityEvents: they

are a way for efficiently allowing user driven callback to be persisted from edit time

to run time7. This approach leads to a better result because there is no polling

mechanism, as soon as the event is triggered the needed functions are called. In the

next chapters it will be explained the usage of these structures for the simulation.

6 https://docs.unity3d.com/Manual/Coroutines.html

7 https://docs.unity3d.com/Manual/UnityEvents.html

https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/UnityEvents.html

28

6 . E v a l u a t i o n o f D r a c o p e r f o r m a n c e

Before evaluating the performances of the progressive compression algorithm

developed by the LIRIS team, it has been proven useful to perform a deeper

analysis on one of the most performing single-rate compression algorithms

available. The main reason why this approach has been a consistent portion of this

study is because it has been possible to create a simple and explanatory version of

the final product.

The Draco encoder has a set of parameters for customizing the compression:

• quantization parameter (qp): it represents the number of bits for the

position attribute.

• quantization for textures (qt): it represents the number of bits for the

texture coordinate attribute.

• quantization for normal (qn): it represents the number of bits for the

normal vector attribute.

• quantization for generic attribute (qg): it represents the number of bits for

the generic attribute.

• compression level (cl): it represents the compression level, with 10 as the

most compressed and 0 as the least compressed.

Different compression levels mean different algorithms for compression

techniques such as entropy coding. It is possible that the maximum compression

is achieved by means of arithmetic coding and the fastest compression is achieved

by means of Huffman coding. The different quantization values are strictly related

29

to geometry data: a 3D grid incorporates the mesh and all the points belonging in

one of the cells are collapsed into one and will be mapped with a specific value of

the index. The denser the grid is the more information are coded.

For the purposes of this work it has been chosen a value of qp equal to 16, which

has proven to be the right compromise between visual quality (no visible

compression artifacts) and compression efficiency, and the result have been

satisfactory: there was an increase in speed of about 24:1 (what is locally loaded in

roughly 24 seconds is now both loaded from the File System, decompressed and

displayed at runtime in about 1 second).

Draco’s Unity plugin does not include a script for downloading .drc files from

internet, so a method that downloads the file from via http in the form of a

bitstream (.bytes) and acts as an interface between the data stream and the

decompression algorithm has been implemented. The obtained results were also

positive: the gain obtained for downloading, decompressing and displaying a .drc

object on a web server, compared to the same process for an .obj file, is equal to

approximately 96:1, considering that the size of the compressed file is, on average,

around 50 times smaller than the original.

The tests concerning the http retrieval of Draco compressed meshes have been

carried out with a cabled connection and a nominal bandwidth of 1Gbps.

30

The results table follows:

File Size

(Uncompressed)

Size

(Texture)

Size*

(Draco)

Time to Encode Local Import

(Draco)

http Import**

(Draco)

Napoleon_obj.obj 651879KB 17612KB 9164KB 11.26s 5.69s 5.86s

Dragonfly_obj.obj 199413KB 25292KB 4300KB 9.24s 2.54s 2.69s

ClassicSideTable_obj.obj 70656KB 6768KB 1771KB 2.3s 1.08s 1.11s

TigerFighter_obj.obj 58675KB 2846KB 1116KB 1s 0.68s 0.8s

BorderlandsCosplay_obj.obj 56667KB 9758KB 1085KB 1.72s 0.6s 0.95s

Deathstroke_obj.obj 55398KB 6656KB 1054KB 1.7s 0.77s 0.85s

Giraffe_obj.obj 26215KB 4587KB 497KB 0.46s 0.35s 0.58s

Frog_obj.obj 26023KB 4505KB 537KB 0.45s 0.36s 0.59s

*Quantization parameter qp=16 bit; **tested on different connections, result may vary on network state

Table 4. Local and remote retrieval of .drc files

Figure 6. Graphs comparison of local uncompressed and .drc retrieval

Figure 7. Graphs comparison of remote uncompressed and .drc retrieval

31

Figure 8. Graphs comparison of local and remote .drc retrieval

The results show that there has been an enormous improvement with respect to

the retrieval time for uncompressed objects: the object is rendered in the scene

quickly and the difference with the original version are not noticeable. As said

before, this experiment has been performed with a highly performant cabled

internet connection; in this scenario, a compressed object with a size of

approximately 9 MB is rendered in the scene in circa 6 seconds. This is a grand

improvement with respect to the roughly 13 minutes of the same mesh without

any compression applied, but, for bigger meshes (and for different network

conditions), this outcome will not scale well, since it is necessary to wait for the

whole data to be downloaded to finally have the model inside the simulation. This

result is amendable with the exploitation of progressive codec techniques, that will

be discussed in the next chapter.

32

 7 . A n a l y s i s o f M E P P 2

MEPP28 is a C++, cross-platform, software development kit for processing and

visualizing 3D surface meshes and point clouds. The program is structured so that

it is possible to use both an application programming interface to create

personalized filters and use them without accessing to the program interface itself,

or it is possible to implement a plugin into the graphical user interface to produce

results inside the application. MEPP2 has been built on Qt, OpenSceneGraph, Boost

and Eigen, and optional dependencies include FBX, Draco and Clmg.

Figure 9. MEPP2 Interface: flowerpot compressed at different Levels of Detail

As specified in [4], the algorithm extends the concept of the valence-driven single

rate approaches for progressive encoding. The base algorithm proposed by Alliez

and Desbrun [5] consecutively applies two vertices conquests which remove a set

of vertices, generating the different LODs. The vertex conquest is strictly

connected to vertex decimation and retriangulation to maintain the shape of the

8 https://projet.liris.cnrs.fr/mepp/mepp2/index.html

https://projet.liris.cnrs.fr/mepp/mepp2/index.html

33

original mesh as faithfully as possible. Two types of conquest are distinguishable:

the decimation conquest travers the mesh in a deterministic way and, as the valence

code of the current front vertex is inferior or equal to 6, it is removed and a

retriangulation occurs. The clean conquest is similar, but the threshold is set at 3

instead of 6. For what concerns the geometry coding, first a global and uniform

quantization is applied to the coordinates, after that, assuming that the mesh is

smooth and regular, the resulting coordinates of the vertex conquest are predicted

from the average position of the 1-ring neighboring vertices and the difference is

encoded. The further development of this base algorithm has led to some

improvements inside the compression plugin: the quantization precision is fitted

to each LOD in consonance with its complexity to optimize the rate-distortion

performance. It is important to state that the choice of the quantization parameter

is extremely important when dealing with high resolution meshes, in fact, many

artifacts are visible when a limited number of quantization bits are chosen for the

compression of a 3D model with a large number of elements; on the other hand,

the visual distortions caused by the same number of quantization bits on the same

mesh with lower resolution are hardly noticeable. A visual example follows:

Figure 10. Model at different resolutions behave differently when compressed with the same quantization precision.
Retrieved from [4]

34

This examination demonstrates that each intermediate mesh that is the result of

the compression can be quantized at different precision without compromising the

geometry quality. Since the quantization parameter has to be chosen for each LOD,

the next operation between vertex decimation and adjustment of the quantization

parameter must be optimally determined at each iteration, furthermore, the

decrease of the parameter has to be efficiently encoded to avoid a significant

overhead that could slow down the computation. The main drawback of this

approach is its high computational time, so it is possible to use another faster sub-

optimal approach: the basic assumption on which this approached is built is that

a single global optimal quantization precision exists for each iteration

independently of precedent operations, and it is possible to calculate that analyzing

the geometry properties of the mesh, the more complex it is the more precision is

needed; this operation takes into account the volume of the bounding box

surrounding the mesh, the surface area and the total number of vertices. The sub-

optimal quantization precision is determined as:

𝑞𝑠𝑜 = round(−1.248 ∗ log (
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
) − 0.954)

Retrieved from [4]

The algorithm calculates qso at each iteration and if the current number of

quantization bits is higher than this value the decrease of quantization precision is

performed, otherwise, the decimation is performed.

MEPP2 supports various 3D data types including static, dynamic meshes and point

clouds, furthermore, it integrates different data structures. For the purpose of this

work the OpenMesh structure has been chosen, considering its efficiency and

simplicity in manipulation and processing 3D data.

35

The core of the platform is the Face Edge Vertex Volume template library, which

offers an abstraction layer over the different 3D data types. The libraries that

provide the key features to process the mesh are CGAL and Boost: the first one

provides vertex and edge manipulation features, while the second one extends

these concepts with half-edge and face features. [6]

As previously stated, MEPP2 provides an interface using plugins, that are selected

at compilation time and automatically loaded at runtime. A plugin incapsulates a

filter, that performs the desired operation on the mesh.

The first task that has been performed using MEPP2 is the creation of a filter that

retrieves the compressed object from the network and decompress it in a single-

rate fashion. The details about the decompression have not been furtherly analyzed

since the platform already had a plugin that decompress a local file, hence the

critical point has been to perform the http request in C++.

The idea of designing the request from scratch was not suitable, hence the

remaining option was to choose a packaged library that could provide the needed

components.

The library libcurl 9 is the most common and most used among the different options

available: it supports a wide variety of communication protocols, supporting secure

connections through SSL, it is thread-safe and thoroughly documented.

Nevertheless, since the MEPP2 platform relies on a heavy-structured code that

guarantees its portability and flexibility in choosing from a various set of mesh data

and parameters, it was deemed to be more efficient to integrate the communication

functionalities with other branches of the already present libraries: Qt and boost.

9 https://curl.se/libcurl/

https://curl.se/libcurl/

36

Boost is a portable C++ set of source libraries that has been implemented to

correctly perform alongside C++ Standard Library. The module that will be added

for this work is beast 10, a header-only library that provides the fundamentals for

creating networking protocol communications inside a C++ application.

The boost version that was built inside the software did not support secure

connections through ssl, so it has been necessary to update the library set. Since the

process of updating the dependencies inside the platform could have been of use

for other projects that used MEPP2, the libraries have been updated to the newest

boost version by building the new components with CMake 11.

It has not been necessary to implement a plugin, considering that the MEPP2

function will be invoked by a C# script, therefore a simple filter has been

implemented, http_client_ssl.cpp, that runs the setup of the communication between

the remote server and the client itself. Later on this filter has been updated to an

asynchronous version (http_client_async_ssl.cpp) to exploit the benefits of a

multithreaded program for downloading the object and sending the batches to

Unity at the same time.

In the next chapter the design of the communication between the C++ code and

the C# script will be discussed, together with the other possible attempts that have

been made.

10 https://www.boost.org/doc/libs/1_74_0/libs/beast/doc/html/beast/introduction.html

11 https://cmake.org/

https://www.boost.org/doc/libs/1_74_0/libs/beast/doc/html/beast/introduction.html
https://cmake.org/

37

8 . C o m m u n i c a t i o n b e t w e e n d i f f e r e n t p r o c e s s e s

A process is an instance of an executing program, identified by its Process ID (PID)

and defining its own addressing space, in which various independently scheduled

execution flows can operate. It may occur that the isolation level provided by the

standard structure of a process sophisticates the achievement of a goal that is

common to more processes, for this reason, it is possible to reduce this isolation

in a controlled manner.

The first attempt of setting up a communication bridge between the two interfaces

was made creating a C++ DLL: by including the dynamic library inside a C# script

one could retrieve some of the data structures available inside the MEPP2 program,

however, it was not possible calling the complex functions needed to perform the

remote download and manipulation of the 3D object. It has lastly been chosen to

use an IPC mechanism.

Inter Process Communication (IPC) is an isolation level reduction mechanism that

allows safe data-exchange and activity-synchronization. The exchanged

information has to be adapted to be comprehensible to the recipient: this may

result easier if the two programs are already written in the same programming

language, but when the programs are more different the issue is not trivial. Internal

representations are not suited to be exported in any case (e.g. pointers only have

meaning inside the addressing space they’re created in), external representations

for arbitrary data structures exist, but in this case, since the recipient will expect a

bitstream to work on, the flow from the sender to the receiver will not have its

format manipulated.

38

The IPC mechanism that has been implemented for the simulation is the NamedPipe

[15], which allows the transfer of byte sequences of arbitrary size. The

communication is 1-1 with markers that delimit the single messages.

The first sample code that has been implemented to test the effectiveness of the

NamedPipe performed as following: the Pipe server, hence the one who provides

the data, waits for a request from the Pipe client (i.e. the pipe-end inside the C#

script), once it receives the initialization message from the client, the pipe-end in

the C++ program creates a sample message and sends it as a binary stream; the

pipe-client just performs the request, receives the stream and saves it as a binary

file.

After successfully implementing this sample, the filter that performed the object

retrieval has been updated from a blocking read to an asynchronous one: while the

C++ program is downloading the progressive-compressed object and filling a local

buffer, another thread sends the available chunk via IPC so that the C# could start

performing the rendering of the first Levels Of Details and keep receiving data

until the decompressed mesh at the maximum quality is rendered.

39

9 . D e s i g n o f t h e f i n a l s o l u t i o n

The first idea that came up together with the supervisors of this work was the

following: the MEPP2 side is in charge of both downloading the data from the

remote server, recognize when a batch, i.e. a portion of the bitstream that contains

a set of comprehensible information so that the decompressing process could take

place, has been downloaded and finally send the decompressed intermediate object

via IPC. The main issue about this approach was that, in order to know how many

bytes correspond to a single, complete batch, it was necessary to access to the

header of the file and extract these information among the whole data that is

written in it; another critical issue is that an object which is compressed in a

progressive fashion has a peculiar structure in which, given n total batches, hence

n total LODs, for each i-th element with i ∈ n and i != 0, the data inside i has

meaning only if preceded from all the previous batches.

Figure 11. Visual explanation of Levels Of Detail. Each batch is complete when all the information for the

geometry of that LOD is available. Retrieved from12

12 https://developer.nvidia.com/blog/using-turing-mesh-shaders-nvidia-asteroids-demo/

https://developer.nvidia.com/blog/using-turing-mesh-shaders-nvidia-asteroids-demo/

40

During the development of the work it has been noticed that the extrapolation of

information from the header of the compressed file was not trivial: the structure

that act as a wrapper for the compressed mesh was made to be portable and

efficient with different data structures, a direct consequence is that it is complex

and hardly readable; additionally, the whole platform has been designed to draw

multiple functions from different source libraries and possesses a vast number of

filters and functionalities, therefore creating a new method that locates and extracts

these values would have strayed from the original goal of the work. Another

complication is tied to the fact that, as stated before, every new batch needs all the

data from the previous ones to provide a new Level Of Detail (it can be seen as a

data refinement), so appending the new bytes into a non-volatile buffer without

any optimization technique would have caused extra workload for the processor.

Confronting with these constraints, it was decided to continue with a more abstract

model that mimics in a reliable way the actual behavior of the original simulation,

allowing to obtain visible improvements and easily appreciable with respect to the

estimated model based on the utilization of MEPP2 codec.

This new model is based on a revisitation of the progressive approach exploiting

the previously mentioned codec algorithm Draco: a set of gradually decimated .obj

files is generated from a heavy and complex 3D model, also in the .obj format; then,

each one of these pseudo-LODs is compressed with the Draco encoder and merged

together to form a unique binary file, that will be uploaded on the remote server

and eventually retrieved using the already implemented mechanism inside MEPP2.

While this model does not exploit the standard progressive approach, it actually

achieves another goal for the optimization of the process: in the previous version

the compressed object would be retrieved and decompressed in the C++

application, then the decompressed batch will be sent to the application, that will

only render it inside the scene by translating the format of the mesh into one that

41

is understandable by Unity; with this solution, the decoder is directly implemented

inside the C# script, so the amount of data to send is considerably inferior since it

consists of the compressed version and not of the uncompressed one, lessening

the workload for the IPC process and exploiting the cutting-edge algorithm behind

the Draco decoder.

42

1 0 . M e s h L a b a n d m o d e l s e t u p

MeshLab is an open source platform for processing and editing 3D triangular

meshes; it offers different methods for the decimation of triangulated surfaces and

preserving the geometrical detail and the texture mapping.

Two methods have been taken into consideration for the mesh simplification: the

first one is a Clustering Decimation, in which a 3D grid with a determined cell density

is created so that it fully encloses the model, then the vertices are discretized so that

each group (cluster) of vertices that belongs to a certain cell is merged into one

single vertex. This decimation method allows different approaches in the Cluster

Generation (hierarchical approach or top-down / bottom-up), but, most

importantly, the quality of the result is strictly connected to the chosen approach

in computing the representative vertex that will substitute each cluster.

Figure 12. Three possible alternatives for computing the representative vertex. Retrieved from13

Choosing the representative vertex by computing the average value means

calculating the average value of each dimension and creating a point in that specific

13 http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/08_Simplification.pdf

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/08_Simplification.pdf

43

position (the point may not belong to the original mesh); choosing the median

approach means that the representative vertex belongs to the original mesh, and it

is the one that lies at the midpoint of the distribution of the vertices inside the

cluster. The error quadrics approach assumes that the patch is expected to be

piecewise flat, therefore the representative vertex is chosen so that it minimizes the

distance to neighboring triangles’ planes, minimizing the squared distance error.

The edges are calculated during the mesh generation, given two clusters X and Y,

and its representative vertices, respectively x and y, the edge (x, y) is created if

there was at least an edge (xi , yj) with xi ∈ X and yj ∈ Y .

The second method taken into account is the Quadric Edge Collapse Decimation (with

texture), which is based on decimation via pair contraction and approximation of

error with quadrics. While vertex decimation are careful to preserve model

topology and assume manifold geometry, edge contraction algorithms’ iteration

has to be carefully designed in order to address the non-manifoldness of the

resulting mesh or the flip of a face caused by such operation [7]. In a quadric edge

collapse decimation, the vertices belonging to an edge are collapsed, and this

operation is performed iteratively until the desired simplification is reached. The

edges to decimate are chosen at initialization time with the assumption that these

simplification will not heavily compromise the topology of the mesh; the edge to

be contracted in the iteration is chosen taking into account its cost, that is based on

the approximation of error with quadrics, whose example of derivation is given by

Ronfard and Rossignac [8]. The pairs are placed in a data structure and ordered by

their local cost and, for each iteration, the pair with the lowest cost is collapsed,

while the other pairs’ cost is updated.

44

The Clustering method is known to be faster than the Quadric Edge Collapse, but

with equal sizes the second approach resulted in a better quality, additionally, this

filter preserves the UV parametrization, generally providing an even better quality

of the decimated mesh, thus it has been chosen to use the second method.

To improve the quality of the final simulation a set of greatly detailed meshes has

been chosen from the Sketchfab database. Each model has been processed in the

following way:

• The mesh is imported into MeshLab and decimated with Quadric Edge

Collapse into 5 different Levels Of Detail, respectively composed of 1k, 10k,

30/50k ,100k ,300/400/500k resulting faces, in dependency with the

original geometry.

• The original .obj file is compressed via Draco encoder, with a quantization

parameter qp of 16, then every .obj file that is the result of the precedent

operation is also encoded with the same quantization parameter.

• The last file, XLod.drc.bytes, is created by appending in an orderly manner

the previous .drc files, from the coarse one to the non-decimated one.

The textures have not been manipulated and they have been locally imported inside

the Unity project.

45

Figure 13. Horse. Different levels of detail through the MeshLab decimation filter. 3D model attribution to14

Table 5. Horse 3D model decimation table

14 https://sketchfab.com/3d-models/pferdestatue-0bd8088f92be4a39a3c8a7faafbf897f

Horse Vertices Faces OBJ Size Draco size

Full size 304131 608373 72953 KB 1440 KB

I 444 1000 109 KB 8 KB

II 4944 10000 1056 KB 48 KB

III 14944 30000 3159 KB 118 KB

IV 49944 100000 10489 KB 322 KB

V 149944 300000 31698 KB 803 KB

https://sketchfab.com/3d-models/pferdestatue-0bd8088f92be4a39a3c8a7faafbf897f

46

Figure 14-15 Bronze Cat and Lion. 3D models attribution 15 16

Figure 16-17 Sphinx and Putti. 3D models attribution 17 18

15 https://sketchfab.com/3d-models/bronze-cat-e4c8a7ec94ea4f4bb0a1170f275071bd

16 https://sketchfab.com/3d-models/lowe-von-asparn-57a57a99ce1f4e45adee5ae37a91f51b
17 https://sketchfab.com/3d-models/sphinx-d94a2dfbf413465395fde1bd17981b85
18 https://sketchfab.com/3d-models/putti-gruppe-49342e3b3c7d4e3c92bb5525ffeb397f

https://sketchfab.com/3d-models/bronze-cat-e4c8a7ec94ea4f4bb0a1170f275071bd
https://sketchfab.com/3d-models/lowe-von-asparn-57a57a99ce1f4e45adee5ae37a91f51b
https://sketchfab.com/3d-models/sphinx-d94a2dfbf413465395fde1bd17981b85
https://sketchfab.com/3d-models/putti-gruppe-49342e3b3c7d4e3c92bb5525ffeb397f

47

Table 6. Lion 3D model decimation table

Table 7. Putti 3D model decimation table

Lion Vertices Faces OBJ Size Draco size

Full size 358928 714772 73617 KB 1702 KB

I 478 1000 114 KB 8 KB

II 4978 10000 1132 KB 54 KB

III 24978 50000 5594 KB 209 KB

IV 49978 100000 11083 KB 372 KB

V 199978 400000 43794 KB 1128 KB

Putti Vertices Faces OBJ Size Draco size

Full size 315159 630380 75385 KB 1518 KB

I 469 1000 110 KB 8 KB

II 4969 10000 1059 KB 50 KB

III 14969 30000 3165 KB 122 KB

IV 49969 100000 10520 KB 334 KB

V 149969 300000 31734 KB 828 KB

48

Table 8. Sphinx 3D model decimation table

Table 9. Bronze Cat 3D model decimation table

Sphinx Vertices Faces OBJ Size Draco size

Full size 308254 616584 74125 KB 1513 KB

I 462 1000 111 KB 8 KB

II 4962 10000 1067 KB 51 KB

III 14962 30000 3194 KB 123 KB

IV 49962 100000 10609 KB 337 KB

V 149962 300000 31951 KB 828 KB

Bronze Cat Vertices Faces OBJ Size Draco size

Full size 650778 1301367 87682 KB 2311 KB

I 533 1000 92 KB 5 KB

II 5035 10000 921 KB 33 KB

III 25041 50000 4820 KB 132 KB

IV 50046 100000 9761 KB 243 KB

V 250094 500000 51677 KB 1053 KB

49

1 1 . I m p l e m e n t a t i o n a n d R e s u l t s

The Museum project has been finally put together as the result of the studies

previously discussed. Performances and impact of three different versions of the

simulation are evaluated:

• Uncompressed object retrieval scenario: a batch of .obj files are gradually

downloaded while the character explores the scene. In this scenario, the

meshes will appear after a long delay, only when they are retrieved in their

entirety.

• Single-rate compression object retrieval scenario: the batch of .obj files is

firstly compressed via Draco, then, they are uploaded in an http server,

retrieved by a dedicated C++ filter and decompressed with a C# script. In

this scenario, the meshes will appear in a short delay, only when they are

retrieved in their entirety.

• Progressive visualization of compressed object retrieval scenario: each .obj

file is split into 6 different-sized versions, each one of them is compressed

via Draco and glued together into a unique file, that will be gradually

retrieved from the remote http server. In this last scenario a first coarse

version of the mesh will appear in a noticeably shorter delay and it will

consequently be enhanced as the download progresses, finally turning into

the most detailed version.

50

During the simulation, the user walks inside the museum, eventually colliding with

a set of invisible objects, one for each mesh, that will trigger the operation of

retrieval for a certain art piece. The user is free to move around the area throughout

all the loading phases of the object(s), and he may activate more than one trigger.

Figure 18. Visual explanation of the trigger process in WoW. Screenshot from the final version of the
application.

If the simulation is played in VR through the mounted headset, the triggers will be

activated as previously mentioned if the user is moving with the Trackpad.

Additionally, a mesh covering an area around the pedestal of each art piece has

been created and marked as a trigger so that, in case the user teleports to a new

location, if this new location is contained in one of the said areas, the loading

operation will immediately take place.

51

The key functions behind the operation are explained in the following paragraphs:

For each object that will be downloaded there is an invisible trigger (Fig. 18) that will

invoke an Event. The startSimulation.cs script is the one delegated to the progressive

compression simulation: it will initialize the C++ process with the task of

establishing an http-secure connection, then it will invoke the Event so that the

scripts attached to the empty object can run, and finally it waits for some data

available to read from the pipe. The startFullSimulation.cs script is the one devoted

to start the second scenario of the application, the one in which the compressed

most detailed version of the mesh is retrieved.

Each empty object in the scene that represents the “shell” of the 3D model has

two important scripts attached to it:

• PipeBud.cs initializes the client of the piped communication, creates a buffer

in which data will be written, then performs multiple read until the number

of reading is equal to 6 (5 LODs and the original compressed object).

This script also invokes an event in order to alert the script

DracoDecodingObjects.cs that a batch is ready to be processed.

• DracoDecodingObjects.cs is a customization of the original decoding script

provided by draco: it works for piped communication with the C++ code,

decoding locally retrieved objects and decoding 3D objects once

downloaded via http. The textures of the meshes are also processed inside

this script.

52

On C++ side, the MEPP2 filter http_client_async_ssl.cpp works as follows:

In the function Pipis the namedPipe is created and it is called every time a batch of a

specific object is ready to be sent; this function calls the InstanceThread method, that

instantiates and specifies the task of a new thread once a client connects to the

namedPipe. All the necessary data to perform the request, such as the size of the

different batches, the host, the port and the target, is provided as a set of parameters

by the C# script devoted to start the execution of the C++ program and it is

collected as the server receives the first request message from the client, along with

the ID of the object to retrieve. The method async_read_some provided by the

boost/beast library is the one who performs a gradual read, allowing to access data

while the http retrieval is still performing. The on_read method is called every time

the previous function returns: every time a chunk of data is read and saved in the

buffer, this method saves the body of the http reply and, finally, every time the

chunk is big enough to contain a batch, it sends the data through the pipe.

Figure 19. Flowchart of the C++ process.

53

Figure 20. Flowchart of the object retrieval process.

54

An example of a running simulation follows:

The player starts his experience at the entrance of the museum. At this specific

moment, no object is present inside the museum. The player starts exploring the

area by walking across the main entrance and triggering the “Lion” art piece to

show up. From here he has free access to the rest of the area, so he can walk

towards the other separators to trigger the activation of another event or just wait

for the first art piece to complete its rendering.

Figure 21. Screenshot of the Simulation #1.

As he discovers the different rooms, the museum takes life by being populated

with different sculptures.

Figure 22. Screenshot of the Simulation #2.

55

The next table summarizes the rendering times of each object in the scene by taking

into account the second scenario (first column) and the third scenario (second to

last column):

Table 10. Results table. The first column is referred to the single-rate scenario, the other columns to the

progressive scenario.

It is worth noticing that the difference in rendering time, related to the variability

of the sizes of each object, is nullified during the first steps of the algorithms, since

the batches have similar sizes. As a consequence, an object will always be visible in

short time, although the time for completing its retrieval will vary on the long term.

Mesh Full Reso

Rendering

Time

Batch #1 Batch #2 Batch #3 Batch #4 Batch#5 Full Reso

Batch

Bronze Cat 2.32s 0.01s 0.03s 0.11s 0.25s 0.94s 2.19s

Lion 2.01s 0.03s 0.07s 0.17s 0.36s 1.01s 2.05s

Horse 1.82s 0.05s 0.17s 0.43s 0.92s 1.69s 2.79s

Sphinx 1.80s 0.01s 0.04s 0.10s 0.29s 0.72s 1.68s

Putti 1.95s 0.01s 0.03s 0.09s 0.30s 0.77s 1.77s

56

The rendering times of the objects in the second scenario (dots) and in the third

scenario (crosses) are compared in the following graph:

Figure 23. Performance comparisons between second and third scenario.

As expected, the third simulation provides an almost-immediate visualization of a

low-detailed version of the meshes; in some cases, the final batch of a 3D model

will be rendered with a slight delay with respect to the same object retrieved using

the single-rate approach: as it has been stated before, this may be caused by the

complexity of the process behind the progressive simulation. Overall, the behavior

of the simulation confirms that the progressive approach brings a tangible

optimization regarding user experience while not excessively overcharging the

systems’ resources.

57

Another important experiment has been conducted to broaden the perspective of

this work. A test of efficiency in case of different network scenarios has been

developed as follows: two additional simulations have been performed and

compared to the standard scenario, that was carried out with an effective

bandwidth of approximately 40 Mbps. For the first experiment the wireless band

of the device in which the experiment takes place has been limited by setting a low

priority on Quality of Service router regulation, next, the band has been kept busy

by downloading and streaming content on different devices connected to the same

router. As a result, the effective bandwidth on the terminal was around 1 Mbps.

For the second experiment the terminal has been connected via hotspot to a mobile

4G data network, with an effective bandwidth of roughly 25 Mbps.

Figure 24. Different network scenarios for Lion 3D model retrieval.

58

It is firstly noticeable that, lowering the bandwidth, the most detailed version of

the mesh (Level Of Detail #6) will render with a consistent delay with respect of

directly retrieving the Full Resolution mesh (as performed in scenario #2). On

the other hand, the experiment proved that there is a remarkable difference

between the retrieval of the Full Resolution mesh in a band-limited environment

(the user must wait more than one minute before seeing anything), and the LOD-

based approach, in which the object is present in the scene with a 100ms delay.

Furthermore, the fourth Level of Detail is rendered with a delay of 18 seconds, and

its level of detail is generally acceptable within a dynamic scenario: the user will

hardly notice the following improvements unless he gets very close to the object.

59

1 2 . C o n c l u s i o n a n d P e r s p e c t i v e s

In conclusion, this experiment led to satisfactory results and it successfully models

the proposed scenario, with a remarkable difference with reference to the raw

retrieval of a 3D uncompressed object.

The proposed solution also helps maintaining an acceptable degree of immersivity:

since one of the most known application areas of LODs is saving up memory for

distant objects (i.e. when their details are still not noticeable), the trigger is placed

at an adequate distance so that the user is not capable of distinguishing the

imperfections of the intermediate model, but he can immediately notice that there’s

a certain object with a certain shape; additionally, in case he walks up to take a

closer look, the object will have the time to acquire more detail. From these

considerations, the third scenario results to be the most effective one both in terms

of immersivity and requisites for a real time application, in coherence with the

thesis that has been carried out in this work; furthermore, this solution better

performs in environments with limited or unstable bandwidth: the first batch

usually has a limited number of vertices and, consequently, a size of roughly a

dozen of KB to be downloaded.

Some possible improvements and integrations may be the setup of a subjective

quality measurement experience, in which the users are asked to give their

impressions on the different scenarios; another possible development could be the

insertion of distractor elements (i.e. masquerading) for diverting the user’s

attention while meshes are being loaded. A further study may be conducted on

how remote retrieval of adaptive textures may change the result in terms of

efficiency.

60

This work paves the way for future developments in the optimization of user

experience in VR environments in many scenarios (videogames, staff training,

instruction etc.), opening doors to new possible researches in the field, focusing

on optimizing visual experience without further computational cost, up until the

almost integral shift of graphic applications’ computation load from the user’s

terminal to a dedicated remote machine.

61

BIBLIOGRAPHY

[1] CAILLAUD F., VIDAL V.,
DUPONT F., LAVOUE G. :

 Progressive compression of
arbitrary textured meshes.
Computer Graphics Forum 35,
7(2016),

 475-476.

[2] NG REN:
 CS184/284A Computer Graphics

and Imaging Course, Berkeley
University.

[3] MAGLO A., LAVOUE G.,

FLORENT D., CELINE H. :
 3D mesh compression: survey,

comparisons and emerging
trends. ACM Computing Surveys,
Vol. 9, No.4, Article 39(2013),

 39 :16 - 39 :31.

[4] LEE H., LAVOUE G.,

DUPONT F. :
 Rate-distortion optimization for

progressive compression of 3D
mesh with color attributes.
Springer-Verlag(2011).

[5] ALLIEZ P., DESBRUN M. :
 Progressive compression for

lossless transmission of triangle
meshes. Proceedings of SIGGRAPH,
(2001),

 195-202.

[6] VIDAL V., LOMBARDI E.,
TOLA M., DUPONT F.,
LAVOUE G. :

 MEPP2: a generic platform for
processing 3D meshes and point
clouds. EUROGRAPHICS 2020,
(2020).

[7] GARLAND M. HECKBERT S.

P. :
 Surface Simplification Using

Quadric Error Metrics.
SIGGRAPH’97: Proceedings of the
24th annual conference on Computer
Graphics and interactive techniques,
(1997),

 209:216.

[8] RONFARD R. ROSSIGNAC

J. :
 Full-range approximation of

triangulated polyhedral. Computer
Graphics Forum, 15(3),

 Eurographics 96 (1996)

[9] RAMEY D., ROSE L.,

TYERMAN L. :
 MTL material format (Lightwave,

OBJ) FILE FORMATS, Version
4.2 (1995)

[10] PHONG B. T. :
 Illumination for Computer

Generated Pictures.
Communications of the ACM 18, No.
6 (1975)

62

[11] FEINER S., MACINTYRE B.,
HAUPT M., SOLOMON E. :

 Windows on the World: 2D
Windows for 3D Augmented
Reality. UIST ’03 (User Interface
Software and Technology) (1993)

[12] BOZGEYIKLI E., RAIJ A.

KATKOORI S. :
 Point & Teleport Locomotion

Technique for Virtual Reality.
CHI PLAY ’16: Proceedings of the
2016 Annual Symposium on
Computer-Human Interaction in Play
(2016)

[13] PIETROSZEK K. :
 Virtual Hand Metaphor in Virtual

Reality. Encyclopedia of Computer
Graphics and Games. Springer
Publishing International (2019)

[14] PIETROSZEK K. :
 Raycasting in Virtual Reality.

Encyclopedia of Computer Graphics
and Games. Springer Publishing
International (2019)

[15] KHAMBATTI M. :
 Named Pipes, Sockets and other

IPC. Arizona State University
Paper.(2001)

[16] SEO J., JOUNGHYUN KIM

G., CHUL KANG K.. :
 Levels of Detail (LOD)

Engineering of VR Objects.
Pohang University of Science and
Technology Paper.(1999)

63

