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Abstract

Testing hardware faults is a crucial step for the companies, since they can lead to failures
that may impact on the dependability of their systems. Indeed, the companies invest
money and time in order to test their hardware components, especially in safety-critical
domain, such as automotive, robotic and avionic. Furthermore the companies must be
comply with various standards like the ISO 26262, an international standard for functional
safety of electrical and/or electronic systems in serial production road vehicles. So there is a
growing interest towards the development of new strategies for evaluating the dependability
of safety-critical systems.

In particular, the main focus of this thesis is to develop a framework that evaluates
faults that may occur at the memory level. These faults can be of different nature, such
as Single Bit Upsets (SBUs), stuck-at bits, and block errors. The framework mimics the
behaviour of a radiation beam in order to investigate the correlation between this radiation
and the failures occurring within the memory device.

It has been validated by using an Artificial Neural Network running on a hardware
device which is simulated on gem5. Gem5 is a simulator used for computer system research
at both architecture and micro-architecture levels. In particular, in this thesis I developed
two DRAMs, similar to the ones used in the radiation beam testing. These two memory
devices contain different memory sections in order to isolate the source of error. Gem5
is configured using the System-call Emulation (SE) mode and a bare-metal approach, in
order to be OS independent. The benefits of this model are that it can be easily modified
for simulating other systems, such as changing specific components or settings and that is
easily reproducible.
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Chapter 1

Introduction

Nowadays, the testing of multiple faults is becoming more and more important, difficult
and the necessity of new strategies for this goal is crucial. As high-performance computing
systems continue to grow in scale and complexity, the study of faults and errors is critical
to the design of future systems and mitigation schemes. If current predictions hold, future
exascale systems expected in the early 2020s will see a hundred-fold increase in the amount
of main memory (DRAM) and cache memory (SRAM) compared to current levels.[1]

Fortunately, the growing interest towards the ANN, since they are structurally capable
of emulating biological neural networks. An artificial neural network is a mathematical
model inspired by biological neural networks. An ANN is based on a collection of connected
nodes called artificial neurons. The ones used for engineering purposes consists of inputs
that are multiplied by weights. These weights are then computed by a mathematical
function that determines the activation of a neuron.[2] Due to the growing use of ANN
in safety-critical applications, it is important to analyze the ANN behavior under a fault
injection campaign. We can notice that "upon proper analysis of the data, we designed
the preprocessors which reduced the hardware complexity to a minimum and eliminated
the use of external fault identifiers. Unlike the other schemes reported in the literature,
real-time fault detection is feasible using the neural processor presented in the paper."[3]

In this thesis, I follow a particular radiation campaign managed that aims to investigate
the impact of radiation-induced soft errors on the reliability of approximate computing
systems.[4] This test campaign was carried out at the Rutherford Appleton Laboratories,
UK, where an atmospheric-like neutron spectrum is delivered in the ChipIR beamline at
the second target station of the ISIS neutron source. The neutron flux in the beamline is
approximately 109 times larger than the atmospheric neutron flux. The ChipIr facility
provides a neutron flux of about 5 × 106 n/cm2/s for energies above 10 MeV.[4]

Since ground-level radiation experiments are very costly, there is the need to replicate
these experiments without this experimental setup. So, this thesis aims to reproduce this
radiation campaign through the use of a framework developed on the gem5 simulator. This
framework, in particular, evaluates faults that may occur at the memory level.

This thesis is organized as follows. Chapter 2 gives background notions about gem5,
focusing on the components used during this work. Hence, it explains the design choices to
have a faithful depiction of the system setup used during the radiation campaign. Chapter
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3 describes the proposed approach, as general as possible, to replicate this work into other
possible configurations. Then, chapter 4 describes the analysis of the experimental results.
The analysis is conducted both on a 16-bit integer ANN either a 32-bit float ANN, showing
the behaviours of the faults in different neural networks applications. Finally, Chapter 5
concludes with suggestions and advice for future works, stressing the importance of DRAM
testing.
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Chapter 2

Background

The following chapter aims to explain some fundamental and preliminary concepts con-
cerning the various areas covered by the whole project. Initially, the gem5 simulator is
described, highlighting the flexibility and the advantages of this simulator. Subsequently
is explained the experimental test setup used in the radiation campaign. Finally, the last
part highlights the gem5 configuration steps to replicate this setup.

2.1 The gem5 simulator

Gem5 is a modular simulator platform for computer-system research. Its infrastructure is
the merger of M5 and GEMS simulators, providing either a highly configurable simulation
framework, either a detailed and flexible memory system.[5] The gem5 simulator provides a
flexible, modular simulation system that is capable of evaluating a broad range of systems
and is widely available to all researchers.[5]

Gem5 provides four interpretation-based CPU models: a simple one-CPI CPU, a
detailed model of an in-order CPU and a detailed model of an out-of-order CPU. These
CPU models use a common high-level ISA description. Gem5 features a detailed, event-
driven memory system including caches, crossbars, snoop filters, and a fast and accurate
DRAM controller model, for capturing the impact of current and emerging memories,
e.g. LPDDR3/4/5, DDR3/4, HBM1/2/3, HMC, WideIO1/2. The components can be
arranged flexibly, e.g., to model complex multi-level non-uniform cache hierarchies with
heterogeneous memories. Furthermore, gem5 decouples Instruction Set Architecture (ISA)
semantics from its CPU models, enabling effective support of multiple ISAs. Currently,
gem5 supports the Alpha, ARM, SPARC, MIPS, POWER, RISC-V and x86 ISAs.[6]

In particular, gem5 with the ARM ISA can model up to 64 heterogeneous cores of a
Realview ARM platform and boot unmodified Linux and Android with a combination of
in-order and out-of-order CPUs. The ARM implementation supports 32 or 64-bit kernels
and applications.[6]
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2.2 System configuration
The device used during the radiation campaign is a Xilinx Zynq-7000 based system. This
device is a System-on-Chip (SoC), which provides an ARM Cortex™ A9 processor attached
to a 28 nm Artix©7 FPGA.[4] The ANN application was ported to this embedded system
using two external memories:

• two units of the MT41K128M16JT-125, a 2 Gb SDRAM DDR3L from Micron
Technologies[7];

• one S27KS0642GABHI020, a 64 Mib HyperRAM™ SelfRefresh DRAM manufactured
by Cypress Semiconductor.[8]

In figure 2.1 the top-level diagram of all the system structure is presented. This division
has made to isolate the source of errors, where the affected portion of the application are
the weights and the processed image data.

Figure 2.1: System top-level diagram

2.2.1 System Call Emulation (SE) Mode
Gem5 has two different simulation modes:

• System Emulation (SE) mode;
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• Full System (FS) mode.

The former focuses on the CPU and memory system and does not emulate the entire
system.[9] In the latter, the complete system can be modelled in an OS-based simulation
environment.[9] Since I want to implement a bare-metal system, I choose to run the ANN
application in the SE mode. Whenever the program executes a system call, gem5 traps
and emulates the system call, often passing it to the host operating systems.

The System-call Emulation Mode avoids the need to model devices or an OS by
emulating most system-level services.[5] So, there is just the need to specify a binary file
that must be executed. Furthermore, the SE mode is faster to run application code because
there is no kernel running in the background. There is also no system noise neither driver
support. In this way, I have full control over the system, in particular on the memory
model, which is the main focus of this thesis.

2.2.2 CPU model
The system core follows a gem5 TimingSimpleCPU [10], which is a purely functional
in-order processor model. The TimingSimpleCPU is the version of BaseSimpleCPU that
uses timing memory accesses. It defines the port that is used to hook up to memory and
connects the CPU to the cache. It also defines the necessary functions for handling the
response from memory to the accesses sent out. It stalls on cache accesses and waits for the
memory system to respond before proceeding. In figure 2.2 is shown the main structure of
a TimingSimpleCPU.

The timing access is the most realistic access method and is used for approximately-
timed simulation, which considers the realistic timing, and models the queuing delay and
the resource contention.[9]

This CPU model is chosen among the others because it is possible to avoid caches. In
this way, all the data is read or write to the main memory, described in subsection 2.2.3,
while keeping the timing memory access mode. This design choice leads to an unrealistic
structure of an embedded system. Nowadays, every embedded system CPU has some
cache structure to reduce the average cost to access data from the main memory.

2.2.3 Memory model
I decide to replicate only one unit of the device MT41K128M16JT-125, described in section
2.2. Two units of this device would create a crash of the system due to a page table fault.
The page table is the data structure used by a virtual memory system in a computer
operating system to store the mapping between virtual addresses and physical addresses.
However, it does not impact the ANN application either the analysis of the results.

The DRAM characteristics are stored in the file DRAMCtrl.py, located in the folder
gem5/src/mem/. Therefore I created two new DRAMs, named DDR3L and HyperRAM,
inserting the values related to the timings, power consumption according to the ones
provided in the manuals. [7] [8]. The main characteristics of both memories are described
in table 2.1.
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Figure 2.2: TimingSimpleCPU structure

DDR3L HyperRAM
device size 256 MB 256 MB

device bus width 8 8
burst length 8 8

device rowbuffer size 16 kB 16 kB
devices per rank 16 16
ranks per channel 2 2
banks per rank 8 8
activation limit 4 2

Table 2.1: DRAMs main characteristics

The timing characteristics of the two memory units are described in table 2.2.
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DDR3L HyperRAM
tCK 1.25 ns 5 ns

tBURST 5 ns 20 ns
tRCD 13.75 ns 18 ns
tCL 13.75 ns 18 ns
tRP 13.75 ns 18 ns
tRAS 35 ns 42 ns
tRRD 6 ns 10 ns
tXAW 30 ns 50 ns
tRFC 160 ns 210 ns
tWR 15 ns 15 ns
tWTR 7.5 ns 15 ns
tRTP 7.5 ns 20 ns
tRTW 7.5 ns 10 ns
tCS 2.5 ns 10 ns

tREFI 7.8 µs 3.9 µs
tXP 6ns N.A
tXS 170ns N.A

Table 2.2: DRAMs timing characteristics

The power characteristics of the two memory units are described in table 2.3

DDR3L HyperRAM HyperRAM21

IDD0 46 mA 35 mA 35 mA
IDD2N 21 mA 35 mA 35 mA
IDD3N 34 mA 0.08 mA 0.09 mA
IDD4W 138 mA 25 mA 30 mA
IDD4R 128 mA 25 mA 30 mA
IDD5 180 mA 1mA 1 mA

IDD3P1 21 mA 8 mA 8 mA
IDD2P1 15 mA 8 mA 8 mA
IDD6 12 mA 1 mA 1 mA
VDD 1.35 V 1.8 V 3.0 V

Table 2.3: DRAMs power characteristics

1HyperRAM2 is introduced since HyperRAM has two different operational voltages
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Along with these memory models, gem5 has a page table, a data structure used to store
the mapping between virtual addresses and physical ones. Virtual addresses are used by
the program executed by the accessing process, while physical addresses are used by the
hardware, i.e. the two DRAMs. The relationship between physical and virtual addresses is
shown in figure 2.3.

Figure 2.3: A general page table structure

Since the two memories must have a specified physical address, I slightly modified the
code contained in the page_table.cc file, located in the folder gem5/src/mem/. The page
table allocation algorithm is:
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Algorithm 1 page table translation
1: procedure bool EmulationPageTable::translate(vaddr, &paddr)
2: Define pointer entry of type Entry
3: if !entry then
4: return false
5: end if
6: if virtualaddress ≤ 2214592512 then ó 2214592512 the last physical address
7: Physical address is set to an offset due to the virtual address plus the physical

address of the entry;
8: else
9: Physical address is set to the virtual one
10: end if
11: return true
12: end procedure

In this way, the correct memory section can be selected, especially if there is a need for
a particular memory address.

2.2.4 File configurations
The memories sections are split into the two memory devices presented in 2.2.3, divided
into:

• text: executable instructions;

• data: constants and statically allocated variables;

• heap: dynamically allocated variables;

• stack: store parameters for function calls, return addresses, and local variables.

These sections are configured into the linker file linker.ld file. In table 2.4 is displayed
the memory segments partition.

memory type segments

DDR3L
text
bss
stack

HyperRAM data
heap

Table 2.4: System memory configuration

This startup.s file initialize the .bss the .data and the .stack section and then it finally
calls the main program. Along with the linker file, there is a startup.s file: this file
contains:
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• the reset handler which is executed after CPU reset;

• the setup values for the Main Stack Pointer (MSP);

• interrupt vectors that are device-specific with weak functions that implement default
routines;

• the actual jump to the main program.

Furthermore, there is a syscall.c file. This file contains all the implementation of
system calls that are used in the system to correctly compile and boot the program. The
most important function is _sbrk.

The _sbrk function is used to change the space allocated for the calling process. The
change is made by adding incr bytes to the process’s break value and allocating the
appropriate amount of space. The amount of allocated space increases when incr is positive
and decreases when incr is negative. My implementation is:

Algorithm 2 _sbrk function
1: procedure _sbrk(incr)
2: Variables initialization
3: if heap_end = False then
4: Assign the pointer to the last element of the heap to heap_end
5: end if
6: Update the prev_heap_end to heap_end
7: if heap_end + incr > heap_limit then
8: return -1 ó Not enough memory available
9: end if
10: Increment heap_end of incr
11: Return prev_heap_end
12: end procedure

In this way, the system does not have any OS, keeping it as easy as possible. This
solution can represent, with some degree of fidelity, a general embedded system.

Then I created two monitors, called MyMonitor and MyMonitor1, to track the data
traffic of the two DRAMs. These monitors are placed between the system membus and
each mem_ctrls. In figure 2.4 can be seen the system structure of a SimpleCPU.[11]

All these files are cross-compiled from a Makefile. In personal computers, GNU GCC is
a compiler that compiles an application written for LINUX X86 PC. When the host and
target architectures are different, the toolchain is called cross compiler. Toolchains have a
loose name convention like arch-[vendor]-[os]-[eabi], where:

• arch refers to a target architecture, e.g. ARM;

• vendor refers to toolchain supplier;

• os refers to the target OS;

12
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Figure 2.4: System structure for a simpleCPU model

• eabi refers to an Embedded Application Binary Interface (EABI).

For the aim of this thesis, I decided to use arm-none-eabi. This toolchain targets for ARM
architecture, has no vendor, does not target an operating system and complies with the
ARM EABI. Then, the Makefile specifies the name of the target ARM architecture. In
this case, the target architecture is armv7-a, to be compliant with the one used in the
setup of the radiation campaign. Finally, I use the least optimization possible through the
-O0 option flag. Otherwise, the variables that should go into the .stack section are stored
in the internal register instead.

13





Chapter 3

Proposed approach

This chapter aims to describe the approach used to perform fault injection on DRAM of
ANN applications on gem5. This methodology describes a procedure for inserting random
faults at the software level on an ANN application. This procedure is applied either on a
16-bit integer ANN application either on a 32-bit floating-point ANN one. In this way,
there is also space to comment on their differences and the analogies.

In my thesis, I follow the stuck-at fault model. This model is selected since it is a fault
model based on the assumption that a circuit signal has a fixed value of 0 (stuck-at-0) or 1
(stuck-at-1). This model is not a physical model and hence its strength. It is far better to
model such networks as abstract logic networks and then use ssf on these models than go
down to the level of transistors.[11]

The training of a neural network is usually conducted by determining the difference
between the processed output of the network and the target output. The network then
adjusts its weighted associations according to a learning rule and using this error value.
Successive adjustments will cause the neural network to produce output that is increasingly
similar to the target output. After a sufficient number of these adjustments, the training
can be terminated, based upon some criteria. So, in our case, the ANN has multiple
outputs:

• one output as a standard classifier, i.e. the estimated output;

• ten outputs to indicate the correspondent single-digit number and its confidence that
this network has in its classification of the input signal.

In other words, the ANN estimates its confidence of each one-digit number. Therefore, it
chooses the one on which it relies the most. In case there are two or more numbers with
the same grade of confidence, the ANN selects the first one in cardinal order. An example
of these behaviours, related to a 32-bit floating-point ANN application, is shown in figure
3.1.

The first twenty-five lines describe the outputs of the first image. In line 5, at the
address 0x80000000, the monitor stores the expected result of the ANN, which is five. In
line 17, which corresponds to output five, there is a value greater than the others since it
stores a confidence value of 1.52702.
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Figure 3.1: Example of output obtained through MyMonitor for the 32-bit floating-point
ANN application

One problem is the impossibility of providing images to the application via files. Since
there is no operating system, I can’t use any system call that implies the OS. Indeed, there
is no possibility to manipulate files, print some variables, pass command arguments and
on and on. To solve the problem, I convert the images into matrixes of floating-point type
for the 32-bit floating-point ANN application and matrixes of integer type for the 16-bit
integer ANN application. Therefore I stored them as a static array of matrixes.

To evaluate the outputs of these ANNs, and hence their predictions, I applied these
images to the ANNs. In this way, I get the golden results, which are the outputs obtained
without any fault. To monitor the system, I take some particular memory addresses and
then visualize their values through MyMonitor, collecting all the data that I need for my
study. They are:

• the predicted single-digit number, stored in 0x80000000 ;

• the confidence rating, in cardinal order, stored in 0x80000004 ;

16
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• the system time;

• the latency of the memory store.

One example of the data obtained through Mymonitor is shown in figure 3.1.
Before the analysis, I create a fault list, using an array of type fault_t, a struct in

which we have the main characteristics of a fault. They are:

• the layer of the ANN in which I inject this fault;

• the position of this defect;

• the channel;

• the width;

• the height;

• the bit position;

• the type of stuck-at-fault.

The first five attributes are related to the position of the target weight. On the other
hand, the last two ones are related to the fault injection mechanism. The first is the type
of stuck-at (either 0 or 1). The latter is the bit position, which has a value between 0
and n-1, where n is the number of bits of the weights. Hence, these faults are inserted in
DRAM through a software function that takes as inputs the fault peculiarities, changing
bits according to the stuck-at-fault type. It is done by following these fault characteristics,
already described, using the following algorithm:

Algorithm 3 soft_error_injection
1: procedure soft_error_injection(index)
2: Variables initialization
3: Get the target weight, through reading the layer
4: Inject the stuck_at fault at the target weight
5: Write the faulty weight to the target weigth
6: end procedure

Finally, the idea is to inject faults one by one, evaluating the behaviour accordingly to
Silent Data Corruption (SDC) detection mechanism. [12]

A fault is detected whether one of the following situations occur:

• SDC-1: a Silent Data Corruption (SDC) failure is a deviation of the network output
from the golden network result, leading to a misprediction. Hence, the fault causes
the image to be wrongly classified;

• SDC-10%: the faulty network correctly predicts the result but assigns a confidence
score which varies by more than +/-10% of its fault-free execution;
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• SDC-20%: the faulty network correctly predicts the result but assigns a confidence
score which varies by more than +/-20% of its fault-free execution;

• Hang: the fault causes the system to hang and the HDL simulation never finishes;

• Crash: it is the opposite situation of the previous one. The HDL simulation
immediately stops as a consequence of the fault.

Overall, the methodology proposed in this thesis proposes a single simulation without
any error injected in the application. Hence, a fault in the DRAM memory is applied,
so the result of the ANN application, track by MyMonitor, are stored in a faulty result
file. Finally, there is the comparison of the golden results and the faulty ones, in order
to classify them according to the cited SDC detection mechanism. Figure 3.2 shows the
architecture of the method used and highlights the various blocks that compose the system.

Figure 3.2

Results of the described approach are presented in chapter 4, Experimental results.
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Chapter 4

Experimental results

The purpose of this chapter is to analyse some random fault injections to the system, using
the proposed approach described in Chapter 3. These faults are injected either on a 16-bit
integer ANN application and a 32-bit floating-point ANN one. These applications are
written in C language, composing a total of twenty-two files each. The first part of this
chapter deals with a little degression of this ANN application. To evaluate the approach,
the system described in Chapter 2 is targeted, using a 32-bit ARM Cortex A9, two DRAM
memories and the TimingSimpleCPU.

Overall, the purpose of this approach is to evaluate the behaviour of these DRAM
faults among different ANN layers and hence the differences and similarities of these two
kinds of applications.

4.1 Golden values

In this section, golden values are presented. These values are the ones that the ANN
applications evaluate in a fault-free scenario. As already discussed in chapter 3, each ANN
estimates its confidence of each one-digit number. Therefore, it chooses the one on which it
relies the most. In case there are two or more numbers with the same grade of confidence,
the ANN selects the first one in cardinal order. In table 4.1 the ANN floating-point 32-bit
application outputs are shown. Each image has a prediction related to a floating-point
number which expresses the confidence in this value.

Similarly, in table 4.2, the ANN integer 16-bit application ones are displayed.
Seeing this table, there is an odd behaviour on the 16-bit integer ANN function. Almost

all the expected output has a confidence score of 32767, which is the highest number
that can be reached using a signed 16-bit integer. Furthermore, this value is present even
related to other one-digit numbers in the same image. Hence, this comportment introduces
some errors after the injection of a fault, discussed in 4.3.2.
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Image 0 Image 1 Image 2 Image 3 Image 4
5 1.52702 5 0.790647 0 1.80845 8 1.73504 5 1.67788
Image 5 Image 6 Image 7 Image 8 Image 9
5 1.63971 9 1.53866 6 1.64181 8 1.31346 1 1.73478
Image 10 Image 11 Image 12 Image 13 Image 14
2 1.66945 5 1.59841 5 1.5512 4 1.88076 1 1.70697
Image 15 Image 16 Image 17 Image 18 Image 19
6 1.67884 4 1.59015 0 1.73323 4 1.94977 3 1.76429
Image 20 Image 21 Image 22 Image 23 Image 24
2 1.70951 2 1.49161 1 1.69595 5 1.75724 8 1.71161
Image 25 Image 26 Image 27 Image 28 Image 29
1 1.69072 0 1.95635 0 1.79684 5 1.31981 9 1.64174
Image 30 Image 31 Image 32 Image 33 Image 34
0 1.8645 2 1.78268 9 1.6116 5 1.70745 5 1.45337
Image 35 Image 36 Image 37 Image 38 Image 39
0 1.82736 1 1.69603 3 1.85674 9 1.41799 9 1.84334
Image 40 Image 41 Image 42 Image 43 Image 44
4 1.69482 6 1.87303 7 1.90492 1 1.8138 9 1.71095
Image 45 Image 46 Image 47 Image 48 Image 49
9 1.76778 7 1.76624 0 1.87437 6 1.77714 6 1.45596

Table 4.1: Golden output values for ANN floating-point 32-bit application

4.2 Fault injection

The fault injection main characteristics and timings are presented in table 4.3. Fifty
images are provided to each application. In this way, we can examine the effects of the
error supplied while keeping a reasonable simulation time. In fact, for the floating-point
application, I estimate an average time of 9h and 12 minutes for each fault, while for the
integer application, I evaluate an average time of 1h and 42 minutes for each error. The two
timings are evaluated on two different laptops. In this way, I launched the floating-point
application on a laptop and the integer one on the other. This configuration may help to
obtain different evaluation times, as described in table 4.3. Furthermore, the number of
pictures is kept low to avoid memory repercussions, since they are stored in memory, as
discussed in chapter 3.

The number of faults is chosen to guarantee a tradeoff between timings and the amount
of data.

Then, some random faults are generated among all the neural network. All errors are
classified depending on the layer level. A schematic view is presented in table 4.4. As we
can see, they are spread among all the different layers. It leads to an idea of the impact
that a fault has on each layer of the ANN.
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Image 0 Image 1 Image 2 Image 3 Image 4
3 32767 6 32767 7 32767 5 32767 5 32767
Image 5 Image 6 Image 7 Image 8 Image 9
4 32767 1 32767 7 32767 5 32767 2 32767
Image 10 Image 11 Image 12 Image 13 Image 14
1 32767 0 32767 2 32767 5 32767 2 32767
Image 15 Image 16 Image 17 Image 18 Image 19
1 32767 1 32767 0 32767 5 32767 0 32767
Image 20 Image 21 Image 22 Image 23 Image 24
0 32767 4 32767 2 32767 1 32767 2 32767
Image 25 Image 26 Image 27 Image 28 Image 29
0 32767 1 32767 3 32767 7 32767 2 32767
Image 30 Image 31 Image 32 Image 33 Image 34
9 15273 0 32767 3 32767 0 32767 2 32767
Image 35 Image 36 Image 37 Image 38 Image 39
0 32767 0 32767 3 32767 3 32767 0 32767
Image 40 Image 41 Image 42 Image 43 Image 44
2 32767 2 32767 6 32767 7 32767 3 32767
Image 45 Image 46 Image 47 Image 48 Image 49
2 32767 1 32767 1 32767 0 32767 4 32767

Table 4.2: Golden output values for ANN integer 16-bit application

ANN application Layers Images Number of faults Total time
float 32 bit 5 50 70 ~640 h

integer 16 bit 5 50 70 ~120 h

Table 4.3: fault injection main characteristics

4.3 Fault analysis

4.3.1 32-bit ANN floating-point application fault analysis

Firstly, I decided to evaluate the number of faults that introduce some errors in one or
more images. As shown in figure 4.1, four faults (6%) lead to at least one misprediction of
some pictures into the 32-bit floating-point ANN application. Fifteen errors (21%) have at
least one image with a confidence level different from the golden one, but they are not
detected. Finally, fifty-one faults (73%) are correct.

This classification is done by following the SDC-analysis previously described in chapter
3. Some faults are not identified, since the SDC is less than 10%. They can be seen in
table 4.5.
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ANN type layer level number of faults

16 bit integer

conv 1 12
conv 2 15
conv 3 19
fc1 14
fc2 10

32 bit floating point

conv 1 15
conv 2 16
conv 3 14
fc1 14
fc2 11

Table 4.4: Fault types

This result is reasonable since the injected errors are more or less effective accordingly
to the characteristics of the position of the fault, i.e. ANN layer, bit position, width, height
and stuck-at type.

Figure 4.1: Floating-point 32-bit diagram

Therefore, I classify the faults according to the SDC data analysis. These results can
be seen in figure 4.2. The injected faults do not cause any hang as well as any crash. The
number of faulty images is more or less balanced among type SDC-1, type SDC-10%, type
SDC-20%, even though this last one is less common. It is interesting to report that all
the SDC-1 errors refer to fault 42. These errors lead to wrongly evaluate the confidence
level of thirty-six pictures, with values of the order of magnitude of 1034 and in some cases
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1035. Furthermore, surprisingly all these images are predicted as 2 by the ANN. Hence,
thirty-three pictures are rated as SDC-1, while three are evaluated as SDC-20%.

Focusing on the fault characteristics, as expected the errors on higher bits have more
influence on the ANN predictions. In particular, faults on bit thirty-one refers to the ones
that modify the sign of the value, while bit thirty has a significant impact on the value.
Finally, another consideration may be done basing on the impact of layers on the results.
Conv1 is the layer more present in table 4.5, a sign that this layer is significant during the
ANN evaluation, although the greatest errors stem from fault 42, of layer conv3.

Figure 4.2: Floating-point 32-bit diagram

Fault number Layer Output Channel Width Height Bit SA type
14 conv1 3 0 0 0 31 1
30 conv1 3 0 4 1 31 1
34 conv1 4 0 0 1 30 1
42 conv3 8 3 4 3 30 1

Table 4.5: Faults leading to detected errors

4.3.2 16-bit ANN integer application fault analysis
As shown in figure 4.3, twenty faults (29%) lead to at least one misprediction of some
pictures into the 32-bit floating-point ANN application. Seven errors (10%) have at least
one image with a confidence level different from the golden one, but they are not detected.
Finally, forty-three faults (61%) are correct. This classification is done by following the
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SDC-analysis previously described in chapter 3. Some faults are not identified, since the
SDC is less than 10%. They can be seen in table 4.6.

Figure 4.3: Integer 16 bit diagram

This higher percentage of detected faults is due to the different structure of the system.
As already described in table 4.2, almost all the predictions output is relatable to the value
32767, which is the maximum possible value that can be achieved with a signed integer in
16-bit. Furthermore, in some images, this value is present also in other outputs. Hence, in
case there are some changes in the prediction, this situation probably leads to an SDC-1,
more than in other cases. The prevalent type of faulty images is SDC-1, as shown in figure
4.4. For the same reason, the faults of class SDC-10% and SDC-20% are rare.

Similarly to the 32-bit floating-point application, as expected, the errors on higher bits
have more influence on the ANN predictions. In particular, faults on bit fifteen modify the
sign of the value and faults on bit fourteen has a significant impact on the ANN evaluation.
Nevertheless, in some case, a stuck-at fault on a lower bit leads to some error about ANN
evaluation. It is shown in table 4.6.

Then, another consideration may be done basing on the impact of layers on the results.
In contrast with the analysis done in 4.3.1, conv2 is not the layer more present in table
4.6. However, conv1 has still a significant impact on the ANN evaluation. Furthermore,
conv3 is present twice in the table, a sign that is a layer that may lead to some errors,
even if they are less common.

Finally, I want to do a last consideration about the two applications. As shown in 4.5
and 4.6, no faults in layers fc1 and fc2 are detected. This may lead to the conclusion that
these two layers are rarely involved in ANN evaluation, or that their impact is negligible.
But these conclusions may be drawn with the support of more data related to these two
layers, in future works.
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Figure 4.4: Integer 16 bit diagram

Fault number Layer Output Channel Width Height Bit SA type
0 conv3 13 4 4 3 14 0
4 conv2 0 1 2 2 9 1
6 conv2 3 3 4 0 15 1
7 conv2 3 5 0 4 12 1
9 conv1 2 0 0 0 6 0
10 conv2 13 5 3 3 15 0
13 conv1 3 0 0 1 9 0
14 conv1 4 0 4 0 5 1
21 conv1 0 0 0 0 15 1
22 conv1 5 0 0 2 11 1
29 conv1 4 0 0 0 15 1
30 conv1 4 0 2 3 10 0
35 conv2 7 1 1 1 14 0
36 conv2 11 0 3 2 11 0
40 conv2 15 5 4 4 7 0
41 conv3 32 5 3 2 12 1
53 conv2 11 1 1 1 11 0
58 conv1 3 0 0 3 7 0
59 conv2 8 5 3 0 8 1
64 conv2 6 2 3 1 10 1

Table 4.6: Faults leading to detected errors
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Chapter 5

Conclusions

The problem of testing embedded memories has become more complex in recent years
[13]. So, this thesis describes a methodology on how to perform fault injection on DRAM
of ANN applications on gem5. The approach employs stuck-at-faults inserted through
software. As high-performance computing systems continue to grow in scale and complexity,
the study of faults and errors is critical to the design of future systems and mitigation
schemes. Fault modes in system DRAM are a frequently-investigated key aspect of memory
reliability.[1] Hence, there is the need to investigate the impact of soft errors through a
particular radiation campaign, like the one described in [4].

But this kind of study is costly. Thus, this thesis proposes a framework that evaluates
faults that may occur at the DRAM level, simulating the radiation behaviour of a radiation
beam to stimulate failures occurring within the memory device. In fact, simulating a
system has always carried the advantage of increased insight and flexibility, at a cost in
execution speed and timing fidelitycompared to the real machine. However, until recently,
the use of simulation technology for large-scale embedded systems software development
and testing has been fairly limited.[14]

Thus, the framework is built on gem5, a flexible, modular simulation system, capable
of evaluating a broad range of systems and is widely available to all researchers.[5] In
particular, the main focus towards the development of this framework is posed on the
replication of two DRAMs memories, the ones used in the radiation campaign. Then, two
monitors are created and hence inserted into the system. These monitors are based on a
structure, called MyMonitor, developed by myself. MyMonitor arises from the need to
track some data from the two DRAMs. In fact, this framework emulates a bare-metal
system. Since there is no operating system, it is impossible to use any system calls that
involve the OS itself. A bare-metal system provides more flexibility on the memory access,
at the cost of having no access to system calls the implies I/O mechanisms. However,
experiments clearly show that using this method is possible to insert and then evaluate
faults that may occur at the memory level.

However, experiments clearly show that using this method it is possibile to insert and
then evaluates faults that may occur at the memory level.
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5.1 Future works
The major advantage of this project regards its portability. The approach proposed
can be extended to other ISA as well as other system configurations. Possible studies
may be conducted on the improvement of this framework, with the introduction of a
more complicated and realistic CPU model, such as MinorCPU. This new configuration
introduces also some caches, the aim is to reduce the simulation time and have a more
realistic behaviour. However, some precautions have to be taken towards the caching
system.

Furthermore, an analysis of some layers, like fc1 and fc2, may be done. Fault injection
on these two layers during my work does not lead to detection. This may be the subject of
more studies, in order to investigate more on the behaviour of some errors. Finally, an
aspect that arises from this thesis is the high simulation time.

Hence, another future work may be the focus on the implementation of some multi-
threading, to decrease the amount of time to apply the fault injection to the ANN and to
evaluate the prediction of the ANN application.
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